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Abstract: Multiple myeloma is characterized by heterogeneity in clinical presentation, response to treatment, and 
importantly, patient outcomes. The translocation of chromosomes 11 and 14 [t(11;14)(q13;32)], hereafter referred 
to as t(11;14), is the most common primary translocation event in multiple myeloma, occurring in approximately 
16%-24% of patients. Multiple myeloma harboring t(11;14) represents a unique disease subset as t(11;14)-positive 
myeloma cells exhibit biological features that are distinct from t(11;14)-negative myeloma cells, including overex-
pression of cyclin D1, higher levels of the antiapoptotic protein BCL-2, and the frequent expression of the B-cell lin-
eage protein CD20. Additionally, t(11;14) is associated with less common clinical features, such as immunoglobulin 
M and light chain disease. With the evolution of the treatment landscape, the prognostic significance of t(11;14) 
multiple myeloma remains debatable. However, it is clear that t(11;14) multiple myeloma represents a distinct 
subset and a rare opportunity for targeted therapy with BCL-2 inhibition. In this review, we first describe the underly-
ing biology of t(11;14) multiple myeloma cells, then summarize the body of literature evaluating the prognosis of 
patients with t(11;14) multiple myeloma, and finally discuss therapeutic implications. 
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Introduction

Multiple myeloma (MM) is a plasma cell neopla-
sia characterized by clonal proliferation of 
malignant plasma cells that acquire certain 
genetic changes during B-cell development and 
maturation. Structural and numeric chromo-
somal abnormalities, including translocations, 
occur mostly at disease onset. Over the course 
of disease progression or relapse, gene muta-
tions contribute to the clonal heterogeneity  
and complexity of MM [1, 2]. These genetic 
abnormalities are important prognostic fa- 
ctors as they determine clinical presentation, 
response to therapy, and disease course [3, 4]. 
Due to the highly variable nature of MM, there 
is increasing focus on adopting precision medi-
cine to tailor treatment to a patient’s genetic 

subtype. The translocation of chromosomes 11 
and 14 [i.e., t(11;14)(q13;q32)], hereafter refe- 
rred to as t(11;14), is a primary cytogenetic 
abnormality found in approximately 16%-24%  
of patients with MM [5-15], making it the most 
common translocation [1, 4]. Additionally, this 
translocation has gained recognition as a pre-
dictive biomarker that can be targeted with 
BCL-2 inhibitors, such as venetoclax [16]. Thus, 
understanding the underlying biology of t(11; 
14) MM, the impact of this translocation on 
prognosis, and the response of t(11;14) MM to 
treatment are of particular importance. In this 
review, we describe the unique biology of MM 
cells harboring t(11;14), summarize the litera-
ture addressing the prognostic impact of this 
translocation, and discuss therapeutic implica-
tions for patients with t(11;14) MM.
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t(11;14) is a unique subset of MM

Development of t(11;14) MM

MM is preceded by monoclonal gammopathy  
of undetermined significance (MGUS) [17, 18], 
which is a premalignant, asymptomatic condi-
tion characterized by the presence of clonal 
plasma cells in the bone marrow (BM). Normal 
plasma cells are derived from B cells, which  
initially develop in the BM but migrate into the 
peripheral blood and secondary lymphoid tis-
sues for further development [19]. Upon anti-
gen engagement in the periphery, mature B 
cells seed germinal centers and differentiate 
into memory and plasma cells; although termi-
nally differentiated plasma cells exist in lym-
phoid organs, the majority of long-lived plasma 
cells home to the BM [20]. Primary cytogenetic 
abnormalities, such as immunoglobulin heavy 
chain gene (IGH) translocations or trisomies, 
acquired during B-cell development and matu-
ration lead to the transformation of normal 
plasma cells into premalignant, clonal plasma 
cells. Proliferation of these cells within the BM 
results in MGUS, which can evolve into asymp-
tomatic smoldering MM and ultimately symp-
tomatic MM [17-19]. As a primary abnormality, 
t(11;14) is found in both MGUS and MM and 
can be detected by fluorescence in situ hy- 
bridization (FISH) or conventional metaphase 
cytogenetics, although the latter is used less 
frequently and often misses the abnormality 
given the low proliferation rate of plasma cells.

