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Summary  
Advancements in surface electromyography and ultrasonography have provided new 

technologies for acquiring highly-informative experimental data, opening new avenues for 

innovative processing techniques. Surface electromyography detected with multiple 

electrodes over the muscle (high-density surface electromyography - HDsEMG) allows to 

study electrophysiological events in time and space domain enabling the decomposition of 

the signals into their constituent motor unit action potential trains. Similarly, owing to its 

high frame rate, ultrafast ultrasonography enables the detection of rapid tissue 

displacements associated with single motor unit activation. The combined use of these two 

complementary techniques has therefore the potential to provide a detailed 

neuromechanical characterization of motor units, from the neural excitation to the tissue 

strain. Currently, the feasibility of this integration, as well as the systematic evaluation of 

its limitations and advantages, are not described in literature. This type of assessment is 

necessary to guide future developments both in experimental signal acquisition and data 

processing, as well as to identify clinical applications that could benefit from this 

integration. In this context, this thesis describes and tests a novel approach aimed at 

providing a comprehensive description of individual motor units based on the combination 

of high-density electromyography and ultrafast ultrasonography. The workflow of this 

project was divided into three main topics.  

In the first part, two methods integrating information from high-density surface 

electromyography and ultrafast ultrasound sequences to detect the characteristics of single 

motor units were developed, analyzed, and tested in simulated conditions. The first 

algorithm was based on spike-triggered averaging of the tissue velocity sequence, using 

single motor unit firings obtained from HDsEMG as trigger source. The second one was 

based on the correlation between spatio-temporal independent components decomposed 

from the ultrasound tissue velocity sequence and the neural input obtained from HDsEMG 

decomposition. Simulations were carried out to evaluate the performance of the proposed 

algorithms in identifying the anatomical characteristics of the motor unit for different levels 

of neural input and motor unit synchronization. The results demonstrated that both 

algorithms were suitable for anatomical and mechanical analyses of individual motor units, 
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with the second method providing better performance compared to the first one in terms of 

accuracy of MU territories identification.  

Afterwards, the algorithms were tested in experimental conditions. In vivo high-

density electromyography and ultrafast ultrasound were detected simultaneously from 

biceps brachii using a grid of electrodes transparent to ultrasound. The algorithms were 

applied and compared to expand upon the simulation results. The spatial association 

between motor unit action potential distributions and the corresponding muscle fiber 

displacement areas was observed, proving the feasibility of the proposed approach. 

Multivariate analysis revealed the dependence of this association on the depth of the motor 

unit territory. Although both the suggested approaches were found to be feasible for the in 

vivo identification of motor unit fiber location in the muscle cross-section, the experimental 

results confirmed the simulations, indicating higher robustness of the algorithm based on 

the spatio-temporal tissue velocity decomposition. 

The final part of the project focused on the ultrasound components decomposed from 

the tissue velocity sequence, being the accurate identification of these components of 

crucial importance for the performance of the combined algorithm based on this spatio-

temporal decomposition. This study introduced a new criterion based on the spatial 

repeatability to improve the selection of the decomposed ultrasound components putatively 

associated with actual motor unit activity. Experimental results showed that only a 

subgroup of the initial components were highly repeatable across sequences of 2-s epochs. 

Moreover, repeatable components were those displaying the highest association with the  

motor unit action potential firings, identified independently from HDsEMG. The proposed 

criterion for the selection of spatial components can be used to reduce the number of 

ultrasound components to process, with possible implications in the improvement of the 

combined algorithm proposed in the previous studies. 

In conclusion, the integrated approach combining high-density electromyography and 

ultrafast ultrasonography was proved suitable for assessing the electromechanical 

properties of motor units in vivo, opening interesting perspectives into the non-invasive 

investigation of skeletal muscles and their control. This research lays the basis for future 

developments and applications in the investigation of fundamental pathophysiological 

aspects of muscle function, such as studying changes in neuromechanical properties 

associated with aging, training, rehabilitation interventions, or neuromuscular diseases. 
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Chapter 1 

Aim and structure of the project 

The PhD project presented in this thesis aimed to develop innovative methods for the 

in vivo characterization of electrical and mechanical single motor unit properties using an 

integrated approach based on high-density electromyography and ultrafast ultrasound. This 

unique combination can provide a complete neuromechanical description of individual 

motor units from neural excitation to the resulting tissue displacement. 

Surface electromyography and ultrasonography can be considered complementary 

tools to investigate the neuromuscular system. Indeed, they measure different quantities 

related to muscle contraction: electrophysiological features that carry information about 

muscle excitation and fiber membrane properties [2], anatomical muscle tissue 

characteristics that provide information about the morphology of the muscle-tendon unit 

and its active and passive movement [1]. The detection of both EMG signals and ultrasound 

images has considerably improved over the past 20 years because of technological 

advancements [3], [4]. This has enhanced the amount of information available in 

experimental data and opened up new possibilities for innovative processing techniques. 

For example, by recording electromyographic signals from several locations above the skin 

(high-density surface electromyography), it is possible to describe electrical events with 

high spatial resolution, allowing the decomposition of the signal in the constituent motor 

units [5]. New ultrasound systems provide the possibility of sampling images at a high 

frame rate (over thousands per second), leading to a new branch of ultrasonography 

(ultrafast ultrasonography) that enables the description of fast tissue displacement, such as 

those associated to single motor unit activation [6], [7]. Therefore, the combination of 

electromyography and ultrasonography has the potential to provide key insights into the 
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electromechanical properties of skeletal muscles and fine details of their functioning, not 

only at the global level, but also at single motor unit level. 

1.1 Structure of the thesis 

The first part of the thesis (Chapter 2) aims to provide a background about the 

physiology of muscle contraction and its fundamental constituents, with emphasis on the 

electrical and mechanical properties of the motor unit. Subsequently, the state-of-the-art of 

the current methods to assess excitation and contraction of the muscle (and motor unit) is 

presented, along with recent works that combine electromyography with ultrasonography.  

The workflow of the project is presented on three topics. 

The first topic (Chapter 3) describes the development, analysis, and testing of two 

methods designed to detect the anatomical characteristics of single motor units by 

integrating the information extracted from high-density surface electromyographic signals 

and ultrafast ultrasound sequences. The two algorithms were compared in a simulated 

environment to control the contraction and motor unit parameters, and systematically assess 

the outcomes of the algorithms. A simulation model of electromyographic signals was 

adapted by adding the model generating tissue velocities in the muscle cross-section. This 

study provided a better understanding of the advantages and drawbacks of the tested US-

EMG approaches, and allowed to set the basic algorithms’ parameters that were fine-tuned 

in the experimental study. 

The second topic (Chapter 4) concerns the application of the developed approaches to 

an experimental protocol including  high-density electromyography and ultrafast 

ultrasonography measurements of biceps brachii contraction. The algorithms were applied 

to experimental data and compared to expand the simulation results and provide evidence 

of their suitability for in vivo anatomical and mechanical characterization of single motor 

units. The best-performing algorithm was further investigated with the aim of studying the 

local association between the action potentials of single motor units and the corresponding 

muscle tissue displacement. This investigation helped to evaluate to what extent the results 

obtained in simulated conditions apply to the in vivo data and to enlighten on the 

experimental limitations of the technique. 

The third topic (Chapter 5) of this thesis focuses on the assessment of the repeatability 

of the identification of displacement areas computed from experimental ultrafast ultrasound 

data associated to motor unit activity. A new process based on the temporal segmentation 

of the recorded signals in short epochs was used to enhance the estimation of motor unit 

activity considering the spatial repeatability of the decomposed ultrasound components 

throughout the contraction. High-density surface electromyography served as a ground 

truth for verifying that spatially repeatable components were indeed associated with motor 

unit activity. 
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In the Conclusions (Chapter 6), the applied relevance of the thesis findings is 

discussed considering the future developments of the technique and its applications for the 

investigation of fundamental pathophysiological aspects of muscle function, such as the 

study of changes in neuromechanical properties resulting from aging or neurodegenerative 

diseases. 

1.2 References 

[1] J. V. Basmajian and C. J. de Luca, Muscles Alive: Their Functions Revealed by 

Electromyography. Baltimore; London; Sydney: Williams & Wilkins, 1985. doi: 

10.1249/00005768-197621000-00002. 

[2] P. W. Hodges, L. H. M. Pengel, R. D. Herbert, and S. C. Gandevia, ‘Measurement 

of muscle contraction with ultrasound imaging’, Muscle Nerve, vol. 27, no. 6, pp. 

682–692, 2003, doi: 10.1002/mus.10375. 

[3] R. Merletti, M. Aventaggiato, A. Botter, A. Holobar, H. Marateb, and T. M. M. 

Vieira, ‘Advances in surface EMG: Recent progress in detection and processing 

techniques’, Crit. Rev. Biomed. Eng., vol. 38, no. 4, pp. 305–45, 2010, doi: 

10.1615/CritRevBiomedEng.v38.i4.10. 

[4] M. Tanter and M. Fink, ‘Ultrafast imaging in biomedical ultrasound’, IEEE Trans. 

Ultrason. Ferroelectr. Freq. Control, vol. 61, no. 1, pp. 102–119, 2014, doi: 

10.1109/TUFFC.2014.2882. 

[5] A. Holobar and D. Farina, ‘Noninvasive Neural Interfacing With Wearable Muscle 

Sensors: Combining Convolutive Blind Source Separation Methods and Deep 

Learning Techniques for Neural Decoding’, IEEE Signal Process. Mag., vol. 38, 

no. 4, pp. 103–118, Jul. 2021, doi: 10.1109/MSP.2021.3057051. 

[6] T. Deffieux, J. L. Gennisson, M. Tanter, M. Fink, and A. Nordez, ‘Ultrafast 

imaging of in vivo muscle contraction using ultrasound’, Appl. Phys. Lett., vol. 89, 

no. 18, pp. 2006–2008, 2006, doi: 10.1063/1.2378616. 

[7] T. Deffieux, J. L. Gennisson, M. Tanter, and M. Fink, ‘Assessment of the 

mechanical properties of the musculoskeletal system using 2-D and 3-D very high 

frame rate ultrasound’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, 

no. 10, pp. 2177–2190, 2008, doi: 10.1109/TUFFC.917. 

 





Chapter 2  Background and state of art 

PhD Thesis Carbonaro Marco 5 

Chapter 2  

Background and state of art 

Muscle contraction is associated with a cascade of electrochemical and mechanical 

events, from the excitation of motor unit’s muscle fibers to the binding of actin-myosin and 

thus the generation of muscle force [1], [2]. The motor unit (MU) is the basic functional 

unit that can be activated and controlled by the neuromuscular system to produce and grade 

the muscle force [3]. In this Chapter, the basic anatomy and physiology of the MU is 

reported describing all its elements and properties with a particular focus on electrical and 

mechanical characteristics. Afterwards, an overview of all the methods and technologies to 

assess muscle excitation and contraction are reported with a focus on those relevant for the 

study of anatomical, electrical and mechanical characteristics of the MU. The final part of 

this Chapter includes an overview of the studies combining some of these techniques to 

achieve an in-depth understanding of all the mechanisms involved in the muscle contraction 

and excitation. 

2.1 Anatomy and physiology of the motor unit 

The MU anatomically consists in a group of muscle fibers and an alpha motoneuron 

innervating them [3]. The peripheral element of the MU (i.e. the group of fibers) is also 

known as muscle unit. Whereas the motoneuron belongs to the central nervous system 

(CNS). Each motoneuron innervates several muscle fibers (ranging from about 5 to 2000) 

[4], thus few hundreds of motoneurons activate the thousands of fibers composing each 

muscle. 
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2.1.1 Muscle fiber 

The muscle fibers are the cells constituting the muscle tissue. The skeletal muscle is 

composed of bundles of striated muscle fibers called fascicles. Inside the muscle fiber, the 

sarcomeres are repeated in small bundles (named as myofibril). The sarcomeres represent 

the basic contractile units of the muscle [1]. These units comprise two interdigitated 

myofilaments, known as thick and thin filaments: the thin one is mostly composed of actin, 

whereas the thick one contains myosin. These proteins are also known as contractile 

proteins and their interactions (through the cross-bridge cycle) generate the sliding of the 

filaments relative to one another [5]. The force exerted by the fiber is a consequence of the 

concurrent cycling of this sliding of all its sarcomeres [6].  

The fiber is surrounded by an excitable membrane: the sarcolemma. This membrane 

maintains a constant potential difference between the interior of the muscle fiber and 

extracellular environment. Another important anatomical structure is the sarcoplasmic 

reticulum which surrounds each myofibril with its channels releasing ions during the 

muscle fiber functioning.  

An important characteristic of the muscle fiber is the cross-sectional area, which is 

usually known to increase between the type I, IIa, or IIb (session 2.2.2). However, the 

relative size of different fiber types appears to vary among human muscles and also 

between women and men.  

The muscle fibers are activated (controlled) by the neural signals coming from the 

CNS. These signals are generated and conducted by neurons called motoneurons. In 

particular, the alpha motoneuron sends a control command that reaches the muscle fibers 

producing their synchronous contraction [1]. 

2.1.2 Motoneuron 

The alpha motoneuron is a cell of the CNS which innervates a group of fibers, forming 

together the MU. It comprises three main anatomical structures: the soma, the axon, and the 

terminal branches. As all the neurons, the motoneuron has an excitable membrane 

(axolemma) with sodium-potassium channels that works to control the potential between 

the interior and exterior of the cells moving ions through the membrane. The control 

command of the motoneuron consists of an electric pulse traveling through the axon, 

branching out into axonal ramifications, and ultimately reaching the neuromuscular 

junctions of various MU fibers. 

2.1.3 MU territories 

Early investigations have shown that muscle units occupy specific regions of the 

muscle [3]. Therefore, the muscle fibers belonging to a single MU are limited within a 

specific area of the muscle cross-section known as the MU territory (Figure 2.1). The 



Chapter 2  Background and state of art 

PhD Thesis Carbonaro Marco 7 

number of MUs present in a muscle and the area they occupy within the muscle cross-

section are dependent on the size of the muscle. In general, larger muscles typically have a 

greater number of MUs and occupy a larger area within the muscle cross-section, while 

smaller muscles tend to have fewer MUs and occupy a smaller area [7]. The size of the 

muscle directly influences the distribution and organization of MUs within its structure. 

Moreover, a given region of a muscle contains more intermingled MUs. In fact, within a 

MU territory, the corresponding fibers are intertwined with fibers from other MUs, 

resulting in overlapping MU territories within the same muscle cross-section region (Figure 

2.1). In certain human muscles, the degree of overlapping between MUs can vary 

depending on the specific muscle with impacts on the coordination and control of the 

contractions. For example, fine-function muscles (small muscles, e.g. hand muscles [8]) 

have more MUs per unit volume. 

The spatial arrangement of MU fibers within their territories lacks a consensus, and 

the MU territories are considered to be irregular in shape, circular, and oval [7], [9]. Several 

studies indicate that the distribution of MU fibers is not homogenous within the MU 

territory. Various descriptions have been provided, such as uniform distribution [10] 

 
Figure 2.1 Schematic representation of three MU territories. Cross-sectional view of a cylindrical 

muscle comprising 1000 fibers. The muscle fibers are represented by small gray circles. Three example MUs 

whose territories overlap are shown highlighting the corresponding fibers in three different colors. The fibers 

colored in red belong to MU “1”, the ones colored in green belong to MU “2”, and the blue ones are of MU “3”. 
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without localized clusters [3], even distribution [11], quasi-Gaussian pattern [12], and 

random arrangement [7]. The ratio between the number of fibers and the area of the 

territory of a MU exhibits different ranges depending on the type of MU [13].  

The area occupied by a MU within the muscle cross-section is influenced by the 

number of muscle fibers it innervates, with larger MUs typically having larger territory 

areas. Due to the relationship between the number of MU fibers and the force exerted by a 

MU (session 2.2.2) and considering the skewed distribution of twitch forces among 

different MUs, the majority of MU territories within a muscle tend to be small in size. 

Since smaller MUs, which are more numerous, typically generate relatively lower twitch 

forces, their territory areas reflect this characteristic. Therefore, within a muscle, the 

majority of MUs have smaller territory areas due to their association with smaller twitch 

forces. This distribution pattern reflects the heterogeneity of MUs and their varying 

capabilities in force production (see next session 2.2.2). 

2.2 MU properties 

Muscle force and the production of movement is the result of a complex neural 

interaction occurring at the supraspinal level that generates the so-called neural drive to the 

spinal alpha-motoneurons. These neurons integrate the neural drive with the afferent, 

inhibitory or excitatory feedback to generate the neural input to the MU fibers. This signal 

is transmitted along the axons of the neurons, across the neuromuscular junction to the 

muscle fiber, and finally into the muscle fiber to the contractile proteins. The underlying 

mechanism that allows the electrical signal generation and transmission is the excitability 

of the nerve and muscle membranes (axolemma and sarcolemma) that has been described 

and modeled by Hodgkin & Huxley [5]. The different ions’ concentration across the 

membrane is associated with a trans-membrane electrical potential that evolves in time and 

space due to local changes in ion’s concentration (section 2.2.1). As a result of the 

propagation of this signal, all the fibers of a MU contract [6]. This contraction produces a 

force which is called mechanical twitch (section 2.2.2). These electrical (action potential) 

and mechanical (twitch) aspects are concatenated with a sequence of chemical events, and 

they are overall referred to as excitation-contraction coupling (section 2.2.3). 

2.2.1 Electrical properties: action potential 

At rest, the cell membrane is stable on a resting membrane potential of about 60 to 90 

mV, and the inside is negative with respect to the outside. This resting potential is the result 

of a dynamic equilibrium of ionic distribution across the membrane, that is a balance 

between the positive and negative ions and concentration-gradient force experienced by 

each ion. This balance is ensured by specific voltage-dependent ions channels and ions 

pumps that force the ions' movement against the gradient of concentration. The shift in ions 
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(𝐾+, 𝑁𝑎+) across the membrane from inside to outside and vice versa produces changes on 

the membrane potential (i.e. depolarization and hyperpolarization). This movement of ions 

can be induced by chemical, electrical, or mechanical factor. Figure 2.2 shows the action 

potential as a voltage-time event which is characterized by four main phases: 

depolarization, overshoot (phase over 0 V), repolarization, and hyperpolarization. The 

action potential is an all-or-none electrical command that is issued by an excitable cell in 

response to inputs that it receives [1]. A neurotransmitter (i.e. acetylcholine, ACh) released 

at the synapse level (i.e. connection between to excitable cells) generates a synaptic 

potential that conducts and decreases in amplitude traveling along the cell membrane. If the 

sum of synaptic potentials reaches the axon with an amplitude over the trigger level 

(threshold), the action potential generates and propagates (Figure 2.2).  

