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A B S T R A C T   

Introduction: Automatic linguistic analysis can provide cost-effective, valuable clues to the diag
nosis of cognitive difficulties and to therapeutic practice, and hence impact positively on well
being. In this work, we analyzed transcribed conversations between elderly individuals living 
with dementia and healthcare professionals. The material came from the Anchise 2022 Corpus, a 
large collection of transcripts of conversations in Italian recorded in naturalistic conditions. The 
aim of the work was to test the effectiveness of a number of automatic analyzes in finding cor
relations with the progression of dementia in individuals with cognitive decline as measured by 
the Mini-Mental State Examination (MMSE) score, which is the only psychometric-clinical in
formation available on the participants in the conversations. Healthy controls (HC) were not 
considered in this study, nor does the corpus itself include HCs. The main innovation and strength 
of the work consists in the high ecological validity of the language analyzed (most of the literature 
to date concerns controlled language experiments); in the use of Italian (there is little corpora for 
Italian); in the size of the analyzed data (more than 200 conversations were considered); in the 
adoption of a wide range of NLP methods, that span from traditional morphosyntactic investi
gation to deep linguistic models for conducting analyzes such as through perplexity, sentiment 
(polarity) and emotions. 
Methods: Analyzing real-world interactions not designed with computational analysis in mind, 
such as is the case of the Anchise Corpus, is particularly challenging. To achieve the research 
goals, a wide variety of tools were employed. These included traditional morphosyntactic analysis 
based on digital linguistic biomarkers (DLBs), transformer-based language models, sentiment and 
emotion analysis, and perplexity metrics. Analyzes were conducted both on the continuous range 
of MMSE values and on the severe/moderate/mild categorization suggested by AIFA (Italian 
Medicines Agency) guidelines, based on MMSE threshold values. 
Results and discussion: Correlations between MMSE and individual DLBs were weak, up to 0.19 for 
positive, and -0.21 for negative correlation values. Nevertheless, some correlations were statis
tically significant and consistent with the literature, suggesting that people with a greater degree 
of impairment tend to show a reduced vocabulary, to have anomia, to adopt a more informal 
linguist register, and to display a simplified use of verbs, with a decrease in the use of participles, 
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gerunds, subjunctive moods, modal verbs, as well as a flattening in the use of the tenses towards 
the present to the detriment of the past. The -0.26 inverse correlation between perplexity and 
MMSE suggests that perplexity captures slightly more specific linguistic information, which can 
complement the MMSE scores. In the categorization tasks, the classifier based on DLBs achieved 
an F1 score of 0.79 for binary classification between SEVERE and MILD, and 0.61 for multi-label 
categorization. Sentiment and emotion analyzes showed inverse trends for joy while MMSE scores 
suggested that less impaired individuals were less joyful, or more “negative”, than others. 
Considering the real-world context, this is consistent with the hypothesis of a gradual reduction in 
awareness in individuals affected by dementia. Finally, integrating various profiles of analysis has 
been proved to be effective in offering a wider picture of linguistic and communication deficits, as 
well as more precise data regarding the progression of dementia.   

1. Introduction 

Detecting language impairment has become increasingly important in identifying and diagnosing neurodegenerative disease. 
Language deficit can be observed in several neurodegenerative conditions, either as a preeminent symptom in early stages, as in 
Primary Progressive Aphasia, or in conjunction with other cognitive disorders, such as in Alzheimer’s Disease (AD) (Boschi et al., 
2017), as well as in individuals with Mild Cognitive Impairment (MCI) who later receive a diagnosis of Dementia (Mura et al., 2014; 
Karr et al., 2018). The analysis of connected speech produced by individuals with MCI related to AD and their cognitively healthy 
counterparts has revealed significant differences that primarily concern semantic impoverishment and reduced fluency (Filiou et al., 
2020; Mueller et al., 2018). Consistently, in studies comparing individuals with AD who progress with those who do not, significant 
differences have been found in naming ability and semantic fluency (Kim et al., 2019; Vaughan et al., 2018). 

Language difficulties pose a significant challenge for most dementia patients, particularly as the disease advances. The initial 
indicators of linguistic and communication impairments (LCIs) manifest themselves as difficulty in finding words, especially when it 
comes to identifying familiar individuals or objects. Incorrect and meaningless words replace the intended ones, and speech pauses 
become more frequent (Banovic et al., 2018). In the early stages of AD, for instance, language impairment primarily involves diffi
culties in word retrieval, diminished verbal fluency, and a breakdown at higher levels of written and spoken language. As AD pro
gresses to moderate and severe phases, verbal fluency is greatly compromised, comprehension declines, and various types of 
paraphrases become prominent. In the most advanced stages of AD, speech often becomes limited to repetitive echoing (echolalia) and 
verbal stereotypes (see Ferris and Farlow, 2013; Soria Lopez et al., 2019). 

Based on such evidence and given that the production of speech represents a task that closely reflects real-life situations and is 
crucial to daily functioning, the analysis of speech promises to be effective both in assessing cognitive abilities per se and as a 
barometer of disease progression. However, evaluating linguistic abilities using standard psychometric instruments is a time- 
consuming process and is susceptible to human bias. Recent studies evaluating LCI tests highlighted lack of standardization, 
normative data and criterion validity, as well as scant evidence attesting the reliability of those tools that had originally been 
developed for non-neurodegenerative LCIs (Krein et al., 2019). Further, it was observed that no tool considered the perspective of 
individuals living with dementia (ILWD) regarding the impact of LCIs on their daily life (Krein et al., 2019). In this work, linguistic 
abilities are evaluated by considering the speech produced by ILWD in a genuinely authentic relational communicative context. 

The significance of automatic analysis of speech and language using Natural Language Processing (NLP) techniques for language 
and communication assessment has steadily increased, providing valuable insights into language proficiency and cognitive abilities, 
besides offering information on motor skills where the audio is available. There are many studies in the literature on NLP methods that 
set out to identify characteristics provided by text-based automatic analysis and correlate them with psychometric scores or use them 
to discriminate between healthy and unhealthy subjects (Vigo et al., 2022). However, at present, the quality and quantity of infor
mation is inadequate to provide recommendations regarding the choice of tasks, features, or algorithms that a clinician should 
organize or carry out (Gagliardi, 2023). 

Also, most of these studies concern very controlled experiments, in which subjects carry out pre-established non-dialogical tasks 
which would introduce a certain level of structure to the speech output, producing semi-spontaneous language, such as picture 
description, reading or narrative tasks) (Prins and Bastiaanse, 2004). 

Additionally, to date, the study of spontaneous oral productions of ILWD, in the context of interactive communication during 
everyday life, and therefore in conditions of high ecological validity, seems under researched. In a naturalistic setting, speakers do not 
perform an experimental task, but rather they are completely free of any research requirements, as they are free to express themselves. 
This is crucially different from what happens in controlled experiments. In this respect, conversations in naturalistic settings become a 
precious source of information, integrating the knowledge acquired through controlled experiments, and offering a more complete 
overall picture of LCIs. 

An important source of data for this type of investigation is represented by the Anchise Corpus, a collection of manual transcripts of 
face-to-face conversations between ILWD, guests of nursing homes in various Italian locations, and operators who adopted the 
ApproccioCapacitante ® (Enabling Approach). The collected dialogues can be considered as characterized by high ecological validity if 
compared to productions elicited by means of reading tasks, picture description tasks or purely narrative tasks (Section 4.1). Despite 
some intrinsic limitations, including the unavailability of audio recordings of the conversations, the Anchise Corpus represents a 
formidable resource, not only because of the naturalness of the language, but also for the number of samples. Over 200 conversations, 
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involving as many ILWD subjects, distributed almost over the entire MMSE scale, represent a remarkable sample size given that in 
other works, which refer to more controlled trials, the sample size is considerably smaller (for the Italian, see De Stefano et al., 2021, 
which studied 47 unhealthy individuals; L. Calzà et al., 2021, with 48 unhealthy individuals; Dovetto et al., 2022, with about 20 
unhealthy individuals. See also the very recent review by Yang et al., 2022). 

The main goal of the investigations described in this paper is to test the effectiveness of a number of automatic analyzes of 
transcribed dialogues occurring in highly naturalistic contexts of Italian speakers affected by dementia at various stages (based on 
MMSE score), using the Anchise Corpus. As for the NLP analyzes, we discuss both the use of statistics regarding linguistic features (i.e. 
digital linguistic biomarkers, DLB) and the use of language models (LMs). Further, we focus our attention on lexical and morpho
syntactic features and variations in attitude, including sentiment and emotions. Based on this information we investigate if and to what 
extent we are able to find correlations between the speech transcripts and patients’ MMSE scores. 

This work expands on preliminary studies (Bolioli et al. 2020; Benvenuti et al. 2021; Sigona et al., 2023), in which the Anchise 
corpus was subjected to a more limited analysis, carried out with only a slightly smaller number of DLBs but with no deep language 
models. 

The article is structured as follows: we first survey related work (Section 2) and analytically state the goals of the analyzes described 
in this paper (Section 3); we then illustrate materials and methods (Section 4): in particular, a statistical description of the main 
features of the analyzed corpus (Section 4.1) and the experiments carried out on the corpus along with the employed methods, based 
both on traditional NLP features and on the adoption of LMs (Section 4.2). We then report and discuss the results obtained through the 
array of experiments (Section 5), while the final Section provides a summary of the main contributions of the work and an outline of 
future work. 

2. Related work 

2.1. Tasks to elicit connected speech and speech resources 

The availability of usable corpora of speech of people with cognitive impairments depends on the language. For example, the recent 
systematic review by Vigo et al. (2022), reports (see Table 2 of that article): 4 databases in English (including Talkbank-DementiaBank, 
by Becker et al., 1994, with 169 CE subjects), 4 in French, 4 in Spanish, 3 in Swedish and 3 in Turkish. However, the same review 
reports only 2 databases for Mandarin, 1 for Greek, 1 for Hungarian, and 1 for Italian (from the OPLON project: Beltrami et al., 2016, 
Beltrami et al., 2018; L. Calzà et al., 2021). The publication of two new corpora for Italian, such as the CIPP-ma and CIPP-mci (Dovetto 
et al., 2022), is only a partial contribution as it only includes a maximum of 40 patients and 40 health controls. 

It should also be noted that even if languages refer to the same abstract structure and units, the way they select and realize them 
differs. For instance, all languages distinguish parts-of-speech (POS), but they differ regarding both the number and the kind of dis
tinctions they make (Schachter and Shopen, 2007). English, for example, has articles while many Asian languages do not. Italian, on 
the other hand, like English has articles. However, it is a strongly inflected language, while English is not. These cross-language 
linguistic differences may regard all levels of the grammar (see, for example, Shopen, 2007) and have to be accounted for, as the 
analysis of datasets in different languages could offer different insights on the linguistic features of speech by ILWDs, e.g., as for some 
parts-of-speech. Also, though current technology is able to account for cross-language differences through transfer learning, the ex
istence of language-specific corpora is undoubtedly a precious source of specific information that should be exploited whenever 
possible. 

Thus, resources for Italian are significantly limited, very often they involve a small number of participants and have not been 
published. Accessibility is also an issue, since voice recordings of individuals are considered personal data (and hence subject to the 
principles of data protection), and European legislation does not allow voice recordings to be shared. The main accessible contributions 
of semi-spontaneous language regarding varieties of Italian are the corpora mentioned above, which have been collected by adopting 
quite standardized tasks. 

In general, one commonly used method for obtaining speech samples requires patients to describe a scene, such as in the “Cookie 
Theft” picture (Goodglass et al., 1983). Picture description has traditionally been regarded as advantageous compared to other less 
structured discourse production tasks, such as conversational or procedural tasks (Ulatowska et al., 1988). Indeed, this method offers a 
sturdy and straightforward way to gauge discourse production, commonly utilized for analyzing discourse in AD. It enables 
comprehensive scrutiny of information content and facilitates the comparison of semantic elements concerning individuals, actions, 
and items. Notably, this approach doesn’t demand specialized terminology and can be carried out using vocabulary typically learned 
early in life (Hirsh and Ellis, 1994). Among other more cognitive complex tasks, telling a story is popular. This is often done by retelling 
a well-known tale such as Pinocchio, or Cinderella and integrating the characters and events within a temporal framework, or 
alternatively, creating a story from story picture prompts (Toledo et al., 2017). Reading (with or without recalling), narrating personal 
life experiences or dreams etc., represent other commonly used tasks. Petti et al. (2020) and de la Fuente Garcia et al. (2020) offered a 
detailed review of studies on the matter. 