The t(11;14) translocation is found in approxi-
mately 50% of patients with AL amyloidosis, 
another clonal plasma cell dyscrasia closely 
related to MM [21, 22]. Additionally, t(11;14) is 
considered a hallmark feature of mantle cell 
lymphoma (MCL) [23], but molecular analyses 
have shown differences in the breakpoints 
found in MCL versus MM. In MCL, t(11;14) pre-
dominantly arises during B-cell development  
as an error of variable, diversity, and joining 
[V(D)J] recombination [24], and breakpoints 
tend to be clustered in a region known as the 
major translocation cluster or located at or 
near activation-induced cytidine deaminase 
hotspots [24-28]. In contrast, translocations in 
MM, including t(11;14), are thought to occur in 
mature B cells undergoing class switch recom-
bination in germinal centers [29-31], and analy-
ses have shown t(11;14) breakpoints scattered 

throughout the 11q13 region, with none found 
within the MCL major translocation cluster [26, 
28, 31-35]. However, several more recent mo- 
lecular analyses have identified V(D)J recombi-
nation-induced breakpoints in t(11;14) MM  
[31, 36], indicating that in some cases, t(11;14) 
myeloma clones may originate from pre-germi-
nal-center B cells. As the most commonly 
detected translocation, a deeper understand-
ing of t(11;14) MM disease biology is 
warranted.

Biology of t(11;14) MM

The t(11;14) translocation involves IGH on  
chromosome 14 and the proto-oncogene 
CCND1 on chromosome 11, resulting in the 
overexpression of cyclin D1 [36-39]. MM cells 
harboring t(11;14) exhibit distinct cellular fea-
tures, such as lymphoplasmacytic morphology 
[38, 40-43], which are not associated with 
other abnormalities. In addition, some t(11;14) 
MM shows a unique dependence on the anti-
apoptotic protein BCL-2 (encoded by BCL2). 
Both normal plasma cells and most MM cells 
without t(11;14) primarily depend on the anti-
apoptotic protein MCL-1 (encoded by MCL1) for 
survival [44-48], although some MM cells are 
codependent on MCL-1 and BCL-XL (encoded by 
BCL2L1) or BCL-2 [49]. In contrast, elevated 
levels of BCL-2 and high BCL2/MCL1 and 
BCL2/BCL2L1 ratios have been associated 
with t(11;14) MM cells [36, 39, 50, 51], indicat-
ing BCL-2 is important for their survival. 
However, high BCL-2 expression is not exclu- 
sive to t(11;14) MM and has been observed in 
other subtypes [39, 51, 52].

In addition to having distinct oncogenic fea-
tures, there is increasing evidence that t(11;14) 
MM cells often lack traditional plasma cell 
markers that are detected on other MM cell 
types and exhibit remnants of B-cell biology. 
Expression of the B-cell lineage membrane  
protein CD20 and higher levels of the B-cell 
receptor component CD79a have been detect-
ed in t(11;14) MM cells [8, 36, 38, 40, 43, 53, 
54]. Additionally, t(11;14) MM cells have dem-
onstrated decreased expression of the plasma 
cell marker CD38, which inversely correlated 
with the BCL2/BCL2L1 ratio [43], and decre- 
ased expression of the adhesion molecule 
CD56 [8, 36, 53-55], which might be involved 
in the ability of MM cells to migrate from the  
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BM [56]. Several studies have detected overex-
pression of B-cell-associated genes in t(11;14) 
MM cells, including PAX5 [12, 43], a transcrip-
tion factor that must be silenced for the termi-
nal differentiation of B cells to plasma cells. 
This B-cell-associated gene expression has 
been shown to be associated with sensitivity  
to the oral BCL-2 inhibitor venetoclax [57]. How- 
ever, among patients with CCND1-activating 
lesions, gene expression profiling has identified 
2 distinct groups, with the expression of more 
than 100 genes, including PAX5 and the gene 
encoding CD20, significantly differing between 
these groups [12]. These results indicate there 
may be distinct subgroups among patients with 
t(11;14), which has been further supported by 
several studies that have observed differences 
in CD20 surface expression on MM cells with 
t(11;14) or CCND1 overexpression [8, 53, 58]. 
Overall, t(11;14) MM is distinguished as a spe-
cial subset of MM due to the unique biology of 
MM cells harboring this translocation, and 
these features are important factors to con- 
sider when making treatment decisions for 
patients with t(11;14) MM.

Clinical presentation of t(11;14) MM

Several common clinical features have been 
noted among patients with t(11;14), such as 
higher rate of bone disease [38, 59, 60]; higher 
incidences of immunoglobulin M, immunoglob-
ulin D, light chain, and non-secretory disease 
[6, 8, 36, 42, 59, 61-66]; and higher rate of 
renal dysfunction due to cast nephropathy  
[64]. Studies show it is common for a patient 
with t(11;14) to have a coexisting abnormality 
[8, 59, 62, 64-68], with several of these stud-
ies observing chromosome 13 abnormalities  
in >30% of patients with t(11;14) [8, 59, 68]. 
Finally, t(11;14) is prevalent in primary plasma 
cell leukemia (approximately 33%-71%) [6, 8, 
69, 70], an aggressive variant of MM associat-
ed with very poor prognosis. Together, these 
clinical features further distinguish t(11;14) as 
a unique subset of MM.

