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Abstract—We introduce an agent-based framework (developed
in NetLogo, one of most relevant simulation platforms) to
simulate the diffusion of a piece of misinformation, according
to a known compartmental model in which the fake news and
its debunking compete in a social network. The tool allows to
set different values for the spreading rate of the news, the hoax
credibility, the probability of fact-checking and the forgetting rate
of the agents. Moreover, it is possible to run the process over any
given network. Since NetLogo is free and open source, our tool
could be easily used and/or personalised by other researchers to
explore different scenarios of fake news spreading.

Index Terms—Information Diffusion, Fake News Spreading,
Fact-Checking, Agent-based modeling, NetLogo

I. INTRODUCTION

Misinformation spreading is currently one of the most
discussed topics in our society, specially because, even if it
is not a new problem, digital technology and new media can
foster its diffusion [1], [2]. Research about misinformation
can be categorized on three main lines: automatic detection
of fake news and social bots [3]–[5], psychological aspects
and effects [6]–[8] and finally analysis [9], [10] and model-
ing [11]–[15] of their diffusion to understand its spreading
dynamics.

Here we focus on the third research line and we provide
an application to simulate an hoax spreading process with
NetLogo [16]. In particular we target the model presented
in [15] that follows the epidemic tradition in representing
rumor diffusion. The novelty of this model is that misinfor-
mation and fact-checking are competing actors in a population
of agents that can decide whether believe or not to the hoax
depending on the credibility of the hoax and on belief of
their neighbors; they can also verify or forget about the news
with certain probabilities that are parameters of the model.
From a pure theoretical point of view, through simulations
and mean-field analysis, the authors provided a threshold for
the verifying probability that ensures the eradication of the
hoax.

We investigate here the adoption of the same diffusion
process in an Agent-Based Modeling (ABM) perspective [17].
ABM focuses on emergent phenomena [18] in complex adap-
tive systems [19]. Since the behavior of the chosen model has
been extensively studied on scale-free and random networks,
the goal of this work is providing a tool developed in NetLogo

that can be used on a large scale to explore also slightly
different and personalized versions of the model with the
possibility to run the process on any topology.

We strongly believe that this implementation can provide
a useful tool to realize what-if analysis [20] and represent
various scenarios through agent-based simulations.

II. RELATED WORKS

A. Modeling information diffusion

Representing information and rumor spreading through epi-
demic metaphors has a long tradition [21], [22]: a (fake)
piece of information, indeed, can be seen as a virus that
may potentially infect people. In particular, many works took
inspiration from compartmental models in which there is a
population of agents connected among them, and each agent
i at each time t can be in a state (compartment) si(t). The
transitions are usually defined by simple equations ruled by
some probability rates. The most famous models of this cate-
gory are the SIR (Susceptible-Infected-Recovered) and the SIS
(Susceptible-Infected-Susceptible). Many SIR-based models
have been proposed to model rumor spreading [11], adding
forgetting and remembering mechanisms [23], the presence
of skeptic agents [14], and competition among rumors [13].
The SBFC model that we consider here [15] has three states
(Susceptible-Believer-FactChecker) and agents have the pos-
sibility to be infected either by the hoax or by its debunking,
to forget their belief or verify the news (see details in section
III-A).

B. Agent-based modeling and diffusion processes

In this paper we explore an initial implementation step
of a misinformation spreading model with multi-agent sys-
tems, intended as a specific class of computational models to
simulate actions and interactions of autonomous agents, with
the main goal of assessing their effects on the system as a
whole. In particular, ABMs can “provide a more fine-grained
model of the process, with many parameters that can impact
the dynamics. We call such models, which explicitly model
the individual agents, agent-based simulation models” [24]. In
particular, we adopt NetLogo1 which is one of the most used

1https://ccl.northwestern.edu/netlogo/



ABM platforms, here in use both as a modeling-simulation
tool and as a general purpose tool.

The salient features of NetLogo include the capability of
managing collection of instances of a class of agents, tradi-
tionally named turtles2; the openness, being a Free and Open
Source Software (FOSS) written in Java and Scala; the avail-
ability of libraries or extensions to the basic code, to connect
R [25] or Python [26]; in addition, an easy to use graphical
representation of the agents’ world. The diffusion processes
in social media have been already simulated by following an
ABM perspective [27]. The role of social networks to predict
the diffusion process has been explored in the context of the
introduction of new products in a market [28], as well as on
different real-world Twitter networks structures [29].

III. METHODS

A. Formal Description of SBFC model
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Fig. 1. A diagram of the model SBFC.

