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Abstract
Owing to the increased cost-effectiveness of high-throughput technologies, the number of studies focusing on the human
microbiome and its connections to human health and disease has recently surged. However, best practices in microbiology
and clinical research have yet to be clearly established. Here, we present an overview of the challenges and opportunities
involved in conducting a metagenomic study, with a particular focus on data processing and analytical methods.
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Introduction

Recently, an increasing number of studies have investi-
gated the human microbiome (bacteria, archaea, microbial
eukaryotes, fungi, and viruses), particularly of the gut,
and its involvement in human disease (Lynch and Ped-
ersen 2016), including metabolic (Boulangé et al. 2016),
autoimmune (Proal et al. 2009), and neuropsychiatric (Kang
et al. 2013) disorders. Indeed, the human gut microbiome
is involved in many host functions, such as the produc-
tion of enzymes to help food digestion (Bhattacharya et al.
2015), the synthesis of vitamins (e.g., biotin – vitamin B7)
and other key compounds (e.g., gamma-aminobutyric acid,
Barrett et al. 2012), and the development of the host immune
system (Thaiss et al. 2016). Perturbation of the gut micro-
biota (dysbiosis) has been associated with many diseases, as
in Clostridium difficile infection, which is associated with

Tiphaine C. Martin and Alessia Visconti contributed equally

� Tim D. Spector
tim.spector@kcl.ac.uk

� Mario Falchi
mario.falchi@kcl.ac.uk

Tiphaine C. Martin
tiphaine.martin@kcl.ac.uk; tiphaine.martin@mssm.edu

Alessia Visconti
alessia.visconti@kcl.ac.uk

1 Department of Twin Research and Genetic Epidemiology,
King’s College London, London, UK

2 Department of Oncological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY USA

a reduction of gut microbial diversity, often resulting from
antibiotic use (De La Cochetière et al. 2008). The intesti-
nal microbiota composition can also influence drug action.
For instance, Dubin et al. (2016) showed that patients with
metastatic melanoma having a higher proportion of Bac-
teroidetes phylum were less affected by colitis following
treatment with Ipilimumab.

The manipulation of the human gut microbiome has been
suggested as a potential therapeutic option for different
human diseases. Human faecal microbiota transplant
(FMT), which involves the transfer of faeces from a healthy
donor, has been a very successful treatment for C. difficile
infections (Eiseman et al. 1958; Gough et al. 2011; van
Nood et al. 2013), and it seems to be a promising approach
to treat other diseases (e.g., ulcerative colitis, Anderson et al.
2012; insulin sensitivity, Vrieze et al. 2012). Another way
to modify the gut microbiome is through the administration
of probiotics (suspensions of live microorganisms, AlFaleh
et al. 2012) and prebiotics (substances supporting resident
beneficial microorganisms, Underwood et al. (2009) and
Panigrahi et al. (2017)).

Advances in DNA sequencing, triggered by the develop-
ment of high-throughput sequencing technologies (or next
generation sequencing—NGS), make it nowadays possi-
ble to study the diversity of microorganisms present in/on
the human body in a routine and inexpensive way, and
without the need for cell cultures. This allows the charac-
terisation of microorganisms particularly hard or (so far)
impossible to culture, and of previously unknown ones
(Schloss and Handelsman 2005; Human Microbiome Jump-
start Reference Strains Consortium 2010; Vartoukian et al.
2010). Two main approaches are currently in use: marker
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gene amplification (metagenetics, Handelsman 2009), and
whole genome shotgun sequencing (metagenomics, Almeida
and Pop 2015). Metagenetics approaches use a polymerase
chain reaction (PCR) amplification of certain phylum-
specific genes, (e.g., 16S ribosomal RNA (rRNA) for bacte-
ria and archaea and 18S rRNA for fungi), followed by their
sequencing. However, uncertainty exists in the accuracy of
annotations for genus and species level, especially for those
organisms that have not been well characterised yet. Meta-
genetics approaches are cost-effective and have been widely
used for studying the association between microbiome
abundance and several human traits or diseases (Shreiner
et al. 2015). Metagenomics approaches, by sequencing the
whole genome of all the microorganisms present in a sam-
ple, are tenfold more costly but allow to potentially infer

the taxonomic profiles up to the strain level, thus allow-
ing a deeper understanding of the physiology and ecology
of the microbial community. In 2008, the Human Micro-
biome Project (Methé et al. 2012) and the Metagenome
of the Human Intestinal Tract (MetaHIT) study (Qin et al.
2010) started to characterise and generate the reference
genomes of bacterial strains commonly found in associa-
tion with both healthy and diseased individuals. Along with
DNA sequencing, microarray biochips specific for human
microbiome, also known as phylogenetic microarrays or
phylochips (Walker 2016), are nowadays available for the
relative quantification of known microbiota.

Neither metagenomics nor metagenetics approaches can
provide information on which microbial pathways are actu-
ally active. Indeed, DNA present in a sample could come

Fig. 1 Metagenomics analysis pipeline. Hexagons represent the analysis steps. Rectangles and parallelepipeds denote the output data and reports,
respectively. Cylinders represent additional data to be provided in input
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from resident metabolising organisms, partially quiescent cells,
host cells, viruses, spores, or dead microbiota. Recently,
three other high-throughput technologies have emerged:
(1) meta-transcriptomics, that measures the expression of
RNA molecules through RNA-seq (Bashiardes et al. 2016);
(2) meta-proteomics, that measures the microbial protein
levels (Grassl et al. 2016); and (3) meta-metabolomics,
that measures the microbial metabolite levels (Zhang and
Davies 2016). These technologies, combined with metage-
nomics, allow a better characterisation of the physiological
behaviours and dynamics of the microbial community, and
of their role in human health and disease.

Metagenomics is a novel and rapidly developing disci-
pline. Therefore, standardised protocols are currently lack-
ing, especially for the data processing and analysis, which
require high computational resources and bioinformatics
expertise. In this review, we will discuss best practices for
the implementation of a metagenomics project, summarised
in Fig. 1, with an emphasis on quality control, a critical step
often poorly described in the literature.

Sample collection and storage

Samples could be collected at virtually any body site, the
most studied being the gut. Collection approaches, micro-
biota composition, and biomass (the overall microbiota
quantity) differ markedly between sites (Costello et al.
2009). While metagenetics approaches allow inference of
the taxonomic profile using small amounts of DNA, metage-
nomics studies require higher amounts in order to get a
reasonable coverage of all the present microbial genomes.
For instance, in the comparative study performed by Ranjan
et al. (2016), the authors used 50 ng of microbial DNA for
the 16S rRNA amplicon library preparation but 5 μg for the
shotgun whole metagenome one. Although several efforts
have been made to improve sequencing using smaller quan-
tities of DNA, particularly for samples with low biomass
(e.g., skin metagenome), a reduced DNA quantity can affect
the inferred microbiome composition (Bowers et al. 2015).