Finally, in several cases, patient-doctor conversations have been recorded during clinical assessment or cognitive examination. For 
instance, in Mirheidari et al. (2019), neurologists were given instructions to follow a predefined set of questions specifically designed 
to uncover common signs of impairments during the conversation. This included the use of closed questions that required long-term 
memory recall, compound questions, open-ended questions and questions related to memory. Weiner and Schultz (2016) analyzed 
semi-standardized biographical interviews using the ILSE corpus. Espinoza-Cuadros et al. (2014) recorded speech from both clinicians 
and patients during structured interviews used in the administration of the Spanish version of the MMSE. Luz et al. (2018) analyzed 
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natural conversations extracted from the Carolina Conversations Collection (Pope and Davis, 2011), involving 21 ILWD and 17 in
dividuals with no AD or neuropsychological diseases (interviewers were gerontologists and language students or researchers). 

2.2. Psychometric-clinical indices 

There are a number of methods and scales to evaluate the severity of cognitive impairments, dementia and AD, each with their own 
merits according to need, such as research or clinical practice, and the aspect being assessed. Measures for overall outcomes include, 
for example, the Global Deterioration Scale (GDS, Reisberg et al., 1982) and the Clinical Global Impression of Change (CGI-C, Guy, 
1976). To assess functional ability and quality of life, there is the Progressive Deterioration Scale (PDS, DeJong et al., 1989) or the 
Disability Assessment for Dementia (DAD, McIntyre, 1994; Gélinas et al., 1999). Cognitive ability is evaluated using the Alzheimer’s 
Disease Assessment Scale - cognitive subscale (ADAS-cog, Rosen et al., 1984), the Severe Impairment Battery (SIB, Panisset et al., 
1994), the Montreal Cognitive Assessment (MoCA, Nasreddine et al., 2005) or the Mini-Mental State Examination (MMSE, Folstein 
et al., 1975). 

The MMSE is probably still the most used index today in clinical practice. It is a rapid administration test (10–15 min), composed of 
30 items exploring temporal-spatial orientation, short-term memory, attention and calculation, ability to recall memories, compre
hension and language, nominal ability, and the ability to write legibly and to copy minimally complex designs. 

On the whole, the literature suggests that the MMSE exhibits internal consistency short-term test-retest reliability in ILWD and 
long-term reliability in those with intact cognitive functioning. Furthermore, the MMSE has been found to be sensitive to the severity of 
dementia in AD patients. The total score proves valuable in documenting cognitive changes over time, with AD patients typically 
experiencing an annual decline of 3 points on the MMSE (Bernard and Goldman, 2010). However, it is important to note that the MMSE 
is not used as the sole criterion for diagnosing dementia (Creavin et al., 2016; Arevalo-Rodriguez et al., 2021), also because of the 
potential influence of non-neurological factors on low scores (e.g., low education, language difficulties, visual or auditory impair
ments). Other problematic aspects and limitations of MMSE are discussed in Mitchell (2009), Tsoi et al. (2015), De Roeck et al. (2019). 

Apart from its routine use in clinical practice, the MMSE is also employed as an exclusion or inclusion criterion in clinical trials 
(screening for cognitive impairment) and is incorporated into research study neuropsychological test batteries. In Italy, the MMSE is 
required for the accreditation of Nursing Homes to its National Health Service. The MMSE is usually administered to patients within 30 
days of admission and subsequently every 6 months in accordance with the Individual Care Plan, except for unexpected developments 
that require new evaluation. Each Italian Region encompasses the national law into its own Regional Council resolutions (e.g., in 
Lombardy, DGR 7435/2001 and DGR 1765/2014). 

The MMSE score is also adopted to define a scale of severity of AD, as for example the scale reported in note 85 by AIFA (the Italian 
Medicines Agency), which authorizes the prescription of AChE inhibitors (donepezil, rivastigmine and galantamine) for mild and 
moderate AD, and memantine for moderate and severe AD. In the same note, the following staging based on MMSE is reported: AD mild 
(MMSE 21-26), moderate (MMSE 10-20), moderately severe (MMSE 10-14) and severe (MMSE <10). The same scale is also reported by 
the National Institute for Health and Care Excellence (NICE), England. 

2.3. Analysis by means of digital linguistic biomarkers 

Correlating the linguistic production of speakers with cognitive impairments to clinical indexes, for example MMSE, may be 
pursued by means of various methods. 

In various studies, linguistic features have been utilized, revealing correlation values that vary significantly with the type of task or 
language, playing a fundamental role. On the other hand, it is frequent in recent literature to call the linguistic characteristics useful for 
the identification of diseases as "Digital Linguistic Biomarkers". A comprehensive overview of the features and their hypothesized 
discrimination power in dementia research was presented in de la Fuente Garcia et al. (2020: 1552) and Petti et al. (2020). In 
particular, the ADReSS Challenge at INTERSPEECH 2020 (Luz et al., 2020) defined two cognitive assessment tasks: a standard Alz
heimer’s speech classification task and a neuropsychological score regression task. In the latter, participants had to create models to 
predict MMSE scores, using audio recording (and annotated transcriptions) elicited from participants using the Cookie Theft picture 
(Luz et al., 2021a, 2021b). A combination of audio and linguistic features extracted directly from audio recordings yielded a baseline 
MMSE prediction root mean squared error (RMSE) of 5.28 (Luz et al., 2020). A number of participants reported and discussed the 
results of the MMSE regression task. The best performing models reached the following scores: Koo et al. (2020), RMSE 3.75 (using a 
combination of audio and textual features); Balagopalan et al. (2020), RMSE 4.56; Haulcy and Glass (2021) RMSE 4.56; Meghanani 
et al. (2021), RMSE 4.28; Millington and Luz (2021) RMSE 5.46; Shah et al. (2021), RMSE 5.62. 

In Yeung et al. (2021), a set of features provided by NLP and automated speech analysis was extracted from 30 speech samples with 
AD (MMSE: 15-20), MCI (MMSE: 23-26) and healthy controls (HCs, MMSE: 27-30), with a minimum education level of 12 years. The 
same speech samples were rated by 5 clinicians with respect to (1) word-finding difficulty, (2) incoherence, (3) preservation and (4) 
errors in speech, on a Likert scale (0=not present or normal finding; 1=mild; 2=moderate; 3=severe). The Authors found statistically 
significant correlations between a number of features and the clinical rates. 

Along similar lines, Bueno-Cayo et al. (2022) evaluated the correlation between MMSE scores and linguistic features in a group of 
33 participants (20 HCs and 13 individuals with MCI, aged between 60 and 95; up to a maximum education level of 12 years). They 
found that the lexical density (estimated as the ratio between the number of semantic content words per 100 words in a sentence) was 
positively correlated with MMSE scores (Pearson’s correlation = 0.488, p < 0.01). MMSE scores were also negatively correlated with 
age. No statistically significant correlation (α = 0.05) was found between MMSE and speech length, word frequency, and the number of 

F. Sigona et al.                                                                                                                                                                                                         



Computer Speech & Language 89 (2025) 101691

5

time-, place-, or action-related tokens. Lexical density and speech length were found as significant linear predictors in a multivariate 
linear fit of MMSE. Speech was elicited by a single open question: “what are your plans for today and what are your plans for 
tomorrow”, with no constraint on the response time. 

However, Kavé and Dassa (2017) found that MMSE scores were negatively correlated (Pearson) to the total number of words 
(-0.355, p < 0.5) and to the mean word frequency (-0,339, p < 0.5, greater dementia severity was associated with production of more 
frequent words); and positively correlated to the (types to token ratio) TTR (0.572, p < 0.01) in 35 individuals with AD (23 female, 12 
male; age: 65–91; MMSE: 3–25; education: 8–16; Cookie Theft picture description task), while no statistically significant correlations 
were found to content-word ratio, pronouns ratio, percentages of verbs, prepositions, or to subordination markers. 

Ostrand and Gunstad (2021) found that in the picture description task the use of definite articles, determiners, and nouns as 
percentage of total word count were each positively correlated with the MMSE scores (3MS, Teng and Chui, 1987), and that the 
average lexical frequency was negatively correlated to 3MS. Crucially, in an expository speech task by the same individuals, only the 
latter metric was found to be correlated to the 3MS. 

These examples demonstrate how complex the scenario is. There are numerous DLBs which may be more or less correlated with 
clinical indexes, and these will all depend on a number of other factors, among which the type of task and linguistic focus play a crucial 
role. For example, in the work by Ostrand and Gunstad (2021), only lexical density correlated with 3MS in both the tasks discussed. 
Moreover, it should be noted that to date no strong correlation between cognitive decline and LCIs has been observed, given the 
scarcity of studies correlating language and MMSE. A few notable exceptions may be mentioned, mostly consisting of works focused on 
subjects suffering from AD (see, e.g., Fritsch et al., 2019) rather than general cognitively impaired subjects. 

Most studies, aiming at identifying AD or MCI, have proposed categorization tasks and statistical comparisons of DLBs between a 
group of unhealthy people (either AD or MCI) and a group of matched HCs, as in Beltrami et al. (2018). Even when datasets include 
three or more diverse cohorts, most studies tend to only perform pairwise comparisons, typically contrasting dementia with healthy 
aging (Gagliardi, 2023). However, from a clinical application standpoint, this approach may not be useful for real-life situations. In 
fact, the prevailing focus on pairwise comparisons fails to fully grasp the complexity involved in assessing cognitive frailty in geriatric 
settings (Panza et al., 2015). 

A number of studies have (either exclusively or in addition) compared “grades” of cognitive impairments, which is somewhat closer 
to the present work. For instance, König et al. (2015) considered AD, MCI and HCs (vocal tasks were: counting backwards, sentence 
repeating, picture description, verbal fluency) However, they only found significant differences (p < 0.05) between AD and MCI in the 
neuropsychiatric inventory (Cumming et al., 1994) Just a limited number of research papers are dedicated to the detailed classification 
of dementia, and these mainly focus on the subtyping of frontotemporal degeneration (e.g. Fraser et al. 2014; Garrard et al. 2014; 
Nevler et al. 2019; Themistocleous et al. 2018, 2021; Cho et al. 2020). 

On classification techniques, regarding studies on the Italian language among the many contributions, L. Calzà et al. (2021) and 
Gagliardi and Tamburini (2021, 2022) explored various Machine Learning algorithms (such as Support Vector Machines, Random 
Forests, and Decision Trees) to automatically differentiate HC from MCI, based on features extracted from audio and (manual and/or 
automatically) transcribed speech, such as lexical, syntactic, semantic, and readability indexes. 

2.4. Sentiment and emotion analysis 

The progression of dementia decreases cognitive abilities and functional skills, preventing individuals from engaging in their usual 
daily activities. Moreover, subjects affected by AD may experience behavioral and social skill deterioration, leading to possible 
conflicts with others and ultimately to social isolation which further affects their emotional well-being (Logsdon et al., 1999). 

Consequently, emotion analysis in AD speech can be of great help in monitoring the degree of disorder and in distinguishing ILWD 
from HCs. In the latter case, for example, López-de-Ipiña et al. (2015) achieved a classification error of less than 5 %, using Emotional 
Temperature and varied use of the fractal dimension (such as Higuchi, 1988). 

Traditional approaches in speech emotion recognition consider linguistic and paralinguistic features extracted from the speech 
signal (Altun and Polat, 2009). On the other hand, modern LMs can also be used to analyze sentiment and emotional content of 
transcribed speech. In a recent study, Liu et al. (2023) has proposed an innovative attention mechanism to detect deep semantic in
formation within words and sentences, to clarify the meaning of the transcribed discourse. Bianchi et al. (2021) presented FEEL-IT, a 
benchmark corpus of Italian Twitter posts annotated with four basic emotions: anger, fear, joy, and sadness (Ekman, 1992). The 
Authors also used the Italian BERT model UmBERTo1 trained on Commoncrawl ITA, then fine-tuned to classify emotion using the 
FEEL-IT corpus. Given an input sentence, the model can provide an output probability for the four emotions and an output label for the 
emotion with the highest probability. Additionally, collapsing anger, fear, and sadness into the “negative sentiment” category, and joy 
as “positive sentiment”, the model can perform sentiment analysis. The model achieved F1 = 0.80 on the 2-sentiments classification 
task, and F1 = 0.57 on the 4-emotions classification task. 