Each motoneuron conducts electrical pulses that determine the excitation of all muscle 

fibers belonging to a MU. Thus, both motoneuron and muscle fiber conduct the action 

potential. When the axonal (motoneuron) action potential reaches the neuromuscular 

junction of the muscle fiber, another action potential in the muscle fiber is propagated in 

both directions towards the tendon endings. As a result, each muscle fiber generates a 

single fiber action potential (SFAP). These SFAPs propagate along the muscle fibers, 

moving from the neuromuscular junction towards the tendon regions, triggering the 

contraction of the muscle fibers. The action potential is not only function of time but also of 

 
Figure 2.2 Action potential. Schematic diagram of the action potential with the characteristic phases: the 

stimulus, the depolarization, the overshoot (phase over 0 V), the repolarization, and the hyperpolarization 

(refractory period). Image originated in BioRender.com 
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space, as it spreads out along the muscle fiber. The velocity with which the action potential 

is propagated is called conduction velocity. When referring to the muscle fibers the 

conduction velocity mainly depends on their diameter: a higher conduction velocity 

corresponds to a larger fiber diameter. In healthy adult muscles, the conduction velocity is 

typically within the range of 1.5 to 6.5 m/s.  

The synchronous sum of SFAPs belonging to the fibers of a single MU is referred to 

as compound motor unit action potential (MUAP). Consequently, each axonal action 

potential corresponds to a time-locked MUAP. These concepts are further discussed in the 

“Electromyography” section 2.3.1. 

2.2.2 Mechanical properties 

During contractions, the generated tensile force is accompanied by the displacement of 

the contracting and non-contracting fibers. The exerted force is, indeed, accompanied by 

the sliding of the thick and thin filaments [6], [14]. At the single-fiber level the 

development of force depends on the cycling of the cross-bridge attachment and 

detachment: the greater the number of cycles occurring at once, the greater the force.  

The ability of muscle to generate power depends on its force capacity and shortening 

velocity (muscle mechanics) which in turn depend on the mechanical properties of the MU. 

The mechanical properties refer to the contractile behaviour in terms of force-time response 

of the MU. All the fibers of a MU contract in unison when excited by the neural input 

coming from its alpha motoneuron. This contraction produces a force (or tension) which is 

referred as the quantal contractive property of a MU: the twitch (Figure 2.3). This response 

in time is characterized by three components: the latent period (i.e. the time of the onset of 

the response after the input), the contraction period (i.e. the time from onset to the peak 

force), the relaxation period (i.e. the time it takes for the force to decline to zero). This 

response can be characterized by three measurements: the contraction time that corresponds 

to the contraction period, the magnitude of the peak (in terms of force or tension), and the 

half-relaxation time that is the time the force takes to decline to one-half of its peak value. 

The contraction time defines the MU as slow-twitch MU if the time is long, or as fast-

twitch MU when the contraction is brief. The twitch force generated by MUs within a 

single muscle exhibits a wide range of variation, characterized by a highly skewed 

distribution. This distribution is characterized by the presence of numerous MUs that 

produce relatively small twitch forces, while only a few MUs generate large twitch forces. 

In other words, there is a significant diversity in the force-generating capabilities of MUs 

within a muscle, with a majority of MUs contributing to lower levels of force and a 

minority of MUs responsible for higher force outputs [15].  

The actual force produced by an active MU during a contraction is greater since the 

input typically comprises a sequence of action potentials and subsequent overlapping twitch 

responses. The rate of received action potentials from the motor neuron determines the 

magnitude and smoothness of the motor unit force (force-frequency relation) [4], [16]. This 
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phenomenon, known as tetanus, can be unfused if the frequency of the inputs is low 

producing an irregular force profile, or fused when the force reaches a smooth plateau at 

higher frequency. 

The resistance to fatigue is the ability of a MU to prevent the decline of force over 

time, due to the prolonged series of tetani. In general, the MUs are distinguished in fatigue-

resistance and fatigable MUs. Combining the time and fatiguing properties, the MUs can be 

classified as slow-contracting, fatigue-resistant (type S), fast-contracting, fast to fatigue 

(type FF), and fast-contracting, fatigue resistant (type FR) [16].  

Furthermore, histochemical, biochemical, and molecular properties of the muscle 

fibers, related to physiological properties (e.g. contraction speed, magnitude of force, 

fatigue resistance), can distinguish MU types [17], [18]. For example, the distinction 

between type I and II (based on the amount of ATPase activity), is associated respectively 

with slow- and fast- twitch muscle fibers. The type II can be further separated into two 

groups (IIa and IIb), defining the relative fatigue-resistance according to the oxidative state. 

The muscle fiber cross-sectional area is known to increase between the type I, IIa, or IIb. It 

is worth noting that smaller MUs are primarily composed of type I fibers, which tend to 

have smaller diameters compared to type II fibers. Type I fibers are more prevalent in 

smaller MUs. Conversely, larger MUs tend to have a higher proportion of type II fibers. 

These type II fibers have larger diameters and are more commonly found in larger MUs 

[19]. 

 
 Figure 2.3 Single motor unit twitch. Scheme of the tension-time response of a single MU. Three 

components characterized the response: the latent period, the contraction period, and the relaxation period. The 

Author: OpenStax College; License: Creative Commons Attribution 3.0. 
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2.2.3 Electromechanical properties: the excitation-contraction 

coupling 

When the action potential reaches the neuromuscular junction (connection between a 

neuron and muscle cell), the neurotransmitter diffuses triggering the generation of the 

action potential of the fiber membrane (i.e. the sarcolemma). Subsequent processes 

transform the sarcolemmal action potential into muscle fiber force [1]. These processes are 

referred to as excitation-contraction coupling. As already mentioned, the fiber force is 

produced by the sliding of the sarcomere contractile proteins. This molecular interactions 

(cross-bridge cycle) is in turn triggered by an increase of intracellular 𝐶𝑎2+ caused by the 

depolarization of the muscle membrane. The events linking the excitation and the 

contraction can be discerned into electrical and mechanical domains as summarized in 

Table 2.1.  

2.2.4 MU recruitment and rate coding 

The previous section explained that the force exerted by a muscle depends on several 

factors such as the types of MU and fiber. We mentioned that, the number of active MUs, 

defined as the MU recruitment, and the rate at which motoneurons discharge action 

potentials (rate coding), are two properties affecting the force production [1], [20].  

Table 2.1 Neural-Muscle electrochemical and mechanical signaling. 

 
 Sequence of events 

Electrical 

domain 

1 The arrival of a motoneuron action potential at the axon terminal leads to the 

release of ACh. 

2 ACh diffuses into the synaptic cleft and binds to receptors on the motor endplate 

of the muscle fiber causing a change in potential and triggering a muscle fiber 

action potential. 

3 The action potential travels through the sarcolemma opening calcium release 

channels, thus allowing 𝐶𝑎2+ ions to enter the sarcoplasm. 

4 The 𝐶𝑎2+ binds to troponin on the thin filament, which exposes the binding sites 

for myosin. 

Mechanical 

domain 

5 The thin filaments is pulled toward the center of the sarcomere after the binding 

to actin of myosin heads using ATP. 

6 ATP is used by the active transport pumps to restore a low level of 𝐶𝑎2+ in the 

sarcoplasm after Ca2+ release channels close. 

7 The troponin-tropomyosin complex returns to its original position, blocking the 

myosin-binding sites on actin. 

ACh = acetylcholine, ATP = adenosine triphosphate 
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The sequence of MU activation has been shown to be relatively fixed: during the 

increase of exerted force additional MUs are activated/recruited. This is commonly known 

as orderly recruitment. The first recruited MU remains active as long as the force does not 

decrease and the increase of the force is related to the continuous recruitment of MUs (and 

increase of the rate of activation, see next paragraph). The recruitment of MUs is ordered 

such that smaller motoneurons with weaker muscle units (i.e. with low number of fibers) 

and longer contraction times are recruited first, followed by progressively larger 

motoneurons with stronger muscle units (i.e. with great number of fibers) and faster 

contraction times. This recruitment pattern forms the foundation of the size principle [21] 

and allows for graded muscle contractions and efficient motor control. The sequential 

activation of motor units in an orderly recruitment pattern primarily results from variances 

in motor neuron size, with smaller motor neurons having lower current requirements to 

reach the voltage threshold [15]. The recruitment threshold of MUs within a pool exhibits 

an exponential relationship, whereby a majority of MUs are recruited at lower force levels, 

while fewer units are progressively recruited as force requirements increase to moderate-to-

high levels.  

Moreover, the force contributed by a MU to an action depends on the rate at which the 

motoneuron discharges action potentials (force-frequency relation) [16]. The modulation of 

the discharge rate, referred to as rate coding, varies substantially across motor tasks. The 

rate coding together with the recruitment of more MUs are the strategies used by the CNS 

to control and modulate the force production (Figure 2.4). While the target force increases, 

more MUs are recruited and the discharge rate rises which means that earlier recruited MUs 

achieves greater discharge rate [15]. 

 
Figure 2.4 Example of MU recruitment. Recruitment and discharge pattern of five (of many) MUs during 

an isometric muscle contraction of increasing force up to 50% of the maximum voluntary contraction (MVC). 
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2.3 Methods to assess muscle excitation and contraction 

Methods and technologies to assess muscle excitation and contraction play a crucial 

role in understanding the complex mechanisms and performance of the human 

musculoskeletal system, reported in the previous sections. Muscle excitation refers to the 

initiation of electrical signals that activate muscle fibers, while muscle contraction involves 

the generation of force by these fibers. Accurate assessment of these processes is essential 

for diagnosing and monitoring neuromuscular disorders, evaluating athletic performance, 

designing rehabilitation programs, and more in general advancing the knowledge of human 

movement. 

2.3.1 Electromyography 

Electromyography (EMG) is one of the most widely used techniques, which involves 

recording and analyzing the electrical activity produced by muscles during contraction [22]. 

Surface EMG provides non-invasive measurements by placing electrodes on the skin 

overlying the muscle of interest [23], while intramuscular EMG involves inserting fine 

needle electrodes directly into the muscle tissue for more in-deep recordings [24].  

There exist many types of EMG techniques within the intramuscular EMG and surface 

EMG. These techniques differ for the detection systems, such as the type of electrode (e.g., 

single-fiber, concentric, etc.) and the use of multiple electrodes. The multielectrode EMG 

allows for simultaneous recordings to be performed in multiple locations, obtaining 

information about the MU territory [25], and enabling the decomposition between different 

MUAPs [26]. A similar technique is based on the insertion of a needle electrode in the 

muscle and its motion along a line allow recording electrical activity of the MU in multiple 

locations. This technique is known as scanning EMG [27]–[29] and its signal is a collection 

of MUAPs recorded in time and in space. This signal gives information on the changes of 

the electrical MU activity in relation to the relative distance between MU fibers and 

electrode. Therefore, the distribution of the MU fibers within the MU territory can be 

extracted through the spatio-temporal analysis of this signal [30]. 

For the purposes of this thesis, after a brief description of the EMG signal generation, 

more details about the use of surface EMG with multiple electrodes arrangement (high-

density surface electromyography, HDsEMG) are presented. The last paragraph of this 

section reports a description of the decomposition of the EMG signal in its continuent 

elements (single MUAP) using specific signal procesing of HDsEMG data. 

EMG signal generation 

The EMG signal is generated by the electrical activity of the muscle fibers active 

during a contraction [31] (Figure 2.5). This signal originates from the depolarizing and 

repolarizing regions within the muscle fibers (Figure 2.5a). The propagation of the action 
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potential through the fiber generates an electric potential which can be detected externally: 

the SFAP. The characteristics of the recorded SFAP, i.e. the amplitude, the duration, and 

the delay with respect to the firing (i.e. motoneuron excitation) are mainly affected by 

several factors, such as the distance between the fiber and the point at which the potential is 

detected, the diameter of the muscle fiber (with larger diameters correlating to greater 

amplitudes), the length of the fiber, and the muscle fiber conduction velocity (Figure 2.5a) 

[32]. The summation of the SFAPs of all the muscle fibers of the MU produces the MUAP 

(Figure 2.5a). The shape of the MUAP is determined by the amplitudes and time delays of 

its constituent SFAPs, with fibers closer to a specific detection point contributing with 

higher amplitudes. As already mentioned, the diameters of MU fibers affect the amplitude 

and time delays of SFAPs. Moreover, the distribution of neuromuscular junctions within 

the innervation zone (IZ) also affects the time delays of SFAPs (Figure 2.5a). All these 

factors influence the MUAP shape. Changes in MU fiber diameters or neuromuscular 

junction positions lead to complex shapes with multiple peaks and phases. During 

voluntary contractions, the asynchronous activation of a large number of MUs (often 

 
Figure 2.5 Schematic representation of the generation of EMG. (a) The fibers of two motor units 

(MU1 and MU2) receive input from two motoneurons (MN1 and MN2) in two innervation zones (IZ1 and IZ2 

defined by the positions of the neuromuscular junctions, NMJs). The combined skin signals of the propagating 

action potentials are represented as MUAP1 and MUAP2, which are detected by a differentially amplified 

(bipolar or single differential detection) signal. It should be noted that the single fiber action potentials (SFAP) of 

deeper muscle fibers are smaller compared to the contributions of the superficial fibers of each MU. (b) The 

interferential signal is depicted, which is the summation of the MUAP trains from multiple active motor units. 

This figure has been taken from Barbero, M.; Merletti, R.; Rainoldi, A. Atlas of Muscle Innervation Zones. 
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ranging from tens to hundreds) generates the interferential EMG signal (Figure 2.5b) [33]  

When recording the signal using electrodes (whether they are intramuscular or surface 

electrodes), the signal sources are physically separated from the electrodes by biological 

tissues. These tissues act as spatial and temporal low-pass filters, affecting the distribution 

of the electrical potential [22]. The EMG signal characteristics depend on a number of 

anatomical, physical, and detection system parameters, such as the thickness of the 

subcutaneous tissue layer, the depth/distance from the source to the electrodes, the 

orientation of the muscle fiber with respect to the detection system (mainly for surface 

recordings), the length of the fibers, the location of the electrode (over the muscle or within 

the muscle), the spatial filter for signal detection (and the inter-electrode distance), and the 

shape and size of the electrode [34]–[38].  

High-density surface electromyography (HDsEMG) 

By combining multiple EMG electrodes placed on the surface of the skin, it is possible 

to create 1D or 2D arrays of electrodes. This arrangement effectively expands the detection 

volume of surface electrodes, allowing for a larger area of coverage on the skin plane. The 

use of high dense arranged multiple electrodes to sample EMG activity (high-density 

surface electromyography, HDsEMG) from a target region is expected to provide valuable 

insights into both muscle physiology and anatomy, at the MU level [39], [40]. Over the past 

two decades, advancements in the processing of HDsEMG, have led to improvements in 

the understanding of how the central nervous system controls the activation of MU 

populations during force production [41], [42]. The development of these technologies (for 

detection and processing) is crucial for the progress of our fundamental comprehension of 

movement neurophysiology and the advancement of human-machine interaction systems 

[43], [44]. 

HDsEMG signal decomposition 

Generally speaking, motor unit decomposition aims to separate and identify the 

activity of individual MUs from the recorded compound EMG signal (Figure 2.6) [45], 

[46], providing valuable insights into the motor control and coordination of muscles [47], 

[48]. The decomposition of HDsEMG signals aims to identify the spiking activity of motor 

neurons in the spinal cord by decoding the electrical activity that they produce in the 

innervated skeletal muscles [45], [49]. Using spike-triggered averaging [50], [51] is then 

possible to reconstruct how the individual MUAPs appear on the skin surface [37]. The 

single MUAPs hold valuable information about muscle anatomy, such as fiber length, 

innervation zone placement, and conduction velocity [25], [52]–[59]. On the other hand, the 

patterns of MUAP discharges provide insights into the control strategies employed by the 

central nervous system [48], [60]–[64].  
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Several automatic decomposition algorithms were developed in the last twenty years 

[65]–[70]. Most of the algorithms are based on the model of the sEMG mixing process that 

can be inverted with mathematical approaches, such as  principal component analysis 

(PCA) [71], instantaneous independent component analysis (i-ICA) [72], nonnegative 

matrix factorization (NMF) [73], and convolutive blind source separation (BSS) [65], [67], 

[74]. The general aim of the algorithms is to find a set of separation vectors which, 

multiplied by a multichannel sEMG observation vector, provides a number of sEMG 

components [43]. PCA, i-ICA, and NMF rely on assumptions that are not fully satisfied by 

MU activities. Convolutive BSS method is considered to be more robust since it is based on 

the sparsity of MU spike trains. The accuracy and performance of BSS-based algorithm 

were evaluated under several experimental conditions [75]–[77]. 

The advancements in multichannel surface sEMG recordings and decomposition 

techniques have introduced new possibilities in clinical diagnosis and monitoring. For 

instance, the aforementioned technology can be used to monitor the recruitment and the 

firing rates of MUs. These mechanisms, that are well known in voluntary contractions of 

healthy muscles (as explained in section 2.2.4), may be affected in different ways in 

pathological conditions (e.g. essential tremors, stroke, cerebral palsy, Parkinson disease) 

[78]–[80]. 

2.3.2 Mechanomyography 

Another valuable tool for assessing the contractile properties of the muscle is 

mechanomyography (MMG), which measures the mechanical vibrations generated by 

 
Figure 2.6 MU decomposition. Outline of the decomposition of the surface EMG signal into its constituent 

motor unit action potentials. Taken from De Luca et al. 2006. 
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contracting muscle fibers [81], [82]. Since the muscle works as a near-constant volume 

system, the muscle fibers are shortening and concurrently linked to a radial displacement 

(transversely) [82]. The expansion of the fiber produces a pressure wave that propagates to 

the skin, and it can be measured through accelerometer, displacement sensor, piezoelectric 

sensor, microphone, and laser device [83]. MMG can provide information about the force 

and timing of muscle contractions at the global level, and single MU level [84]–[88]. 

2.3.3 Magnetic resonance imaging 

Magnetic resonance imaging (MRI) was recently applied for the investigation of the 

neuromuscular system [89], [90]. MRI is a medical imaging method that employs magnetic 

fields, magnetic field gradients, and radio waves to obtain a visualization and tissues of the 

body [91]. Through brief bursts of radio waves, the magnetic properties of atoms within the 

body can be manipulated, aligning the spins of protons in the same direction. Subsequently, 

when the magnetic vector returns to its original state, radio frequency waves are emitted 

and they can be detected. These signals are elaborated to produce detailed images. By 

adjusting the parameters of an MRI sequence, diverse contrasts can be generated based on 

the distinct relaxation properties of various tissues. 

While conventional MRI primarily offers structural information, diffusion-weighted 

MRI (DW-MRI) is capable of providing functional insights [92]. DW-MRI enables the 

assessment of molecular movement measuring the diffusion of water molecules within a 

voxel of tissue. Recent advancements in DW-MRI have demonstrated its potential to 

visualize electro-stimulated contractions of individual MUs in both healthy conditions [93] 

and pathological states [94], [95]. Moreover, this technique has been employed to 

investigate the muscle twitch profile [96]. 

2.3.4 Ultrasonography 

Ultrasonography (US) has recently gained popularity as a non-invasive method to 

assess muscle structure, size, and contractile properties in real-time. Ultrasound imaging is 

often applied to study muscle properties [97] from both an anatomical (e.g., tissue 

architecture and texture [98]–[102]) and functional (e.g., muscle contraction patterns, tissue 

elasticity, and muscle anisotropy [103]–[107]) perspective. 

