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Introduction

This doctoral dissertation encompasses three essays concerning innovation
and green economy.
The first two papers addresses the theme of eco-innovation; in particular,
the first investigates the main drivers of eco-innovation in OECD automotive
industry between 2005 and 2014, while the second provides a “map” of green
technologies in OECD and BRICS countries by means of an unsupervised
machine learning approach.
The third paper is an ex-post policy evaluation of an innovative and sustain-
able mobility policy at urban level.

The first paper is an empirical analysis of the determinants driving the so-
called “green innovation” transition in the OECD automotive industry, which
is measured by patent data.
This study, based on an econometric analysis using a Negative Binomial esti-
mation model, highlights that the so-called technology push and market pull
are the current most incisive drivers of the green transition of the automo-
tive industry in OECD countries, while the so-called institutional push/pull
still lags behind as source of green innovation in the above-mentioned OECD
sector, causing an an institutional lock-in.
In fact, the study reveals that the regulations in OECD countries, prox-
ied by the Environmental Policy Stringency index, have been been more
“technology-following” than “technology-forcing”, since they have induced
an increase of the production of innovations aimed at improving the efficiency
of the conventional technology (brown patents) rather than the development
of radical innovations diverging from the incumbent technological trajectory
(green patents).
The study also highlights the substitution effect caused by fuel price, which
has a positive impact on green technologies in automotive, providing results
that are consistent with the main findings in the literature on fuel price.



The second paper aims at tracking the green technological profile of the
OECD and BRICS countries by means of an unsupervised machine learning
approach, namely the so-called Self-Organizing Map (SOM) method, which
allows to group countries according to the similarities in their green techno-
logical output.
The scope of our SOM-based analysis is to examine clusters features both
in quantitative and qualitative terms, to investigate countries technological
evolution over time and to verify whether our study is providing evidence in
support of a technological paradigm change.
The results reveal a sharp distinction between a small leading group of large
and rich countries with a high production of green patents and green spe-
cialization in climate change mitigation and a mass of relatively small and
poor countries with very low production of green patents and a vast array
of specialization profiles in their green profile, but always related with the
greening of more traditional areas (rail, oil, soil and water) .
Moreover, our SOM-based study substantially confirms the real technological
evolution experienced by the countries, whose green vocation tends to show
constant patterns over time, apart from those of BRICS.
The main conclusion is that, based on our data, there is a current transition
toward more sustainable technological solutions, but since countries that are
leading the way in terms of green patents productivity are specialized in
technologies that are still integrated in the old technological regime, we are
not facing a technological paradigm change.

The third paper evaluates the environmental impact of an innovative sustain-
able mobility policy in Paris region, with the aim to provide a meaningful
ex-post policy assessment with relevant policy-making implications.
The study consists in an econometric analysis based on a Difference in Dif-
ference estimation model, which investigates the environmental effects of the
introduction of the electric car-sharing service Autolib’, in Paris region in
2011, revealing that the above-mentioned public-private service has signifi-
cantly contributed to the reduction of the annual average concentration of
some of the main urban pollutants, namely PM10, NOx and NO2.
Despite some limitations, the study succeeds in providing interesting scien-
tific information about the environmental performances of the smart service
examined.



Essay 1.
Are we breaking the ICE?

An analysis of brown and green
innovations in OECD countries1

1This chapter has been developed in collaboration with Prof. Marco Guerzoni
and Prof. Nicoletta Corrocher.



Abstract

This paper explores the determinants of brown and green innovations in the
automotive industry in OECD countries, with the aim of investigating the
existence of a technological paradigm shift in the sector and to study the
substitution/complementarity between different types of innovations.
Relying on a dataset of 35 OECD countries between 2005 and 2014, we look
at technology-push, demand-pull and regulatory drivers of different types of
innovations in the sector.
We find that technological push and demand pull drive a decrease in the
development of brown innovations and an increase of green innovations.
On the other hand, we show that the institutional push/pull is still lagging
behind as a driver of the ecological transition of the automotive industry,
since it causes an increase of brown patents, with no substantial effect on the
quantity of green patents, revealing the presence of an institutional lock-in.

Keywords : eco-innovation, automotive, patents, policy evaluation
JEL: O30, Q55



1 Introduction

Automotive is a relevant sector in the economy of most of developed and
emerging countries, and, as a capital-intensive and knowledge-intensive in-
dustry, its innovation activities play a key role in driving successful and
sustainable economic growth.
Automotive industry has in fact a significant impact on both the economy
and the environment.
The average annual turnover of the world automobile industry is more than
2.75 trillion Euro, which corresponds to 3.65 percent of world GDP, while the
share of the industry in the GDP of developed countries ranges from 5 to 10
percent, accounting for 3 percent of US GDP, and representing 6.8 percent
of EU GDP. (Saberi, 2018)
Moreover, in the economy of developed countries, growth in the automotive
industry by 1 percent is estimated to cause a GDP growth of 1.5 pc; fur-
thermore, modern experts of the automotive market forecast that the annual
growth rates of the world automotive market will be about 3.6, which roughly
corresponds to the dynamics of world GDP. (Saberi, 2018)
The industry is also a major innovator, investing more than 84 billion eu-
ros in research, development and production and thus placing third among
the sectors with the greatest R&D expenditures, after pharmaceuticals and
biotechnology and production of process equipment. (Saberi, 2018)
As far as the environmental impact is concerned, transports are large contrib-
utors to global greenhouse gases emissions. According to the Stern Review,
in 2000 14 percent of the world’s greenhouse emissions stemmed from trans-
port alone, a figure that has increased over the past fifteen years. (Stern and
Stern, 2007; IEA, 2019)
Along with GHG emissions, specifically CO2 emissions, transports are re-
sponsible for the production of local pollutants, such as particulate matter
(PM), hydrocarbons (HC), nitrogen oxides (NOx), sulphur dioxide (SO2),
carbon monoxide (CO) and ground-level ozone (O3), in charge of heavily
affecting urban air quality. (Krzyzanowski and Cohen, 2008)
In light of the above-mentioned evidence, the innovation activity in the au-
tomotive sector has a primary role for green growth, with the purpose of
tackling climate change and the most crucial environmental challenges.
The innovative activity of this sector is a crucial component for the upsurg-
ing “mobility challenge”, which is characterised not only by the discussion
around the paradigm clash between the traditional forms of ICE engines and
the electric/green mobility, but also by the reflection on the car’s utility, with
the comparison between the ownership and ridership approach. (Calabrese,
2016)
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The paper aims at investigating the main determinants of innovations in the
automotive industry, by focusing on the analysis of “technological push”,
“demand pull” and “institutional push/pull” factors at the country-level.
In particular, we intend to understand which are the most impactful drivers
of eco-innovation in the industry within OECD countries.
While most of the existing literature examines the determinants of eco-
innovation in automotive industry by focusing on single drivers or specific
policies at firm-level, this study intends to contribute to the existing liter-
ature by performing a country-level analysis that explicitly investigates the
effect of all the three sets of determinants of eco-innovation using an innova-
tive dataset for patent data: OECD iLibrary.