2.5. Analysis of perplexity 

One successful application of LMs in discriminating classes of subjects based on their verbal output relies on the adoption of 

1 Common Crawl is an open repository consisting of web crawl data that has been collected since 2008 and can be freely accessed and analyzed. 
For UmBERTo, see https://github.com/musixmatchresearch/umberto. 
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perplexity (PPL), which measures how unlikely a given text sequence is (Goldberg, 2017), with respect to a given LM (more details in 
Section 4.2.3). The basic assumption is that if we train an LM based on the language produced by healthy subjects, and if we then use 
that LM to calculate the perplexity values of two previously unseen text sequences, one emitted by a healthy subject and one emitted by 
a cognitively impaired subject, we would expect to observe a higher perplexity score featuring the text authored by the impaired 
subject. This assumption allows for variances from the expected pattern, and it has been proven successful (Colla et al., 2022) in 
specific experimental conditions, such as the categorization of unhealthy subjects and controls based on the descriptions for the 
Cookie-theft picture task in the Pitt-Corpus. 

In their pioneering approach, Solorio and Liu (2008) trained two LMs (based on N-grams) with data from patients and HCs 
respectively, then used them to categorize a speech sample of a test subject by computing the perplexity score for both models and 
choosing the corresponding class that gave the lowest value. Fritsch et al. (2019) trained two neural LMs, using the transcriptions from 
the Pitt Corpus for HCs and ILWD, to categorize speech production in the two groups. The authors achieved 85.6 % accuracy on 499 
transcriptions and, perhaps more importantly for the present work, showed that perplexity can also be exploited as a predictor for 
patient MMSE scores. In a very similar classification experiment, Cohen and Pakhomov (2020) achieved 0.872 accuracy at equal error 
rate. Furthermore, such experiments showed that as the disease advances, the perplexity of neural LMs grows consistently; in 
particular, the experimentation provided evidence about the correlation among perplexity scores and lexical frequency. In fact, 
higher-frequency and less specific words occurred more frequently in the language of ILWD than in that of the HCs. 

The work in Colla et al. (2022) is twofold. First, it explores the reliability of the perplexity metrics, by testing whether perplexity is 
consistent enough to analyze the language of individual subjects, and still sensitive enough to capture language and register changes 
made by a single speaker in different communicative situations, such as that of an interview rather than a political rally.2 Secondly, in 
this work a new method was proposed to refine the decision rule to categorize ILWD and HCs3: The method successfully ranked the 
models, with the best achieving full accuracy and F-score when using the Cookie-theft picture task from the Pitt-Corpus. 

3. Goals of the investigation 

As mentioned in Section 1, the main goal of this work was to test the effectiveness of a number of automatic analyzes using 
transcribed conversations of individuals under conditions of high ecological validity, and at different stages of cognitive impairments 
as denoted by their MMSE score. 

In order to achieve such a goal, various sub-goals had to be reached:  

1. The analysis of different automatic analysis methods to characterize the speech of subjects affected by dementia, considering:  
a. various types of information, from lexical and morphosyntactic choices to variations in attitude, including sentiment and 

emotion;  
b. classical statistical methods, machine learning approaches and more recent deep learning based language models.  

2. The distinction of different stages of impairment by identifying the way transcribed speech characteristics:  
a. correlate with MMSE scores;  
b. can be classified in terms of MMSE clusters and levels of severity, as identified in the literature (with specific reference to the 

AIFA classification);  
3. The in-depth analysis of naturalistic data, as those offered by the Anchise Corpus. 

4. Materials and methods 

4.1. Dataset description: the Anchise 2022 Corpus 

The corpus has been collected since 2007 by the Anchise Group,4 an association of experts for the research, training and care of 
ILWD. It is based on the adoption of the ApproccioCapacitante®, or the ‘Enabling Approach’, developed by one of the Authors and his 
collaborators since 2004 (Vigorelli, 2004) and subsequently refined (Vigorelli, 2010, 2011; Lanzoni et al., 2018; Vigorelli, 2021, and 
2024). This approach is a ‘non-pharmacological therapy’ of dementia designed to improve communication in the presence of evident 
memory and language disorder. Its ultimate goal is to promote a sufficiently happy coexistence between ILWD and others. To achieve 
this goal, ILWD engage in conversation with a wide variety of operators (health care workers, educators, nurses, speech therapists, 
doctors, psychologists) who have previously undergone training in the ApproccioCapacitante. 

Following the ApproccioCapacitante protocol, after the greetings and the collection of informed consent, the operator encourages 
the patient to speak, with suggested openings such as "Could you tell me something about how you are going to spend your day?”, 
“What do you do during the day?”, “We have some time to get to know each other better”, or “Can we talk together so that I can get to 
know you better?”. Then the operator should mainly listen, waiting for the ILWD to speak. Only when there is definite pause should the 
operator take the floor and continue the conversation following on from what the other has said. In general, the operator does not lead 

2 The set of speech transcripts collected for such experiments are described in the work by Colla et al. (2023).  
3 Namely, perplexity scores averaged over the two classes were combined with deviations, based on the 3σ rule, a popular heuristic in empirical 

sciences (Helms, 2009).  
4 www.gruppoanchise.it 
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the conversation but rather follows the patient and accepts their understanding of the world. The operator is categorically not involved 
in making a diagnosis or even in gathering information, but rather participates in the conversation in a way that promotes the well- 
being of both speakers during the conversation itself. The main rules to follow when the ILWD take the floor are5: “Don’t ask ques
tions”, “Don’t interrupt”, “Don’t correct”, “Echo”, “Return to the main conversation topic”. Other instructions are “Listen carefully 
even when speaking is pathological and incomprehensible”, “Respect any sluggishness and pauses”, “Recognize and mirror emotions”, 
“Answer questions”, “Also use gesture and tone of voice to communicate” (Vigorelli, 2004, 2011). Though there are no rules regarding 
the duration, the conversation usually lasts 5–10 min, ending when signs of tiredness or intolerance appear in the patient. Crucially, 
these instructions are given to the operators in a training context, where the protocol is strictly followed, and may be flexibly adopted 
in the field. 

Since 2007, health professionals from the Anchise Group have recorded, manually transcribed, and annotated conversations 
involving elderly people with cognitive impairment mostly residing in Italian Nursing Homes. All the participants are Italian speakers 
with evident cognitive deficits (MMSE score range = 0–28), though with no psychological or behavioral disturbances that might hinder 
conversation, such as drowsiness, confusion, a markedly oppositional or aggressive attitude, evident psychomotor agitation, severe 
dysarthria or severe hypoacusia. 

All the conversations carried out with the operators participating in the Anchise Group have been manually transcribed according 
to internal transcription conventions and included in the corpus, and importantly no selection was carried out based on adherence to 
the expected style. The material is strictly for training use with Nursing Home operators only, while the original audio recordings have 
been deleted. The corpus is being continuously updated by the Anchise Group. A previous version of the corpus, called ‘Corpus Anchise 
320′ (Bolioli et al., 2020; Benvenuti et al., 2021), was released in 2020: it contained 320 conversations, while the Anchise 2022 Corpus 
contains 417 conversations. 

The significance of a study based on the Anchise Corpus stems from a number of factors: it has been collected in a naturalistic 
environment; it includes dialogical speech; it is composed by a high number of recorded conversations, by as many ILWD; it is a corpus 
in Italian, and it offers a cross-section from North to South of the situation in Italian Nursing Homes. The corpus includes both large and 
small homes, and patients of all types, with mild, moderate and severe cognitive deficits, and from both sexes. The classification of 
patients is based only on the MMSE score. However, unlike prospective, controlled studies performed under standardized conditions, 
this corpus was not created for research purposes, but rather to be used in personnel training. As such, the corpus offers a substantial 
source of raw data on language produced by subjects affected by dementia. 

4.1.1. Descriptive statistics of the corpus 
Each dialogue or conversation is arranged into speech turns: a new turn starts each time the speaker changes and lasts until there is 

a significant interruption. We assume that each conversation involves a different patient. The two conversations out of the 417 carried 
out in other languages (Spanish and English) were discarded. Not all the conversations were accompanied with all the additional 
information concerning the patient, such as sex, age and related MMSE score. 

We selected the transcripts of patients with an MMSE of up to 26 (see Section 4.2.1), and only included those with details of age, to 
have more control of the variables, resulting in a total of 216 conversations. 

Table 1 illustrates some preliminary insights regarding the original and the filtered datasets. The patients interviewed average 
around age 84 (with a similar spread in both datasets), while the corpus in both datasets is dominated by women (almost 80 % of our 
speakers, see Fig. 1). Average number of turns is 65, almost equally split between Patient and Operator, with an average of 14+ tokens/ 
turn. This figure significantly differs if we consider Patient turns (longer, around 20 tokens/turn) and Operator turns (shorter, about 9 
tokens/turn). This figure is complemented by a high standard deviation, which is in the same order if not greater than the average 
itself. Conversations in the filtered corpus are slightly longer than those in the rest of the Corpus (843 vs. 831 tokens, complemented by 
a high standard deviation, thus suggesting that consistent variation in length may be found), with Patient conversations almost twice as 
long as Operator. As regard the relation between MMSE and AGE (see Fig. 1) their joint distribution is almost Gaussian (Henze-Zirkler 
test = 0.86, p-value = 0.15), while MMSE is (weakly) negatively correlated to AGE (β = -0.11, 95 CI = [-0.21, -0,00,426], t(217) =
-2.05, p = 0.041). 

4.2. Methods 

After having decided on the clustering of MMSE values, two broad methods were adopted to characterize the transcribed con
versations and the MMSE score: those employing language features and those relying on Language Models. 

4.2.1. MMSE clustering and evaluation measures 
We used the MMSE scale as recommended in note 85 by AIFA and NICE. For sake of simplicity, the term ‘AIFA85’ will be used 

hereafter to indicate the stages of cognitive impairments as follows:   

- SEVERE: MMSE 0–9, 60 individuals. 

5 Our translation. 
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- MODERATE: MMSE 10–20, 137 individuals.  
- MILD: MMSE 21–26, 19 individuals.  
- NORMAL: MMSE 27–30, 2 individuals. 

Experimentation considered only SEVERE, MODERATE and MILD stages, since the category of MMSE 27–30 contained only 2 
individuals. 

Finding correlations with MMSE scores amounts to finding a set of evaluation tools that can predict the MMSE most probably 
associated with the patient involved in that conversation. Below we compute the Pearson and Spearman correlation coefficients 
(Benesty et al., 2009). 

To evaluate the accuracy of the classification experiments, we used scores popular for Information Retrieval tasks, such as macro 
Precision, Recall and F1. In the multiclass classification task, for each class c we define:  

- a precision score, as the number of samples of the class c that are correctly classified, divided by the total number of samples that are 
classified as c. Also, the precision is the fraction of correct answers provided by the system.  

- a recall score, as the number of samples of the class c that are correctly classified, divided by the number of input samples of the 
same class c. In other words, recall is the proportion of samples of class c that are correctly classified.  

- an F1 score, as the harmonic mean between precision and recall: 

Table 1 
Summary description of the Anchise 2022 Corpus composition with respect to subject type (patients, operators), patient sex, speech 
turns and availability of mini-mental state examination score and age data. Where appropriate, the values are expressed in the form: 
mean (standard deviation).   

Unfiltered Corpus Filtered Corpus 

Number of conversations 417 216 
Average patient age 83.87 (7.09) 84.01 (6.93) 
Male patients (percentage) 87 (21 %) 49 (23 %) 
Female patients (percentage) 330 (79 %) 167 (77 %) 
Average patient MMSE 12.69 (5.60) 12.92 (5.46) 
Average number of turns per conversation 65.3 64.90 
Average number of patient turns per conversation 32.3 32.04 
Average number of operator turns per conversation 33 32.86 
Average turn length 14.25 (10.12) 14.83 (12.05) 
Average turn length Patient 19.60 (19.43) 20.31 (23.31) 
Average turn length Operator 8.85 (3.58) 9.24 (3.69) 
Average conversation length 831.68 (632.60) 843.50 (535.21) 
Average conversation length - Patient 543.76 (456.02) 545.82 (395.64) 
Average conversation length - Operator 287.92 (236.32) 297.67 (214.42)  

Fig. 1. Unfiltered corpus distribution of the number of conversations with respect to sex, age, and MMSE scores. On the left: boxplots with kernel 
density estimation for AGE and MMSE by sex: female, upper plots), male (central plots) and both (lower plots). On the right: scatterplot (dots), 
bivariate contour lines, linear trend, and marginal kernel density estimations, for age and MMSE score without sex distinction. 
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F1 =
2 ⋅ Precision ⋅ Recall
Precision + Recall   

The macro Precision is defined as the arithmetic mean of the precision across all the classes. The same applies to macro Recall and 
macro F1. 

