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Abstract The vast majority of explicitly available posterior characterizations in
Bayesian nonparametrics refer to the exchangeable case, a restrictive assumption
for time-dependent phenomena. Alternative formulations that accommodate partial
exchangeability include hidden Markov models (HMMs), where the exact deriva-
tion of the posterior distribution given data collected at past times (optimal filtering)
remains a challenging task. Here we outline a general framework based on duality
for the analysis of HMMs which feature normalized random measures. The poste-
rior tractability is ensured by combining certain projective properties of the infinite-
dimensional distributions involved with the existence of a suitable duality relation
between the hidden signal and an appropriate death process. Under these conditions,
the filtering distributions are all finite mixtures, paving the way for closed form in-
ferential strategies.
Abstract I risultati analitici disponibili nel campo della statistica Bayesiana non-
parametrica riguardano perlopiù il caso scambiabile, in cui la distribuzione deli
dati è invariante rispetto a permutazioni finite. Poichè questa assunzione non è
adatta per studiare fenomeni dinamici, sono state proposte molte alternative per
i modelli di Markov nascosti. In questo lavoro proponiamo una classe generale che
è dotata di grande trattabilità analitica, grazie a una relazione di dualità tra il
segnale nascosto e un opportuno processo di Markov.
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1 Completely random measures and hidden Markov models

The standard Bayesian nonparametric specification for exchangeable data is

Yi | X
iid∼ X , X ∼Π , (1)

where observations Yi live in a Polish space Y with Borel sigma algebra Y , and Π is
a distribution on the space PY of probability measures on (Y,Y ) that plays the role
of the prior. A general approach to construct such priors considers suitable transfor-
mations of completely random measures (CRMs); see [5, 6]. Denote by (Ω ,F ,P)
a probability space and by MY the space of boundedly finite measures on (Y,Y ),
with corresponding Borel sigma algebra MY.

Definition 1. A measurable function µ from (Ω ,F ,P) to (MY,MY), is a com-
pletely random measure if, for any disjoint collection A1, . . . ,An ∈ Y , the random
variables µ(A1), . . . ,µ(An) are mutually independent.

In this work we focus on CRMs without deterministic drift and fixed points, so that
µ can be characterized through the Lévy-Khintchine representation of its Laplace
transform

E
[
e−λ µ(A)

]
= e−P0(A)ψ(λ ), ψ(λ ) :=

∫
R+

∫
Y
(1− e−λ s)v(ds,dy), A ∈ Y ,λ > 0,

where v is a measure on R+×Y satisfying
∫
R+

∫
A min{1,s}v(ds,dy) < ∞, A ∈ Y ,

called Lévy intensity, and ψ(λ ) is the Laplace exponent. Here we will focus on
homogeneous intensities v(ds,dy) = ρ(ds)α(dy), where ρ is a measure on R+ and
the intensity of jumps does not depend on the jump location, and we further assume
α is a finite non-atomic measure on Y, with normalized version P0(·) = α(·)/α(Y).
Typical examples are the gamma process, whereby v(ds,dy) = s−1e−sdsα(dy), and
the σ -stable process, whereby v(ds,dy) = (Γ (1−σ))−1σs−1−σ dsα(dy), for 0 <
σ < 1.

The following class of models is due to [9].

Definition 2. Let µ be a CRM such that 0 < µ(Y) < ∞ almost surely. Then
p(·) = µ(·)/µ(Y) is called normalized random measure with independent incre-
ments (NRMI).

In the following we will further assume v(R+ ×Y) = ∞ and ψ(λ ) < ∞ for any
positive λ , that guarantee almost sure finiteness and positivity of µ(Y). The class
of NRMIs is large and encompasses many priors of interest: for example, the well-
known Dirichlet process can be defined as a normalized gamma process. Moreover,
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the class of NRMIs enjoys a certain degree of analytical tractability, that makes pos-
terior inference feasible (see [4]). In addition, a NRMI p admits the representation
as discrete measure

p = ∑
j≥1

WjδZ j , Z j
iid∼ P0,

with the weights {Wj} independent from the locations {Z j}. A sample (Y1, . . . ,Yn)
will therefore yield ties with positive probability, and can be represented by the
unique observed values (Y ∗1 , . . . ,Y

∗
k ) with associated multiplicities m=(m1, . . . ,mk)∈

Zk
+.