The conventional US technique relies on the properties of different acoustic 

impendances of the biological tissues. Ultrasonic waves are sent by a probe into the tissue 

and reflections of the waves (i.e. echoes) are then received. The delays and the intensities of 

the reflections depend respectively on the distance between the probe and tissue and on its 

acoustic impedances [100]. This procedure occurs sequentially using focused beams 

(ultrasonic waves). In the standard B-mode imaging the echoes are transformed into pixels 

of different position and brightness depending on their delays and intensities. Each focused 

beam allows the reconstruction of one image line, and an image usually consists of a few 
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tens of lines (64 to 512). When sequences of images are acquired in this modality (i.e. B-

mode) the frame rate is constrained by the number of lines and the time required to transmit 

a beam, as well as to receive and process backscattered echoes. 

One of the most common applications of conventional ultrasound is the study of 

muscle architecture [108]–[115] through the analysis of B-mode images. Furthermore, 

acquiring videos of the muscle during contraction is also of interest for muscle architecture 

tracking. The movement of muscle fibers can be investigated by manually or automatically 

[116]–[120] detecting and tracking the fascicles (i.e., bundles of fibers surrounded by high 

echogenic connective tissue) during contraction. For example, as shown in Figure 2.7, we 

analyzed B-mode US sequences to investigate the dynamics of the muscle fibers in the 

superficial and deep compartments of the tibialis anterior during electrical stimulation 

directly over the muscle or stimulation of the nerve [121].  

Over the years, other techniques have been developed from ultrasonography, 

providing new insights and perspectives on muscle characteristics such as muscle 

contraction patterns, tissue elasticity, and muscle anisotropy [103]–[107]. One of the first 

     a)                                                                                       b) 

 
     c) 

 
Figure 2.7 Example of conventional US imaging for studying MU recruitment. Upper panel: (a) 

US longitudinal scan of TA. All the aponeuroses are clearly visible and consequently the two compartments 

(superficial in blue and deep in red). For each muscle compartment one fascicle (solid line) and the region of 

interest (dashed lines) are highlighted. Planimetric muscle model of the longitudinal US image reporting all the 

morphometric variables considered. FL = fascicle length; PA = pennation angle; MT = muscle thickness. (b) 

Trasversal US image of TA to visually inspect the scanning direction (yellow dash-dotted line) and achieve good 

quality of the longitudinal image. It is possible to notice the deep and central aponeurosis and the tibia bone. 

Lower panel: (c) Architectural changes induced by Vol, nStim and mStim contractions of TA at 25% MVC in 

one representative subject. Pennation Angle (PA), Fascicle Length (FL) and Muscle Thickness (MT) are 

represented on a planimetric model of the superficial and deep TA compartments. Blue and red lines represent 

muscle fascicles. The inclination of the representing muscle fascicles was emphasized for representation 

purposes. 
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applications in this field is known as elastography [122]–[124], which involves the 

quantitative imaging of strain and elastic modulus of muscle tissue. This noninvasive 

assessment of the mechanical properties of muscles has evolved from quasi-static 

elastography [122] to dynamic shear wave elastography [125], [126] and transient 

elastography [127], [128], necessitating more sophisticated ultrasound equipment. In 

particular, shear wave imaging requires real-time imaging of the propagation of shear 

mechanical waves in the tissue, which reflects tissue viscoelasticity properties. The 

minimum frame rate required to accurately sample these waves is about a few thousands 

Hertz. The requirements for high spatial and temporal sampling rates have been achieved 

with a novel powerful imaging technique known as ultrafast ultrasound imaging [128]–

[130].  

Ultrafast ultrasound and tissue velocity imaging 

Ultrafast US (UUS) imaging significantly increases the frame rate by transmitting 

plane waves and using parallel reception of the backscattered echoes from the tissue. The 

ultrafast architecture functions as a fully parallelized platform, transmitting unfocused 

waves and recording the resulting backscattered echoes by storing the raw radiofrequency 

(RF) signals. The image is then reconstructed using beamforming techniques in post-

processing [129]. This imaging technique can achieve frame rates of up to 10,000 Hz, as 

the only constraint is determined by the time it takes for a single pulse (plane wave) to 

propagate in the tissue and for the echoes to return to the transducer.  

The beamformed plane-wave images have lower spatial resolution compared to 

conventional ultrasound, but several approaches can be adopted to enhance image quality. 

For example, compounding multiple tilted plane waves [131] can improve resolution or 

reduce speckle, and new beamforming processing techniques [132] can also be employed. 

The high frame rate acquisition opens up new possibilities for analyzing functional 

information. This includes shear wave imaging, as previously mentioned, which allows for 

the evaluation of shear wave propagation and real-time quantitative measurements of 

muscle elasticity [103], [105], [106], [126], [133], [133]–[135]. Additionally, ultrafast 

ultrasound imaging can be used for precise detection of contraction onset [104], [136]–

[138]. In the case of electrical stimulation-induced muscle fascicle and tendon motion, the 

very high frame rate ultrasound (4 kHz) can be used to determine the onset of these 

movements [139]. 

Ultrafast ultrasound imaging approach enables the evaluation of transient mechanical 

behaviour of the entire muscle with millimetric precision [138], [140], [141]. Tissue 

displacements can generally be estimated from the time delays between echo signals, and a 

phase shift between consecutive RF signals of image lines occurs when they are reflected 

against a moving object (known as the “Doppler effect”) [142]. By measuring this phase 

shift, the axial velocity can be estimated based on a comprehensive evaluation of the 

Doppler equation using a two-dimensional autocorrelation approach [142]. This method 
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allows for the measurement of relative displacements between two consecutive frames at 

the micron scale, providing an estimation of tissue local velocity. This technique, also 

known as tissue velocity imaging, has been applied in skeletal muscle to characterize the 

patterns of contraction. Deffieux and colleagues used ultrafast ultrasound tissue velocity 

imaging to investigate the behavior of contracting tissues in the biceps brachii muscle 

during electrical stimulation [143], [144]. They employed a high frame rate of 2500 fps to 

capture real-time muscle contraction during transient electro-stimulation, imaging the 

muscle’s cross-sectional plane perpendicular to the fibers (Figure 2.8a). Velocity 

measurements of the tissue were obtained using radio frequency-based speckle tracking 

techniques (Figure 2.8b). The profiles of these velocities were analyzed (Figure 2.8c) in 

relation to various electrostimulation intensities and pulse repetition frequencies, involving 

different volunteers. In addition to temporal information, spatial information was also 

obtained by measuring the tissue velocity field within the contracting sources. For example, 

the spatial extension of the contracting fiber bundle (contracting area), consisting of the true 

contracting bundle and the passive surrounding elastic tissue, could be determined at 

increasing stimulation intensities (Figure 2.8d).  

Studying the muscle tissue velocity during voluntary contractions is not 

straightforward due to the complexity of muscle activation processes. Multiple MUs are 

concurrently active during voluntary contractions, with overlapping territories and intricate 

firing patterns coordinated by the nervous system. Recently, new methods have been 

developed to identify the mechanical responses of individual MUs in ultrasound image 

sequences [145], [146]. The 2-D cross-sectional velocity image sequence theoretically 

captures the thickening of fibers perpendicular to the image plane during the contraction 

phase. By using a spatio-temporal decomposition, it is possible to separate components 

with different spatio-temporal characteristics, which can be attributed to MU mechanical 

responses or noise [145], [147]. The core of the separation algorithm is the spatio-temporal 

independent component analysis (stICA), which considers the signals as linear 

combinations of sources [148]. 

Promising results in the decomposition of MUs mechanical responses were obtained 

by Rohlén et al. in the biceps brachii muscle at low force levels, revealing similarities in 

terms of the number of units, territory sizes, and firing rates compared to the existing 

literature on MUs described by EMG [145]. The authors validated their decomposition 

method by comparing it to the gold standard needle electromyography [147], although they 

found a relatively low number of highly reliable mechanical responses associated with MUs 

in EMG. It is worth noting that the non-linear nature of the measured system (muscle 

tissue), resulting from the heterogeneous mix of linear and non-linear elastic constituents 

[149], could have influenced the method’s performance, as well as the mechanical coupling 

introduced by inserting the needle into the muscle [147]. However, under controlled 

conditions (stable, isometric, weak force contraction), the oscillatory physiological 
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mechanical responses of individual MUs were successfully detected and separated from the 

global signals.  

 
Figure 2.8 Example of tissue velocity imaging in electrically-elicited contractions. (a) Experimental 

setup adopted by Deffieux et al. for an acquisition. The imaging probe is positioned perpendicular to the muscle 

fibers. (b) Tissue velocity field in a transverse image of the biceps brachii 14 ms after an 9 V (11 mA) 

electrostimulation. an approximately 3 × 3 mm2 region of interest (ROI) is defined around the maximum to track 

the tissue velocity profile. (c) Tissue velocity profile: mean of the 30 acquisitions with its standard deviation 

envelope. (d) Map (left) of the maximum of the tissue velocity field (8.3 V stimulation) and spatial extension 

(right) of the contraction as visualized by an isocontour on the velocity tissue field. All the parts of this figure are 

extracted from Deffiuex et al. 
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In general, these studies have demonstrated the potential of a novel neuromuscular 

functional imaging approach that can provide new possibilities for investigating various 

aspects of muscle physiology (also at the MU level) that were previously challenging or 

inaccessible to study.  

2.3.5 Combination of techniques 

Various methods and technologies have been developed to assess muscle excitation 

and contraction, each offering unique insights into different aspects of muscle function. 

Advancements in technology have led to the development of sophisticated equipment and 

analysis techniques to enhance the accuracy and precision of muscle excitation and 

contraction assessments. Overall, the methods and technologies employed to assess muscle 

excitation and contraction can be combined for unravelling the complexities of human 

movement control. In fact, all the aforementioned techniques, individually, provide partial 

descriptions of the complex phenomena of the muscle contraction and force production. 

The anatomical, physical, electrical, and mechanical properties of the generation of the 

muscle force (and MU force) can be detected and interpretated separately with these 

methods and technologies. It is straightforward that the combination of two or more of 

these techniques enables the muscle and MU characterization of different aspects of the 

same phenomenon. Therefore, a MU can be investigated anatomically, electrically, and 

mechanically with applications for analysis of the modifications of MU properties 

following, for instance, fatigue or pathological conditions. 

In this regard, a striking example is provided by the study of Cescon et al. [86] in 

which a method for non-invasive assessment of single MU properties is proposed. This 

method combined EMG, MMG (Figure 2.9, top panel taken from [150]), and force signals 

providing the analysis of electromechanical properties of single MUs. The mechanical 

twitch responses in the MMG and the force signal were obtained by averaging the signals 

using the time points of occurrence of single MUAPs as triggers (Figure 8, bottom panel 

taken from [86]). These occurrences were obtained from the decomposition of the array 

EMG signals.  

Combination of electromyography and ultrasonography  

By combining EMG and ultrasound techniques, it becomes possible to obtain a more 

comprehensive and detailed description of the events underlying muscle force generation. 

In fact, the US-EMG combination would enable simultaneous assessment of the muscle 

activation and mechanical tissue displacement. For instance, we conducted a study where 

B-mode ultrasound imaging and multichannel EMG with an array of 32 electrodes on the 

calf muscles were used to enhance the detection sensitivity of muscle fasciculations (Figure 

2.10) [151], [152]. Fasciculations are spontaneous activations of motoneurons often 

associated with neurological disorders such as amyotrophic lateral sclerosis and motor 
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neuron disease [153], [154]. Fasciculation potentials (FP) [154] were identified using single 

differential EMGs with inter-electrode distances (IEDs) of 10 mm (SD1), 20 mm (SD2), 

and 30 mm (SD3), while fasciculation events (FE) [155], [156] were detected from 

sequences of US images. These findings showed that both techniques exhibited comparable 

sensitivities to muscle fasciculations [157]. However, the agreement between the two 

techniques in terms of unique detections (FE = FP) was relatively low, which was attributed 

to the diverse spatial sensitivities of EMG and ultrasound. These results suggest that 

 
Figure 2.9 Simultaneous recording of EMG and MMG signals. Top panel: on the left side, a 

schematic diagram indicating the location of the electrode array and accelerometer. The electrode array is oriented 

parallel to the muscle fibers and positioned distally from the innervation zone, while the accelerometer is located 

proximally. The term "IZ" represents the innervation zone. Bottom panel: examples of single MU MMG and 

force signals for two representative contractions. The MMG and force responses were obtained by averaging 

signals using the time points of occurrence of single MU action potentials as triggers. It is important to note the 

distinct MMG and force twitch responses between the two muscles. 
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combining EMG and ultrasound techniques can maximize the sensitivity to muscle 

fasciculations, and more in general to detect single MU activity. Other studies have also 

employed combined EMG and ultrasound analysis to investigate muscle dynamics and 

characterize electromechanical delays [139].   

Recent technological advancements in both EMG and ultrasound have further 

enhanced the value of the combined EMG-US approach, extending its applicability to the 

single motor unit (MU) level. The combination of new computational analysis of high 

frame rate US images with EMG enables the electromechanical imaging of the neural 

output. Rohlèn et al. combined ultrafast ultrasound with needle electromyography to 

validate their method for identifying mechanical responses of MUs [147].  

 
Figure 2.10 Fasciculation investigation with combine EMG and US analysis. Electrode positioning 

over the posterior leg. Ultrasound (US) videos (80 fps) were detected simultaneously with EMGs from four 

adjacent regions along the electrode array composed by two linear arrays of 16 electrodes with 10 mm inter-

electrode distance (IED). Lower panels: composite image of four longitudinal US scans and schematic 

representation of calf muscles’ architecture. The white circle in the US image indicates the gastrocnemius myo-

tendon junction. An example of fasciculation potential detected in single differential configuration (10 mm IED) 

is reported in the upper part of the figure. The location of the corresponding fasciculation event identified in US 

images is indicated with a white cross. MG: medial gastrocnemius; SOL: soleus. Figure extracted from Botter et 

al. 2021. 
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One important aspect of the integration of HDsEMG and ultrasound imaging is related 

to the technologies enabling this simultaneous acquisition. Typically, surface electrodes and 

US probes are placed in close proximity to each other. Whether this is a problem, it may be 

related to a number of factors. For instance, for small muscles (e.g. hand or forearm 

muscles) this arrangment is not possible while for larger muscles there might be sufficient 

space to sample EMG and ultrasound from different portions of the muscle. Moreover, 

many muscles showed to have different regional patterns of activation  and distinct regional 

variation of fascicle architecture [56]. For these reasons, a grid transparent to US (Figure 

2.11A) has been proposed enabling simultaneous regional analysis of the muscle excitation 

and the resulting tissue displacement [159]. With this technology, the relationship between 

modulations motor unit (MU) discharge, fascicle length, and dorsiflexion torque was 

assessed in tibialis anterior muscle (Figure 2.11B) [160].  

Overall, the state of the art described in this section suggests that the combined use of 

the electromyography and ultrasonography has the potential to provide a detailed 

neuromechanical characterization of motor units, from neural excitation to muscle tissue 

strain. Currently, the feasibility of this integration, as well as the systematic evaluation of 

its limitations and advantages, are not described in the literature. This type of assessment is 

necessary to guide future developments both in experimental signal acquisition and data 

processing, as well as to identify clinical applications that could benefit from this 

integration.  In this context, this thesis describes and tests a novel approach aimed at 

providing a comprehensive description of individual motor units based on the combination 

of high-density electromyography and ultrafast ultrasonography.  

 
Figure 2.11 High-density surface electromyography (HDsEMG) ultrasound-transparent 

electrodes. A) 8 x 4, 32-channel (10-mm interelectrode distance) electrode grid. B) HDsEMG electrode grid 

with 32-channel HDsEMG amplifier (connected on top of the electrode) and flat ultrasound probe can be seen on 

the left. Ultrasound image of proximal tibialis anterior muscle can be seen on the right. Note the quality of the 

image with accurate visualization of fascicles and, superficial, intermediate, and deep aponeuroses (n =1, male 

participant). Figure extracted from Botter et al. 2013. 
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Chapter 3 

Topic 1 

3.1 Integration of HDsEMG and UUS data  

The previous Chapter provided an overview of the current state of the art of 

technologies and methods for evaluating muscle excitation and contraction. It was shown 

that HDsEMG can provide information about muscle activation at the global level and at 

single motor units (MUs) level, while ultrafast ultrasound (UUS) can assess movements 

with fast dynamics through the analysis of cross-sectional tissue velocity sequences and it 

was thus proposed for the study of single MU activity. The integration of both techniques 

has therefore the potential to provide a more comprehensive description of the 

neuromechanical MU properties. 

To achieve this, we propose an integrated HDsEMG-UUS approach to simultaneously 

identify and analyze the neural, electrical, anatomical, and mechanical characteristics of 

single motor units (Figure 3.1). This approach involves extracting single MU firings from 

HDsEMG and using this information to identify the corresponding muscle movements in 

US images, which define the motor unit territory and twitching characteristics of the tissue. 

This integration represents an innovative approach in this field of investigation. In fact, we 

used an extensively validated method for the identification of MU activity (HDsEMG 

decomposition) and we used this information in the pipeline for the identification of the 

corresponding MU representation in UUS images. 

Two algorithms were evaluated in this study to process the data detected from joint 

HDsEMG-UUS measures. The first algorithm (STA-based algorithm) makes use of spike-
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triggered averaging (STA) of the tissue displacement velocity sequence based on the 

individual MU firings [1]. This technique has been  previously used in this context to study 

the representation in mechanomyograms of single MU activity [2]. The second algorithm 

(stICA-based algorithm) employs spatio-temporal independent component analysis (stICA) 

for processing ultrafast US muscle images  [3]. This technique has been suggested as a 

method to decompose the displacement velocity sequence and obtain information about 

individual mechanical responses of muscle units [4]–[6]. Both algorithms (STA-based and 

stICA-based) characterize each MU by its spatial representation in ultrasound images and 

its velocity profile in the time domain.  

In the following sections, the pipelines of the two algorithms are described in detail. 

Afterwards, the development of a simulated environment of HDsEMG and UUS data is 

proposed to systematically assess the two algorithms outcome in the identification of the 

anatomical and electrophysiological characteristics of the simulated MUs.  

Underlying assumptions 

The algorithms described in the following sections are based on the hypothesis that the 

movement of the muscle region comprising the active fibers is related with the 

corresponding MU neural input. While this is a reasonable, initial hypothesis, it is worth 

noting that it is based on a simplified model of muscle tissue dynamic where possible non-

linearities due to the multiple MU interactions are neglected and where the region of 

movement strictly corresponds to the MU territory (Figure 3.2). Mechanical interactions 

between active MUs increase with the number of active MUs (i.e. contraction level), 

moreover the movement associated to MU activation can be represented in other muscle 

regions in case of pinnate muscle architecture (Figure 3.2b). Therefore, in order to limit the 

effect of the aforementioned factors we considered low contraction levels and fusiform 

muscle geometry (Figure 3.2a).  

 
Figure 3.1 Integration of HDsEMG and ultrafast US. Scheme of the proposed approach integrating 

HDsEMG and ultrafast ultrasound data to achieve the description of the neural, electrical, anatomical, and 

mechanical characteristics of single motor units. 
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3.1.1 Algorithm based on the averaging of the tissue velocity with 

single MU firings (STA-based) 

Figure 3.3 shows an outline of the first algorithm considered (STA-based algorithm). 