4.2.2. Linguistic biomarkers 
Using NLP tools provided by Stanza software (Qi et al., 2020), a set of morphosyntactic data and dependency relations among the 

parts-of-speech (POS) were extracted from each turn in each patient conversation (see Table A-1, A-2 and A-3 and Fig. A-1 in the 
Appendix). Universal POS Tags (UPOS) and language-specific POS Tags (XPOS) for Italian have been used in this work. 

A number of DLBs (at lexical, syntactic, and semantic levels) were then analyzed for each conversation (see Table A-4 for more 
details). Consequently, each conversation was allotted its own vector of DLBs. 

4.2.2.1. Correlation and classification of DLBs and MMSE scores. Each feature was correlated to MMSE scores with linear fit, Pearsons 
and Spearman. 

The features were then used for statistical comparisons between clusters of MMSE scores based on the AIFA85 stages (Section 
4.2.1). Because of the unequal and relatively small sizes of the sample for some of the stages, the non-parametric Kruskal-Wallis as 
omnibus test and the two-sample Kolmogorov-Smirnov (KS) test was chosen, which estimates a distance between the empirical dis
tributions of the single features in both classes. An α=0.05 significance level was set as the threshold to assess statistical significance. 

Additionally, a classification task, predicting the class of a conversation based on its DLBs was performed using the tool illustrated 
in Fig. 2. The tool is a three-class classifier, composed of three binary classifiers, each one devoted to predicting two classes. The first 
classifier signals that the input (vector of linguistic features of that) session is SEVERE or MODERATE, the second classifier signals 
SEVERE or MILD, while the third signals MODERATE or MILD. The final prediction for an input conversation is chosen as the most 
“voted” output class. 

Each binary classifier is trained separately from the others, using only the conversations belonging to the two signaled classes, and 

Fig. 2. Scheme of the multiclass classifier used for the language features classification experiment. On the left: the multiclass classifier, composed of 
three binary classifiers. On the right: the single binary classifier. Feature vector: the vector of digital linguistic biomarkers for each conversation. The 
training of each binary classifier consists of learning which features need to be selected (and which to discard) to improve classification accuracy, as 
well as the type and final parameters of the classifier. In the testing phase, each conversation’s feature vector is sent to three binary classifiers. Once 
each of the classifiers has made its own feature selection, it also decides on a class. The most voted class will be the output of the multiclass classifier 
(predicted mental state). 
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using a leave-one-out cross-validation (LOOCV) approach. In other words, each conversation is extracted in turn from the data set and 
used for prediction, while the remaining conversations are used as a training data set. 

Two types of binary classifiers have been tested. The first assumes that the statistical distribution of the DLBs for each of the two 
classes is Multivariate Normal (MVN), meaning that the probability distribution is completely determined by the vector of means and 
the matrix of variances and covariances. For each of the two classes, the vector and matrix are estimated during the training phase by 
using the feature dataset for each class. At the test stage, given the input vector of features, the binary classifier outputs the class with 
the higher probabilistic likelihood. The second type of binary classifier, is based on the well-known Linear Discriminant Analysis 
(LDA), as implemented by the MatlabⓇ fitcdiscr function. 

During training, feature selection algorithms, custom implementations of Forward Feature Selection (FFsel) and Forward- 
Backward Feature Selection (FBsel) were also employed, to maximize the performance metrics, and to highlight the set of features 
most useful for the classification. 

The Forward Feature Selection procedure starts with an empty set of selected features, and then populates this set progressively, 
considering the available features one by one, from first to last, each only once. A new feature is added to the set of selected features 
only if this new set provides a better classification performance than that obtained in the previous step (i.e., without the new feature). 
In this phase, the macro average accuracy is considered as the performance metric, the arithmetic average of the true positive rates. To 
evaluate classification performance, the main component of the binary classifier (either MVN or LDA) is trained with the current set of 
selected features and tested by using the LOOCV approach. 

The Forward-Backward Feature Selection is similar to the FFsel, with the difference that every time a new feature is added to the set 
of selected features the algorithm checks whether the performance can further increase through the elimination of one or more of the 
previously selected features. If this happens then the identified features are eliminated from the set of selected features. 

It should be pointed out, however, that neither of the two feature selection methods guarantees any absolute best set of features 
(other combinations giving better or equal performances may still exist). 

In summary, the training phase for each binary classifier consists of an initial feature selection phase, and finally, once the “best” 
features have been learned, the classifier is trained one last time with these selected features. 

In the testing phase, the full vector of test features (corresponding to a new conversation) is firstly sent to each binary classifier, 
where it is subjected to the respective feature selection (already learned in the training phase). The resulting feature vector is sent to 
the classifier core which returns the most likely class. The output of the multiclass classifier is finally composed of the most voted class 
from the three binary classifiers. 

4.2.3. Language models and perplexity 
An LM or language model (Manning and Schutze, 1999) is a statistical inference tool that can estimate the probability of a word 

sequence W = {w1, ..., wk}, for any possible sequence of words W (Goldberg, 2017). Such probability can be computed as 

P
(
W1,n

)
=

∏k

i=1
p(wi|w1, ...,wi− 1),

which is customarily approximated as 

P
(
W1,n

)
≈

∏

i=1
p(wi|wi− N+1,wi− N+2, ...,wi− 1),

where the entire sequence W is predicted based on blocks of exactly N words (i.e. N-grams). 
The probabilities assigned by LMs are the outcome of a learning step, in which the model is exposed to a given set (and thus to a 

particular kind) of textual data. The goal of the training phase is to train the model to predict word sequences similar to those 
encountered during training. This feature constitutes the main trait of models such as BERT, Bidirectional Encoder Representations 
from Transformers (Devlin et al., 2018) and GPT-2, Generative Pretrained Transformer-2 (Radford et al., 2019), which have both been 
successfully adopted in many mainstream tasks, such as Named Entity Recognition, Textual Entailment, Coreference Resolution, 
Paraphrase, Sentence Similarity, Natural Language Inference and Question Answering (Wang et al., 2018, 2019; see also the literature 
review by Colla et al., 2020). 

In this setting the most influential approaches employed to analyze the language of cognitively impaired subjects concern the 
adoption of the perplexity metrics. Perplexity is a positive score that expresses how unlikely it is for a model to generate a given 
sequence, i.e., how perplexed the model is in emitting that sequence: low values (corresponding to high probability values) indicate 
that the model is able to predict that sequence. Formally, the perplexity (PPL) of a language model LM with respect to a word sequence 
W = {w1, ..., wk} is computed through the following equation: 

PPL(LM,W) = exp

{

−
1
k

∑k

i=1
log LM(wi|w1:i− 1)

}

.

Perplexity has been widely used to compare text sequences, and to discriminate between sequences produced by healthy subjects 
and sequences produced by people suffering from language-related disturbances (Fritsch et al., 2019; Cohen and Pakhomov, 2020; 
Colla et al., 2022). 

F. Sigona et al.                                                                                                                                                                                                         



Computer Speech & Language 89 (2025) 101691

11

4.2.3.1. Correlation between perplexity scores and MMSE scores. In one of our experiments, we explored the correlation between the 
perplexity measure and the cognitive impairment level assessed by the MMSE scores. 

We first pre-processed each transcript by concatenating all the sentences produced by the patient only, tp = {w1 w2 ... wn}, for the 
patient p, where wi are the words spoken. We then provided each tp with a perplexity score, calculated by the language model LM. To 
do this, we computed a list of perplexity scores PPLI(LM, tp) = [s1, ..., sn], where si was calculated for each wi, in an incremental 
fashion, as illustrated in Eq. (1): 

si = PPL(LM, wi | w<i ) ∀wi ∈ tp, (1)  

where PPL(LM, wi | w<i ) indicates the perplexity score calculated by the language model LM for the word wi given the preceding 
context w<i . 

At this point, the score for the patient p may be obtained by averaging the perplexity si in PPLI(LM, tp), as follows: 

PPLp =
1
n
∑n

i=1
si ∀si ∈ PPLI(LM, tp).

However, because of the dialogic nature of the transcripts, the opening conversation turns contain greetings. Even though greetings 
are appropriate for a conversation, these might be misleading for a language model unfamiliar with this genre, and consequently might 
create noise in the computation of perplexity. Hence, we investigated the effect of removing a small initial X% of turns. In other words, 
the perplexity of a transcript was calculated using Eq. (2): 

PPLp
X =

1

n −

(
n − X
100

)
∑n

i =
n − X
100

si ∀si ∈ PPLI(LM, tp) (2)  

as the average of the scores in list PPLI(LM, tp) except for those first X% of words that were dropped. The (negative) correlation 
between MMSE and PPL scores is reported in the following, in Section 5.1.2, Fig. 2, and shows that by filtering out the initial stages of 
the conversation produces increased correlation. 

To compute the perplexity scores, we employed an LM for the Italian texts, GePpeTto (De Mattei et al., 2020), which is based on 
GPT-2 architecture (Radford et al., 2019). Given the dialogic nature of the texts within the corpus, we additionally investigated the 
effect of coaching the GePpeTto model, already pre-trained in Italian, on texts of a similar nature, using the ParlaTO dataset (Mauri 
et al., 2019). This dataset contains about 50 h of dialogues involving over hundred speakers of various ages, collected in Italy between 
2018 and 2020. To provide as much consistency as possible with the Anchise Corpus, we only selected the transcripts of conversations 
with people aged over sixty. The model was then trained on 384,956 tokens for 10 epochs. 

Finally, to assess the relation between the perplexity and the MMSE scores we employed the Pearson correlation index. 

4.2.3.2. Classification through language models and perplexity. An array of experiments was devised to explore to what extent LMs can 
be used to predict the degree of severity of cognitively impaired subjects. Namely, we experimented with the multilingual version of 
the BERT uncased base model trained on a subset of the ParlaTO corpus containing dialogues involving speakers aged over 60 (Mauri 
et al., 2019). The model has been trained on 384,956 tokens for 10 epochs with a batch size of 8 instances, which took about an hour. 
The multilabel categorization (classes: MILD, MODERATE, SEVERE) on the Anchise Corpus was complemented by an experiment 
employing a balanced variant of the Corpus. 

Furthermore, we performed two more experiments casting the multilabel categorization task to a set of binary categorizations, 
where three binary classifiers (Mild-Moderate, Moderate-Severe, Severe-Mild) were acquired and tested; in this setting we compared 
the results obtained by employing standard BERT-based categorization with a classifier employing perplexity scores. A layer consisting 
of two units with Gaussian Error Linear Unit (GELU) activation was placed on top of the BERT model to build the classifier. Each model 
was fine-tuned for ten epochs, with a batch size of eight instances; a ten-fold cross validation setting was employed. The AdamW 
optimizer was chosen, equipped with cross-entropy as the loss function. Learning rate was set to 1e-03, and the eps (the AdamW 
epsilon) was set to 1e-06. 

4.2.4. Sentiment and emotion analysis 
To build a picture of sentiment and emotions using the Anchise Corpus, the FEEL-IT model for Italian was used (Section 2.4). By 

providing a conversation turn as input text string, the model calculates the probabilities of anger, fear, joy, and sadness. This calcu
lation was repeated for all turns within a single conversation with the elderly patient to find and label the most probable emotion for 
each turn. By collapsing this information, we obtained a rate of occurrence for each emotion, as the number of occurrences of speech 
turns labeled with a given emotion divided by the total number of turns in that conversation. By repeating these steps for each 
conversation, a set of tuples was obtained, in which the MMSE value of each conversation can be considered as an independent 
variable, while the associated emotion rates can be considered as the dependent variables. 

The results were then used for subsequent analyzes. In particular, the correlation (Pearson’s and Spearman’s) between the rate for 
each emotion and the MMSE score were explored (Section 5.1.3). Furthermore, the proportion of occurrences of each emotion in the 
SEVERE/MODERATE/MILD categories was statistically analyzed (Section 5.2.3). 