The protocols used to select, store, prepare, and sequence
the samples should be consistent throughout the project
to avoid the introduction of unwanted technical variability
that would be difficult to remove afterwards. For instance,
Sinha et al. (2016) compared different faecal sample
collection methods, and concluding that all of them showed
high reproducibility, although sampling methods affected
the observed microbiota variability. Shaw et al. (2016)
investigated the effect of sample storage and preparation,
concluding that neither the duration of long-term freezing
at − 80 ◦C nor the storage at room temperature for less
than 2 days significantly affected the microbial community
composition, thus suggesting that samples should be shipped

on the day of collection and then processed or frozen at
− 80 ◦C within 2 days. However, Amir et al. (2017) showed
that room temperature storage is associated with a bloom of
certain bacteria, which alters the taxonomic profile. Also,
Choo et al. (2015) showed that while refrigeration at 4 ◦C
do not significantly alter faecal microbiota diversity or
composition, other preservative buffers (namely RNAlater,
OMNIgene.GUT, and Tris-EDTA) do.

Extensive clinical and demographic data should be col-
lected along with the specimen sample (Methé et al. 2012).
Indeed, several factors, including the geographical loca-
tion where the subjects live, their body mass index, and
their age, have been observed to play a role in the com-
position of the microbial community (Yatsunenko et al.
2012; Zhernakova et al. 2016). Stool consistency (mea-
sured by the Bristol Stool Chart (Lewis and Heaton 1997)
and considered a proxy for intestinal transit time) should
also be recorded, since it has been associated with species
richness and community composition (Tigchelaar et al.
2016; Vandeputte et al. 2016). Koren et al. (2012) also
observed dramatic changes in the third trimester of preg-
nancy, when the gut microbiome resembles that of subjects
affected by metabolic syndromes. Diet is another important
factor. While long-term dietary habits are firmly associ-
ated with the microbial composition (Wu et al. 2012), it
has been shown that the short-term consumption of exclu-
sively plant- or animal-based diets (David et al. 2014)
and the dietary fluctuations between seasons (Davenport
et al. 2014; Smits et al. 2017) can alter the micro-
bial community structure. When collecting infant samples,
the type of delivery and whether the baby has been breast-
or bottle-fed should be taken into account (Bäckhed et al.
2015), while, when collecting samples from the female
reproductive tract, the age of menarche, the number of
pregnancies, the menopausal status, and the type and the
duration of hormonal drug intake should also be collected
(Markle et al. 2013). Short-term exposure to antibiotics
alters both the bacterial physiology and the microbial com-
munity structure (Maurice et al. 2013), as with many other
drugs, such as metformin (Forslund et al. 2015), analgesics
(Pumbwe et al. 2007), and proton pump inhibitors (Jack-
son et al. 2016). Finally, in the design of a case control
study, cases and controls should be carefully matched for
any variable that may affect the microbiome composition.

Several reviews have been written on general experi-
mental design (e.g., Kreutz and Timmer 2009), how to
choose study samples and controls (e.g., Goodrich et al.
2014), and how to select, preserve, and prepare sam-
ples before sequencing (e.g., Lauber et al. 2010; Domini-
anni et al. 2014; Choo et al. 2015; Voigt et al. 2015).
Although, the majority of them focus on metagenetics data,
their guidelines are useful for the design of metagenomics
experiments.
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DNA extraction and library preparation

Prior to sequencing, particular attention should be paid to
the DNA extraction and library preparation. For instance,
both temperature of sequencing and DNA extraction
procedure can make it difficult to sequence, within the
same experiment, organisms that are characterised by
different GC content and/or cell membrane composition
(Bohlin et al. 2010; Peabody et al. 2015; Bag et al.
2016). Indeed, microbial cells membranes are highly
heterogeneous and different lysing methods can extract
different amount of DNA from different species, thus
generating spurious differences in their abundances when
assessed from sequencing data (Bag et al. 2016). This
has been confirmed in a recent analysis which compared
21 DNA extraction protocols on the same faecal samples,
showing that the DNA extraction step has a large effect
on the quantification of the microbial community, therefore
jeopardising comparability and replicability of research
findings (Costea et al. 2017).

During the library preparation step, adapter sequences
(i.e., short synthetic oligo-nucleotides, often platform-
specific) are ligated to the 5’ and 3’ ends of each DNA frag-
ment, and often amplified. Adapters include a PCR primer
binding site for amplification, and, possibly, a barcode
used when multiple samples are sequenced together on
the same lane. Library preparation can also affect the
abundance of some DNA sequences, and, therefore, of the
inferred microbiome community composition, mostly due
to differential efficiency in their amplification (Aird et al.
2011). For instance, it has been observed that GC-rich DNA
sequences are more difficult to amplify, and that the higher
the CG content the lower the probability of an amplification
bias (Jones et al. 2015). Thus, the adoption of clonal-free
and PCR-optimised (Aird et al. 2011) or PCR-free (Jones
et al. 2015) approaches have been recommended. Moreover,
this effect has been shown to be stronger in low biomass
samples. Indeed, the amount of starting material influences
the overall read quality, which improves with the increase of
the quantity of DNA in input (Bowers et al. 2015).

Sequencing technologies

From the advent of the Sanger platform, sequencing
technologies have constantly been evolving, allowing a
steady decrease in sequencing costs. Sanger sequencing
(Sanger and Coulson 1975) generates long reads (> 700 bp)
with a low sequencing error-rate (less than 0.1%). Its
high per-base cost (more than 6,000 USD per Gb) and
the complex and long sample preparation make its use