The rest of the paper is structured as follows.
Section 2 outlines the theoretical framework, identifying the main determi-
nants of eco-innovations with specific reference to the automotive sector and
presenting the paper’s hypothesis. Section 3 and 4 describe respectively the
empirical model and the data. Section 5 discusses results, while section 6
concludes.
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2 Eco-innovations in the automotive indus-

try: theory and hypothesis development

Eco-innovations are innovations that consist of new or modified processes,
practices, systems and products which benefit the environment and con-
tribute to environmental sustainability. (Rennings, 2000; Oltra et al., 2008a)
Since eco-innovations cannot be defined only in terms of their absolute en-
vironmental impact, but also in reference to alternative technologies, the
most precise definition of eco-innovation is the one provided by the MEI
report1: “The production, assimilation or exploitation of a product, produc-
tion process, service or management or business methods that is novel to the
organization (developing or adopting it) and which results, throughout its
life cycle, in a reduction of environmental risk, pollution and other negative
impacts of resources use (including energy use) compared to relevant alter-
natives”. (Kemp and Pearson, 2008)

The literature has discussed at length the drivers of eco-innovations and has
highlighted the importance of supply-push, demand-pull and regulatory fac-
tors for their development. (Horbach, 2008; Horbach et al., 2012)
As far as supply-push factors are concerned, both technological opportunities
and firms’ strategies play an important role. (Ghisetti and Rennings, 2013;
Cecere et al., 2014) Some studies look at the potential of specific alternative
technologies to transform the existing technological regime. (Janssen and
Jager, 2002) In this respect, many acknowledge the role of stimulating the
development of technological niches to escape from the dominant pollution-
intensive paradigm.
Firms are the most important actors in the sustainable growth process, as
they are actively engaging in the development of green innovations (De Marchi,
2012; Kesidou and Demirel, 2012; Dangelico, 2016) and in the form of adop-
tion of low-carbon energy solutions for their businesses (Pinkse and Van den
Buuse, 2012; Albino et al., 2014; Bodas-Freitas and Corrocher, 2019).
In terms of demand-side factors, firms may respond to the market need
for eco-friendly products/services, especially when consumers put particu-
lar value to ”green brands”. (Rennings et al., 2006; Rehfeld et al., 2007;
Kammerer, 2009; Dangelico and Pujari, 2010; Horbach et al., 2012; Lanne-
longue and González-Benito, 2012)
Finally, regulation has been identified as an important source of environmen-
tal innovation, due to the well-known double externality problem. (Rennings,
2000; Cecere et al., 2014)

1’Measuring Eco-innovation’, United Nations University, 2008
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The beneficial impact of environmental innovations makes not only their
development, but also their diffusion always socially desirable, creating a
twofold obstacle, or market failure, for firms to invest in environmental in-
novation, since the private return on R&D in environmental technology is
less than its social return both in the production and in the diffusion phase.
(Oltra et al., 2008a; Rennings et al., 2006; Horbach et al., 2012)
Several empirical studies have proved that environmental regulation can have
a positive impact on firms’ inventive activities, providing evidence in favour
of the weak version of the “Porter’s hypothesis”, by Porter and Van der Linde
(1995). (Lanoie et al., 2011; Johnstone et al., 2012; Ambec et al., 2013; Hot-
tenrott and Rexhäuser, 2015; Kounetas, 2015)
On the other hand, regulation can be source of institutional lock-in, as high-
lighted in Foxon (2002). Furthermore, environmental regulation is highly
heterogeneous across countries and companies that develop and adapt green
technologies in response to a heterogeneous set of incentives. (Tatoglu et al.,
2014; Kawai et al., 2018; Marin and Zanfei, 2018)

The development of green innovations is particularly relevant in the auto-
motive industry, which is not only an important sector in the economy of
both developed and emerging countries, but is also the locus of innovation
activities that play a key role in the process of sustainable growth (Lee and
Berente, 2013).

Car manufacturers and suppliers are responsible for the development of green
innovations in the sector. On the one hand, major producers from Europe,
US, Japan and South Korea have carried out R&D activities with the aim of
reducing emissions. (Haščič and Johnstone, 2011; Berggren and Magnusson,
2012; Dechezleprêtre et al., 2015) On the other hand, domestic companies
from new comer countries (especially from China) have started innovating
in green technologies, even if they still rely substantially on the technology
acquired from larger producers. (Chin, 2010)

Several studies have investigated eco-innovation in automotive, exploring its
main determinants and patterns of evolution.
Haščič et al. (2008), for instance, finds that environmental technologies in the
automotive industry are positively affected by gasoline prices and regulatory
standards, with domestic policies exerting a greater influence on foreign in-
novations than on domestic innovation, because of the anticipatory behavior
of domestic firms with respect to the upcoming regulations.
These results are confirmed by the work of Aghion et al. (2016) investigat-
ing the impact of carbon taxes on direct technological change, which detects
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a positive and significant effect of higher tax-inclusive fuel prices on ‘clean’
innovations, while a negative and significant effect on ‘dirty’ innovations.
Aghion et al. (2016) also prove the existence of path dependency in auto-
motive innovation patterns: firms that are innovators in ’dirty technologies’
find it more profitable to keep investing and innovating in dirty technologies,
instead of ‘going green’.
Other scholars, Barbieri (2015, 2016), have confirmed that fuel prices rep-
resent one of the main drivers of the technological efforts concerning green
automotive technologies, along with R&D subsidies and predictable and cred-
ible policy interventions in the form of regulatory instruments (e.g. European
emission standard, CO2 targets).
Bergek et al. (2014) provides a survey on the type of innovation output result-
ing from different type of environmental policies in automotive and energy
sectors:

• Incremental innovation, featuring slight technological changes, aimed
at improving the standard available technology;

• Modular innovation, featuring the addition of new modules to the stan-
dard technology, with the aim of improving its efficiency and perfor-
mances;

• Architectural innovation, featuring a completely new design of the es-
tablished technology, with the recombination of existing components;

• Radical innovation, characterised by the introduction of entirely new
components, changing the structure and sometimes the purpose of the
established technology, paving the way for a technological paradigm
change and the creation of a new technological trajectory.