Impact of t(11;14) by race

Recently published findings from 2 observa-
tional studies indicate differing outcomes with 
t(11;14) MM between patients of different 
races [14, 64]. While no difference was 
observed in progression-free survival (PFS), 
both studies reported prolonged overall sur- 
vival in African American patients with t(11;14) 

MM compared with non-African American or 
White patients with t(11;14) MM [14, 64]. One 
of these studies found a higher likelihood of 
death and an increased risk of early mortality  
in African American patients with t(11;14) com-
pared with those without t(11;14) [14]. Overall, 
these results indicate that there may be com-
plex interplay between race and t(11;14) MM 
disease biology; further studies are needed to 
clarify the impact of this translocation on the 
survival of African American patients.

Prognosis of t(11;14) MM

The pre-novel agent era

Initial studies evaluating the outcomes of 
t(11;14) MM were small. Additionally, most of 
these studies assessed the translocation using 
conventional cytogenetics, and several analy-
ses combined patients with any 11q abnor- 
mality [63, 71-73]. Collectively, these initial 
studies alluded to a possible negative impact 
due to the presence of t(11;14). However, as 
FISH testing became available in the 1990s, 
additional studies were published, and larger 
retrospective studies indicated patients with 
t(11;14) have similar, if not more favorable, out-
comes compared with patients without t(11; 
14) (Table 1) [74-76]. These findings were cor-
roborated by analyses of prospective clinical 
trial cohorts, and the aggregate results con-
firmed that patients with t(11;14) had similar or 
favorable outcomes compared with other 
patient groups (Table 1) [5, 7, 13, 77]. 

At the end of the pre-novel era, the Mayo 
Stratification of Myeloma and Risk-Adapted 
Therapy (mSMART) consensus guidelines were 
developed to guide treatment of newly diag-
nosed MM [78]. While the International Stag- 
ing System determines patient risk by labora-
tory parameters [79], the mSMART guidelines 
favor a cytogenetic and proliferation-based 
model to predict risk stratification [78]. Based 
on the collective data published during the  
pre-novel era [7, 61, 72, 73, 76, 80, 81], the 
mSMART guidelines classified t(11;14) MM as 
a standard-risk abnormality [78, 82]. Thus, the 
presence of t(11;14) did not negatively impact 
outcomes at the end of the pre-novel agent era.

The novel agent era

In the early to mid 2000s, novel targeted 
agents, such as the immunomodulatory drug 
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Table 1. Outcomes for patients with t(11;14) multiple myeloma
Publication Study Details Follow-Up Time Cytogenetic Subgroups Outcomes
Fonseca et al. 
Blood 2002 
[5]

Study type: Clinical trial E9486 and correlative laboratory study E9487 108 mo for  
survivors included 
in the E9486 trial

t(11;14), n=53 t(11;14) vs. non-t(11;14)

Patient population: NDMM, N=351 Non-t(11;14), n=283 PFS: 33 mo vs. 27.1 mo (P>0.2)

Treatment: VBMCP vs VBMCP + interferon-α2 vs VBMCP + high-dose 
cyclophosphamide

OS: 49.6 mo vs. 38.7 mo (P>0.2)

t(11;14) detection method: FISH

Additional details: Patients were required to have prolonged follow-up 
information and known clinical outcomes

Moreau et al. 
Blood 2002 
[74]

Study type: Retrospective 27 mo for  
surviving  
patients

t(11;14), n=26 t(11;14) vs. t(4;14) vs. others

Study period: Jan 1995 to Dec 2000 t(4;14), n=22 OS at 80 mo: 87.5% vs. 22.8% vs. 60%

Study centers: The University Hospital in Nantes or Lille, France Others,a n=120

Patient population: NDMM, N=168

Treatment: Intensive therapies, including 4-5 courses of VAD followed 
by ≥1 course of high-dose therapy

t(11;14) detection method: FISH

Dewald et al. 
Blood 2005 
[75]

Study type: Retrospective 26.2 mo Metaphase FISH: Metaphase FISH 

Study period: March 1989 to Oct 2002 t(11;14) without t(4;14), t(14;16), 17p-, or 13q-, n=6 t(11;14) vs. t(4;14), t(14;16), 17p-, or 13q- vs. normal

Study center: Mayo Clinic t(4;14), t(14;16), 17p-, or 13q-, n=33 OS: 31.0 mo vs. 13.9 mo vs. 46.7 mo

Patient population: NDMM, N=154 Normal, n=93 Interphase FISH

t(11;14) detection method: FISH Interphase FISH: t(11;14) vs. t(4;14), t(14;16) vs. 13q- or 17p- vs. normal