As for the sentiment analysis, this was achieved through a second model using FEEL-IT, which merges anger, fear, and sadness into 
a single class of negative emotions, against joy, the only positive emotion (Bianchi et al., 2021). Starting from the procedure illustrated 
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above, the polarity of sentiment (positive or negative) was then initially calculated for each turn of speech. Unlike emotion analysis, for 
sentiment analysis we decided to give a sentiment label at conversation (i.e. individual) level. To be labeled positive or negative, there 
needed to be a majority of at least two. In cases where the majority was only one or there was an exact positive/negative balance the 
conversation was labeled as neutral, thus creating a new sentiment at conversation level. This requirement arises from the obvious 
observation that in the case of a conversation with an even number of turns an equal number of "positive" and "negative" turns can 
occur, while this is absolutely impossible in conversations with an odd number of turns. The choice made seemed to be a good 
compromise to handle these eventualities. Regardless of the sentiment label assigned to a conversation, within each conversation we 
also calculated the pos_rate as the number of positive turns divided by the number of turns in the same conversation. 

Having characterized each conversation with sentiment and emotion features, possible connections between emotions and the 
MMSE in the Corpus could be studied (Sections 5.1.3 and 5.2.3). 

5. Results 

5.1. Correlations with single MMSE scores 

5.1.1. Correlation between DLBs and MMSE 
In general, all the correlations between MMSE and each single DLB were found to be relatively weak. Nevertheless, some were 

statistically significant (p < 0.05) and are shown in Table 2. 
As for positive correlations, the count of hapax legomena (the words spoken just once in a conversation), the count of negative 

adverbs (BN) and verbs in the subjunctive mood are significantly correlated according to both Pearson and Spearman coefficients. The 
latter feature has the highest values of positive correlations (0.1902 for Pearson and 0.1910 for Spearman correlation coefficients). The 
frequency of verbs in the past tense, of modal verbs (VM) and the mean value of dependency distance are significantly and positively 
correlated according only to the Pearson’s correlation coefficient. The noun (N) rate, the modal verb count (VM) and the reduced 
sentence count, marked by the number of participle and gerund verbal forms, are significantly and positively correlated only to 
Spearman. 

As for negative correlations, the frequency of interjections (INTJ), finite verbs, present tense verbs and the rate of exclamative 
determiners (DE) were significantly correlated according to both the Pearson and Spearman coefficients. The latter feature has the 
highest values of negative correlations (-0.2069 for Pearson and -0.1438 for Spearman). The adjective rate (calculated with both ADJ 
and A POS tags) was significantly negatively correlated according to the Pearson coefficient only. 

The rate of exclamative determiners (DE) is the feature that exhibits the best, albeit not strong, correlation with the MMSE scores. 
The following DEs have been found (together, they constitute only 0.1 % of the total number of words):  

- 210 occurrences of che ‘what’, as in che bel lavoro! ‘what a great job’  
- just 12 occurrences of quanto(a) ‘many’, as in guardi quanta gente! ‘look at all the people!’ 

Many other features showed no statistically significant correlation with MMSE. However, attention should be paid to speech style 
and to task related features. For instance, content density seems to be very sensitive to the language task. For instance, in Beltrami et al. 
(2016) content density was found statistically significant in the comparison between MCI and healthy controls in the picture 
description task, but not in the narrative task. 

Table 2 
Linear fit and corresponding statistical significance between each single linguistic feature and mini-mental state examination scores. Only statistically 
significant results are reported (* p < 0.05, ** p < 0.01). Abbreviations: beta, the coefficient of the linear fit; t, the value of the statistic, with 214 
degrees of freedom; CI, confidence interval of the estimation of beta; RMSE, root-mean-square-error; R2, R-squared, the fraction of the explained 
variance; r-Pearson and ρ-Spearman, correlation coefficients; reduced_sentences_count: the number of participle and gerund verbal forms; dep_dist. 
mean.avg: the mean value of dependency distance.  

Features Beta t (214) CI RMSE R2 r ρ 

Hapax count 0.0132 2.2501 [0.0016, 0.0248] 5.40 0.0231 0.1520 * 0.1452 * 
Adjective (ADJ) rate -0.3909 -2.275 [-0.7295, -0.0522] 5.39 0,0236 -0.1537 * -0.0693 
Adjective (A) rate -0.4013 -2.3449 [-0.7386, -0.064] 5.39 0,0251 -0,1583 * -0.0794 
Interjections (INTJ) rate -0.1349 -2.4495 [-0.2434, -0.0263] 5.38 0,0273 -0.1651 * -0.1605 * 
Noun (N) rate 0.1798 1.6695 [-0.0325, 0.3922] 5,42 0,0129 0.1134 . 0.1595 * 
Exclamative determiner (DE) rate -2.3474 -3.0934 [-3.8432, -0.8516] 5.34 0,0428 -0.2069 ** -0.1438 * 
Negative adverb (BN) count 0.0612 2.1061 [0.0039, 0.1184] 5.40 0.0203 0.1425 * 0.1577 * 
Modal verb (VM) count 0.1332 1.8842 [-0.0061, 0.2725] 5.41 0.0163 0,1277 . 0.1492 * 
Modal verb (VM) rate 1.0165 2.2552 [0.1281, 1.905] 5.40 0.0232 0.1524 * 0.1296 . 
Finite verb rate -0.077 -2.6926 [-0.1333, -0.0206] 5.37 0.0328 -0.1810 ** -0.1596 * 
Subjunctive mood rate 0.2622 2.8343 [0.0798, 0.4445] 5.36 0.0362 0.1902 ** 0.1910 ** 
Present tense rate -0.0457 -2.2643 [-0.0855, -0.0059] 5.40 0.0234 -0.1530 * -0.1416 * 
Past tense verb rate 0.0650 2.0541 [0.0026, 0.1273] 5.41 0.0193 0.1391 * 0.1203 . 
Reduced_sentences_count 0.0374 1.4477 [-0.0135, 0.0883] 5.43 0.0097 0.0985 0.1558 * 
Dep_dist.mean.avg 1.8419 2.0996 [0.1127, 3.571] 5.40 0.0202 0.1421 * 0.1233  
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5.1.2. Correlation between perplexity scores and MMSE scores 
The objective of this experiment was to investigate the correlation coefficients between subject MMSE score and conversation 

perplexity scores. 
The results for this ParlaTO dataset are presented in Fig. 3. It compares perplexity levels of the unfiltered GePpeTto (blue line) with 

the filtered GePpeTto (red line) according to how much text has been filtered out (from 0 to 99 %) —i.e., from PPLp
0 to PPLp

99 for each 
patient p—. 

We expected to find a negative correlation, hypothesizing reduced MMSE would result in a higher perplexity score, meaning that 
the model would be less confident, more perplexed, in predicting the language emitted by the patient suffering from a higher level of 
cognitive impairment. 

This inverse correlation was observed both with the unfiltered and the filtered GePpeTto models on the ParlaTO dataset. At the 
beginning, filtering out the first 10 % of text, correlation reduces. Correlation then begins to climb, with a slight dip at around 30 %, to 
a maximum at 80 %. The effect of fine-tuning the model on a language close to the texts in the Anchise Corpus seems to improve the 
correlation, although not enough to ensure a clear positive result. However, this experiment does seem to confirm the fact that per
plexity focusses on different aspects of language ability compared to the MMSE. In fact, while perplexity can only assess how close a 
linguistic sequence is to some reference language (such as that in the training data), the MMSE can assess a number of cognitive skills, 
including space and time orientation, attention and calculation, recall, language and praxis. 

Perplexity has been experimentally proven as able to detect cases of AD using transcripts containing descriptions of the Cookie-theft 
picture (Colla et al., 2022). The experiments discussed here are rather different, in that they focus on naturalistic dialogues, where 
subjects talked freely to a healthcare operator, consequently making it harder to compare the conversations. We should also add that 
the corpus is made up of only 216 conversations, and the conversations themselves significantly differed in length (from less than 100 
to above 2500 tokens). Overall, the 0.26 inverse correlation does not allow us to state that perplexity scores can be considered as a 
strong predictor of the MMSE score (or vice versa). What we can say is that perplexity scores are able to reveal more information on 
language, and that this detail can be considered as complementary to MMSE scores. 

5.1.3. Correlation between sentiment and emotion analysis and MMSE scores 
Observing the distribution of the positive labeled speech turns within a conversation (pos_rate) against MMSE values (Fig. A-2 

(left)), we see a slight tendency towards a decrease in positive sentiment as the MMSE increases. Also, despite only explaining a small 
part of the variance (R2=0.03), the trend is statistically significant (β = -5.01e-03, 95 % CI [-8.88e-03, -1.13e-03], t(214) = -2.55, p =
0.012; Std. beta = -0.17, 95 % CI [-0.30, -0.04]). The trend line moves from pos_rate values slightly above 50 % to values slightly below 
50 %, which suggests that non-positive sentiment progressively increases with MMSE levels above 10–12. 

The emotion analysis allows us to explore the results of the sentiment analysis in more depth. As depicted in Fig. A-2 (right), joy and 
sadness are the most frequent emotions, with a slight prevalence of “joyful” turns of speech over the “sad” ones. There are very few 
speech turns labeled “fear”, while “anger” is close to 12 %. 

As for the emotion rates at the conversation level (Fig. A-3 and Table A-5), we can note trends for anger, joy, and sadness, while fear 
is not statistically significant. As the MMSE increases, so does the anger rate (β = 8.4, Pearson c.c. = 0.15, p = 0.0176) as well as sadness 
(β = 5.7, Pearson c.c. = 0.16, p = 0.0161) while the joy rate decreases (β = -7.4, Pearson c.c. = -0.22, p < 0.001). This is in line with the 
sentiment analysis. The emotion of fear is mainly absent, and does not correlate with MMSE, while the other emotions show significant 
correlation both for Pearson and Spearman coefficients. 

The results of the correlation analysis may be explained by hypothesizing a link between the emotions manifested and the degree of 
awareness of one’s own state as in-patient and health. In this sense, as the MMSE increases, so does the degree of awareness, and 
consequently the rate of negative emotions (sadness and anger). On the contrary, as MMSE decreases, individuals tend to be less aware, 
and they can more easily recall positive emotion and better enjoy the benefits of conversing with enabling operators. 

Fig. 3. Plot of the correlation scores between mini-mental state examination and perplexity calculated using Eq. (2). Correlation obtained by the 
GePpeTto model (blue solid line) and by the filtered GePpeTto model (red dashed line) on the ParlaTO dataset; Pearson correlation (vertical axis), 
percentage of transcript removed for perplexity (horizontal axis). 
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5.2. Classification 

5.2.1. Classification via DLBs 
A statistical analysis on the distribution of each language biomarker, independently of each other, across the AIFA85 stages, was 

performed using the Kruskal-Wallis (KW, as omnibus test) and the Kolmogorov-Smirnov (KS) tests. The KS test was carried out even 
when the omnibus was not significant. The results are shown in Table 3, which precisely reports the results of the features that were 
significant in at least one of the tests. In comparing the distribution of each single feature (independently of any other) in the 3 pairs 
formed by the 3 groups SEVERE, MODERATE and MILD, it is appropriate to adopt the Bonferroni correction. Therefore, results are 
presented and discussed with respect to a significance level α = 0.05 and an adjusted level α = 0.05/3. 

Results show that:  

- 9 features are significant at the Kruskal-Wallis test, namely: the counts of hapax, nouns (NOUN), modal verbs (VM) and possessive 
pronouns (PP), the nouns to verb ratio, the rate of nouns (NOUNS), possessive pronouns (PP) and exclamative determiners (DE), 
and, above all, the te of verbs in the subjunctive mood.  

- features exhibit statistically different distribution between SEVERE and MODERATE stages, at p < 0.0.5: noun to verb ratio, noun 
(NOUN) rate, modal verb count (VM), auxiliary verb count (VA), subjunctive mood rate and exclamative determiner (DE) count 
and rate. Noun to verb ratio, noun (NOUN) rate and the rate of verbs in subjunctive mood are significant after Bonferroni 
correction.  

- 9 features exhibit statistically different distribution between MODERATE and MILD stages: hapax legomena count, adpositions 
(ADP), verbs (VERB and V POS tags), adverbs (B) and negative adverbs (BN); possessive adjective rate (AP); possessive pronoun 
count and rate (PP). However, after Bonferroni correction only the counts of adpositions (AP) and possessive pronouns (PP) are 
significant. 

