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Summary 1 

Human locomotion and balance control are essential activities during daily life. 2 

Human locomotion is one of the most complex motor tasks, due to the multiple 3 

degrees of freedom of the musculoskeletal system, the several biomechanical 4 

functions carried out during each gait cycle, and the high intra-cycle variability of 5 

the muscle activation intervals. Balance control (e.g., single-leg stance) is also 6 

important during daily living activities, as a single task as well as a component of 7 

other more complex tasks, such as walking and running. It is a simple but 8 

challenging condition for balance control and for this reason it is widely used for 9 

training and rehabilitation programs. 10 

Due to the complexity of the musculoskeletal system, the central nervous 11 

system adopts different strategies to efficiently and accurately perform movements. 12 

Even if there is no consensus regarding the neural strategies adopted by the central 13 

nervous system to perform movements, the muscle synergy theory is the most 14 

widely used in literature. According to this theory, the central nervous system 15 

controls the activation level and the synchrony of small groups of muscles, rather 16 

than controlling independently every single muscle involved in the movement. 17 

The present doctoral thesis aims at proposing, validating, and applying novel 18 

methods for extracting muscle synergies that can be applied to achieve deeper 19 

insights into the neuromuscular control of human locomotion and balance control 20 

tasks. 21 

Considering human locomotion, two novel approaches for extracting muscle 22 

synergies and selecting the optimal number of muscle synergies are proposed and 23 

validated considering both physiological and pathological sample populations. The 24 

novel sEMG pre-processing approach, based on the extraction of principal 25 

activation intervals before muscle synergy extraction, allows a more interpretable 26 

assessment of the modular organization of the central nervous system during 27 
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walking without any loss of information with respect to the standard pre-processing 1 

approaches. Similar results are obtained considering both physiological and 2 

pathological (patients affected by Parkinson’s disease) sample populations. 3 

Moreover, the novel approach for selecting the optimal number of muscle 4 

synergies, based on a multi-criteria decision analysis model (ELECTRE III), 5 

reveals higher performance with respect to the standard threshold-dependent 6 

approaches proposed in literature, considering both simulated and real sEMG data. 7 

Considering balance control, instead, the modular organization during single-8 

leg stance is assessed by means of a novel approach based on the segmentation of 9 

the sEMG time-instants relative to a “well-balanced” single-leg stance or an 10 

“unbalanced” single-leg stance to be used as inputs of the muscle synergy 11 

extraction algorithm. The consolidated approach is then applied to the analysis of 12 

the modular organization of single-leg stance with and without visual feedback 13 

considering a healthy sample population. The modular organization, assessed 14 

through the novel approach, slightly changes when considering the eyes-closed 15 

condition, revealing a reorganization of the activation levels and balance control 16 

strategies. 17 

  18 
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Chapter 1 1 

Introduction 2 

1.1 Human Motor Control 3 

Human motor control is an outstandingly complicated system. Due to several 4 

neurophysiological (e.g., motoneurons and neuromuscular junctions), anatomical 5 

(e.g., muscles and joints), and kinematic (e.g., trajectories, accelerations, and 6 

velocities) variables that determine the execution of the same movement [1], the 7 

human motor system presents countless degrees of freedom (more than 1000). 8 

Thus, several combinations of neurophysiological, anatomical, and kinematic 9 

variables can be used to achieve the same movement, suggesting many possible 10 

ways to perform the same motor task (e.g., walking or running). 11 

In 1967, the degrees of freedom problem was assessed for the first time by 12 

Nikolai Aleksandrovich Bernstein in his book “The co-ordination and regulation 13 

of movements” [1]. Bernstein formally described for the first time this problem by 14 

stating that: 15 

 16 

“The basic difficulties for co-ordination consist precisely in the extreme 17 

abundance of degrees of freedom, with which the central nervous system […] is 18 

not at first in a position to deal”. 19 

 20 

Moreover, he gave a very modern definition of the coordination concept that 21 

is still one of the supporting pillars of modern motor control theories: 22 

 23 

“The co-ordination of a movement is the process of mastering redundant 24 

degrees of freedom of the moving organ, in other words its conversion to a 25 

controllable system. More briefly, co-ordination is the organization of the control 26 

of the motor apparatus”. 27 

 28 

In our body, the task of dealing with the motor system redundancy (i.e., 29 

multiple solutions for performing the same movement) is left to the Central Nervous 30 
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System (CNS). The CNS is composed of the brain and the spinal cord (Figure 1.1). 1 

The latter ranges from the lower region of the brain (i.e., the medulla) to the lumbar 2 

segments of the vertebral column, which encloses and protects the spinal cord. The 3 

human spinal cord is composed of 31 different segments which give rise to paired 4 

spinal nerves joined in the anterior and posterior roots. The posterior roots contain 5 

afferent fascicles and are characterized by the presence of spinal ganglia, while 6 

anterior roots contain the axons of those motor neurons (motor effector nerves) that 7 

have their bodies in the ventral grey horns of the spinal cord. Finally, the 8 

interneurons create reflex arcs between sensory and motor nerves, modulating the 9 

information between the anterior and the posterior roots. Figure 1.1 shows a 10 

graphical representation of the central nervous system and the spinal reflex arc. 11 

More specifically, 31 pairs of spinal nerves are present in the spinal cord: 8 12 

pairs of cervical nerves (from C1 to C8), 12 pairs of thoracic nerves (from T1 to 13 

T12), 5 pairs of lumbar nerves (from L1 to L5), 5 pairs of sacral nerves (from S1 to 14 

S5), and 1 pair of coccygeal nerves. Cervical nerves are used to control muscles 15 

involved in respiration and the movement of the head, neck, and arms. Thoracic 16 

 

Figure 1.1 Schematic representation of the central nervous system and the spinal reflex arc. Sensory 

receptor generates an input signal which travels through the afferent pathway from the sensory receptor to 

the posterior root of the spinal cord. The motor output, instead, travels through the efferent pathway from 

the anterior root of the spinal cord to the muscle. The connection between the afferent (input) and efferent 

(output) pathways is mediated by the interneuron. 
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nerves are used to control muscles involved in finger and trunk movements. Lumbar 1 

and sacral nerves are used to control locomotion, intestinal, and reproductive 2 

functions. 3 

Accordingly, how our CNS manages such complexity and selects only one 4 

solution (i.e., a combination of neurophysiological, anatomical, and kinematic 5 

variables) from all the other possibilities? How can we rapidly and accurately 6 

perform movements having an outstanding amount of degrees of freedom to choose 7 

from? What if our CNS, instead of choosing over multiple degrees of freedom, 8 

reduces the motor control complexity by using a few combinations of low-9 

dimensional elements? 10 

1.2 Muscle Synergy Theory 11 

Theoretical Background 12 

Despite several theoretical models (e.g., spinal force field, neuromotor 13 

synergies, and unit burst generators) [2–5] have been proposed in literature over the 14 

last decades, the muscle synergy theory is the one that achieved the greatest 15 

consensus across researchers [6]. According to this theory, the CNS controls the 16 

activation level (spatial component) and the synchrony (temporal component) of all 17 

the muscles involved in a specific movement through the combination of a small 18 

number of low-dimensional elements (called muscle synergies), rather than 19 

controlling independently every single muscle. Moreover, some muscle synergies 20 

have been demonstrated to be task-specific, while others may be shared among 21 

different motor behaviors, such as walking and running [7]. 22 

Figure 1.2 shows a schematic representation of the muscle synergy theory. The 23 

CNS manages the multiple degrees of freedom of the motor system by controlling 24 

small sets of muscles (called muscle synergies), rather than controlling every single 25 

muscle involved in a specific movement, separately. 26 

 

Figure 1.2 Schematic representation of the muscle synergy theory. 
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More specifically, two different definitions of the muscle synergy theory have 1 

been proposed in literature: the “time-invariant” muscle synergies and the “time-2 

varying” muscle synergies [8]. Considering the “time-invariant” muscle synergies, 3 

all the muscles within a specific muscle synergy are synchronously activated (i.e., 4 

there is no temporal modulation of the muscle activation levels), while, considering 5 

the “time-varying” muscle synergies, each muscle within a specific muscle synergy 6 

shows a temporal modulation over the task duration. In the present thesis, only the 7 

“time-invariant” muscle synergy definition was considered, allowing for the 8 

assessment of the temporal patterns of each muscle synergy. 9 

Even if there is no consensus on the neural origin of muscle synergies [7,9,10], 10 

several studies have supported the muscle synergy theory in several motor tasks, 11 

both in animals and humans. Considering animal studies, several authors have 12 

demonstrated a modular organization in the spinal cords and brainstems (in 13 

particular in the medulla) of rats, frogs, and cats [2,6,11–14]. These studies have 14 

shown that the spinal cord and brainstem express most of the muscle synergies for 15 

motor behavior [3,15]. However, the job of activating and coordinating these low-16 

level motor structures (i.e., weight vectors) is left to the primary motor cortex and 17 

other non-primary motor areas of the brain, such as the supplementary motor cortex 18 

and premotor cortex [3]. These high-level motor structures (i.e., activation 19 

coefficients) may contribute to the activation and coordination of the low-level 20 

motor structures by selecting the best subset of muscle synergies for the execution 21 

of a specific motor task.  22 

Considering human studies, the assessment of patients affected by 23 

neuromuscular or neurodegenerative diseases has contributed to the understanding 24 

of muscle synergies in humans, revealing results that are in line with those found 25 

considering animals. In particular, mildly-to-moderate impaired stroke survivors 26 

with motor cortical lesions have shown, during voluntary arm movements, similar 27 

muscle synergies between the affected and the unaffected arm, suggesting the 28 

preservation of the low-level motor structures (i.e, weight vectors) [16]. However, 29 

differences between the affected and the unaffected arm have been detected in the 30 

temporal coordination of the muscle synergies, suggesting the presence of disrupted 31 

high-level motor structures (i.e., activation coefficients) due to stroke-related 32 

lesions [16]. 33 

The effectiveness of the muscle synergy theory in modeling the human modular 34 

organization of the CNS during different motor tasks has been demonstrated in 35 

several studies and research areas, such as clinics, robotics, and sport [17,18]. 36 

Among all the possible motor tasks, human locomotion is one of the most widely 37 

studied movement to assess muscle synergies in humans. Several are the reasons 38 

explaining why human locomotion is the most widely investigated motor task: 39 

• the high number of muscles and joints involved  40 

• the biomechanical functions carried out during each gait cycle 41 

• is one of the most important Activities of Daily Living (ADL) 42 

• it is easier with respect to other movements thanks to its cyclic nature 43 

• the high cycle-by-cycle variability of the muscle activation intervals 44 
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• it can be easily performed by patients, children, and elderly that are able 1 

to independently walk without walking aids or external supports. 2 

According to several studies, human locomotion can be modeled by a small set 3 

of muscle synergies characterized by specific biomechanical functions [19–22]. 4 

Besides inter-subject variability, the number of muscle synergies extracted and their 5 

biomechanical functions may vary depending on the type and number of muscles 6 

considered [23], the sEMG pre-processing techniques, and the factorization 7 

algorithm implemented. Nevertheless, the number of muscle synergies 8 

characterizing human locomotion is usually found equal to 4 or 5 [19,24].  9 

Moreover, the muscle synergy theory has been recently used to gain a deeper 10 

understanding of human postural control [25–27]. The control of balance requires 11 

sensorimotor transformations that allow CNS to rapidly interpret multiple sensory 12 

input signals from all segments of the body to produce context-dependent muscle 13 

activation patterns that stabilize the body. According to several studies, the 14 

variations in muscle activation patterns evoked in response to different “controlled” 15 

perturbations (e.g., support-surface movements in the horizontal plane) could be 16 

described by a limited set of muscle synergies [25–29]. Muscle synergies that 17 

contribute to balance control have been demonstrated to be highly consistent across 18 

different balance tasks and levels of difficulty [26,30,31], suggesting that increasing 19 

the task complexity there should be only slight modifications to the basic motor 20 

control strategies involved in postural balance control. Depending on the type and 21 

the number of muscles acquired and the factorization algorithm implemented, the 22 

number of muscle synergies extracted during postural control ranges between 4 and 23 

6. 24 

Numerical Approaches 25 

Muscle synergies are usually extracted from surface electromyographic 26 

(sEMG) signals acquired, during a specific motor activity, from a set of muscles 27 

that are mainly involved in the analyzed movement [6]. The factorization approach 28 

aims at identifying common sEMG patterns recorded from multiple muscles during 29 

specific motor activity. 30 

Figure 1.3 shows the schematic representation of the muscle synergy 31 

extraction process. Figure 1.3A represents the sEMG signals acquired during a 32 

specific motor activity, e.g., walking, while Figure 1.3B shows the weight vectors 33 

and the activation coefficients extracted from the sEMG signals through 34 

factorization approaches. Finally, Figure 1.3C represents the activation 35 

coefficients and weight vectors that are used by the CNS to generate a specific 36 

motor activity (as described in Figure 1.3A). 37 

In the last years, the modular organization of the CNS has been modeled as the 38 

linear combination of synergies as weight vectors in the space of muscle activations 39 

as defined by the following equation [32,33]: 40 
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𝑀(𝑡) = ∑ 𝐶(𝑡)𝑘  ∙ 𝑊𝑘 + 𝑒

𝑁

𝑘=1

 (1.1) 

where 𝑀(𝑡) is a matrix containing the original sEMG signals acquired from the 1 

observed muscles at a specific time point (𝑡) [8], 𝑁 is the number of synergies, 𝑊𝑘 2 

is a time-independent vector of non-negative weights (called weight vector [34]), 3 

𝐶(𝑡)𝑘 is a time-dependent set of non-negative muscle activation coefficients (called 4 

activation coefficients [34]), and 𝑒 is the model reconstruction error [6]. According 5 

to this model, high-dimensional data, such as sEMG signals acquired from multiple 6 

muscles (Figure 1.3A), can be compactly represented by the linear combination of 7 

low-dimensional elements (i.e., weight vectors and activation coefficients) (Figure 8 

1.3B). 9 

Several factorization methods for muscle synergy extraction have been 10 

proposed in literature. Some of the most widely used methods are the Principal 11 

Component Analysis (PCA), the Independent Component Analysis (ICA), the 12 

inverse Gaussian, and the Non-Negative Matrix Factorization (NNMF) 13 

[4,6,17,32,33,35–40]. The comparison among different factorization approaches 14 

for muscle synergy extraction reveals a high similarity in the computed muscle 15 

synergies [32,41]. However, since the nature of muscle activation is undeniably 16 

non-negative, the Non-Negative Matrix Factorization (NNMF) is one of the most 17 

widely used factorization approaches, as it does not allow for negative values. 18 

 

Figure 1.3 Schematic representation of the muscle synergy extraction process. 
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According to the original definition of the NNMF approach by Daniel D. Lee 1 

and Sebastian H. Seung [41], a matrix of observations 𝑉 can be decomposed in the 2 

product of two non-negative matrixes 𝑊 and 𝐶 as it follows (1.2): 3 

𝑉𝑚×𝑡 ≈  𝑉𝑅 = 𝑊𝑚×𝑟 𝐶𝑟×𝑡 (1.2) 

where 𝑉𝑅 represent the model reconstruction of the original observation matrix 𝑉 4 

containing the sEMG data, 𝑊 is a matrix of dimension 𝑚 × 𝑛, and 𝐶 is a matrix of 5 

dimension 𝑛 × 𝑡, with 𝑚 being the number of observed muscles, 𝑡 the number of 6 

recorded time-instants, and 𝑟 the rank of factorization (i.e., the number of muscle 7 

synergies) [41]. 8 

Figure 1.4 shows a schematic representation of sEMG data factorized using 9 

the NNMF approach. The matrix of observations 𝑉 is graphically represented for 10 

six different muscles. Then, 𝑉 can be approximated (𝑉𝑅) through the linear 11 

combination of 𝑊 (weight vector matrix) and 𝐶 (activation coefficient matrix). 12 

Since the weight vectors are time-independent constants, 𝑊 is usually represented 13 

through a bar diagram. Instead, since the activation coefficients describe the 14 

temporal modulation of the muscle synergies, 𝐶 is usually represented as time-15 

dependent curve. By multiplying and summing synergy-by-synergy the elements of 16 

𝑊 and 𝐶, it is then possible to reconstruct the matrix of observations 𝑉 (representing 17 

the original sEMG data). 18 

More specifically, the NNMF approach is an iterative process that aims at 19 

computing the 𝑊 and 𝐶 values that minimize the model reconstruction error (𝑒). 20 

This optimization problem is solved by the NNMF approach by minimizing a cost 21 

function for measuring the divergence between the matrix of observations (𝑉) and 22 

 

Figure 1.4 Schematic representation of sEMG data factorized through Non-Negative Matrix Factorization 

(NNMF) approach. Muscle activations of six different muscles (𝑽) are compactly represented with four 

muscle synergies. Each weight vector (𝑾) describes the time-independent contribution of each muscle to 

a specific muscle synergy. Each activation coefficient (𝑪), instead, describes the time-dependent 

modulation of a specific muscle synergy. The multiplication of W and C gives an approximate 

reconstruction of the original sEMG data (𝑽). 
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the reconstructed matrix of observations (𝑉𝑅) that was originally defined by Lee 1 

and Seung [42]. One of the most commonly used cost functions is the squared error 2 

(or Frobenius Norm), defined as follows: 3 

𝐹(𝑊, 𝐶) =  ‖𝑉 − 𝑊𝐶‖𝐹
2  (1.3) 

where 𝑉 represents the observation matrix, 𝑊 represents the weight vector matrix, 4 

and 𝐶 the activation coefficient matrix. 5 

An important consideration on factorization approaches is that, since none of 6 

them can automatically define the best factorization rank 𝑟 (i.e., the optimal number 7 

of muscle synergies necessary to reconstruct the original sEMG data), a further step 8 

is needed to define the factorization rank that best models the original matrix of 9 

observations. To assess the reconstruction quality of the extracted muscle synergies, 10 

two metrics have been commonly used in literature: the Variance Accounted For 11 

(𝑉𝐴𝐹) and the coefficient of determination 𝑅2. These metrics indicate to what 12 

extent the reconstructed sEMG data (obtained by multiplying 𝑊 and 𝐶 matrixes) 13 

are similar to the acquired sEMG signals (𝑉). Both metrics are defined as follows: 14 

𝑉𝐴𝐹 = (1 −  
𝑅𝑆𝑆

𝑆𝑆𝑇
) ∙ 100 = (1 −  

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖)2𝑛
𝑖=1

) ∙ 100 (1.4) 

𝑅2 = (1 −  
𝑅𝑆𝑆

𝑆𝑆𝑇
) ∙ 100 = (1 −  

∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

) ∙ 100 (1.5) 

where 𝑅𝑆𝑆 represents the Residual Sum of Squares (or the sum of squared errors), 15 

𝑆𝑆𝑇 the Sum of Squares Total (or the total sum of squares), 𝑦𝑖 the observed data, 16 

𝑦̅𝑖 the average of the observed data, and 𝑦̂𝑖 the estimate of the observed data through 17 

the factorization algorithm. Therefore, both metrics quantify the fraction of data 18 

variation accounted for by the muscle synergy reconstruction, but they differ in the 19 

data variation definition used for their computation. Considering 𝑅2 metric, the data 20 

variation is computed with respect to the mean, while, for the 𝑉𝐴𝐹 metric, the mean 21 

is not subtracted before data variation computation and, thus, the data variation is 22 

computed with respect to zero. High values of 𝑉𝐴𝐹 or 𝑅2 (i.e., close to 100%) 23 

indicate an accurate reconstruction of the original sEMG data, while low values 24 

(i.e., close to 0%) indicate that muscle synergies do not explain a large part of the 25 

sEMG variance. The minimum number of muscle synergies necessary to 26 

reconstruct the original sEMG data is then selected by analyzing the plot of the 𝑉𝐴𝐹 27 

(or 𝑅2) versus all the tested number of muscle synergies (called 𝑉𝐴𝐹 or 𝑅2 curve) 28 

[16,23,32,43–47]. One of the most widely used criteria is the selection of the first 29 

point where the 𝑉𝐴𝐹 or 𝑅2 curve reaches a threshold that is commonly set equal to 30 

90% [24,43,44,46]. 31 

Figure 1.5 shows an example of non-negative matrix factorization outcomes 32 

extracted from sEMG signals of a healthy subject during walking, where non-33 

negative weight vectors are represented through bar diagrams and activation 34 

coefficients through curves. A large number of muscle activities (i.e., 12 muscle 35 

activities) can be modeled by a lower number of activation coefficients (𝐶) and 36 
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weight vectors (𝑊). In particular, during walking, foot plantar flexors (e.g., Lateral 1 

Gastrocnemius, Peroneus Longus, and Soleus) are used for propulsion in the second 2 

part of the stance phase, when their weight (or contribution) is highest (i.e., W1 in 3 

Figure 1.5). However, during the swing phase, their activity is not as “important” 4 

and thus their contribution is close to zero (i.e., W2, W3, W4, and W5 in Figure 5 

1.5). 6 

 Another important consideration on factorization approaches is that each of 7 

them can be applied in many different ways and their outputs may vary depending 8 

on the initial data conditions. For example, several NNMF algorithms have been 9 

proposed in the last years based on different mathematical models [41,48]. 10 

Additionally, the way initial random values of the NNMF approach are selected 11 

plays a role in the number and quality of the calculated muscle synergies [37]. 12 

The number and choice of the muscles to be acquired, the number of task 13 

repetitions, and the necessary sEMG pre-processing steps before factorization are 14 

other factors that can strongly influence the factorization output. Several studies 15 

have provided methodological recommendations to allow a more comprehensive 16 

muscle synergy analysis and guarantee comparability of the results 17 

[23,36,38,39,44,49–53]. The study by Steele et al. [23] demonstrated that the 18 

number and the structure of muscle synergies are dependent upon the number and 19 

choice of muscles included in the analysis. Indeed, due to constraints on time, 20 

experimental setup, and subject comfort, sEMG signals are usually measured only 21 

from a subset of muscles involved in the observed movement. In particular, 22 

researchers typically include the larger muscles thought to contribute to the 23 

observed movement and from which it is easier to acquire sEMG signals. 24 

Depending on the limb and movement observed, different numbers of muscles, 25 

 

Figure 1.5 Example of muscle synergies extracted via Non-Negative Matrix Factorization (NNMF) from 

a set of muscles of a healthy subject during walking. Weight vectors (𝑾) are represented through bar 

diagrams on an amplitude-normalized y-axis, while activation coefficients (𝑪) are represented through 

curves on an amplitude-normalized y-axis. Muscle abbreviations:  LDR = right Longissimus Dorsii, LDL = 

left Longissimus Dorsii, TFL = Tensor Fasciae Latae, GMD = Gluteus Medius, RF = Rectus Femoris, LH 

= Lateral Hamstring, MH = Medial Hamstring, VM = Vastus Medialis, LGS = Lateral Gastrocnemius, PL 

= Peroneus Longus, SOL = Soleus, and TA = Tibialis Anterior. 
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ranging from five to twenty-four muscles, have been measured to model motor 1 

control strategies [31,54–59]. Results revealed that the average similarity of 2 

synergies to the master set (e.g., muscle synergies calculated from all the acquired 3 

muscles) dropped below 0.8 when fewer than eleven muscles were included in the 4 

analysis. Moreover, analyses that included small subsets of muscles also 5 

overestimated the variance accounted for by the synergies compared to the analysis 6 

computed considering larger subsets of muscles. 7 

The study by Oliveira et al. [38], instead, investigated the influence of data 8 

structure (i.e., sEMG averaging, concatenation, and number of task repetitions) on 9 

the extracted muscle synergies, providing practical guidelines on the 10 

methodological aspects of muscle synergy extraction from sEMG signals during 11 

locomotion. The same number of muscle synergies was extracted by NNMF from 12 

all the acquired gait cycles separately, from averaging 2, 3, 5, 10, 20, and 40 13 

consecutive gait cycles, and from the concatenation of the same sets of consecutive 14 

gait cycles. However, the muscle synergies extracted considering the concatenation 15 

of gait cycle subsets revealed a slightly reduced reconstruction accuracy compared 16 

to the other two tested conditions. Nevertheless, muscle synergies extracted from 17 

all the gait cycles separately or from averaging subsets of gait cycles did not account 18 

for step-to-step variability. 19 

Finally, in the work by Kieliba et al.[49], the effect of different low-pass filter 20 

cut-off frequencies and amplitude-normalization techniques on muscle synergies 21 

extracted from the upper limb muscles of healthy subjects during point-to-point 3D 22 

reaching movements was assessed. Four different low-pass filter cut-off 23 

frequencies (i.e., 0.5 Hz, 4 Hz, 10 Hz, and 20 Hz) and two different amplitude-24 

normalization techniques (i.e., maximum voluntary contraction and maximum 25 

amplitude of the recorded sEMG signal) were tested. In terms of filter cut-off 26 

frequencies, results showed that increasing the low-pass filter cut-off frequency had 27 

the effect of decreasing the amount of variance accounted for and, perhaps, the 28 

selected number of muscle synergies. Muscle synergies, instead, were not 29 

significantly altered by the amplitude-normalization techniques. 30 

 31 

1.3 Aim of the Thesis and Organization 32 

The present doctoral thesis aims at proposing, validating, and applying novel 33 

methods for extracting muscle synergies. These methods can be useful to provide 34 

deeper insights into the neuromuscular control of human locomotion and single-leg 35 

stance tasks. More specifically, this thesis is divided into two different sections 36 

aimed at assessing the modular organization of the central nervous system during 37 

cyclic (locomotion) and non-cyclic (single-leg balance) movements. In this thesis, 38 

both methodological and application-oriented studies are presented and discussed. 39 

Chapter 2 - A Deep Learning Approach for Muscle Activity Detection aims 40 

at proposing a novel approach for extracting muscle activation intervals 41 

(onset/offset time instants) from raw surface electromyographical (sEMG) signals 42 

by using a deep learning approach based on Long Short-Term Memory (LSTM) 43 
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neural networks. Then, the proposed muscle activity detector will be used, in the 1 

following chapter (Chapter 3 - Motor Control Strategies during Cyclic 2 

Movements), as an sEMG pre-processing step before muscle synergy extraction. 3 

Chapter 3 - Motor Control Strategies during Cyclic Movements aims at 4 

assessing human motor control strategies during cyclic movements (i.e., 5 

locomotion) in both patients affected by Parkinson’s Disease and healthy subjects. 6 

More specifically, two methodological studies are described. Those studies aim at 7 

presenting and validating novel methods for extracting muscle synergies by 8 

extracting principal activations (Methodological Issue - Muscle Synergies 9 

Extracted Using Principal Activations) and for selecting the optimal number of 10 

muscle synergies by applying a multi-criteria decision analysis approach 11 

(Methodological Issue – Multi-Criteria Decision Analysis for Selecting the 12 

Optimal Number of Muscle Synergies). 13 

Chapter 4 - Motor Control Strategies during Non-Cyclic Movements aims 14 

at assessing human motor control strategies during non-cyclic movements (i.e., 15 

single-leg stance). More specifically, one methodological and one application-16 

oriented study are described. The first one aims at presenting and validating a novel 17 

method for extracting muscle synergies by distinguishing between the sEMG time-18 

instants relative to a “well-balanced” and an “unbalanced” single-leg stance 19 

(Methodological Issue – Muscle Synergy Assessment during Single-Leg 20 

Stance). The application-oriented study, instead, aims to assess the influence of 21 

visual feedback on the modular organization of the central nervous system during 22 

single-leg stance considering healthy subjects (Application - Influence of Visual 23 

Feedback on Muscle Synergies). 24 

Chapter 5 - Conclusions and Perspectives aims at summarizing the results 25 

described in the previous chapters highlighting the advantages of the proposed 26 

methodologies and the future perspectives. 27 

Finally, in Appendix A - Extraction of Principal and Secondary Activations 28 

through CIMAP chapter, a brief introduction to the Clustering for Identification 29 

of Muscle Activation Patterns (CIMAP) algorithm is provided. 30 

To improve the readability of the present thesis, at the beginning of each 31 

chapter the muscle synergy theory, the factorization approach adopted, and the 32 

sample population enrolled are briefly introduced. 33 

Figure 1.6 shows a graphical representation of the doctoral thesis’s contents.34 
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Figure 1.6 Graphical representation of the doctoral thesis’s contents. 
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Chapter 2 1 

A Deep Learning Approach for 2 

Muscle Activity Detection 3 

Determining muscle activation intervals (onset/offset time-instants) during 4 

human movements is of great interest in different research fields, such as gait 5 

analysis, myoelectric control of prostheses, and pre-processing of muscle synergy 6 

extraction. 7 

In the following chapter, the methodological issues related to muscle activation 8 

interval detection are presented and discussed. More specifically, a novel approach 9 

for muscle activity detection, based on LSTM neural networks, is proposed and its 10 

performance is compared against two of the most widely used approaches: the 11 

Teager-Kaiser Energy Operator (TKEO) detector and the statistical double 12 

threshold detector. 13 

2.1 Introduction 14 

Dynamic muscle activity can be non-invasively investigated by means of 15 

surface electromyography (sEMG). Determining the start (onset) and end (offset) 16 

instants of muscle activations during human movements is of great interest in 17 

different research fields including gait analysis [60], motor rehabilitation and sport 18 

science [61], myoelectric control of prostheses [62], human-machine interaction 19 

[63], design of biofeedback systems [64], and pre-processing of muscle synergy 20 

extraction [46,65,66]. In particular, the accurate temporal analysis of muscle 21 

activation in terms of burst onset, duration of the activation interval, and burst 22 

offset, can be useful in the assessment of the altered locomotion patterns of 23 

orthopedic and neurological patients [67]. 24 

A classical way to detect the timing of muscle activations from sEMG signals 25 

is using a double threshold detector, such as the statistical detector by Bonato et al. 26 

[68], specifically developed for gait analysis. However, this detector requires, as a 27 

necessary input parameter, to set the first (amplitude) threshold that depends on the 28 
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background noise level. Furthermore, to fine-tune the second threshold, it is 1 

important to estimate the signal-to-noise ratio (𝑆𝑁𝑅), e.g., through the algorithm 2 

described in Ref. [69]. 3 

Alternative methods, such as deep learning approaches, are being explored to 4 

perform sEMG-based pattern recognition [70–79]. Muscle activity detection is 5 

somewhat easier with respect to a pattern-recognition problem. Indeed, the focus is 6 

not on classifying different movements, but simply detecting the presence or 7 

absence of muscle activation. Exploiting artificial intelligence, such as a Recurrent 8 

Neural Network (RNN), has been a winning strategy in a wide variety of different 9 

applications and might be explored also for our problem. RNN is a powerful 10 

learning algorithm inspired by the biological neural networks that constitute the 11 

human brain, and it is trained to present to the network a large number of labeled 12 

“examples” [80]. Long Short-Term Memory (LSTM) neural networks are a widely 13 

used type of RNNs specifically designed to recognize patterns and time-14 

dependencies in sequential data, such as numerical time series, texts, and audio 15 

tracks [81]. These neural networks were first introduced by Hochreiter and 16 

Schmidhuber in 1997 [82] and represent an extension of the Recurrent Neural 17 

Networks (RNNs), allowing for a better assessment of the time-dependencies in 18 

long sequential data. Actually, LSTM neural networks represent the state of art in 19 

natural language processing and speech recognition problems [83]. 20 

The aim of this chapter is to assess the applicability of a novel approach for 21 

muscle activity detection, based on LSTM neural networks, specifically developed 22 

to overcome the limitations of the standard approaches. The performance of the 23 