Additional details: Patients were required to have BM specimens col-
lected within 30 days of diagnosis

t(11;14) without t(4;14), t(14;16), 17p-, or 13q-, n=15 OS: 55.3 mo vs. 13.3 mo vs. 33.9 mo vs. 45.0 mo

t(4;14), t(14;16), n=20

13q- or 17p- without t(4;14), t(14;16), n=59

Normal, n=21

Gertz et al. 
Blood 2005 
[76]

Study type: Retrospective 36 mo minimal 
follow-up for  
surviving  
patients

t(11;14), n=34 t(11;14) vs. non-t(11;14)

Study period: Jan 1990 to Sept 2001 Non-t(11;14), n=163 PFS: 20.1 mo vs. 15.3 mo

Study center: Mayo Clinic OS: 36.6 mo vs. 34.8 mo

Patient population: MM, N=238

Treatment: ASCT

t(11;14) detection method: FISH

Additional details: Patients were required to have pre-transplantation 
FISH on BM aspirates

Avet-Loiseau 
et al. Blood 
2007 [7]

Study type: Clinical trials IFM99-02, IFM99-03, and IFM99-04 41 mo for  
surviving  
patients

t(11;14), n=154 t(11;14) vs. non-t(11;14)

Patient population: NDMM, N=1064 Non-t(11;14), n=592 EFS: 35 mo vs. 34 mo (P=0.2)

Treatment: VAD with tandem ASCT (IFM99-02 and IFM99-04) and VAD 
with ASCT then reduced-intensity alloSCT (IFM99-03)

OS at 41 mo: 80% vs. 74% (P=0.28)

t(11;14) detection method: FISH
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Gutiérrez et 
al. Leukemia 
2007 [77]

Study type: Clinical trial GEM-2000 34 mo for  
surviving  
patients

t(11;14), n=34 t(11;14) vs. non-t(11;14)

Patient population: NDMM, N=260 Non-t(11;14), n=226 OS: 49 mo vs. 40 mo (P-value NS)

Treatment: VBMCP/VBAD induction followed by ASCT 

t(11;14) detection method: FISH

Additional details: Patients were required to have BM plasma cell 
infiltration above 10% by flow cytometry

An et al. Leuk 
Res 2013 [8]

Study type: Retrospective 3 y Thalidomide-based Thalidomide-based t(11;14) vs. non-t(11;14)

Study period: Jan 2004 to Dec 2012 t(11;14)b PFS: 23.0 mo vs. 18.0 (P=0.819)

Patient population: Plasma cell dyscrasia, N=350 (NDMM, n=253; 
RRMM, n=77; pPCL, n=10; sPCL, n=10)

Non-t(11;14) OS: 30.0 mo vs. 21.0 mo (P=0.902)

Bortezomib-based Bortezomib-based t(11;14) vs. non-t(11;14)

Treatment: Thalidomide- or bortezomib-based regimen t(11;14)b PFS: 28.7 mo vs. 32.5 mo (P=0.745)

t(11;14) detection method: FISH t(11;14) CD20- OS: 54.0 mo vs. 36.0 mo (P=0.612)

t(11;14) CD20+ Bortezomib-based t(11;14) CD20- vs. t(11;14) CD20+

Non-t(11;14) PFS: 11.0 mo vs. 43.0 mo (P=0.005)

OS: 16.5 mo vs. 54.0 mo (P=0.016)

Sasaki et al. 
Biol Blood 
Marrow  
Transplant 
2013 [85]

Study type: Retrospective 37 mo in  
surviving  
patients

t(11;14), n=27 t(11;14) vs. HR

Study period: Feb 2000 to Aug 2010 HR,c n=97 PFS: 23 mo vs. 9.7 mo

Study center: MD Anderson Cancer Center Normal, n=869 3-y PFS: 27% vs. 13% (P=0.05)

Patient population: Symptomatic MM, N=993 OS: 51 mo vs. 21 mo

Treatment: ASCT 3-y OS: 63% vs. 34% (P=0.04)

t(11;14) detection method: CC or FISH t(11;14) vs. normal

Additional details: Patients were required to have cytogenetic results 
before ASCT

PFS: 23 mo vs. 33 mo

3-y PFS: 27% vs. 47% (P=0.02)

OS: 51 mo vs. 87 mo

3-y OS: 63% vs. 82% (P=0.01)

Pawlyn et al. 
Blood 2015 
[13]

Study type: Clinical trial MRC Myeloma IX (enrollment between 2003 
and 2007)

NA for  
population used for 
cytogenetic analysis

t(11;14), n=127 t(11;14) vs. non-t(11;14)

Non-t(11;14), n=720 PFS: 21.3 mo vs. 17.1 mo (P-value NS)

Patient population: Symptomatic NDMM, N=847 OS: 51.1 mo vs. 45.8 mo (P-value NS)