The spike-triggered averaging (STA) technique is based on the averaging of epochs of 

signal using spike instants as reference input. We used the firing instants of single MU 

(either simulated or obtained from HDsEMG decomposition) to trigger epochs of the tissue 

velocity sequence of the muscle cross-section. A 125-ms averaging epoch was selected as it 

corresponds approximately to the contracting and half relaxation time of an electrically-

elicited bundle of muscle fibers [7]. The averaging process resulted in a velocity sequence 

in which the contribution of the triggering MU to the tissue velocity should be emphasized. 

We aimed to extract a localized twitching region in the average sequence separated from 

the background activity. From the average sequence, we removed the mean value computed 

across frames and we then identified the frame with maximum velocity. It was assumed 

that the image region where the maximum velocities was observed  in the averaged 

 
Figure 3.3 Spike Triggered Averaging of the tissue velocities. Example of the averaging technique of 

the tissue velocity sequence estimate from ultrafast ultrasound data. 125-ms epochs around each firing instant 

were considered and averaged such to obtain a sequence in which the contribution of a motor unit is emphasized. 

In the final step, an image of the spatial representation and temporal profile of the twitching MU were extracted. 

 
Figure 3.2 Theoretical considerations about muscle motion. (a) Example of 2 active MUs in a 

fusiform muscle creating  regions of movement in the ultrasound scanning plane limited to the MU territory. (b) 

In case of a pinnate muscle, motions are detectable in the tendon region, other than in the MU territory. 
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sequence corresponds to the area where MU fibers are located, as all the movements 

associated with other MU activity should be uncorrelated, thus filtered by the averaging 

process. We further averaged the velocity sequence across the 20 ms frames around the 

maximum frame (10 ms before and 10 ms after) to create a single image. This image can be 

considered as a spatial representation of the twitching MU. We applied a global threshold 

of 70% of the maximum to this image to segment the area of twitching (MU twitching 

area). It is worth noting that this twitching area does not correspond to the MU territory as 

classically defined, it is instead the tissue area where the MU contraction induces 

movements within the muscle cross section. Due to passive force transmission in the 

transversal plane this area is an overestimation of the actual MU territory which likely 

depends on the muscle architecture. The brightness (i.e. velocities) of the segmented pixels 

may follow a velocity profile similar (velocity twitch) to that shown in electrically 

stimulated contraction in time [7]. During electrically stimulated contractions, the muscle 

tissue showed a specific pattern, with an initial increase in velocity (contraction) followed 

by a gradual decrease (relaxation) as the contraction progresses [7]. The segmented pixels, 

which likely represent specific regions possibly related to MU contraction and relaxation, 

may show a similar trend in their brightness when followed in time, i.e. increasing 

brightness at the beginning (increasing velocities) and a decreasing towards the end of the 

sequence (Figure 3.3).  

3.1.2 Algorithm based on the decomposition of displacement velocity 

and correlation with MU firing activity (stICA-based) 

Figure 3.4 shows the processing of the stICA-based algorithm. The method was 

always based on a combination of HDsEMG (Figure 3.4a) and 2D tissue velocity sequences 

(TVS) computed from ultrafast US images of muscle cross-section (Figure 3.4d,e). Unlike 

the first algorithm, the TVS was further processed  applying spatio-temporal independent 

component analysis (stICA) [3] to regions of interest (ROI) covering the entire image [5] 

(Figure 3f, see paragraph “Spatio-temporal independent component analysis”). The output 

of the stICA provided the time courses and associated images of the independent 

components, hereafter referred to as temporal and spatial components respectively. 

Afterwards, the combined analysis with EMG was performed. The discharge instants of the 

individual MUs were obtained from HDsEMG decomposition [8] (Figure 3.4b). For each 

decomposed MU we computed the convolution between the firing instants and a synthetic 

waveform representing the average velocity profile of the contracting fibers in the 

superficial-deep axis. This convolution provided, for each decomposed MU, a synthetic 

signal referred to as train of the MU velocity twitches (thick line in Figure 3.4c). This signal 

was cross-correlated with the temporal components obtained for each ROI (see paragraph 

“Cross-correlation with MU firing activity”) allowing to identify pairs of temporal and 

spatial components maximally correlated with the MU activity. Finally, the identified 
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spatial components were used to determine the spatial representation of the mechanical 

response in US images (Figure 3.4g). This spatial representation can be considered 

equivalent to the MU twitching area identified by the first algorithm. 

Spatio-temporal independent component analysis 

We decomposed the TVS by sliding a ROI of 12 × 12 mm across the entire image (40 

× 40 mm) (Figure 3.4d) [5]. The sliding step was 1.6 mm in both directions (2.56 mm2). We 

chose the size and step of the ROI based on two factors: the estimated size of MU 

territories in the biceps brachii muscle and the spatial resolution of the correlation maps 

obtained from the sliding ROIs. The ROI size was determined to encompass all fibers of a 

single contracting MU, with an estimated maximal territory size of approximately 80 mm2 

(territory diameter < 10 mm). This size was selected to minimize the influence of other 

sources on the velocity values. The sliding step, set at 1.6 mm in both directions (equivalent 

to 2.56 mm2), aimed to provide around 30 samples (i.e., ROIs) per image within the 

territory of the largest MU observed in the experimental protocol conducted on the biceps 

brachii muscle (MU territory: 80 mm2) [9]. 

We applied singular value decomposition (SVD) to each ROI and retained the 50 most 

significant eigenimages and corresponding eigensequences [4]. Finally, spatio-temporal 

independence between the sets of eigenimages and eigensequences was optimized with 

independent component analysis (ICA) obtaining 50 ultrasound components per ROIs, 

comprising the spatial components (i.e. images) and corresponding temporal components 

(i.e. time courses) (Figure 3.4f) [5]. We used a greater number of components compared to 

previous studies to enhance the probability of isolating distinct contributions of individual 

MUs to the tissue velocity sequence [5]. 

Cross-correlation with MU firing activity 

 We performed an analysis between the decomposed ultrasound components and the 

decomposed MU firing instants for each ROI. The following procedure was considered: (i) 

the convolution between the firing instants of each MU and a synthetic waveform 

(representing the velocity of the contracting phase of fibers lasting 50 ms [7]) produced 

what we refer to as the train of MU velocity twitches (Figure 3.4c); (ii) the cross-correlation 

between these trains and each of the time courses of the component was computed (Figure 

3.4g); (iii) the component with the maximum correlation coefficient within a ±20 ms time 

lag was selected [10]. The length of the time lag was selected considering the 

electromechanical delay between the neural input and the movement of the muscle tissue 

[11], [12]. 
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Figure 3.4 Overview of the algorithm based on the decomposition of tissue velocities and 

correlation with MU firings. (a) HDsEMG signals of a grid of electrodes. (b) Decomposed MU firing pattern from 

HDsEMG signals. (c) Generation of the train of MU displacement velocities through the convolution of the MU firing pattern 

with the synthetic velocity profile. (d) Ultrafast US B-mode sequence with 3 examples of ROI used in the analysis. (e) Tissue 

Velocity Sequence estimated using 2D autocorrelation approach. (f) Output of the Singular Value Decomposition and 

spatiotemporal Independent Component Analysis of the three example ROIs with 50 components (comp.) each composed by a 

time course (temporal component) and a correspondent image (spatial component). (g) Integration between EMG and US 

variables: cross-correlations between all the temporal components of the tissue velocity sequence of the ROIs and the synthetic 

train of MU displacement velocities, and example outcome for a single MU. (1) Map of maximum correlation coefficient of all the 

ROIs (19 × 19). The algorithm extracted the component with the maximum correlation within ± 20 ms time lag for each ROI. The 

selected ROIs (cluster) are highlighted with black dots. (2) heatmap of the MU spatial representation in US images extracted 

summing the spatial components of the most correlated ROIs in the coefficient map (black dots); (3) tissue displacement velocity 

profile (black solid line) calculated from spike triggered averaging of the temporal signal (average of all identified [i.e. black dots] 

temporal components) with the MU firing instants. 
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The correlation coefficient values of the selected component for each ROI were used 

to generate a correlation map for each decomposed MU (Figure 3.4g1), in which each pixel 

represented a ROI and its color was scaled with the peak of the cross-correlation. To obtain 

a spatial representation of the MU mechanical response (region of movement, Figure 

3.4g2), a larger cluster of connected ROIs in the correlation map with values higher than 

50% of the maximum correlation was retained (black dots in Figure 3.4g1), and the 

corresponding spatial components of the ROIs were summed to obtain an image of a single 

MU region of activation/movement. As for the STA-based algorithm, a global thresholding 

at 70% of the maximum was applied to this image to determine the MU twitching area. The 

threshold for identifying the cluster of connected ROIs was determined through preliminary 

analysis conducted under simulated conditions. The analysis revealed that a threshold of 

50% yielded the smallest error between the centroids of the simulated MU territory and the 

estimated representation of MU spatial distribution (refer to the following section 3.2.2).  

The temporal components of the identified cluster were averaged for each time instant 

to obtain an individual temporal signal representing the time evolution of the contracting 

tissue associated with a specific MU. Using spike-triggered averaging based on the MU 

firing pattern, the tissue displacement velocity profile (velocity twitch) was calculated from 

the previously computed time evolution of the contracting tissue (Figure 3.4g3). 

3.2 Comparison of the algorithm for the detection of 

anatomical characteristic of single MU 

The algorithms described in the previous sections were initially analyzed and tested 

under simulated conditions. The comparison of these two algorithms in a simulated 

environment allows to systematically control the testing conditions and parameters leading 

to the generation of MU firing patterns and TVS. Two important aspects of muscle 

contraction are the degree of neural excitation (i.e., the number of active MUs) and the 

level of MU synchronization (i.e. the degree of dependency between firing instants of 

different MUs). These aspects are critical for our algorithms. As previously mentioned, the 

spatial and temporal overlapping of active MUs produce more interferential mechanical 

responses. The degree of neural excitation increases when higher force levels are reached, 

with more MUs that fire at higher frequency and produce overlapping tissue movements. 

The other aspect affecting the system is related to the MU synchronization. The mechanical 

response of synchronous MU might not be separated by our algorithms resulting in fused 

territories. 

The performance of the two methods outlined in the previous section was evaluated in 

a simulated fusiform muscle adjusting these parameters. The comparison was based on 

metrics quantifying the anatomical characteristics of MU, such as the location and the 

dimension of the identified MU twitching area, and the comparison with respect to 

simulated territory. 
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3.2.1 Simulation model 

The simulations were built on a Matlab-implemented cylindrical volume conductor 

model with skin-parallel fibers (R2020b, The MathWorks Inc., MA, USA) [13]. A muscle 

with an elliptical cross-sectional area (CSA) of anisotropic tissue, an outer isotropic 

subcutaneous tissue covered by a layer of skin [14] made up the cylindrical volume 

conductor (Figure 3.5a). The anatomical model's parameters, which were chosen to 

accurately reflect the human biceps brachii (BB) muscle [15], are listed in Table 3.1.  MU 

territories were modelled as having circular boundaries and being dispersed randomly 

throughout the muscle (Figure 3.5b). The MU territory is defined as the circular area 

encompassing all the MU fibers.  

MU firing patterns 

A model of recruitment of a population of MUs [16] was used to replicate a fixed 

percentage of maximum voluntary contraction (MVC). In particular, we simulated four ten-

second steady contractions with an increasing number of MUs and correspondingly higher 

MVC percentages for each contraction. In total, 32, 74, 106, and 138 active MUs were 

recruited during the 2%, 5%, 10%, and 20% MVC contractions, respectively. We applied 

also two degrees of synchronization between active MUs for each contraction, using the 

method suggested by Yao et al. [17]. In summary, the firing pattern was first generated on 

the basis of the mean firings rates and inter-pulse variability following the standard model 

of recruitment proposed by Fuglevand et al. [16]. Afterwards, some firing instants were 

Table 3.1 Parameters of the cylindrical muscle model. 

 
Model Parameter Value 

Motor unit properties Fiber density  ∼135 fib/mm2 

 Discharge rate  8–15 pps 

 CoV of interspike interval  15% 

Muscle properties Number of motor units  200 

 Number of muscle fibers  80 000 

 Number of MU fibers (range)  150–1500 

 Muscle CSA  598 mm2 

Limb properties Skin thickness  1 mm 

 Subcutaneous tissue thickness  2.5 mm 

 Bone (radius)  20 mm 
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adjusted to change the degree of MU synchronization, as it may affect the performance of 

the algorithms [18]. The percentage of firings in each train of pulses that were synchronized 

with other firings (%F) and the percentage of MUs firing in synchronization, expressed as a 

percentage of the total number of MUs (%M), specifically defined the synchronization 

level. Given %F and %M, the predetermined number of firings for each train were 

synchronized with others by shifting their firing instants. The firings that were to be 

synchronized were shifted considering a Gaussian random variable with a mean of 0 and a 

standard deviation of 2 ms. The two parameters describing MU synchronization (%F and 

%M) were set to be equal to minimize the number of parameters needed to describe central 

changes. MU synchronization levels between a medium (15%) and a very high (25%) 

degree [18] were considered.  

EMG generation and detection 

The interferential EMG signals were simulated starting from the anatomical 

characteristic of the muscle and the firing patterns [13], considering an high density grid of 

four columns in the transverse direction of the cylindrical muscle and eight rows along the 

fiber direction (Figure 3.5a). The interelectrode distance was set to 10 mm. The grid was 

centered with respect to the innervation zone of the fibers. The single MUAP was 

calculated using longitudinal single differential derivation (along the fiber direction) for 

further analysis.  

Tissue velocity sequences  

The model of generation of tissue velocity sequences was developed within this 

project to complement the EMG model described in the previous section. Tissue velocity 

 
Figure 3.5 Simulation model of cylindrical muscle. (a) Cross-section of the cylindrical volume 

conductor model of the limb: 1 mm skin layer, 2.5 mm subcutaneous layer and elliptical-shaped muscle (598 

mm2 physiological cross-section area). The blue-shaded area is the US detection region (40 mm × 40 mm), 

including the whole muscle. (b) Distribution of MU territories (area range 5–44 mm2) inside the simulated 

muscle. (c) Normalized velocity profile of the tissue velocity simulation model. (d) Example of a frame of the 

simulated TVS at 2% MVC with the location of the 32 active MUs (gray circles). 
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sequences (TVS) were simulated at 1024 frames per second. The images were 128 × 128 

pixels and had a spatial resolution of 0.3 mm for a field of view of 40 × 40 mm (Figure 

3.5d). The sequences of the four contractions were simulated by combining the anatomical 

characteristics of the muscle model (Table 3.1), firing pattern of the contractions, and 

mechanical model of single MUs. This model describes the spatiotemporal velocity profiles 

of the MU fibers in the muscle cross-section in response to a single firing. We considered 

the simulated velocity profile shown in Figure 3.5c, which represents the contraction 

(positive) and relaxation (negative) phases of a group of contracting fibers (i.e. mechanical 

twitch). This profile was based on the work of Deffieux and colleagues, describing the 

muscle tissue velocity profile of the biceps brachii in response to an electrical stimulus [7]. 

In this manuscript the Authors used ultrafast ultrasound to characterize changes in tissue 

velocity profile induced by electrical stimulation at increasing amplitudes. They observed 

that the maximum tissue velocity was associated quadratically to the stimulation amplitude 

and consequently the dimensions of the active muscle territory. Therefore, a quadratic law 

was used to scale the amplitude of the velocity profile with the area of the MU territory 

(i.e., the number of fibers, Figure 3.6a) and assigned it to each pixel inside the MU 

territory. A velocity field was then created for each MU, associating a velocity value to each 

point of the image to simulate the passive transmission of velocity to the surrounding non-

active fibers (Figure 3.6b) [19]. We used a bidimensional exponential decay centered on the 

MU territory to scale the velocity profile of nearby pixels outside the MU territory. The 

velocity field simulated the spatial response of a single MU at the maximum of the 

mechanical twitch (i.e. velocity profile, Figure 3.5). This procedure provided the 

spatiotemporal mechanical response of each simulated MU. By computing the convolution 

between the mechanical twitch and the firing pattern of each MU multiplied for the velocity 

field and adding all the mechanical responses of individual MUs, the interferential tissue 

velocity sequence of the simulated contractions was determined (equation 3.1).  

 
Figure 3.6 Mechanical model of single motor units. (a) Function that links the velocity to the dimension 

of the motor unit; the curve reflects experimental data found in the literature. (b) Example of velocity field of a 

MU. The velocity field simulated the spatial response of a single MU at the maximum of the mechanical twitch. 
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𝑻𝑽𝑺(𝒙, 𝒚, 𝒕) = ∑ ∑ 𝑽𝒊(𝒙, 𝒚)[𝑴𝒊(𝒕) ∗ 𝜹(𝒕 −  𝒕𝒊𝒋)] + 𝜺

𝑵𝒊

𝒋=𝟏

𝒏

𝒊=𝟏

3. 1 

where n is the number of active MUs, 𝑉𝑖(𝑥, 𝑦) is the velocity field of the i-th MU (Figure 

3.6b), 𝑀𝑖(𝑡) is the mechanical twitch (velocity profile, Figure 3.5c) of the i-th MU, 𝑁𝑖 is 

the number of firing events and  𝑡𝑖𝑗 the j-th firing instant of the i-th MU, 𝛿(∙) stands for the 

Dirac impulse, and 𝜀 represents superimposed white noise. The assumption that the total 

mechanical signal is obtained by the superimposition is valid at low level contraction [20]. 

The velocity field can be written as: 

𝑽(𝒙, 𝒚) = 𝑽𝒎𝒆𝝈𝑫(𝒙,𝒚) 3. 𝟐 

where 𝑉𝑚  represents the MU maximum velocity value (Figure 3.6a), 𝐷(𝑥, 𝑦) a spatial curve 

that expresses the distances of each pixel from the territory center and 𝜎 a constant decay 

[19].  

{
𝑫(𝒙, 𝒚) = 𝒅(𝒙, 𝒚) − 𝑹𝟎               𝒊𝒇 𝒅(𝒙, 𝒚) ≥ 𝑹𝟎

𝑫(𝒙, 𝒚) = 𝟎                                     𝒊𝒇 𝒅(𝒙, 𝒚) < 𝑹𝟎
} 3. 𝟑 

where 𝑑(𝑥, 𝑦) is the Euclidean distances of each pixel from the MU center and 𝑅0 is the 

territory radius. In this model the value of 𝜎 was not constant but it changed depending on 

the size of the MU territory (𝑅0). Since a comprehensive description of the mechanical 

signal propagation in non-active tissue was not found in the literature, we arbitrarily 

defined the decay rate so that the tissue velocity at a distance of twice the MU territory 

radius, is about 50% of the velocity at the center of the territory.  

3.2.2 Metrics for the performance assessment 

MU twitching area (territory) and velocity profile 

To define the performance of the two algorithms in the identification of MU territories 

from TVS sequence, we calculated the relative number of MU territories correctly 

identified with reference to the total number of simulated MUs. An estimated MU territory 

was regarded as correctly identified if the variables Recall and the Precision calculated with 

respect to the simulated territory were both greater than 0.4 [21]. We defined the MU 

territory (simulated) as the circular area encompassing all the MU fibers and it can thus be 

characterised by the x and y coordinates of the center in the space represented by the cross-

sectional view of the muscle, and by the radius (Figure 3.5). The MU twitching area 

(estimated territory) was the output of the algorithm and corresponded to an image of a 

single MU region of activation/movement. Both the simulated and estimated MU territories 

are defined as binary maps (128 × 128 pixels) with 1 indicating the territory and 0 the 
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background. Comparing the two maps, we computed the aforementioned metrics for the 

definition of correct identification. 