- as many as 22 features have statistically significant differences in their distribution between SEVERE and MILD. After the Bon
ferroni correction, 11 features remain significant. 

Unsurprisingly, almost all the characteristics that were found to be significant (at p < 0.05), allow to distinguish the distributions of 
the SEVERE and the MILD groups, as almost all the counters in Table 3 are distributed in a significantly different way in the two groups 
(with slightly higher averages in the MILD than in the SEVERE). Many of these characteristics are still significantly different after 
Bonferroni correction (p < 0.05/3). 

A first observation concerns a purely quantitative aspect: on average, the MILD group exhibits a greater number of words than the 

Table 3 
Statistically significant differences between the distribution of the linguistic features in the AIFA85 stages: SEVERE, MODERATE, MILD. The statistics 
values and p-values of the Kruskal-Wallis (KW) and pairwise Kolmogorov-Smirnov tests are reported for each comparison (* p < 0.05, **p < 0.01). 
Bold values are significant after Bonferroni correction (p < 0.05/3). Tagset: the set of part-of-speech (POS) tags used to calculate the POS-based 
feature (UPOS/XPOS, see Tables A-2 and A-3, in the Appendix).   

Tagset KW Severe vs. moderate 
d.o.f. (60, 137) 

Severe vs. mild 
d.o.f. (60,19) 

Moderate vs. mild 
d.o.f. (137,19) 

Words count UPOS  0.167 0.384 * 0.257 
Hapax count UPOS 6.29 * 0.180 0.428 ** 0.334 * 
Average number of words per speech turn UPOS  0.135 0.348 * 0.230 
Word-types count UPOS  0.130 0.395 * 0.290 . 
Nouns to verbs (NOUN/VERB) ratio UPOS 6.32 * 0.256 ** 0.298 0.273 
Adjectives (ADJ) count UPOS  0.133 0.354 * 0.277 . 
Possessive adjectives (AP) rate XPOS  0.069 0.329 . 0.323 * 
Adpositions (ADP) count UPOS  0.123 0.395 * 0.362 * 
Adpositions (ADP) rate UPOS  0.118 0.361 * 0.26 
Coordinating conjunctions (CCONJ) count UPOS  0.163 0.370 * 0.277 
Subordinate conjunctions (SCONJ) count UPOS  0.117 0.356 * 0.257 
Nouns (NOUN) count UPOS 6.48 * 0.194 . 0.345 * 0.188 
Nouns (NOUN) rate UPOS 8.25 * 0.261 ** 0.279 0.192 
Verbs (VERB) count UPOS  0.116 0.423 ** 0.359 * 
Verbs (V) count XPOS  0.147 0.406 * 0.352 * 
Modal verbs (VM) count XPOS 6.18 * 0.186 * 0.368 * 0.294 . 
Auxiliary verbs (VA) count XPOS  0.202 * 0.315 . 0.179 
Rate of verbs in the subjunctive mood UPOS 11.3 ** 0.234 * 0.439 ** 0.264 
Adverbs (B) count XPOS  0.115 0.395 * 0.347 * 
Negative adverbs (BN) count XPOS  0.107 0.370 * 0.313 * 
Clitic pronouns (PC) count XPOS  0.132 0.351 * 0.268 
Personal pronouns (PE) count XPOS  0.115 0.387 * 0.293 . 
Possessive pronouns (PP) count XPOS 7.26 * 0.045 0.300 ** 0.255 * 
Possessive pronouns (PP) rate XPOS 7.26 * 0.106 0.300 * 0.255 * 
Exclamative determiner (DE) count XPOS  0.163 * 0.167 0.088 
Exclamative determiner (DE) rate XPOS 6.76 * 0.195 * 0.333 * 0.175 
Dep_dist.mean.avg –  0.147 0.359 * 0.258  
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SEVERE, as demonstrated by the words_count (more specifically, a greater average_number_ of_ words_ per_ speech_turn), despite not 
being significantly different after Bonferroni correction. 

Further features differentiating the SEVEREs from the MILDs (at p < 0.05) are the rate of adpositions (ADP), the rate of exclamative 
determiners (DE), the mean value of dependency distance, and the rate of verbs in the subjunctive mood, although only the latter is 
significant after the Bonferroni correction. 

A subset of the counters whose distribution differs significantly (at p < 0.05) between the SEVERE and the MILD group can also 
differentiate the MODERATE from the MILD: the count of hapax, adpositions (ADP), verbs (VERBS and V), adverbs (B), negative 
adverbs (BN), possessive pronouns (PP). Anyway, after the Bonferroni correction (p < 0.05/3), only the count of adpositions (ADP) and 
possessive pronouns (PP) can differentiate both SEVERE from MILD and MODERATE from MILD. Also, the possessive pronouns (PP) 
rate turns out to play a role in the differentiating both SEVERE and MILD and MODERATE and MILD, whereas the possessive adjectives 
(AP) rate distinguishes only the MODERATE and MILD group (at p < 0.05). After the Bonferroni correction, however, PP rate and AP 
rate no longer distinguish the MODERATE and MILD group. 

The difference between SEVERE and MODERATE (at p < 0.05) is made by the modal verbs (VM), auxiliary verbs (VA) and 
exclamative determiners (DE) counters, as well as the NOUN/VERB ratio, nouns (NOUN) rate, rate of verbs in the subjunctive mood, 
exclamative determiner (DE) rate. It can be seen that the rate of verbs in the subjunctive mood, the modal verbs (VM) count, and the 
exclamative determiner (DE) rate differ in the SEVERE group in comparison to both the MODERATE and the MILD group. After the 
Bonferroni correction, however, only the NOUN/VERB ratio, then nouns (NOUN) rate and the rate of verbs in the subjunctive mood 
can distinguish the SEVERE and the MODERATE group. The latter feature can also distinguish the MODERATE and the MILD group. 

As for the classification task, all the available features were calculated, regardless of which features were found to be significant. 
This ensured that any favorable interaction between significant and non-significant features would also be taken into account. The 
most performing variant of the classifiers illustrated in Section 4.2.2.1 adopted multivariate normal (MVN) modeling of the features 
distribution, and Forward Backward selection (FBsel) as feature selection strategy. The resulting evaluation metrics are shown in 
Table 4. It reports macro F1, precision and recall scores both for 3-class and for each single 2-class classification task. 

Most of the literature considers only a 2-class classification scenario (e.g., AD vs. healthy, or AD vs. MCI), so any comparison can 
only be made mainly on this basis. In this sense, according to our results, the highest accuracy is obtained in classifying SEVERE vs. 
MILD. The F1 score is not far from Calzà et al.’s (2021), which also includes other results from the literature. However, we should note 
that even a direct match in this case would not be particularly valid, since the researchers focused on the classification of MCI and 
healthy controls (F1 = 0.7045) and their set was larger, including, for example, audio features. 

5.2.2. Classification via language models and perplexity 
This experiment was designed to test the discriminative power of both language models and perplexity scores. We assessed two 

simple categorization approaches to discriminate between patients grouped by the AIFA85 classification according to their MMSE 
score. 

Firstly, we tried to categorize the transcripts into the three main categories (mild, moderate, and severe) by relying on the con
versation transcripts. The results were then compared against the classes based on the MMSE score: SEVERE [0–9], MODERATE 
[10–20] and MILD [21–26]. In this setting the categorization was performed by BERT and was mapped onto the three labels through a 
classifier using the Sparse Categorical Cross-Entropy as the loss function. The BERT multilingual uncased base model was augmented 
by including the ParlaTO corpus conversations of those aged over 60. The experiments were performed in 10-fold cross-validation. 

The results are illustrated in Table 5: the F1 scores across the three classes are 0.225 for SEVERE, 0.717 for MODERATE and 0.053 
for the MILD. The final macro-average F1 was 0.341. Such very different F1 scores, leading to a quite low macro value, may be partly 
explained by the reduced size and imbalance of the experimental data. If we consider the rightmost column of the table (‘support’), we 
observe that the MODERATE class has more than double the elements of the SEVERE class, which in turn has three times as many 
elements as the MILD class. In this setting, it is not surprising that our classifier obtains its best results from the MODERATE class. 

To explore the effect of the imbalance of the classes, we re-ran this experiment by employing balanced classes (19 support items per 
class), sized on the basis of the MILD class, the smallest class in the subset of the Anchise Corpus, resulting in a 0.40 macro-averaged F1. 
This significant improvement strongly suggests that the imbalance skewed the original results, but still does not allow us to be 
conclusive about the models’ ability to discriminate. 

To further explore the data at hand we devised a new experimental setting, where we categorized classes into pairs: SEVERE-MILD, 
SEVERE-MODERATE, MODERATE-MILD; and then compared the discriminative features of a perplexity-based classifier with that of a 
classifier relying on BERT. The calculation of perplexity scores was based on a usage of perplexity similar to previous work in the 
literature (Fritsch et al., 2019; Cohen and Pakhomov, 2020; Colla et al. 2022). Three different language models were employed (one for 
each of the classes compared: LMSev, LMMod, LMMil); for each pair of classes c1and c2 (classes are sorted in such a way that c1 is assumed 
to be more severe than c2), the PPLp score for a given patient p was computed as 

PPLp = PPL(LMc1 , t
p) − PPL(LMc2 , t

p).

For each class c, PPLc | c ∈{c1 ,c2}is averaged over PPLp scores, and the class for patient p ∈ c is predicted as 

class(p) = argminx ∈ {c1 , c2}

⃒
⃒ PPLp − PPLx | x ∈{c1 ,c2}

⃒
⃒.

Each subject transcript tp | p ∈ c is dropped both while training LMc, and when computing PPLc. 
The results are presented in Table 6: the macro-average of the F1 figures rises to 0.6065. Compared to the results obtained by 
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applying the BERT-based categorization (Fig. 4), we observe that the scores calculated with the perplexity mostly outdo those 
calculated by BERT, which only reach a 0.483 macro-averaged F1 (Table A-6). We should also note that the BERT-based categorization 
had been improved with the addition of the over-60 s age group from the ParlaTO corpus. 

We argue that the advantage of the perplexity-based approach is largely due to the fact that the BERT-based categorization was 
critically affected by the size of the support sets: we had 60 transcripts for SEVERE, 137 for MODERATE and only 19 for MILD. We can 
also conclude that the classifier employing the perplexity scores mostly succeeded in building a more informed representation on the 
language. 

5.2.3. Classification within sentiment and emotion analysis 
Table 7 illustrates the distribution of the positive, negative, and neutral conversations, within each AIFA85 stage. The same ten

dency found with the correlation analysis is also present between the SEVERE to MODERATE to MILD stages. In all cases, as the MMSE 
increases, there is an increase of negative sentiment, while the positive sentiment decreases. However, it should be noted that Fisher’s 
Exact Test for Count Data reveals a statistically significant difference only for the positive sentiment and only between SEVERE and 
MILD (p-value = 0.0328), that, however, disappears after the Bonferroni correction (p < 0.05/3). That said, in both stages there is 
always a tendency for negative sentiment to prevail over others. 

As for emotion analysis, Table 8 shows the emotion frequencies per 100 speech turns within each AIFA85 stage. According to the 
Fisher’s Exact Test for Count Data:  

- the proportion of joy is statistically significant in the comparison of SEVERE vs. MODERATE (p < 0.001), even after Bonferroni 
correction (p < 0.05/3); significant at p < 0.05 in comparison of SEVERE vs. MILD (p = 0.0194), while no statistically significant 
difference was found between MODERATE and MILD classes.  

- the proportion of sadness is statistically significant in the comparison of SEVERE vs. MODERATE (p < 0.001) and SEVERE vs. MILD 
(p = 0.00377), even after Bonferroni correction, while no statistically significant difference was found between MODERATE and 
MILD classes.  

- both for ANGER and FEAR, no statistically significant difference was found at all. 

Thus, there are proportionally more joyful (and fewer “sad”) speech turns in the SEVERE class than in the MODERATE, and in the 
SEVERE than in the MILD class. 

As for the emotion rates, the results with the Kolmogorov-Smirnov test are shown in Table 9. Among the negative emotions, the 
anger rate tends to be statistically significant, at p < 0.05, in the comparison between SEVERE and MILD, and between MODERATE and 
MILD, but no longer after the Bonferroni correction (p < 0.05/3); the sadness rate is significantly different only in the SEVERE vs. 
MODERATE comparison, even after the Bonferroni correction, while the fear rate difference is insignificant. The joy rate significantly 
changes only in the comparison between SEVERE and MILD, but only at p < 0.05. 