difficult in routine clinical settings, and, nowadays, Sanger
sequencing is mainly used to validate findings from NGS
studies. NGS technologies have a much lower per-base
cost than Sanger (50 − 500 USD per Gb), but a higher
sequencing error rate (approximately 0.1–1% Ronaghi
2001; Morozova and Marra 2008). NGS technologies allow
sequencing of one (single-) or both (paired-) ends of a
DNA fragment, the latter being more precise but also
slightly more expensive, and enabling the sequencing of
only half of the reads at the same genomic coverage.
Currently, 100 to 150 bp-long paired-reads generated using
the Illumina 2500-HiSeq and 4000-HiSeq are considered
the standard for metagenomics studies. However, it has
been observed that short-sequence libraries (< 200 bp) may
alter the phylogenetic and functional characterisation of
microbial communities (Wommack et al. 2008; Carr and
Borenstein 2014). This potential alteration is due to the
high sequence homology among certain microorganisms,
which may lead to misclassification (Koonin and Galperin
2003; Janda and Abbott 2007). To overcome this issue, one
could increase the sequencing coverage (i.e., the number
of times each DNA fragment, and, thus, the genome,
is sequenced), or the read length. However, it should
be kept in mind that, while increasing the read depth
increases the number of taxa detected, it may also augment
spurious assignments and artefacts (Jovel et al. 2016).
Single-molecule sequencing generates longer reads (1,000–
10,000 bp), which can facilitate the assembly of new
genomes and the identification of novel bacterial species
and strains (Koren et al. 2013; Kuleshov et al. 2016).
Nanopore-based single-molecule sequencing also offers
cloud-based bioinformatic analyses from anywhere and in
real time, allowing the detection of specific microbiota
in less than 6 h from the sample collection (Greninger
et al. 2015). Therefore, data can be generated and analysed
on the field, with potential for clinical diagnostics and
public health—as seen in the West Africa Ebola (Quick
et al. 2016) and Brazilian Zika (Quick et al. 2017)
outbreaks. Single-molecule sequencing, however, has lower
sequencing depth, higher costs (around 2,000 USD per Gb)
and higher sequencing error rates (10–20%, Brown et al.
2017). Several authors proposed combining reads from both
NGS and single-molecule sequencing to overcome each
other limitations (Frank et al. 2016; Mende et al. 2016).

Controlling batch effects

Batch effects are technical sources of variation, common
in large-scale high-throughput experiments, which are
unrelated with the biological and scientific variable under
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study. Many sources of technical variability can be easily
avoided, for example by adopting homogeneous sampling
and storage methods, DNA extraction or library preparation
protocols. However, batch effects may be generated when
samples are divided into different sequencing groups,
which are often run at different dates (Leek et al.
2010). To avoid spurious associations, samples should be
randomised across the batches for any of the variables
under study and any potential confounder/covariate (Taub
et al. 2010). For example, it is important to avoid enriching
sequencing batches for female/males samples, or for older/
younger subjects, and, if studying a disease, is essential
to have balanced proportions of cases and controls across
batches. Finally, it is preferable to avoid sequencing
in multiple small batches each including few samples,
and, when possible, to sequence all the batches within
a limited period of time. Reproducibility of sequencing
data (and of the results) can be additionally improved by
adding both negative and positive controls (e.g., synthetic
communities) in each sequencing batch or sample. This
will help in calibrating measurements, and normalising
data, allowing the comparison among samples by adjusting
for individual technical variability (Leek et al. 2010; Jones
et al. 2015).

Quality control

Quality control (QC) is crucial for generating high-
quality data by identifying and removing low-quality
biological samples and/or reads, and technical artefacts
(Leek et al. 2010), and for improving the read mapping
to reference databases, the quality of de novo assemblies,
and the accuracy of the microbial diversity and abundance
estimation (Bokulich et al. 2013; Zhou et al. 2014).

Visualisation of QCmetric

Researchers can take advantage of several tools (even if
not specifically designed for metagenomics data) to obtain
a preliminary overview of reads’ quality and to choose
parameters to be used in the following QC steps. It is
also important to examine the QC metrics after each QC
step, in order to evaluate their effectiveness in generating
high-quality QC’ed reads.

Close attention should also be paid to k-mers, i.e., all the
possible sub-sequences of length k contained in the reads, as
they could highlight low-complexity or repeated sequences
(Plaza Onate et al. 2015). Although no specific guideline
has been currently defined, if the k-mers distribution is not
uniform and a set of k-mers is found in more than 1% of

all reads, an in-depth investigation should be performed to
understand their origin.

FastQC (Andrews 2010) is an excellent software to
assess and visualise sequence quality.

De-duplication

Identical duplicated reads are usually considered as
technical artefacts (Xu et al. 2012), since they are often
the result of sequencing multiple copies of the same
DNA fragment amplified during the PCR step (artificial
duplicates, Ebbert et al. (2016)). Since in metagenomics the
number of reads is used as an abundance measure, artificial
duplicates may cause overestimation of the abundance of
taxa, genes, and functions. On the other hand, natural
duplicates (reads deriving from either the same region
of different microbial clones, or from regions shared
within/between multiple organisms, such as ortholog and
paralog regions, and regions of DNA horizontal transfer)
may also be present, and their removal may introduce
underestimation of abundance (Niu et al. 2010). As a
consequence, de-duplication should not be performed when
using a PCR-free library as, in that case, all the duplicates
will be natural duplicates. Also, duplicates should be
removed before quality trimming, as it modifies the read
sequence, potentially masking true duplicates or generating
false ones.

De-duplication has only recently been included as a QC
step in metagenomics studies. The first shotgun metage-
nomic projects (e.g., Qin et al. 2010) did not perform
de-duplication and the CD-HIT-DUP module in CD-HIT
(Li and Godzik 2006), used by the Human Micro-
biome Project, was the first method developed to manage
duplicated reads without mapping on reference genomes.

Several tools are now available for removing exact
duplicates without mapping on reference genomes:
FASTX-Toolkit (Gordon and Hannon 2010) and
Fulcrum (Burriesci et al. 2012) remove duplicates only in
single-end reads, whereas FastUniq (Xu et al. 2012), the
CD-HIT-DUP module in CD-HIT (Li and Godzik 2006),
and the clumpify tool in the BBTools suite (Bushnell
2015) can deal with paired-end reads as well. When using
pyrosequencing reads, the Cdhit-454 software (Niu et al.
2010), along finding exact and nearly exact duplicates, also
estimates the number of natural duplicates based on the
type/origin of the sample and its complexity.

Trimming

The quality of the reads is affected by sample preparation
and by the precision of the sequencing instrument, leading



8634 Appl Microbiol Biotechnol (2018) 102:8629–8646

to sequencing errors or low-confidence calling that can, in
turn, influence the estimation of microbial diversity and
taxonomy (Bokulich et al. 2013). The trimming step can
identify and remove bases that have been called with a low-
quality score, as measured by the PhRED quality score.
We suggest keeping all the bases with a PhRED quality
score > 10, representing a base call accuracy of 90% (i.e.,
the probability of calling a base out of ten incorrectly).
Besides removing the low-quality bases, the trimming step
also removes adapter sequences. Reads that become too
short after trimming should be removed: in fact, short
reads have a low sequence complexity (evaluated as 4N ,
where N is the read length) and may map on multiple
genomic regions or genomes. It is recommended to remove
all the reads that are shorter than 60 bp (corresponding to a
complexity of 460 or less, Wommack et al. (2008)). When
applied to paired-end reads, the trimming step can produce
singleton reads, i.e., reads whose mate has been removed.
It is recommended to keep these singleton reads in order
to retain as much information as possible. However, some
bioinformatics tools cannot deal with singleton reads.