Treatment: Intensive regimens (CVAD vs. CTD) or non-intensive regi-
mens (MP vs. CTDa)

t(11;14) detection method: FISH

Additional details: Patients were required to have a complete, valid data 
set for all adverse cytogenetic lesions and hyperdiploidy

Shin et al. Clin 
Lymphoma 
Myeloma Leuk 
2015 [87]

Study type: Retrospective 35 mo for  
surviving  
patients

t(11;14), n=7 t(11;14) vs. non-t(11;14)

Study period: April 2004 to Dec 2012 Non-t(11;14), n=40 PFS: 12 mo vs. 27 mo (hazard ratio, 25.154; P<0.001)

Study centers: 3 unnamed centers in Korea OS: 16 mo vs. NR (hazard ratio, 7.484; P=0.024)

Patient population: MM with extramedullary plasmacytoma, N=58

Treatment: ASCT

t(11;14) detection method: FISH

Additional details: Patients included in the study had available FISH re-
sults for 1 or more chromosomal abnormality in BM samples obtained 
at diagnosis
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Kaufman G et 
al. Leukemia 
2016 [10]

Study type: Retrospective 43.0 mo t(11;14), n=69 t(11;14) vs. SR vs HR

Study period: 2003 to 2012 SR, n=244 PFS: 28.1 mo vs. 30.4 mo vs. 24.9 mo (P=0.034)

Study center: Mayo Clinic HR,d n=96 OS: 73.4 mo vs. 103 mo vs. 60.5 mo (P<0.0001)

Patient population: NDMM, N=409

Treatment: ASCT within 12 mo of diagnosis

t(11;14) detection method: FISH

Additional details: Patients included in the study had evaluable FISH 
within 6 mo of diagnosis

Kaufman J 
et al. Blood 
2018 [86]

Study type: Retrospective 39 mo for PFS t(11;14), n=122 t(11;14) vs. SR non-t(11;14)

Study period: July 2005 to Aug 2016 38 mo for OS SR,e n=527 PFS: 51 mo vs. 75 mo (P<0.001)

Study center: Winship Cancer Institute OS: NR vs. NR

Patient population: NDMM, N=867

Treatment: RVD induction

t(11;14) detection method: FISH

Additional details: Patients were required to have FISH results for 
t(11;14)

Lakshman et 
al. Leukemia 
2018 [59]

Study type: Retrospective 66.2 mo t(11;14), n=365 t(11;14) vs. non-(11;14) translocation

Study period: Jan 2004 to Nov 2014 Non-(11;14) translocation,f n=132 PFS: 23.0 mo vs. 19.0 mo (P=0.01)

Study center: Mayo Clinic No translocation, n=598 OS: 74.4 mo vs. 49.8 mo (P<0.001)

Patient population: MM, N=1095 5-y OS: 57.8% vs. 41.7%

t(11;14) detection method: FISH t(11;14) vs. no translocation

Additional details: Patients were required to have cytogenetic results; 
2 patients with MM with normal or any non-t(11;14) abnormality and 
matching age and year of diagnosis were identified for each patient 
with t(11;14) MM

PFS: 23.0 mo vs. 28.3 mo (P=0.01)

OS: 74.4 mo vs. 103.6 mo (P=0.003)

5-y OS: 57.8% vs. 68.1%

Saini et al. 
Clin Cancer 
Res 2019 
[67]

Study type: Retrospective 42.7 mo for the 
overall matched 
cohort (N=160)

t(11;14), n=80 t(11;14) vs. SR

Study period: Jan 2006 to Dec 2015 SR, n=80 PFS: 29.9 mo vs. 51.9 mo (P=0.14)

Study center: MD Anderson Cancer Center 4-y PFS: 40.8% vs. 51.1%

Patient population: Symptomatic MM, N=160 OS: NR vs. NR (P=0.17)

Treatment: ASCT 4-y OS: 74.9% vs. 88.3%

t(11;14) detection method: FISH

Additional details: Patients were required to have data available for CC 
or FISH, and patients with t(11;14) detected by CC only were excluded; 
matched pairs for t(11;14) and SR were created via a 1:1 propensity-
score matched control without replacement

Miura et al. 
Blood 2019 
[53]

Study type: Retrospective NA t(11;14), n=57 t(11;14) vs. no specific abnormality:

Study period: April 2009 to July 2019 No specific abnormality,g n=137 PFS: 34.2 mo vs. 55.6 mo (P=0.036)

Study center: Kameda Medical Center t(4;14) or t(14;16), n=29 OS: 51.2 mo vs. NR (P=0.11)

Patient population: NDMM, N=234 t(11;14) vs. t(4;14) or t(14;16)

t(11;14) detection method: FISH PFS: 34.2 mo vs. 30.2

Additional details: Patients included in the study had cytogenetic 
analysis data available

OS: 51.2 mo vs. 79.8 mo
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Gran et al. Eur 
J Haematol 
2019 [88]