LSTM-based Muscle Activity Detector (LSTM-MAD) are evaluated and compared 24 

against a standard approach (Teager-Kaiser Energy Operator, TKEO) [84,85], and 25 

a statistical approach (Statistical Double Threshold Detector) [68] in terms of 26 

Precision, Recall, F1-score, and Jaccard similarity index, both on simulated and real 27 

sEMG signals. 28 
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2.2 Materials and Methods 1 

First, a dataset of simulated sEMG signals was built to assess the applicability 2 

of the LSTM-based approach to muscle activity detection and to compare its 3 

performance with respect to a standard and a statistical approach. For the standard 4 

approach, the Teager-Kaiser Energy Operator (TKEO) followed by the linear 5 

envelope extraction was implemented [85], while for the statistical approach it was 6 

implemented the double threshold statistical detector proposed in Ref. [68]. Figure 7 

2.1 represents the block diagram of the procedure followed in this chapter. 8 

Second, the LSTM-based approach was optimized on real sEMG signals, 9 

acquired in previous studies from lower limb and trunk muscles during gait, to 10 

emphasize its advantages in gait analysis. 11 

1. Simulated Data 12 

The sEMG signals acquired during cyclic movements, such as gait, can be 13 

modeled by the superimposition of two different contributions: (i) the electrical 14 

activity (𝑠(𝑡)) generated by each muscle during the contraction and (ii) the 15 

background noise (𝑛(𝑡)) mainly generated by the neighboring muscles and, to a 16 

lesser extent, by the acquisition system electronics. Under the hypothesis of cyclic 17 

contractions, the sEMG signal can be defined as a cyclostationary process [86] and, 18 

therefore, described through the superimposition of two different stationary 19 

processes [69]: 20 

i. The muscle activity (𝑠(𝑡)) modeled as a Gaussian process with zero-mean 21 

and variance 𝜎𝑠
2, as described in (2.1): 22 

 

Figure 2.1 Schematic representation of the procedure followed to assess the performance of the new 

LSTM-MAD (LSTM-based Muscle Activity Detector) with respect to standard and statistical approaches 

for muscle activity detection. 
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𝑠(𝑡) ∈ 𝑁(0, 𝜎𝑠
2) (2.1) 

where 𝜎𝑠 was set equal to 10(𝑆𝑁𝑅
20⁄ ) ∙ 1µ𝑉. 1 

ii. The background noise (𝑛(𝑡)) modeled as a zero-mean Gaussian process with 2 

variance 𝜎𝑛
2, as described in (2.2): 3 

𝑛(𝑡) ∈ 𝑁(0, 𝜎𝑛
2) (2.2) 

  where 𝜎𝑛 was set equal to 1µ𝑉. 4 

Each simulated sEMG signal was finally modeled as the superimposition of 5 

two stationary processes: the background noise process only in correspondence of 6 

the time-instants in which the muscle is non-active (OFF state) and a second 7 

stationary process 𝑥(𝑡) in correspondence of the time-instants in which the muscle 8 

is active (ON state) given by the superimposition of the muscle activity (2.1) and 9 

the background noise (2.2) Gaussian processes as follows (2.3). 10 

𝑥(𝑡) = 𝑛(𝑡) + 𝑠(𝑡) (2.3) 

 11 

Each realization of the muscle activity process 𝑠(𝑡) was simulated assuming a 12 

time period of 1s (gait cycle) and a sampling frequency of 1 kHz. Physiological 13 

muscle activity was modeled by time-windowing the Gaussian process 𝑠(𝑡) through 14 

a single truncated Gaussian function centered at 50% of the gait cycle. Different 15 

standard deviations (σ), and time supports (2𝛼𝜎) of the truncated Gaussian function 16 

have been considered to simulate sEMG signals similar to those observed in leg, 17 

thigh, and trunk muscles during gait. More specifically, three different values of the 18 

standard deviation (𝜎 = 50, 100, 150 𝑚𝑠) and four different values of the time 19 

support 2𝛼𝜎 (with 𝛼 = 1, 1.5, 2, 2.4) have been tested [68]. Each muscle activity 20 

was then band-pass filtered through a 4th order Butterworth digital filter with a 21 

lower cut-off frequency of 10 Hz and a higher cut-off frequency of 450 Hz to 22 

simulate the frequency spectrum of real sEMG signals [87].Then, the background 23 

noise process (𝑛(𝑡)) was superimposed. Nine different values of Signal-to-Noise 24 

Ratio (𝑆𝑁𝑅) were simulated (𝑆𝑁𝑅 = 3, 6, 10, 13, 16, 20, 23, 26, 30 𝑑𝐵) [68]. For 25 

each triplet of 𝜎, 𝛼, and 𝑆𝑁𝑅 values, 100 different realizations (𝑁) have been 26 

simulated and, therefore, a dataset composed by 10800 different realizations (3 27 

standard deviations × 4 time supports × 9 𝑆𝑁𝑅𝑠 × 100 realizations) was built. 28 

Figure 2.2 represents an example of a simulated sEMG signal with the 29 

superimposition of the truncated Gaussian function used to model a physiological 30 

muscle activity. 31 

The time-instants relative to each simulated muscle activity (𝑠(𝑡)) were defined 32 

by a binary mask (BMsim) that was set equal to 1 in correspondence of the time-33 
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instants in which the truncated Gaussian assumed values higher than 0, and it was 1 

set equal to 0 otherwise. 2 

2. Real Data 3 

Gait data were acquired from 20 subjects at PoliToBIOMed Lab (Politecnico 4 

di Torino, Turin, Italy) to test the performance of the three different approaches 5 

when applied to real sEMG signals. Subjects were randomly selected from our 6 

database to include both healthy individuals, and patients affected by neurological 7 

or orthopedic pathologies. This non-homogeneous group of subjects was 8 

specifically chosen to verify that the algorithm works under different conditions. In 9 

particular, 8 out of 20 subjects were healthy adults (age: 38.0 ± 13.1 years, height: 10 

164.9 ± 5.4 cm, weight: 65.4 ± 21.2 kg) [46], 6 were patients with unilateral total 11 

hip prosthesis (age: 73.8 ± 8.4 years, height: 175.5 ± 7.6 cm, weight: 86.8 ± 16.3 12 

kg) [88], and the other 6 were patients affected by idiopathic normal pressure 13 

hydrocephalus (age: 75.7 ± 6.3 years, height: 170.5 ± 6.3 cm, weight: 72.5 ± 10.4 14 

kg) [89]. 15 

Signals were recorded through a multichannel acquisition system (STEP32, 16 

Medical Technology, Italy), specifically developed for statistical gait analysis 17 

[46,90,91]. Surface electromyographic (sEMG) signals were acquired through 18 

active probes (configuration: single differential, size: 19 mm × 17 mm × 7 mm, Ag-19 

disks diameter: 4 mm, interelectrode distance: 12 mm, gain: variable in the range 20 

from 60 dB to 86 dB) placed over the following 4 muscles of the lower limb: Rectus 21 

Femoris (RF), Lateral Hamstring (LH), Lateral Gastrocnemius (LGS), and Tibialis 22 

Anterior (TA). The dominant lower limb was analyzed for healthy subjects, while 23 

the most affected limb was selected for pathological subjects. 24 

For each subject, 5 gait cycles were randomly selected from the whole walking 25 

task to build the real dataset. Therefore, a dataset composed of 400 different sEMG 26 

signals (20 subjects × 5 gait cycles × 4 muscles) was obtained. The time-instants 27 

relative to each real-muscle activity were manually segmented by three expert 28 

operators. More specifically, a binary mask (BMreal) was set equal to 1 in 29 

 

Figure 2.2 Example of a simulated sEMG signal (blue line) with the indication of the truncated Gaussian 

function (black line) used for the simulation of the muscle activity. The 𝑺𝑵𝑹 is set equal to 20 dB, the 

standard deviation of the truncated Gaussian (σ) is equal to 100 ms, and the time support (2ασ) is obtained 

for α=1.5. 
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correspondence of the time-instants in which the majority of the expert operators 1 

(at least two out of three) detected a muscle activity and to 0 otherwise. 2 

The real dataset described and used in this chapter to train and test the LSTM-3 

MAD can be freely found online at Zenodo (doi: 10.5281/zenodo.4391062) in MAT 4 

and CSV format. 5 

3. Standard Approach: TKEO and Linear Envelope 6 

One of the most commonly applied standard approaches for muscle activity 7 

detection is the Teager-Kaiser Energy Operator (TKEO) followed by the linear 8 

envelope extraction. This approach has been demonstrated to increase the accuracy 9 

of the simple linear envelope approach [84,85]. 10 

More specifically, a single threshold was applied to the filtered sEMG signals 11 

after the computation of the TKEO (ψ), defined as in (2.4): 12 

𝜓𝑥(𝑛) =  𝑥(𝑛)2 − 𝑥(𝑛 + 1)𝑥(𝑛 − 1) (2.4) 

where 𝑥 represents the sEMG time-series and 𝑛 the sample number. The single 13 

threshold (𝑇ℎ𝑟) was defined as described in (2.5): 14 

𝑇ℎ𝑟 =  µ𝑛 ± 𝑗 ∙ 𝜎𝑛 (2.5) 

where µ𝑛, 𝜎𝑛 and 𝑗 represent the mean of the background noise, the standard 15 

deviation of the background noise, and a multiplicative constant, respectively. In 16 

this chapter, the constant 𝑗 was set equal to 7 as suggested in Ref. [84],[92]. Since 17 

the average (µ𝑛) and the standard deviation (𝜎𝑛) of the background noise are 18 

required as inputs of this approach, time-instants corresponding to the background 19 

noise were automatically selected considering a 100-ms window before the onset 20 

of the simulated and segmented muscle activities, for the simulated and real sEMG 21 

signals, respectively. 22 

The output of this detector was finally defined as a binary mask (OutputTKEO) 23 

as it follows: 24 

• OutputTKEO = 1, if 𝜓𝑥(𝑛) ≥ 𝑇ℎ𝑟 25 

• OutputTKEO = 0, if 𝜓𝑥(𝑛) < 𝑇ℎ𝑟. 26 

 27 

4. Statistical Approach: Double Threshold Statistical Detector 28 

The statistical approach used in this chapter is the double threshold statistical 29 

detector proposed in Ref. [68]. The algorithm, specifically developed for statistical 30 

gait analysis, operates on raw sEMG signals and, hence, it does not require any pre-31 

processing step (e.g., envelope or TKEO computation). The computation steps used 32 

for the double threshold detector are the following: 33 
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i. An auxiliary sequence 𝑧𝑖 is computed from the raw sEMG signals as the sum 1 

of the squared values of two successive samples (2.6): 2 

 where 𝑥𝑖 and 𝑥𝑖+1 represent two consecutive samples of the sEMG time series 3 

 4 

ii. A first threshold ζ is applied on a sliding detection window defined by m 5 

consecutive samples of the auxiliary sequence 𝑧𝑖 6 

 7 

iii. A muscle activation is detected if at least 𝑟0 (second threshold) out of m 8 

consecutive samples of the detection window are above the first threshold ζ. 9 

Considering the computation steps above mentioned, the double threshold 10 

statistical detector has a more elaborate structure compared to single threshold 11 

approaches. In particular, muscle activations are detected when at least 𝑟0 (second 12 

threshold) out of m consecutive values of the auxiliary sequence (𝑧𝑖) cross the first 13 

threshold (ζ). Accordingly, this detector is defined by three different input 14 

parameters: (i) the first (or amplitude) threshold (ζ), (ii) the length of the 15 

observation window (m), and (iii) the second (or temporal) threshold. As suggested 16 

in Ref. [68], the length of the observation window (m) and the second threshold r0 17 

were set equal to 5 and 1, respectively. 18 

The output of this detector was finally defined as a binary mask (OutputStat) as 19 

it follows: 20 

• OutputStat = 1, if 𝑧𝑖 ≥ ζ for at least 𝑟0 out of m samples 21 

• OutputStat = 0, otherwise. 22 

 23 

5. Deep Learning Approach: LSTM-MAD 24 

An LSTM model is generally composed by the following architecture: 25 

i. An input sequence layer 26 

ii. One or more LSTM layers used to learn the time-dependencies within the 27 

sequential data 28 

iii. A fully connected layer used to convert the output size of the previous 29 

layers into the number of classes to be recognized 30 

iv. A softmax layer used to compute the belonging probability to each class 31 

v. A classification output layer used to compute the cost function. 32 

In this chapter, several LSTM neural network models were tested to assess the 33 

applicability of this approach for muscle activity detection during gait, considering 34 

sEMG data without any pre-processing step. To define the best LSTM model for 35 

𝑧𝑖 =  𝑥𝑖
2 + 𝑥𝑖+1

2  (2.6) 
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muscle activity detection, the entire dataset of simulated (and real) sEMG signals 1 

was divided into 3 different sets: training set (70%), validation set (15%), and test 2 

set (15%), respectively. The training set was used to train the LSTM model, while 3 

the validation set (or “development” set) was used to evaluate the network 4 

performances and to avoid the overfitting of the training data. More specifically, 5 

the validation set was used to stop training automatically when the validation 6 

accuracy stopped increasing to avoid overfitting [80]. Finally, the test set was used 7 

for the final validation and the comparison of LSTM-MAD with the other two 8 

detectors. 9 

Using the Deep Learning Toolbox of MATLAB® release R2020b (The 10 

MathWorks Inc., Natick, MA, USA), 720 different LSTM neural networks were 11 

tested. All the LSTM models had a sequence input layer consisting of 1 unit 12 

(dimension of a single simulated sEMG signal), and a fully connected output layer 13 

consisting of 2 units (number of classes to be recognized). Different numbers of 14 

LSTM layers (n), numbers of hidden units for each layer (𝑛𝑢𝑛𝑖𝑡𝑠), values of learning 15 

rate (𝛼), and values of drop period (𝛿) were tested to achieve the LSTM architecture 16 

with the highest performance. More specifically, two different numbers of LSTM 17 

layers (𝑛 = 1, 2), nine different numbers of hidden units in each LSTM layer 18 

(𝑛𝑢𝑛𝑖𝑡𝑠  = 100, 125, 150, 175, 200, 225, 250, 275, and 300), five different learning 19 

rates (𝛼 = 0.01, 0.015, 0.02, 0.025, and 0.03), and eight different drop rate values 20 

(𝛿 = 10, 15, 20, 25, 30, 35, 40, and 45) were tested [80]. The adaptive moment 21 

(ADAM) optimization algorithm was adopted in this work to train all the tested 22 

LSTM models [93]. The performance of each LSTM model was assessed 23 

considering the simulated (or real) test set by computing the overall classification 24 

accuracy, defined as the number of correctly classified sEMG samples normalized 25 

to the total number of sEMG samples within the test set. 26 

The training process was performed on a workstation with a 3.2 GHz six-core 27 

CPU, 32 GB of RAM memory, and a 64-bit Windows operating system. 28 

The BMsim, extracted from the truncated Gaussian functions, and the BMreal, 29 

manually defined by the expert operators, were used to compute the target (ground 30 

truth) of the LSTM model for the simulated and real datasets, respectively. 31 

The output of the LSTM approach was computed as a binary mask (OutputLSTM-32 

MAD) that was defined as it follows: 33 

• OutputLSTM-MAD = 1, if the sEMG time-instant was classified as muscle 34 

activity (class 1) 35 

• OutputLSTM-MAD = 0, if the sEMG time-instant was classified as 36 

background noise (class 0). 37 

 38 

6. Post-processing 39 
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A post-processing step was applied to the output of each detector (standard, 1 

statistical, and deep learning approach) to reject the erroneous transitions due to the 2 

stochastic nature of the sEMG signal. Since it is generally accepted that a muscle 3 

activation shorter than 30 ms does not affect the kinetics and the kinematics of gait 4 

[94], all the muscle activations lasting less than 30 ms were discarded [68]. This 5 

concept is illustrated in Figure 2.3. In particular, Figure 2.3A shows a sample 6 

realization of a simulated sEMG signal modulated by a truncated Gaussian function 7 

(𝑆𝑁𝑅 = 16 dB, σ = 100 ms, and α = 1.5). Figure 2.3B represents the output of the 8 

standard approach (OutputTKEO) without any post-processing step, while Figure 9 

2.3C shows the effect of the post-processing on the detector’s output. 10 

7. Performance Evaluation 11 

The muscle activations detected by the three different approaches (OutputTKEO, 12 

OutputStat, and OutputLSTM-MAD) were quantitatively compared in terms of (i) 13 

Precision, (ii) Recall, (iii) F1-score, and (iv) Jaccard similarity index. More 14 

specifically, the indexes were defined as it follows: 15 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.8) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 × (𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 (2.9) 

 

Figure 2.3 Example of post-processing applied to the standard approach output (OutputTKEO). (A) Sample 

realization of a simulated sEMG signal (blue line) with the superimposition of the truncated Gaussian 

function used to modulate the muscle activity (black line). The 𝑺𝑵𝑹 is set equal to 20 dB, standard 

deviation of the truncated Gaussian (σ) is 100 ms and the multiplicative constant (α) of the time support is 

1.5. (B) Output of the standard approach (OutputTKEO) without any post-processing. (C) Output of the 

standard approach after rejecting all the activations shorter than 30 ms (post-processing step). 
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𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =  
|𝑂𝑢𝑡𝑝𝑢𝑡𝑖 ∩ 𝐵𝑀|

|𝑂𝑢𝑡𝑝𝑢𝑡𝑖 ∪ 𝐵𝑀|
 (2.10) 

where 𝑇𝑃 represents the True Positive (i.e., number of sEMG time-instants 1 

correctly classified by the detectors as muscle activity), 𝐹𝑁 describes the False 2 

Negative (i.e., number of sEMG time-instants incorrectly classified by the detectors 3 

as background noise), and 𝐹𝑃 represents the False Positive (i.e., number of sEMG 4 

time-instants incorrectly classified by the detectors as muscle activity). Finally, 5 

𝑂𝑢𝑡𝑝𝑢𝑡𝑖 represents the binary mask computed by the i-th detector (i = 1: Standard 6 

approach with TKEO, i = 2: Statistical approach with the double-threshold detector, 7 

i = 3: New approach with LSTM-MAD), and 𝐵𝑀 represents the ground truth of the 8 

simulated (or real) data. 9 

8. Effect of SNR on Muscle Activity Detection 10 

To assess the effect of the 𝑆𝑁𝑅 on the performance of the three muscle activity 11 

detectors, the performance parameters described above were computed on the 12 

simulated test set, separately for each of the nine 𝑆𝑁𝑅 values (𝑆𝑁𝑅 =13 

3, 6, 10, 13, 16, 20, 23, 26, 30 𝑑𝐵). 14 

9. Statistical Analysis 15 

A one-way repeated-measures analysis of variance (ANOVA) followed by 16 

post-hoc analysis with Bonferroni adjustment for multiple comparisons was 17 

performed to assess significant differences in the performance of the three 18 

approaches, setting the significance level (α) equals to 0.05. 19 

2.3 Results 20 

First, the results supporting the applicability of the LSTM approach for muscle 21 

activity detection (LSTM-MAD) are presented, considering simulated sEMG 22 

signals. Second, the performance of the three detectors (standard TKEO, double-23 

threshold statistical detector, and the newly introduced LSTM-MAD) on simulated 24 

sEMG signals are compared, highlighting the effect of the 𝑆𝑁𝑅. Finally, LSTM-25 

MAD is validated on real data. 26 

1. Simulated Data - LSTM Model Definition 27 

The best LSTM model was selected among all the tested networks as the one 28 

with the highest overall classification accuracy on the test set, discarding those 29 

networks with a difference between the training and validation accuracy higher than 30 

4% (to avoid overfitting of the training data). 31 
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TABLE 2.1 shows the properties of the LSTM model that achieved the highest 1 

overall classification accuracy (96.8% ± 4.3%) on the test set. 2 

2. Simulated Data – Performance Evaluation 3 

The performances of the three different muscle activity detectors were assessed 4 

and compared in terms of (i) Precision, (ii) Recall, (iii) F1-score, and (iv) Jaccard 5 

similarity index: 6 

i. Precision: An average precision of 0.92 ± 0.10, 0.98 ± 0.09, and 0.95 ± 0.08 7 

was found on the simulated test set, considering the standard, the statistical, 8 

and the deep learning approach, respectively. One-way ANOVA followed by 9 

post-hoc analysis revealed significant differences between each pair of 10 

detectors (p < 0.0001) 11 

ii. Recall: On average, a recall of 0.86 ± 0.20, 0.53 ± 0.39, and 0.96 ± 0.08 was 12 

found on the simulated test set, considering the standard, the statistical, and 13 

the deep learning approach, respectively. One-way ANOVA followed by 14 

post-hoc analysis revealed significant differences between each pair of 15 

detectors (p < 0.0001) 16 

iii. F1-score: On average, an F1-score of 0.87 ± 0.14, 0.76 ± 0.25, and 0.95 ± 17 

0.06 was found on the simulated test set, considering the standard, the 18 

statistical, and the deep learning approach, respectively. One-way ANOVA 19 

followed by post-hoc analysis revealed significant differences between each 20 

pair of detectors (p < 0.0001) 21 

iv. Jaccard similarity index: An average Jaccard index of 0.80 ± 0.19, 0.52 ± 22 

0.38, and 0.91 ± 0.10 was found on the simulated test set, considering the 23 

standard, the statistical, and the deep learning approach, respectively. One-24 

way ANOVA followed by post-hoc analysis revealed significant differences 25 

between each pair of detectors (p < 0.0001). 26 

TABLE 2.1 
PROPERTIES OF THE BEST LSTM MODEL 

LSTM Layers PROPERTIES 

Sequence input 

layer 
1 input feature 

LSTM layer #1 
275 hidden units, 

Bi-directional sequence-to-sequence architecture 

LSTM layer #2 
138 hidden units, 

Bi-directional sequence-to-sequence architecture 

Fully connected 

layer 
2 units 

Softmax layer 
Softmax activation function  

(threshold = 0.5) 

Classification 

output layer 

2 classes  

(1 = muscle activity, 0 = background noise) 
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Figure 2.4A compares the performance of the three detectors tested (standard 1 

TKEO [84], statistical double-threshold detector [68], and LSTM-MAD), based on 2 

the four parameters introduced above. The average values and standard errors of 3 

the parameters were estimated on the simulated dataset. Asterisks highlight 4 

statistical differences between each pair of detectors. 5 

3. Simulated Data – Effect of 𝑆𝑁𝑅 on Muscle Activity Detection 6 

The effect of the 𝑆𝑁𝑅 on the detectors’ performance was assessed by 7 

computing the performance parameters (Precision, Recall, F1-score, and Jaccard 8 

similarity index), separately for each simulated 𝑆𝑁𝑅-value. 9 

Figure 2.5 represents, for each muscle activity detector, the average values 10 

(and standard errors) of Precision (Figure 2.5A), Recall (Figure 2.5B), F1-score 11 

(Figure 2.5C), and Jaccard similarity index (Figure 2.5D), for each simulated 12 

𝑆𝑁𝑅-value. 13 

For all the parameters, LSTM-MAD revealed a higher performance consistency 14 

across the different 𝑆𝑁𝑅 values, suggesting a lower effect of 𝑆𝑁𝑅 on muscle 15 

activity detection with respect to the other two approaches. The approach more 16 

affected by the 𝑆𝑁𝑅 was the statistical double threshold detector, with an evident 17 

decrease of the performances for simulated sEMG signals with 𝑆𝑁𝑅-values lower 18 

than 20 dB. 19 

 

Figure 2.4 Comparison of the performance of the three muscle activity detectors (standard TKEO by Li et 

al. [24], statistical double-threshold detector by Bonato et al. [10], and LSTM-MAD) estimated considering 

(A) the simulated and (B) the real dataset. Average values and standard errors are represented. Statistically 

significant differences are indicated by asterisks (***p < 0.0001). 
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4. Real Data 1 

The same procedure described for the simulated dataset was followed to 2 

determine the best LSTM model considering real sEMG data. In the following, the 3 

results obtained from the real dataset for the three different approaches are detailed. 4 

5.  Real Data – LSTM Model Definition 5 

The same 720 different LSTM neural networks considered for the simulated 6 

dataset were tested. The best LSTM model that achieved the highest overall 7 

classification accuracy (90.1% ± 14.28%) on the test set had the same architecture 8 

and properties as the one selected considering the simulated data (see TABLE 2.1). 9 

Figure 2.6 shows an example of a real sEMG signal acquired from the TA muscle 10 

of a healthy subject with the superimposition of the ground truth (BMreal) and the 11 

outputs of the three detectors (OutputTKEO, OutputStat, and OutputLSTM-MAD). 12 

6. Real Data – Performance Evaluation 13 

The performance of the three different muscle activity detectors on real sEMG 14 

signals were assessed considering the same four parameters described for the 15 

simulated dataset: 16 

i. Precision: An average precision of 0.63 ± 0.15, 0.92 ± 0.11, and 0.95 ± 0.11 17 

was found on the real test set, considering the standard, the statistical, and the 18 

 

Figure 2.5 Values of (A) Precision, (B) Recall, (C) F1 score, and (D) Jaccard similarity index, averaged 

on the simulated test set, for each value of 𝑺𝑵𝑹 and for each muscle activity detector. Each colored bar 

represents the average performance of a specific detector (TKEO by Li et al. [24] in red, double-threshold 

statistical detector by Bonato et al. [10] in orange, and LSTM-MAD in green). Error bars represent the 

standard errors.  
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deep learning approach, respectively. One-way ANOVA followed by post- 1 

hoc analysis revealed significant differences between the standard and the 2 

statistical approach (p < 0.0001), and between the standard and the deep 3 

learning approach (p < 0.0001), while no difference was found between the 4 

statistical and the deep learning approach 5 

ii. Recall: On average, a recall of 1.00 ± 0.00, 0.71 ± 0.31, and 0.90 ± 0.15 was 6 

found on the real test set, considering the standard, the statistical, and the deep 7 

learning approach, respectively. One-way ANOVA followed by post-hoc 8 

analysis revealed significant differences between each pair of detectors (p < 9 

0.0001) 10 

iii. F1-score: On average, an F1-score of 0.76 ± 0.11, 0.74 ± 0.26, and 0.91 ± 11 

0.11 was found on the real test set, considering the standard, the statistical, 12 

and the deep learning approach, respectively. One-way ANOVA followed by 13 

post-hoc analysis revealed significant differences between the standard and 14 

the deep learning approach (p < 0.0001), and between the statistical and the 15 

deep learning approach (p < 0.0001), while no difference was found between 16 

the standard and the statistical approach 17 

iv. Jaccard similarity index: An average Jaccard index of 0.63 ± 0.15, 0.65 ± 18 

0.27, and 0.85 ± 0.16 was computed from the real test set, considering the 19 

standard, the statistical, and the deep learning approach, respectively. One-20 

way ANOVA followed by post-hoc analysis revealed significant differences 21 

 

Figure 2.6 Example of a real sEMG signal (blue line) acquired from the Tibialis Anterior (TA) 

muscle of a healthy subject of the sample population. The output of the standard (red line), 

statistical (orange line), and LSTM-MAD approach (green line) are represented along with the 

indication of the ground truth (black line) manually segmented by expert operators. All the muscle 

activity shorter than 30 ms are rejected by means of the post-processing step for all the approaches.  
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between the standard and the deep learning approach (p < 0.0001), and 1 

between the statistical and the deep learning approach (p < 0.0001), while no 2 

difference was found between the standard and the statistical approach. 3 

Considering the real test set, Figure 2.4B compares the performance of the 4 

three detectors, based on the four parameters introduced above. The average values 5 

and standard errors of the parameters are reported, as well as asterisks to highlight 6 

statistical differences between each pair of detectors. 7 

2.4 Discussion and Conclusions 8 

This chapter demonstrates that the detection of muscle activity during gait can 9 

be successfully performed by means of a novel approach, based on a Long Short-10 

Term Memory (LSTM) Recurrent Neural Network (RNN). The newly introduced 11 

muscle activity detector (LSTM-MAD) is able to effectively separate muscle 12 

activation intervals from background noise, with an overall classification accuracy 13 

of 97% (considering simulated data). 14 

Results showed that the proposed detector outperforms current methods used 15 

to discern muscle activity. In particular, LSTM-MAD clearly exhibits better 16 

performance than both the alternative approaches tested (standard approach using 17 

the Teager-Keiser Energy Operator (TKEO) [84], and statistical double-threshold 18 

detector [68]). Indeed, improved performance was demonstrated both on simulated 19 

and real sEMG signals. 20 

Considering simulated signals, all the four “performance” parameters 21 

introduced (Precision, Recall, F1-score, and Jaccard similarity index) showed 22 

remarkably higher values for LSTM-MAD when compared to the statistical 23 

detector. Furthermore, three out of four parameters (Recall, F1-score, and Jaccard 24 

similarity index) displayed greater values for LSTM-MAD when compared to the 25 

TKEO detector, and only a slightly worst precision was found. However, it should 26 

be noticed that while LSTM-MAD shows an excellent balance between Precision 27 

and Recall, the same cannot be said for the TKEO detector, which displays a very 28 

high Precision (i.e., low number of false positive), but a very low Recall (i.e., a high 29 

number of false-negative). In other words, the TKEO detector demonstrates a 30 

reduced probability of detection and an increased number of false-negative 31 

compared to the LSTM-MAD. By the way, the “optimal balance” between 32 

Precision and Recall is incorporated in the definition of the F1-score, which is 33 

broadly used in literature specifically to take into account the balance between 34 

Precision and Recall by considering both the number of false-positive and the 35 

number of false-negative. 36 

Considering real signals, all the four “performance” parameters showed 37 

remarkably higher values for LSTM-MAD with respect to the TKEO detector. 38 

Furthermore, three out of four parameters (Precision, F1-score, and Jaccard 39 

similarity index) displayed greater values for LSTM-MAD when compared to the 40 

TKEO detector. Only the Recall was higher in the TKEO detector with respect to 41 

our approach. Again, it should be noted that LSTM-MAD is characterized by an 42 
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excellent balance between Precision and Recall, while this is not true for the TKEO 1 

detector, which is characterized by a higher probability of detection and, hence, by 2 

a higher number of false-positive (i.e., lower precision) compared to the LSTM-3 

MAD. Indeed, the TKEO detector shows a very good Recall to the detriment of a 4 

very poor Precision. The statistical detector, instead, shows different behavior, 5 

revealing a very high Precision (similar to the Precision obtained considering the 6 

LSTM-MAD approach) to the detriment of a very poor Recall. In other words, the 7 

statistical detector demonstrates a reduced probability of detection and an increased 8 

number of false-negative compared to the LSTM-MAD. 9 

Overall, LSTM-MAD revealed a smaller variability in the detector’s 10 

performance, especially compared to the TKEO approach. Although a thorough 11 

analysis of this aspect is beyond the scope of this work, this reduced variability can 12 

be qualitatively appreciated in Figure 2.4, when comparing the small error bars 13 

obtained for LSTM-MAD compared to those obtained for TKEO. 14 

Furthermore, the novel approach introduced in this chapter revealed increased 15 

robustness of the detector’s performance with respect to the effect of the signal-to-16 

noise ratio (𝑆𝑁𝑅), suggesting the applicability of the LSTM-MAD to a wider range 17 

of noise conditions compared to the other two tested approaches. Indeed, while it is 18 

evident that decreasing 𝑆𝑁𝑅 inevitably diminishes the detection performance of 19 

each approach, LSTM-MAD is the least affected one (see Figure 2.5). In particular, 20 

focusing on the parameters Recall, F1-score, and Jaccard similarity index, we found 21 

a conspicuous worsening of the performance of the statistical double-threshold 22 

detector with decreasing 𝑆𝑁𝑅. The situation is even more dramatic considering the 23 