The SBFC model [15] describes the diffusion of misinfor-
mation as a competition among a false news and its debunking
in a population of N agents. At each time t each agent i is
associated with a state si(t) that can take one of the three
values:
• Susceptible (S), an agent who ignores the news;
• Believer (B), an agent who believes to the hoax;
• FactChecker (FC), an agent who has verified the news or

directly knows that it is an hoax.
Formally we use a state indicator function for each time t:

s
{S,B,FC}
i (t) = δ(si(t), {S,B, FC})

and a triplet pi(t) = (pSi (t), p
B
i (t), p

FC
i (t)) that collects the

probabilities that the node i is in the three states at time
t. Before giving the formulas for these probabilities, whose
random realization rules the dynamics of the system, we list
the parameters and the phenomena represented by the model.
There are four fundamental parameters: the credibility of the
hoax α ∈ [0, 1) that gives some advantage over its debunking,
its spreading rate β ∈ [0, 1], a verifying probability pv ∈ [0, 1]

2The name Turtle is an inheritance from the Logo educational language
https://el.media.mit.edu/logo-foundation/

and a forgetting rate pf ∈ [0, 1]. The transitions through the
states can be summarized in three phenomena. First of all
there are two spreading transitions (S → B,S → FC) that
determine when a susceptible agent i decides to believe or
not to the rumor. These transitions are defined respectively
by two spreading functions fBi and fFC

i that depend on the
belief of the neighbors of agent i, the spreading rate β and
the credibility α:

fBi (t) = β
nBi (t)(1 + α)

nBi (t)(1 + α) + nFC
i (t)(1− α)

(1)

fFC
i (t) = β

nFC
i (t)(1− α)

nBi (t)(1 + α) + nFC
i (t)(1− α)

(2)

where nB|FC
i (t) is the number of neighbors of i that are in the

Believer/FactChecker state at time t. Second, there is a veri-
fying transition B → FC that let a Believer become directly
a FactChecker (because he realizes that the news is a hoax,
for instance) and it is simply ruled by the verifying probability
pv . Third, agents in Believer and FactChecker states can forget
their belief towards the news and return to the Susceptible state
with a probability pf . These transitions happen following the
triplet pi(t + 1) = (pSi (t + 1), pBi (t + 1), pFC

i (t + 1)) that
describe the probabilities that the node i, that is in a state
si(t) at time t switches to a state si(t + 1) ∈ {S,B, FC} at
time t+ 1. Formally:

pSi (t+ 1) =[1− fBi (t)− fFC
i (t)]sSi (t)+

pf [s
B
i (t) + sFC

i (t)]

pBi (t+ 1) =fBi (t)ssi (t) + (1− pf )(1− pv)sBi (t)
pFC
i (t+ 1) =fFC

i (t)sSi (t)+

pvs
B
i (t) + (1− pf )sFC

i (t)

(3)

In [15] the dynamics of the process has been explored
extensively varying the credibility and verify probability that
rule the victory of the hoax (high α low pv) or the debunking
(low α high pv); moreover, it was found analytically a thresh-
old for the verifying probability that assures the false news
will be eradicated. In following papers other more complex
versions of the model have been studied exploring the role of
network segregation [30] and effective fact-checking strategies
placing some never-forgetting debunkers in specific nodes of
the network [31].

B. NetLogo implementation
1) Model structure: The three parts of each program are

Interface, Info and Code area. The Interface presents the sim-
ulation output area, and allows users in setting parameters by
using so called buttons for the interactions, e.g., sliders, switch,
chooser buttons. Each of them relates to the corresponding
procedures in the Code area. The conventional structure of a
NetLogo program includes an initial part of variables declara-
tions, followed by the procedures regarding the environment
(so called patches) as well as the agents (turtles). The two main
procedures in the code concern both the initialisation of the
world (setup procedure) and the execution of the simulation
(go procedure).



to setup
ca
setup-var
setup-turtles
update-plot
reset-ticks

end

The initial setup resets the world to an initial, empty state (clear-
all), before the initialisation of the main variables in a specific setup-
var procedure. In our case, just the shape of agents as well as the
text to print in the output area. The procedure setup-turtles creates
the agents and the network, before updating the visualisation of the
line plot to count different kinds of turtles. Finally, the reset-ticks
button reset the time counter to zero, sets up the initial state of the
world in the plots.

The main cycle go consists of the continuous increment of time
steps until the stop condition (300 time steps) is reached (ticks).

to go
tick
if ticks > 300 [stop] ; the stop condition
spreading
forgetting
verifying
(...)

end

The three procedures in the main cycle are spreading, forgetting
and verifying corresponding to the functions for agents’ changing
state, as previously detailed in section III-A.