A natural extension of (1), that accommodates a partially exchangeable frame-
work where observations are collected at different times 0 = t0 < t1 < .. . , is given
by

Y i
tn | Xtn

iid∼ Xtn , i = 1, . . . ,ntn , X ∼ Q, (2)

where X = {Xt : t ≥ 0} and Q is the law of a stochastic process indexed by R+

with state space PY. If Xt is a Markov process, then (2) is a hidden Markov model
(HMM) (see [3]), and we denote by Q0 the initial distribution of the process and by
Pt its transition function. For brevity, let Yk := Ytk and Y0:n := (Y0, . . . ,Yn). The main
objects of interest are the update operator UY , that returns the posterior distribution
given observations Y at a fixed time, and the prediction operator, defined as applied
to measures ξ by

Pt(ξ )(dx′) =
∫

ξ (dx)Pt(x,dx′). (3)

The so-called filtering distribution Pn := L (Xtn | Y0:n) can then be obtained recur-
sively by considering P0 = UY0(Q0) and, for n≥ 1, Pn = UYn

(
Ptn−tn−1(Pn−1)

)
.

2 A general framework for optimal filtering

We provide general requirements on Q that lead to computing explicitly the filter-
ing distributions. Let XK

t := (Xt(A1), . . . ,Xt(AK)) be the projection of Xt over an
arbitrary measurable partition A1, . . . ,AK of Y.

We make the following assumptions:

A1 Q0 is induced by a NRMI with Lévy intensity v.
A2 Q is such that L

(
XK

t | X0 = x
)
= L

(
XK

t | XK
0 = xK

)
, for any partition of K

elements.
A3 Denoting by πK the distribution of XK

0 and by PK
t the transition function in-

duced by Q relative to the partition, we assume πK is reversible with respect
to PK

t , i.e. πK(dx)PK
t (x,dx′) = πK(dx′)PK

t (x′,dx). Moreover, we assume PK
t

admits a strictly positive transition density.
A4 The distribution of XK

t given (Y 1
t , . . . ,Y

n
t ) has density h(xK ,Y ∗,m)πK(xK) for a

suitable function h(·), that depends on the unique values Y ∗ and multiplicities
m ∈ Zk

+. We assume XK
t is dual to a time-homogeneous death process Mt on
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Zk
+, that is

E
[
h(XK

t ,Y ∗,m) | XK
0 = xK]= E

[
h(xK ,Y ∗,Mt) |M0 = m

]
.

We denote by pm,n(t) the transition probabilities of Mt , with m ∈ Zk
+, n ∈ L(m)

and L(m) = {n | n≤m}, where n≤m if n j ≤ m j for any j = 1, . . . ,k.

Example 1. Define the transition Pt(x,dx′) = e−β tδx(dx′)+(1−e−β t)Q0(dx′). Then
A1–A3 are immediately verified, while A4 reads

E
[
h(XK

t ,Y ∗,m) | XK
0 = xK]= e−β th(xK ,Y ∗,m)+1− e−β t ,

so that pm,m(t) = 1− pm,0(t) = e−β t .

Example 2. The HMM induced by the Fleming–Viot process (see [8]) satisfies A1–
A4 with Q0 being the law of a Dirichlet process. Indeed, even if its transition func-
tion is known up to an infinite series, [7] proved that the projections are dual to a
pure death process with rates (m j/2)(α(Y)+ |m|−1), |m|= ∑

k
j=1 m j, for jumping

from m to m−e j, where e j denotes the vector of all zeroes except the j-th element.
See [2] for an investigation of the predictive properties of this model.

Notice that, except for A1, the above requirements regard the finite-dimensional
projections, typically more tractable especially in terms of transition functions. In
this respect, note that NRMIs includes three classes of random measures for which
the distribution of the projections is known explicitly (Dirichlet, normalized inverse-
Gaussian and normalized stable processes).

3 Main results

In this Section we show how the tractability of NRMIs can be combined with duality
in A4 to prove explicit a priori and a posteriori properties.

3.1 Prior properties

The first result shows that the invariance property of the projections extend to the
distribution Q0 itself.

Proposition 1. Consider (2) with Q satisfying A1–A4. Then Q0 is the invariant mea-
sure for the stochastic process with transition Pt .