By observing the effect of the implementation of specific policies on innova-
tion outcomes in automotive literature, Bergek et al. (2014) highlight that,
general policies, such as fuel taxes and emission regulations, mainly result in
incremental and modular innovations (catalytic converters, fuel saving mod-
ules, clean diesel technologies). On the other hand, technology-specific poli-
cies, e.g public procurement and the so-called “zero-emission vehicle rule”,
induce more architectural and radical innovations, such as the development
and diffusion of hybrid-electric and fully electric vehicles.
Alongside with the development of green technologies in automotive sector,
their diffusion across countries has rose increasing interest among scholars.
For instance, Dechezleprêtre et al. (2012) examine the impact of the regula-
tory distance on the transfer of environmentally sound technologies (EST) in
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automotive, discovering that the number of new automotive environmentally-
sound technologies increases when the difference between two countries in
regulatory levels decreases. Moreover, the paper points out that, the reg-
ulatory distance between the source country and the export market of the
recipient country has a negative and statistically significant effect on ESTs.

While the majority of the studies focuses on the determinants of innovation
development and diffusion, Dijk and Yarime (2010) identifies three major
sources of innovation lock-in through path dependency in the automobile sec-
tor: demand-side lock-ins (consumers seeking for the lowest price or highest
performance vehicles), supply-side lock-ins (firms having difficulties in dis-
investing from dirty technologies) and regulatory-side lock-ins (regulations
supporting existing technologies -technology-following- instead of stimulat-
ing the shift towards new ones -technology-forcing-).
Dijk et al. (2013) indicate the major factors steering the emergence of an
electric mobility trajectory: change in the fuelling infrastructures, change
in the global market (demand pull), evolution of energy prices and climate
policies (institutional drive), variation in the electricity sector (technological
push) and in the utility value of vehicle, which is related to the overall mo-
bility concept.

The variation of the utility value of the vehicle as factor for change in mo-
bility is highlighted as a key factor also in Calabrese (2016), which outlines
three possible automotive scenarios deriving from the current greening pat-
tern of the automotive industry: diversity, progressiveness and rupture.
The ‘diversity scenario’ is an evolution of the current scenario, characterized
by five groups of countries with different energy preferences: less polluting
engines, agro fuels, natural gas, plug-in hybrids and electric vehicles, and
pollutant reduction, with fuel cell perspectives.
This scenario leads to a greater differentiation of the world’s car market, a
greater complexity of the innovation platforms, more R&D investments, more
difficulties in pursuing the ‘volume and diversity’ and ‘permanent reduction
of the costs’ profit strategies and the emergence of some market niches, where
newcomers or ‘born again’ can find their space to thrive or survive. (Cal-
abrese, 2016)
The ‘progressiveness scenario’ plans a transition from fuel-efficient engines
to electric motors, through agro-fuelled natural gas propelled engines, to hy-
brid and plug-in hybrid engines. The progression will be led by three rates
of transition: the rate of depreciation of investments, the technological im-
provement and rate of natural renewal of world stock of cars.
This scenario has the potential to transform in an ‘all at once’ scenario, if
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any of the disruptive factors governing global automotive dynamics, such as
oil price, global warming, the explosion of an emerging Chinese or Indian car
manufacturers or an increasing government pressure, prevails.
The ‘rupture scenario’ is the most radical scenario and encompasses two
phases. In the first phase, the rapid shift to electric vehicles will involve
only some usage modes (short-run, urban rides) and types of users (rental
car services, local delivery companies, household’s second car, urban riders),
who will be offered grants, subsidies and special discounts to be electric cars
early-adopters.
The reduction of energy and technology prices will introduce a second phase,
with the adoption of electric vehicles for all usages (long- and short-run rides)
and by all users (urban dwellers and long-run travellers), without any further
institutional intervention.

Table 1 summarizes the determinants, drivers and drawbacks of eco-innovation
in automotive industry.

DETERMINANTS DRIVERS DRAWBACKS

TECH PUSH Green technological opportunities Technological lock-in

DEMAND PULL Customers’ willingness to pay for cost, comfort
fuel efficiency

INSTIT DRIVE Fuel taxes and regulatory standards Institutional lock-in

Table 1: The drivers of eco-innovations

Our paper intends to examine the evolution of the patents production of the
automotive industry in the main OECD countries, over a ten year period
(2005-2014).
This period has been characterized by relevant events for the automobile
sector, such as the economic financial crises of 2008, which had dramatic
consequences on the car industry and market, and important changes in cars
regulations (especially in the EU area).
These events offer an interesting backdrop to explore the evolution of the
automobile industry and investigate the possible emergence of the scenarios
outlined by Calabrese (2016).
Against this backdrop, the aim of the paper is to investigate whether the
main technological determinants (technological push, demand pull and in-
stitutional push/pull) have caused the reduction of the production of brown
innovations and the parallel increase of green innovations in the OECD au-
tomotive industry, inducing the emergence of the progressiveness or rupture
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scenarios, as forecasted by Calabrese (2016).

We are developing three hypotheses building on the existing literature.
The first hypothesis concerns the role of technology-push factors in driving
green vs. brown innovations in the sector. We explore whether the national
technological capabilities impact the production of green and non-green in-
novation in the automotive industry, measured by patents data.
Hypothesis 1: national technological capabilities in green domains generate
a decrease in BROWN TECHs and an increase in GREEN TECHs

The second hypothesis refers to the role of demand-pull factors in stimulat-
ing the innovation pattern of the automotive industry, as highlighted in the
literature. In particular, we look at how the national demand for cars im-
pacts the production of green and non-green innovations in the automotive
industry, measured by patents data.
Hypothesis 2: national demand for cars positively affects the develop-
ment of GREEN TECHs and negatively affects the development of BROWN
TECHs.