Study type: Retrospective 40.3 mo t(11;14) SR,h n=63 t(11;14) SR vs. non-t(11;14) SR

Study period: May 2005 to Sep 2018 t(11;14) HR,h n=26 PFS: 28.9 mo vs. 35.5 mo (P=0.22)

Study center: Karolinska University Hospital Non-t(11;14) SR,h n=204 5-y PFSi: 29.2% vs. 23.6% (P=0.2)

Patient population: NDMM, N=469 Non-t(11;14) HR,h n=176 5-y OS: 65.5% vs. 73.9% (P=0.4)

t(11;14) detection method: FISH t(11;14) HR vs. non-t(11;14) SR

Additional details: Patients included in the study were evaluated at time 
of diagnosis for t(11;14)

PFS: 24.1 mo vs. 35.5 mo

5-y PFSi: 13.2% vs. 23.6% (P=0.01)

5-y OS: 42.5% vs. 73.9% (P=0.1)

t(11;14) HR vs. non-t(11;14) HR

PFS: 24.1 mo vs. 27.2 mo (P=0.22)

5-y PFSi: 13.2% vs. 18.7%

5-y OS: 42.5% vs. 54.1%

Gao et al. 
Front Oncol 
2020 [62]

Study type: Retrospective 35.8 mo t(11;14), n=55 t(11;14) vs. SR

Study period: March 2003 to Jan 2018 SR,j n=248 PFS: 52 mo vs. 63 mo (P=0.935)

Study centers: Beijing Chaoyang Hospital, Shanghai Changzheng Hospi-
tal, and Guangzhou Zhongshan Hospital

HR,j n=152 OS: 86 mo vs. 100 mo (P=0.836)

t(11;14) vs. HR

Patient population: Symptomatic NDMM, N=455 PFS: 52 mo vs. 33 mo (P=0.009)

Treatment: ≥1 ASCT within 12 mo of treatment initiation OS: 86 mo vs. 71 mo (P=0.041)

t(11;14) detection method: FISH

Additional details: Patients were required to have FISH results prior to 
treatment initiation

Bal et al. Br 
J Haematol 
2021 [65]

Study type: Retrospective 37 mo for PFS t(11;14) with no HR abnormality, n=589 t(11;14) vs. non-t(11;14)

Study period: Jan 2011 to Feb 2020 35 mo for OS Non-t(11;14) with no HR abnormality, n=2909 PFS: 36.1 mo vs. 40.1 mo (hazard ratio, 1.16; P=0.028)

Data source: Flatiron database OS: 72 mo vs. 77 mo (hazard ratio, 1.12; P=0.19)

Patient population: MM, N=5581

t(11;14) detection method: FISH

Additional details: Patients included in the study had FISH results within 
90 days of diagnosis

Gasparetto  
et al. Clin 
Lymphoma 
Myeloma Leuk 
2022 [14]

Study type: Prospective observational cohort study NA for population 
used for t(11;14) 
analysis

t(11;14), n=378 t(11;14) vs. non-t(11;14)

Data source: Connect MM Registry Non-t(11;14), n=1196 PFS: 34.8 mo vs. 35.7 mo (hazard ratio, 1.02; P=0.7675k)

Patient population: NDMM, N=1574 OS: 74.0 mo vs. 77.3 mo (hazard ratio, 0.99; P=0.9417k)

t(11;14) detection method: CC or FISH

Additional details: Only patients who were tested for t(11;14) were 
included in the analysis