We describe here the code of the procedures forgetting and
verifying, while spreading just corresponds to the computation of the
above mentioned equations. In particular, the forgetting procedure
describes how each agent, regardless of belief state, forgets the fake-
news with a fixed probability pforget. Similarly, each agent can
fact-check the hoax with a fixed probability pverify in the verifying
procedure.

to forgetting ; B -> S; F -> S
ask turtles with [state="B" or state="F"][

if random-float 1 < pForget [
set state "S"

]
]

end

to veryfing ; B-> F ;
ask turtles with [state = "B"][

if random-float 1 < pVerify [
set state "F"

]
]

end

2) State of agents: Each agent includes a variable state to trace
the personal condition, identified by a character: Susceptible (“S”),
Believer (“B”), or FactChecker (“F”).

turtles-own [
state ; "B", "F", "S"

]

3) Display: The diffusion process is represented with three
different colors for each state changing over time. Susceptible nodes
are gray, Believer nodes are blue and FactChecker nodes are red.
The output area in the NetLogo Interface visualizes the network of
agents connected by curved gray edges. Several buttons control the
simulation setting, while some monitors display the results of some

computations, i.e. graph metrics or count of agents (well described
also by a line-plot graph).

4) Network extensions: The network of agents is generated
according to a specific library included in the very first row of
the code with the command extensions [nw]. The creation of the
network is defined by the type-of-network button in the Interface
(“Barabási–Albert algorithm” by default).

IV. ABM OUTPUT

A. The Network representation
At the beginning of the simulation, the initial setup of the model

creates a network whereas agents are mostly Susceptible (90%),
instead of Believer (10%). As described in Figure 2 edges are gray. In
addition, some procedures improve the visualisation of the graph by
adopting a spring layout, as well as expanding the distances between
nodes.

Fig. 2. Output representation of the network in NetLogo. Agents’ color
indicates the corresponding State. Arcs are gray and a Force-directed Spring
layout improves the visualisation.

B. Simulation results
The execution of the simulation can be firstly explored in the graph

of the Interface. The count of the three different state types of agents
describes the evolution of the diffusion process.

Fig. 3. The Interface tab in NetLogo platform with buttons on the left, the
network of agents in the center and simulation results described with a line
plot and monitors.

1) Verifying simulation trends: The model behaviour obtained
by varying initial parameters with NetLogo are consistent with the
ones obtained in the original paper by simulations with R program-
ming language and mean-field analysis [15]. In first experimental
settings, Barabasi-Albert (BA) and Erdos-Renyi (ER) networks are
considered with the same number of nodes (1,000) and mean degree
(6). These simulations maintain fixed the values of both the spreading
rate (0.5) and the forgetting probability pforget (0.1), with the aim
to understand the influence of fact-checking activity by varying
only pverify and the credibility parameter. Similarly, we tested other



configurations which clearly reveal the validity of resulting trends, as
represented by the line plot in the Interface (see Figure 3).

2) Verifying raw values: At the same time, we checked values
obtained by simulations. For instance, the above mentioned scenario
converges to an amount of about 70% Fact-checker, 8% Believer
and 22% Susceptible agents. The results obtained here and the
ones described in a similar work on hoax diffusion [15], [31] are
equivalent. By modifying network configurations as well as formula
parameters, these convergence results constitute a verification of the
proposed agent-based simulation.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced a tool to simulate agent-based diffusion
processes of fake-news in a social network. We considered a known
model based on epidemic spreading process in which misinformation
and fact-checking compete on a population of agents that can believe
or not to the hoax, verifying or forget the news. The parameters of the
model are the spreading rate, the credibility of the hoax, a forgetting
probability, a verifying probability, the population size and the initial
seeds (number of believers at time t = 0). The behaviour has been
already extensively studied on random and scale-free networks: here
we offer a tool to run the model on any desired topology tuning the
values of all the parameters.

The results of our implementation in NetLogo match with the
ones obtained by simulations in different platforms and analytical
computations. On the other hand, NetLogo offers the possibility of
a very intuitive framework to run personalised version of the model,
and this opens the way to improve scenario analysis and dynamics
of simulations. In order to make the tool more usable, we shared the
code of our model 3, a large online collection of NetLogo models.

A first extension of this work would involve performing multiple
executions about the phenomena of interest with the same configu-
ration to detect mean values and standard deviation for a consistent
number of executions. In particular, we plan to perform sensitivity
analysis on the top of the here described model. The exploration of
parameter sweep from simulation allows us to sweep the values in
predefined increments over a specified range. This effort can be easily
achieved by the adoption of BehaviorSpace4, a specific tool integrated
in NetLogo. Such tool automatically performs multiple replications
(using multiple processor cores) for each of a number of different
settings for the model input parameters.

A second kind of future work includes the exploration of adding
a specific behavior to agents. This approach paves the way toward
solving optimization problems, e.g., by the application of search
heuristic technique such as genetic algorithms [32]. In particular we
plan to check what happens with the introduction of movements and
interactions with other agents (and patches) in a traditional agent-
based modeling perspective.
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