TKEO detector. On the contrary, our detector LSTM-MAD shows a limited 24 

worsening of the performance with decreasing 𝑆𝑁𝑅. Indeed, even at very low 𝑆𝑁𝑅 25 

values (e.g., 3 or 6 dB), the performance of LSTM-MAD never degrade too much 26 

(Recall is always greater than 0.88, F1-score is always greater than 0.87, and 27 

Jaccard similarity index is always greater than 0.78). For what concerns the 28 

parameter Precision, none of the three detectors showed a drastic decrease of the 29 

performance with decreasing 𝑆𝑁𝑅 ratio. The analysis about how a poor 𝑆𝑁𝑅 can 30 

eventually degrade detectors’ performance was carried out on simulated signals 31 

only. This was chosen to study the above-described phenomenon in a more 32 

controlled condition, i.e., to have a precise knowledge (a priori) about the 𝑆𝑁𝑅 33 

itself (since sEMG signals were simulated at each specific 𝑆𝑁𝑅 level). Indeed, 34 

considering real signals one would have needed to apply some additional algorithm 35 

to estimate the 𝑆𝑁𝑅. 36 

A further valuable attribute and distinctive quality of the LSTM-MAD 37 

approach is that it does not require any additional input parameter. The proposed 38 

algorithm directly works on “raw” sEMG signals, the only pre-processing step 39 

being the usual passband filtering (e.g., between 10 Hz and 450 Hz), applied to all 40 

the three approaches, in the same manner. On the contrary, the statistical double-41 

threshold detector requires, as a necessary input parameter, the knowledge of the 42 

background-noise power. Furthermore, the estimation of the 𝑆𝑁𝑅 is also usually 43 

required to properly fine-tune the algorithm parameters. The estimation of 44 
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background-noise power and 𝑆𝑁𝑅-ratio is usually obtained by analyzing 30 s-1 

windows of sEMG signal. However, since LSTM-MAD does not require any 2 

additional input parameter (e.g., background-noise power or 𝑆𝑁𝑅 estimation), it is 3 

intrinsically more adaptable to eventual 𝑆𝑁𝑅 variations arising during signal 4 

acquisition. Furthermore, differently from the TKEO approach, it does not require 5 

the computing of a linear envelope. 6 

In conclusion, a Long-Short-Term-Memory approach for muscle activity 7 

detection was proposed and validated (both on simulated and real sEMG signals). 8 

The presented approach clearly outperforms previous detectors, and it is robust 9 

even when applied to signals with low to medium signal-to-noise ratio. Therefore, 10 

it may be considered a valuable tool, in all the applications requiring an accurate 11 

and effective recognition/distinction of muscle activity from background noise.12 
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Chapter 3 1 

Motor Control Strategies during 2 

Cyclic Movements 3 

In this chapter, two fundamental methodological issues in the assessment of 4 

motor control strategies through the muscle synergy theory are discussed: the 5 

sEMG pre-processing technique used to extract muscle synergies and the criterion 6 

used to select the optimal number of muscle synergies. First, an innovative sEMG 7 

pre-processing approach for muscle synergy extraction during gait is presented and 8 

compared with respect to a “standard” pre-processing approach (Methodological 9 

Issue - Muscle Synergies Extracted Using Principal Activations). Then, to 10 

overcome the limitations of the 𝑉𝐴𝐹- or R2-based methods for the selection of the 11 

optimal number of muscle synergies, a novel approach, based on Multi-Criteria 12 

Decision Aiding (MCDA), is assessed and validated considering both simulated 13 

and real data (Methodological Issue – Multi-Criteria Decision Analysis for 14 

Selecting the Optimal Number of Muscle Synergies). 15 

Methodological Issue - Muscle Synergies Extracted Using 16 

Principal Activations 17 

Some of the results presented in this paragraph are reproduced and modified 18 

from an article published in IEEE Transactions on Neural Systems and 19 

Rehabilitation Engineering (Volume: 28, Issue: 2, Feb. 2020) by Ghislieri et al. 20 

The final authenticated version of the manuscript is available online at 21 

http://dx.doi.org/10.1109/TNSRE.2020.2965179. 22 

3.1 Introduction 23 

According to the muscle synergy theory, the Central Nervous System (CNS) 24 

controls small groups of muscles (called muscle synergies) rather than coordinating 25 

and activating every single muscle involved in a specific motor task. The 26 

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8995668
http://dx.doi.org/10.1109%2FTNSRE.2020.2965179
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effectiveness of the muscle synergy theory in modeling the modular organization 1 

of the CNS during different motor tasks has been demonstrated in several studies 2 

and research areas, such as clinics, robotics, and sport [17,18,27,47,95,96]. 3 

More specifically, human locomotion is one of the most widely studied and 4 

complex motor tasks, due to the multiple degrees of freedom of the skeletal muscle 5 

system, the several biomechanical functions carried out during each gait cycle [97], 6 

and the high intra-cycle variability of the muscle activation intervals [98]. Previous 7 

studies demonstrated that human locomotion can be modeled by a small set of 8 

muscle synergies characterized by specific biomechanical functions [19–22]. The 9 

number of muscle synergies extracted and their biomechanical functions may vary 10 

depending on the type and the number of muscles acquired [23], the sEMG pre-11 

processing techniques, and the factorization algorithm implemented. On average, 12 

five muscle synergies are needed to properly describe human locomotion [19,24]. 13 

Muscle synergies during human locomotion are often extracted from surface 14 

electromyography (sEMG) signals by applying the Non-Negative Matrix 15 

Factorization (NNMF) algorithm [28,41]. Before computing the factorization, the 16 

acquired sEMG signals are usually pre-processed to extract their envelopes. In the 17 

last years, several pre-processing approaches were proposed in literature for muscle 18 

synergy extraction during cyclic movements [19,23,27,28,41,55,99]. For example, 19 

in the study by Clark et al. [55] the acquired sEMG signals were previously high-20 

pass filtered at 40 Hz through a zero-lag 4th-order digital Butterworth filter, 21 

demeaned, full-cycle rectified, and smoothed by means of a zero-lag 4th-order 22 

Butterworth digital filter with a cut-off frequency of 4 Hz. Finally, to facilitate the 23 

comparison among different muscles and different motor conditions, the filtered 24 

sEMG signals were amplitude-normalized with respect to the global maximum of 25 

the signal acquired from each recorded muscle. In the work by Steele et al. [23] 26 

sEMG data were band-pass filtered with a lower cut-off frequency of 20 Hz and a 27 

higher cut-off frequency of 400 Hz, rectified and low-pass filtered at 10 Hz. 28 

The application of these standard pre-processing techniques may not be 29 

sufficient to fully understand the motor control mechanism due to the high intra-30 

cycle variability of the sEMG activation intervals [100]. Statistical Gait Analysis 31 

(SGA) [60] was introduced to deal with this issue by selecting only the 32 

representative gait patterns. It was successfully applied to the study of the 33 

frequency-of-occurrence of muscle activation modalities [100], muscle activation 34 

timing [101], and co-contractions [102]. Moreover, through the application of the 35 

Clustering for Identification of Muscle Activation Patterns (CIMAP) algorithm 36 

[103], [104], it is possible to define the principal and secondary muscle activations. 37 

Principal activations (PAs) are defined as those activations that are strictly 38 

necessary to accomplish the motor task, while secondary activations (SAs) may 39 

have an auxiliary function, such as providing corrections to motion and body 40 

segment posture. The CIMAP algorithm was successfully applied to the study of 41 

gait asymmetry of healthy, orthopedic, and neurological patients [67,105,106]. 42 

The aim of this work is to assess how the combined application of the SGA and 43 

CIMAP (i.e., extraction of PAs) techniques can be used to overcome the limitations 44 

of the standard pre-processing algorithms in terms of intra-subject consistency, 45 
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robustness, and interpretability of muscle synergies during gait in both 1 

physiological and pathological populations. 2 

3.2 Materials and Methods 3 

1. Sample Population and Experimental Protocol 4 

Gait data from twenty-two patients affected by Parkinson’s disease (7 females 5 

and 15 males, age: 58.9 ± 8.1 years, height: 174.4 ± 9.4 cm, weight: 76.5 ± 13.1 kg) 6 

and twenty-two healthy subjects (18 females and 4 males, age: 39.2 ± 17.0 years, 7 

height: 165.2 ± 8.2 cm, weight: 60.9 ± 17.5 kg) were acquired and analyzed at 8 

PoliToBIOMed Lab (Politecnico di Torino, Turin, Italy). Patients affected by 9 

Parkinson’s Disease (PD) were enrolled from those eligible for Deep Brain 10 

Stimulation (DBS) at the Stereotactic and Functional Neurosurgery Unit of the 11 

University of Turin (Italy). The inclusion criteria were: 12 

i. Diagnosis of PD, according to the UK Brain Bank guidelines 13 

ii. Good response to Levodopa 14 

iii. Age at surgery below 70 years 15 

iv. Absence of freezing of gait and postural instability unresponsive to 16 

pharmacological therapy 17 

v. Ability to walk independently for a few minutes without walking aids or 18 

external supports, at least within the best-on pharmacological time-19 

window. 20 

PD patients affected by other co-morbidities that could potentially affect gait 21 

performance were excluded from the study. 22 

Gait and balance performance were rated using the Unified Parkinson’s Disease 23 

Rating Motor Subscale (UPDRS-III) [107]. For the enrolled PD population, the 24 

average UPDRS-III score was equal to 17.1 ± 0.2 and 44.6 ± 12.3 considering 𝑂𝑁 25 

and 𝑂𝐹𝐹 condition, respectively. 26 

Considering the healthy subjects, none of them reported lower limb injuries or 27 

had neurological or musculoskeletal disorders that could compromise their gait 28 

performance. 29 

The experimental protocol consisted of a 5-minute walk at self-selected speed, 30 

back and forth on a 9-m straight walkway. PD patients were acquired during their 31 

best-on conditions. Figure 3.1 shows a schematic representation of the walking 32 

path. The protocol conformed to the Helsinki declaration on medical research 33 

 

Figure 3.1 Schematic representation of the walking path. Subjects walked back and forth, without 

interruptions, along a straight path of 9 m, for approximately 5 minutes. U-turns were excluded by the 

analysis. 
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involving human subjects and was approved by the Ethics Committee of the A.O.U. 1 

Città della Salute e della Scienza di Torino - A.O. Ordine Mauriziano - A.S.L. “Città 2 

di Torino” (No. 0092029). 3 

TABLE 3.1 represents the anthropometric characteristics of the PD and healthy 4 

populations analyzed in this chapter. 5 

2. Data Acquisitions 6 

A multichannel system specifically developed for statistical gait analysis 7 

(STEP32, Medical Technology, Italy) was used to acquire gait data. The following 8 

signals were simultaneously recorded: 9 

i. Surface electromyographic (sEMG) signals, by means of active probes 10 

(configuration: single differential, size: 19 mm  17 mm  7 mm, Ag-11 

disks diameter: 4 mm, interelectrode distance: 12 mm, gain: variable in 12 

the range from 60 dB to 86 dB) 13 

ii. Foot-switch signals (size: 10 mm  10 mm  0.5 mm, activation force: 3 14 

N) to detect gait phases 15 

iii. Knee joint kinematics signals in the sagittal plane by means of electro-16 

goniometers (accuracy: 0.5°). 17 

The sEMG active probes were placed over the following 12 muscles of the 18 

dominant lower limb and trunk (bilaterally): right and left Longissimus Dorsii 19 

(LDR, LDL), Tensor Fasciae Latae (TFL), Gluteus Medius (GMD), Rectus Femoris 20 

(RF), Lateral Hamstring (LH), Medial Hamstring (MH), Vastus Medialis (VM), 21 

Lateral Gastrocnemius (LGS), Peroneus Longus (PL), Soleus (SOL) and Tibialis 22 

Anterior (TA). Foot-switches were positioned beneath the heel, the first, and fifth 23 

metatarsal heads, bilaterally. Electro-goniometers were positioned on the lateral 24 

aspect of the knee joint, bilaterally. 25 

An example of sensor placement is shown, for a representative healthy subject 26 

of the sample population, in Figure 3.2. 27 

Signals were acquired with a sampling frequency of 2000 Hz, converted by a 28 

12-bit analog to digital converter, and sent to a PC for real-time representation. The 29 

acquired signals were then imported into the MATLAB® release 2020b (The 30 

MathWorks Inc., Natick, MA, USA) to be processed by means of custom routines. 31 

3. Data Processing 32 

Before muscle synergy extraction, the acquired sEMG signals were pre-33 

processed considering two different approaches: 34 

TABLE 3.1 
ANTHROPOMETRIC CHARACTERISTICS OF PD AND HEALTHY POPULATIONS. 

 

 Age  

(years) 

Weight 

(kg) 

Height 

(cm) 

UPDRS-III  

(ON condition) 

UPDRS-III  

(OFF condition) 

Disease duration 

(years) 

PD 58.9 ± 8.1 76.5 ± 13.1 174.4 ± 9.4 17.1 ± 0.2 44.6 ± 12.3 12.8 ± 3.7 

Healthy 39.2 ± 17.0 60.9 ± 17.5 165.2 ± 8.2 N/A N/A N/A 

   Values of parameters are reported as mean ± standard deviation over the population. 

  UPDRS-III: Unified Parkinson’s Disease Rating Motor Subscale 

  N/A: Not Applicable 
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i. the standard approach, in which all sEMG time-instants were considered 1 

for muscle synergy extraction 2 

ii. the novel approach in which only the principal activation intervals of the 3 

sEMG signal were considered. 4 

Figure 3.3 shows the workflow of the two approaches implemented for the 5 

extraction of the muscle synergies.  6 

Gait Cycle Segmentation and Normalization 7 

In the last years, several approaches have been proposed to time-segment 8 

sEMG signal [108–110]. In this study, the foot-switch signals were used to time-9 

segment and classify the gait cycles according to the foot-floor contact sequence. 10 

Only the HFPS gait cycles, defined as the physiological sequence of Heel Contact 11 

(H), Flat Foot Contact (F), Push Off (P), and Swing (S), were considered, discarding 12 

those characterized by atypical gait cycles [108]. Only the gait cycles belonging to 13 

the rectilinear path (see Figure 3.1) were analyzed, removing those corresponding 14 

to direction changes at the beginning and at the end of the walkway (including 15 

deceleration before and acceleration after the U-turn) [11]. Finally, each segmented 16 

gait cycle was normalized in amplitude with respect to its global maximum, time-17 

normalized to 1000 samples [55], and all gait cycles selected were concatenated in 18 

a single vector [111]. 19 

Extraction of Principal Activations (PAs) through CIMAP algorithm 20 

The muscle activation onset/offset timing was computed from the sEMG 21 

signals by means of a muscle activity detector based on LSTM neural networks 22 

(LSTM-MAD). See A Deep Learning Approach for Muscle Activity Detection 23 

chapter for further details on the LSTM-MAD approach. The optimized version of 24 

the CIMAP (Clustering for Identification of Muscle Activation Patterns) [104] 25 

algorithm was then applied to the muscle activation intervals to select PAs. 26 

Briefly, PAs are defined as those muscle activations that are strictly necessary 27 

to accomplish a specific biomechanical task and describe the fundamental 28 

 

Figure 3.2 Sensor placement for a healthy subject of the sample population. sEMG active probes are placed 

over the principal muscle of the dominant lower limb and the trunk (bilaterally). Foot-switches are place 

beneath the heel, the first, and the fifth metatarsal heads to detect gait phases and time-segment gait cycles. 

Electro-goniometers are positioned on the lateral aspect of the knee joint. 
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activation intervals of a specific muscle. The CIMAP algorithm, based on 1 

hierarchical clustering, groups together the gait cycles sharing similar sEMG onset-2 

offset patterns. For each cluster, the cluster prototype is defined as the median 3 

timing pattern. Considering only the most representative clusters (i.e., those 4 

containing a significant number of elements compared to the total number of gait 5 

cycles acquired during the task), PAs are computed as the intersection of the 6 

representative clusters’ prototypes [104]. Then, for each observed muscle, a single 7 

PA was obtained. PA was defined as a 1000-samples binary mask that was set to 1 8 

in correspondence of the time-instants in which a principal activation was detected 9 

and to 0 otherwise. 10 

Figure 3.4 represents an example of application of the CIMAP algorithm to 11 

sEMG gait data acquired during the walking task of a healthy subject of the sample 12 

population from the PL and GMD muscles. Figure 3.4A represents normalized 13 

activation intervals for the various gait cycles, grouped in clusters sharing similar 14 

activation timings. Each orange interval represents the prototype of a representative 15 

cluster. Figure 3.4B depicts how PAs are obtained from the intersection of the 16 

cluster prototypes. 17 

The extraction of the PA intervals from the original sEMG signals of a specific 18 

 

Figure 3.3 Workflow of the two approaches implemented for the muscle synergy extraction. Reprinted 

from “Muscle Synergies Extracted Using Principal Activations: Improvement of Robustness and 

Interpretability” by Ghislieri et al. (2020). 
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muscle was performed by windowing all the time-normalized gait cycles through 1 

the correspondent binary mask. 2 

See Extraction of Principal and Secondary Activations through CIMAP 3 

chapter for additional details on the optimized version of the CIMAP algorithm. 4 

Muscle Synergies Extraction and Sorting 5 

The sEMG signals were high-pass filtered at 35 Hz by means of an 8th-order 6 

Butterworth digital filter to remove motion artifact, demeaned, and full-cycle 7 

rectified to obtain a non-negative signal. Then, the rectified signals were low-pass 8 

filtered by means of a 5th order digital Butterworth filter with a cut-off frequency 9 

of 12 Hz to obtain the sEMG envelope. The signals were then normalized in 10 

amplitude with respect to the global maximum of each muscle to ensure an equally 11 

weighted contribution of each acquired muscle in the muscle synergy extraction 12 

process. 13 

The normalized envelopes were divided into groups of 10 concatenated gait 14 

 

Figure 3.4 Application of the optimized version of the CIMAP algorithm to sEMG signals acquired from 

the PL (left) and GMD (right) muscles of a healthy subject of the sample population during a walking task. 

(A) Blue lines represent the cluster elements (muscle activation intervals computed through LSTM-MAD 

algorithm) normalized into 1000 time points with respect to the gait cycle duration, while orange intervals 

represent the prototypes of each cluster (computed as median of the elements that belong to the same 

cluster). (B)  Principal activation (PA) is represented in green and is defined as the intersection of all the 

cluster’s prototypes. Reprinted from “Muscle Synergies Extracted Using Principal Activations: 

Improvement of Robustness and Interpretability” by Ghislieri et al. (2020). 
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cycles (called subgroups) allowing for muscle synergy assessment over the entire 1 

walk duration [112]. For each subgroup, muscle synergies were extracted from the 2 

filtered sEMG signals by means of the Non-Negative Matrix Factorization (NNMF) 3 

algorithm. This algorithm models the original sEMG signals (𝑀) as the linear 4 

combination of the time-independent muscle synergy weights (𝑊) and the time-5 

dependent activation coefficients (𝐶) [34] as described in (3.2): 6 

𝑀(𝑡) = ∑ 𝐶(𝑡)𝑘  ∙ 𝑊𝑘 + 𝑒

𝑁

𝑘=1

 (3.2) 

where 𝑁 represents the optimal number of muscle synergies needed to properly 7 

model the original sEMG data. The weight vector 𝑊𝑘 describes the contribution of 8 

each observed muscle to the k-synergy, the activation coefficient vector 9 

𝐶(𝑡)𝑘 represents the time-dependent modulation of the muscles recruited in the k-10 

synergy and 𝑒 represents the prediction error of the factorization algorithm. The 11 

MATLAB® function “nnmf” was used to apply the NNMF algorithm, setting the 12 

routine’s input parameters as follows: multiplicative update as factorization 13 

algorithm, 1e-6 as function and search tolerance, 50 as the number of factorization 14 

replicates, and 1000 as the maximum number of factorization iterations. 15 

The first algorithm initialization was performed differently for the weight 16 

vector 𝑊𝑘 and the activation coefficient vector 𝐶(𝑡)𝑘. The 𝐶 matrix was initialized 17 

with values randomly selected from a uniform distribution in the range [0, 1]. To 18 

improve the performance of the factorization algorithm and the accuracy in the 19 

reconstruction of the original sEMG data, a sparseness constraint was imposed in 20 

the initialization of the 𝑊 matrix [37]. In particular, 𝑊 matrix was first initialized 21 

with values randomly chosen from a uniform distribution in the range [0, 0.05], 22 

then one random element of each 𝑊𝑘 vector was set to a value selected from a 23 

uniform distribution in the range [0.7, 0.8]. Therefore, only one muscle for each k-24 

synergy has a significant contribution, obtaining an extremely sparse NNMF 25 

initialization [37]. 26 

To explore different solutions of the NNMF algorithm, the factorization 27 

process was run many times on the same gait data, changing the number of muscle 28 

synergies (𝑁) in the range [1, 8]. For each value of N, the reconstruction quality 29 

was assessed by means of the total Variance Accounted For (𝑡𝑉𝐴𝐹), defined as the 30 

uncentered Pearson’s correlation coefficient expressed in percentage (3.3): 31 

𝑡𝑉𝐴𝐹 = (1 −
∑ (𝑀𝑘 − 𝑀𝑘

𝑅)2𝑚
𝑘=1

∑ 𝑀𝑘
2𝑚

𝑘=1

) ∙ 100 (3.3) 

where 𝑚 represents the number of muscles observed, ∑ (𝑀𝑘 − 𝑀𝑘
𝑅)2𝑚

𝑘=1  describes 32 

the sum of the squared errors between the original (𝑀𝑘) and reconstructed (𝑀𝑘
𝑅) 33 

sEMG signals of the k-synergy, and ∑ 𝑀𝑘
2𝑚

𝑘=1  represents the total sum of squared 34 

𝑀𝑘 values with respect to zero. The optimal number of muscle synergies needed to 35 

properly model the sEMG signals of the i-th subgroup (𝑁90,𝑖) was selected by 36 

choosing the smallest number of synergies (𝑁) granting a 𝑡𝑉𝐴𝐹 value equal to or 37 
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greater than 90% [55]. Since each subgroup could be described by a different 1 

number of muscle synergies, the final number of synergies (𝑁90) was then selected, 2 

for each subject, as the mode of the numbers of muscle synergies computed on each 3 

10-gait-cycle subgroup (𝑁90,𝑖). 4 

To represent the synergy output in the range [0, 1], the weight vectors 𝑊𝑘 were 5 

normalized in amplitude with respect to their global maximum. Then, the activation 6 

coefficient vectors 𝐶(𝑡)𝑘 were multiplied by the correspondent normalized values. 7 

To sort the muscle synergies in the same order for each subgroup and for each 8 

subject, the k-means algorithm was applied to the 𝑊 matrix [22]. Clustering was 9 

performed by means of the MATLAB® routine “kmeans” using the following input 10 

parameters: 𝑁90 as number of k-means clusters, 1000 as maximum number of 11 

iterations, 15 as number of replicates, and cosine as distance metric. The activation 12 

coefficients matrix 𝐶 was ordered accordingly. 13 

Muscle Synergy Analysis 14 

The number of muscle synergies, the intra-subject consistency, the robustness, 15 

and the interpretability were used in the following to quantitatively compare the 16 

muscle synergies extracted from the PD and healthy populations considering the 17 

standard and the novel approach. 18 

i. Number of Muscle Synergies 19 

As stated above, the optimal number of muscle synergies needed to properly 20 

reconstruct the sEMG signals of the i-th subgroup (𝑁90,𝑖) was selected by choosing 21 

the smallest number of synergies (𝑁) granting a 𝑡𝑉𝐴𝐹 ≥ 90%. The final number 22 

of synergies (𝑁90) was then selected, for each subject, as the mode of the number 23 

of muscle synergies computed on each 10-gait-cycle subgroup. 24 

 25 

ii. Intra-Subject Consistency 26 

The intra-subject consistency of the muscle synergies among the 10-gait-cycle 27 

subgroups was evaluated by computing the Cosine Similarity (𝐶𝑆) [30] of the 28 

previously sorted weight vectors 𝑊𝑘 and activation coefficient vectors 𝐶(𝑡)𝑘, 29 

separately. The 𝐶𝑆 between the previously sorted weight vectors belonging to the 30 

i- and j-th subgroup of the k-synergy was defined as the normalized scalar product 31 

between the vectors expressed in percentage, as described in (3.4) and (3.5): 32 

𝐶𝑆𝑊,𝑘
𝑖,𝑗

 = (
𝑊𝑘

𝑖  ∙  𝑊𝑘
𝑗

‖𝑊𝑘
𝑖‖ ‖𝑊𝑘

𝑗
‖

) ∙ 100 (3.4) 

𝐶𝑆𝐶,𝑘
𝑖,𝑗

 = (
𝐶𝑘

𝑖  ∙  𝐶𝑘
𝑗

‖𝐶𝑘
𝑖 ‖ ‖𝐶𝑘

𝑗
‖

) ∙ 100 (3.5) 

where 𝐶𝑆𝑊,𝑘
𝑖,𝑗

 and 𝐶𝑆𝐶,𝑘
𝑖,𝑗

 represent the cosine similarity computed between the weight 33 

vectors 𝑊𝑘 and the activation coefficients 𝐶(𝑡)𝑘 of the i- and j-th subgroup, 34 

respectively. The 𝐶𝑆 values range between 0 (no similarity) and 1 (complete 35 

similarity). 36 
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iii. Robustness 1 

The robustness of the muscle synergies among different subgroups of 10 gait 2 

cycles was assessed through the Cross-Variance Accounted For [111] defined as in 3 

(3.6): 4 

𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹𝑖,𝑗 = (1 −
∑ (𝑀𝑘

𝑖 − 𝑀𝑘
𝑅,𝑗

)2𝑚
𝑘=1

∑ (𝑀𝑘
𝑖 )2𝑚

𝑘=1

) ∙ 100 (3.6) 

where 𝑀𝑘
𝑖  and 𝑀𝑘

𝑅,𝑗
 represent the original and the reconstructed sEMG signals of 5 

the k-muscle for the i- and j-th subgroup, respectively. 6 

This parameter assesses how well the muscle synergies extracted for the i-th 7 

subgroup reconstruct the sEMG signals that belong to the j-th subgroup. For each 8 

subject, the average 𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 value was computed over all the possible couples 9 

of 10-gait-cycle subgroups without considering the main diagonal of the 𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 10 

matrix. The average 𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 can assume values ranging from 0% to 100%, 11 

corresponding to a low or high correlation between the reconstructed and the 12 

original sEMG signals from different subgroups, respectively. 13 

 14 

iv. Interpretability 15 

Previous studies demonstrated that five muscle synergies are usually needed to 16 

properly describe human locomotion [19,24]. Each of these muscle synergies can 17 

be characterized by a specific biomechanical function. These biomechanical 18 

functions were generally assigned to each muscle synergy by applying an amplitude 19 

threshold to the weight vectors (𝑊𝑘> 0.5) in order to define the prevailing muscles 20 

contributions [24]. Moreover, the profile of the activation coefficients 𝐶(𝑡)𝑘 was 21 

usually observed to define the gait cycle phase in which the muscle synergy is 22 

mainly activated, according to the functional gait cycle phases proposed by Perry 23 

et al. [97]. In the study by Rimini et al. [24] 5 biomechanical functions common to 24 

all the analyzed subjects during the walking task were discovered. TABLE 3.2 25 

reports the description of each biomechanical function and the muscles mainly 26 

involved in each function (𝑊𝑘> 0.5). 27 

For example, the biomechanical function F2 is used to generate the propulsion 28 

and requires, among the observed muscles, the involvement of the LGS, PL, and 29 

SOL muscles (the other acquired muscles are not directly involved during 30 

propulsion). 31 

TABLE 3.2 
BIOMECHANICAL FUNCTIONS OF THE MUSCLE SYNERGIES DURING GAIT. 

Function Involved 

muscles 
Biomechanical function 

F1 TFL, GMD Hip joint stabilization during heel strike and load acceptance phase.  

F2 LGS, PL, SOL Propulsion at the mid and terminal stance. 

F3 TA 
Forefoot clearance control during the swing phase and foot control during the first 

rocker. 

F4 MH, LH Leg deceleration at the end of the swing phase. 

F5 LDR, LDR Control of the trunk position in the frontal plane at heel strike. 

Reprinted from “Muscle Synergies Extracted Using Principal Activations. Improvement of Robustness and Interpretability” 

by Ghislieri et al., 2020 
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The muscle synergy Interpretability (𝐼) was evaluated considering the average 1 

of the muscle synergy weights that are not directly involved in the k-synergy 2 

biomechanical function as described in (3.7): 3 

𝐼 =
1

𝑁
∑((1 − 𝑊𝑘

′̅̅ ̅̅ )  ∙  100)

𝑁

𝑘=1

 (3.7) 

where 𝑁 represents the final number of muscle synergies needed to describe the 4 

motor task and 𝑊𝑘
′̅̅ ̅̅  is the average contribution of the muscles not directly involved 5 

in the biomechanical task described by the k-synergy. A muscle synergy can be 6 

considered more easily interpretable when the averages of the muscle synergy 7 

weights not directly involved in the specific biomechanical function are close to 8 

zero (𝑊𝑘
′̅̅ ̅̅ ≅ 0), while it can be considered less interpretable when they have values 9 

comparable with the weights of the muscles directly involved in the biomechanical 10 

function (𝑊𝑘
′̅̅ ̅̅ ≅ 1). The 𝐼 values are expressed in percentage, and range between 11 

0% and 100%, suggesting low and high interpretability, respectively. 12 

Statistical Analysis 13 

To determine if there is a statistically significant difference, in the walking 14 

speed, between healthy and PD subjects, the Wilcoxon signed-rank test was used, 15 

setting the significance level (α) at 0.05. Two-way repeated measures analysis of 16 

variance (ANOVA) followed by post-hoc analysis with Tukey’s adjustment for 17 

multiple comparisons was used to test differences in muscle synergy results 18 

between Group (Healthy and PD) and Approach (Standard and PAs). The effect 19 

size of the statistically significant differences was calculated by means of the 20 

Hedges' g including the correction for small sample sizes [113]. The significance 21 

level (α) was set equal to 0.05. The statistical analysis was carried out using the 22 

Statistical and Machine Learning Toolbox of MATLAB®. 23 

3.3 Results 24 

During the experimental sessions, an average speed of 1.2 ± 0.1 m/s and 1.0 ± 25 

0.2 m/s and a dataset of 156  25 and 129 ± 37 typical gait cycles (i.e., gait cycles 26 

characterized by the HFPS foot-floor contact sequence) were assessed for the 27 

healthy and PD population, respectively. On average, the Wilcoxon test revealed a 28 

slightly significant decrease (p = 0.04) in the walking speed of PD patients with 29 

respect to the healthy subjects. 30 

In the following, the results obtained using the standard and the novel approach 31 

(entailing the extraction of PAs) were compared in terms of (i) number of muscle 32 

synergies, (ii) intra-subject consistency, (iii) robustness, and (iv) interpretability. 33 

i. Number of Muscle Synergies 34 

On average, an optimal number of muscle synergies of 4.8 ± 0.1 and 5.0 ± 0.1 35 

was found on the healthy population, considering the standard and the novel 36 
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approach, respectively. Considering the PD population, an average number of 4.7 1 

± 0.1 and 5.1 ± 0.1 muscle synergies was computed considering the standard and 2 

the novel approach, respectively. Two-way repeated measures ANOVA revealed a 3 

statistically significant increase (p = 0.002, g = 0.69) in the optimal number of 4 

muscle synergies computed considering the novel approach with respect to the 5 

standard one, while no statistically significant differences (p = 0.83) were assessed 6 

between healthy and PD populations. No significant interaction effects were 7 

detected between Group and Approach. 8 

The average number of muscle synergies values are reported in TABLE 3.3, 9 

with the indication of the statistically significant differences (p < 0.05). 10 

Figure 3.5 and Error! Reference source not found. report the weight vectors 11 

and the activation coefficients extracted from a representative healthy subject and 12 

PD patient of the sample population, respectively, using the two pre-processing 13 

techniques: ( 14 

Figure 3.5A and Error! Reference source not found.A) standard approach and 15 

( 16 

Figure 3.5B and Error! Reference source not found.B) the novel approach 17 

(extraction of PAs). No significant differences both in the final number of muscle 18 

synergies and in their composition were revealed. 19 

ii.  Intra-Subject Consistency 20 

Considering the activation coefficients 𝐶(𝑡)𝑘, two-way repeated-measures 21 

ANOVA revealed a statistically significant decrease (p = 0.005, g = 0.83) in the 22 

intra-subject consistency of the PD population with respect to the healthy 23 

population. No statistically significant differences (p = 0.24) between Approach 24 

and no significant interaction effects between Group and Approach were detected. 25 

TABLE 3.3 
MUSCLE SYNERGY RESULTS ON HEALTHY SUBJECT AND PARKINSON DISEASE (PD) PATIENTS 

 

 
HEALTHY SUBJECTS PD PATIENTS 

2-WAY ANOVA 

 (P-VALUE) 

Standard PAs Standard PAs Group Approach 

Number of muscle synergies 4.8 ± 0.1 5.0 ± 0.1 4.7 ± 0.1 5.1 ± 0.1 0.83 0.002 

Intra-subject consistency 

• Weight vectors 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.02 0.98 ± 0.02 0.003 0.13 

• Activation coefficients 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.02 0.005 0.24 

Robustness (%) 80.7 ± 0.7 80.6 ± 1.2 79.1 ± 0.7 79.6 ± 0.7 0.13 0.82 

Interpretability (%) 90.6 ± 4.4 93.6 ± 3.9 90.1 ± 2.6 93.7 ± 1.7 0.79 < 0.0001 

Values of parameters are reported as mean ± standard deviation over the population. 