Geometrical variables of the territories (errors of center and area estimations) were 

also considered to define how the simulated parameters affected the identification. We 

considered: (i) the Euclidean distance between the center of the simulated and the 

computed territories and (ii) the difference between the area of estimated and simulated 

MU territories, divided by the size of the simulated one (relative error). As regards to 

temporal variables, we assessed the estimations of MU displacement velocity profile 

(twitch profile, Figure 3.5c) through the zero-lag cross correlation coefficients between the 

simulated velocity profiles and those identified by the two algorithms. 

As mentioned in the previous paragraphs, the increasing number of active MUs 

produces high interference in the TVS resulting in overlapping MU territories that may be 

difficult to be resolved by the algorithms. Similarly, MU synchronization can affect the 

identification of MU characteristics. For these reasons both contraction level and degree of 

MU synchronization were regarded as relevant parameters to test the proposed algorithms.  

Comparison between MUAP amplitude distribution and identified MU 

twitching areas 

The metrics described above can be applied to simulated conditions where the ground 

truth is known and the algorithm characterization can be based on the comparison between 

simulated and obtained parameters. In experimental conditions this is overtly not possible. 

Therefore, in order to use a metric that can be adopted in experimental conditions as well, 

we decided to compare the centroids of the MUAP amplitude distributions with the 

centroids of the corresponding identified MU territories, provided by the algorithm. 

Specifically, the mediolateral position of the centroid of the electrical activity (i.e. MUAP) 

was used as the ground truth of the mediolateral position of the MU in the muscle cross 

section. Since the muscle was cylindrical and fusiform, we expected a linear relationship 

between the mediolateral coordinates of the centroids [22], [23]. The centroids of the 

estimated MU territory were calculated as the weighted centroid of the estimated MU 

twitching area after the global thresholding (see sections 3.1.1 and 3.1.2 final paragraphs), 

thus considering the intensities of the pixels in the image (and not the binary maps). The 

centroids of the MUAP were calculated from the map of the root mean square values of all 

channels segmented at 70 % of the maximum value [24].  

3.3 Simulation results 

In this section, the results of the comparison between the two proposed algorithms are 

presented. Hereafter, the STA-based algorithm (section 3.1.1) is referred to as STA, while 

the stICA-based algorithm (section 3.1.2) is referred to as STICA. The algorithms were 
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tested over four contraction levels (i.e. increasing number of active MUs) and two 

synchronization levels (see section 3.2). 

General performance 

Figure 3.7a reports two examples of an individual MU territory estimation using 

STICA in two simulated conditions leading to opposite outcomes. The right image shows a 

poor identification during a 20% MVC contraction with 25% Synchronization (Precision = 

0.12 and Recall = 0.35), while the left image shows a good identification of MU territory 

obtained during a simulated contraction at 2% MVC with 15% Synchronization. According 

to the criteria listed in section 3.2.2, the left MU was regarded as successfully identified, 

whereas the right MU was considered an incorrect identification.  

Figure 3.7b shows the group results of the identification of all the simulated MUs for 

the different force (i.e. number of MUs) and synchronization levels. The comparison of the 

two techniques revealed that STICA (blue) was more accurate in identifying MU territories 

than STA (red) (Figure 3.7b). A two-way ANOVA statistical test revealed that, both 

approaches (factor “method”) showed a significant effect of the contraction intensity and 

degree of MU synchronization (factor “central input”) on the percentage of correct 

identifications with respect to the number of active MUs (p < 0.05, Bonferroni correction). 

Moreover, between 2% and 20% MVC, the percentage of accurate (i.e recall and precision 

 
Figure 3.7 Simulation results. a) Two examples of MU territory estimates (white and green pixels) 

superimposed to the simulated ones (white and pink pixels). White areas include the correctly identified pixels 

(true positive), while pink and green areas denote the false negative and false positive pixels respectively. The 

crosses indicate the center of identified (red) and simulated (blue) MU terrirory. b) Percentage of the correctly 

identified MU territories w.r.t. the number of active MUs for the two methods (STICA and STA) applied to 

simulated contractions at different contraction and MU synchronization levels. c) Boxplots of center and area 

errors for methods, contractions and synchronization levels. 
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< 0.4) MU identification declined less for STICA (78% - 34% of the active MUs) than for 

STA (37% - 1%). Similar outcomes were observed for the comparisons at various MU 

synchronization levels. While STICA saw a 3% drop in correct recognition at 2% MVC 

and a 13% drop at 20% MVC, STA failed (i.e., 0% of MU was recognized) at 10% and 

20% MVC.  

This outcome was caused by the increased number of sources (MUs) activated for 

higher contraction levels and the decreased independence between their activation instants 

due to the increased degree of synchronization. Both these elements suggest a limited 

application of these techniques for high contraction levels and are well-known issues that 

limit the ability of STA and STICA to identify the constituent parts of the global signal. 

Identification of the MU twitching area (territory) 

Figure 3.7c shows the group results concerning the quality of the MU identification in 

terms of errors of center and area estimations. Both the contraction level and degree of 

synchronization degraded the performance of MU territory identification in terms of 

estimation errors (Figure 3.7c) and, consequently, the percentages of correct identification 

(Figure 3.7b). Indeed, Figure 3.7c displays the errors in the centers (top panels) and areas 

(bottom panels) of the estimations of the MU territory identified through STICA (blue) and 

STA (red) for the contraction and synchronization levels taken into consideration. A 

statistically significant difference with respect to the STA approach (p < 0,05, two-way 

ANOVA test on both variables of error with Bonferroni correction whenever a significant, 

additive effect was found) demonstrates that the STICA approach provided estimations 

with lower errors for both MU territory centers and areas, for all tested conditions.  

Moreover, center and area errors increased to a larger extent with contraction and 

synchronization levels for STA than STICA . This result suggests that STICA estimations 

are less affected than STA by the rising number of active MUs, which explains the higher 

proportion of accurate identification.  

Overall, our findings demonstrated that STICA gives a more reliable assessment of the 

MU territory than STA, however, it is crucial to remember that potential non-linearities 

affecting experimental signals (i.e. the TVS) could reduce the performance indicated [25]. 

This concept will be expanded in the following Chapters related to experimental data.  

Temporal analysis 

Although we demonstrated that STA allows to correctly identify the simulated MU in 

few cases, STICA outperformed STA in identifying the location of MU territories at 

different contraction and synchronization levels. For this reason, the temporal comparison 

of the identified velocity twitch profile was conducted only on the STICA results related to 

the lower synchronization level (15%). 
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The zero-lag correlation coefficients between the estimated and simulated (Figure 

3.6c) velocity profiles (twitch) for various contraction levels are shown in Figure 3.8. The 

simulated and reconstructed velocity profiles showed strong agreement, with a median 

correlation coefficient throughout contraction levels of 0.85. Although the distribution 

ranges widened at higher contraction levels, we did not observe a statistically significant 

effect on the contraction level (p = 0.5, F = 0.83, one-way ANOVA).  

Comparison between MUAP amplitude distribution and identified MU 

twitching areas 

The results of the agreement between the MUAP (electrical response) and MU 

twitching area (anatomical and mechanical response) of three example MUs are shown in 

Figure 3.9. The top panel of the figure shows the single differential MUAPs computed 

longitudinally, i.e. along the direction of the simulated fibers, while the middle and bottom 

panels show the corresponding spatial representation on the simulated TVS images (MU 

twitching area) and the estimated velocity profiles (twitch) based on the averaging with the 

MU firing pattern. The middle panel's insets are an extended image that is concentrated on 

the simulated MU territory (dashed black line) and the identified centroid (represented by a 

blue cross).  The MUAP centroid (red cross in the upper panel), shares a medio-lateral 

location with the identified area (whose centroid is located in the simulated territory). When 

group data were considered (Figure 3.10), there was a strong positive correlation between 

 

 
Figure 3.8 Temporal analysis results. a) Boxplots of the zero-lag correlation coefficient of the identified 

profile with the simulated velocity profile over different simulated contractions.  
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the mediolateral coordinates of the MUAP centroid of every MU and the mediolateral 

coordinates of the identified centroids in the simulated image sequences (R2 = 0.92, p < 

0.05). In other words, we observed a significant association in the mediolateral direction 

between the skin regions where MU action potentials with greatest amplitude were detected 

in the electrode array and the muscle regions where MU mechanical responses were 

represented in US images. Furthermore, regardless the contraction level and therefore the 

size of simulated units, our STICA approach was able to locate the center of the territory of 

 
Figure 3.9 Examples of detected MU with STICA. Three representative outputs of the algorithm on 

simulated MUs. From top to bottom: longitudinal differential MUAP decomposed from EMG with the 

correspondent centroid (red cross); MU spatial representation in US images identified by the algorithm; a zoom of 

the simulated MU territory (MU center ‘+’ and contour in black dotted line) and the centroid of identified region 

(blue cross); mean (black solid line) and the standard deviation (grey band) of the spike-triggered averaged 

velocity profiles related to the correspondent identified region of tissue displacement. 

 



Chapter 3  Topic 1 

PhD Thesis Carbonaro Marco 55 

simulated MUs with an accuracy greater than 2 mm (in the case of the lowest 

synchronization level, Figure 3.7c). Therefore, our theoretical approach supports the idea 

that anatomical information on single MUs can be inferred from HDsEMGs for the set of 

conditions simulated in our model. This association would also be used on experimental 

data to demonstrate the quality of the possible identification of MU.  

3.4 Conclusions of the simulation study 

In this study, the tissue velocity sequences of muscle cross-sectional images were used 

to evaluate two techniques (STA and STICA) to identify and physically characterize MU. 

We demonstrated that STICA performed better than STA in locating the MU regions at 

various levels of contraction and synchronization. In general, our findings offer quantifiable 

proof that the two suggested methods are appropriate for anatomically and mechanically 

characterizing single MUs by using a combined HDsEMG and ultrafast US approach. 

Although STA is computationally more efficient and it may be suitable under certain 

conditions, such as long-duration recordings and few active MUs (i.e. very low contraction 

level), we selected the approach based on the decomposition of the tissue velocity 

 
Figure 3.10 Medio-lateral US-EMG coordinates correlation. Scatterplot of the relation between the 

medio-lateral coordinates of the MUAP centroids and the US centroids  
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sequences (STICA) for the experimental identification of MU with a combined HDsEMG 

and ultrafast ultrasound approach.  
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Chapter 4 

Topic 2 

4.1 In vivo testing of the HDsEMG and ultrafast US 

integration for single MU characterization 

In the previous Chapter, we used simulated conditions to show that an approach 

combining HDsEMG and ultrafast ultrasound data processing has the potential to provide 

information about electrical (i.e. MUAP), neural (firing pattern), physical (location and 

dimension of the anatomic territory), and mechanical (velocity twitch) characteristics of 

MU. Two algorithms were tested on a cylindrical model of the muscle that was adapted to 

integrate a mechanical model of single MUs. The simulations provided HDsEMG signals 

and firing patterns of different contractions together with the cross-sectional tissue velocity 

sequences of the muscle. Our findings showed that the combined processing of HDsEMG 

and ultrafast ultrasound based on the decomposition of both signals and on the temporal 

correlations between electrical and mechanical components (STICA approach) 

outperformed the approach based on the simple averaging of the tissue velocity based on 

the single MU firings. Although simulations are necessary to quantify the algorithms output 

when the MU characteristics are known (input of the simulation model), they rely on 

several assumptions that limit the generalization of the results to experimental conditions. 

For instance, the presence of non-active tissue components (connective tissue) and the 

complex and non-linear tissue interactions between active and passive tissues are not taken 

into account. All these factors are likely to worsen the outcomes of proposed algorithms 

when tested with real signals. To evaluate the potential and limitations of the method, it is 

therefore crucial to conduct an experimental assessment.  
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In this Chapter, the STICA approach was applied to experimental signals to assess the 

local relationship between the action potentials of single MUs in surface EMGs and the 

corresponding mechanical activations in ultrasound images. The regional relationship 

between the surface action potential distribution and the location of MU fibers in the 

muscle cross section was previously described in literature [1]–[7]. In fact, the activation of 

a single motoneuron was shown to result in the excitation and subsequent movement of 

fibers regionally clustered within the muscle [8]. It is therefore reasonable to hypothesize a 

substantial correlation between the position in the EMG amplitude distribution and 

the location of tissue movement in ultrasound images. In this study, this association was 

used as a quality measure of the identification of MU fibers’ location in the muscle cross-

section.  

4.2 Methods 

4.2.1 Algorithm 

The approach for the assessment of the spatial association between individual MUAPs 

and the corresponding representation in US images (STICA) was reported in the previous 

Chapter. The algorithm is based on the combined analysis of HDsEMG and 2D tissue 

velocity sequences (TVS). In simulated conditions, we analyzed the simulated firing pattern 

of the pool of active MUs and the simulated TVS to identify the territory of the simulated 

MUs. In the experimental data, we added the decomposition of the HDsEMG [9], [10] 

signals to obtain firing instants of the MUs, and we estimated the TVS from ultrafast US 

images of the muscle cross-section [11]. 

In the following paragraphs, after a description of the experimental procedure (Figure 

4.2) for measuring the contractions of the biceps brachii (BB) muscle, we present the 

simultaneous acquisition of HDsEMG signals and ultrafast ultrasound images (Figure 4.1) 

and the processing pipeline, including the additional processing steps with respect to the 

simulations (Figure 4.3). We selected the biceps brachii because of its quasi-cylindrical 

shape, with fibers running parallel to the skin, similar to the simulated conditions. 

4.2.2 Experimental protocol 

Ten participants (mean ± SD, 29.2 ± 4.6 years, body mass index 23.0 ± 3.0 m/kg2, 6 

males, 4 females) with no history of neurological or musculoskeletal impairments or 

disease were enrolled in the protocol. The study was conducted in accordance with the 

Declaration of Helsinki. Informed consent was obtained from all participants after receiving 

detailed explanation of the study procedures.  
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Procedure 

To measure the torque at the elbow joint, the participant's right arm was placed inside 

an isometric brace with the elbow flexed at 135° (180° corresponded to complete elbow 

extension; Figure 4.1). The participant completed three MVCs (over a period of 5 s and 

each separated by 2 min of rest) at the start of each experiment while receiving verbal 

encouragement and visual input of the torque level. The maximum torque expressed during 

the three contractions was used as the reference value for the MVC. Five minutes of rest 

were provided after the MVC measurement. Three 60-second isometric elbow flexions at 

2%, 5%, and 10% of MVC were performed by the participant after the placement of 

HDsEMG electrodes and positioning of the US probe over the muscular belly of the BB. 

While US images were acquired for approximately 8 s in the middle of the contraction, 

HDsEMG signals were recorded throughout the entire duration (Figure 4.2). To 

synchronize EMG-US acquisitions, an external rectangular pulse (StimTrig; LISiN, 

Politecnico di Torino, Italy) was used to initiate US acquisition and was concurrently 

captured by the HDsEMG system [12] (Figure 4.2).  

 
Figure 4.1 Experimental setup overview. The right arm was positioned inside an isometric brace for 

torque measurements. A grid of 64 EMG electrodes (8 × 8, 1 cm inter-electrode distance) was placed over the 

biceps brachii. The US probe was positioned between the two central rows of the electrode grid. 
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HDsEMG recordings 

A grid of electrodes that allows for the simultaneous recording of EMG and US from 

the same muscle region (modified from Botter et al. [13]) was used to capture muscle 

activity. Following proper skin preparation [14], the grid of 64 electrodes (8 rows by 8 

columns, 10 mm inter-electrode distance) was placed on the BB muscle belly with the 

columns aligned with the longitudinal axis of the arm and the space between the fourth and 

fifth row in correspondence to the main muscle innervation zone, previously identified with 

an array of dry electrodes [15]. Prior to the electrode positioning, ultrasound imaging was 

used to determine the separation between the two BB heads [16]. The grid's first four 

columns were put on BB's short head, while the last four were put on its long head (Figure 

4.1). Monopolar EMG signals were detected, conditioned (Bandwidth 10-500 Hz, Gain 46 

dB), and sampled at 2048 Hz with 16-bit resolution through a wireless HDsEMG 

acquisition system [17] (MEACS, LISiN, Politecnico di Torino, Turin, Italy). In order to 

ensure synchronization with ultrasound detection, a wireless synchronization system was 

used [12]. 

Ultrasound acquisition 

Verasonics Vantage 128 (Verasonics, Inc., Kirkland, WA) programmable ultrasound 

research platform, and Verasonics L11-5v linear array transducer (7.8125 MHz center 

frequency) were used to collect radiofrequency (RF) data. The US probe was securely held 

above the BB muscle and perpendicular to the longitudinal axis of the arm using a probe 

holder that was fastened to the isometric brace. The two heads of the BB were scanned in 

the medio-lateral direction (cross-sectional) [18] by positioning the probe between the 

fourth and fifth row of electrodes and centered with respect to the columns (Figure 3.5). 

 
Figure 4.2 Experimental procedure. 60-second isometric elbow flexions at 2%, 5%, and 10% of MVC. 

HDsEMG signals were recorded throughout the entire duration while US images were acquired for approximately 

8 s in the middle of the contraction. An external trigger signal was used to control the US acquisition and was 

concurrently recorded by the HDsEMG system. For the sake of simplicity, a single EMG channel was shown. 
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This position corresponded to the main innervation zone as previously identified in which 

the main movements of the activated MUs should be visible with the minor delay with 

respect to the electrical activity. An original MATLAB (MathWorks, Natick, MA) code 

was utilized to capture plane wave data at a frame rate of 2500 fps while controlling the RF 

acquisition using an external initiating trigger (Figure 4.2). The RF data was captured at a 

frequency that was four times the transducer center frequency (31.25 MHz), and it was 

rebuilt using the common delay-and-sum (DAS) beamforming [19] technique in post-

processing.  

4.2.3 Data processing 

HDsEMG processing and decomposition 

HDsEMG signals (Figure 4.3a) were bandpass filtered in the 20–400 Hz range (4-

order Butterworth filter), and when necessary, residual power line interference was 

eliminated [20]. Signals were then decomposed (Figure 4.3b) into individual MU firing 

patterns using a validated [21], [22] convolution kernel compensation (CKC) approach [9], 

[23], [24]. The firing pattern was resampled at the same sampling rate as the US images 

(2500 Hz) for further processing. 

 
 

Figure 4.3 Processing of HDsEMG and UUS data. a) Monopolar HDsEMG signals of the 64 electrodes 

positioned over the biceps brachii. The US probe location was center with respect to the columns and rows (green 

rectangle). b) Decomposition of HDsEMG giving a number of MU and corresponding firing instants. c) The 

ultrafast ultrasound (UUS) data are processed to compute the tissue velocity sequence using the 2D 

autocorrelation method. d) Decomposition of tissue velocities through spatio-temporal independent component 

analysis. e) STICA approach integrating the analysis of the two decomposition of HDsEMG and UUS with a 

cross-correlation step between convoluted firings and temporal components (for further details refer to the 

previous Chapter). f) Example outcome of the algorithm showing the complete electro-mechanical MU 

characterization with the motor unit action potential, the identified MU twitching area, and the velocity profile of 

the twitch. 
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Tissue velocity sequence computation 

The analysis of the TVS of muscle cross-section enables the quantification of the 

deep-superficial movements of bundles of contracting fibers [18], [25]–[27]. Using RF 

signals and autocorrelation in the time (pulse transmissions) and space (depth samples) 

dimensions, we calculated the TVS along the ultrasound beam axis [11] (Figure 4.3c). 