Finally, the third hypothesis refers to the role of policies and regulation. In
particular, the stringency of regulation is often acknowledged as a significant
trigger for innovation (Porter and Van der Linde (1995); Wagner (2003);
Ambec et al. (2013); Barbieri et al. (2016)). On the basis of the existing
literature, we look at the impact of the stringency of regulation on the de-
velopment of green vs. brown technologies, measured by patent data.
Hypothesis 3: the stringency of regulation positively affects the develop-
ment of GREEN TECHs and negatively impacts the development of BROWN
TECHs
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3 The empirical model

In order to investigate the relationship between eco-innovation and its deter-
minants, we use a function taking the following form:

Innovation output = f (Innovation Inputs)

It relates an innovation output to a vector of innovative inputs, which is
made up of the Technological Push, the Demand Pull and the Institutional
Push/Pull proxies.

As it is standard in the literature, we measure country’s eco-innovation ca-
pability through the number of patents applications: we distinguish brown
and green patents (see section 4.2.1 ).
We use count data models and estimation methods, since they are more
appropriate than linear models when dealing with dependent variables that
take on non-negative integer values, as in our case.
Our estimation method is the maximum likelihood for the negative binomial
distribution. We prefer a negative binomial model over Poisson models as
the equality between the mean and the variance of the dependent variables
assumed by Poisson models is not verified in our data. The distribution of
the number of patents applications, in fact, is substantially over-dispersed,
with variance much higher than the mean (see Table )
In the negative binomial regression, the expression relating the mean of the
dependent variables with the exposure time and the set of regressors takes
the following form:

µ = exp(ln(ti) + β1X1,i + β2X2,i + . . .+ βkXk,i) (1)

By adding entity fixed effects in order to control for unobserved countries
heterogeneity, the above-mentioned equation takes the following form:

µ = exp(ln(ti) + β1X1,i + β2X2,i + . . .+ βkXk,i) + γi (2)

After performing an appropriate test, we also include time fixed effects for
the regression on green patents, while we do not include them in the regres-
sion on brown patents. The formula for the estimation including time fixed
effects is the following:

µ = exp(ln(ti) + β1X1,i + β2X2,i + . . .+ βkXk,i) + γi + ζt (3)
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Finally, to help reduce the risks of spurious relationships, we lag all the ex-
planatory variables by two years.
Our model also includes a set of relevant controls (GDP, GDP per capita and
fuel price), which are not lagged.

4 The data

The present section describes the datasets and the variables used, showcasing
relevant summary statistics and graphical analysis.

4.1 The data sets

The dataset is composed by observations on 35 OECD countries over a 10
year time frame, from 2005 to 2014, resulting in a strongly balanced panel.
Most data come from the OECD iLibrary and Statistics databases, among
which we used:

• OECD Environment Statistics (1), Patents in environment-related tech-
nologies: Technology development by inventor country (OECD ENV-
TECH, 2019);

• OECD Environment Statistics (2), Environmental policy: Environmen-
tal Policy Stringency index (OECD EPS, 2019);

• OECD-STAN, STructural ANalysis database (OECD STAN, 2019) ;

• OECD-ANBERD, Analytical Business Enterprise Research and Devel-
opment database (OECD ANBERD, 2019) ;

• OECD-BTDIxE, Bilateral Trade in Goods by Industry and End-use
database (OECD BTDIxE, 2019)

Along with the OECD datasets, we have employed information retrieved from
the dataset of the International Organization of Motor Vehicle Manufacturers
(OICA, 2019).

4.2 The variables

The dependent variable consists in the number of registered patents in OECD
countries within the automotive sector, divided by type of technology.
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Patents are the OECD recommended measurement approach for eco-innovation,
since they measure technological innovation by definition, focusing on the
output of inventive process. (Oltra et al., 2008b; Haščič and Migotto, 2015)
Further reason to use patent data as proxy for innovation, and specifically for
eco-innovations, is that they can be disaggregated into specific technological
fields, a fundamental feature to study environmental innovation.
Additional motivation derives from their commensurability, possibility to
measure intermediate outputs, wide availability and quantitative nature.
(Haščič and Migotto, 2015)

We have retrieved data on patents in automotive sector from OECD ENV-
TECH (2019), whose focus is on environmental type of technological patents;
the typologies of automotive-specific technological patents are those listed in
Table 2, where they are associated to a class of innovation.

Class of technology Class of Innovation

. Internal Combustion Engine (ICE) BROWN

. Emissions abatement from mobile sources BROWN

. Fuel efficiency-improving vehicle design BROWN

. Hybrid vehicles GREEN

. Electric vehicles GREEN

. Electric charging systems GREEN

. Fuel cell systems GREEN

Table 2: Technologies by eco-innovation class

Based on Aghion et al. (2016)2, these technologies have been grouped in two
categories, according to their green content and innovative purpose. (see
Table 3)

Eco-Innovation Innovation Technology
BROWN incremental & modular ICE, tail technologies,

fuel efficiency
GREEN architectural & radical hybrid, BEV, ECS, fuel cell

Table 3: Technologies by type of innovation & eco-innovation class

2Aghion et al. (2016) actually identifies three types of eco-innovation: green, grey and
brown, but here, for the sake of simplicity, we group technologies in just two categories:
green and brown
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Our first explanatory variables are the so-called Technological Push and the
Demand Pull, that we capture by means of appropriate proxies.
As a proxy for the Technological Push we use the ratio between the total
environmental patents and the total number of patents per country.
Both data for environmental patents and total patents are retrieved from
(OECD ENV-TECH, 2019).
The proxies for the Demand Pull are the number of car sales and the house-
hold expenditures for the car, whose data are retrieved from (OECD BT-
DIxE, 2019).
As a proxy for the Institutional Push/pull we use the Environmental Pol-
icy Stringency Index (EPS), which is a country-specific and internationally-
comparable measure of the stringency of environmental policy. 3

The index is based on the degree of stringency of 14 environmental policy
instruments, primarily related to climate and air pollution.
We consider EPS able to capture the level of policy stringency in the trans-
port sector as it includes a CO2 tax indicator, a NOX tax indicator and a
Diesel tax indicator. Data on EPS are retrieved from (OECD EPS, 2019)

Furthermore, we employ two classical economic indicators, GDP and GDP
Per Capita, as controls for the trends respectively in the supply side and the
demand side.