Statistically significant differences (p < 0.05) between Group or Approach are represented in bold. 
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Considering the weight vectors 𝑊𝑘, two-way ANOVA revealed a statistically 1 

significant decrease (p = 0.003, g = 0.66) in the intra-subject consistency of the PD 2 

population with respect to the healthy population. No statistically significant 3 

differences (p = 0.13) between Approach and no significant interaction effects 4 

between Group and Approach were detected. 5 

The average intra-subject consistency values are reported in TABLE 3.3, with 6 

the indication of the statistically significant differences (p < 0.05). 7 

Figure 3.7A shows the boxplots of the intra-subject consistency computed on 8 

the healthy and PD populations using the two approaches. 9 

iii. Robustness 10 

On average, a robustness value of 80.7% ± 0.7% and 80.6% ± 1.2% was found 11 

on the healthy population, considering the standard and the novel approach, 12 

respectively. Considering the PD population, instead, an average robustness value 13 

of 79.1% ± 0.7% and 79.6% ± 0.7% was computed considering the standard and 14 

 
 

Figure 3.5 Example of activation coefficients 𝐶𝑘and weight vectors 𝑊𝑘 extracted from a representative 

healthy subject of the sample population using the two different processing techniques: (A) standard 

approach, and (B) novel approach (extraction of PAs). Each colored line (or colored vertical bar) represents 

𝐶𝑘 (or 𝑊𝑘) extracted from a single 10-gait-cycle subgroup, while black lines (or top of black rectangles) 

represent the average 𝐶𝑘 (or 𝑊𝑘) computed over subgroups. The dotted lines, in the 𝐶𝑘-plots, represent the 

mean foot-switch signal with the indication of the 4 gait phases: Heel contact (H), Flat foot contact (F), 

Push off (P) and Swing (S). 
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the novel approach, respectively. Two-way repeated-measures ANOVA revealed 1 

no statistically significant differences in the muscle synergy robustness between 2 

Group (p = 0.13) and between Approach (p = 0.82). No significant interaction 3 

effects were detected between Group and Approach. 4 

The average robustness values are reported in TABLE 3.3, with the indication 5 

of the statistically significant differences (p < 0.05). 6 

Figure 3.7B represents the boxplots of the 𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 computed on the healthy 7 

and PD populations considering the two processing approaches. 8 

iv. Interpretability 9 

On average, a muscle synergy interpretability value of 90.6% ± 4.4% and 10 

93.6% ± 3.9% was found on the healthy population, considering the standard and 11 

the novel approach, respectively. Considering the PD population, instead, an 12 

average interpretability value of 90.1% ± 2.6% and 93.7% ± 1.6% was computed 13 

considering the standard and the novel approach, respectively. Two-way repeated-14 

 

Figure 3.6 Example of activation coefficients 𝑪𝒌and weight vectors 𝑾𝒌 extracted from a representative 

PD patient of the sample population using the two different processing techniques: (A) standard approach, 

and (B) novel approach (extraction of PAs). Each colored line (or colored vertical bar) represents 𝑪𝒌 (or 

𝑾𝒌) extracted from a single 10-gait-cycle subgroup, while black lines (or top of black rectangles) represent 

the average 𝑪𝒌 (or 𝑾𝒌) computed over subgroups. The dotted lines, in the 𝑪𝒌-plots, represent the mean 

foot-switch signal with the indication of the 4 gait phases: Heel contact (H), Flat foot contact (F), Push off 

(P) and Swing (S). 
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measures ANOVA reveals a statistically significant increase (p < 0.0001, g = 1.01) 1 

in the interpretability of the muscle synergies extracted considering the novel 2 

approach with respect to those extracted considering the standard one. No 3 

statistically significant differences (p = 0.79) were assessed between Group 4 

(healthy and PD) and no significant interaction effects were detected between 5 

Group and Approach. 6 

 

Figure 3.7 Boxplots of (A) intra-subject consistency, (B) robustness, and (C) interpretability used to 

compare the standard and the novel approach for muscle synergy extraction. Outliers are indicated by 

circles. Single and double asterisks represent p-values lower than 0.05 and 0.01, respectively. 
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The average interpretability values are reported in TABLE 3.3, with the 1 

indication of the statistically significant differences (p < 0.05). 2 

Figure 3.7C shows the boxplots of muscle synergy interpretability computed on 3 

the healthy and PD populations considering both the pre-processing techniques. 4 

3.4 Discussion and Conclusions 5 

Although the effectiveness of the muscle synergy theory in modeling the 6 

modular organization of the CNS during motor tasks is well known in literature 7 

[7,24,27,30,47,55], there are no shared standards for sEMG pre-processing before 8 

muscle synergy extraction. The pre-processing techniques previously used in 9 

literature (“standard” approaches) for muscle synergy extraction generally 10 

considered the whole sEMG time-instants as input of the factorization algorithm 11 

[19,23,28,55]. However, these standard approaches may be influenced by the high 12 

cycle-by-cycle variability of the sEMG activation patterns [100]. Therefore, these 13 

approaches may not be sufficient to fully understand the motor control strategies 14 

during human locomotion. 15 

The combination of SGA and CIMAP (with the extraction of the principal and 16 

secondary muscle activation intervals) algorithms as a pre-processing step before 17 

muscle synergy extraction may provide a valuable tool to understand how a set of 18 

muscle synergies are recruited and modulated by the central nervous system under 19 

different conditions. In particular, the ability to distinguish between the principal 20 

and the secondary muscle activation intervals allows for separately assessing 21 

human motor control strategies adopted during gait cycle phases characterized by 22 

highly consistent and repeatable activation intervals (PAs) and during gait cycle 23 

phases characterized by extemporary and lowly repeatable activation intervals 24 

(SAs), respectively. Moreover, the selection of the PAs from the whole sEMG 25 

signal may help the interpretation of muscle activation patterns by reducing the 26 

intra-subject variability of the activation intervals. In this chapter, only the 27 

applicability of the selection of PAs as a pre-processing step before muscle synergy 28 

extraction was tested, leaving the study of motor control strategies during secondary 29 

muscle activations to future studies. 30 

As stated before, the extraction of the PAs allows evaluating only the 31 

“necessary” muscle activations, discarding those with auxiliary function [105], 32 

such as those providing corrections to cyclic motion and body segment posture 33 

(whose muscle synergies can be investigated through the selection of the SAs from 34 

the whole sEMG signals). According to this approach, only the sEMG time-instants 35 

in correspondence of PAs are considered as inputs of the factorization algorithm 36 

[24,104], while the remaining sEMG time-instants are set to zero. 37 

To assess the differences in muscle synergies between the newly proposed 38 

approach and the standard one, the muscle synergies extracted from 22 healthy 39 

subjects and 22 patients affected by Parkinson’s disease during a walking task have 40 

been compared in terms of number of muscle synergies, intra-subject consistency, 41 

robustness, and muscle synergy interpretability. 42 

In terms of the number of muscle synergies, both approaches accurately 43 
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reconstruct the original sEMG signals acquired from both the sample populations 1 

through five muscle synergies. These muscle synergies are very similar both in their 2 

composition (temporal modulation of the activation coefficients and weighted 3 

contribution of the observed muscles) and in the biomechanical functions described 4 

by each of them. In particular, the same five biomechanical functions described in 5 

Ref. [24] can be associated with the muscle synergies extracted considering both 6 

the standard and the novel approach. Even if a statistically significant difference in 7 

age between PD patients and control subjects was detected, a few studies, such as 8 

those published by Monaco et al.[20,114], demonstrated that neither temporal 9 

patterning of activation coefficients nor muscles’ contribution to each muscle 10 

synergy were significantly affected by aging. Moreover, the purpose of this chapter 11 

was to assess the applicability and the performance of the novel approach 12 

considering both physiological and pathological conditions rather than assess the 13 

difference in motor control strategies between the two sample populations. 14 

In terms of intra-subject consistency and robustness, the standard and the novel 15 

approach reveal similar average values of intra-subject consistency and robustness 16 

of muscle synergies considering both healthy and pathological subjects, suggesting 17 

high repeatability of the motor control strategy among the 10-gait-cycle subgroups 18 

and high robustness of muscle synergy results, independently from the pre-19 

processing technique used. However, statistically significant (p < 0.05) differences 20 

in weight vector and activation coefficient intra-subject consistencies between the 21 

PD patients and healthy controls have been detected considering both the standard 22 

and the novel approach. This finding is consistent with a previous study by Allen 23 

et al. [115] focused on assessing the improvement of gait and balance function in 24 

PD patients after short-term rehabilitation through the muscle synergy theory. 25 

Results revealed that muscle synergies were more consistently recruited 26 

immediately after rehabilitation, suggesting more reliable and repeatable motor 27 

output. Furthermore, intra-subject consistency has been demonstrated to be a more 28 

sensitive marker of improved motor performance compared to the number of 29 

muscle synergies. Indeed, only a modest reduction in muscle synergy number has 30 

been detected in the PD population compared to the control subjects. 31 

In terms of interpretability of the muscle synergies, the novel approach 32 

outperforms the standard one. Indeed, results suggest that the extraction of the PAs 33 

allows for obtaining higher interpretability of the muscle synergies considering both 34 

healthy (90.6 % ± 4.4 % vs. 93.6 % ± 3.9 %) and pathological patients (90.1% ± 35 

2.6% vs. 93.7 % ±1.7 %) compared to the standard approach, thus providing a more 36 

clear assessment of the modular organization of the CNS during gait. Moreover, the 37 

possibility to extract more distinctly organized (or interpretable) muscle synergies 38 

may be useful to make easier the assignment of a specific biomechanical function 39 

to each muscle synergy. 40 

The analysis of the final number and the composition of the obtained muscle 41 

synergies revealed no loss of information due to the extraction of the PAs, 42 

compared to the standard approach. Moreover, the higher performance in terms of 43 

muscle synergy interpretability obtained considering the novel approach 44 

demonstrates that the extraction of the PAs may successfully improve the muscle 45 
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synergy analysis during gait in both healthy and pathological subjects. 1 

The number and composition of muscle synergies can also be strongly 2 

influenced by other steps of the muscle synergy extraction process 3 

[23,36,38,39,44,49–53], such as the sEMG pre-processing (e.g., low-pass filtering 4 

techniques) [38,49–51,53] and the number and choice of muscles acquired [23]. 5 

However, the focus of this chapter was on developing and validating an approach 6 

for muscle synergy extraction based on the combined application of SGA and 7 

CIMAP (with the extraction of PAs) algorithms, and not on evaluating the effect of 8 

different filtering techniques or subsets of acquired muscles on the extraction of the 9 

muscle synergies. Indeed, the same number of acquired muscles (i.e., 12 lower limb 10 

and trunk muscles) and filtering steps (i.e., high-pass filter at 35 Hz, full-cycle 11 

rectification, and low-pass filter at 12 Hz) were considered for both the tested 12 

approaches (standard and novel approach), following the common 13 

recommendations and guidelines for muscle synergy extraction. 14 

In this chapter, an innovative pre-processing technique for muscle synergy 15 

extraction was proposed combining Statistical Gait Analysis (SGA) and a clustering 16 

algorithm (CIMAP) that allows for obtaining the principal activations (PAs). To 17 

properly compute PAs, sEMG signals must be recorded for at least 3 minutes during 18 

gait. More specifically, sEMG signals used in this chapter for muscle synergy 19 

extraction were acquired during 5-minute walking tasks. Signal recording during a 20 

“long” physiological walk is needed to be able to collect at least 100 - 200 typical 21 

gait cycles required for PAs computation. This requirement does not limit the 22 

feasibility and applicability of the proposed methodology to pathological 23 

populations. Indeed, gait analysis is commonly used to quantitatively assess 24 

patients’ locomotion performance only in those patients able to independently walk, 25 

for some minutes, without walking aids or external supports. In the past, several 26 

studies demonstrated the feasibility of gait data acquisition, during recording 27 

sessions lasting 3 minutes, in patients suffering from different neurological 28 

conditions, e.g., Normal Pressure Hydrocephalus [89], mild ataxia [116], and 29 

cerebral palsy [117]. 30 

In this chapter, the CIMAP algorithm was used to select PAs and discard 31 

secondary activations, suggesting that muscle synergies are better understood when 32 

considering only PAs. This is in line with a previous work in which the selection of 33 

PAs was used to define a robust asymmetry index, based on sEMG activity during 34 

locomotion [67]. In particular, the study by Castagneri et al. [67] provided a 35 

validation both on healthy and pathological populations. 36 

The approach proposed in this chapter was validated considering both healthy 37 

and pathological populations, for whom the assessment of motor control through 38 

muscle synergies may be of the uttermost importance [45,115]. However, when 39 

considering pathological populations, also secondary activations (SAs) might be 40 

fundamental in the interpretation of the results. Indeed, discarding the effect of 41 

auxiliary functions included in the secondary activations might bias the 42 

interpretation of pathological types of behavior, instead of improving it. 43 

Nevertheless, it should be noticed that the opportunity to separate principal from 44 

secondary activations, provided by the CIMAP algorithm, does not preclude 45 
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studying also secondary (auxiliary) activations. Therefore, future developments of 1 

the proposed approach will include the analysis of muscle synergies extracted from 2 

a pathological sample population considering the principal and the secondary 3 

activations, separately. 4 

In conclusion, the results presented in this chapter demonstrate that the 5 

extraction of the principal activations can be successfully used as a pre-processing 6 

step before muscle synergy extraction, allowing a more interpretable assessment of 7 

the modular organization of the CNS during a walking task without any loss of 8 

information.  9 
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Methodological Issue – Multi-Criteria Decision Analysis 1 

for Selecting the Optimal Number of Muscle Synergies  2 

 3 

3.5 Introduction 4 

One of the main challenges for researchers and clinicians interested in human 5 

motion control is to understand how the CNS controls a complex system, such as 6 

the musculoskeletal system, during different movement tasks. The complexity of 7 

the musculoskeletal system lies in its redundancy, due to the countless number of 8 

muscles and joints involved and the many different ways that muscles can be 9 

enrolled to execute the same motor task. 10 

One of the most widely accepted theory for the assessment of human motor 11 

control is the muscle synergy theory. Muscle synergies are a valuable tool to 12 

quantitatively and non-invasively assess how the CNS can manage the high 13 

complexity and redundancy of the motor control system. Applications range from 14 

the medical field (e.g., monitoring of patients suffering from neurological, 15 

neurodegenerative diseases [18,43], or joint disorders [118]), to the rehabilitation 16 

field (e.g., pre-/post-treatment comparisons [119]), to the robotic field (e.g., control 17 

of robotic devices or exoskeletons [17,120]). According to this theory, muscles 18 

involved in a specific movement are activated in small groups, commonly referred 19 

to as muscle synergies [121]. Therefore, the CNS can reduce the complexity of the 20 

motor control system thanks to the activation of multiple muscles with a single 21 

control signal. Previous studies have demonstrated that muscle activity during a 22 

variety of movement tasks, such as walking, running, and cycling, can be 23 

successfully described through a small set of muscle synergies responsible for 24 

specific biomechanical functions [19]. In these studies, muscle synergies are 25 

extracted from surface electromyography (sEMG) signals acquired from sets of 26 

muscles during a variety of motor tasks, using different matrix factorization 27 

algorithms, such as “standard” Non-Negative Matrix Factorization (NNMF) 28 

[41,122], Gaussian NNMF (GNNMF), inverse Gaussian NNMF (IGNNMF) 29 

[36,123], and principal or independent component analysis. Among all the 30 

factorization algorithms, NNMF is the most widely used algorithm for muscle 31 

synergy extraction, even if it was demonstrated that similar results can be obtained 32 

by applying other approaches [32,40]. The NNMF algorithm models the original 33 

sEMG data as a linear combination of muscle synergy weight vectors and activation 34 

coefficients, whose dimensions depend on the number of muscle synergies needed 35 

to properly reconstruct the motor task. 36 

In the last years, the optimal number of muscle synergies (𝑁𝑜𝑝𝑡) has been 37 

proposed as a meaningful feature for the analysis of motor control strategies in 38 

pathological populations. In the study by Allen et al. [124], a reduced number of 39 

muscle synergies has been demonstrated in patients affected by brain injury with 40 

respect to a healthy population while executing walking tasks. Similar results have 41 

been obtained in the work of Rodriguez et al. [45], in which a decreased 42 



55 

 

neuromuscular complexity during gait has been assessed in patients affected by 1 

Parkinson’s disease. These studies suggest that the number of muscle synergies and 2 

their composition could be correlated with the motor control capacity and its 3 

reduction in pathological conditions [33,55]. 4 

Despite the growing interest in the assessment of muscle synergy number, there 5 

is a lack of standardized criteria or shared guidelines for computing the optimal 6 

number of muscle synergies (𝑁𝑜𝑝𝑡) from sEMG recordings, revealing a low 7 

reproducibility and comparability of muscle synergy results obtained from different 8 

studies. One of the most widely used methods is the application of a cut-off 9 

threshold based on the Variance Accounted For (𝑉𝐴𝐹) [23,24,43–10 

46,112,118,120,125,126], defined as the uncentered Pearson’s correlation 11 

coefficient between the original and the reconstructed sEMG signals. More 12 

specifically, according to this method, 𝑁𝑜𝑝𝑡 is defined as the smallest number of 13 

synergies that ensures a 𝑉𝐴𝐹 value above a cut-off threshold (threshold criterion). 14 

The 𝑉𝐴𝐹 threshold is commonly set equal to 90% 15 

[23,24,43,44,46,112,118,120,125,126] , but several other studies considered 16 

threshold values in the range from 80% to 95% [45]. Discordance over the 𝑉𝐴𝐹 17 

threshold values significantly intensifies the confusion over the selection of the 18 

optimal number of muscle synergies and reduces the comparability with other 19 

studies. To a lesser extent, 𝑁𝑜𝑝𝑡 was selected by means of the coefficient of 20 

determination 𝑅2 [16,31,34,47,121,122,127,128], setting a cut-off threshold for the 21 

mean squared error between the 𝑅2 curve and the linear fit. In the studies by Sawers 22 

et al. [129] and by Cheung et al. [31], bootstrapping techniques have been used to 23 

resample multiple times the sEMG data and compute 𝑉𝐴𝐹 and 𝑅2 curves, 24 

respectively. The optimal number of muscle synergies was then selected as the 25 

value at which the 95% confidence interval exceeds 90% 𝑉𝐴𝐹 (or 𝑅2). 26 

To the best of the author's knowledge, only a few works have already explored 27 

alternatives to 𝑉𝐴𝐹 or 𝑅2 curves, using the variability of muscle synergies among 28 

task cycles [130], a task decoding-based metric [131], likelihood ratio tests, Bartlett 29 

Akaike, Bayesian, and Laplacian information criteria [32,132–135]. 30 

In the last years, Multi-Criteria Decision Analysis (MCDA) or Multi-Criteria 31 

Decision-Making (MCDM) approaches have been proposed in the field of 32 

operational research, in addition to Cost-Benefit Analysis (CBA), to support 33 

rigorous decision-making by explicitly taking into account multiple criteria [136]. 34 

Applications range from the medical field [137,138] to the transport field [139,140], 35 

to the environment and water management [141,142]. The selection of the optimal 36 

number of muscle synergies can be considered itself a multi-criteria approach, 37 

where several criteria (e.g., reconstruction accuracy and muscle synergy 38 

consistency) should be addressed to obtain the best representation of the motor 39 

system. 40 

This chapter aims at assessing the applicability of a novel approach for the 41 

selection of the optimal number of muscle synergies (𝑁𝑜𝑝𝑡), based on an MCDA 42 

approach, specifically developed to overcome the limitations of the standard 𝑉𝐴𝐹-43 

based approaches. The performance of the MCDA-based approach is evaluated and 44 
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compared against standard approaches (Threshold 𝑉𝐴𝐹, Elbow 𝑉𝐴𝐹, and Plateau 1 

𝑉𝐴𝐹) in terms of estimation bias and mean absolute error (𝑀𝐴𝐸), both on simulated 2 

and real sEMG signals. 3 

3.6 Materials and Methods 4 

A dataset of simulated and real sEMG signals was used to assess the 5 

applicability of the MCDA-based approach for selecting the optimal number of 6 

muscle synergies (𝑁𝑜𝑝𝑡) and to compare its performance to the principal 𝑉𝐴𝐹-based 7 

approaches [23,24,43–46,112,118,120,125,126]. 8 

 9 

1. Real Data 10 

Gait data acquired from 12 subjects were retrospectively analyzed to test the 11 

performance of the four different approaches (Threshold 𝑉𝐴𝐹, Elbow 𝑉𝐴𝐹, Plateau 12 

𝑉𝐴𝐹, and MCDA-based approach) when applied to real sEMG signals. Subjects 13 

were randomly selected from the PoliToBIOMed Lab (Politecnico di Torino, Turin, 14 

Italy) database to include both healthy individuals and patients affected by 15 

Parkinson’s Disease (PD). This non-homogeneous group of subjects was 16 

specifically chosen to verify that the algorithm could work under different 17 

conditions. 18 

In particular, 6 out of 12 subjects were patients affected by PD (age: 55.5 ± 5.7 19 

years, height: 171.1 ± 9.1 cm, weight: 76.7 ± 13.2 kg, UPDRS-III [96] during 𝑂𝐹𝐹 20 

condition: 45.8 ± 13.1, UPDRS-III during 𝑂𝑁 condition: 16.2 ± 6.5), while the 21 

remaining 6 subjects were healthy controls (age: 52.3 ± 10.0 years, height: 171.3 ± 22 

7.2 cm, weight: 73.0 ± 8.7 kg). PD patients were enrolled from those eligible for 23 

Deep Brain Stimulation (DBS) at the Stereotactic and Functional Neurosurgery 24 

Unit of the University of Turin (Italy). Moreover, none of the healthy subjects 25 

reported lower limb injuries or had neurological or musculoskeletal disorders that 26 

could compromise their gait performance. 27 

Gait data were recorded through the STEP32 system (Medical Technology, 28 

Italy)[46,90,91]. Surface electromyographic (sEMG) signals were acquired through 29 

active probes (configuration: single differential, size: 19 mm × 17 mm × 7 mm, Ag-30 

disks diameter: 4 mm, interelectrode distance: 12 mm, gain: variable in the range 31 

from 60 dB to 86 dB) placed over the following 12 muscles of the lower limb: right 32 

and left Longissimus Dorsii (LDR, LDL), Tensor Fasciae Latae (TFL), Gluteus 33 

Medius (GMD), Rectus Femoris (RF), Lateral Hamstring (LH), Medial Hamstring 34 

(MH), Vastus Medialis (VM), Lateral Gastrocnemius (LGS), Peroneus Longus 35 

(PL), Soleus (SOL) and Tibialis Anterior (TA). The dominant lower limb was 36 

analyzed for healthy subjects, while the most affected limb was selected for 37 

pathological subjects. Figure 3.2 shows an example of sensor placement for a 38 

representative subject of the healthy population. 39 

Subjects were asked to perform a 5-minute walk at a self-selected speed, back 40 

and forth on a 9-m straight walkway (Figure 3.1). The protocol conformed to the 41 

Helsinki declaration on medical research involving human subjects and all the 42 
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volunteers signed a written informed consent to participate in the study before each 1 

experimental session. 2 

The reconstructed sEMG envelopes were computed, for each subject and each 3 

number of muscle synergies in the range [1, 8], as the linear combination of the 4 

weight vectors (𝑊) and the activation coefficients (𝐶) extracted from the real data 5 

through the NNMF algorithm (Equation 1.2). 6 

 7 

2. Simulated Data 8 

The sEMG signal during cyclic contractions, such as those observed during 9 

walking, can be modeled as the superimposition of two different contributions: (i) 10 

the muscle activity and (ii) the background noise generated by the activity of the 11 

neighboring muscles and electronics. Thus, the sEMG signal can be defined as a 12 

cyclostationary process [86] and modeled as the superimposition of two different 13 

stationary processes [69]: 14 

i. Muscle activity (𝑠) defined as a zero-mean Gaussian process with variance 15 

𝜎𝑠
2: 16 

𝑠(𝑡) ∈ 𝑁(0, 𝜎𝑠
2) (3.8) 

where 𝜎𝑠 =  10(
𝑆𝑁𝑅

20
) ∙ 1 µ𝑉. 17 

ii. Background noise (𝑛) defined as a Gaussian process with zero-mean and 18 

variance 𝜎𝑛
2: 19 

𝑛(𝑡) ∈ 𝑁(0, 𝜎𝑛
2) (3.9) 

where 𝜎𝑛 =  1 µ𝑉. 20 

Similarly to what was performed in previous studies[37,125,143], simulated 21 

sEMG signals were generated starting from real data, defining a priori the optimal 22 

number of muscle synergies (𝑁𝑜𝑝𝑡). More specifically, the muscle activity of twelve 23 

muscles was simulated by time-windowing twelve Gaussian processes (𝑠) by means 24 

of different time supports. Each time support was defined as the reconstructed 25 

sEMG envelope calculated from the muscle synergies extracted from the real 26 

data[143], selecting a priori the number of muscle synergies (𝑁𝑜𝑝𝑡) in the range 27 

between 4 and 6 synergies (i.e., numbers of muscle synergies usually selected 28 

during walking in healthy subjects). Then, twelve background noise processes (𝑛) 29 

were superimposed to simulate the crosstalk of the neighboring muscles. Eight 30 

different values of 𝑆𝑁𝑅 were simulated (𝑆𝑁𝑅 = 6, 10, 13, 16, 20, 23, 26, 30 dB) to 31 

assess the impact of 𝑆𝑁𝑅 on the approaches’ performance. 32 

The simulated sEMG signals were then band-pass filtered through a 4th order 33 

Butterworth digital filter with a lower cut-off frequency of 10 Hz and a higher cut-34 

off frequency of 450 Hz. The steps for the computation of the simulated sEMG 35 

signals are represented in Figure 3.8 for the Tibialis Anterior (TA) muscle. First, 36 

muscle synergies (W and C) were extracted from the real data of a representative 37 

PD subject of the sample population (Figure 3.8a). Second, the reconstruction of 38 

the TA envelope was calculated as WTA·C (Figure 3.8b). Third, a simulated sEMG 39 

signal without additive noise is generated by time-windowing a Gaussian process 40 

through the TA envelope (Figure 3.8c). Finally, noise is superimposed to the 41 
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previous signal to simulate the crosstalk from the neighboring muscles (Figure 1 

3.8d). 2 

Therefore, for each of the 12 muscles mentioned above, a dataset composed of 3 

288 simulated sets (12 subjects × 8 𝑆𝑁𝑅𝑠 × 3 𝑁𝑜𝑝𝑡) was built. 4 

 5 

3. Muscle Synergy Extraction 6 

Before muscle synergy extraction, both the simulated and real sEMG signals 7 

were pre-processed to obtain the sEMG envelopes. 8 

Considering the real data, sEMG signals were first time-segmented into gait 9 

cycles, according to the foot-floor contact sequence. Second, only the HFPS gait 10 

cycles, defined as the physiological sequence of Heel Contact (H), Flat Foot 11 

Contact (F), Push Off (P), and Swing (S), were considered, discarding those 12 

characterized by atypical gait cycles (i.e., non-HFPS gait cycles) [108]. Third only 13 

the gait cycles belonging to the rectilinear path (see Figure 3.1) were analyzed, 14 

 

Figure 3.8 Example of the generation of simulated sEMG signal for the Tibialis Anterior (TA) muscle: the 

first step is (a) the extraction of muscle synergies (W and C) from the real data of a representative subject, 

the second is (b) the reconstruction of the TA envelope (obtained as WTA*C). Then, (c) a simulated sEMG 

signal without additive noise is generated. Finally, noise is added to the previous signals. An example of a 

simulated sEMG signal with 𝑺𝑵𝑹 = 16 dB is shown in (d). 
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removing those corresponding to direction changes at the beginning and at the end 1 

of the walkway (including deceleration before and acceleration after the U-turn) 2 

[24]. Finally, each segmented gait cycle was time-normalized to 1000 samples [55], 3 

and all gait cycles selected were concatenated in a single vector [24]. 4 

Both simulated and real sEMG signals were then high-pass filtered through an 5 

8th order Butterworth digital filter with a cut-off frequency of 35 Hz, demeaned, 6 

full-cycle rectified, and low-pass filtered at 12 Hz through a 5th order Butterworth 7 

digital filter to obtain the sEMG envelopes. Each sEMG envelope was then 8 

normalized in amplitude with respect to its global maximum to ensure an equally 9 

weighted contribution of each acquired muscle in the muscle synergy extraction 10 

process. The amplitude-normalized envelopes were divided into groups of 10 11 

concatenated gait cycles (called subgroups) allowing for muscle synergy 12 

assessment over the entire walk duration [24,112]. 13 

Muscle synergies were then extracted for each subgroup of 10 gait cycles 14 

[24,46,112] by means of the NNMF algorithm [32,41]. The NNMF algorithm 15 

describes the original sEMG signals as a linear combination of muscle synergy 16 

weight vectors (𝑊𝑘) and activation coefficients (𝐶(𝑡)𝑘), as detailed in (3.2). More 17 

specifically, the weight vector 𝑊𝑘 describes the time-independent contribution of 18 

each observed muscle to the k-synergy, while the activation coefficient vector 19 