Based on earlier research, we chose a sliding window of 10 ms and a maximum 

displacement of 1 mm between successive images [25]. After obtaining the velocity data 

for each frame (time) and pixel (space) in the image, velocity profiles in space and time 

were filtered. The contribution of isolated pixels with incorrect values was reduced by 

applying a spatial 2-D median filter (1 × 1 mm kernel) to each frame. Then, to reduce slow 

motions unrelated to muscular contraction, the temporal development of each pixel was 

high-pass filtered at 5 Hz (4th-order Butterworth filter). After being axially downscaled 

from the original data, we obtained 125 × 125 pixels with a final spatial resolution around 

0.3 × 0.3 mm (field of view of 40 × 40 mm). Following that, the filtered TVS was 

processed by sliding a ROI [28] in accordance with the description reported in the previous 

Chapter using the spatio-temporal independent component analysis (Figure 4.3d).   

STICA algorithm for electro-mechanical MU characterization 

All the details of the combined analysis of the two decompositions of HDsEMG and 

UUS (Figure 4.3e, STICA algorithm) are reported in the previous Chapter. The algorithm 

returns, for each MU decomposed from HDsEMG, the corresponding identified MU 

twitching area (MU spatial representation in UUS images) and the twitch velocity profile 

(Figure 4.3f). These information together constitute the electro-mechanical MU 

characterization. 

4.2.4 Association between electrical and mechanical activity 

We compared the centroids of the MUAP amplitude distributions calculated from the 

single differential HDsEMG signals [29] with the centroids of the corresponding MU 

spatial representations in the UUS images  provided by the algorithm (i.e. what we refered 

also as MU twitching area). 

A multiple regression analysis (𝑌𝑓𝑖𝑡  =  𝛽1  +  𝛽2𝑥1 + 𝛽3𝑥2  +  𝛽4𝑥1𝑥2) on the 

experimental data was implemented to assess the relationship between the medio-lateral 

coordinates of the US centroids (dependent variable 𝑌) with the mediolateral position of the 

EMG centroids and the depth of the identified centroids in the US image (independent 

variables 𝑥1 and 𝑥2, respectively). We also added an interaction term to check whether 

there was a significant effect of the depth of identification on the mediolateral EMG-US 

relation [30]. We assumed no collinearity between the independent variables since they 

were derived from different measurement modalities. Statistical significance was assessed 
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based on 95% confidence intervals of the model coefficients. All the statistical tests were 

performed in MATLAB (R2020b, The MathWorks Inc., MA, USA). 

4.3 Experimental results 

4.3.1 General comments 

None of the volunteers experienced any discomfort or fatigue while completing the 

protocol. After eliminating MUs with fewer than 20 firings in the US acquisition time 

interval, those with a coefficient of variation of the inter-spike interval greater than 30%, 

and MUs whose action potentials were of dubious nature, a total of 180 MUs were analyzed 

(mean SD, 18 ± 8 MUs per participant, average firing rate: 11.3 ± 2.1 pps).   

4.3.2 Association between electrical and mechanical activity 

Examples of three MUs that were decomposed from a 2% MVC contraction in an 

examined participant are shown in Figure 4.4. The three MUs were depicted in the surface 

 
Figure 4.4 In vivo identified MU. Example of three MUs from biceps brachii during a 2% isometric 

contraction in one representative subject. From top to bottom: MUAPs decomposed from HDsEMG with the 

correspondent centroids (red crosses); identified MU spatial representation overlapped on the B-mode images of 

BB with correspondent centroids (blue crosses); means (black solid line) and the standard deviation (grey band) 

of the spike-triggered averaged velocity profiles related to the correspondent identified areas. 
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EMGs in three different ways: MUs #1, #2, and #3 were linked to action potentials that 

were distributed laterally, centrally, and medially, respectively, in the electrode array 

(Figure 4.4, top panel). In the longitudinal direction, the centroids of the detected MUAPs 

were grouped around row 4 (80% of all MUs between row 3 and 5), where the US probe 

was positioned. However, in the transverse muscle direction, they dispersed evenly across 

the columns. The analysis of US images with identified MU area overlay (i.e., heatmaps in 

Figure 4.4, middle panels) showed a distinct spatial relationship in the mediolateral 

direction between the EMG and US identification of the three MUs. The spike-triggered 

averaged velocity profiles related to the corresponding identified areas are depicted in the 

bottom panels of Figure 4.4.   

Multiple regression analysis showed a significant correlation between the mediolateral 

location of centroids in EMG and US (Figure 4.5a, R2 = 0.20 and p < 0.05). The linear 

coefficient (𝛽2) that connects the medio-lateral coordinates of EMG centroids to US 

centroids had a confidence interval that varied from 0.39 to 0.82 (p < 0.05). The range of 

the confidence interval for the US area's coefficient of depth related to its mediolateral 

position (𝛽3) was -0.16 - 0.176 (p = 0.94). The coefficient of depth between the EMG 

centroids (𝛽4) had a confidence interval of 0.01 - 0.03 mm-1 (p < 0.05). The relationship 

between US and EMG identification in the mediolateral direction was more linear for the 

more superficial MU identifications, as seen in Figure 4.5b. The variance explained by the 

model was 53% for depths less than 14 mm (N = 60, p < 0.05), 5% for depths between 14 

and 23 mm (N = 59, p = 0.09), and 1% for depths > 23 mm (N = 61, p = 0.6).  

4.4 Discussion of the experimental analysis 

In this study, we developed an algorithm to identify the spatial and physical 

characteristics of individual motor units in vivo. This approach was used to investigate the 

relationship between the spatial representation of individual MUs in surface EMGs and US 

images. We were able to detect the electrical and mechanical responses of 180 MUs during 

isometric, constant-force contractions by combining HDsEMG decomposition with 

spatiotemporal decomposition of the ultrasound tissue velocity sequences. According to our 

findings, both US and EMG include spatially localized regions that show single MU 

activation.  

4.4.1 HDsEMG decomposition as gold standard 

The approach used in this study relies on the identification of the precise moment each 

individual MU fires, which is then used to extract electrical (in EMG signals) and physical 

(in US images) representations of each MU's activation. It is worth noting that this 

approach performs an actual integration between HDsEMG and US signal processing. 

Indeed, an alternative option could consist in applying separately HDsEMG [24] and UUS 
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decomposition [25] and to retrospectively correlate pairs of single MUs independently 

identified by the two approaches. In this regard, the agreement between MU firing instants 

obtained by two decomposition methods (e.g., needle and HDsEMG) has previously been 

used [21], [22]. However, in our case, the relatively high number of mismatches in MU 

identification between the two methods [28], [31] seem to limit the applicability of this 

approach (i.e. agreement between firing instants). It was therefore decided to first identify 

 
Figure 4.5 Group results of experimental data. (a) 3D scatterplot of the relationship between the medio- 

lateral coordinates of centroids in EMG and US identified area, considering the effect of the depth in US. The 

surface represents the best fit of the multiple regression model. (b) Scatterplots of the MU divided by the US 

identification depth. From left to right: depth < 14 mm (N = 60), depth > 14 mm and < 23 mm (N = 59), depth > 

23 mm (N = 61). 
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MU firing instants of single MUs through HDsEMG decomposition [23], [32] and then to 

process the UUS data using MU firings as input information. We decided to identify MU 

firings with HDsEMG decomposition (instead of US images decomposition [8], [31]) for 

two reasons. First, although both techniques have been validated, HDsEMG decomposition 

has been more extensively validated and used in several experimental conditions [10], [21], 

[32]–[34], [34]. Second, compared to the decomposition of tissue velocity sequences, the 

decomposition of HDsEMG has a stronger overall discriminative capability. Indeed, despite 

having similar high temporal and spatial resolutions, monopolar HDsEMG and ultrafast US 

imaging detect physiological events with very different time scales. Single action potentials 

in surface EMGs last less than 30 ms (Figure 4.4), whereas tissue displacements produced 

by a single MU firing last around 10 times longer [26]. Therefore, surface EMGs are more 

likely to resolve the superposition of various MUs than ultrasound images because action 

potentials have shorter durations than tissue displacement. Collectively, these 

considerations led us to choose in favour of HDsEMG decomposition to provide the initial 

set of MUs that were used as input to the proposed algorithm.  

4.4.2 Comparison with simulation results and limitations 

The results of our experiment match with those of the simulated data. In particular, 

there was a substantial correlation between the mediolateral coordinate of the identified US 

region and that of the associated MUAP distribution (Figure 4.5a). As expected, the depth 

of the MU's area in the US images (depth coordinate of ‘x’ in Figure 4.4) had an impact on 

the strength of this link. In this study we attempted to identify as many MUs as we could by 

decomposing monopolar EMGs, indiscriminately including superficial and deep units [35]. 

However, we were able to demonstrate the expected correlation between EMG and US MU 

representation more clearly by grouping units according to their depth representation in the 

US images. In fact, the coefficient of determination for MUs with tissue displacements 

centered deeper than 14 mm was at least twenty times lower than that for MUs with 

superficial tissue displacements (Figure 4.5b).  This is most likely due to the diffusion of 

the potentials caused by the interposed tissues, which leads to a more uniform distribution 

of the amplitude of the potentials over the surface EMGs of the deep MUs [29]. Therefore, 

mediolateral distributions of surface EMGs generated by deep MUs are similar for different 

MU transverse locations, limiting the discriminative power of EMG centroids. The 

observed difference between the positions of EMG- and US-based centroids of deep MUs 

may also be due to surface EMG, which may be biased towards contributions from the 

upper portion of deep MU territory due to a higher sensitivity to superficial sources [35]. 

Several reasons can explain the higher sensitivity of surface EMG to superficial sources. 

Firstly, the electrical signals generated by superficial muscle fibers have less tissue to travel 

through before reaching the surface electrodes, making them more readily detectable. 

Additionally, the volume of muscle tissue being sampled by surface EMG decreases with 

increasing depth, which may further reduce the representation of deep MUs [36], [37]. 
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These factors limits the accurate assessment of deep muscle activity. The significant 

interaction between the depth coordinate of US image-derived centroids and the medio-

lateral coordinate of EMG centroids (Figure 4.5a) provides support for these possible 

factors.  

Despite the good spatial correlation for the superficial MUs, experimental results were 

not as clear as in simulated conditions. The causes of this might be related to how other 

factors, in addition to MU depth, affect how MU activation is represented in EMG and US. 

Inter-individual anatomical variation is the first important source to be mentioned. 

According to the size and shape of the surrounding tissue, and as schematically illustrated 

in Figure 4.6, for spatially localized MUs centered at equal depths, the distance between 

electrodes and the center of the MU territory varies [8]. This also affects the transverse 

representation of action potentials [38]. Variation is demonstrated in Figure 4.6 in terms of 

different sizes of the muscle cross-sectional area. However, it should be highlighted that 

any other anatomical source changing the distance between electrodes and MUs would 

similarly affect the unit representation in the surface EMG [8], [29], [30]. Any anatomical 

factor that modifies this distance can influence the recorded EMG signals and subsequently 

affect the representation of MUs. For example, the presence of subcutaneous tissue, such as 

connective tissue or fat layers between the electrodes and the muscle fibers, can influence 

the detection of EMG signals. Subcutaneous tissue can act as a low-pass filter, attenuating 

higher frequency components of the EMG signal and affecting the representation of MU 

activity. This problem impacts MUs of various levels, although it probably manifests itself 

more strongly in deeper units. Furthermore, the fixed inter-electrode distance of 10 mm 

used to compute bipolar EMGs may convey a different proportion of fibers of single MUs 

for various individuals: more superficial units were likely less locally represented in our 

bipolar EMGs for subjects with a thicker subcutaneous adipose tissue.  

 
Figure 4.6 Effect of the muscle physiological cross-sectional area (PCSA) on the transversal 

MUAP amplitude distribution.. Red circles represent the territories of two MUs located at the same depth 

(d) in two muscles with different PCSA. Right muscle (small PCSA): the distance between active fibers and the 

skin surface is similar for all the skin locations, leading to a uniform MUAP amplitude distribution across the 

detecting electrodes. Left muscle (large PCSA): the distance between active fibers and the skin surface changes 

for different skin locations, leading to a more localized amplitude distribution. 



Chapter 4  Topic 2 

PhD Thesis Carbonaro Marco 70 

Finally, an additional factor that should be considered is our limited knowledge of how 

well single MU contractions may be detected in UUS images as a second source of 

variation. The non-linear summation of mechanical responses plays a crucial role in this 

regard. The tissue velocities estimated from UUS sequence differed from the simulated 

ones in which a linear instantaneous superimposition model was adopted. This discrepancy 

might be related to complex interactions between the motions of the muscle units and their 

summation. For example, the contraction and relaxation of a group of fibers is known to 

exert force on the adjacent fibers and connective tissue, creating  propagating waves within 

the muscle tissue [39]. Considering the great number of MUs involved even at low force 

level, the superimposition of all these complex dynamics might not be considered linear 

from the velocities perspective. All these factors are acknowledged in the literature and 

were used to explain the observed mismatches between electrical activity and mechanical 

responses identified separately [28], [31]. In our case this could have generated some 

wrong associations between MUAP and of MU tissue displacements affecting the degree of 

correlation between centroids. In this section we discussed several aspects that could affect 

the identification of single MUs from UUS images (considering also our EMG-driven 

approach), however our preliminary results suggested that, at least for superficial MUs, it is 

possible to obtain reliable identifications.  

4.4.3 Generalization of this experimental result 

The generalization of these findings to muscles and conditions other than those 

investigated here require careful considerations. Given that we assessed the component of 

the tissue velocity in the superficial-depth direction, the first aspect to consider is that the 

proposed approach requires the use of cross-sectional UUS images, i.e. detected on a plane 

perpendicular to the muscle fibers’s direction in the muscle CSA. The tissue velocities 

extracted from cross-sectional images should theoretically capture the thickening of MU 

fiber and they are expected to be influenced by the location of the contracting fibers within 

the muscle CSA. It is necessary to conduct additional research to determine whether this 

interpretation is accurate for UUS images detected from a scanning plane not perpendicular 

to the fiber direction.  

The fact that the identification of the mechanical response with our EMG-US approach 

can be generalized to MUs recruited at higher force levels is another intriguing and relevant 

issue. Both EMGs and tissue velocity sequences become more interferential at increasing 

contraction levels as a result of the progressive recruitment of more MUs and rise in firing 

rate, thus restricting the ability to distinguish between individual MUs. While this 

constraining problem is being addressed in surface EMG decomposition, further research is 

needed on the lower frequency tissue displacement velocities and the non-linear summation 

of mechanical responses (twitches) in US-based decomposition. We want to emphasize that 

technical constraints unrelated to the method we provided here limit the extent to which our 
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conclusions can be generalized. Results different to those reported here would be expected 

for other muscles and contraction levels.  

4.5 Experimental comparison between STA and STICA 

approach 

We have previously used an electromechanical computer model to test the capability 

of the two methods to correctly identify single MU twitching areas in simulated 

contractions with different degrees of neural excitation (i.e., the number of active MUs) and 

different levels of MU synchronisation (i.e., degree of dependency between firing instants 

of different MUs). The first method was based on the spike triggered averaging of the tissue 

velocities (STA), while the second one was based on the spatio-temporal decomposition of 

these (STICA). We showed that the performance of both approaches was negatively 

affected by the number of active MUs and synchronisation levels. However, STICA 

provided a more robust estimation of the MU displacement areas under all the tested 

conditions.  

Although a thorough experimental examination was performed for the STICA 

approach, we wanted to further test whether the in silico results of STA and STICA 

comparison extend to the experimental conditions of isometric elbow flexions. Since the 

location of the MU fibers within the muscle cross-section is unknown in experimental data, 

we quantified the agreement between the HDsEMG amplitude distribution of the MUAP 

and the location of the corresponding MU twitching area identified by applying STA and 

STICA algorithm to UUS image sequences.  

4.5.1 Methodological considerations 

The above reported experimental results (section 4.3) highlighted a substantial 

correlation between the transverse coordinate of the center of the identified MU twitching 

area and the medio-lateral center of the electrode region where the largest amplitude single 

MU action potentials were found. The strongest correlation was found for superficial MUs. 

For this reason, in the following comparison of STA and STICA we elaborated the data 

considering the US images up to 20 mm depth (instead of the whole 40 mm). 

The centroids of the MU twitching areas obtained from STA and STICA were 

computed (refer to the previous chapter for further details) and compared with the centroids 

of the amplitude distribution of the MUAP of the corresponding MU (i.e., the MU whose 

firings were used as input to STA and STICA algorithms). The comparison was performed 

by computing the centroid-to-centroid (EMG-ultrasound) distance in the medio-lateral 

direction. Moreover, the two algorithms were processed considering the entire 8 s of 

acquisition and only the first 2 s of acquisition to evaluate the effect of the signal duration 

on their performance. The effect of the factors “method” (STA and STICA) and “duration” 
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(2 s and 8 s) were tested with a 2-way ANOVA on the centroid-to-centroid distance. Post-

hoc assessments were conducted using the Bonferroni test whenever a main effect was 

verified. 

4.5.2 Results  

Figure 4.7 shows the identification of the MU twitching areas of four representative 

MUs using the combined analysis of HDsEMG data and UUS images. The figure shows, in 

the top panel, the spatial distribution of single differential MUAPs, in the middle panel, and 

in the bottom panel, the US MU twitching area identified with STA and STICA, 

respectively. The spatial agreement between the MU twitching area and the EMG 

amplitude distribution varies in these four examples of Figure 4.7 between the two 

algorithms. The horizontal distance (centroid-to-centroid distance) between the symbols 

‘+’ in EMG, ‘◊’ for STA, and ‘×’ for STICA demonstrated that MU#1 had a strong spatial 

correspondence for both STA and STICA. While only one of the algorithms provided a 

good match for MU#2 and MU#3 (STA and STICA respectively), MU#4 displacement area 

identification appeared to be unsuccessful for both STA and STICA.  

Figure 4.8 shows the centroid-to-centroid (EMG-ultrasound) distance in the medio-

lateral direction (horizontal distance between the ‘+’ in EMG with ‘◊’ for STA and with ‘×’ 

for STICA as shown in Figure 4.7) for all the 180 MUs for both approaches when 8 s and 2 

s of signal duration are considered. First, STICA approach generally provided shorter 

distances for all the tested durations, as demonstrated by statistically significant differences 

 
Figure 4.7 Comparison of MU identifications with STA and STICA. Four examples of MUs (column 

wise) decomposed from HDsEMG and the corresponding identified region of displacement (MU twitching area). 