Finally, we include as control also the Fuel Price, since it is a relevant factor
affecting innovation production in the automotive industry, as shown by sev-
eral empirical works Horbach (2008); Aghion et al. (2016); Barbieri (2016).
Data on GDP and Fuel Price are retrieved from OECD online datasets.

Table 4 contains an exhaustive summary of the variables, with their mea-
surement function, type and role in the regressions.

3Stringency is defined as the degree to which environmental policies put an explicit or
implicit price on polluting or environmentally harmful behaviour.
The index ranges from 0 (not stringent) to 6 (highest degree of stringency) and it covers
28 OECD and 6 BRIICS countries for the period 1990-2012.
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Variable Measure Type Role
GREEN PAT (X4) Number of green patents count dependent v.
BROWN PAT (X3) Number of brown patents count dependent v.
ENVI / TOT PAT Ratio btwn Envi and Total patents count TECH PUSH
CAR SALES number of cars sold count DEM PULL
HH EXP CAR Household Expenditure for Car count DEM PULL
EPS Environmental Policy Stringency count INSTIT
GDP Gross Domestic Product count ECON
GDP P-C Gross Domestic Product Per Capita count ECON
FUEL PRICE Road Fuel Price count ECON

Table 4: The variables

4.3 Descriptive statistics

The data set used in the empirical analysis is a country-level data set, con-
sisting in 350 country-year observations.

Table 5 provides summary statistics about the dependent variables at disag-
gregated level, which are the number of patents in 7 different technological
categories: tail technologies, internal combustion engines, fuel efficiency tech-
nologies, hybrid, battery electric vehicles, electric charging systems and fuel
cells.

INSERT TABLE 5 AROUND HERE

Tail technologies represents the category with the highest number of regis-
tered patents (298.36) on average, followed by internal combustion engines,
ICE, (114.31) and battery electric vehicles, BEVs, (85.69).
Battery electric vehicles also have the maximum number of registered patents
(1833.57), followed by tail technologies (1732.75) and internal combustion en-
gines (1204.75)
All the investigated technologies have a minimum value of patents equal to 0;
moreover the investigated technologies also have very high values of variance,
greater than their mean values.

Table 6 outlines summary statistics about the dependent variables at ag-
gregated level, revealing that, as expected, the average number of brown
technologies is higher than the average number of green technologies.
The variance is always higher than the mean for both the categories of
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patents, revealing the presence of over-dispersed data, which suggest the
use of a negative binomial model.

INSERT TABLE 6 AROUND HERE

Table 7 shows the relevant summary statistics for the explanatory variables,
which include Technology Push, Demand Pull, Institutional Push/Pull and
the economic variables.

INSERT TABLE 7 AROUND HERE

We highlight that the ratio between countries’ green patents and total patents
is on average 10%.
As far as the demand side is concerned, the average number of car sales is
equal to 840.653, while the average household expenditure for a car is equal
to 27.000 US dollar.
Looking at the economic indicators, the average GDP value is 1.322.106 US
dollar, while the average GDP per Capita is equal to 34.629 US dollar. The
average fuel price4 is equal to 1.7 US Dollar.

4.4 Graphical analysis

Figure 1 shows the trends of brown and green technologies in the OECD
automotive industry between 2005 and 2014.
As expected, the initial level of brown patents is much higher than the level
of green patents. However, while the brown patents show a substantial stable
trend with a slight increase over time, green patents display a steep increas-
ing trend until 2011, when they start a sudden sharp decrease.

Figure 2 shows the trend of the different patent typologies over time.
Patents of the so-called “tail technologies” (emission abatement technologies)
display a declining pattern (red line in the graph).
ICE patents (yellow line) show a substantially stable pattern, with a slight
increase over time.
Patents for electric vehicles (light green line) experience a remarkable increase
until 2011, then they slightly decline from 2012 onward.
A similar trend is visible for patents of electric components (violet line),

4Price of premium unleaded 98 RON (litre) gasoline
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which display a rising pattern until 2011, then they slightly decline from
2012 onward.
Patents of Hybrid (green line), fuel efficiency (light blue line) and fuel cell
(pink line) technologies show substantially stable patterns over time.
To sum up, we can observe that among the so-called “brown technologies”
only emission abatement technologies follow a declining trend, while ICE
techs display a stable and slightly increasing trend.
On the other hand, among the so-called “green technologies”, electric vehicles
and components have a rising trend, while the other technological types of
patents show substantially stable patterns.

Figure 1: Brown and Green
Technological Trends

Figure 2: Technological trends by type of technology
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5 Results

5.1 Estimations and interpretation

Table 8 shows the results of the regressions with the Negative Binomial
model. All the estimations include country dummies and the following ex-
planatory variables are lagged by two years: ratio between environmental
and total patents, car sales, share of expenditures for car sale and environ-
mental policy stringency index.
Controls, namely GDP, GDP per capita and fuel price, do not have lagged
values.
Time fixed effects are included in the regression on green patents after an
appropriate test.

INSERT TABLE 8 AROUND HERE

First, we test Hypothesis 1, that is, whether the so-called “technological
push”, proxied by the ratio between environmental and total patents, has re-
duced the number of brown innovations and increased the number of green
innovations in the automotive sector of the OECD countries between 2005
and 2014.
We observe that the ratio between environmental and total patents has a
positive and statistically not significant coefficient with respect to the brown
innovations, implying that there is no statistically significant effect of the
“technological push” on the production of polluting technologies for the time
period considered (2005-2014).
On the contrary, we observe that the ratio between environmental and total
patents has caused a positive and statistically significant effect on green in-
novations, meaning that the “technological push” has induced an increase in
automotive sustainable technologies.
To sum up, the “technological push” has caused a statistically significant in-
crease of green patents, while it did not steer any reduction in the production
of brown patents during the time period considered.