A plethora of software is available to trim adapters and
low-quality bases: FASTX-Toolkit (Gordon and Hannon
2010), PRINTSEQ (Schmieder and Edwards 2011b), Trim
Galore! (Krueger 2012) (a wrapper to cutadapt
(Martin 2011)), Trimmomatic (Bolger et al. 2014),
ngsShoRT (Chen et al. 2014), BBDuk (Bushnell 2015),
and AfterQC (Chen et al. 2017).

Decontamination

The last QC step is the identification and removal of
contamination, i.e., of reads that do not belong to the studied
ecosystem and that can cause misassembly of sequence
contigs and/or erroneous read mapping on reference
databases, thus hampering the downstream analyses.

Contaminated reads often originate from the host’s
genome, but they can also derive by cross-contamination
during sample preparation and sequencing (e.g., from other
DNA samples sequenced at the same time or from DNA
present in the reagents, Salter et al. (2014)), and particularly
represent a problem for samples with a low biomass (e.g.,
the skin). It can be challenging to identify sources of
contamination without a priori knowledge. It is always
recommended to remove contaminating reads deriving from
the human genome, even when a chemical removing agent
was used beforehand (Qin et al. 2010; Methé et al. 2012). It
should be kept in mind that many low-complexity sequences
and certain features (e.g., ribosomes) are highly conserved
among species and should be eventually removed from the
custom dataset in order to avoid false positive matches.

Blooming bacteria (i.e., bacteria that are fast growing
at room temperature) may represent another source of

contamination. However, while removing blooms will
decrease the noise caused by dishomogeneous storing
temperature, it may also hider the identification of actual
associations (Amir et al. 2017).

Tools such as FastQ Screen (Wingett 2011) and
Meta-QC-Chain (Zhou et al. 2014) can help the detec-
tion of potential contaminating genomes. The reference
genomes of known or inferred contaminating organisms can
then be used to create custom databases guiding the decon-
tamination of metagenomics data. Once the contamination
database is defined, tools such as Deconseq (Schmieder
and Edwards 2011a), ProDeGe (Tennessen et al. 2015),
KneadData (The Huttenhower Lab 2017), and multi-
ple tools in the BBTools suite (BBMap, BBwrap,
BBsplit, Bushnell 2015) can be used to remove contami-
nants.

Taxonomic binning and profiling

Short reads, conserved sequences, and the
absence/incompleteness of many reference genomes are
some of the factors that hamper generating the complete
assembly of a metagenomic sample. To help assembly
and other analyses, such as functional annotations, the
reads are clustered according to their sequence similarity,
and/or composition and assigned to specific taxa or oper-
ational taxonomic units (OTUs), a procedure known as
taxonomic binning. The identified clusters can be then used
to guide the assembly and to characterise the microbiome
composition and the functional profiling.

Taxonomic binning is performed using either similarity-
based or composition-based approaches (Droge et al.
2012). Similarity-based approaches (e.g., BLAST (Altschul
et al. 1990), MEGAN (Huson et al. 2007), IMG/M
(Markowitz et al. 2013), MG-RAST (Wilke et al. 2016))
assess the local similarity of the sequences with those
in reference databases and try to assign them to taxa.
This information can be retrieved from general databases,
such as NCBI RefSeq (O’Leary et al. 2015), Kyoto
Encyclopedia of Genes and Genomes (KEGG, Kanehisa
et al. 2016), eggNOG (Huerta-Cepas et al. 2016), or
by specific microbial databases, such as Gene Catalog
from MetaHIT (Qin et al. 2010) and MEDUSA (Karlsson
et al. 2014). Although similarity-based approaches generate
binnings that are highly accurate and specific, they
cannot bin sequences from organisms whose genomic
sequence is unavailable or that are conserved among
multiple close organisms. Consequently, many reads may
remain unassigned. Composition-based approaches (e.g.,
CD-HIT (Li and Godzik 2006), mOTU (Sunagawa et al.
2013), Kraken (Wood and Salzberg 2014), MetaPhlAn2
(Truong et al. 2015), and CLARK (Ounit et al. 2015))
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evaluate the similarity of the sequences to compositional
signature, such as clade-specific markers, codon usage,
(i.e., the frequency of occurrence of synonymous codons
in the genome) GC content, and k-mers composition, using
reference databases. Since composition-based approaches
do not perform intensive read alignment, they are much
faster than similarity-based approaches. However, they are
affected by the non-uniform representation of the various
taxonomic groups in existing reference databases, and by
the frequency of the compositional signatures that are
usually derived only from short, specific, sequences, and
not from the whole bacterial genomes. A mixed approach is
used by SPHINX (Mohammed et al. 2011), which, for each
read, first employs a composition-based binning algorithm
to identify a subset of sequences from the reference
database, and then limits the similarity-based search to this
subset.

The microbiome composition, or taxonomic profile, can
be computed as an absolute value, thus reporting the
number of reads mapping to the detected microorganisms,
or as a relative value, i.e., the relative abundance of
that microorganism compared to the rest of the microbial
community. Several tools have been developed to estimate
microbial abundances, including GRAMMy (Xia et al. 2011),
Kraken (Wood and Salzberg 2014), and ConStrains
(Luo et al. 2015). An efficient approach for taxonomic
profiling has been implemented in MetaPhlAn2 (Truong
et al. 2015), which uses clade-specific markers to both
detect the organisms present in a microbiome sample and
estimate their relative abundance, allowing both binning and
profiling at the same time.

Assembly

Sequence assembly is the process of aligning and merg-
ing reads with the aim of reconstructing the original
genomic sequence, and it is a major step for determin-
ing the sequence of novel bacterial genomes. For instance,
the HMP reconstructed the reference genome sequences
for at least 900 bacteria belonging to the human micro-
biome (Human Microbiome Jumpstart Reference Strains
Consortium 2010). Metagenomic datasets are composed of
a mixture of reads belonging to multiple organisms, with
different levels of taxonomic relatedness with each other
and most assemblers, designed to assemble single, clonal,
genome, are not able to handle these complex pan-genomic
mixtures (Nielsen et al. 2014). For example, they may find it
difficult to assign syntenic blocks (i.e., blocks of conserved
sequence) to different organisms. Obtaining the complete
assembly of a particular microbiota requires the complete
coverage of its genome, which is often unfeasible. For
instance, when Metsky et al. (2017) studied the Zika virus

epidemic, the small amount of detected reads (sequenced
using the Illumina MiSeq) hindered the complete recon-
struction of the Zika genome, and the authors had to apply
two targeted enrichment approaches (multiplex PCR ampli-
fication and hybrid capture) to reconstruct the genome of
the virus and identify its strains. Strain-specific variants
represent another challenge for assembly. In fact, the rate
of genetic variations between strains could be similar to
the sequencing error rate, making their assembly difficult
especially with a low genomic coverage.