aPatients with either no 14q32 rearrangements, rearrangements with another unknown chromosomal partner, or t(14;16) [74]. bt(11;14) was detected in 60 patients with NDMM, 14 with RRMM, 6 with pPCL, and 5 with sPCL. t(11;14) thalidomide- and bortezo-
mib-based treatment subgroup n values NA [8]. cHR included del(13q)/-13 or hypoploidy by CC, or t(4;14), t(14;16), t(14;20) or del(17p13) by CC or FISH [85]. dHR included del(17p), t(4;14), t(14;16), or t(14;20) by FISH [10]. ePatients carrying del(17p), t(4;14), 
t(14;16), and a complex karyotype based on metaphase cytogenetics were excluded [86]. fIncluded patients with a defined non-(11;14) translocation, such as t(4;14), t(6;14) or t(14;20) [59]. gPatients did not have t(11;14), t(4;14), t(14;16), or del(17p) [53]. 
hPatients were grouped as HR or SR based on the International Myeloma Working Group consensus criteria [88, 104]. iBased on available data: t(11;14) HR, n=25; t(11;14) SR, n=53; non-t(11;14) HR, n=155; non-t(11;14) SR, n=178 [88]. jSR included patients 
without t(11;14), t(4;14), t(14;16), and del(17p); HR included patients with t(4;14), t(14;16), and/or del(17p) [62]. kP-value adjusted for patient cohort, age group, medical history of solitary plasmacytoma, surgery for myeloma, del(17p), t(14;16), t(4;14), and 
platelet count [14]. alloSCT, allogeneic stem cell transplantation; ASCT, autologous stem cell transplantation; BM, bone marrow; CC, conventional cytogenetics; CTD, cyclophosphamide, thalidomide, and dexamethasone; CTDa, cyclophosphamide, thalidomide, 
and dexamethasone with attenuated dosing; CVAD, cyclophosphamide, vincristine, doxorubicin, and dexamethasone; EFS, event-free survival; FISH, fluorescence in situ hybridization; HR, high risk; MM, multiple myeloma; MP, melphalan and prednisolone; 
NA, not available; NDMM, newly diagnosed multiple myeloma; NR, not reached; NS, not significant; OS, overall survival; PFS, progression-free survival; pPCL, primary plasma cell leukemia; RRMM, relapsed/refractory MM; RVD, lenalidomide, bortezomib, and 
dexamethasone; sPCL, secondary plasma cell leukemia; SR, standard risk; VAD, vincristine, doxorubicin, and dexamethasone; VBAD, vincristine, carmustine, doxorubicin, and dexamethasone; VBMCP, vincristine, carmustine, melphalan, cyclophosphamide, and 
prednisone.
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thalidomide and the proteasome inhibitor bort-
ezomib, were approved for the treatment of 
relapsed/refractory MM (RRMM) and eventual-
ly newly diagnosed MM. Overall, the uptake of 
novel agents has translated into improved  
overall survival for patients with MM [83, 84]. 
Yet, studies in the novel agent era have shown 
varying results regarding outcomes for patients 
with t(11;14) compared with patients with  
standard- or high-risk cytogenetics (Table 1).

The largest cohort of patients with MM carrying 
t(11;14) revealed significantly shorter PFS for 
patients with t(11;14) with no high-risk abnor-
mality compared with patients without t(11;14) 
with no high-risk abnormality (Table 1), even 
after adjustment for covariables [65]. In con-
trast, a more recent analysis published in  
2022 identified the second largest cohort of 
patients with t(11;14) MM and found no differ-
ences in outcomes between patients with and 
without t(11;14) (Table 1) [14]. However, com-
paring the results of studies evaluating the 
prognosis of t(11;14) MM in the era of novel 
agents is challenging due to differences in 
methodology, patient populations, and treat-
ments used, making it difficult to draw firm  
conclusions on the impact of t(11;14) (Table 1) 
[10, 59, 62, 67, 85, 86]. Importantly, the treat-
ments used when t(11;14) was first tested as  
a prognostic biomarker versus current studies 
are vastly different. 

Some studies have identified subsets of pa- 
tients with t(11;14) who may have poorer out-
comes. Two analyses have observed inferior 
outcomes for patients with t(11;14) lacking 
CD20 compared with those displaying CD20 
(Table 1) [8, 53]. Poor outcomes have also 
been observed for patients with t(11;14) MM 
who had extramedullary plasmacytoma (Table 
1) [87] and when autologous stem cell trans-
plantation (ASCT) was not performed [88]. In 
some instances, t(11;14) is associated with 
very aggressive MM, such as in primary pla- 
sma cell leukemia where this translocation is 
found in approximately 33%-71% of patients  
[6, 8, 69, 70]. Together, these studies suggest 
a differential impact of t(11;14) on prognosis 
based on additional disease characteristics or 
the type of treatment received. 

While the treatment landscape has evolved, 
some studies have produced conflicting results 
regarding the prognostic impact of t(11;14) 

MM. Both the revised International Staging 
System and the updated mSMART consensus 
guidelines continue to consider patients with 
t(11;14) as an isolated abnormality as stand- 
ard risk [89, 90]. However, the concomitant 
presence of secondary cytogenetic abnormali-
ties, like del(17p), may influence outcomes for 
patients with t(11;14) [65-68]. Nonetheless, 
the opportunity to develop targeted therapies 
for t(11;14) MM, and the use of such therapies, 
remains independent of prognostic relevance.

Therapeutic implications of t(11;14) MM

The introduction of novel agents has improved 
outcomes for patients with MM; however, some 
studies suggest treatment with proteasome 
inhibitors may result in limited benefit for 
patients with t(11;14) MM or AL amyloidosis 
[65, 86, 91]. Some studies have suggested  
that treatment with intensive therapies or ASCT 
results in favorable outcomes for patients with 
t(11;14) [7, 67, 74, 76, 77, 88].