Proof. It follows from A3, since L (XK
t )(dx′) =

∫
πK(dx)PK

t (dx,dx′) = πK(dx′)
and the fact that random measures are characterized by their finite dimensional dis-
tributions. ut
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Hence if X0 ∼ Q0, Xt ∼ Q0 as well, and before conditioning on the data the same
Bayesian nonparametric model for exchangeable data as in (1) is propagated to each
time t.

Since Q is the law of a collection of random probability measures, one is immedi-
ately interested in the support properties. The weak support is the smallest closed set
in the Borel sigma algebra B{PR+

Y }, generated by the product topology of weak
convergence, and can be seen as a measure of flexibility: indeed, each neighborhood
of an element of the support has positive probability under Q. The next proposition
shows that our proposal yields a full weak support, relative to the support of P0.

Proposition 2. Let S be the support of P0. Then the weak support of a model satis-
fying A1–A4 is given by PR+

Y (S).

Proof. The marginal law Q0 has weak support PY(S). Then the result follows as
for Proposition 1 in [2] using A2. ut

When dealing with temporal data, it is often of interest to quantify the dependence
between measures at different times. A simple way consists in using the correlation
between the observables, that in this case can be computed exactly, as the next result
highlights.

Proposition 3. Consider (2) with Q satisfying A1–A4. Then

Corr
(

Y i
t ,Y

j
t+s

)
=−p1,1(s)

∫
R+

u
{

d2

du2 ψ(u)
}

e−ψ(u) du.

In particular Corr
(

Y i
t ,Y

j
t+s

)
≥ 0 for any t and s.

Proof. Since Xt is almost surely discrete we have Corr(Y i
t ,Y

j
t+s) = P(Y i

t = Y j
t+s) =

p1,1(s)P(Y i
t =Y j

t ). The latter is recovered from a reasoning similar to Proposition 2
in [4]. ut

Considering for instance Example 1, with Q0 being the law of a Dirichlet process,
the formula reduces to Corr(Y i

t ,Y
j

t+s) = e−β t/(α(Y)+1).

3.2 Posterior properties

As shown in Proposition 1, at each fixed time t we have a sampling model as in
(1) with the marginal law Q0 in place of Π . We denote by H(· |m) the associated
posterior distribution given data Y , with unique values Y ∗1 , . . . ,Y

∗
k and multiplicities

m. In the notation of Section 1, UY (Q0)(dx) = H(dx |m).
The next result shows that the prediction operator yields a finite mixture of such

distributions.
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Theorem 1. Consider model (2) with Q satisfying A1–A4. Then

Pt (H(dx,m)) = ∑
n∈L(m)

pm,n(t)H(dx,n)

Proof. Given an arbitrary partition, from A2 and A3 we have L (XK
t | m)(dx′) =∫

PK
t (x,dx′)h(dx,Y ∗,m)πK(dx)= πK(dx′)E

[
h(XK

t ,Y ∗,m) | XK
0 = x′

]
. The result now

follows from A4. ut

For instance, in the case of Example 1, it reads Pt (H(dx,m)) = e−β tH(dx,m)+
(1− e−β t)Q0(dx).

Thanks to linearity of the prediction operator, the filtering distributions can be
derived explicitly.

Theorem 2. Consider (2) with Q satisfying A1–A4. Given unique values Y ∗1 , . . . ,Y
∗
k

it holds
L (X0 | Y0) = H(dx | n0),

with n0 multiplicities of Y0. Moreover, there exist Mn ⊂Zk
+ and weights wn such that

L (Xtn | Y0:n) = ∑n∈Mn
wnH(dx | n).

Proof. Since prediction operator (3) is linear, we apply the same reasoning of Propo-
sition 2.3 in [7]. ut

Since Q0 is a NRMI, the posterior distribution H(· | n) is analytically tractable, at
least conditionally to a suitable latent variable (see Theorem 2 in [4]). Thus, thanks
to the finiteness of the mixture, devising conditional or marginal algorithms for sam-
pling becomes a feasible operation. The results will be detailed and developed in [1].

References

1. Ascolani, F., Lijoi, A., Prünster, I. and Ruggiero, M.: Optimal filtering for hidden Markov
models featuring normalized random measures. Work in progress.

2. Ascolani, F., Lijoi, A. and Ruggiero, M.: Predictive inference with Fleming–Viot-driven de-
pendent Dirichlet processes. Bayesian Anal. (2020)
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