Assembly can be either de novo or reference-based
(Ghurye et al. 2016). De novo assembly combines reads into
contiguous sequences without using a reference genome.
Several reference-free families of methods have been
proposed. Greedy approaches (e.g., TIGR Sutton et al.
1995; phrap de la Bastide and McCombie 2007) iteratively
merge reads into contigs greedily selecting those with
maximum overlaps. Overlap-layout-consensus approaches
(e.g., VICUNA Yang et al. 2012; Omega Haider et al.
2014) use the pairwise overlap between reads to build a
graph, that is then traversed to merge reads into contigs
that are, finally, ordered and extended. Approaches based
on de Bruijn graphs (e.g., MetaVelvet Namiki et al.
2012; Afiahayati and Sakakibara 2015) split reads into over-
lapping k-mers, organising them in a de Bruijn graph
structure (de Bruijn 1946; Compeau et al. 2011) based
on their co-occurrence across reads. Analogously to
overlap-layout-consensus methods, contigs are generated by
traversing the generated graph. The efficiency of the de novo
approaches decreases dramatically when the sequencing-
error rate increases. Greedy approaches are the fastest and
most effective approaches when there are no or few repeated
elements (i.e., regions where the same genomic pattern
occurs in multiple times throughout the genome), and the
coverage is low, while overlap-layout consensus should
be preferred when high sequencing error rate is observed.
None of these methods are exempt from errors, and the
resulting assembly is often extremely fragmented, also due
to the incomplete coverage of the bacterial sequences. The
reference-based assembly is guided by the known sequence
of the organism itself; if this is not available, that of the
phylogenetically closest organism may be carefully used
instead (e.g., in MIRA Chevreux et al. 1999; Newbler
Chaisson and Pevzner 2008; AMOS Treangen 2011).
Reference-based approaches are computationally faster than
de novo ones and can potentially map both repeated regions
and those with low read coverage. However, they do not
cope with new sequences and complex rearrangements
(e.g., translocation and inversion) or large insertion and
deletion. The de novo and reference-based approaches can
be efficiently combined in order to improve each other
results (e.g., OSLay Richter et al. 2007; E-RGA Vezzi et
al. 2011). Recently, Mende et al. (2016) proposed to use
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single-cell NGS sequencing for improving single microbial
assembling from metagenomics data.

Functional annotation

The MetaHIT project estimated that each individual’s
intestinal tract hosts an average of 160 microbial species
(Qin et al. 2010). However, there is no consensus yet, and
the real number of species and strains harboured in the
human gut may be of several thousands. Following this
result, Turnbaugh and Gordon (2009) explored whether a
gut core microbiome, i.e., a group of microbes present in
every human gut, existed. While they found it hard to define
such a core microbiome, they identified a common core at
the gene/functional level, thus highlighting the importance
of studying the modification of the functional capabilities of
the microbial community rather than the microbial diversity
and abundance, being the former a better marker of human
health.

The functional capabilities of the microbiome commu-
nity can be assessed through homology-based mapping
of metagenomics sequences to databases of orthologous
genes or proteins with known function (Carr and Boren-
stein 2014). Mapping can be achieved using the Basic Local
Alignment Search Tool (BLAST) suite, or faster BLAST-
like tools (e.g., Bowtie2 (Langmead and Salzberg 2012)
and DIAMOND (Buchfink et al. 2014) to query gene and
protein databases, respectively). The functional annotation
relies on a reference database, usually chosen among the
universal protein reference (UniRef, Suzek et al. 2015),
KEGG (Kanehisa et al. 2016), the Protein Family Anno-
tations (PFAM, Finn et al. 2014), and the Gene Ontology
(Ashburner et al. 2000) databases.

Among the several pipelines available for functional
annotation, a useful approach has been implemented in the
HUMAnN2 pipeline that stratifies the community in known
and unclassified organisms using MetaPhlAn2 and the
ChocoPhlAn pan-genome database, and combines the
results with those obtained through an organism-agnostic
search on the UniRef proteomic database. HUMAnN2
can use both the UniRef90 and UniRef50 databases.
While UniRef90 is, in general, the best option, as
its clusters are more likely to be iso-functional and
non-redundant, UniRef50 should be preferred when
dealing with poorly characterised microbiomes. In fact,
in the latter case, less stringent criteria might allow
mapping a larger number of reads, although at a lower
resolution. The number of reads mapping to genes and
proteins is converted into coverage and abundance tables,
and the MetaCyc database is used to assess pathway
abundances.

A different but also popular approach has been imple-
mented in MOCAT2 (Kultima et al. 2016), which carries out
a preliminary assembly of the QC’ed sequence reads into
larger contigs, that are then used for gene prediction with
either Prodigal (Hyatt et al. 2010) or MetaGeneMark
(Zhu et al. 2010). The functional annotation is finally esti-
mated using the eggNOG database and integrating informa-
tion from 18 publicly available resources covering different
functional properties (e.g., KEGG, SEED, and MetaCyc
for metabolic pathways, ARDB, CARD, and Resfams for
antibiotic resistance genes, etc).

Methods based on reads mapping (as HUMAnN2) can
achieve very high sensitivity, but cannot identify new
genes. On the other hand, assembly based methods (as
MOCAT2) can identify known genes and predict new one but
might under-represent genes with low coverage, as multiple
reads are needed to allow their assembly. Both methods
are challenged by sequence homology, either by spurious
mapping of the reads to multiple genes or by generating
chimeric contigs through the assembly.

Gene predictions techniques (as implemented in
Prodigal, MetaGeneMark, Orphelia (Hoff et al.
2009), MetaGeneAnnotator (Noguchi et al. 2008), and
GeneMark (Besemer and Borodovsky 1999)) can be used
to detect unknown genes from contigs.

Assessing diversity

The concept of ecological diversity was originally con-
ceived by Whittaker and Whittaker (1972) who proposed
three measures to compare the diversity between and within
ecological environments: the α-, β-, and γ -diversities. The
α-diversity measures the mean species diversity in a given
ecosystem (e.g., in a metagenomics sample), while the γ -
diversity measures the overall diversity of all the ecosystems
under consideration (e.g., on all metagenomics samples).
The β-diversity links α- and γ -diversity and measures the
difference in species content between different ecosystems
(e.g., between metagenomics samples). Whittaker defined
β-diversity as “the extent of differentiation of communi-
ties along habitat gradients”, i.e., the ratio between γ - and
α-diversity (Whittaker 1960; Whittaker et al. 2001). Sev-
eral metrics have been suggested for each of these diversity
measures, and the most suitable α- and β-diversity met-
rics in metagenomics appear to be those that take into
consideration the phylogenetic tree describing the evolu-
tionary relationship among taxa, such as the Faith’s phy-
logenetic diversity metric for α-diversity (Faith 1992) and
the weighted UniFrac for β-diversity (Chang et al. 2011;
Lozupone et al. 2011). α- and β- diversities can be evaluated
with QIIME (Caporaso et al. 2010).
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The MetaHIT project also showed that the classifica-
tion of gut samples based on their microbial ecosystem
(enterotypes) is not only driven by its microbial compo-
sition, but also by its functions (Arumugam et al. 2011).
Therefore, gene counts and species richness should be taken
into account to characterised samples according to their
gene (and, thus, function) composition, which may better
elucidate the microbial role in human health and disease.