First row: template of the motor unit action potential (MUAP) in single differential derivation along the rows of 

HDsEMG grid. Red + represents the centroid of the MUAP template distribution as calculated in [7]. The grey 

rectangle shows the region where the ultrasound probe was placed to scan the muscle cross-sectionally. Second 

row: images obtained with the spike triggered averaging (STA) approach representing the region of displacement 

of the corresponding MU. ◊ indicates the centroid of the tissue velocity image. Third row: final images of the 

approach based on the spatio-temporal independent component analysis (STICA) representing the region of 

displacement of the corresponding MU. × represents the centroid of the tissue velocity image. The figure shows 

from left to right: a well-detected MU (low centroid-to-centroid distance between EMG and ultrasound) for both 

approaches; a MU displacement area correctly identified only by STICA; a MU displacement area correctly 

identified only by the STA approach; a wrong MU displacement area identification for both STA and STICA. 
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with respect to STA (p < 0.001). Although not significant (p = 0.054), a trend associated 

with signal duration can be appreciated in both STA and STICA and to a larger extent for 

STA. The ranges of the distances obtained for STA (0 – 53 mm) and STICA (0 – 37 mm) 

confirmed the results seen in simulated conditions, with STICA providing shorter distances. 

However, as it might be predicted, these values are higher than those found in simulated 

settings, where both approaches consistently produced distances of less than 20 mm 

considering contractions of up to 20% MVC. As a result, even though we considered lower 

contraction levels (around 5% MVC), both approaches' performances significantly 

deteriorated under experimental conditions. This result can be explained by the fact that in 

the experimental analysis, our reference for the "true" medio-lateral location of the MU 

twitching area was the centroid of the MUAP distribution, which can be identified with a 

relatively low spatial resolution (inter-electrode distance). In addition, obvious differences 

between experimental and simulated conditions, e.g. the effect of connective tissue 

affecting the transversal force transmission between fascicles, may explain the differences. 

All these limiting factors affected the estimation error.  

The length of the EMG and ultrasound time series was expected to have an impact on 

both approaches in terms of the effect of signal length. However, our findings suggest that 

STICA might offer more accurate MU displacement area estimates for short-

duration recordings (light-colored boxes in Figure 4.8). Given the substantial amount of 

data involved in the elaboration of sequences of high-frame rate ultrasound images, this can 

 
Figure 4.8 STA and STICA distances between ultrasound and EMG centroid. Boxplots of 

distances between EMG and ultrasound centroid for all the considered MUs for both STA (red) and 

STICA (blue) when considering 8 seconds (dark color) and 2 seconds (light color) duration of the 

acquisition. *p<0.001 
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be a significant advantage. In addition, the ability to estimate displacement area accurately 

for brief signal epochs may make it possible to implement STICA-based algorithms that 

use the temporal segmentation of the detected signal to enhance estimation, such as by 

providing an index of the identified area's repeatability throughout contraction.  

In conclusion, although wrong estimations occurred for both methods, the two 

proposed approaches are suitable for anatomical in vivo identification of individual MU 

using the combination of HDsEMG and UUS analysis with STICA providing more precise 

estimation of the location of the MU twitching region.  
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Chapter 5 

Topic 3 

5.1 Spatial repeatability approach to enhance the 

identification of US components associated with MU 

activity  

In the previous Chapters, we evaluated the performance of the proposed algorithm for 

ultrafast US and HDsEMG data integration based on the spatio-temporal decomposition of 

tissue velocity sequence (STICA approach). In this Chapter, the joint analysis of HDsEMG 

and ultrafast US was used to assess the repeatability of the ultrasound decomposition 

processing. The decomposition algorithm based only on the UUS processing described in 

previous studies provides reliable identifications (anatomical location and twitch profile) of 

components associated with MU activity [1]–[4]. Our integrated algorithm (STICA 

algorithm) was based on the decomposition of tissue velocities estimated from UUS and 

used the firing instants obtained from HDsEMG decomposition to find groups of highly 

correlated ultrasound components with the electrical activity. In order to improve the 

quality of tissue velocities decomposition, in this study we proposed an innovative 

approach to enhance the identification of US components that are most likely associated 

with MU activity. A more reliable identification of these components may improve the 

outcomes of the integrated algorithm. For this reason, an assessment of the repeatability of 

the US-decomposed components (which may be associated with MU activity) is worth of 

investigation. 
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The tissue displacement velocities estimated from ultrafast US can be decomposed 

into multiple components, which comprise a spatial map (location of the component, 

related to MU territory) and a temporal signal (time course of its displacement velocity, 

related to MU spike train) [5]. A critical step of the EMG-US integration at the MU level is 

the association between MU activity and US components from high frame rate US 

sequences. To date, a procedure based on temporal signal characteristics was adopted to 

associate US components to MU activity decomposed from EMG (high density or needle) 

[1], [3]. For example, in our STICA approach we measured cross-correlation between the 

temporal components and a synthetic train of MU velocity twitches obtained from the MU 

firing instants (see Figure 3.4). The cross-correlation values obtained in our data were in 

general low. It is worth noting that also other metrics, e.g. the rate of agreement between 

the spike instants obtained from the US temporal components and those identified from 

needle EMG demonstrated a large proportion of US component’ temporal signals not 

matched with MU firings [1], [2]. The relatively low agreement between the two measures 

was attributed to two factors. Firstly, the composition of linear and non-linear elastic tissue 

constituents is heterogenous, resulting in a non-linear combination of MU twitches [6]. 

Secondly, the variability in the firing of MUs [7], which can affect the temporal twitch 

parameters and alter the sequence of twitches [2], [6], even though the MU pool should 

remain stable during contractions. 

In this Chapter, we propose a novel analysis based on spatial characteristics to identify 

US components associated with MU activity. This procedure is expected to enhance the 

decomposition of tissue velocity by providing new criteria to separate US components 

putatively associated with MUs from the noisy components (not associated with MU 

activity). The proposed approach is based on the assumption that, while the temporal firing 

characteristics of MU fibers may vary during constant force and isometric contractions, 

MU location within the muscle cross-section (spatial characteristic) should remain 

consistent. Therefore, components that have a stable and repeatable spatial map (i.e. spatial 

components) throughout the contraction are more likely to be linked to actual MU 

activations.  

The goal of our study was to identify spatially repeatable components within a US 

sequence and explore whether such repeatability can help distinguish MU from noise in 

stable, low-force isometric contractions. We achieved this by segmenting tissue velocity 

images from eight-second US recordings into consecutive two-second epochs. We assessed 

the repeatability of the components' spatial maps across the epochs (intra-sequence 

repeatability) and investigated if the repeatable components were associated with MU 

activity. To do this, we used a set of reference MUs independently identified by HDsEMG 

decomposition [8]. Hence, in this study we used HDsEMG as a ground truth for the 

verification that spatially repeatable components are associated with MU activity.  

If the proposed approach based of repeatability of spatial US components was proved 

effective, it could enhance integrated algorithms of HDsEMG and ultrafast US, as the one 
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proposed in this thesis, but it may also provide a foundation for developing a stand-alone 

method to identify MU in ultrafast US. 

5.2 Methods 

Figure 5.1 shows an overview of the data acquisition and processing performed for the 

assessment of US components’ repeatability as a tool to select putative MU activity. In the 

following paragraphs all the steps are explained. 

5.2.1 Experimental protocol 

The details of the experimental protocol (Figure 5.1A) are reported in the previous 

Chapter. Briefly, for each low-level isometric constant-force elbow flexions, eight-second-

long UUS recordings were recorded simultaneously with HDsEMG. Five subjects (31 ± 6 

years, three males, and two females) were analysed in this study.  

5.2.2 UUS and HDsEMG data processing 

The radio frequency UUS data consisted of 20,000 frames (2176x128 pixels, about 

53x40 mm, Figure 5.1B). After standard delay-and-sum beamforming, each eight-second 

dataset was segmented into seven sub-datasets of two seconds, with a one-second overlap 

between each ([0:2] s, [1:3] s, ..., [6:8] s) (Figure 5.1C). Each pixel in each sub-dataset 

underwent temporal filtering using a 1D median filter. The resulting image was cropped to 

20x40 mm (850x128 pixels) (Figure 5.1D), as we demonstrated in the previous Chapter 

that the association with HDsEMG MU is stronger for superficial components. We 

therefore considered the superficial 20 mm of the muscle. Displacement velocity images 

were calculated for each two-second epoch using 2D autocorrelation velocity tracking [9] 

with a sliding window of 10 ms and a depth of 1 mm (Figure 5.1E). The temporal evolution 

of each pixel in the velocity images was high-pass filtered at 3 Hz using a 3rd order 

Butterworth filter (zero-phase) to remove slow movements unrelated to muscle contraction. 

The velocity images were downsampled to 63x128 pixels, corresponding to approximately 

0.3x0.3 mm per pixel. The HDsEMG signals were bandpass filtered between 20-400 Hz 

and decomposed into individual MU spike trains (Figure 5.1K). The spike trains were 

edited [10] and resampled at the ultrasound frame rate. The amplitude distributions and 

centroids of MUAPs were calculated using the longitudinal single differential derivation 

and averaging with spike trains from HDsEMG decomposition [8]. As the mediolateral 

surface covered by the HDsEMG grid is larger than that of the ultrasound transducer 

(Figure 5.1A), any centroids with a mediolateral coordinate outside of the ultrasound field 

of view was truncated to the position of the first or last element of the probe (i.e., element 1 

or 128). 
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5.2.3 Spatiotemporal decomposition of displacement velocity image 

In this study, the displacement velocity images were analyzed using five partially 

overlapping Regions of Interest (ROIs) of 20x20 mm (5 mm increments) (Figure 5.1F) [1]. 

We employed spatiotemporal independent component analysis (stICA) with α = 1.0 [11] to 

generate 25 spatial components (spatial maps) and corresponding temporal components 

(temporal signals) per ROI (Figure 5.1G). Therefore, we obtained 125 spatio-temporal 

ultrasound components for each recording.  

Binary maps were generated from the spatial maps for the use in the following 

repeatability analysis (Figure 5.1H). To cluster the intensities of each spatial map, we 

employed the k-means algorithm with five clusters, using Euclidean distance. The cluster 

with the greatest intensity values was identified as the localized spatial region (territory) of 

interest. A binary map was then created based on this cluster. Any objects with fewer than 

25 connected pixels (~1.5x1.5 mm2) were eliminated to eliminate noisy pixels in other 

areas of the image. 

5.2.4 Repeatability analysis: selecting similar spatial maps across 

epochs (intra-sequence approach) 

A Jaccard Similarity Coefficient (JSC) criterion based on the binary maps was used to 

select the set of spatial maps that were maximally similar across different time epochs. 

Specifically, the 25 spatial maps of the first two-second epoch for each ROI were 

considered as reference maps (Figure 5.1I). Jaccard Similarity Coefficients were computed 

between each reference map and the 25 maps obtained from each of the remaining six 

epochs. For each epoch, the map with the highest JSC was retained. Six spatial maps (one 

each epoch) that were maximally similar (JSC-wise) to each reference map were chosen 

(see Figure 5.4, in which the selected maps for each time windows are highlighted with all 

the JSC values). Using the chosen maps, the mean spatial map and mean JSC, which 

represents the degree of repeatability of a component, were then computed. Each of the five 

ROIs had a total of 25 mean spatial maps identified, for a total of 125 mean spatial maps 

(considering all five ROIs). This repeatability analysis is hereafter referred to as intra-

sequence repeatability approach. 

5.2.5 Association of components with MUs from HDsEMG 

We investigated the relationship between the repeatable US spatial components 

selected in the previous paragraph and the characteristics of individual MUs identified 

through HDsEMG decomposition in order to confirm our hypothesis that spatially-

repeatable US components are in fact related to MU activity and should be retained. In 

order to achieve this, we considered the average twitch computed from the firing pattern of 

the MUs found with HDsEMG decomposition and the temporal signal of the selected 
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spatial maps. We assumed that if the twitch obtained by spike-triggered averaging of the 

temporal signal using the firing of the MU has high signal to noise ratio, the component and 

the MU are likely associated. Although less rigorous, this metric is more robust than the 

RoA (between EMG and US identified firings) to local, missing firings, which may occur, 

especially in US decomposition. 

 For this purpose, the temporal signals of each set of selected components were spike-

triggered averaged (Figure 5.1J) using the spike train of individual MUs identified from 

HDsEMG (Figure 5.1K). All the combinations of the selected ultrasound components and 

HDsEMG MUs were tested with this method, producing a large number of putative 

twitches (Figure 5.1J). Figure 5.2 shows a description of this step. Among these putative 

twitches, only those whose peak-to-peak amplitude was greater than a noise threshold were 

kept. The pair (ultrasound component - HDsEMG MU) resulting to the largest amplitude 

among this subset was referred to as the MU-matched component (Figure 5.2). The noise 

threshold was determined by producing 125 temporal components of colored noise (5-30 

Hz bandwidth of white noise), which were then spike-triggered averaged with 100 random 

spike trains (mean firing rates between 8-20 Hz and standard deviation of 15% of the mean 

inter-pulse interval [31]) to determine the threshold. The mean plus three standard 

deviations of the peak-to-peak amplitudes of all the combinations of the inputs were used to 

calculate the threshold value (Figure 5.3). 

 

 
Figure 5.2 Association of components with MUs from HDsEMG. Pipeline for the computation of 

spike triggered averaging of all the combination of MUs and components. For the for all the jth components, the 

averaged twitch is computed with respect to the ith MU, generating a putative twitch. All the twitches showing 

peak-to-peak amplitude higher than the noise threshold were kept. The component with the greatest twitch 

amplitude among all the over-threshold putative twitches of the ith MU was selected and referred as the MU-

matched component. This procedure was repeated for all the EMG decomposed MUs. If none of the putative 

twitches exceeded the threshold the ith MU was regarded as not identified. 
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5.2.6 Number of MU-matched components: intra- and full-sequence 

approaches comparison 

The method proposed in this Chapter requires the analysis of US sequences over short 

epochs (2-s) to perform a repeatability evaluation. It is therefore reasonable to ask if and to 

what extent the 2 s data segmentation (intra-sequence approach) impacts the results of the 

US decomposition in terms of number of components that can be matched with EMG MUs. 

We therefore compared the number of MU-matched components found using the intra-

sequence repeatability method with those that were decomposed by the stICA applied over 

the entire sequence recording (full-sequence approach) [1]. The matching with HDsEMG 

MUs was carried out using the same procedure in both techniques, as previously mentioned 

(i.e. amplitude of the spike triggered average twitch).  

5.2.7 Statistical analysis 

 In order to describe the components (identified with repeatability analysis and full-

sequence analysis) and the MUs decomposed from HDsEMG, descriptive statistics were 

performed. We determined the area (a), equivalent diameter (𝑑 =  √4𝑎/𝜋), and depth of 

the centroid of the component beneath the skin using the MU-matched component. We 

calculated for each MU-matched component the distance between the mediolateral 

centroids of the spatial map (based on the binary map) and MUAP spatial distribution 

 
Figure 5.3 Noise threshold computation. Histogram of all the amplitudes calculated from the spike 

triggered averaging of 125 simulated components (colored noise, 5-30 Hz bandwidth) for all the 100 random 

spike trains. From this distribution the mean (µ) and the standard deviation (𝜎) were calculated to compute the 

threshold value of 0.75. 



Chapter 5  Topic 3 

PhD Thesis Carbonaro Marco 86 

(based on the spike-triggered average on the HDsEMG signals using the MU spike trains), 

as metrics of accuracy of our identification as already explained in the previous chapters. 

Using a two-sided Wilcoxon signed rank test, we examined the pairwise difference 

between the number of MU-matched components between the full- sequence method and 

the intra-sequence repeatability. 

5.3 Results 

5.3.1 MU identification and repeatable components 

Out of 20 recordings, 99 MUs (4.9 ± 1.8 MUs per recording) were identified by 

decomposing HDsEMG signals.  

We observed various degrees of intra-sequence repeatability across the 125 ultrasound 

components per recording, as shown by the large variability of JSC values (Figure 5.4). 

Figure 5.5 depicts an example of the output of the repeatability analysis with two examples 

of repeatable components (high mean JSC) and one non-repeatable component (low mean 

JSC) from one ROI of a representative subject recording. 

5.3.2 Association of components with MUs from HDsEMG 

The scatterplot in Figure 5.6 illustrates the correlation between JSC values and the 

amplitudes of putative twitches across all individuals and trials. The HDsEMG MU and 

ultrasound component associated with each data point in Figure 5.6 correspond to the 

putative twitches with the maximum amplitude (within all the combinations). Among these 

data points, those below the noise thresholds (non-MU-matched components, grey dots in 

Figure 5.6) were not considered because they were not associated with MUs. In several 

cases, the same MU and more ultrasound components provided a putative twitch above 

threshold (duplicates, colored dots in Figure 5.6). In these instances, only the component 

that produced the largest putative twitch (MU-matched components, red circles in Figure 

5.6) was kept.  

In comparison to the non-MU-matched (grey dots) components, the MU-matched 

components had a higher JSC (Figure 5.6, 0.61 ± 0.12 vs 0.26 ± 0.26; p < 0.001). 

Moreover, as depicted by the examples in Figure 5.7, MU-matched components were 

spatially (medio-laterally) adjacent to the MUAP distribution (Table 5.1), as demonstrated 

by the mediolateral distance between the centroid of the MUAP distributions and the 

centroid of the spatial maps (5.35 ± 5.17 mm, N = 35 MU). The centroids of the mean 

spatial maps were distributed across the whole field of view with depths between 2.90 mm 

and 14.01 mm (Table 5.1). In addition, the MU-matched components had a diameter of 

4.03 ± 1.28 mm, similar to previously reported findings of MU territory size using 

scanning-EMG [12], [13]. 
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The MU-matched components had a mean JSC consistently higher than 0.38, 

indicating fair repeatability (see examples in Figure 5.4 and Figure 5.5). Each recording had 

6.5 ± 3.3 repeatable components (without duplicates in Table 5.2) when the empirical 

criterion of 0.38 was used to define the components as repeatable (US-RepMap in Table 

5.2).  

The spatial agreement between MUAP distributions and spatial maps of the MU-

matched components, as well as the associated velocity twitches derived using spike trigger 

 
Figure 5.5 Examples of spatial maps. Two repeatable components (#1 to #2) and one non-repeatable 

component (#3) of the same recording and region-of-interest (ROI) based on the Jaccard Similarity Coefficient 

(JSC). The first two-second epoch is the reference (defined as Ref). 

 
Figure 5.6 Relationship between Jaccard Similarity Coefficient (JSC) and putative twitches 

with the highest spike-triggered averaged twitch amplitude. Grey dots are the putative twitches below 

the noise threshold that were discarded. The red circles correspond to the 35 MU-matched components. All the 

MU-matched components have JSC over 0.38 (i.e., repeatable). Orange dots refer to multiple components 

associated with the same MU (e.g., twisting/split territory, duplicate components, etc., see Figure 5.8). 
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averaging over all the MU firings of all epochs, are illustrated by three representative cases 

in Figure 5.7.  

 
Figure 5.7 Three representative matches between repeatable components and the motor units 

(MUs). The upper panels show the MU action potentials and the centroid of the EMG distribution (red ‘+’). In 

this representation, only the four columns of the EMG grid superimposed on the ultrasound probe (blue rectangle) 

are shown. The middle panels show the mean spatial map of the repeatable component and the corresponding 

mean JSC. Finally, lower panels depict the spike-triggered averaged velocity twitch (black line) based on the 

triggered signals from all seven epochs (grey lines) and the corresponding peak-to-peak amplitude. The vertical 

dotted lines corresponded to the firing instants of the MUs identified from HDsEMG decomposition and used for 

the triggering. 