Then, we test Hypothesis 2, that is, whether the so-called “demand pull”,
proxied by the variables car sales and share of expenditures for car purchase,
has caused a decrease in the number of brown technologies and an increase in
the number of the green innovations in the automotive sector of the OECD
countries between 2005 and 2014.
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We find that the variable car sales has caused a statistically significant in-
crease of both brown and green technologies, while the variable share of
private expenditures for car purchase has caused a statistically significant
decrease of brown technologies, while it has no substantial effect on green
technologies.
To sum up, there is some empirical evidence showing that the “demand
pull” has caused a statistically significant increase of green patents through
car sales and a statistically significant decrease of brown patents, via the
share of private expenditures for car purchase.
These results can be explained by the shrinking of the conventional cars mar-
ket, due to its overcrowding and the financial crisis, which severely hit OECD
households between 2008 and 2011, and the growing awareness and demand
for less polluting (brown technologies) or pollution-free (green technologies)
cars, also thanks to the indirect effect of most stringent car regulations.

Finally, we test Hypothesis 3, that is, whether the “institutional push/pull”,
proxied by the Environmental Policy Stringency Index (EPS), has caused a
decrease in the number of brown technologies and a parallel increase of the
green innovations.
We find that EPS has produced a statistically significant increase of brown
patents (+0.28), while it has no significant effect on green patents.
This result can be due to the fact that most of the environmental regulations
enforced during the time period considered have been relatively more “tech-
nology following” than “technology forcing” (Dijk and Yarime, 2010).
In fact, most of the car regulations, especially those promoted in the Eu-
ropean Union, have been intended to encourage the improvement of the
efficiency of the existing conventional (dominant) technology (e.g. EU in-
troduction and evolution of the so-called “EURO standards”), instead of
pushing the development of radical innovations (e.g. US with the California
ZEV Program).

We conclude our analysis of the results by highlighting that while GDP and
GDP-PC has had no statistically significant effect on the production of nei-
ther brown nor green technologies, fuel price stands out as factor that has
had a significant impact on the production of green technologies, producing a
relevant substitution effect. Morevover, the result for the fuel price is consis-
tent with the main findings on the topic in the literature (Aghion et al., 2016).
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5.2 Interpretation of the negative binomial coefficients:
Incidence Rate Ratio

In the negative binomial model of estimation, the regression coefficients are
interpreted as a difference between the logs of expected counts.
Formally, this can be written as follows:

β = log(µx0+1)− log(µx0) (4)

where β is the regression coefficient, µ is the expected count and the sub-
scripts represent a one unit change in the predictor variable.
Thanks to the logarithm properties, the difference of two logs is equal to the
log of their quotients, that is:

log(µx0+1)− log(µx0 = log(µx0+1/µx0) (5)

Therefore, the parameter estimate can be also interpreted as the log of the
ratio of expected counts, introducing the term “ratio” in our estimate inter-
pretation.
Moreover, our count variable can be technically interpreted as a rate: the
number of patents per year. Hence, we could also interpret the regression
coefficients as the log of the rate ratio, introducing the term “rate” in our
estimate interpretation.
Finally, the rate at which events occur is called incidence rate; thus, we are
able to interpret the coefficients also in terms of incidence rate ratio.
In our study, the incidence rate ratio means that if a country experiences an
increase of its explanatory variable by one unit, the rate for the dependent
variables is expected to increase or decrease by a factor given by the IRR
value.
The bigger the IRR is, the larger is the effect of the explanatory variable on
the dependent variable.
At the end of Appendix A, there are tables showing the incidence rate ratio
for brown and green technologies.
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6 Conclusions

In this paper we investigate the impact of the main innovation determinants
on the eco-innovation outcome in the automotive industry.
As innovation determinants, we used proxies of the technology push, demand
pull and institutional push/pull, while we employed patent data to capture
the innovation outcome.
The aim is to verify whether innovation drivers have been able to produce a
decrease in the production of brown patents, while stimulating an increase
of the production of the green patents, favouring the green transition of the
automotive industry towards more sustainable forms of mobility.
Our empirical investigation relies on data retrieved from OECD and OICA
databases and it is based on the implementation of a negative binomial es-
timation model to assess the impact of the above-mentioned determinants,
while controlling for some relevant controls (GDP, GDP P-C and fuel price).
Our results reveal that the technology push plays the most significant role in
increasing the amount of green solutions in automotive (+10.96).
Simultaneously, the demand pull is also key in steering the green transition
of the automotive industry; in fact, the present study shows that the demand
pull has caused a small, but statistically significant increase of green patents
through car sales (0.00018) and a significant decrease of brown patents, via
the share of private expenditures for car purchase (-0.042).
Finally, our empirical investigation shows that the regulations, proxied by
the Environmental Policy Stringency (EPS) index, are a source of the so-
called “institutional lock-in”: in fact, EPS is associated with a statistically
significant increase of brown patents (+0.28) and no substantial effect on the
quantity of green patents.
The study also highlights the role of the fuel price in the green transition of
the automotive sector, where it steers a significant substitution effect.
The main policy implication of this study is the need for more effective eco-
innovation policies, favouring technology-forcing over technology-following
regulations, in order to break the current institutional lock-in.
A more resolved institutional support to non conventional engines would be
key also to drive the automotive industry from a diversity/progressiveness
scenario, where it still evolves along the traditional technological trajectory,
to a rupture scenario, embracing a radically new technological pathway.
This study also opens up stimulating avenues for further research. Further
studies could examine automotive eco-innovation trends in emerging coun-
tries, such as BRICS, where automotive industry is recently booming and
experiencing an acceleration in the development of green tech solutions.
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A Appendix

Table 5: Summary statistics: Dependent Variables -disaggregated-

Variable Mean Variance Min Max N. Obs

ICE 114.31 72577.77 0 1204.75 350

Tail Tech 298.36 285385.5 0 1732.75 170

Fuel Efficiency 16.48 1756.93 0 277 350

Hybrid 33.19 8415.61 0 595 350

BEV 85.69 60964.8 0 1833.57 350

ECS 27.95 7125.91 0 658 350

Fuel Cell 10.69 864.95 0 159 350

Table 6: Summary statistics: Dependent Variables -aggregated-

Variable Mean Variance Min Max N. Obs

Brown technologies 275.7081 306907.1 0 2862.82 350

Green technologies 157.5132 192488.1 0 3202.9 350
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Table 7: Summary Statistics: Explanatory Variables