Association studies

The abundances of taxa, gene/protein families, and path-
ways provide information about the bacterial community
structure, diversity, and functions. These variables can be
used to assess the association with diseases, quantitative
phenotypes, or genomics features.

A rigourous quality control is particularly important to
obtain reliable results from association studies and to avoid
the identification of spurious associations. Low-quality
samples and outliers should be identified and removed, and
technical and biological variability controlled for.

In association studies, abundances can be either used
as quantitative variables or recoded as presence/absence
based on suitable thresholds. Moreover, abundances can be
represented on a discrete scale by using the number of reads
mapping to each feature, or on a truncated continuous scale
by using relative abundances normalised on the total number
of reads—thus being bounded between 0 and 1.

A peculiar feature of metagenomics data is the presence
of many zeroes, as many organisms and functions can be
either under-sampled or present only in a small subset of
individuals. Consequently, their modelling requires suitable
methods. In a recent review comparing several methods for
the association analysis of read-count based abundances,
Jonsson et al. (2016) suggested the use of generalised linear
model based on an over-dispersed Poisson or negative-
binomial distribution, as that used in RNA-Seq software
EdgeR (Robinson et al. 2010) and DESeq2 (Love et al.
2014). However, other studies have suggested that these
distributions do not adequately model zero-inflated data,
because the presence of zeroes might not be due to
low coverage but due to the true absence of particular
organisms from a large number of samples. Thus, zero-
inflated negative-binomial or hurdle models (Mullahy 1986)
are likely to better reflect the distributional properties of
the metagenomics data (Xu et al. 2015). The analysis of
relative abundances also requires specific models, since
these data are bounded between 0 and 1, which means that
the effect of the explanatory variables might be non-linear
and that the variance might decrease at the boundaries of
the distribution. Some approaches rely on the arcsine square

root transformation to stabilise the variance and normalise
proportional data, such as in the MaAsLiN multivariate
statistical framework (Morgan et al. 2012). However, the
use of this transformation has repeatedly been debated (e.g.,
Warton and Hui 2011). An alternative approach is to model
the association by using zero-inflated Beta models (Ospina
and Ferrari 2012).

Studying the association of one organism at a time is
a reductionist approach that ignores the interactions within
the bacterial community. Machine learning methods can be
applied to the bacterial community as a whole to reconstruct
multi-category classifications that are then associated with
the trait of interest (Statnikov et al. 2013), although they
still need to be improved to consider the hierarchical nature
of the data. Several multivariate testing methods taking
into account the phylogeny among taxa (e.g., PERMANOVA
McArdle and Anderson 2001; MiRKAT Zhao et al. 2015;
aMiSPU Wu et al. 2016) are becoming more popular as they
have higher statistical power in aggregating multiple weak
associations and can reduce the burden of multiple testing
correction.

Finally, multi-level functional data, such as meta-
transcriptomics, meta-proteomics, or meta-metabolomics,
can be integrated into genome-scale metabolic models, to
disentangle the metabolism of the microbial ecosystem and
its interactions with the host (Orth and Thiele 2010; Shoaie
and Nielsen 2014).

Computational resources

An accurate assessment of the required computational
resources is essential to efficiently and successfully tackle
metagenomics projects. Metagenomics data processing
requires good CPU and memory resources, and a substantial
amount of disk space. To help estimate computational
requirements, we provide here figures derived from a simple
metagenomics analysis pipeline, which has been developed
to rapidly and efficiently analyse a large number of gut
metagenomic samples from the TwinsUK cohort (http://
twinsuk.ac.uk/). MAP, which is available at https://github.
com/alesssia/MAP, implements the QC steps listed in this
review and processes the raw sequence up to the generation
of the microbiome abundances. Briefly, MAP performs the
QC using multiple tools from the BBmap suite (Bushnell
2015) to remove exact duplicates, trim low-quality bases
and adapter, and to remove human decontamination. Each
QC step is followed by the visualisation of the data quality
metrics, carried out using FastQC (Andrews 2010). MAP
takes advantage of MetaPhlAn2 (Truong et al. 2015)
for fast and efficient abundance profiling, while QIIME
(Caporaso et al. 2010) is used to evaluate multiple diversity

http://twinsuk.ac.uk/
http://twinsuk.ac.uk/
https://github.com/alesssia/MAP
https://github.com/alesssia/MAP


8638 Appl Microbiol Biotechnol (2018) 102:8629–8646

Table 1 Resource usage. The reported figures were obtained by applying the proposed metagenomics pipeline to 842 raw paired-end FASTQ files
with an average 26M reads per sample. Experiments were run on an HPC facility using 4 threads and limiting the available RAM to a maximum
of 32 GB

Step Data format Tool Virtual memory peak Time Storage

(average [min–max]) (average [min–max]) (average [min–max])

Raw data (Compressed) – – – 4.48 GB

FASTQ [1.45-9.32GB]

Quality html + text FastQC 385.53 MB 4 min 12 s 1.05 MB

assessment [326.00–492.90 MB] [1 min 49 s–7 min 28s] [0.80–1.24 MB]

De-duplication (Compressed) Clumpify 27.74 GB 16 min 35 s 3.26 GB

FASTQ [18.10–31.40 GB] [6 min 12 s –38 min 50 s] [1.05–8.18 GB]

Trimming FASTQ BBduk 8.43 GB 9 min 11 s 13.81 GB

[8.00–10.90 GB] [3 min 15 s–25 min 24 s] [5.23–27.42 GB]

Decontamination FASTQ BBwrap 16.82 GB 30 min 13 s 13.80 GB

[15.50–23.90 GB] [6 min–59 min 6 s] [5.23–27.40 GB]

Taxonomic binning text + biom MetaPhlan2 1.52 GB 18 min 4 s 93.12 MB

and profiling [1.30–2.50 GB] [2 min–35 min 21 s] [21.77–281.74 MB]

measures. Table 1 reports figures on RAM, disk occupation,
and time of execution obtained using MAP to process 842
compressed raw paired-end FASTQ files, obtained using
the Illumina HiSeq 2500 platform, with average 26M reads
per sample. Experiments were run on a High-Performance
Computing (HPC) facility using four threads and limiting
the available RAM to a maximum of 32 GB. First, it is
worth noting that, while some of the implemented steps
need less than 4 GB of RAM, others demand as much
as 32 GB (Table 1). In fact, the higher the quantity of
RAM, the more the reads that can be kept in the working
memory, and the less the time consumed to use the disk
as virtual memory. At the same time, multiple CPUs
would allow for parallelization, further speeding up the
data processing. Further parallelisation can be reached using
an HPC facility, where several multi-core computers are
aggregated. Attention should be paid to the disk occupation.
For instance, each compressed file used for this experiment
occupied 1–9 GB, while during the analysis this figure
increased to 11–60 GB per sample (Table 1). At the end
of the processing, deleting the temporary files released 6–
35 GB of disk space per sample, and the compression of
the QC’ed FASTQ files freed about 60% of extra space.
The disk space requested by the files generated through
this pipeline is roughly seven times the size of the original
samples, and the problem would exacerbate when multiple
samples are processed simultaneously, as in multi-core
machines or HPC facilities.