The AIFA85 categorization allows us to refine the trend already found in the correlation analysis. In particular, shifting from 

Table 4 
Results of the classification by means of digital linguistic biomarkers. Macro F1, precision and recall.   

F1 Precision Recall 

Severe vs. moderate vs. mild 0.608 0.590 0.661 
Severe vs. moderate 0.724 0.719 0.738 
Severe vs. mild 0.789 0.769 0.824 
Moderate vs. mild 0.698 0.669 0.789  

Table 5 
Results for the classification task. We reported precision, recall, F1-measure accuracy and support for each class.  

Class Precision Recall F1 Accuracy Support 

Severe 0.345 0.167 0.225 0.681 60 
Moderate 0.630 0.832 0.717 0.583 137 
Mild 0.167 0.053 0.080 0.894 19  

Table 6 
Results for the categorization experiment, using the PPL scores: precision, recall, F1-measure accuracy and support for each binary classifier tested.  

Pair Class Precision Recall F1 Accuracy Support 

Severe vs Mild Severe 0.792 0.7 0.743 0.633 60 
Mild 0.308 0.421 0.356 19 

Severe vs Moderate Severe 0.59 0.6 0.595 0.751 60 
Moderate 0.824 0.818 0.821 137 

Moderate vs Mild Moderate 0.931 0.693 0.795 0.686 137 
Mild 0.222 0.632 0.329 19  
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SEVERE to MODERATE, the increase of negative sentiments is due mainly to sadness, while from MODERATE to MILD there is only a 
weak significant increase of anger. The decrease in the joyful expressions, at session level, is most evident between the extremes, 
SEVERE and MILD, although not after the Bonferroni correction. 

These findings may reflect the patient’s emotional reaction to awareness of cognitive impairment. In the initial phase the patient 
reacts with anger and sadness; in the advanced stage, when the subject has lost reference to the current world and lives in her/his own 
possible world without realizing it, s/he rediscovers a sort of serenity based precisely on the loss of awareness of her/his own neu
rocognitive deficits. 

Fig. 4. Comparison between the F1 scores obtained by employing the BERT-based and perplexity-based categorization. Each class appears twice, as 
it is involved in two binary comparisons. 

Table 7 
Distribution of positive, negative, and neutral conversations across the AIFA85 stages.   

Mild Moderate Severe 

Negative 68.4 % 59.9 % 53.3 % 
Positive 15.8 % 29.9 % 43.3 % 
Neutral 15.8 % 10.2 % 3.3 %  

Table 8 
Emotions/turn of speech across the AIFA85 stages.   

Mild Moderate Severe 

Anger 14.0 % 12.3 % 12.6 % 
Fear 2.8 % 2.9 % 2.9 % 
Joy 40.9 % 41.4 % 47.3 % 
Sadness 42.3 % 43.4 % 37.3 %  

Table 9 
Statistical comparison with the Kolmogorov-Smirnov test of emotions. p-value are reported (* p < 0.05, ** p < 0.01). Bold values are significant after 
Bonferroni correction (p < 0.05/3). D.o.f.: degrees of freedom.   

Severe vs. moderate 
d.o.f. (60, 137) 

Severe vs. mild d.o.f. (60, 19) Moderate vs. mild 
d.o.f. (137, 19) 

feelit_anger_rate 0.111 0.381 * 0.327 * 
feelit_fear_rate 0.061 0.192 0.168 
feelit_joy_rate 0.195 . 0.381 * 0.188 
feelit_sadness_rate 0.262 ** 0.256 0.211  
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5.3. Discussion 

The in-depth analysis of the transcribed conversations was challenging in many aspects. The Anchise Corpus was not created with 
any research criteria in mind, and the conversations themselves were freely elicited in ecologically valid conditions. The analysis was 
further hampered given the sporadic nature of further socio-linguistic and specific diagnostic information. However, despite these 
extremely unusual premises, the automatic analysis of the Anchise Corpus has offered precious qualitative and quantitative data on 
language production in dementia. 

The adoption of automatic tools and the focus on different types of information (in line with our first sub-objective, see Section 3), 
have allowed different perspectives of corpus analysis. No tool or type of information under examination proved to work clearly better 
than others. Rather, all tools turned out to produce better results in classification tasks that considered AIFA85 severity levels rather 
than in correlating transcribed speech characteristics with individual MMSE scores. This type of correlation may be more reasonable to 
look for, given the intersubjective variability and the fact that the MMSE test is not specific for language or to test the subject’s 
emotional state and sentiment. 

That said, a correlation between DLBs of oral production and MMSE scores was found (in line with our subgoal 2a), albeit weak. 
This could also be due to the task and related speech style we have investigated (in line with results in Beltrami et al. 2016). 
Nevertheless, the significant correlations that we found are consistent with those in the literature, such as with Hernández-Domínguez 
et al. (2018), who also found the MMSE to be positively correlated with the hapax legomena count. 

Overall, the highest accuracy is obtained in classifying the SEVERE vs. the MILD group. However, results suggest that different sets 
of features tend to discriminate between the MILD group from the others, and, on the other hand, the SEVERE group from the others. As 
for the former case, the count of hapax, possessive pronouns, verbs (VERB and V), and, to a less significant extent, adpositions, and 
adverbs, as well as the possessive pronouns rate, tend to discriminate MILD from both SEVERE and MODERATE, being slightly higher 
in the former. On the other hand, the rate of verbs in the subjective mood and, to a less significant extent, the modal verbs count and the 
exclamative determiner rate tend to discriminate the SEVERE group from both the MILD and the MODERATE, being slightly lower in 
the former. 

In light of the findings related to the linguistic features, it seems reasonable to infer the following.  

1) Vocabulary impoverishment. The correlation analysis results reported in Table 2 show that as the MMSE score decreases, the 
number of hapax legomena also decreases. This trend is not necessarily due to a decrease in conversation duration (word count), 
because no significant trend of word count was detected in the correlation analysis. In particular, Table 3 shows that the number of 
words is distributed differently only between the SEVERE and MILD groups (with higher values for MILD), while the number of 
hapax legomena is distributed differently not only between SEVERE and MILD but also between MODERATE and MILD (with 
higher values for MILD). This can be interpreted as the sign of a progressive impoverishment of the lexicon as cognitive impairment 
advances.  

2) Simplified use of the verbs. Overall, it seems that the use of verbs becomes more simplified as the MMSE decreases. As a first 
indicator there is a general tendency, as the MMSE score decreases, to prefer the present tense (rate of verbs in the present tense) to the 
detriment of the past tense (rate of verbs in the past tense). Likewise, a general tendency is found, as the MMSE score decreases, to 
prefer the finite verbs (finite verb rate) and less subjunctive verbs, modal verbs and participle and gerund verb forms (see Table 2). 
Furthermore, a greater use of auxiliary verbs emerges from the SEVERE to the MODERATE group (with slightly higher averages in 
MODERATE). Consistently, results concerning verbs reported in Table 3 seem to significantly differentiate the MILD group from the 
others (see the slightly higher averages of VERB and V in MILDs in behind the differences in Table 3, and discussion above); further, 
results concerning a more limited use of subjunctive verbs in the SEVERE group in comparison to the others point in the same 
direction.  

3) Informality. We find a negative correlation of interjection rate (Table 2), that could suggest an increase in the adoption of a more 
informal register (Mereu and Vietti, 2021). Further, it appears that the exclamatory use of exclamative determiners (DE) increases 
among people with progressively lower MMSE. We might hypothesize here a tendency for subjects with lower MMSE scores to 
adopt a more informal register (Tables 2, 3).  

4) Anomia. We also found that the rate of nouns decreases as the MMSE score decreases, which is consistent with anomia, the first 
language disorder to appear in the ILDW, especially with AD. The ratio between nouns and verbs is also in line with this result, 
although it can only distinguish between SEVERE and MODERATE (with lower values in the SEVERE group). 

Correlations between MMSE and perplexity scores (see again our subgoal 2a, see Section 3) also turned out to be weak, despite 
promising results obtained in previous work on picture descriptions in AD (Colla et al., 2022). However, besides differences in the 
number of transcripts, the corpus was particularly raw and uncurated, as mentioned above. Even though the results did not present 
high correlations with the MMSE scores, perplexity proved to be a valid approach, mostly outperforming the approaches based on 
BERT. The perplexity score is essentially an information-theoretic measure designed to evaluate the coherence of a given text sequence 
based on a given LM. It thus requires further refinement to gather fine-tuned data coming from naturalistic settings such as that of the 
Anchise Corpus. Additionally, comparisons should be made to explore potential connections with standard linguistic features that, to 
our knowledge, have never been explored in the literature. 
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Above all the lack of any strong correlation is in line with the intersubjective variability observed in the clinical practice, as well as 
with the intrinsic non-linguistic nature of the MMSE assessment. This fact entails that even though more severe impairment should in 
principle be associated with lower MMSE scores, nonetheless consistent differences may be observed. For example, a patient suffering 
from Alzheimer’s may even be assigned a full MMSE score.6 These findings take on more validity when we consider the fact that 
language impairments in people with dementia affect both cohesion and coherence. Previous studies have shown that coherence 
declines before cohesion, that is, the semantic connections between words deteriorate first, and only later on, are morphosyntactic 
connections affected (Boschi et al., 2017). 

As for sentiment and emotions, the results show that the rate of negative emotions decreases as the MMSE decreases. Considering 
once again the naturalistic condition in which patients are free to talk about themselves in a very spontaneous manner, this ‘joyful’ 
result is consistent with a gradual reduction in awareness of reality. Indeed, ILWD seem to recall positive emotions more easily with 
progression of the disease. Further, we hypothesize that this effect is in line with dementia patients who are often also affected by 
depression, with depression possibly masking the diagnosis of dementia itself. So, as the disease progresses, patients become less 
connected to reality, which also includes losing their depression. This conclusion suggests that sentiment and emotion analysis could 
help in improving the classification by tools relying on linguistic information only, as well as being something to consider when 
investigating depression itself. In this sense, having obtained statistically significant, albeit not strong, correlation values using pre- 
trained computational models does suggest the validity of further analysis of the emotional sphere using ecologically valid conver
sations with other computational models, or taken from other naturalistic settings. 

As for distinguishing different stages of impairment by reference to the MMSE (subgoal 2b, Section 3), the tools developed to 
investigate lexical and morphosyntactic features did reveal interesting results. For example, for the binary categorization of SEVERE 
vs. MILD class, a F1 score close to 0.79 was achieved, complemented by a macro-averaged F1 = 0.61 in the 3-class categorization. 

On the other hand, state-of-the-art approaches based on language models, either based directly on BERT models or on perplexity, 
calculated by models based on GPT-2 only attain limited correlation with MMSE scores. The results were in the order of a 0.26 inverse 
correlation using Pearson r, and only a limited categorization accuracy of 0.40 macro-F1 for the multi-label categorization using BERT- 
based classifiers, and 0.60 macro-F1 for the binary categorization. Evidence was found that in this setting the explicit knowledge of 
human experts ensures higher accuracy with respect to neural, feature-agnostic approaches. 

A number of factors seem to have undermined the accuracy of classifiers employing LMs. First there was data imbalance. Though 
the Anchise Corpus is larger than other corpora, it is still below what is necessary to fully inform language models on specific 
application domains. Furthermore, the naturalistic and free nature of the conversations created issues as well as the weak connection 
between linguistic production and MMSE score. Also, there was no control group. Nevertheless, the perplexity metrics provided 
improved results with respect to the BERT-based classifiers (0.60 vs. 0.49 macro-F1 score). This seems to suggest that, for limited and 
imbalanced data samples, perplexity is preferable to more standard CLS-based categorization approaches. To compare our system 
against the literature, we calculated the correlation between perplexity scores and MMSE scores in the Pitt Corpus (focusing on the 
description of the cookie-theft picture), obtaining a correlation of 0.73. This result is in line with Fritsch et al. (2019), who obtained a 
correlation of 0.66 (using Pearson coefficients). Interestingly enough, Fritsch and colleagues (2019) report a 0.66 correlation for the 
whole data, but poorer figures for the two classes taken in isolation: 0.43 for AD and 0.11 for Healthy Controls. Such lower correlations 
are perhaps best understood if one considers the control class, where many perplexity scores need to be mapped onto a few MMSE 
scores (just those ranging from 24 to 30), resulting in a low correlation. This result strengthens the argument that our own results on 
the Anchise Corpus can be improved by adding a control class. 