𝐶(𝑡)𝑘 represents the time-dependent modulation of the muscles recruited in the k-20 

synergy. The MATLAB® function “nnmf” was used to apply the NNMF algorithm, 21 

setting the routine’s input parameters as follows: multiplicative update as 22 

factorization algorithm, 1e-6 as function and search tolerance, 50 as the number of 23 

factorization replicates, and 1000 as the maximum number of factorization 24 

iterations. 25 

The first algorithm initialization was performed differently for the weight 26 

vector 𝑊𝑘 and the activation coefficient vector 𝐶(𝑡)𝑘. The 𝐶 matrix was initialized 27 

with values randomly selected from a uniform distribution in the range [0, 1]. To 28 

improve the performance of the factorization algorithm and the accuracy in the 29 

reconstruction of the original sEMG data, a sparseness constraint was imposed in 30 

the initialization of the 𝑊 matrix [37]. In particular, 𝑊 matrix was first initialized 31 

with values randomly chosen from a uniform distribution in the range [0, 0.05], 32 

then one random element of each 𝑊𝑘 vector was set to a value selected from a 33 

uniform distribution in the range [0.7, 0.8]. Therefore, only one muscle for each k-34 

synergy has a significant contribution, obtaining an extremely sparse NNMF 35 

initialization [37]. 36 

To sort the muscle synergies in the same order for each subgroup, the k-means 37 

algorithm was applied to the 𝑊 matrix [22]. Clustering was performed by means of 38 

the MATLAB® routine “kmeans” using the following input parameters: 𝑁 as 39 

number of k-means clusters, 1000 as maximum number of iterations, 15 as number 40 

of replicates, and cosine as distance metric. The activation coefficients matrix 𝐶 41 

was ordered accordingly. 42 
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To explore different solutions of the NNMF algorithm, the factorization process 1 

was run many times on the same gait data, changing the number of muscle synergies 2 

(𝑁) in the range [1, 8]. 3 

 4 

4. Optimal Number Selection: VAF-base Methods 5 

Variance Accounted For (𝑉𝐴𝐹) is widely used in literature to compute the 6 

reconstruction accuracy of a factorization algorithm [23,24,43–7 

46,112,118,120,125,126] . 𝑉𝐴𝐹 is defined as the uncentered Pearson’s correlation 8 

coefficient expressed in percentage, as it follows: 9 

𝑉𝐴𝐹 = (1 −
∑ (𝑀𝑘 − 𝑀𝑘

𝑅)2𝑚
𝑘=1

∑ 𝑀𝑘
2𝑚

𝑘=1

) ∙ 100 (3.10) 

where 𝑚 represents the number of muscles observed, ∑ (𝑀𝑘 − 𝑀𝑘
𝑅)2𝑚

𝑘=1  describes 10 

the sum of the squared errors between the original (𝑀𝑘) and reconstructed (𝑀𝑘
𝑅) 11 

sEMG signals of the k-synergy, and ∑ 𝑀𝑘
2𝑚

𝑘=1  represents the total sum of squared 12 

𝑀𝑘 values with respect to zero. The optimal number of muscle synergies (𝑁𝑜𝑝𝑡) is 13 

often selected by applying different approaches on the plot of the 𝑉𝐴𝐹 versus the 14 

number of muscle synergies (called 𝑉𝐴𝐹 curve). 15 

Figure 3.8 shows an example of 𝑉𝐴𝐹 curves extracted from (Figure 3.8A) real 16 

and (Figure 3.8B) simulated sEMG signals. 17 

 18 

In this chapter, the performance of the MCDA-based approach is quantitatively 19 

compared with respect to three standard 𝑉𝐴𝐹-based approaches: (i) Threshold 𝑉𝐴𝐹 20 

(𝑇𝑉𝐴𝐹), (ii) Elbow 𝑉𝐴𝐹 (𝐸𝑉𝐴𝐹), and (iii) Plateau 𝑉𝐴𝐹 (𝑃𝑉𝐴𝐹) methods. 21 

 22 

i. Threshold  𝑉𝐴𝐹 (𝑇𝑉𝐴𝐹): this approach defines 𝑁𝑜𝑝𝑡 as the first number of 23 

synergies granting a 𝑉𝐴𝐹 value above a heuristically defined cut-off 24 

threshold. This threshold is commonly set at 90% 𝑉𝐴𝐹 25 

[23,24,43,44,46,112,118,120,125,126] . 26 

 

Figure 3.8 Example of 𝑽𝑨𝑭 curves extracted from (A) real and (B) simulated sEMG signals. For each 

tested number of synergies, the Variance Accounted For (𝑽𝑨𝑭) measures the correlation between the 

original and the reconstructed sEMG data. Each colored line represents a 𝑽𝑨𝑭 curve extracted from a 

single 10-gait-cycle subgroup, while black lines represent the average 𝑽𝑨𝑭 cuvrve computed over 

subgroups. 
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 1 

ii. Elbow 𝑉𝐴𝐹 (𝐸𝑉𝐴𝐹): this approach defines 𝑁𝑜𝑝𝑡 as the number of synergies 2 

at which the 𝑉𝐴𝐹 curve achieves the highest curvature (“elbow”) [32]. 3 

More specifically, slope changes are detected by computing the curvature 4 

for every three consecutive 𝑉𝐴𝐹 curve points (i.e., the first curvature is 5 

computed considering 𝑁 = 1, 2, and 3; the second curvature considering 6 

𝑁 = 2, 3, 4, etc.). Finally, the optimal number of muscle synergies is 7 

defined as the number of synergies in correspondence of the highest 8 

curvature among the computed ones. 9 

 10 

iii. Plateau 𝑉𝐴𝐹 (𝑃𝑉𝐴𝐹): this approach defines 𝑁𝑜𝑝𝑡 as the number of 11 

synergies beyond which the 𝑉𝐴𝐹 curve reaches a plateau. More 12 

specifically, the 𝑉𝐴𝐹 curve is iteratively fitted by means of the least-13 

squares linear regression, first considering all the 𝑉𝐴𝐹 curve points, and 14 

then moving the fit window toward the right side of the 𝑉𝐴𝐹 curve by 15 

excluding the smallest number of muscle synergies. The first fit iteration 16 

considers all the 𝑉𝐴𝐹 curve points (e.g., 𝑁 ranges from 1 to 8) for the 17 

linear regression, the second fit iteration considers only the last seven 18 

𝑉𝐴𝐹 curve points (𝑁 ranges from 2 to 8), and so on until only the last two 19 

𝑉𝐴𝐹 curve points are considered. For each fit, the Mean Squared Error 20 

(MSE) was computed and compared with respect to a heuristically 21 

defined threshold, that in this study was set equal to 10-5 [16,47]. Finally, 22 

the optimal number of muscle synergies is defined as the first number of 23 

synergies at which the linear fit produces a 𝑀𝑆𝐸 ≤ 10−5. 24 

 25 

5. Optimal Number Selection: MCDA-based Method 26 

Multi-Criteria Decision Analysis (MCDA) was developed in the field of 27 

operational research and consists of a family of methods that aim at selecting the 28 

optimal solution (among all the possible alternatives) by explicitly taking into 29 

account multiple criteria. To find a reliable and systematic solution to the muscle 30 

synergy number problem, moving from single criterion approaches (e.g., 𝑉𝐴𝐹- or 31 

𝑅2-based approaches) to a multicriteria approach, an MCDA model is herein 32 

proposed to obtain a systematic and reliable approach to criteria modeling and 33 

alternatives evaluation. 34 

To define the best MCDA model, the following four main steps were 35 

considered: 36 

i. The definition of the alternatives set 37 

ii. The definition of the evaluation criteria 38 

iii. The choice and definition of the multicriteria aggregation procedure 39 

 40 

Definition of the alternatives set 41 

The alternatives considered in the MCDA model were defined as the different 42 

ranks of the factorization process (𝑟), i.e., all the possible solutions explored by the 43 

NNMF algorithm. Since the factorization is usually repeated several times on the 44 
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same data, changing the factorization rank (i.e., the number of muscle synergies 𝑁) 1 

between 1 and 8, eight different alternatives were considered in the decision-2 

making process. Thus, each alternative corresponds to a different number of muscle 3 

synergies. 4 

 5 

Definition of the evaluation criteria 6 

The main objective of the MCDA approach was to find a robust and repeatable 7 

approach for the selection for the optimal number of muscle synergies, moving from 8 

single criterion approaches, such as 𝑉𝐴𝐹- or 𝑅2-base approaches, to a multicriteria 9 

approach. To define the evaluation criteria, this main objective was divided into 10 

four sub-objectives: 11 

i. Maximize the reconstruction accuracy of the factorization algorithm 12 

ii. Maximize the muscle synergy consistency 13 

iii. Minimize the muscle synergy redundancy 14 

iv. Maximize the factorization model robustness. 15 

As shown in Table 3.4, these four sub-objectives were translated into six 16 

evaluation criteria to measure the degree to which an alternative attains each sub-17 

objective. 18 

In the following, the six evaluation criteria are detailed: 19 

i. Evaluation of Variance Accounted For (𝑉𝐴𝐹): this criterion quantifies the 20 

reconstruction accuracy of the factorization results and it is defined as the 21 

uncentered Pearson’s correlation coefficient, expressed in percentage, as 22 

defined in Equation (3.10). A high value of 𝑉𝐴𝐹 (high accuracy) is 23 

desired to obtain an accurate reconstruction accuracy. 24 

 25 

ii. Evaluation of the Weight Vector and Activation Coefficient Intra-Cluster 26 

Consistency (𝐼𝐶𝐶): these criteria quantify the consistency of weight 27 

TABLE 3.4 
OBJECTIVE, SUB-OBJECTIVES, AND EVALUATION CRITERIA 

SUB-OBJECTIVES EVALUATION CRITERIA (CRITERION WEIGHT) 

Maximize the reconstruction accuracy of the  

factorization algorithm 
Evaluation of Variance Accounted For 

(10%) 

Maximize the muscle synergy consistency 
Evaluation of Weight Vector Intra-Cluster Consistency 

(18%) 

 
Evaluation of Activation Coefficient Intra-Cluster Consistency 

(18%) 

Minimize the muscle synergy redundancy 
Evaluation of Weight Vector Inter-Cluster Similarity 

(17%) 

 
Evaluation of Activation Coefficient Inter-Cluster Similarity 

(17%) 

Maximize the factorization model robustness 
Evaluation of Cross-Variance Accounted For 

(20%) 
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vectors (𝐼𝐶𝐶𝑊) and activation coefficients (𝐼𝐶𝐶𝐶) over time (i.e., over the 1 

different 10-gait-cycle subgroups) by computing the cosine similarity 2 

(𝐶𝑆) [30]of the previously sorted weight vectors 𝑊𝑘 (3.11) and activation 3 

coefficient vectors 𝐶(𝑡)𝑘 (3.12), separately. More specifically, 𝐶𝑆 was 4 

computed between the weight vector (or activation coefficient) belonging 5 

to the i-th subgroup and the cluster centroid, defined as the average over 6 

all the 10-gait-cycle subgroups, of the k-synergy as described in (3.4) and 7 

(3.12): 8 

where 𝐶𝑆𝑊,𝑘
𝑖  and 𝐶𝑆𝐶,𝑘

𝑖  represent the 𝐶𝑆 computed between the weight 9 

vectors 𝑊𝑘 of the i-th subgroup and the cluster centroid of the k-synergy 10 

and between the activation coefficients 𝐶(𝑡)𝑘 of the i-th subgroup and the 11 

cluster centroid of the k-synergy, respectively. The 𝐶𝑆 values range 12 

between 0 (meaning no similarity) and 100 (meaning complete 13 

similarity). Then, 𝐼𝐶𝐶 was defined, separately for each k-synergy, as the 14 

average of the 𝐶𝑆𝑊,𝑘 and 𝐶𝑆𝐶,𝑘 values for the weight vectors and the 15 

activation coefficients, separately. Notice that the average operator is 16 

always applied across 10-gait-cycle subgroups. Finally, the “min” 17 

function is used to select the most variable muscle synergy (“worst” 18 

condition), obtaining a single 𝐼𝐶𝐶 value for each number of muscle 19 

synergies 𝑁. The 𝐼𝐶𝐶 value ranges from 0 (i.e., completely different 20 

muscle synergy across subgroups) to 100 (i.e., perfectly repeatable muscle 21 

synergy among the different subgroups). A high value of 𝐼𝐶𝐶 (high 22 

consistency) is desired to be able to assess repeatable muscle synergies. 23 

 24 

iii. Evaluation of the Weight Vector and Activation Coefficient Inter-Cluster 25 

Similarity (𝐼𝐶𝑆): these criteria quantify the level of similarity of weight 26 

vectors (𝐼𝐶𝐶𝑊) and activation coefficients (𝐼𝐶𝐶𝐶) belonging to different 27 

muscle synergies by computing the cosine similarity (𝐶𝑆) [30]. For each 28 

number of synergies (𝑁>1), and for each synergy i (with i = 1, …, 𝑁), 𝐶𝑆 29 

was computed between the cluster centroids (defined as the average over 30 

all the 10-gait-cycle subgroups) of different muscle synergies for the 31 

weight vectors and the activation coefficients, separately. Finally, the 32 

“max” function is used to select the most similar muscle synergy (“worst” 33 

condition), obtaining a single 𝐼𝐶𝑆-value for each number of muscle 34 

synergies 𝑁 as detailed in (3.13) and (3.14): 35 

𝐼𝐶𝑆𝑊 = max (
𝑊̅𝑖 ∙  𝑊̅𝑘

‖𝑊̅𝑖‖ ‖𝑊̅𝑘‖
)   (3.13) 

𝐶𝑆𝑊,𝑘
𝑖  = (

𝑊𝑘
𝑖  ∙  W̅𝑘

‖𝑊𝑘
𝑖‖ ‖W̅𝑘‖

) ∙ 100 (3.11) 

𝐶𝑆𝐶,𝑘
𝑖  = (

𝐶𝑘
𝑖  ∙  C̅𝑘

‖𝐶𝑘
𝑖 ‖ ‖C̅𝑘‖

) ∙ 100 (3.12) 
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𝐼𝐶𝑆𝐶 = max (
𝐶̅𝑖 ∙  𝐶̅𝑘

‖𝐶𝑖‖ ‖𝐶̅𝑘‖
) (3.14) 

where 𝑊̅𝑖 and 𝑊̅𝑘 represent the average weight vectors (cluster centroid) 1 

computed across subgroups for the i- and k-synergy, respectively. Instead, 2 

𝐶̅𝑖 and 𝐶̅𝑘 represent the average activation coefficient vectors (cluster 3 

centroid) computed across subgroups for the i- and k-synergy, 4 

respectively. 𝐼𝐶𝑆 values can range from 0 to 1: 𝐼𝐶𝑆 = 0 indicates a 5 

complete dissimilarity, while 𝐼𝐶𝑆 = 1 indicates a complete similarity 6 

between 𝑊̅𝑖 and 𝑊̅𝑘 or between 𝐶̅𝑖 and 𝐶̅𝑘. A small value of 𝐼𝐶𝑆 (low 7 

similarity) is desired to avoid redundant information. 8 

 9 

iv. Evaluation of the Muscle Synergy Robustness: this criterion quantifies the 10 

robustness of the factorization model over different 10-gait-cycle 11 

subgroup through the Cross-Variance Accounted For (𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹) [111], 12 

defined as it follows: 13 

𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹𝑖,𝑗 = (1 −
∑ (𝑀𝑘

𝑖 − 𝑀𝑘
𝑅,𝑗

)2𝑚
𝑘=1

∑ (𝑀𝑘
𝑖 )2𝑚

𝑘=1

) ∙ 100 (3.15) 

where 𝑀𝑘
𝑖  and 𝑀𝑘

𝑅,𝑗
 represent the original and the reconstructed sEMG 14 

signals of the k-muscle for the i- and j-th 10-gait-cycle subgroup, 15 

respectively. This parameter is used to assess how well the muscle 16 

synergies extracted for the i-th subgroup reconstruct the sEMG signals 17 

that belong to the j-th subgroup. The average 𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 value was then 18 

computed over all the possible couples of 10-gait-cycle subgroups. The 19 

average 𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 can assume values ranging from 0% (i.e., low 20 

correlation between the original and the reconstructed sEMG signals) to 21 

100% (i.e., a high correlation between the original and the reconstructed 22 

sEMG signals). A high value of 𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 (high robustness) is desired 23 

to assess a robust factorization model. 24 

 25 

Selection and Definition of the Multicriteria Aggregation Procedure 26 

Although the problem addressed in the present chapter can be described as a 27 

selection problem, herein it was addressed as a ranking problem, in which the 28 

alternatives are ranked from the best to the worst with the possibility of ex-aequo 29 

and/or incomparability between alternatives. 30 

The multicriteria aggregation procedure ELECTRE III (ELimination Et Choix 31 

Traduisant la REalitè or ELimination and Choice Expressing the REality) [144–32 

147] was used to rank the alternatives from the best to the worst based on their 33 

performance on the six evaluation criteria previously defined (Table 3.4). More 34 

specifically, ELECTRE-III [144–147] is a partially compensatory ordinal method 35 

specifically developed for ranking problems. Considering the decision-making 36 

process addressed in this chapter, it is desired to minimize the compensation effect 37 
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and penalize unbalanced alternatives, i.e., alternatives with a mix of very good and 1 

very bad evaluations. ELECTRE III is based on 4 basic outranking relations 2 

between alternatives [147]: 3 

• Indifference: it represents a condition where there are clear and positive 4 

reasons that justify the equivalence between the two alternatives 𝐴 and 𝐵 5 

• Strict preference: it represents a condition where there are clear and positive 6 

reasons in favor of one of the two alternatives 7 

• Weak preference: it represents a condition where there are clear and positive 8 

reasons in favor of one of the two alternatives, but they are insufficient to 9 

justify a strict preference relation 10 

• Incomparability: it represents a condition where there are no clear and 11 

positive reasons that would justify any of the above-mentioned relations. 12 

The outranking of an alternative 𝐴 by an alternative 𝐵 (defined by assigning to 13 

the pair of alternatives 𝐴 and 𝐵 one and only one of the four basic outranking 14 

relations above defined) is determined by concordance and discordance tests. In 15 

particular, for each pair of alternatives, the concordance and discordance indexes 16 

are computed on the basis of the evaluation matrix, i.e., the performance of each 17 

alternative on each criterion. Table 3.5 represents an example of an evaluation 18 

matrix, used as input of the ELECTRE III model, computed from real sEMG signals 19 

of a PD subject of the sample population during a walking task. 20 

The concordance index of a pair of alternatives 𝐴 and 𝐵 is used to validate the 21 

assertion that “𝐴 outranks 𝐵” and to measure the credibility of this assertion. From 22 

a mathematical point of view, it is defined as the weighted sum of the criteria on 23 

which 𝐴 is evaluated at least as good as 𝐵. In particular, the importance weight for 24 

each criterion were defined for each of the six criteria using the revised Simon’s 25 

procedure [148] as shown in brackets in Table 3.4. 26 

The discordance index for the alternatives 𝐴 and 𝐵 on criterion j, instead, is 27 

used to assess the degree to which criterion j goes against the assertion that “𝐴 28 

outranks 𝐵”. Finally, a ranking of the alternatives from the best one to the worst 29 

TABLE 3.5 
EVALUATION MATRIX OF A PD PATIENT OF THE SAMPLE POPULATION. 

Alternatives 

Evaluation Criteria 

𝑽𝑨𝑭 

(%) 

𝑰𝑪𝑪𝑾 

(a.u.) 

𝑰𝑪𝑪𝑪 

(a.u.) 

𝑰𝑪𝑺𝑾 

(a.u.) 

𝑰𝑪𝑺𝑪 

(a.u.) 

𝑪𝒓𝒐𝒔𝒔𝑽𝑨𝑭 

(%) 

1 Synergy 76.37 1.00 1.00 NaN1 NaN1 72.14 

2 Synergies 85.42 1.00 0.99 0.42 0.61 78.12 

3 Synergies 89.95 0.99 0.99 0.38 0.69 79.16 

4 Synergies 93.55 0.99 0.99 0.35 0.70 80.61 

5 Synergies 95.62 0.98 0.99 0.38 0.78 80.83 

6 Synergies 97.08 0.99 0.99 0.34 0.93 80.17 

7 Synergies 98.00 0.75 0.89 0.36 0.92 80.02 

8 Synergies 98.68 0.94 0.98 0.53 0.94 79.73 

     1 Inter-cluster similarity cannot be computed for a number of synergy 𝑁 = 1. 
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one was obtained from the strict and weak outranking relations. Figure 3.9 shows 1 

an example of outranking graph obtained considering real sEMG signals of a PD 2 

subject of the sample population during walking. 3 

In the outranking graph, when two alternatives are represented at the same rank, 4 

it means that they are incomparable (e.g., “6 Synergies” and “8 Synergies” 5 

alternatives in Figure 3.9) or equivalent. 6 

ELECTRE-III model was implemented and validated using MATLAB® release 7 

2020b (The MathWorks Inc., Natick, MA, USA), modifying the MCDA-ULaval 8 

open-source software developed by professor Irène Abi-Zeid of Laval University 9 

of Québec, Canada. The original MCDA-ULaval open-source software, developed 10 

in Java, can be freely found online at the following address: 11 

https://cersvr1.fsa.ulaval.ca/mcda-ulaval/?q=en. 12 

 13 

6. Performance Evaluation 14 

The optimal numbers of muscle synergies computed through the four different 15 

approaches (𝑇𝑉𝐴𝐹, 𝐸𝑉𝐴𝐹, 𝑃𝑉𝐴𝐹, and ELECTRE III) were quantitatively compared in 16 

terms of (i) estimation bias and (ii) Mean Absolute Error (𝑀𝐴𝐸), both for the 17 

 

Figure 3.9 Outranking graph extracted through the ELECTRE III methods considering a PD subject of the 

sample population. Alternatives are ranked from the best one (top) to the worst (bottom) one. The “5 

Synergies” alternative was selected as the best alternative. Therefore, the optimal number of muscle 

synergies was defined equal to 5. 
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simulated and real datasets. The 𝑀𝐴𝐸 was used to quantify how far a given 1 

approach deviates from the ground truth (i.e., the correct number of muscle 2 

synergies), while the estimation bias was used to know whether an approach goes 3 

wrong by defect or excess. More specifically, the indexes were defined as it follows: 4 

where 𝑁𝑜𝑝𝑡,𝑖 is the optimal number of muscle synergies for the 𝑖-th subject (ground 5 

truth) and 𝑁𝑖̂ is the estimated optimal number of muscle synergies identified by one 6 

of the tested approaches. 7 

To be able to know which number of muscle synergies should be considered 8 

optimal (𝑁𝑜𝑝𝑡), ground truth was defined for both the simulated and real signals. 9 

Considering the simulated data, the ground truth was known a-priori based on the 10 

sEMG signal simulation process. Considering the real data, instead, the judgment 11 

of two expert operators (Mr. Marco Ghislieri and Prof. Valentina Agostini) was 12 

used to define the ground truth. Their judgment was performed blind to the details 13 

of the ELECTRE III algorithm as well as to the results of the various methods 14 

tested. For each real signal, they analyzed the muscle synergy plots considering 15 

different numbers of muscle synergies 𝑁 (in the range between 1 and 8 muscle 16 

synergies) and they chose - separately - the number they considered as correct 17 

(𝑁𝑜𝑝𝑡), based on their knowledge of motor control strategies, muscle synergy 18 

analysis, and gait biomechanics. More specifically, the operators used basically the 19 

same criteria to identify the correct number of muscle synergies. They considered 20 

the consistency in time of the motor control strategies (muscle synergies are 21 

expected not to change too much over task duration) and the biomechanical task 22 

associated to each muscle synergy by assessing which number of synergies better 23 

represent a set of well-distinguished functions and avoiding the presence of 24 

redundant information (i.e., avoiding having two identical or “too similar” muscle 25 

synergies). However, expert judgment is subjective, at least to some extent. 26 

Cohen’s kappa statistic [149] was used to compute the degree of agreement between 27 

raters. In case of disagreement, the two expert operators discussed the discordant 28 

cases to achieve a common ground truth. 29 

7 Effect of SNR on Muscle Synergy Number Selection 30 

To assess the effect of the 𝑆𝑁𝑅 on the performance of the four approaches, the 31 

performance parameters described above were computed on the simulated dataset, 32 

separately for each of the eight 𝑆𝑁𝑅 values (𝑆𝑁𝑅 = 6, 10, 13, 16, 20, 23, 26, 30 33 

dB). 34 

8 Statistical Analysis 35 

𝑏𝑖𝑎𝑠 =
1

𝑛
∑(𝑁𝑖̂ − 𝑁𝑜𝑝𝑡,𝑖)

𝑛

𝑖=1

 (3.16) 

𝑀𝐴𝐸 =
1

𝑛
∑(|𝑁𝑖̂ − 𝑁𝑜𝑝𝑡,𝑖|)

𝑛

𝑖=1

 (3.17) 
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One-way repeated-measures analysis of variance (𝐴𝑁𝑂𝑉𝐴) followed by post-1 

hoc analysis with Tukey’s adjustment for multiple comparisons was performed to 2 

assess statistically significant differences in the performance of the four tested 3 

approaches for selecting the optimal number of muscle synergies, considering both 4 

simulated and real data. The effect size of the statistically significant differences 5 

was calculated through the Hedges' g including the correction for small sample sizes 6 

[113]. The significance level (α) was set equal to 0.05. 7 

3.7 Results 8 

First, the results supporting the applicability of the ELECTRE III approach for 9 

selecting the optimal number of muscle synergies are presented, considering 10 

simulated sEMG signals. Second the performance of the four approaches (𝑇𝑉𝐴𝐹, 11 

𝐸𝑉𝐴𝐹, 𝑃𝑉𝐴𝐹, and the newly introduced ELECTRE III) on simulated sEMG signals 12 

are compared, highlighting the effect of the 𝑆𝑁𝑅. Finally, ELECTRE III is 13 

validated on real data. 14 

 15 

Simulated Data 16 

The performance of the four different approaches were assessed and compared 17 

in terms of (i) estimation bias and (ii) Mean Absolute Error (𝑀𝐴𝐸): 18 

i. Estimation bias: On average, an estimation bias of -2.0 ± 1.6 muscle 19 

synergies, -0.4 ± 1.1 muscle synergies, 1.7 ± 0.7 muscle synergies, and -0.6 20 

± 0.9 muscle synergies was found on the simulated dataset, considering the 21 

𝑇𝑉𝐴𝐹, the 𝐸𝑉𝐴𝐹, the 𝑃𝑉𝐴𝐹, and the MCDA approach, respectively. One-way 22 

ANOVA followed by post-hoc analysis revealed significant differences 23 

between each pair of approaches (p < 0.001) 24 

ii. Mean Absolute Error: On average, a 𝑀𝐴𝐸 of 2.0 ± 1.6 muscle synergies, 25 

0.4 ± 1.1 muscle synergies, 1.7 ± 0.7 muscle synergies, and 0.8 ± 0.8 muscle 26 

synergies were found on the simulated dataset, considering the 𝑇𝑉𝐴𝐹, 𝐸𝑉𝐴𝐹, 27 

𝑃𝑉𝐴𝐹, and the ELECTRE III approach, respectively. One-way ANOVA 28 

followed by post-hoc analysis revealed significant differences between each 29 

pair of approaches (p < 0.001) 30 
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Figure 3.10 compares the performance of the four approaches tested (𝑇𝑉𝐴𝐹, 1 

𝐸𝑉𝐴𝐹, 𝑃𝑉𝐴𝐹, and the newly introduced ELECTRE III), based on the two parameters 2 

introduced above. The average values and standard errors of the parameters were 3 

estimated on the simulated dataset. 4 

 5 

Effect of SNR on Muscle Synergy Number Selection 6 

The effect of the 𝑆𝑁𝑅 on the approaches’ performance was assessed by 7 

computing the “performance” parameters (estimation bias and mean absolute 8 

error), separately for each simulated 𝑆𝑁𝑅-value. 9 

Figure 3.11 represents, for each tested approach, the average values (and 10 

standard errors) of estimation bias (Figure 3.11A) and 𝑀𝐴𝐸 (Figure 3.11B), for 11 

each simulated 𝑆𝑁𝑅-value. 12 

For both parameters, threshold-independent approaches (𝐸𝑉𝐴𝐹 and ELECTRE 13 

III) revealed a higher performance across the different 𝑆𝑁𝑅 values, suggesting a 14 

lower effect of 𝑆𝑁𝑅 on the selection of the optimal number of muscle synergies 15 

with respect to the other two threshold-dependent approaches (𝑇𝑉𝐴𝐹 and 𝑃𝑉𝐴𝐹). 16 

Even if the 𝐸𝑉𝐴𝐹 approach revealed the highest performance in terms of estimation 17 

bias and 𝑀𝐴𝐸, the approach less affected by the 𝑆𝑁𝑅 was the ELECTRE III, 18 

revealing similar performance across the different values of 𝑆𝑁𝑅. The approach 19 

more affected by the 𝑆𝑁𝑅, instead, was the 𝑇𝑉𝐴𝐹, with an evident decrease in the 20 

performance for simulated sEMG signals with 𝑆𝑁𝑅-values lower than 16 dB. On 21 

average, a significant decrease in the performance of all the tested approaches was 22 

detected for simulated sEMG signals with 𝑆𝑁𝑅 lower than 16 dB. 23 

Real Data 24 

The performance of the four different approaches on real sEMG signals were 25 

assessed with respect to the ground truth by considering the same two parameters 26 

described for the simulated dataset. The inter-rater agreement, computed by means 27 

of Cohen’s kappa, was equal to 0.5, suggesting a moderate agreement between the 28 

 

Figure 3.10 Comparison of the performance of the four tested approaches (𝑻𝑽𝑨𝑭, 𝑬𝑽𝑨𝑭, 𝑷𝑽𝑨𝑭, and the 

newly introduced ELECTRE III approach) estimated considering (A) the estimation bias and (B) the Mean 

Average Error (𝑴𝑨𝑬). Average values are represented with the indication of the standard errors. 