If the user does not have the necessary computational
resources or the expertise to install and run software on
their local machine or cluster, they can take advantage of
several user-friendly pipelines (e.g., YAMP, Visconti et al
2018; MOCAT2, Kultima et al. 2016), or of multiple web

resources that are being made available for metagenomics
studies (Dudhagara et al. 2015). However, the latter are less
customisable, and may have constraints in their utilisation.

Data sharing

Journals and funding agencies have been increasingly
requiring data sharing. Data are usually uploaded in pub-
lic databases, such as NCBI, EBI, and DDBJ (http://
www.insdc.org/, https://www.ncbi.nlm.nih.gov/genbank/
metagenome/). An increasing number of tools (e.g., MG-
RAST, EBI metagenomics) are now including the func-
tionalities to upload data into these archives, that are then shared
via the The Human Pan-Microbe Communities (HPMC)
database (http://www.hpmcd.org/, Forster et al. (2016)).

While data sharing policies have increased the number
of publicly available datasets, researchers should still
be cautious in integrating and meta-analysing data from
multiple studies, as integration might be hampered by
technical and biological variabilities due to study-specific
protocols for sample collection, processing, and data
analysis (Lozupone et al. 2013). This highlights the
necessity of standardised protocols and a first effort towards
this direction is represented by the BioSharing portal that
defines standards for the meta-data of a wide range of omics
datasets (http://biosharing.org).

Clinical translational

The increased feasibility of large-scale metagenomics
studies is opening new avenues for answering common

http://www.insdc.org/
http://www.insdc.org/
https://www.ncbi.nlm.nih.gov/genbank/metagenome/
https://www.ncbi.nlm.nih.gov/genbank/metagenome/
http://www.hpmcd.org/
http://biosharing.org
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microbiology questions, including understanding what
species inhabit a particular environment, what they do, and
their involvement in human diseases. These findings can
then be translated into the clinic. For example, probiotic
administration has been shown to reduce the incidence
of severe necrotising enterocolitis and mortality (AlFaleh
et al. 2012) and sepsis (Panigrahi et al. 2017) in preterm
babies as well as lower-respiratory tract infections in infants
(Szajewska et al. 2017), while the addition of fructo-
oligosaccharides (which act as prebiotics) to the supplement
helps the bacterial colonisation (Underwood et al. 2009).
Analogously, Osborn and Sinn (2013) suggested that a
simple administration of prebiotics can prevent eczema in
infants, while Hsiao et al. (2017) indicate that a combination
of probiotic and peanut immunotherapy can prevent allergic
immune response. More research in beneficial microbe
cocktails and in prebiotics supporting their growth is thus
needed to increase the spectrum of diseases that could not
only be treated but also prevented.

While FMT has been pioneered in the 1950s, and it
is now routinely used to treat recurrent C. difficile infec-
tions, it still offers challenges, as, for instance, in using
metagenomics screening to make FMT perfectly safe for the
transplant recipients.

As the gut microbiota contributes to the metabolism of
drugs modulating drug efficacy and toxicity (Carmody and
Turnbaugh 2014; Dubin et al. 2016; Wilson and Nicholson
2017; Zitvogel et al. 2018), efficient bacterial composition
screening would be also useful to assess whether a patient
should receive a specific course of treatment, in order
to check for its effectiveness and to prevent serious side
effects.

Infections are becoming harder to treat with the antibi-
otics currently available because of the presence of antibi-
otic resistant bacteria, and antibiotic resistance has been
named by WHO as one of the greatest threat to pub-
lic health (http://www.who.int/mediacentre/news/releases/
2014/amr-report/en/). Metagenomics studies may be able to
unveil the evolution of antibiotic resistance, by detecting
the antibiotic resistance profile of the microbial community
(Forslund et al. 2014). This may also provide a way of iden-
tifying unknown unculturable bacterial carriers of antibiotic
resistant genes that may potentially be horizontally trans-
ferred to other microorganisms (Huddleston 2014).

Metagenomics approaches have also been successful in
monitoring and tracking infections outbreaks (e.g., Ebola
(Quick et al. 2016) and Zika (Faria et al. 2017; Quick
et al. 2017) viruses). However, while these works have been
proven very useful a posteriori, more should be done to
forecast the transmission routes and prevent the disease
spread. For instance, Faria et al. (2016) hypothesised that
there has been a single introduction of the Zika virus into
the Americas in the second half of the 2013, more than one

year before its detection in Brazil. Therefore, early genetic
screening could have discovered and isolated the infection
months in advance, possibly avoiding or limiting its spread.
It is to be hoped that the decreasing costs of sequencing
coupled with a deeper understanding of the microbiome
will make metagenomics testing a routine screening for
infectious diseases surveillance.

Despite these promising results in specific areas of
high impact, some caution is necessary. We still have an
incomplete understanding of what is a healthy or dysbiotic
environment, and we often cannot distinguish whether it is
the disease changing the microbiome or the microbiome that
is responsible for the disease. More research is therefore
needed before metagenomics findings can be safely and
widely translated to the clinic (Quigley 2017).

Conclusion

This review presents an overview of best practices in
metagenomics, with a particular focus on the methodologi-
cal and computational strategies and challenges.