Improved understanding of t(11;14) MM may 
enable the development of new treatment 
strategies based on the distinctive biology of 
these malignant plasma cells. The novel agent 
venetoclax may be uniquely positioned for the 
treatment of t(11;14) MM. Venetoclax is a  
highly selective, potent, oral BCL-2 inhibitor  
and represents the first targeted therapy for 
MM, as t(11;14) cells seem to have higher 
ratios of BCL-2 to MCL-1, rendering these 
myeloma cells particularly susceptible to BCL- 
2 inhibition [50, 51, 57, 92]. Various combina-
tions of venetoclax are under investigation, 
with the goal of enhancing venetoclax activity 
through complementary mechanisms, such as 
increasing BCL-2 dependency in MM cells with 
dexamethasone [93]. In clinical trials, veneto-
clax has demonstrated efficacy in patients with 
t(11;14) MM when given as monotherapy [51, 
94], and enhanced efficacy was observed  
when venetoclax was given as combination 
therapy [52, 95-98].

Several ongoing clinical trials are further evalu-
ating the safety and efficacy of these inves- 
tigational venetoclax combinations for the 
treatment of RRMM. CANOVA is a phase 3  
study (NCT03539744) evaluating the combina-
tion of venetoclax and dexamethasone versus 
pomalidomide and dexamethasone for the 
treatment of t(11;14) RRMM. While the effi- 
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cacy and safety of bortezomib added to vene- 
toclax combined with dexamethasone have 
already been demonstrated [52, 95], the open-
label, phase 2, dose-escalation M15-538 study 
(NCT02899052) is evaluating carfilzomib as 
the proteasome inhibitor added to venetoclax 
plus dexamethasone for the treatment of 
t(11;14) RRMM.

While most MM cells have robust surface 
expression of CD38, a recent study showed sig-
nificantly decreased CD38 expression in 
patients with t(11;14) MM [43]. However, 
decreased CD38 expression is also observed 
in patients who have sustained and deep 
response to daratumumab [99, 100], indicating 
this reduction is not necessarily an escape 
mechanism. Furthermore, MM cells with decre- 
ased CD38 expression may have impaired 
adhesion to stromal cells via CD38-CD31 inter-
actions, resulting in reduced growth and 
decreased protection against apoptosis [101, 
102]. Antibody-dependent cellular phagocyto-
sis induced by daratumumab has been 
enhanced by venetoclax in a preclinical model 
of double-hit lymphoma [103], providing the 
rationale for combining these agents. Vene- 
toclax, daratumumab, and dexamethasone are 
being studied with or without bortezomib in 
patients with RRMM in the 3-part, phase 1/2 
M15-654 study (NCT03314181). Initial results 
indicate deep and durable responses [96], sug-
gesting that the combination may be synergis-
tic and provide further benefit.

MM harboring t(11;14) clearly establishes it- 
self as a special subset of MM with its unique 
biology, such as B-cell-associated gene and 
protein expression, and association with less 
common clinical features, including immuno-
globulin M and light chain disease. Moreover, 
the growing evidence indicating t(11;14) may 
occur during an earlier stage of B-cell develop-
ment further separates t(11;14) MM from other 
subtypes. Ultimately, these unique features 
combined with the opportunity to effectively 
treat t(11;14) MM with therapies that target  
the biology of these malignant cells warrant  
the recognition of t(11;14) MM as a separate 
entity in the coming years. 

Over time, treatment of MM may evolve toward 
precision medicine, in which cytogenetic abnor-
malities are assessed and considered for ther-
apeutic decision making in earlier lines of ther-

apy. Accordingly, the MyDRUG study (NCT0- 
3732703) is an ongoing phase 1/2 study eva- 
luating the use of precision medicine to treat 
patients with RRMM who received at least 1 
but no more than 3 prior therapies. In this 
study, patients are assigned to a treatment  
arm based on the presence of certain muta-
tions or t(11;14); patients with t(11;14) MM  
will receive venetoclax in combination with ixa-
zomib, pomalidomide, and dexamethasone. 

In conclusion, the prognostic significance of 
t(11;14) MM remains debatable, as studies 
continue to show varying outcomes for patients 
harboring t(11;14) and may evolve with the 
changing treatment landscape. Irrespective of 
its prognosis, t(11;14) MM clearly exhibits 
unique biology and response to therapies, with 
targeted therapies, such as venetoclax, show-
ing promising efficacy. A deeper understanding 
of the distinct disease biology of t(11;14) MM 
and the potential availability of a targeted  
therapy may allow for improved outcomes for 
patients with t(11;14) MM. To this end, routine 
FISH testing should be performed at the time  
of diagnosis and relapse, and future clinical tri-
als should evaluate the incorporation of these 
therapies into earlier lines of treatment. Given 
that t(11;14) is indicative of a different biology, 
rather than a risk group, testing for this tran- 
slocation is of utmost importance to ensure 
that patients carrying t(11;14) receive the most 
appropriate treatment available.
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