Considering both parameters, statistically significant differences were detected between each pair of 

approaches. 
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two expert operators. In the following, the results obtained considering the two 1 

above-mentioned parameters are detailed:  2 

i. Estimation bias: On average, an estimation bias of 0.9 ± 0.3 muscle 3 

synergies, -0.8 ± 0.2 muscle synergies, -0.8 ± 0.2 muscle synergies, and 4 

0.0 ± 0.3 muscle synergies was found on the real dataset, considering the 5 

𝑇𝑉𝐴𝐹, the 𝐸𝑉𝐴𝐹, the 𝑃𝑉𝐴𝐹, and the ELECTRE III approach, respectively. 6 

One-way ANOVA followed by post-hoc analysis revealed statistically 7 

significant differences between the 𝑇𝑉𝐴𝐹 and 𝐸𝑉𝐴𝐹 approaches (p = 0.003, 8 

g = 5.88) and between the 𝑇𝑉𝐴𝐹 and 𝑃𝑉𝐴𝐹 approaches (p = 0.001, g = 6.25), 9 

while no differences were found between the ELECTRE III approach and 10 

the VAF-based approaches. 11 

ii. Mean Absolute Error: An average 𝑀𝐸𝐴 of 1.1 ± 0.3 muscle synergies, 12 

0.8 ± 0.2 muscle synergies, 0.8 ± 0.2 muscle synergies, and 0.5 ± 0.3 13 

muscle synergies was computed from the real dataset, considering the 14 

𝑇𝑉𝐴𝐹, the 𝐸𝑉𝐴𝐹, the 𝑃𝑉𝐴𝐹, and ELECTRE III approach, respectively. One-15 

way ANOVA followed by post-hoc analysis revealed no statistically 16 

significant differences between the four tested approaches (p > 0.05). 17 

Considering the real sEMG data, Figure 3.12 compares the performance of the 18 

four approaches (𝑇𝑉𝐴𝐹, 𝐸𝑉𝐴𝐹, 𝑃𝑉𝐴𝐹, and the newly introduced ELECTRE III 19 

approach), considering the estimation bias (Figure 3.12A) and 𝑀𝐴𝐸 (Figure 20 

3.12B) parameters previously defined. The average values and standard errors of 21 

the computed parameters are reported, as well as asterisks to highlight statistical 22 

differences (p < 0.05) between each pair of approaches. 23 

 

Figure 3.11 Comparison of the performance of the four tested approaches (𝑻𝑽𝑨𝑭, 𝑬𝑽𝑨𝑭, 𝑷𝑽𝑨𝑭, and the 

newly introduced ELECTRE III approach) estimated considering (A) the estimation bias and (B) the Mean 

Average Error (𝑴𝑨𝑬). Average values are represented with the indication of the standard errors. 
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3.8 Discussion and Conclusions 1 

In literature, the muscle synergy theory has been proposed to assess the modular 2 

organization of the CNS during different movement tasks, such as walking and 3 

running, in both physiological and pathological populations. In the last years, 4 

several studies demonstrated that the optimal number of muscle synergies can be a 5 

meaningful feature for the assessment of the motor control complexity in patients 6 

affected by neuromuscular or neurodegenerative diseases, such as brain injury  7 

[124] and Parkinson’s disease [45]. According to these studies, the number of 8 

muscle synergies and their composition could be correlated with the motor control 9 

capacity and its reduction in pathological conditions [33]. Despite the growing 10 

interest in the assessment of the optimal number of muscle synergies, there is a lack 11 

of standardized methods for the precise identification of the number of synergies, 12 

making comparisons between studies and cohorts difficult. The number of muscle 13 

synergies characterizing a given movement, indeed, significantly varies within and 14 

across studies, even for healthy individuals. Hence, as muscle synergy analysis is 15 

growing in popularity in motor control neuroscience and rehabilitation engineering, 16 

how to improve and, hopefully, to standardize the selection of the optimal number 17 

of muscle synergies are timely and important questions. 18 

The approach currently accepted and most widely used by researchers for the 19 

identification of the optimal number of muscle synergies is based on the application 20 

of an arbitrary cut-off threshold based on the Variance Accounted For (𝑉𝐴𝐹) 21 

[23,24,43–46,112,118,120,125,126], defined as the uncentered Pearson’s 22 

correlation between the original and the reconstructed sEMG signals. More 23 

specifically, the optimal number of muscle synergies is defined as the first number 24 

of synergies that produces a 𝑉𝐴𝐹 value equal to or higher than an arbitrary cut-off 25 

threshold. This cut-off threshold is usually set at 90% 26 

[23,24,43,44,46,112,118,120,125,126], but several other studies considered 27 

 

Figure 3.12 Comparison of the performance of the four tested approaches (𝑻𝑽𝑨𝑭, 𝑬𝑽𝑨𝑭, 𝑷𝑽𝑨𝑭, and the 

newly introduced ELECTRE III approach) estimated considering (A) the estimation bias and (B) the Mean 

Average Error (𝑴𝑨𝑬). Average values are represented with the indication of the standard errors. 

Statistically significant differences (p < 0.05) are highlighted by means of asterisks (*). 
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threshold values that range from 80% to 95% [45]. Several are the disadvantages 1 

of this 𝑉𝐴𝐹-based approach. First, the discordance over the 𝑉𝐴𝐹 threshold values 2 

significantly intensifies the confusion over the selection of the optimal number of 3 

muscle synergies and reduces results comparability between studies. Second, even 4 

small variations in the cut-off threshold value could significantly change the final 5 

results in terms of number of muscle synergies. Third, there is no evidence why the 6 

same cut-off threshold value should be applied for all individuals and cohorts. 7 

Finally, since the VAF is defined as the uncentered Pearson’s correlation, different 8 

values of mean activity computed from different muscles may strongly affect the 9 

selection of the optimal number of muscle synergies. 10 

To the best of the author's knowledge, few other studies have proposed 11 

alternatives to the 𝑉𝐴𝐹 threshold approach. In the study by Kim et al.[130], a novel 12 

approach was proposed to enhance precision and reliability in synergy number 13 

identification based on k-means clustering and intra-cluster correlation analysis. 14 

However, this approach was tested considering sEMG data acquired only from 15 

eight leg muscles of a small sample population (9 healthy subjects) during treadmill 16 

walking. Delis et al.[131], instead, developed a more “physiological” approach, 17 

introducing a task decoding-based metric during an arm pointing task. 18 

In this chapter, a novel approach for choosing the optimal number of muscle 19 

synergies is proposed and validated on both simulated and real sEMG data. The 20 

novel ELECTRE III approach has potential advantages with respect to the 21 

commonly used 𝑉𝐴𝐹-based threshold methods, such as the use of minimization and 22 

maximization approaches rather than an arbitrary threshold and the applicability to 23 

a variety of different motor tasks. It relies on six parameters directly computed from 24 

muscle synergy results: the reconstruction accuracy, weight vector and activation 25 

coefficient intra-cluster consistency, weight vector and activation coefficient inter-26 

cluster similarity, and muscle synergy robustness. The applicability of the proposed 27 

approach was first checked considering simulated sEMG data. Then, its 28 

performance was quantitatively compared against three widely used 𝑉𝐴𝐹-based 29 

approaches (𝑇𝑉𝐴𝐹, 𝐸𝑉𝐴𝐹, and 𝑃𝑉𝐴𝐹), in terms of estimation bias (𝐵𝑖𝑎𝑠) and Mean 30 

Absolute Error (𝑀𝐴𝐸). Finally, ELECTRE III is validated on real data. 31 

Considering the simulated sEMG signals, the two threshold-independent 32 

approaches (𝐸𝑉𝐴𝐹 and ELECTRE III) outperform the other two threshold-33 

dependent methods (𝑇𝑉𝐴𝐹 and 𝑃𝑉𝐴𝐹) in terms of both estimation bias and mean 34 

absolute error. In particular, 𝐸𝑉𝐴𝐹 outperform all the other approaches, revealing 35 

high performance considering both the estimation bias and the mean absolute error. 36 

These results confirm the hypothesis that the threshold-dependent approaches could 37 

be more affected by even small changes in the sEMG characteristics that could 38 

modify the VAF curve, such as the SNR, compared to the threshold-independent 39 

approaches. Indeed, considering the effect of the 𝑆𝑁𝑅 on the approaches’ 40 

performance, the most affected ones were, as expected, the threshold-dependent 41 

approaches (i.e., 𝑇𝑉𝐴𝐹 and 𝑃𝑉𝐴𝐹), revealing a significant decrease in the 42 

performance for simulated sEMG signals with 𝑆𝑁𝑅-values lower than 16 dB. 43 

ELECTRE III approach, instead, revealed similar performance across the tested 44 
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𝑉𝐴𝐹 values, suggesting to be less affected by the 𝑆𝑁𝑅 with respect to the other 1 

three approaches. 2 

Considering real sEMG signals, results similar to those of the other three 3 

methods were achieved, applying the ELECTRE III approach, in terms of 4 

estimation bias and mean absolute error. However, it could be noticed that there are 5 

some clear differences in the performance of the threshold-dependent approaches 6 

between the simulated and the real sEMG signals. In particular, when considering 7 

the simulated data, 𝑇𝑉𝐴𝐹 and 𝑃𝑉𝐴𝐹 approaches underestimate and overestimate the 8 

number of muscle synergies, respectively, while a complementary behavior is 9 

assessed considering the real data. This is probably due to the nature of the 10 

simulated dataset: the simulated signals may be less complex to factorize and, then, 11 

the VAF assumes higher values already at small numbers of synergies. Indeed, the 12 

estimation bias values show that the 𝑇𝑉𝐴𝐹 always goes wrong by defect. 13 

Therefore, the results presented in this chapter demonstrated the applicability 14 

of the proposed 𝑀𝐶𝐷𝐴-based approach for the selection of the optimal number of 15 

muscle synergies, showing equal or higher performance with respect to the other 16 

three single-criterion methods. However, even if the ELECTRE III revealed lower 17 

performance with respect to the 𝐸𝑉𝐴𝐹 approach, the former can represent a valid 18 

alternative for the selection of the muscle synergy number, moving from single 19 

criterion approaches, such as 𝑉𝐴𝐹- or 𝑅2-base approaches, to a multicriteria 20 

approach. 21 

The MCDA-based approach has several advantages with respect to the 22 

commonly used 𝑉𝐴𝐹-based methods, such as the use of maximization and 23 

minimization approaches rather than arbitrary thresholds and its applicability to 24 

sEMG signals acquired from different sets of muscles and during different motor 25 

tasks (contrary to the study by Delis et al. [131]). Instead, one of the limitations of 26 

the proposed approach is that it requires several 10-gait-cycle subgroups to extract 27 

the evaluation matrix. This requirement does not limit the feasibility and 28 

applicability of the proposed methodology to pathological populations. Indeed, gait 29 

analysis is commonly used to quantitatively assess patients’ locomotion 30 

performance only in those patients able to independently walk, for some minutes, 31 

without walking aids or external supports. In the past, several studies demonstrated 32 

the feasibility of gait data acquisition, during recording sessions lasting 3 minutes, 33 

in patients suffering from different neurological conditions, e.g., normal pressure 34 

hydrocephalus[89], mild ataxia[116], and cerebral palsy[117]. 35 

The author is aware that the number of muscle synergies can be also strongly 36 

influenced by other steps in the muscle synergy extraction process 37 

[23,36,38,39,44,49–53], such as the sEMG collection and pre-processing (e.g., low-38 

pass filtering techniques) [49–51,53], the number and choice of muscles acquired 39 

[23], and sEMG data preparation before factorization (e.g., averaging or 40 

concatenating sEMG epochs) [38]. However, the focus of this chapter is on 41 

developing an approach that can be applied subsequent to a factorization algorithm 42 

to select the optimal number of muscle synergies and not on evaluating the effect 43 

of different pre-processing techniques on the identification of the synergy number. 44 
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Future developments of the proposed approach will include the assessment of 1 

the MCDA-based approach on larger and different cohorts (for age or pathological 2 

condition) and during different motor tasks, the optimization of the approach by 3 

tuning the importance weights of each evaluation criterion, the evaluation of 4 

different sets of evaluation criteria, and the evaluation of the effect of the number 5 

of 10-gait-cycle subgroup per subject on the ELECTRE III performance. 6 

In conclusion, a multicriteria approach for the identification of the optimal 7 

number of muscle synergies was proposed and validated on simulated and real 8 

sEMG signals. The proposed approach outperforms the other threshold-dependent 9 

𝑉𝐴𝐹-based approaches in terms of estimation bias and mean absolute error and 10 

overcomes their limitations, being independent of arbitrary cut-off thresholds. 11 

Moreover, it may help the standardization of motor control studies based on muscle 12 

synergies among different research laboratories. 13 



75 

 

Chapter 4 1 

Motor Control Strategies during 2 

Non-Cyclic Movements 3 

In the following chapter, the methodological issues in the assessment of motor 4 

control strategies during single-leg stance tasks are discussed. First, a novel pre-5 

processing approach for the selection of sEMG epochs corresponding to “well-6 

balanced” and “unbalanced” single-leg stance is assessed and validated 7 

(Methodological Issue – Muscle Synergy Assessment during Single-Leg 8 

Stance). Second, differences in terms of balance control strategies between “well-9 

balanced” and “unbalanced” single-leg stance epochs are analyzed by using the 10 

muscle synergy theory (Methodological Issue – Muscle Synergy Assessment 11 

during Single-Leg Stance). Then, to investigate muscle synergies in lower limb 12 

and back muscles during a single-leg stance task with and without visual 13 

information, the proposed approach is assessed considering a sample population of 14 

healthy young individuals (Application - Influence of Visual Feedback on 15 

Muscle Synergies). 16 

Methodological Issue – Muscle Synergy Assessment during 17 

Single-Leg Stance 18 

Some of the results presented in this paragraph are reproduced and modified 19 

from an article published in IEEE Transactions on Neural Systems and 20 

Rehabilitation Engineering (Volume: 28, Issue: 12, Dec. 2020) by Ghislieri et al. 21 

The final authenticated version of the manuscript is available online at 22 

http://dx.doi.org/10.1109/TNSRE.2020.3030847. 23 

4.1 Introduction 24 

The upright stance is a useful test condition to assess motor skills and evaluate 25 

proprioception and coordination with applications both in clinics and sport. Several 26 

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=9340019
http://dx.doi.org/10.1109%2FTNSRE.2020.3030847
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balance conditions can be studied to assess postural sway, such as Double-Leg 1 

Stance (DLS), tandem, semi-tandem, and Single-Leg Stance (SLS) [150]. Each of 2 

these balance tasks is characterized by different motor control strategies and levels 3 

of difficulty in carrying out the task. In particular, SLS or unipedal stance requires 4 

the maintenance of the upright stance using a single limb, and it may be challenging 5 

in patients affected by Chronic Ankle Instability (CAI) [151–153]. Moreover, 6 

considering a specific balance task, different conditions of visual and 7 

somatosensory integrations can be tested [154]. Typically, along with the eyes open 8 

(EO) condition, in which the subject exploits the visual feedback to maintain 9 

balance, a condition with eyes closed (EC) is also studied to evaluate the effect of 10 

visual deprivation on postural balance control [155–157]. 11 

The study of muscle synergies is facing new challenges in the field of postural 12 

balance analysis. To the best of the author’s knowledge, the analysis of muscle 13 

synergies during balance tasks is mainly focused on the evaluation of balance 14 

recovery after a “controlled” perturbation [26,158–161]. More specifically, a few 15 

studies have demonstrated that muscle synergies are highly consistent across 16 

different balance tasks and levels of difficulty [26,28,162]. This suggests that, 17 

increasing the task complexity, there should be only slight modifications to the 18 

basic motor control strategies involved in postural balance control. However, no 19 

studies have assessed the motor control strategies adopted to maintain balance 20 

during SLS. One possible reason may be the difficulty to select epochs of sEMG 21 

signals when the subject firmly maintains unipedal stance. Indeed, it is important 22 

to separate sEMG epochs in which balance is properly maintained from those in 23 

which a slight disequilibrium occurs. Therefore, this chapter aims at defining a 24 

robust approach for the segmentation of the sEMG time-instants relative to a “well-25 

balanced” (WB) SLS or an “unbalanced” (UB) SLS to be used as inputs of the 26 

muscle synergy extraction algorithm. The proposed approach might help the 27 

interpretation of muscle synergies in the SLS task. 28 

4.2 Materials and Methods 29 

1. Sample Population 30 

A sample population of twenty-two healthy subjects (11 females and 11 males; 31 

age: 24 ± 3 years; height: 175.7 ± 9.6 cm; weight: 65.9 ± 12.2 kg) was enrolled in 32 

the study. None of the volunteers reported lower limb injuries or had 33 

neurological/musculoskeletal disorders that could compromise the execution of the 34 

balance task. All the subjects were right-limb dominant, according to the preferred 35 

lower limb to start walking. This study was reviewed and approved by the Ethics 36 

Committee of the Area Vasta Emilia Centro della Regione Emilia Romagna (CE 37 

AVEC 193/2019/Sper/IOR approved on October 4, 2019). All participants signed 38 

written informed consent for the protocol before each experimental session, and all 39 

the acquisitions were performed in accordance with the Declaration of Helsinki. 40 

2. Experimental Protocol 41 
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The subjects were asked to perform a SLS task twice in two different 1 

conditions: eyes open (EO) and eyes closed (EC). The order condition was 2 

randomized for each subject by tossing a coin. In particular, for each condition, 3 

subjects were asked to perform a transition from double-leg stance (DLS) to single-4 

leg stance (SLS), to maintain SLS for at least 30 seconds, and then to return back 5 

to double-leg stance. If the subject failed to maintain the SLS balance for at least 6 

30 s and required to land on both feet during the task, the test was stopped and 7 

repeated until the minimum time duration was reached. The test was performed on 8 

a firm surface (force plate), with the subject keeping the arms straight at the sides. 9 

Figure 4.1 shows a schematic representation of the experimental protocol. 10 

3. Data Acquisitions 11 

During each experimental session, sEMG, foot-switch, and ground reaction 12 

force signals were simultaneously acquired. sEMG signals were recorded through 13 

active probes (FREEEMG 1000, BTS Bioengineering, Milan, Italy) placed over the 14 

main muscles of the lower limb and the trunk. Foot-switch signals (FREEEMG 15 

1000 – Footswitch Kit, BTS Bioengineering, Milan, Italy) were acquired to detect 16 

the onset/offset timing of the SLS task, while ground reaction forces were detected 17 

through a force plate (Dynamic Walkway P6000, BTS Bioengineering, Milan, 18 

Italy) to assess body sway. 19 

More specifically, sEMG active probes were placed over the following 13 20 

muscles of the dominant lower limb (the one sustaining the SLS) and the trunk 21 

bilaterally: right Longissimus Dorsii (LDR), left Longissimus Dorsii (LDL), Gluteus 22 

Medius (GMD), Rectus Femoris (RF), Lateral Hamstring (LH), Medial Hamstring 23 

(MH), Vastus Medialis (VM), Vastus Lateralis (VL), Lateral Gastrocnemius 24 

(LGS), Peroneus Longus (PL), Peroneus Brevis (PB), Soleus (SOL), and Tibialis 25 

Anterior (TA). These signals were acquired at a sampling frequency of 1 kHz. 26 

 

Figure 4.1 Schematic representation of the experimental protocol. Subjects were asked to perform a 

transition from double-leg stance (DLS) to single-leg stance (SLS), maintaining SLS for at least 30 

seconds, and the returning back to DLS to end the task. Reprinted from “Muscle Synergy Assessment 

During Single-Leg Stance” by Ghislieri et al. (2020). 
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The foot-switch sensor was placed under the first metatarsal head of the non-1 

dominant foot (corresponding to the left foot, for each subject of the sample 2 

population). 3 

All the acquired signals were then imported into MATLAB® release R2019b 4 

(The MathWorks Inc., Natick, MA, USA) to be offline processed through custom 5 

routines. 6 

Figure 4.2 shows a schematic representation of the acquisition system 7 

composed of the sEMG active probes placed over the main muscles of the dominant 8 

lower limb and the trunk, the foot-switch sensor mounted on the contralateral side 9 

to detect the SLS timing, and the force plate used to assess body sway. 10 

4. Segmentation of WB and UB SLS 11 

The signals acquired from the foot-switch sensor placed beneath the 12 

contralateral foot (left) and the ground reaction force acquired from the force plate 13 

were used to segment the sEMG time-instants relative to WB or UB SLS. 14 

In particular, the foot-switch signal was used to detect the time-instants when 15 

the subjects performed the transition from DLS to SLS and vice versa. First, the 16 

foot-switch signal was normalized in amplitude between 0 (open foot-switch, foot 17 

raised from the floor) and 1 (closed foot-switch, foot on the floor). Second, the onset 18 

of the SLS task was established 5 seconds after the 1-to-0 transition, while the offset 19 

was established 5 seconds before the 0-to-1 transition, discarding from the analysis 20 

DLS-to-SLS and SLS-to-DLS transitions. 21 

To distinguish between WB and UB sEMG epochs during SLS, the ground 22 

reaction force acquired through the force plate was used. The x-axis of the ground 23 

reaction force is aligned to the antero-posterior (AP) direction, the y-axis is aligned 24 

to the down-top vertical direction, and the z-axis is aligned to the medio-lateral 25 

(ML) direction. Due to the high correlation between the planar components (AP 26 

 

Figure 4.2 Schematic representation of the acquisition system. sEMG active probes were placed over the 

main muscles of the dominant lower limb (sustaining the SLS) and the trunk. A foot-switch was placed 

beneath the first metatarsal head of the contralateral foot (left side for all the subjects of the sample 

population) to detect the SLS timing. A force plate was used to assess body sway during SLS. Reprinted 

from “Muscle Synergy Assessment During Single-Leg Stance” by Ghislieri et al. (2020). 
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and ML) and the vertical component of the ground reaction force, only AP and ML 1 

were considered to segment WB and UB sEMG epochs, discarding the vertical 2 

component of the force [150]. 3 

Both the ground reaction force components (AP and ML) were first low-pass 4 

filtered through a 5th order Butterworth digital filter with a cut-off frequency of 10 5 

Hz [163,164]. Then, the resultant force (𝐹𝑟𝑒𝑠) was computed as described in (4.1): 6 

𝐹𝑟𝑒𝑠 =  √𝐹𝐴𝑃
2 + 𝐹𝑀𝐿

2  (4.1) 

where 𝐹𝐴𝑃 and 𝐹𝑀𝐿 represent the AP and ML components of the low-pass filtered 7 

ground-reaction force, respectively. 8 

The Root-Mean-Square (RMS) of the resultant reaction force (𝐹𝑟𝑒𝑠𝑅𝑀𝑆) was 9 

computed by windowing the signal into 1s-epochs without overlap to ensure a 10 

sufficient number of samples to be used as input of the muscle synergy extraction 11 

algorithm. Finally, an adaptive threshold (𝑇ℎ𝑐) was applied to the 𝐹𝑟𝑒𝑠𝑅𝑀𝑆 signal 12 

to detect the sEMG time-instants relative to a WB or UB SLS, defined as in (4.2): 13 

where 𝑐 is a multiplicative constant. 14 

Due to the high inter-subject variability of the 𝐹𝑟𝑒𝑠𝑅𝑀𝑆 signals and strong 15 

correlation between the ground reaction forces and several anthropometric 16 

parameters (e.g., body weight, body height, and leg length), an adaptive threshold 17 

was preferable to a fixed threshold to properly detect well-balanced and unbalanced 18 

SLS epochs according to the distribution of the ground reaction forces of each 19 

subject. 20 

Figure 4.3 represents the segmentation masks used to select the “well-21 

balanced” and “unbalanced” SLS epochs from a healthy subject of the sample 22 

population, considering three different values of the multiplicative constant 𝑐 (c = 23 

0.5, c = 1.0, c = 1.5). These c-values have been chosen to achieve a sufficient 24 

number of sEMG time-instants for muscle synergy extraction (for both WB and UB 25 

epochs). 26 

More specifically, each Segmentation Mask (SM) was a binary mask defined 27 

as it follows: 28 

• SM = 1, if 𝐹𝑟𝑒𝑠𝑅𝑀𝑆 ≤ 𝑇ℎ𝑐 (WB epochs) 29 

• SM = 0, if 𝐹𝑟𝑒𝑠𝑅𝑀𝑆 > 𝑇ℎ𝑐 (UB epochs). 30 

 31 

where 𝑇ℎ𝑐 represents the adaptive threshold value given the value of the 32 

multiplicative constant c. 33 

The sEMG epochs relative to a “well-balanced” and “unbalanced” SLS were 34 

then segmented using the above defined SM. 35 

𝑇ℎ𝑐 =  𝑚𝑒𝑎𝑛(𝐹𝑟𝑒𝑠𝑅𝑀𝑆) + 𝑐 ∙ 𝑠𝑡𝑑(𝐹𝑟𝑒𝑠𝑅𝑀𝑆) (4.2) 



80 

 

5. Muscle Synergy Extraction and Number Selection 1 

After sEMG segmentation, muscle synergies were extracted and properly 2 

sorted for the WB and UB SLS epochs, separately. First, the segmented sEMG 3 

signals were high-pass filtered at 35 Hz through an 8th order Butterworth digital 4 

filter to attenuate motion artifacts. Second, signals were demeaned and full-wave 5 

rectified to obtain non-negative signals. Third, rectified sEMG signals were low-6 

pass filtered at 12 Hz through a 5th order low-pass Butterworth digital filter [165]. 7 

Fourth, each envelope was normalized in amplitude with respect to its global 8 

maximum to ensure equally weighted contributions of all the acquired muscles in 9 

the muscle synergy extraction process [165]. 10 

Afterward, muscle synergies were extracted from the amplitude-normalized 11 

sEMG envelopes by means of the NNMF algorithm [28,41]. The NNMF 12 

decomposes the original sEMG envelope matrix (𝑀(𝑡)) as the linear combination 13 

of two different components: the time-dependent activation coefficients (𝐶(𝑡)) and 14 

the time-independent weight vectors (𝑊) [34] as described in (3.2) 15 

The activation coefficient vector 𝐶(𝑡)𝑘 describes the modulation over time of 16 

the muscles enrolled in the k-synergy (the temporal component of the motor 17 

 

Figure 4.3 Segmentation masks used to select the “well-balanced” and “unbalanced” SLS epochs for a 

representative subject of the sample population, considering three different values of the multiplicative 

constant c. In blue it is represented the resultant reaction force (𝑭𝒓𝒆𝒔) during SLS task, in black the RMS 

of the resultant reaction force (𝑭𝒓𝒆𝒔𝑹𝑴𝑺), and in red the segmentation mask computed considering each 

of the three different values of c.  Each segmentation mask assumes values equal to 1 in correspondence 

of “well-balanced” SLS epochs and to 0 otherwise (“unbalanced” SLS epochs). Reprinted from “Muscle 

Synergy Assessment During Single-Leg Stance” by Ghislieri et al. (2020). 
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control), while the weight vector 𝑊𝑘 represents the contribution of each muscle to 1 

the k-synergy (the spatial component of the motor control). 2 

The MATLAB® function “nnmf” was used to factorize the original sEMG 3 

envelope matrix, setting the routine’s input parameters as detailed in TABLE 4.1. 4 

The input parameters used in this study were optimized in previous works focused 5 

on muscle synergy extraction during gait [46,66]. To explore different solutions of 6 

the NNMF algorithm, the “nnmf” function was run several times on the same sEMG 7 

data, changing the number of muscle synergies (𝑁) from 1 to 8. 8 

The reconstruction accuracy of the original sEMG envelope matrix (𝑀(𝑡)) was 9 

assessed for each number of muscle synergies (𝑁) by computing the total Variance 10 

Accounted For (𝑡𝑉𝐴𝐹), defined as the uncentered Pearson’s correlation coefficient 11 

expressed in percentage (3.3). 12 

The optimal number of muscle synergies (𝑁𝑜𝑝𝑡) was first selected by choosing 13 

the least number of muscle synergies ensuring 𝑡𝑉𝐴𝐹 ≥ 90% (global criterion) [55]. 14 

Second, considering the number of muscle synergies selected according to the 15 

global criterion, the Variance Accounted For (𝑉𝐴𝐹) was also computed for each of 16 

the acquired muscles. If 𝑉𝐴𝐹 ≥ 75% for each of the 13 muscles (local criterion), it 17 

was concluded that no additional muscle synergies were needed to reconstruct the 18 

original sEMG envelopes. Otherwise (𝑉𝐴𝐹 < 75%), the number of muscle 19 

synergies (𝑁) was incremented until all the muscles achieved a  𝑉𝐴𝐹 value equal 20 

to or greater than 75% [28,166]. 21 

To graphically represent the muscle synergies, the weight vectors (𝑊) were 22 

normalized in amplitude in the range [0, 1] with respect to their global maximum. 23 

Then, the activation coefficient vectors (𝐶(𝑡)) were multiplied by the correspondent 24 

normalized values. 25 

Since the factorization algorithm may return 𝑊 and 𝐶(𝑡) in a different order 26 

for each subject or test condition, proper sorting was required. For this purpose, a 27 

k-means clustering algorithm was applied to the weight vectors (𝑊) [22]. The 28 

clustering algorithm was set considering 𝑁𝑜𝑝𝑡 as number of k-means clusters, 1000 29 

as maximum number of iterations, 15 as number of replicates, and cosine similarity 30 

as distance metric. Activation coefficients were then sorted accordingly. 31 

6. Robustness Assessment 32 

To assess the robustness of the proposed approach with respect to the 33 

segmentation threshold 𝑇ℎ𝑐, muscle synergies were extracted from sEMG 34 

envelopes relative to WB or UB SLS epochs, considering 3 different values of the 35 

multiplicative constant 𝑐: c = 0.5, c = 1.0, and c = 1.5. 36 

TABLE 4.1 
INPUT PARAMETERS OF THE MATLAB


 ROUTINE “NNMF” USED FOR MUSCLE SYNERGY EXTRACTION 

Parameters 
Values 

Algorithm multiplicative update 

Function tolerance 1e-6 

Number of replicates 50 

Number of iterations 1000 

Reprinted from “Muscle Synergy Assessment During Single-Leg Stance” by Ghislieri et al. (2020). 
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Afterward, the muscle synergies extracted considering the three different 1 

thresholds Th0.5, Th1.0, and Th1.5 were quantitatively compared in terms of (i) the 2 

consistency of the optimal number of muscle synergies (𝑁𝑜𝑝𝑡), and (ii) the 3 

similarity of weight vectors estimated through Pearson’s correlation coefficient (𝑅). 4 

7. Muscle Synergy Analysis 5 

To prove the necessity to segment WB or UB SLS epochs, the correspondent 6 

muscle synergies were extracted (setting c = 1.0) and compared one to each other 7 

in terms of (i) the optimal number of muscle synergies (𝑁𝑜𝑝𝑡), (ii) the average 8 

recruitment level of the activation coefficient vectors (𝑅𝑒𝑐𝑟), and (iii) the balance 9 

control strategies (𝑆). 10 

i. Optimal Number of Muscle Synergies (𝑁𝑜𝑝𝑡) 11 

The optimal number of muscle synergies (𝑁𝑜𝑝𝑡) necessary to accurately model 12 

the original sEMG signals was selected by choosing the smallest number of 13 

synergies which guarantees 𝑡𝑉𝐴𝐹 ≥ 90% (global criterion) and 𝑉𝐴𝐹 ≥ 75% 14 

(local criterion) for each of the acquired muscles [28,55,166]. 15 

ii. Average Recruitment Level (𝑅𝑒𝑐𝑟)  16 

Since no typical cyclostationary processes can be assessed during the SLS task, 17 

any direct or morphological interpretation of the activation coefficient vectors 18 

𝐶(𝑡)𝑘 is difficult. Hence, the average recruitment level (𝑅𝑒𝑐𝑟𝑘) was considered to 19 

quantitatively compare muscle synergy activation coefficient vectors (𝐶(𝑡)) [28]. 20 