While a benchmark for the assessment of computational
metagenomics software has been made available as part
of the Critical Assessment of Metagenomic Interpretation
(CAMI) challenge (Sczyrba et al. 2017), standards for
data generation, access, and retrieval are still needed
to allow data sharing and the exploitation of the full
potential of metagenomics data in microbiology and clinical
research—as pursued in the genomic field with the creation
of Global Alliance for Genomics and Healthy (http://
genomicsandhealth.org).
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R, França RF, Magalhães T, Marques JrET, Jaenisch T, Wallau
GL, de Lima MC, Nascimento V, de Cerqueira EM, de Lima
MM, Mascarenhas DL, Neto JPM, Levin AS, Tozetto-Mendoza
TR, Fonseca SN, Mendes-Correa MC, Milagres FP, Segurado A,
Holmes EC, Rambaut A, Bedford T, Nunes MRT, Sabino EC,
Alcantara LCJ, Loman NJ, Pybus OG (2017) Establishment and
cryptic transmission of Zika virus in Brazil and the Americas.
Nature 546(7658):406–410

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy
SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer
ELL, Tate J, Punta M (2014) PFAM: the protein families database.
Nucleic Acids Res 42(D1):D222–D230

Forslund K, Sunagawa S, Coelho LP, Bork P (2014) Metagenomic
insights into the human gut resistome and the forces that shape it.
Bioessays 36(3):316–329

Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E,
Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh
Pedersen H, Arumugam M, Kristiansen K, Yvonne Voigt A,
Vestergaard H, Hercog R, Igor Costea P, Roat Kultima J, Li
J, Jørgensen T, Levenez F, Dore J, MetaHIT consortium, Bjørn
Nielsen H, Brunak S, Raes J, Hansen T, Wang J, Dusko Ehrlich
S, Bork P, Pedersen O (2015) Disentangling type 2 diabetes
and metformin treatment signatures in the human gut microbiota.
Nature 528(7581):262

Forster SC, Browne HP, Kumar N, Hunt M, Denise H, Mitchell A,
Finn RD, Lawley TD (2016) HPMCD: the database of human
microbial communities from metagenomic datasets and microbial
reference genomes. Nucleic Acids Res 44(D1):D604–9

Frank JA, Pan Y, Eijsink VGH, Mchardy AC (2016) Improved
metagenome assemblies and taxonomic binning using long-read
circular consensus sequence data. Sci Rep 6:1–10

Ghurye JS, Cepeda-Espinoza V, Pop M (2016) Metagenomic
assembly: overview, challenges and applications. Yale J Biol Med
89(3):353–362

Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA,
Caporaso JG, Knight R, Ley RE (2014) Conducting a microbiome
study. Cell 158(2):250–262

Gordon A, Hannon G (2010) Fastx-toolkit. http://hannonlab.cshl.edu/
fastx toolkit

http://hannonlab. cshl. edu/fastx_toolkit
http://hannonlab. cshl. edu/fastx_toolkit


8642 Appl Microbiol Biotechnol (2018) 102:8629–8646

Gough E, Shaikh H, Manges AR (2011) Systematic review of intestinal
microbiota transplantation (fecal bacteriotherapy) for recurrent
clostridium difficile infection. Clin Infect Dis 53(10):994–1002

Grassl N, Kulak NA, Pichler G, Geyer PE, Jung J, Schubert S, Sinitcyn
P, Cox J, Mann M (2016) Ultra-deep and quantitative saliva proteome
reveals dynamics of the oral microbiome. Genome Med 8(1):1

Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres
V, Stryke D, Bouquet J, Somasekar S, Linnen JM, Dodd R,
Mulembakani P, Schneider BS, Muyembe-Tamfum JJ, Stramer
SL, Chiu CY (2015) Rapid metagenomic identification of viral
pathogens in clinical samples by real-time nanopore sequencing
analysis. Genome Med 7(1):99

Haider B, Ahn TH, Bushnell B, Chai J, Copeland A, Pan C (2014)
Omega: an overlap-graph de novo assembler for metagenomics.
Bioinformatics 30(19):2717–2722

Handelsman J (2009) Metagenetics: spending our inheritance on the
future. Microb Biotechnol 2(2):138–139

Hoff KJ, Lingner T, Meinicke P, Tech M (2009) Orphelia: predicting
genes in metagenomic sequencing reads. Nucleic Acids Res
37(suppl 2):W101–W105

Hsiao KC, Ponsonby AL, Axelrad C, Pitkin S, Tang MLK, Burks W,
Donath S, Orsini F, Tey D, Robinson M, Su EL (2017) Long-
term clinical and immunological effects of probiotic and peanut
oral immunotherapy after treatment cessation: 4-year follow-up of
a randomised, double-blind, placebo-controlled trial. The Lancet
Child & Adolescent Health

Huddleston JR (2014) Horizontal gene transfer in the human
gastrointestinal tract: potential spread of antibiotic resistance
genes. Infection and Drug Resistance 7:167–176

Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter
MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ,
Von Mering C, Bork P (2016) EGGNOG 4.5: a hierarchical
orthology framework with improved functional annotations for
eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res
44(D1):D286–D293

Human Microbiome Jumpstart Reference Strains Consortium (2010)
A catalog of reference genomes from the human microbiome.
Science 328(5981):994–999

Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of
metagenomic data. Genome Res 17(3):377–386

Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser
LJ (2010) Prodigal: prokaryotic gene recognition and translation
initiation site identification. BMC Bioinf 11(1):119

Jackson MA, Goodrich JK, Maxan ME, Freedberg DE, Abrams JA,
Poole AC, Sutter JL, Welter D, Ley RE, Bell JT, Spector TD,
Steves CJ (2016) Proton pump inhibitors alter the composition of
the gut microbiota. Gut 65(5):749–756

Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial
identification in the diagnostic laboratory: pluses, perils, and
pitfalls. J Clin Microbiol 45(9):2761–2764

Jones MB, Highlander SK, Anderson EL, Li W, Dayrit M, Klitgord
N, Fabani MM, Seguritan V, Green J, Pride DT, Yooseph S, Biggs
W, Nelson KE, Venter JC (2015) Library preparation metho-
dology can influence genomic and functional predictions in human
microbiome research. Proc Natl Acad Sci 112(45):14024–14029

Jonsson V, Osterlund T, Nerman O, Kristiansson E (2016) Statistical
evaluation of methods for identification of differentially abundant
genes in comparative metagenomics. BMC Genomics 17(1):78

Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T,
Perry T, Kao D, Mason AL, Madsen KL, Wong GK (2016)
Characterization of the gut microbiome using 16s or shotgun
metagenomics. Frontiers in microbiology 7

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016)
KEGG As a reference resource for gene and protein annotation.
Nucleic Acids Res 44(D1):D457–D462

Kang DW, Park JG, Ilhan ZE, Wallstrom G, LaBaer J, Adams JB,
Krajmalnik-Brown R (2013) Reduced incidence of Prevotella and
other fermenters in intestinal microflora of autistic children. PloS
One 8(7):e68322

Karlsson FH, Nookaew I, Nielsen J (2014) Metagenomic data
utilization and analysis (MEDUSA) and construction of a global
gut microbial gene catalogue. PLoS Comput Biol 10(7):e1003706

Koonin EV, Galperin MY (2003) Evolutionary concept in genetics
and genomics. In: Sequence—Evolution—Function, Springer, pp
25–49

Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed
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