Variable Mean Variance Min Max N. Obs

Ratio Green/Total patents .101849 .001009 .0242181 .2504784 350

Car sales 840.653 2,065,685 2.113 7,761.592 350

HH Exp. Car 27.51 50.28 7.2 44 290

GDP 1322106 7.11e+12 11048.36 1.75e+07 330

GDP P-C 34,629.75 2.07e08 14.9 101,274.9 350

Fuel price 1.71977 .3137752 0.652 3.295 165
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Table 8: The impact of technology push, demand pull and institutional
push/pull on brown and green patents production

(1) (2)
BROWN TECHS GREEN TECHS

RATIO ENVI/TOT PATENTS -2.197262 10.969465∗∗∗

(2.403756) (3.513629)

CAR SALES 0.000180∗∗ 0.000180∗∗∗

(0.000085) (0.000053)

SHARE HH EXP CAR -0.042732∗∗∗ 0.008875
(0.014980) (0.014543)

EPS 0.286257∗∗ 0.014436
(0.114414) (0.069105)

GDP -0.000041 0.000047
(0.000070) (0.000049)

GDP PC -0.009372 0.086830
(0.056450) (0.063278)

FUEL PRICE 0.147461 1.002103∗∗∗

(0.215972) (0.376695)

Country dummies YES YES

Year dummies NO YES

cons 3.256036∗∗∗ -0.635474
(0.936747) (1.296538)

N 110 110

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 9: Incidence Rate Ratio for brown and green technologies

BROWN TECHNOLOGIES

Variable IRR Std. Err. z Pr> |z|
Ratio Green/Total patents 0.111 0.26 -0.91 0.361

Car sales 1.00018 0.000085 2.12 0.034

HH expenditures car purchase 0.95 0.014 -2.85 0.004

EPS 1.33 0.15 2.50 0.012

GDP 0.999 0.00007 -0.59 0.558

GDP PC 0.99 0.055 -0.17 0.868

Fuel price 1.15 0.25 0.68 0.495

constant 25.94 24.30 3.48 0.001

GREEN TECHNOLOGIES

Variable IRR Std. Err. z Pr> |z|
Ratio Green/Total patents 58073.53 204048.8 3.12 0.002

Car sales 1.00018 0.000053 3.39 0.01

HH expenditures car purchase 1.008915 0.014 0.61 0.542

EPS 1.014 0.070 0.21 0.835

GDP 1.000047 0.000048 0.96 0.335

GDP PC 1.090 0.069 1.37 0.17

Fuel price 2.72 1.02 2.66 0.008

constant 0.529 0.68 -0.49 0.62
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green technological profile: an
unsupervised machine learning

approach 1
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Abstract

The aim of this paper is to track the green technological evolution of OECD
and BRICS countries using green patent data over a 25 year period through
an unsupervised machine learning approach, the so-called Self-Organizing
Map (SOM). The approach allows to cluster countries according to their
green technological similarities, providing an insightful taxonomy.
The results reveal a sharp distinction between a small leading group of large
and rich countries with a relevant green patenting activity and green special-
ization in climate change mitigation technologies, and a mass of relatively
small and poor countries with a very low production of green patents and
a vast range of green specialization profiles, which are however related to
the greening of more traditional domains and sector (railways, oil, soil and
water).
Moreover, our study confirms that most countries’ green specialization pat-
terns tend to be constant over time and that leaders tend to be specialized
in technologies that are still integrated in the old technological regime, with
no change in the technological paradigm.

Keywords : sustainable development, green innovation, machine learning,
self-organizing maps
JEL: Q01



1 Introduction

Climate change and the transgression of several ecological boundaries ask for
urgent action from industry and economy, whose transformation and reform
imply significant costs, which are, however, lower than the costs of inaction
or delay. (Stern, 2008) (Acemoglu et al., 2012)
Several scholars identify the response to the current environmental emer-
gency in a deep socio-technical transformation, a socio-technical paradigm
change, boosted by effective policies pushing in the direction of a sustain-
ability and green growth. (Freeman, 1992; Perez, 2004, 2010; Altenburg and
Pegels, 2012; Mathews, 2013)
This process involves multiple actors (individuals, firms, governments) and
layers (local, national, transnational).
Against this backdrop, we focus on countries, since they are the major re-
sponsible for promoting and coordinating internal and international actions
intended to manage the above-mentioned issues.
In particular, we examine green innovations, which represent one of the most
relevant drivers of a socio-technical transformation geared towards sustain-
ability. (Aghion et al., 2009)
Our study builds upon the national system of innovation approach and the
sustainability-oriented innovation systems (SoIS) method, which consider
(green) innovations as both the engine and the result of complex interac-
tions lead by the national level. (Freeman, 1995; Altenburg and Pegels, 2012)

The aim of this paper is to investigate how OECD and BRICS countries are
tackling the environmental challenges, by tracking their green technological
profiles through the use of patent data for three years: 1990, 2005 and 2015.
Our method consists in an unsupervised machine learning approach, the so-
called Self-Organizing Map (SOM), which allows to group/cluster countries
according to their green technological similarities, providing an insightful
technological taxonomy, which is the object of our analysis.

The results reveal a sharp distinction between a small leading group of large
and rich countries with a high production of green patents and green special-
ization in climate change mitigation technologies, and a mass of relatively
small and poor countries with a very low production of green patents and a
vast array of specializations in their green profile, which are however always
related with the greening of more traditional domains and sector (railways,
oil, soil and water).
Moreover, our study confirms that most countries’ green specialization pat-
terns tend to be constant over time and that leaders tend to be specialized
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in technologies that are still integrated in the old technological regime, with
no change in the technological paradigm

The rest of the papers is structured as follow.
Section 2 outlines the theoretical framework, where we summarize the most
relevant strands of literature on the topic. Section 3 presents the data and
technique used for the study. Section 4 shows and discusses the results, while
section 5 concludes.