The 𝑅𝑒𝑐𝑟𝑘 was computed as the average (over time) of the activation coefficient 21 

vector 𝐶(𝑡)𝑘 of the k-synergy. 22 

iii. Balance Control Strategy (𝑆) 23 

Starting from the balance task performed and the recorded muscles, three 24 

different balance control strategies can be identified: (a) ankle control, (b) knee 25 

control, and (c) hip/trunk control [26]: 26 

a. The ankle control strategy (𝑆𝑎𝑛𝑘𝑙𝑒) is mainly characterized by the activation 27 

of PL, PB, TA, LGS, and SOL muscles. 28 

b. The knee control strategy (𝑆𝑘𝑛𝑒𝑒) is mainly characterized by the activation 29 

of VM, VL, and RF muscles. 30 

c. The hip/trunk control strategy (𝑆ℎ𝑖𝑝) is mainly characterized by the 31 

activation of LH, MH, GMD, LDR, and LDL muscles. 32 

The average weight vector (𝑊𝑘) across those muscles belonging to the same 33 

balance control strategy was computed to quantitatively assess each balance control 34 

strategy, as detailed in (4.3): 35 

𝑆𝑗,𝑘 =  
∑ 𝑊𝑘,𝑖

𝑚
𝑖=1

𝑚
 (4.3) 
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where 𝑆𝑗,𝑘 represents the j-th balance control strategy (j=1: ankle control; 2: knee 1 

control; 3: hip/trunk control) for the k-synergy, and 𝑚 represents the number of 2 

muscles enrolled in the j-th balance control strategy. 3 

Finally, only a single balance control strategy (𝑆𝑘) was associated with each 4 

muscle synergy by calculating the highest 𝑆𝑗,𝑘 among those computed for the same 5 

k-synergy, as detailed in (4.4): 6 

𝑆𝑘 = max (𝑆1𝑘, 𝑆2𝑘, 𝑆3𝑘) (4.4) 

where k can assume value from 1 to 3 (S1 = Sankle, S2 = Sknee, S3 = Ship). 7 

8. Statistical Analysis 8 

To assess the robustness of the proposed approach with respect to the 9 

segmentation threshold, a two-way analysis of variance (ANOVA) followed by 10 

post-hoc analysis with Bonferroni adjustment for multiple comparisons was 11 

performed. 12 

First, the Lilliefors test was used to test the hypothesis of normality of the 13 

distribution, setting the significance level (α) equals to 0.05. Second, according to 14 

the results of the Lilliefors test, the Wilcoxon signed-rank test (α = 0.05) or the two-15 

tailed paired Student’s t-test (α = 0.05) was performed to assess significant changes 16 

in the optimal number of muscle synergies, in the average recruitment levels, and 17 

in the balance control strategies considering different sEMG epochs (WB and UB). 18 

The effect size of the statistically significant differences was calculated by 19 

means of the Hedges' g including the correction for small sample sizes [113]. 20 

4.3 Results 21 

Results revealed, on average, a similar number of WB and UB SLS epochs (8 22 

± 3 WB/UB epochs), but different epoch durations were measured. Considering the 23 

EO condition, the average WB and UB epoch durations were equal to 70.5 ± 9.8 s 24 

and 10.3 ± 2.9 s, respectively, while considering the EC condition, they were equal 25 

to 42.8 ± 27.3 s and 5.8 ± 3.8 s. 26 

First, the results related to the robustness assessment of the segmentation 27 

threshold were presented. Second, the muscle synergies obtained considering the 28 

WB and UB SLS epochs are quantitatively compared to justify the separation into 29 

WB and UB epochs of SLS. 30 

1. Robustness of the Segmentation Threshold 31 

All the tested segmentation thresholds (Th0.5, Th1.0, and Th1.5) required the same 32 

number of muscle synergies (𝑁𝑜𝑝𝑡) to accurately model the original sEMG signals 33 

with a 𝑡𝑉𝐴𝐹 ≥ 90% and a 𝑉𝐴𝐹 ≥ 75% for each of the acquired muscles. In 34 

particular, considering WB SLS epochs, 4 muscle synergies were needed to 35 

reconstruct the sEMG signals for all the tested thresholds, both in EO and EC 36 

conditions. The same results were obtained considering UB epochs. 37 
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Moreover, results revealed high values of the Pearson’s correlation coefficients 1 

between each pair of thresholds. Considering the WB SLS epochs, no statistically 2 

significant differences in terms of weight-vector correlation among the 3 thresholds 3 

(p = 0.17) and the 2 tested conditions (p = 0.87) were detected. Considering the UB 4 

SLS epochs, no statistically significant differences among thresholds (p = 0.28) 5 

were detected, while a significant decrease (p = 0.01, g = 0.47) in the weight 6 

correlation was detected in the EO condition with respect to the EC condition. 7 

TABLE 4.2 represents the average Pearson’s correlation coefficients (𝑅) 8 

between each pair of thresholds, separately for WB and UB SLS epochs. Results 9 

reveal a very high similarity among the muscle synergy weight vectors extracted 10 

considering the 3 thresholds, both in WB and UB epochs. 11 

Considering the high similarity of the weight vectors and the high consistency 12 

of the optimal number of muscle synergies obtained from the 3 thresholds, the 13 

multiplicative constant c of the segmentation threshold was set equal to 1.0. 14 

2. “Well-balanced” and “Unbalanced” Single-Leg Stance 15 

No statistically significant differences were found in terms of the number of 16 

muscle synergies between WB and UB SLS epochs. Considering the EO condition, 17 

4 muscle synergies were necessary to reconstruct the original sEMG signals with 18 

an average 𝑡𝑉𝐴𝐹 value of 93.0% ± 1.2% for WB, and 93.1% ± 1.3% for UB, 19 

respectively. For the EC condition, similar results were obtained. More specifically, 20 

4 muscle synergies were extracted with an average 𝑡𝑉𝐴𝐹 value of 92.6% ± 1.5% 21 

for WB, and 92.8% ± 1.3%, for UB, respectively. 22 

Figure 4.4 shows muscle synergy results, averaged over the sample population, 23 

extracted considering the EO condition (Figure 4.4A) and the EC condition 24 

(Figure 4.4B), respectively. Moreover, for each balance condition, the muscle 25 

synergies extracted considering WB and UB SLS epochs are compared. More 26 

specifically, Figure 4.4 represents, for each k-synergy, both the average recruitment 27 

level (𝑅𝑒𝑐𝑟𝑘) and the weight vector (𝑊𝑘). 28 

Wilcoxon signed-rank test revealed a statistically significant increase in the 29 

average recruitment levels of three out of four muscle synergies extracted 30 

considering UB epochs with respect to those extracted considering WB epochs, 31 

during both EO and EC conditions. TABLE 4.4 details the average recruitment levels 32 

TABLE 4.2 
WEIGHT VECTOR CORRELATION (𝑅) AVERAGED ON THE SAMPLE POPULATION 

SLS epochs 

Pearson’s Correlation Coefficient (𝑅) 

(mean ± standard deviation) 

𝑇ℎ0.5 𝑣𝑠 𝑇ℎ1 𝑇ℎ0.5 𝑣𝑠 𝑇ℎ1.5 𝑇ℎ1 𝑣𝑠 𝑇ℎ1.5 

Well-balanced EO 0.91 ± 0.16 0.92 ± 0.14 0.95 ± 0.11 

 EC 0.91 ± 0.15 0.89 ± 0.17 0.97 ± 0.08 

Unbalanced EO 0.84 ± 0.19 0.75 ± 0.20 0.80 ± 0.20 

 EC 0.88 ± 0.17 0.86 ± 0.17 0.90 ± 0.18 

Th0.5: first threshold with c=0.5; Th1.0: second threshold with c=1.0; Th1.5: third threshold with c=1.5. EO: Eyes Open; 

EC: Eyes Closed. 

Reprinted from “Muscle Synergy Assessment During Single-Leg Stance” by Ghislieri et al. (2020). 
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of each muscle synergy with the indication of the statistically significant differences 1 

between WB and UB SLS epochs (indicated by asterisks). 2 

In Figure 4.4A and Figure 4.4B, statistically significant changes (p < 0.05) of 3 

the average recruitment levels and the muscles’ contribution to each muscle synergy 4 

are indicated by asterisks during the EO and EC conditions, respectively. 5 

TABLE 4.4 
RECRUITMENT LEVELS (𝑅𝑒𝑐𝑟) AVERAGED  

ON THE SAMPLE POPULATION 

Recruitment Levels 

Average Recruitment Levels (𝑹𝒆𝒄𝒓) 

(mean ± standard deviation) 

Well-balanced 

(WB) 

Unbalanced 

(UB) 

EO 𝑅𝑒𝑐𝑟1 0.20 ± 0.06* 0.24 ± 0.05* 

 𝑅𝑒𝑐𝑟2 0.19 ± 0.05** 0.24 ± 0.05** 

 𝑅𝑒𝑐𝑟3 0.22 ± 0.06 0.24 ± 0.06 

 𝑅𝑒𝑐𝑟4 0.15 ± 0.04*† 0.17 ± 0.05*‡ 

EC 𝑅𝑒𝑐𝑟1 0.17 ± 0.05*** 0.25 ± 0.05*** 

 𝑅𝑒𝑐𝑟2 0.19 ± 0.07 0.22 ± 0.06 

 𝑅𝑒𝑐𝑟3 0.19 ± 0.06* 0.22 ± 0.07* 

 𝑅𝑒𝑐𝑟4 0.19 ± 0.05***† 0.23 ± 0.05***‡ 

 𝑅𝑒𝑐𝑟k represents the average recruitment level of the k-synergy (k = 1,2,3,4). The asterisk (*) indicates a statistically 

significant difference (p < 0.05) between well-balanced (WB) and unbalanced (UB) epochs of single-leg stance (SLS), while 

the dagger (†) between eyes open (EO) and eyes closed (EC) conditions. Single, double, and triple asterisks (or daggers) 

represent p-values lower than 0.05, 0.01, and 0.001, respectively. Reprinted from “Muscle Synergy Assessment During 

Single-Leg Stance” by Ghislieri et al. (2020). 

 

 

TABLE 4.3 
BALANCE CONTROL STRATEGIES (𝑆) AVERAGED  

ON THE SAMPLE POPULATION 

Balance Control Strategies 

Average Balance Control Strategies (𝑆) 

(mean ± standard deviation) 

Well-balanced (WB) 
Unbalanced 

(UB) 

EO Ankle 0.37 ± 0.11*† 0.43 ± 0.11* 

 Knee 0.63 ± 0.24† 0.73 ± 0.22 

 Hip/Trunk 0.51 ± 0.14 0.56 ± 0.16 

EC Ankle 0.43 ± 0.12† 0.40 ± 0.12 

 Knee 0.76 ± 0.20† 0.79 ± 0.24 

 Hip/Trunk 0.50 ± 0.20 0.49 ± 0.08 

Average balance controls of each of the three identified strategies. The asterisk (*)  indicates a statistically significant 

difference (p < 0.05) between well-balanced (WB) and unbalanced (UB) epochs of single-leg stance (SLS), while the dagger 
(†) between eyes open (EO) and eyes closed (EC) conditions. Single, double, and triple asterisks (or daggers) represent p-

values lower than 0.05, 0.01, and 0.001, respectively. Reprinted from “Muscle Synergy Assessment During Single-Leg 

Stance” by Ghislieri et al. (2020). 
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According to equation (4.4), the ankle control strategy (𝑆𝑎𝑛𝑘𝑙𝑒) can be mainly 1 

associated to the first and the fourth muscle synergies, the knee control strategy 2 

(𝑆𝑘𝑛𝑒𝑒) to the second muscle synergy, and the hip/trunk control strategy (𝑆ℎ𝑖𝑝) to 3 

the third muscle synergy. Considering the EO condition, results revealed a 4 

statistically significant increase (p = 0.05, g = 0.13) of the ankle control strategy 5 

 

 

Figure 4.4 Comparison of the muscle synergies extracted during “well-balanced” (WB) and “unbalanced” (UB) epochs 

of single-leg stance (SLS), for both the eyes open (EO) and eyes closed (EC) conditions. In both panel (A) and (B), the 

colored vertical bars represent the average recruitment levels 𝑅𝑒𝑐𝑟𝑘 (on the left) and weight vectors 𝑊𝑘 (on the right) of 

the k-synergy, over the sample population, with the superimposition of the standard error (black lines). The asterisk (*) 

indicates a statistically significant difference (p < 0.05). Reprinted from “Muscle Synergy Assessment During Single-

Leg Stance” by Ghislieri et al. (2020). 
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recruitment during the UB SLS epochs with respect to the WB ones. No statistically 1 

significant differences between WB and UB SLS epochs were found considering 2 

the knee and hip/trunk balance control strategies, mainly associated with the third 3 

and fourth muscle synergies. No statistically significant differences in terms of 4 

balance control strategies were detected between WB and UB SLS epochs. TABLE 5 

4.3 shows the values of the balance control strategies, averaged over the sample 6 

population, with the indication of the statistically significant changes between WB 7 

and UB epochs of SLS (indicated by asterisks). 8 

Results presented in this chapter reveal differences both in terms of average 9 

recruitment levels and balance control strategies between muscle synergies 10 

extracted from WB and UB SLS epochs, justifying the proposed segmentation 11 

approach as a necessary pre-processing procedure to properly assess the motor 12 

control strategies and to help the interpretation of the muscle synergies during SLS. 13 

4.4 Discussion and Conclusions 14 

The muscle synergy theory was widely used in literature to assess human motor 15 

control strategies during different motor tasks, such as gait and balance exercise. In 16 

the last years, muscle synergy assessment during different balance conditions was 17 

mainly focused on the evaluation of balance recovery after a “controlled” 18 

perturbation [26,158–161], rather than on the maintenance of the balance condition 19 

itself. The segmentation approach proposed in this chapter can be a useful tool for 20 

the assessment of the motor control strategies adopted to maintain single-leg stance, 21 

distinguishing between “well-balanced” (WB) and “unbalanced” (UB) SLS 22 

epochs. 23 

The robustness of the segmentation approach with respect to the threshold 24 

selection was verified obtaining high consistency of the optimal number of muscle 25 

synergies and high similarity of the weight vectors (Pearson’s correlation 26 

coefficient R ranges from 0.75 to 0.97) across the three different values of the 27 

adaptive segmentation threshold. Muscle synergies extracted from WB and UB SLS 28 

epochs are consistent with previous studies [26,28] both in terms of activation 29 

coefficients and weight vectors. However, due to the reduced complexity of the 30 

balance exercise analyzed in this chapter, a fewer number of muscle synergies was 31 

needed to properly reconstruct the original sEMG signals with respect to the 32 

previous studies, in which SLS was assessed after the application of 33 

multidirectional perturbations. 34 

The number and the composition of the muscle synergies revealed no 35 

statistically significant differences between the WB and UB SLS epochs. However, 36 

differences in terms of average recruitment levels and balance control strategies 37 

were detected, suggesting a slightly different motor control strategy between WB 38 

and UB SLS epochs. More specifically, UB SLS epochs require on average higher 39 

recruitment levels with respect to the WB SLS epoch, considering both the EO and 40 

EC conditions, and an increased ankle control strategy, in the EO condition. These 41 

differences justify the necessity to distinguish between WB and UB single-leg 42 

stance epochs before muscle synergy extraction. Results presented in this chapter 43 
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are in line with those of previous studies in which the effect of the task complexity, 1 

postural configuration, and loading conditions on motor control strategies were 2 

assessed [26,30,31]. According to these studies, our central nervous system recruits 3 

similar muscle synergies rather than generating a completely new set of muscle 4 

synergies for each balance condition. Indeed, only slight modifications to the basic 5 

motor control strategies (number and composition of the muscle synergies) 6 

involved in SLS were detected, while differences in terms of average recruitment 7 

levels and balance control strategies were assessed between EO and EC conditions. 8 

Considering the WB and UB SLS epochs, the EC condition requires a higher 9 

average recruitment level of the fourth muscle synergy (mainly associated with the 10 

ankle control strategy), and an increased level of ankle and knee control strategies, 11 

suggesting higher recruitment of the muscle synergies controlling the distal 12 

muscles. 13 

This study was conducted on a sample population of young healthy subjects 14 

that are able to maintain the upright stance on one foot, even with their eyes closed, 15 

for at least 30 s. This may represent a first limitation of the study, since it may be 16 

difficult to apply the same experimental protocol also to elderly or pathological 17 

populations affected by severe balance impairments. Moreover, muscle synergy 18 

results obtained (similarity between motor control strategies adopted during WB 19 

and UB SLS epochs), can be biased by the specific population considered. Different 20 

results might be obtained in populations with diminished equilibrium skills or 21 

severe balance impairments. Another limitation of this study is that it focused only 22 

on balance strategies during SLS maintenance, without analyzing transition tasks. 23 

The analyzed signals started 5 seconds after the first (DLS-to-SLS) transition and 24 

stopped 5 seconds before the second (SLS-to-DLS) transition. Therefore, our 25 

findings on motor control strategies adopted during SLS (excluding the transitions) 26 

cannot be extended to task transitions. 27 

In conclusion, results demonstrate that the proposed segmentation approach is 28 

robust with respect to the selection of the segmentation threshold and can be 29 

successfully used as a pre-processing step before muscle synergy extraction, 30 

allowing for a better assessment of the modular organization of the central nervous 31 

system during the maintenance of the single-leg stance. Further studies will focus 32 

on the application of this approach to sEMG signals acquired from subjects affected 33 

by chronic ankle instability (CAI) during SLS, to assess its applicability in 34 

pathological conditions. 35 

  36 
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Application - Influence of Visual Feedback on Muscle 1 

Synergies 2 

 3 

4.5 Introduction 4 

The ability to maintain single-leg stance is essential during daily living 5 

activities, as a single task as well as a component of other more complex tasks, such 6 

as walking and running. It is a simple but challenging condition for balance control 7 

and for this reason it is widely used for training and rehabilitation [167,168]. In 8 

research and clinical practice, it is widely used as a testing task as it allows 9 

quantifying balance alterations and deficits of the single lower limb otherwise 10 

concealed during the performance of double leg tasks [169–174]. 11 

From a physiological point of view, the single-leg stance can be considered as 12 

a high demanding postural task for neuromuscular and central nervous systems 13 

requiring an efficient integration of somatosensory, visual, and vestibular 14 

information with the aim to orchestrate a continuous and effective motor response 15 

to manage a reduced base of support [175]. The effectiveness of postural control 16 

has been usually expressed by means of mechanical parameters such as the center 17 

of pressure (COP), joints, or body segment displacement [176–178]. Previous 18 

literature studies have reported the essential role of the ankle joint for postural 19 

stabilization in particular when tasks show an increase in instability, as in the 20 

transition from double- to single-limb stance [179] or from stable to unstable 21 

surfaces [170]. When the ankle movements are not sufficient to guarantee balance, 22 

the involvement of more proximal joints and body segments has been reported 23 

[170,180]. Further, an increase in the instability during stance tasks has been also 24 

reported in case of a number of pathological conditions [172,181,182] and in case 25 

of abnormal sensitive information [172,183,184]. Above all, it has been shown that 26 

vision has a key role in posture control and that the lack of visual feedback or 27 

abnormal visual feedback leads to peculiar adaptations in mechanical parameters 28 

featuring postural tasks [155,185]. 29 

Even if mechanical parameters, such as COP or joint displacement, are useful 30 

to quantify instability during postural tasks, they do not give adequate information 31 

on motor control. Essential information for motor control assessment comes from 32 

the analysis of muscle activations, which mediates CNS control and mechanical 33 

expression of movement. 34 

While a wide number of studies investigated multi-muscles activations during 35 

double limb stance, in the transition from double to single stance, or during various 36 

stance tasks in response to sudden perturbations [26,158,159,186,187], less is 37 

known about quiet single-limb stance. Few studies focused on ankle/foot muscle 38 

activations, given their important role as previously described [188,189]. 39 

However, the investigation of muscle activations around a single joint is 40 

reductive, since it is well known that CNS organizes motor response to a given task 41 

in terms of muscle synergies [28,190]. This means that CNS coordinates the 42 
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activation of a set of muscles that are synergistic for a given task, or a number of 1 

similar tasks [26]. 2 

To the best of the author's knowledge, the muscle synergies used for balance 3 

control during the maintenance of single-leg stance (SLS) conditions are not 4 

known. Since this task is largely used, discovering the muscle synergies adopted by 5 

healthy individuals is essential to address future research, such as training, 6 

rehabilitation, and functional assessment both in healthy and pathological 7 

individuals. The aim of this chapter is to investigate muscle synergies in lower limb 8 

and back muscles during a single-leg stance task, with and without visual 9 

information, in healthy young individuals. 10 

4.6 Materials and Methods 11 

1 Participants 12 

Eleven male participants (age: 23.9 years ± 2.2 years; height: 182 cm ± 8.4 cm; 13 

body mass: 74.5 kg ± 10.8 kg) and eleven female participants (age: 24.5 years ± 2.9 14 

years; height: 169 cm ± 5.8 cm; body mass: 57.2 kg ± 6.5 kg) were recruited to 15 

participate in the study. Inclusion criteria were a) age between 20 and 35 years, b) 16 

physical activity level of 2 and 3 according to the Saltin and Grimby scale [191], 17 

thus excluding sedentary individuals and competitive athletes, and c) absence of 18 

known neurological diseases. Exclusion criteria were a) previous injuries or 19 

surgery, and b) abnormalities in lower limb and foot joints. 20 

Each participant signed informed consent before participating in the study. The 21 

study was conducted in accordance with the Declaration of Helsinki and received 22 

ethical approval from the Ethics Committee of the Area Vasta Emilia Centro della 23 

Regione Emilia Romagna (CE AVEC 193/2019/Sper/IOR approved on October 4, 24 

2019). 25 

2 Experimental Protocol and Data Analysis 26 

Participants were asked to stand barefoot on a force platform (Dynamic 27 

Walkway P6000, BTS Bioengineering, Milan, Italy) with the dominant limb and to 28 

maintain the contralateral knee joint flexed at approximately 90°. They were asked 29 

to look forward, to maintain upper limbs aligned to the trunk, and to remain as still 30 

as possible for at least 30 seconds (see Figure 4.5). Minimal arms movements were 31 

allowed, however, participants were asked to minimize them as much as possible. 32 

They performed the task in both eyes open (EO) and eyes closed (EC) conditions. 33 

These two conditions were performed in a random order for each subject (by tossing 34 

a coin) and with two minutes of rest between trials. Muscle activations were 35 

recorded from 13 muscles of the lower limb and trunk by means of 36 

electromyography wireless probes (BTS FreeEMG 1000, BTS Bioengineering, 37 

Milan, Italy) fixed on sEMG electrodes (Ag/AgCl) applied over Tibialis Anterior 38 

(TA), Peroneus Longus (PL), Peroneus Brevis (PB), Soleus (SOL), Lateral 39 

Gastrocnemius (LGS), Vastus Medialis (VM), Vastus Lateralis (VL), Rectus 40 

Femoris (RF), Lateral Hamstring (LH), Medial Hamstring (MH), Gluteus Medius 41 
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(GMD), right Longissimus Dorsii (LDR) and left Longissimus Dorsii (LDL) in 1 

accordance with SENIAM recommendations [192]. To reduce the skin impedance, 2 

before electrode application, the skin area was shaved and cleaned with ethyl 3 

alcohol. A footswitch (FSW) was placed under the first metatarsal head of the non-4 

dominant foot. Force platform, sEMG, and FSW signals were part of the same 5 

integrated system and were recorded with a 1000 Hz sampling rate. 6 

3 Muscle Synergy Analysis 7 

Muscle synergies extracted from the segmented sEMG signals during the two 8 

different task conditions (EO and EC) were quantitatively compared in terms of (i) 9 

the optimal number of muscle synergies (𝑁𝑜𝑝𝑡), (ii) the average recruitment levels 10 

(𝑅𝑒𝑐𝑟), and (iii) balance control strategies (𝑆). 11 

i. Optimal number of muscle synergies (𝑁𝑜𝑝𝑡): the optimal number of muscle 12 

synergies (𝑁𝑜𝑝𝑡) was selected for each subject and task condition by choosing 13 

the smallest number of muscle synergies (𝑁) which guarantees 𝑡𝑉𝐴𝐹 ≥ 90% 14 

(global criterion) and 𝑉𝐴𝐹 ≥ 75% (local criterion) for each of the acquired 15 

muscles. 16 

ii. Average recruitment levels (𝑅𝑒𝑐𝑟): since no typical cyclostationary processes 17 

can be assessed during single-leg stance, it is difficult to compute average 18 

activation coefficients over the sample population. Thus, the activation 19 

coefficients (𝐶(𝑡)) were compared in terms of average recruitment level 20 

(𝑅𝑒𝑐𝑟𝑘), defined as the average (over time) of each activation coefficient vector 21 

𝐶(𝑡)𝑘 [27,28]. The average recruitment level values range between 0 (no 22 

 

Figure 4.5 Schematic representation of the acquisition system. sEMG probes are positioned over the main 

muscles of the dominant lower limb (sustaining the single-leg stance) and the trunk. A foot-switch is 

placed under the first metatarsal head of the contralateral foot to detect the onset/offset timing of SLS. A 

force plate is used to assess body sway during SLS. Reprinted from “Muscle Synergy Assessment During 

Single-Leg Stance” by Ghislieri et al. (2020). 
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recruitment) and 1 (maximum recruitment) and quantify how much a specific 1 

muscle synergy is activated in the execution of the task. 2 

iii. Balance control strategies (𝑆): considering the task performed and the acquired 3 

muscles, three different balance control strategies were identified: (a) ankle 4 

control, (b) knee control, and (c) hip/trunk control. The ankle control strategy 5 

(𝑆𝑎𝑛𝑘𝑙𝑒) was mainly related to the activation of 5 muscles of the leg (PL, PB, 6 

LGS, TA, and SOL), the knee control strategy (𝑆𝑘𝑛𝑒𝑒) to the activation of 3 7 

muscles of the shank (VM, VL, and RF), and the hip/trunk control strategy (𝑆ℎ𝑖𝑝) 8 

to the activation of 5 muscles of the proximal lower limb and the trunk (LH, 9 

MH, GMD, LDL, and LDR). Balance control strategies were quantified for each 10 

k-synergy by computing the average weight vector (𝑊𝑘) over the muscles 11 

belonging to the same balance control strategy, obtaining three balance control 12 

strategy values for each muscle synergy. A single balance control strategy was 13 

finally associated with each muscle synergy by selecting the highest balance 14 

control strategy among the three computed. 15 

 16 

4 Statistical Analysis 17 

To assess statistically significant changes in the optimal number of muscle 18 

synergies considering the two different task conditions (EO and EC), the hypothesis 19 

of normality of the distribution was firstly tested through the Lilliefors test. If the 20 

normality hypothesis was rejected, the Wilcoxon signed-rank test was performed, 21 

otherwise, a two-tailed paired Student’s t-test was performed. Two-way ANOVA 22 

for repeated measures followed by post-hoc analysis with Tukey adjustment for 23 

multiple comparisons was performed to evaluate the differences between conditions 24 

(OE and CE) and muscle synergies (factors: condition and synergies), for both the 25 

average recruitment levels (𝑅𝑒𝑐𝑟) and balance control strategies (𝑆). For the weight 26 

vectors (𝑊), an analogous two-way ANOVA was applied to evaluate the 27 

differences between conditions and muscles. The effect size of the statistically 28 

significant differences was calculated by means of the Hedges' g including the 29 

correction for small sample sizes [113]. 30 

All the levels of significance (α) were set equal to 0.05. The statistical analysis 31 

was carried out using the Statistical and Machine Learning Toolbox of MATLAB®. 32 

4.7 Results 33 

In the following, the muscle synergy results are computed considering the two 34 

different single-leg stance conditions (EO and EC). More specifically, muscle 35 

synergies were compared in terms of (i) the optimal number of muscle synergies, 36 

(ii) average recruitment levels, and (iii) balance control strategies. 37 

i. Optimal number of muscle synergies (𝑁𝑜𝑝𝑡) 38 

The application of the Wilcoxon signed-rank test revealed no statistically 39 

significant differences (p = 0.52) in the optimal number of muscle synergies 40 

(𝑁𝑜𝑝𝑡) between the EO and EC conditions. In particular, 4 muscle synergies 41 
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were needed to accurately model the motor control strategies during both the 1 

EO and EC conditions. 2 

Figure 4.6 shows the muscle synergies, averaged over the sample 3 

population, extracted from the two different task conditions: EO represented in 4 

blue and EC in red. More specifically, for each muscle synergy, the recruitment 5 

levels 𝑅𝑒𝑐𝑟𝑘 (on the left) and the weight vectors 𝑊𝑘 (on the right) are 6 

represented. The asterisk (*) indicates statistically significant differences 7 

between conditions (repeated measures ANOVA, p < 0.05), both for the 8 

average recruitment levels and weight vectors. 9 

ii. Average recruitment levels (𝑅𝑒𝑐𝑟) 10 

A statistically significant decrease (p = 0.02, g = 3.35) in the average 11 

recruitment level of the third muscle synergy extracted during the EC condition 12 

(0.17 ± 0.01) with respect to the EO condition (0.21 ± 0.01) was assessed. No 13 

statistically significant differences were detected considering the remaining 14 

three muscle synergies between EO and EC conditions, suggesting no changes 15 

in the recruitment levels of those synergies due to the loss of visual feedback. 16 

Figure 4.6 shows the average recruitment levels (on the left), over the 17 

sample population, extracted during EO and EC single-leg stance conditions. 18 

iii. Balance control strategies (𝑆) 19 

As shown in Figure 4.6, the first and the fourth muscle synergies can be 20 

mainly associated with an ankle control strategy, since the muscles mainly 21 

enrolled are those belonging to the leg (PL, PB, LGS, and SOL), the second 22 

muscle synergy to a knee control strategy and the third muscle synergy to a 23 

 

Figure 4.6 Comparison of muscle synergies extracted during eyes open (EO) and eyes closed (EC) single-

leg stance conditions. Color vertical bars represent average recruitment levels 𝑹𝒆𝒄𝒓𝒌 (on the left) and 

weight vectors 𝑾𝒌  (on the right) of the k-synergy, over the sample population, with the superimposition 

of the standard error (black lines). The asterisk (*) represents a statistically significant difference between 

conditions, in the weight vectors and average recruitment levels. 
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hip/trunk control strategy. ANOVA for repeated measures revealed a 1 

statistically significant increase (p = 0.03, g = 0.78) of the ankle control 2 

strategies (𝑆𝑎𝑛𝑘𝑙𝑒) during the EC condition (0.52 ± 0.06) with respect to the EO 3 

condition (0.47 ± 0.06). No additional statistically significant differences were 4 

detected considering the remaining two balance control strategies (𝑆𝑘𝑛𝑒𝑒 and 5 

𝑆ℎ𝑖𝑝) between conditions. 6 

TABLE 4.5 represents the values of the balance control strategies, averaged 7 

over the sample population, with the indication of the statistically significant 8 

changes between EO and EC conditions. 9 

4.8 Discussion and Conclusions 10 

Since the work by Horak and Nashner (1986), it is widely recognized the 11 

essential role of the ankle joint in the control of upright stance and for the 12 

maintenance of posture when balance is challenged by perturbations of the 13 

supporting surface. In these circumstances, muscles around the ankle joint provide 14 

the first activation strategy for balance maintenance [180]. In this chapter, no 15 

perturbations were applied to the supporting surface, and participants were required 16 

to maintain a quiet single-leg stance (SLS). The key role of the ankle joint for 17 

posture control in a quiet stance is confirmed by the observation of two ankle-18 

dominant muscle synergies adopted by the participants in this study. The first ankle-19 

dominant synergy (𝑊1) is mainly featured by the Tibialis Anterior (TA) and the 20 