Finally, in line with the third subgoal stated in Section 3, the Anchise 2022 Corpus was analyzed per se, as a precious source of 
information regarding naturalistic dialogical speech in people afflicted with dementia. The analysis shows that also in such a kind of 
dialogues the disease progression corresponds to the impoverishment of the vocabulary, anomia, and a simplified use of the verbs; 
further, a tendency to the use of a more informal register is observed. Moreover, the coherence tends to diminish also in dialogical 
speech (as shown by the analysis of perplexity), while the general sentiment and emotions tend to improve in the direction of a “joyful” 
or less sad state. This is consistent with a tendency to gradually focus on a present (tens of verbs) characterized by a reduced awareness 
of reality. These features may be more clearly observed in dialogues collected within a naturalistic setting in which subjects are free to 
express themselves, as in the Anchise 2022 corpus, rather than in more traditional experimental setups. 

6. Conclusions and future work 

Our study provided insights into the language production of ILWD involved in conversation in naturalistic conditions. It investi
gated the ability of text-based sources of information and of NLP tools to correlate these characteristics with the degree of severity of 
the cognitive impairment, as indicated by their MMSE score. More than 200 transcribed conversations from the Anchise 2022 Corpus 
were submitted to a wide range of automatic tools, from more traditional morpho-syntactic features extraction and categorization to 
the more recent BERT-based classification and perplexity measurement, to text-based sentiment and emotion analysis. This is the first 
experiment on a large corpus of spontaneous dialogues in Italian. 

We emphasize the ecological validity of the analysis of speech performed in the present study, which differs from most existing 
literature, which is focused on controlled speech experiments. Additionally, our experiments targeted a dataset composed of over 200 

6 This fact can be easily verified by extracting the MMSE scores associated with the subjects in the AD class from the Pitt Corpus (Becker et al., 
1994). 
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conversations, that is a noteworthy dataset, especially because it is in Italian, which is often underrepresented. Furthermore, this 
research has introduced advanced linguistic models for analyzing perplexity, sentiment (polarity), and emotion—a departure from 
traditional approaches in this field. 

Integrating various profiles of analysis, such as DLBs perplexity, emotion, and sentiment analysis, has been proved to be effective in 
offering a wider picture of linguistic and communication deficits, as well as offering more precise data on the progression of dementia. 

Regarding future research, the results suggest the need to shift the focus from the search for general classifiers to the identification 
of language impairments at each stage of the disease. Like other fields of medical sciences, it would be beneficial to study approaches 
specifically designed to deal with a specific subject and a specific stage of impairment. The identification of specific issues in language 
production can help guide personalized supportive rehabilitative treatment, particularly in speech therapy. It can also provide 
valuable for professional caregivers and family members and foster a more positive approach to ILWD. Further, detailed subject- 
tailored analyzes should also be a boost for diagnosis, making it more specific, and help in diagnosing dementia earlier. We can 
reasonably hope for the future that more nuanced analysis techniques will further improve accuracy in the description of the char
acteristics of naturalistic language production in relation to the MMSE score. 
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Fig. A-1. Top: a dependency tree among words of the sentence: Ecco… Io sono stato contento di essere qua con voi qua oggi … (‘well… I was happy to 
be here with you here today …’). Bottom: a tabular representation of the parse tree, equipped with part-of-speech analysis obtained through the 
Stanza parser (Qi et al., 2020) for the same sentence, in the CONLL-U format (Nivre et al., 2016).  

Fig. A-2. On the left: positive sentiment rate (pos_rate) vs. mini-mental state examination score (MMSE): scatter plot and trend line. The linear fit 
explains only a low portion of the whole variance (R2 = 0.03). However, the trend (β = -0.005) is statistically significant (p = 0.012 *) and shows 
that the positive sentiment slightly decreases as the MMSE increases. On the right: proportions of emotions (turns of speech) over the Corpus.   
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Fig. A-3. Scatterplot and linear trends of anger, fear, joy and sadness rates at conversation level, against mini-mental state examination score 
(MMSE). The emotion of fear is scarcely present, and has no correlation with MMSE, while the other emotions show significant correlation both for 
Pearson and Spearman coefficients. As MMSE increases, joy slightly decreases (β = -7.4, Pearson c.c. = -0.22, p < 0.001***), while anger (β = 8.4, 
Pearson c.c. = 0.15, p = 0.0176 *) and sadness (β = 5.7, Pearson c.c. = 0.16, p = 0.0161 *) slightly decreases.  

Table A-1 
Some of the attributes calculated by the Stanza tool (Qi et al., 2020) for each detected token in a sentence. In bold font, the data used in this study.  

ID A word index. Usually an integer number starting at 1 for each new sentence. 

FORM Word form or punctuation symbol 
LEMMA Lemma or stem of word form 
UPOS Universal part-of-speech tag 
XPOS Language-specific part-of-speech tag; underscore if not available. 
FEATS List of morphological features from the universal feature inventory or from a defined language-specific extension; underscore if not available 
HEAD Head of the current word, which is either a value of ID or zero (0) 
DEPREL Universal dependency relation to the HEAD (root iff HEAD = 0) or a defined language-specific subtype of one.   
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Table A-2 
Universal POS tags.  

UPOS tag Description UPOS tag Description 

ADJ Adjective NUM Numeral 
ADP Adposition PART Particle 
ADV Adverb PRON Pronoun 
AUX Auxiliary PROPN Proper noun 
CCONJ Coordinating conjunction PUNCT Punctuation 
DET Determiner SCONJ Subordinating conjunction 
INTJ Interjection SYM Symbol 
NOUN Noun VERB Verb   

X Other   

Table A-3 
XPOS tags for Italian.  

XPOS tag Description XPOS tag Description 

A Adjective N Cardinal number 
AP Possessive adjective NO Ordinal number 
B Adverb PC Clitic pronoun 
BN Negative adverb PD Demonstrative pronoun 
CC Coordinate conjunction PE Personal pronoun 
CS Subordinate conjunction PI Indefinite pronoun 
DD Demonstrative determiner PP Possessive pronoun 
DE Exclamative determiner PQ Interrogative pronoun 
DI Indefinite determiner PR Relative pronoun 
DR Relative determiner RD Determinative article 
DQ Interrogative determiner RI Indeterminative article 
E Preposition S Common noun 
EA Articulated preposition SP Proper noun 
FB Balanced punctuation SW Foreign noun 
FC Clause boundary punctuation T Predeterminer 
FF Comma V Verb 
FS Sentence boundary punctuation VA Auxiliary verb 
I Interjection VM Modal verb 
X Residual class: it includes formulae, unclassified words, alphabetic symbols and the like   

Table A-4 
Digital linguistic biomarkers extracted session-by-session after Natural Language Processing. In addition to the UPOS tags, also the XPOS tag rate 
(number of occurrences per 100 words) are used in the present work. Notes: (*) open-class words have UPOS tags: "ADJ", "ADV", "INTJ", "NOUN", 
"PROPN", "VERB"; (**) closed-class words have UPOS tags: "ADP", "AUX", "CCONJ", "DET", "NUM", "PART", "PRON", "SCONJ".  

Group Feature name Description 

Lexical content_density The ratio of open-class words (*) to open + closed class words (**) (Roark et al., 2011) 
open_to_close_class The ratio of open-class words to closed-class words (**) 
tokens_to_turns The ratio between the number of tokens and the number of speech turns 
num_words The number of words 
num_interrog The number of interrogative sentences 
num_ellipsis The number of ellipsis «…» 
word_length The average number of letters of the words 

Semantic & 
Lexical 
richness 

num_hapax_legomena The number of words that appear only once in the session 
num_types The number of word types (i.e. different words) 
ttr Types to token ratio 
brunet indices Brunet indexes. A measure of lexical diversity, that has been used in stylometric analyzes of text 

and is often claimed to be independent of text length. 
BI = NV(− a)

where N is the text length, V is the number of different words, and –a is a scaling constant in a 
{0.172, 0.185} 

honore Honoré statistics. An index of vocabulary richness, based on the idea that texts with richer 
vocabulary have a higher proportion of words that are hapax legomena. 

R = 100×
log(N)

1 −
v1

V 
where N is the number of words v1 is the number of hapax, and V is the number of types 

Lexical / 
syntactic 

adj_perc Adjectives (ADJ) rate per 100 words 
adp_perc Adpositions (ADP) rate per 100 words 
adv_perc Adverbs (ADV) rate per 100 words 
aux_perc Auxiliary (AUX) rate per 100 words 
cconj_perc Coordinate conjunctions (CCONJ) rate per 100 words 
sconj_perc Subordinate conjunctions (SCONJ) rate per 100 words 

(continued on next page) 
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Table A-4 (continued ) 

Group Feature name Description 

sconj_to_cconj the ratio between the number of subordinate and the number of coordinate conjunctions 
(sentences) 

noun_perc Nouns (NOUN) rate per 100 words 
nouns_to_verbs The ratio between the number of nouns and the number of verbs. This index is also referred to as 

“reference rate to reality” (Vigorelli, 2004) 
pron_perc Pronouns (PRON) rate per 100 words 
pronouns_to_nouns The ratio between the number of pronouns and the number of nouns 
intj_perc Interjections (INTJ) rate per 100 words 
propn_perc Proper nouns (PROPN) rate per 100 words 
verb_perc Verbs (VERB) rate per 100 words 
x_perc The rate of words that could not be assigned to any other category (X) per 100 words. 

Syntactic dependency distance Dependency distance (Roark et al., 2007,2011). Mean, standard deviation and maximum values 
have been considered across each sentence. 

max_depth Maximum structure depth (mean, standard deviation, maximum across each sentence) 
szmrecsanyi A syntactic complexity measure by Szmrecśanyi, 2004: 

2 ∗ conj + 2 ∗ pron + nouns + verbs
words 

Since subordinators and pronouns are considered as the clearest indicators of increased 
embeddedness (and thus of high complexity), these features have a higher weight than verbal 
forms and noun phrases. 

Verbal analysis va_fin_rate, va_inf_rate, va_part_rate, 
va_ger_rate 

Rates of finite, infinitive, participle, gerund verbal forms 

reduced_sentences_count Number of participle and gerund verbal forms 
reduced_sentences_to_verbs Number of participle and gerund verbal forms divided by the number of verbs 
va_ind_rate, va_subj_rate, va_imp_rate, 
va_cond_rate 

Rates of indicative, subjunctive (and conjunctive), imperative and conditional verbal moods 

va_pres_rate, va_past_rate, 
va_imperf_rate, va_future_rate 

Rates of present, past, imperfect and future tense 

va_p1_rate Rate of 1st person verbs   

Table A-5 
Linear fit and correlation coefficients of anger, fear, joy and sadness rates against mini-mental state examination score (MMSE). Statistically sig
nificant features (α = 0.05) are highlighted in bold font (*p < 0.05, **p < 0.01, ***p < 0.001). Abbreviations: beta, the coefficient of the linear fit; t, 
the value of the statistic, with 236 degrees of freedom; CI, confidence interval of the estimation of beta; R2, R-squared, the fraction of the explained 
variance; r-Pearson and ρ-Spearman, correlation coefficients).  

Feature Beta t (236) CI R2 r-Pearson ρ-Spearman 

Anger 8.4346 2.3911 [1.4851, 15.384] 0.0237 0.1538 * 0.1297* 
Fear -8.1833 0.9731 [-24.7513, 8.3848] 0.0040 -0.0632 -0.0684 
Joy -7.4205 ¡3.4814 [-11.6196, -3.2213] 0.0488 -0.2210 *** -0.2223*** 
Sadness 5.6987 2.4252 [1.0694, 10.328] 0.0243 0.1559* 0.1697 **   

Table A-6 
Results for experiment 2 where categorization was computed by employing the BERT-based classifier. We reported Precision, Recall, F1-measure 
Accuracy and Support for each class pairs combination.  

Pair Class Precision Recall F1 Accuracy Support 

Severe vs mild Severe 0.757 0.933 0.836 0.722 60 
Mild 0.2 0.053 0.083 0.722 19 

Severe vs moderate Severe 0.366 0.250 0.297 0.640 60 
Moderate 0.712 0.810 0.758 0.640 137 

Moderate vs mild Moderate 0.876 0.978 0.924 0.859 137 
Mild 0.000 0.000 0.000 0.859 19  
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