Table 5.1 Descriptive statistics about the motor unit-matched repeatable components. 

MU-matched repeatable components N = 35 

Jaccard Similarity Coefficient, JSC 
0.61 ± 0.13 

(0.38; 0.89) 

Amplitude (n.u) 
1.35 ± 0.49 

(0.76; 2.64) 

Centroid-to-centroid (EMG-UUS) (mm)  
5.35 ± 5.17 

(0.01; 15.83) 

Depth (mm) 
9.47 ± 2.40 

(2.90; 14.01) 

Diameter (mm) 
4.03 ± 1.28 

(1.45; 7.25) 

Area (mm2) 
14.06 ± 8.71 

(1.66; 41.30) 

Mean ± SD (min; max), MU = motor unit, EMG = electromyography, UUS = ultrafast ultrasound,  

n.u. = normalised units. 
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Number of matched components with MUs from HDsEMG: intra and 

full sequence approach 

A total of 35 MU-matched components were found by the intra-sequence analysis, 

35.4% of the MUs found through HDsEMG (Table 5.2). We detected 36 matches by 

decomposing the entire eight-second UUS (full-sequence), 36.4% of the MUs determined 

by HDsEMG. Strikingly, we found no difference between intra- (2 s analysis) and full-

sequence (8 s analysis) approaches in the total number of matched MUs across all 

recordings (p = 0.9844).  

5.4 Discussion 

This study investigated whether muscle tissue displacements related to single MU 

activation could be identified during steady low-force isometric contractions exploiting the 

spatial repeatability of components decomposed from UUS sequences. First, displacement 

velocity sequences estimated from eight second UUS recordings of consecutive two-second 

epochs were decomposed into spatial and temporal components using stICA. Then, we 

measured the spatial map repeatability of the components across epochs and looked for a 

correlation between the level of repeatability and the degree of agreement with reference to 

MUs identified through HDsEMG decomposition. We found three main results: (1) the 

components with JSC > 0.38 represented roughly 14% of the 125 initial components from 

each recording, (2) all the MU-matched components had a JSC larger than 0.38, and (3) the 

number of MU-component matches did not differ between the intra- and full-sequence 

approaches.  

Approximately 14% of the spatiotemporal components found using stICA on UUS 

sequences matched with MUs that were independently decomposed from HDsEMG. The 

high JSC of the spatial maps was a common characteristic to all the MU-matched 

components. According to this data, spatial repeatability over a brief epoch is a crucial 

feature that can be used to identify potential MUs and apply data reduction to the initial 

ultrasound component set. This finding supports the initial idea that repeatable spatial maps 

are more likely to be associated to actual MUs since the placement of the MU fibers is an 

invariant property of the MU during stable isometric contractions. Whether this hypothesis 

applies to conditions other than isometric or constant force contractions likely depends on 

how MU territory is represented in the ultrasound scanning plane and how this 

representation changes during a contraction. For instance, changes in muscle shape caused 

by dynamic contractions may result in a shift or a change in the shape of the region inside 

the ultrasound scanning plane where the activation of MU fibers generates movement 

within the muscle cross-section. The assumption that underlies our hypothesis (i.e. MU 

territory spatial invariance) would be weakened by this. Similar variations in MU area 

representation may occur during isometric contractions, although to a smaller amount, for 
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example, during force-varying contractions, fatiguing contractions, or any circumstance 

causing a progressive MU recruitment or de-recruitment.  

One third of the MUs identified through HDsEMG decomposition matched a 

repeatable ultrasound component. This proportion is similar to the number of accurate 

identifications (i.e. matches) found in earlier studies [1], [14]. This low percentages of 

matches with respect to the EMG reference has previously been linked to several aspects. 

First, the differences in the detection volumes and features of the two detection systems 

(EMG and ultrasound) [14] is a relevant aspect in this regard. The EMG spatial sensitivity 

is considered as a superficial, hemispherical volume while the US is sensitive to 

movements in a section of the tissue. While the action potential of excited fibers may cross 

the detection volume of EMG, it is possible that these fibers outside the scanning plane may 

not produce a detectable movement in the US image. On the other hand, a MU motion 

taking in place in the deeper muscle region can be captured by US but may not be visible in 

EMG signals. Second, it is important to remember again that the measured system (muscle 

tissue) is anticipated to be non-linear due to the heterogeneous mix of linear and non-linear 

elastic constituents [6]. The stICA algorithm relies on the main assumption of independent 

source signals mixed following a linear model. Thus, the identified components, although 

repeatable, cannot be properly matched with EMG-detected MUs. In our scenario, these 

non-linearities may have affected the number of matches because, already at 5–10% MVC, 

many MUs are active [15] and consequently the triggered twitch amplitude (our matching 

criteria) might be suppressed or degraded.  

It is worth noting that, in this study, we found more repeatable ultrasound components 

for each recording (6.5 ± 3.3) than HDsEMG MUs (4.9 ± 1.8). Although HDsEMG has a 

lower spatial resolution and a smaller field of view than ultrasound, it is still unknown if 

these unmatched repeatable components are MUs. Moreover, the number of successful 

identifications may be skewed in the current investigation by one participant for whom our 

matching criteria produced no matched MUs. In both the intra-sequence repeatability 

technique and the original full-sequence decomposition, the exclusion of this subject would 

have improved the percentage of MU-matches from 35.4% to 42.7% and from 36.4% to 

43.9%, respectively (Table 5.2).  
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Table 5.2 Descriptive statistics about the recordings, decomposed EMG MUs and ultrasound 

components.  

Trials Subject MU  

US-

EMG 

match 

% of 

US-

EMG 

match 

8s 

US-

EMG 

match  

8s % 

of US-

EMG 

match 

US-

RepMap  

% of 

US-

RepMap 

No-

duplic. 

1 S1 10 3 30.0% 5 50.0% 21 16.8% 9 

2 S1 3 2 66.7% 2 66.7% 15 12.0% 6 

3 S1 6 0 0.0% 1 16.7% 13 10.4% 4 

4 S1 3 2 66.7% 2 66.7% 18 14.4% 4 

5 S2 5 4 80.0% 4 80.0% 21 16.8% 7 

6 S2 7 0 0.0% 1 14.3% 22 17.6% 7 

7 S2 4 1 25.0% 2 50.0% 19 15.2% 9 

8 S2 4 1 25.0% 1 25.0% 19 15.2% 8 

9 S2 4 2 50.0% 2 50.0% 15 12.0% 7 

10 S3 5 2 40.0% 4 80.0% 8 6.4% 2 

11 S3 3 3 100.0% 1 33.3% 20 16.0% 6 

12 S4 8 6 75.0% 4 50.0% 28 22.4% 9 

13 S4 5 3 60.0% 3 60.0% 26 20.8% 14 

14 S4 6 2 33.3% 2 33.3% 24 19.2% 11 

15 S4 4 1 25.0% 0 0.0% 13 10.4% 4 

16 S4 5 3 60.0% 2 40.0% 23 18.4% 10 

17 S5 4 0 0.0% 0 0.0% 22 17.6% 7 

18 S5 5 0 0.0% 0 0.0% 8 6.4% 2 

19 S5 5 0 0.0% 0 0.0% 11 8.8% 3 

20 S5 3 0 0.0% 0 0.0% 5 4.0% 1 

  Total 99 35 35.4% 36 36.4% 351   130 

  Average 4.95 1.75 36.8% 1.8 35.8% 17.55 14.0% 6.5 

  SD 1.8 1.6 31.6% 1.5 27.7% 6.3 5.1% 3.3 

 

Without 
S5 82  42.7%  43.9%    

‘US-EMG match’ = number of MU that could be matched with an ultrasound component (high amplitude twitch). 

‘% US-EMG match’ = percentage with respect to the number of EMG MUs. 

‘8s’ when referring to the full-sequence approach, otherwise we referred to intra-sequence approach. 

‘US-RepMap’ = components with JSC over the empirical threshold of 0.38 (i.e. repeatable). 

‘% of US-RepMap’ = percentage of US-RepMap with respect to the total 125 decomposed ultrasound components. 

No-duplic. = Duplicates and splitting components in the US-RepMap were counted as one component. 

‘Without S5’ = without considering the subject 5 in which no MU could be matched. 
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We found a great number of ultrasound repeatable components (17.6 ± 6.3, Table 5.2). 

Although this number was already much smaller than the initial set of ultrasound 

component (14%), there were probably a considerable number of multiple components. In 

this regard, the use of the stICA over partially overlapping region of interest of the 

displacement velocity images created a relevant number of duplicate components. In the 

two examples shown in Figure 5.8a, three distinct components, that were decomposed into 

three successive ROIs each showing a twitch amplitude that was greater than the noise 

threshold, were attributed to the same MU. The component that produced the greatest 

twitch amplitude in this instance was considered to be the MU-matched component. 

Another important aspect to be considered in the generation of multiple components is that 

the stICA method we employed for decomposition assumes spatial independence [5].  If the 

MU activation causes complex motions such that regions that are spatially distant from 

each other observed to move synchronously or in unison, MU areas might split in more 

components. For instance, these split components may be caused by the interaction of 

active and passive tissue [16], [17] or tissue rotation caused by what is referred to as MU 

twisting [18]. Two instances of MU twisting of two observed MUs are shown in Figure 

5.8b in this regard. In two regions of activation (blue and green spots in Figure 5.8b) close 

to each other, two components (matched with the same MU) are spatially separated and 

exhibit inverted twitch shapes (blue and green twitches in Figure 5.8b). The shape of the 

twitch is related to the direction of the movement. The blue twitches in Figure 5.8b are 

positive thus away from the probe (i.e. down with respect to the skin), whereas the green 

ones are negative thus towards the probe (i.e. up). The above-threshold components in 

 
 

Figure 5.8 Examples of multiple components associated with the same MU. A. Two examples of 

three different components (belonging to different ROIs) with the same spatial map (active region) that were 

matched with MUs. In this case, the three components were regarded as unique repeatable components. B. Two 

examples of possible twisting MUs. The MUs were matched with two components showing active regions close 

to each other and the average twitches going in opposite directions (green is first positive/up and then 

negative/down; blue is first negative/down and then positive/up). 
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Figure 5.6 (little orange spots) are composed of all these cases of multiple components 

(duplicates, split, and twisting) that have now been separated. The real number of unique 

repeatable components (considering only one instead of multiple components) was 

represented by the count of 6.5 ± 3.3 components per trial (Table 5.2). Future research may 

integrate components from the same MU taking into account the spatial overlay or a 

correlation technique based on the temporal signals.  

In our previous analysis, we demonstrated that our approach might offer an accurate 

MU displacement area (MU twitching area) estimates also considering short-duration 

recordings. In fact, the error in the identification of MU (measured with the centroid-to-

centroid distance between MUAP and identified MU twitching area, see Figure 4.8), 

showed no statistical significant difference for the STICA-based identifications between 

eight or two seconds recordings. This result confirmed the findings of other studies 

showing the possibility to identify US components reliably associated to MU using short 

recording (two seconds) [1]. Thus, this ability to estimate displacement area accurately 

using brief signal epochs may be exploited to implement new STICA-based algorithms, 

that take advantage of the temporal segmentation to enhance the estimation using a spatial 

criterion of repeatability of components throughout the contraction. This feature of 

repeatability of spatial component may be exploited to identify MU activity, that should 

have stable and repeatable twitching area, excluding those noisy components which, on the 

other hand, do not show this repeatability. 

The ability to identify MUs from a brief sequence with stICA has several advantages 

compared to the spike-triggered averaging approach. The blind source separation approach 

has benefits, such as lower memory and storage requirements and the potential to be used 

for applications like real-time imaging [4] and dynamic contractions. Future studies must 

take into account the lower constraint for the recording duration for these applications in 

order to detect MUs and enhance the classification of components into MUs or non-MUs 

training a classifier utilizing robust features. For instance, a feature for the classification of 

a component as a MU may be the Gaussian-like 2D distribution of velocities revealed in 

our work for the most repeated components and comparable to what has been discovered in 

earlier studies [3], [18]. Thus, having a classifier for MU/non-MU-associated components 

[19] enables the UUS approach to be stand-alone from HDsEMG. 

 In summary, this study investigated the relationship between individual MU activity 

and intra-sequence repeatable components. We observed that 1) a criterion based on spatial 

repeatability can be employed as a data reduction technique to identify putative MU 

activity during steady isometric contractions, and 2) the UUS decomposition method can 

detect potential MU activity in recordings lasting two seconds. These results lay the 

groundwork for the design of independent techniques for the detection of MU in ultrafast 

ultrasound, as well as a first step toward real-time imaging of active MU territories.  
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Chapter 6 

Conclusions 

In this PhD project, an innovative multimodal approach to investigate the properties of 

the neuromuscular system was proposed. The research focused on studying the 

characteristics of single motor units (MUs) by combining electromyography (EMG) and 

ultrasonography (US) techniques. EMG and US are complementary approaches that 

provide electrical and mechanical information about muscle excitation and contraction. 

Advancements in detection systems have improved these techniques, allowing for 

innovative processing methods. The methods developed during the PhD project integrated 

high-density surface electromyography and ultrafast ultrasound to provide a comprehensive 

description of individual MUs, from neural excitation to tissue displacement. Results of the 

simulated and experimental tests proved the proposed approach suitable to characterize the 

electromechanical properties of skeletal muscles at a global and at a MU level.  

In the following sections, the main achievements of the project are summarized and 

the future research lines, including applications of the proposed methods, are discussed.  

6.1 Main findings 

• Two algorithms for the physical and electrophysiological identification of MU 

characteristics have been developed and tested. Both algorithms were based on the 

processing of high-density electromyographic signals [1] and ultrafast ultrasound 

images of the muscle concurrently detected from the same muscle region.  

• The algorithms provided as output: (i) the motor unit neural input, i.e. the MU spike 

train, from a previously described algorithm [1], (ii) the electrical representation in 
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terms of motor unit action potential; (iii) the anatomical position and dimension of the 

motor unit twitching territory, (iv) the displacement velocity of the muscle tissue 

activated by the excited motor unit fibers, i.e. the mechanical twitch (Figure 6.1).  

• A simulated environment to control the parameters of the muscle contraction was 

developed providing high-density electromyographic signals and tissue velocity 

sequences of the muscle cross-section. This framework was used to test the two 

algorithms and to define the best parameters for the detection of the anatomical 

characteristics of single MUs. The comparison between the algorithms was focused on 

the quantification of the effects of the degree of neural excitation and the level of MU 

synchronization on the identification of MU twitching areas.  

• The simulation results offered quantitative evidence that both algorithms were suitable 

for the anatomical and mechanical characterization of single MUs. The approach based 

on the decomposition of the tissue velocity sequences (STICA) outperformed the 

algorithm based on spike triggered averaging (STA), resulting in the better 

identification of MU territories with respect to the simulated ones. 

• A strong correlation between the areas of the skin where MU action potentials were 

 
Figure 6.1 Output of the EMG-US method. Three-dimensional representation of the motor unit. The 

integrated method developed in this thesis allowed the complete neuromechanical characterization of the MU by 

providing central, electrical, anatomical, and mechanical information. 
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detected (in the EMG domain) and the corresponding muscle regions where MU 

mechanical responses were depicted (in the US domain) was obtained in the simulated 

cylindrical muscle. This US-EMG association was used in the experimental analysis as 

metric for successful identification of MU. 

• The algorithms were applied to experimental data. A protocol for simultaneous   high-

density electromyography and ultrafast ultrasonography measurements of biceps brachii 

isometric constant-force contraction was designed.  

• The strength of the spatial association between the anatomical and electrical MU 

representation was dependent on the depth of the MU fibers, suggesting a relevant 

effect of the EMG and US spatial sensitivity in the experimental results. 

• The two proposed approaches demonstrated to be suitable for anatomical in vivo 

identification of MUs, however the experimental results confirmed the simulations 

results, suggesting STICA as the best performing algorithm in terms of detecting 

reliability. 

• In the final study, the core of the STICA algorithm, which is the decomposition of 

ultrasound components from the tissue velocity sequence, was investigated. The spatial 

repeatability of ultrasound components was proposed to enhance the identification of 

MU activity and to improve the outcomes of the integrated US-EMG algorithm (i.e. 

STICA). 

• The repeatability analysis strongly reduced the number of ultrasound components to be 

considered, in fact the components showing high consistency in the spatial 

representation along the acquisition had higher probability to be associated with MU 

activity. 

6.2 Relevance and future works  

This PhD project describes a new approach for identifying and evaluating the 

mechanical and electrical properties of MUs. It is now possible to associate the 

decomposed MUAPs to a specific muscle or muscle region by identifying the MU territory 

within the muscle cross-section. This is important for understanding the relationship 

between neural and physical MU properties and can be used to improve musculoskeletal 

models since it may provide an experimental foundation for the definition of the model 

parameters. While MUs' electrical properties and behaviors have been the subject of 

extensive study over the years, in vivo research into their location and mechanical response 

to excitation are still in the early stages. If we want to address acknowledged gaps in our 

knowledge of how entire muscles convert brain commands activating contractile cells into 

contractions and how neural and mechanical variables interplay to generate force and 

movement, this is a critical step forward.  

The proposed approach can provide new tools to investigate both fundamental aspects 

of MU and muscle function (e.g., to inform the enhancement of finite element models of 
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muscle), and the changes caused by aging (e.g., MU loss and muscle weakness), as well as 

neuromuscular diseases (e.g., Motor Neuron Diseases). These applications can benefit from 

this multi-modal approach and on its possible future evolutions. In fact, although the focus 

of this investigation was the identification of the MU fibers location, the technique offers 

the opportunity to develop methods for quantifying the area or spatial contours together 

with estimating the mean tissue velocity temporal profile (twitch) and its relationship with 

MU territory. Moreover, the observed mismatch between electrical and mechanical events 

within the same muscle volume suggests a relevant difference in the spatial sensitivity of 

the two techniques (EMG and US), that could be exploited to improve decomposition 

methods based on integrated EMG and US detections. 

Future research is necessary to better describe the effect of different factors that may 

limit the applicability of the proposed approach to conditions other than those tested in this 

project. For instance, it is unknown how much variables like physical changes in muscle 

length and tissue characteristics (such as fibrosis, and adipose tissue infiltration), affect the 

physical muscle tissue MU representation. In this study, tissue velocity sequences were 

used to indirectly estimate the MU physical properties. It is important to note that in the 

studies presented here tissue velocities were estimated along one direction (i.e. superficial-

depth). The contraction and relaxation of a group of fibers is known to exert force on the 

adjacent fibers and connective tissue creating complex dynamics in both directions. The 

investigation in the medio-lateral direction would help to enlighten the interactions between 

active and non-active tissue. Furthermore, this 2D tissue velocities could increase the 

sensitivity of decomposition algorithms for the identification of MUs which, as mentioned 

in this thesis, are affected by the non-linearities of the system. The multi-modal approaches, 

like the ones described in this thesis, can significantly contribute to answer such questions 

and represent a chance for new research in this field to be accomplished. 
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