Soleus (SOL) muscle activation. The second ankle dominant muscle synergy (𝑊4) 21 

is mainly featured by Peroneus Longus (PL), Peroneus Brevis (PB), and 22 

Gastrocnemius Lateralis (LGS) muscle activations. These two synergies may 23 

reflect the activations related to antero-posterior sway and medio-lateral sway, 24 

respectively, which may occur during a SLS task. In particular the co-activation of 25 

antagonist muscles (TA and SOL) might represent a strategy to cope with reduced 26 

base of support, with the aim to reduce movement variability and maintaining 27 

stability. Previous studies found an increase in TA and SOL activations in particular 28 

in older adults to compensate for reduced vision [193] or decreased tendon stiffness 29 

[194], and both in children and elderly which showed a diminished postural 30 

steadiness when compared with young adults [195]. 31 

Literature reports that as more difficult the task becomes as higher is the 32 

involvement of more proximal joints for the maintenance of balance, in particular 33 

TABLE 4.5 
BALANCE CONTROL STRATEGIES (𝑆) AVERAGED ON THE SAMPLE POPULATION 

BALANCE CONTROL 

STRATEGIES 

AVERAGE BALANCE CONTROL STRATEGIES (𝑆) 

(MEAN ± STANDARD DEVIATION) 

EO EC ANOVA (P-VALUE) 

𝑆𝑎𝑛𝑘𝑙𝑒 0.47 ± 0.06 0.52 ± 0.06 0.03 

𝑆𝑘𝑛𝑒𝑒 0.61 ± 0.24 0.71 ± 0.25 0.22 

𝑆ℎ𝑖𝑝 0.53 ± 0.15 0.53 ± 0.17 0.89 

           𝑆𝑎𝑛𝑘𝑙𝑒: ankle control strategy, 𝑆𝑘𝑛𝑒𝑒: knee control strategy, and 𝑆ℎ𝑖𝑝: hip/trunk contorl strategy. 
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the hip [170,180]. In experimental settings, the difficulty of the task is usually 1 

increased by increasing the magnitude of a perturbation, by decreasing the 2 

supporting surface, or by changing the features of the supporting surface 3 

[28,159,170,187]. For example, it has been reported that by moving from a stable 4 

to an unstable surface, the angular displacement of the ankle was stable across all 5 

the testing conditions, with the knee and hip displacement arising when the 6 

difficulty of the task was higher [170,196]. 7 

In this chapter, the difficulty of the task was not modified throughout the 8 

experiment and the support surface was not unstable. However, standing on a single 9 

limb might be considered a per se difficult task because of the reduced base of 10 

support in comparison to the common double-leg stance (DLS) condition. Usually, 11 

when the support base is reduced, a precaution strategy consisting of moving 12 

forward the center of mass is adopted to avoid falling backward. This condition 13 

may justify the existence of the hip/trunk balance control strategy (characterized by 14 

the activation of the LH, MH, GMD, LDL, and LDR muscles) adopted by all the 15 

volunteers during the SLS condition. It is reasonable to think that the participants 16 

of the present study used the hip/trunk control strategy (𝑊3) to compensate for the 17 

ankle dorsiflexion used to move forward the center of mass to manage the reduced 18 

base of support. It should be also mentioned that in a condition of quiet stance the 19 

co-existence of the hip control strategy (𝑊2) and the ankle control strategy (𝑊1 and 20 

𝑊4) has been reported [196], highlighting that the two strategies are not different 21 

entities, but one predominates depending upon the task and conditions of the 22 

environment. 23 

Previous literature has reported an increase in the knee joint displacement 24 

during SLS conditions when the difficulty of the task increased, i.e., the surface 25 

became less stable [170]. Thus, in this study, the knee synergy was probably used 26 

when the ankle synergy was not effective for the maintenance of balance, but the 27 

condition did not require yet the involvement of the hip or the back synergies. These 28 

results highlight the fine coordination between ankle muscles and quadriceps 29 

muscle. This was especially observed in the closed-eyes condition when the lack of 30 

visual information led to an increase in the difficulty of the task. In fact, it was 31 

observed a significantly lower activation of the SOL and LGS muscles when the 32 

knee-dominant synergy was used. 33 

The results presented in this chapter show that 4 muscle synergies are needed 34 

during single-leg stance during eyes open (EO) as well as eyes closed (EC) 35 

conditions. In addition, there is no difference in the average recruitment levels 36 

between the EO and EC conditions, except for the hip/trunk muscle synergy, which 37 

showed a decrease in activation during the EC condition compared to the EO 38 

condition. At the same time, an increase in the ankle balance control strategy was 39 

found in the EC condition compared to the EO condition. However, despite some 40 

differences in the EC condition compared to the EO condition, the number of 41 

synergies used is the same between the conditions, as well as the average 42 

recruitment levels. This is in accordance with previous literature reporting the 43 

stability of muscle synergies adopted between tasks with different visual feedback 44 

conditions [187,197]. It has been shown that the lack of visual feedback does not 45 
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affect muscle synergies, since standing postural control mostly relies on 1 

proprioceptive feedback [187,197]. Furthermore, the results of previous 2 

investigations show that proprioceptive disturbance, but not visual disturbances, 3 

affected muscle synergies [187] and increases body sway [197]. Regarding the 4 

results of the present chapter, it can be thus speculated that the lack of visual 5 

information affects the modulation of muscle activations without altering the 6 

number and composition of the muscle synergies adopted. 7 

Moreover, the results of this chapter suggest that muscle synergies could be not 8 

exclusively managed throughout a feedforward control, but can be modulated with 9 

a feedback control based on the signals arising from sensory receptors, with the aim 10 

to correct movement errors which may occur in some circumstances. It is likely to 11 

think that the maintenance of the single-limb stance in this study was controlled 12 

with pre-programmed muscles synergies. However, the difficulty of the task 13 

leading to continuous losses and recovery of balance, probably need a continuous 14 

movement correction based on a feedback control relying on information arising 15 

from sensory receptors. Animal studies have reported organized patterns of muscles 16 

activations in response to focal stimulation of the spinal cord [11], thus suggesting 17 

that a feedback control may be launched at spinal level in response to specific 18 

sensory stimuli to modulate the centrally organized synergy recruitment. It is likely 19 

to think that similar patterns may regulate muscle synergies also in humans. 20 

To the best of the author's knowledge, this is the first study investigating muscle 21 

synergies deputed to the maintenance of posture during a single-leg stance task, in 22 

an EO and EC condition. Due to the large use of this kind of task in clinical practice, 23 

both for rehabilitation and functional assessment, as well as in sport practice for 24 

training and testing, the results of the present study give important information on 25 

motor control of this kind of task in healthy individuals. Future studies should 26 

investigate muscle synergies also in other populations to investigate the effects of 27 

orthopedic and neurologic pathologies on muscle synergies, as well as the effect of 28 

rehabilitation and training. 29 

The main limitation of this study is that only healthy young individuals were 30 

recruited, and thus the results cannot be generalized to all healthy individuals. 31 

Future studies should identify muscle synergies used for single-leg stance also in 32 

other age groups. A second limitation of the study is that muscle synergies for the 33 

transition between double- and single-limb stance (and vice versa) were not 34 

analyzed, thus the results of the present study have to be considered exclusively for 35 

steady single-limb stance tasks. 36 

In conclusion, the single-leg stance is featured by four major muscle synergies, 37 

two ankle-dominant, one knee-dominant, and one hip/trunk-dominant. The lack of 38 

visual feedback did not affect the number of synergies used. In general, an increase 39 

of activation of the ankle muscles and a decrease in the recruitment of the hip/trunk 40 

synergy was observed in the absence of visual information in comparison to the 41 

normal vision condition. Future studies should investigate muscle synergies during 42 

single-leg stance also in other age groups, and it seems of high clinical relevance to 43 

investigate synergies on orthopedic and neurologic patients to address clinical 44 

practice and rehabilitation interventions. 45 
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Chapter 5 1 

Conclusions and Perspectives 2 

With this doctoral thesis, the author endeavored to provide a deeper insight into 3 

the neuromuscular control of human movements, focusing on two essential daily 4 

life activities: human locomotion and balance control. 5 

In the first part of the thesis, it was assessed the modular organization of the 6 

CNS during cyclical movements (i.e., human locomotion), using the widely used 7 

muscle synergy theory. The first step was to develop a reliable and accurate method 8 

for extracting muscle activation intervals during cyclical movements to be used as 9 

a pre-processing step before muscle synergy extraction (A Deep Learning 10 

Approach for Muscle Activity Detection). First, the applicability of the proposed 11 

approach was assessed considering simulated sEMG data and, then, its performance 12 

was compared against other standard muscle activity detectors using real sEMG 13 

signals both in physiological and pathological conditions. The second step was to 14 

methodologically assess two of the main weaknesses of the muscle synergy theory: 15 

the sEMG pre-processing steps before factorization and the selection of the optimal 16 

number of muscle synergies (i.e., the factorization rank). Considering the sEMG 17 

pre-processing weakness, a novel pre-processing approach based on the extraction 18 

of the principal activations before muscle synergy extraction was proposed and 19 

validated on real sEMG data, allowing a more interpretable assessment of the 20 

modular organization of the CNS during a walking task without any loss of 21 

information (Methodological Issue - Muscle Synergies Extracted Using 22 

Principal Activations). Considering the synergy number selection weakness, a 23 

novel method, based on multi-criteria decision analysis, for the selection of the 24 

optimal number of muscle synergies was proposed to overcome the limitations of 25 

the standard 𝑉𝐴𝐹-based approaches. Following an approach similar to the one 26 

proposed for the muscle activity detector, the applicability of the approach was first 27 

assessed considering simulated sEMG data and, then, its performance was 28 

compared against other standard 𝑉𝐴𝐹-based approaches using real sEMG signals 29 

both in physiological and pathological conditions (Methodological Issue – Multi-30 
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Criteria Decision Analysis for Selecting the Optimal Number of Muscle 1 

Synergies). 2 

In the second part of the thesis, instead, it was assessed the modular 3 

organization of the CNS during non-cyclical movements (i.e., single-leg stance) 4 

through the muscle synergy theory. As in the first part of the thesis, the first step 5 

was to develop a reliable and accurate method for the segmentation of the sEMG 6 

time-instants relative to a “well-balanced” single-leg stance or an “unbalanced” 7 

single-leg stance to be used as inputs of the muscle synergy extraction algorithm 8 

(Methodological Issue – Muscle Synergy Assessment during Single-Leg 9 

Stance). Subsequently, the consolidated method was applied to the analysis of the 10 

modular organization of single-leg stance with and without visual feedback 11 

considering a healthy sample population (Application - Influence of Visual 12 

Feedback on Muscle Synergies). 13 

In the following paragraphs, the practical implications of the studies presented 14 

in this doctoral thesis will be discussed, also addressing their limitations and the 15 

scientific perspectives that emerged from this work. 16 

Muscle Activity Detection 17 

Determining the onset and offset time-instants of muscle activations during 18 

human movements is of great interest in different research fields including gait 19 

analysis, motor rehabilitation, sport science, myoelectric control of prostheses, 20 

human-machine interaction, design of biofeedback systems, and pre-processing of 21 

muscle synergy extraction. More specifically, the accurate temporal analysis of 22 

muscle activation in terms of burst onset, duration of the activation interval, and 23 

burst offset, can be useful in the assessment of the altered locomotion patterns of 24 

orthopedic and neurological patients. 25 

The LSTM-based muscle activity detector presented in the first study of this 26 

thesis can be considered a valuable tool in all the applications requiring an accurate 27 

and effective recognition/distinction of muscle activity from background noise. In 28 

particular, it significantly outperforms previous detectors (such as the statistical 29 

double threshold detector and Teager-Kaiser Energy Operator detector) in terms of 30 

detection accuracy, it directly works on “raw” sEMG signals (does not require any 31 

additional input parameters), and it is robust even when applied to signals with low 32 

to medium signal-to-noise ratio. 33 

Future works will be focused on testing the proposed approach also on sEMG 34 

signals acquired from subjects with musculoskeletal or neurodegenerative disorders 35 

other than Parkinson’s disease and on developing a novel formulation of this 36 

approach for real-time muscle activity detection. 37 

This novel muscle activity detector is currently being applied in a number of 38 

projects investigating muscle activity during walking. First, thanks to the 39 

collaboration with the Stereotactic and Functional Neurosurgery Unit of the 40 

University of Turin (Italy), it is being applied to assess the effect of Deep Brain 41 

Stimulation (DBS) neurosurgery on the muscle activity of patients affected by 42 

Parkinson’s disease during walking by analyzing the onset, the offset, and the 43 
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duration of each muscle activation within a gait cycle. Second, the detector is 1 

currently being used as a pre-processing step before the application of the CIMAP 2 

(Clustering for Identification of Muscle Activation Patterns) algorithm, allowing 3 

the extraction of principal and secondary muscle activation intervals from sEMG 4 

signals during cyclic movements. Finally, thanks to the collaboration with the 5 

Department of Control and Computer Engineering (DAUIN) of Politecnico di 6 

Torino, the proposed muscle activity detector is being used to control a haptic 7 

exoskeleton for postural rehabilitation of patients with locomotor impairments. 8 

More specifically, the muscle activation intervals extracted through the LSTM-9 

MAD from sEMG signals are currently being used to predict the angular positions 10 

of leg joints and control the exoskeleton. 11 

Muscle Synergies during Walking 12 

Human locomotion is one of the most widely studied and complex motor tasks, 13 

due to the multiple degrees of freedom of the skeletal muscle system, the several 14 

biomechanical functions carried out during each gait cycle, and the high cycle-by-15 

cycle variability of muscle activation intervals. Several studies already 16 

demonstrated that human locomotion can be modeled by a small set of muscle 17 

synergies characterized by specific biomechanical functions. Despite the growing 18 

interest in the assessment of the modular organization of the CNS during walking 19 

through the muscle synergy theory, there is a lack of standards and common 20 

procedures for the sEMG pre-processing steps and the extraction of muscle 21 

synergies (e.g., selection of the optimal number of muscle synergies). 22 

In the present doctoral thesis, these two weaknesses of the muscle synergy 23 

theory were assessed by presenting two novel methodological approaches that 24 

could provide a deeper insight into human motor control. 25 

Considering the former, an innovative pre-processing technique for muscle 26 

synergy extraction was proposed combining Statistical Gait Analysis (SGA) and 27 

CIMAP algorithm, allowing for obtaining the principal and secondary activations. 28 

Results presented in this thesis demonstrated that the extraction of the principal 29 

activations only can be successfully used as a pre-processing step before muscle 30 

synergy extraction, allowing a more interpretable assessment of the modular 31 

organization of the CNS during a walking task in both physiological and 32 

pathological populations without any loss of information. Even if long-lasting 33 

signal recordings (at least 2-3 minutes are required to obtain a sufficient number of 34 

typical gait cycles) are needed to be able to properly compute the principal 35 

activations, this requirement does not limit the feasibility and applicability of the 36 

proposed approach to pathological populations. Indeed, gait analysis is commonly 37 

used to quantitatively assess patients’ locomotion performance only in those 38 

patients able to independently walk, for some minutes, without walking aids or 39 

external supports. One possible limitation of the present approach is that only 40 

principal activation intervals were used to extract muscle synergies, since the 41 

assessment of the variability expressed by the muscle synergy analysis could be 42 

particularly significant when analyzing sEMG data acquired from subjects affected 43 
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by movement disorders. To overcome this limitation, future studies will focus on 1 

muscle synergies extracted from the secondary activations (SAs), i.e., those muscle 2 

activations that occur only in some gait cycles and could have an auxiliary function 3 

in motor control, such as to provide corrections to motion and body segment 4 

posture. 5 

Considering the latter weakness of the muscle synergy theory, a novel 6 

ELECTRE III approach for choosing the optimal number of muscle synergies was 7 

proposed and validated on both simulated and real sEMG data. Even if this 8 

approach does not outperform the other tested threshold-independent method (i.e., 9 

elbow VAF method), several are the potential advantages of the ELECTRE III 10 

approach compared to the commonly used 𝑉𝐴𝐹-based threshold methods, such as 11 

the use of minimization and maximization approaches rather than an arbitrary 12 

threshold, the use of a multi-criteria decision-making approach based on different 13 

parameters computed from the muscle synergy results (not only VAF values), and 14 

the applicability to a variety of different motor tasks. Future works will be focused 15 

on optimizing the proposed approach by considering additional evaluation criteria 16 

or changing their importance weights and on applying the ELECTRE III approach 17 

to the studies described in Chapter 3 to assess the robustness of the proposed results 18 

with respect to the approach for selecting the optimal number of muscle synergies. 19 

Both these approaches are currently being applied in two different projects 20 

investigating motor control strategies of pathological populations during walking. 21 

First, thanks to the collaboration with the Stereotactic and Functional Neurosurgery 22 

Unit of the University of Turin (Italy), they are being applied to assess the changes 23 

in motor control strategies of patients affected by Parkinson’s Disease (PD) due to 24 

Deep Brain Stimulation (DBS) neurosurgery. More specifically, this study aims at 25 

assessing differences in the number and composition of the muscle synergies 26 

extracted from 30 PD patients during a 5-minutes lasting walking task at a self-27 

selected speed before and after the DBS neurosurgery. Second, the effect of 28 

cognitive dual-task (i.e., verbal fluency and music-based dual tasks) while walking 29 

on PD motor control strategies is currently being studied through the muscle 30 

synergy theory considering the same sample population above-mentioned. 31 

Muscle Synergies during Single-Leg Stance 32 

The ability to maintain the single-leg stance is essential during daily living 33 

activities, as a single task as well as a component of other more complex tasks, such 34 

as walking and running. It is a simple but challenging condition for balance control 35 

and for this reason it is widely used for training and rehabilitation. In research and 36 

clinical practice, it is widely used as a testing task as it allows to quantify balance 37 

alterations and deficits of the single lower limb otherwise concealed during the 38 

performance of double leg tasks. In the last years, muscle synergy assessment 39 

during different balance conditions (e.g., single-leg stance) was mainly focused on 40 

the evaluation of balance recovery after a “controlled” perturbation, rather than on 41 

the maintenance of the balance condition itself. Thus, the segmentation approach 42 

proposed in this thesis aims at providing a useful tool for the assessment of the 43 
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motor control strategies adopted to maintain the single-leg stance, distinguishing 1 

between “well-balanced” and “unbalanced” single-leg stance epochs. 2 

Results demonstrated that the proposed segmentation approach is robust 3 

concerning the selection of the segmentation threshold and can be successfully used 4 

as a pre-processing step before muscle synergy extraction, allowing a better 5 

assessment of the modular organization of the central nervous system during the 6 

maintenance of the single-leg stance. Moreover, it was applied for the assessment 7 

of the effect of visual feedback on muscle synergies extracted from healthy subjects 8 

during unipedal stance, revealing a high consistency of motor controls strategies 9 

adopted by healthy subjects with and without visual feedback. 10 

One of the advantages of the proposed approach is the possibility to assess 11 

motor control strategies used by subjects to maintain the balance condition, instead 12 

of evaluating balance recovery after a “controlled” perturbation. Instead, the fact 13 

that the proposed method was validated on a sample population of young healthy 14 

subjects that can maintain the single-leg stance for at least 30 s may represent a first 15 

limitation of the study, since it may be difficult to obtain similar task durations 16 

considering elderly or pathological populations affected by severe balance 17 

impairments. Moreover, different muscle synergy results might be obtained in 18 

populations with diminished equilibrium skills or severe balance impairments. 19 

Currently, the proposed muscle synergy extraction approach is being applied in 20 

a project that aims at assessing the modular organization of CNS during single-leg 21 

stance in pathological conditions. More specifically, thanks to the collaboration 22 

with the Rizzoli Orthopedic Institute of Bologna (Italy), it is being applied to assess 23 

muscle synergies extracted during single-leg stance tasks from patients affected by 24 

Chronic Ankle Instability (CAI). 25 
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Appendix A 1 

Extraction of Principal and 2 

Secondary Activations through 3 

CIMAP 4 

A.1 Introduction  5 

Instrumented gait analysis is a widely used approach to quantitatively and non-6 

invasively assessed the physiological and pathological motor functions during 7 

human locomotion [198]. In particular, the analysis of muscle activation patterns is 8 

of great interest, in research as well as in clinical practice, to study the altered 9 

locomotion patterns of orthopaedic and neurological patients or to assess the 10 

efficacy of rehabilitation programs. Muscle activation patterns are computed from 11 

muscles’ electrical activity acquired by means of surface electromyography 12 

(sEMG) during cyclic movements. Then, for each movement cycle (e.g., each gait 13 

cycle), muscle activation patterns are computed determining the timing of muscle 14 

activations (burst onset, duration, and end). However, the high cycle-to-cycle 15 

variability of sEMG activations intervals makes it difficult to obtain a synthetic and 16 

clear representation of the patient’s motor functions [98,101]. Figure A.1 17 

represents an example of sEMG signals acquired from an 11-years-old child during 18 

three different gait cycles from the Lateral Hamstring (LH) muscle. 19 

To overcome this limitation, Statistical Gait Analysis (SGA) [60] and 20 

Clustering for Identification of Muscle Activation Patterns (CIMAP) [103,104,199] 21 

algorithms were recently introduced. Statistical Gait Analysis allows an easier 22 

interpretation and comparison of muscle activation intervals through the acquisition 23 

and processing of a large number of gait cycles. CIMAP algorithm, indeed, enables 24 

the grouping into clusters of gait cycles characterized by similar muscle activation 25 

patterns. By combining SGA and CIMAP algorithms, principal activations (PAs) 26 

and secondary activations (SAs) can be computed from the sEMG signals 27 

[24,65,106]. Principal activations are defined as those muscle activations that are 28 



103 

 

necessary for the execution of a specific motor task and they describe the essential 1 

contribution of a specific muscle to the movement. The concept of PAs is 2 

complementary to the one of secondary activation, which are muscle activations 3 

that occur only in some gait cycles and could have an auxiliary function in motor 4 

control (e.g., to provide corrections to motion and body segment posture). 5 

 The extraction of principal and secondary muscle activations as a pre-6 

processing step may significantly improve the analysis of sEMG signals, reducing 7 

the cycle-to-cycle variability and simplifying the understanding of muscle 8 

activation patterns both in physiological and pathological conditions. 9 

This chapter aims at briefly describing the processing steps needed to compute 10 

the PAs and SAs from sEMG signals. 11 

A.2 Extraction of Principal and Secondary Activations 12 

Before computing principal and secondary activations, sEMG signals were pre-13 

processed as it follows: 14 

i. Muscle activation intervals were detected through the LSTM-MAD 15 

algorithm described in 0. The detector’s output is computed as a binary 16 

mask that was set equal to 1 in correspondence of the sEMG time-17 

instants classified as muscle activity and to 0 otherwise (background 18 

noise) 19 

ii. Time-segmentation of muscle activation intervals into gait cycles using 20 

foot-switch signal [108] 21 

iii. Time-normalization of each gait cycle into 1000 time points. 22 

Principal and secondary activations were computed from the muscle activation 23 

intervals, separately for each muscle, applying the optimized version of the CIMAP 24 

algorithm [104]. Figure A.2 shows an example of the application of the CIMAP 25 

algorithm to sEMG signals acquired from a healthy subject during gait from 26 

Peroneus Longus (PL) and Gluteus Medius (GMD) muscles.  27 

The CIMAP algorithm, based on agglomerative hierarchical clustering, groups 28 

together the gait cycles sharing similar muscle activation intervals. Each significant 29 

cluster is characterized by an element (called prototype) that is representative of all 30 

 

Figure A.1 Example of sEMG signals acquired from an 11-years-old healthy child during gait from Lateral 

Hamstring (LH) muscle. 
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the elements (gait cycles) belonging to the same cluster. Prototypes are computed 1 

as the median value of the elements belonging to the same cluster. Figure A.2A 2 

represents in blue the time-normalized activation intervals for each gait cycle, 3 

grouped in significant clusters sharing similar activation intervals. Each orange 4 

interval represents the prototype of a significant cluster. 5 

Starting from a number of clusters equals to the number of gait cycles analyzed 6 

(each cluster contains a single element), the CIMAP algorithm iteratively merges 7 

the two “closest” clusters until a single cluster, containing all the gait cycles, is 8 

obtained. The complete linkage method is used to select the two “closest” clusters 9 

to be merged. The implemented linkage method uses the farthest distance between 10 

every pair of elements in the two considered clusters as merging criterion. During 11 

the linkage process, the distance between each couple of elements is assessed using 12 

the Manhattan distance. Hence, the dendrogram is constructed. 13 

The final number of clusters (cutoff rule) was selected to achieve: 14 

i. Clusters characterized by a comparable number of elements (𝐶) within 15 

a significant cluster 16 

ii. Small intra-cluster variability (𝐼𝐶𝑉), computed as the Euclidian 17 

distance between each element of the cluster and the corresponding 18 

cluster’s prototype. 19 

More specifically, the optimized version of CIMAP algorithm defines a cutoff 20 

rule based on three different criteria. First, the differences of inter-cluster Euclidian 21 

distances (𝐷𝑖𝑓𝑓𝑘) between two consecutive dendrogram iterations (𝑘) are 22 

computed. Second, three cutoff points are computed based on the following three 23 

criteria: 24 

i. First dendrogram iteration 𝑘 in which 𝐷𝑖𝑓𝑓𝑘  ≥ 𝑚𝑒𝑎𝑛(𝐷𝑖𝑓𝑓𝑘), where 25 

𝑚𝑒𝑎𝑛(𝐷𝑖𝑓𝑓𝑘) is the average of 𝐷𝑖𝑓𝑓𝑘 computed over all the iterations 26 

ii. First dendrogram iteration 𝑘 in which 𝐷𝑖𝑓𝑓𝑘  ≥ 𝑚𝑒𝑎𝑛(𝐷𝑖𝑓𝑓𝑘) + 1 ∙27 

𝑠𝑡𝑑(𝐷𝑖𝑓𝑓𝑘), where 𝑚𝑒𝑎𝑛(𝐷𝑖𝑓𝑓𝑘) and 𝑠𝑡𝑑(𝐷𝑖𝑓𝑓𝑘) are the average and 28 

the standard deviation of 𝐷𝑖𝑓𝑓𝑘 computed over all the iterations, 29 

respectively 30 

iii. Starting from the last dendrogram iteration and stepping backwards, the 31 

first iteration in which 𝐷𝑖𝑓𝑓𝑘 series stop decreasing monotonically 32 

(after a moving average filtering step). 33 

Finally, since the three cutoff criteria may result in different numbers of final 34 

clusters, the best cutoff was automatically identified using an index that takes into 35 

account both the intra-cluster variability (𝐼𝐶𝑉) and the number of elements within 36 

each significant cluster (𝐶𝑖), as described in (A.1): 37 

𝐶𝑢𝑡𝑜𝑓𝑓 =  

∑ 𝐼𝐶𝑉𝑖
𝑛
𝑖=1

𝑛⁄

∑ |𝐶𝑖|
𝑛
𝑖=1

 (A.1) 

where 𝑛 represents the number of significant clusters, |𝐶𝑖| is the number of cycles 38 

belonging to the 𝑖-th cluster, and 𝐼𝐶𝑉𝑖 represents the intra-cluster variability of the 39 
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𝑖-th cluster. Low values of the 𝐶𝑢𝑡𝑜𝑓𝑓 index correspond to clusters with a small 1 

intra-cluster variability and a high number of elements belonging to each significant 2 

cluster. 3 

After the definition of the final number of clusters, the principal and secondary 4 

activations are computed, separately for each muscle, from the prototypes of the 5 

significant clusters. More specifically, the PAs are defined as the intersection of all 6 

the significant clusters’ prototypes, while SAs are defined as all the time-instants 7 

classified as muscle activations, but excluded from the PAs, since they occur only 8 

 

Figure A.2 Example of application of the CIMAP algorithm to sEMG signals acquired from a healthy 

subject during gait from PL (left) and GMD (right) muscles. (A) Blue intervals represent the cluster 

elements (muscle activation intervals computed through LSTM-MAD algorithm) normalized into 1000 

time points with respect to the gait cycle duration, while orange intervals represent the prototypes of each 

cluster (computed as median of the elements that belong to the same cluster). (B) Principal activation (PA) 

is represented in green and is defined as the intersection of all the cluster’s prototypes. (C) Secondary 

activation (SA) is represented in red and is defined as all the time-instants that are classified as muscle 

activity and are not PAs. Reprinted from “How to Improve Robustness in Muscle Synergy Extraction” by 

Ghislieri et al. 
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in some gait cycles. For each observed muscle, a single principal (or secondary) 1 

activation interval was obtained and defined as a 1000-samples binary mask. 2 

Figure A.2B and Figure A.2C depict how the PAs and the SAs are obtained 3 

from the significant clusters’ prototypes, respectively. 4 

For each gait cycle, the extraction of the PAs (or SAs) from the original sEMG 5 

signals of a specific muscle was performed by time-windowing all the time-6 

normalized gait cycles through the corresponding binary mask that was set equals 7 

to 1 in correspondence of the time-instants defined as PAs (or SAs) and to 0 8 

otherwise (no PAs or SAs computed). 9 

Figure A.3 shows an example of principal and secondary activation extraction 10 

performed on PL and GMD muscles acquired from a healthy subject during a single 11 

gait cycle. 12 

 13 

 

Figure A.3 Extraction of principal and secondary activations from PL (left) and GMD (right) muscles of a 

healthy subject during a walking task. (A) Original sEMG signals time-normalized with respect to the 

duration of the gait cycle. (B) Extraction of the principal activation (in green) from the original sEMG 

signal with the indication of the excluded sEMG time-instants in gray. (C) Extraction of the secondary 

activation (in red) from the original sEMG signals with the indication of the excluded sEMG time-instants 

in gray. 
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Appendix B 1 

List of Abbreviations 2 

The following abbreviations are used in the manuscript: 3 

 4 

ANOVA  Analysis of Variance 5 

CAI   Chronic Ankle Instability 6 

CBA   Cost-Benefit Analysis 7 

CIMAP   Clustering for Identification of Muscle Activation Pattern 8 

CNS   Central Nervous System 9 

DBS   Deep Brain Stimulation 10 

ELECTRE  ELimination Et Choix Traduisant la REalitè 11 

GMD   Gluteus Medius 12 

ICV   Intra-Cluster Variability 13 

LDL   Left Longissimus Dorsii 14 

LDR   Right Longissimus Dorsii 15 

LGS   Lateral Gastrocnemius 16 

LH   Lateral Hamstring 17 

LSTM   Long-Short Term Memory neural network 18 

LSTM-MAD  Long-Short Term Memory for Muscle Activity Detection 19 

MAE   Mean Absolute Error 20 

MCDA  Multi Criteria Decision Analysis 21 

MCDM  Multi Criteria Decision-Making 22 

MH   Medial Hamstring  23 

PAs   Principal Activations 24 

PB   Peroneus Brevis 25 

PL   Peroneus Longus 26 

RF   Rectus Femoris 27 

RMS   Root Mean Squared 28 

RNN   Recurrent Neural Network 29 

SAs   Secondary Activations 30 

sEMG   Surface Electromyography signals 31 

SGA   Statistical Gait Analysis 32 

𝑆𝑁𝑅   Signal-to-Noise Ratio 33 
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SOL   Soleus 1 

TA   Tibialis Anterior 2 

TKEO   Teager-Kaiser Energy Operator 3 

UPDRS  Unified Parkison’s Disease Rating Score 4 

VAF   Variance Accounted For 5 

VL   Vastus Lateralis 6 

VM   Vastus Medialis 7 
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