2 Theoretical Framework

The emerging answer to the urgent environmental issues at the world level
is the “greening” of economic activities and technologies, with the aim of
decoupling economic growth from resource consumption and environment
pollution, by replacing resource-intensive and polluting industries and tech-
nologies with sustainable ones. (Altenburg and Pegels, 2019)
Some scholars advocate for a new technological and economic paradigm (Free-
man, 1992), geared towards sustainable development and clean technologies,
which is steered by the so-called clean tech revolution. (Pernick and Wilder,
2007)
A techno-economic paradigm consists in ’the set of the most successful and
profitable practices in terms of choice of inputs, methods and technologies and
in terms of organisational structures, business models and strategies’ (Perez,
2010) (p.13). Scholars identify a series of five techno-economic paradigms
ranging from the Industrial Revolution to the last present one, “the age of
information and telecommunication”. (Perez, 2004; Mathews, 2013)
The evolution from one paradigm to another is a long-term societal transfor-
mation, which requires extensive innovations and their widespread adoptions
and it happens for the contextual modification of both society needs and the
underlying technology. (Freeman, 1991) (Perez, 2010)
Milunovich and Rasco (2008) identified in the upcoming clean tech revolu-
tion a transition towards a sixth paradigm, which is partly a fulfilment of the
fifth paradigm, based on IT/ITC, but it is also heavy influenced by renewable
energies and by a more sustainable mode of production. (Mathews, 2013)
The sixth paradigm should challenge the oil-based fourth techno-economic
paradigm, which is responsible for the current carbon lock-in (Unruh, 2000),
that the clean tech revolution is trying to break. (Mathews, 2013)

Since large techno-economic system transition requires both innovation and
a radically new-mode of production Freeman (1996), Aghion et al. (2009)
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argues there exist the need of a large public and private investments in inno-
vation, in particular eco-innovation, in order to turn on the so-called ‘green
innovation machine’. (Aghion et al., 2009)
Aghion et al. (2009), in fact, highlights that the innovation factor cannot be
disregarded in any economic model pursuing a sustainable growth pattern.
For this reason, the term eco-innovation, defined as the new or modified pro-
cesses, practices, systems and products which benefit the environment and
contribute to environmental sustainability (Rennings, 2000), has become in-
creasingly popular, being at the core of countries’ polices, firms’ practices
and scholars’ studies.

The core ideas of these approaches is that for the sixth revolution to take
place, the concept of sustainability should be embedded in any innovation sys-
tem turning any level of the process of innovation in a Sustainability-oriented
Innovation Systems (SoIS) (Altenburg and Pegels, 2012). The SoIS consist
in a strong governance, able to accelerate the development and deployment
of environmentally sustainable technologies, by promoting new types of poli-
cies that help to tackle market failures such as externalities and coordination
failure (ibid.).

By looking at the challenges ahead, we surmise that the this change of
paradigm can take place only at the national level.
In fact, even though “bottom-up” approaches offer fascinating greening pat-
terns and scenarios (Rayner, 2010), they struggle with the fact that, when
bottom-up innovation grow beyond its original niche, it often has to adapt
to mainstream practices and values losing some or even all of its potency.
(Bergman et al., 2010)
Moreover, despite the importance of individual, firm-led and local level ini-
tiatives to tackle environmental challenges like climate change, the transna-
tional nature of such defies requires a coordinated national response, which
the Paris agreement was the most recent attempt.
Hence, a “top-down” perspective, with countries leading the way, still repre-
sents the most credible solution to achieve environmental goals from a policy
makers point of view and the best unit of analysis of the issue from a scholar
point of view.
Countries, in fact, are responsible for promoting investments and increasingly
stringent and coordinated policies able to affect the direction of technological
development at industry-level. (Aghion et al., 2009; Altenburg et al., 2017)
Our study goes in the direction of the national system of innovation ap-
proach, which describes innovation as the result of a complex interaction of
factors at national level. (Malerba, 1993; Chesnais, 1993; Freeman, 1995)
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We now provide an overview of the most important strands of literature
addressing the eco-innovation issue, putting emphasis on its national dimen-
sion. Specifically, we focus on drivers and barriers to eco-innovation as long
as the determinant of its diffusion.

A wide strand of the literature has been investigating the factors affecting
the development of eco-innovations.
Horbach (2008) and Horbach et al. (2012) have explored the role of regu-
latory push/pull, technology push and market pull as determinants of eco-
innovations, finding that the main motivations for eco-innovation are current
and expected regulations, cost savings and customers benefits, along with
the improvement of the technological capabilities (“knowledge capital”) by
R&D.
A conspicuous number of empirical studies focus on the crucial role of regu-
lations in pushing for green innovation. (Hascic et al., 2008; Horbach, 2008;
Horbach et al., 2012; Horbach, 2016)
The first theoretical intuition dates back to Porter and Van der Linde (1995),
who hypothesized, in the “weak” version of the so-called “Porter hypothe-
sis”, that well-designed environmental regulations could spur technological
innovation. This hypothesis has been empirically backed by several studies,
as reported in Lanoie et al. (2011); Ambec et al. (2013).

While most of the studies on the drivers of eco-innovation takes a firm-level
perspective, such as Horbach (2008) and Horbach et al. (2012), there are
some which adopt a country-level approach, with Hascic et al. (2008) being
the first to look at these issues using a panel of countries.

The second main strand of literature pinpoints the barriers to eco-innovation,
which are the so-called “dual externality” issue and the so-called “carbon
lock-in”. (Lybecker and Lohse, 2015; Unruh, 2000)

The “dual externality” issue works as follows. (Lybecker and Lohse, 2015)
First, environmental pollution involves a negative externality as its social
costs may exceed the private costs it entails. Hence, polluters face few mar-
ket incentives to develop greener technologies as society collectively bears the
cost of pollution.
Second, the knowledge required for the development of green technologies
can have the characteristics of a public good, i.e. non-excludability and non-
rivalry. This means that actors can neither be excluded from accessing and
using the good, nor can its use by one actor reduce its availability to any
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other actor.
Hence, knowledge leakages during green technologies development, also re-
duces the incentive for private sector innovation and for the sharing of new
and existing technologies and know-how with others. (Lybecker and Lohse,
2015)
The “dual externality” issue represents a major hurdle to eco-innovation,
which can be addressed by countries by promoting regulations to reduce
negative externalities (fiscal incentives to produce EST) and encourage and
protect the production of green technological knowledge (patent system).

The second greatest barrier to eco-innovation is represented by the so-called
“carbon lock-in”, a notion introduced by Unruh (2000).
Seto et al. (2016) identify three types of “carbon lock-in”, which actually co-
evolve and mutually reinforce each others: technological, institutional and
behavioural.
In fact, the “carbon lock-in” is defined as a process of technological, insti-
tutional and behavioural co-evolution, driven by path-dependent increasing
returns to scale, which creates persistent market and policy failures, inhibit-
ing the development and diffusion of carbon-saving technologies despite their
environmental and economic advantages. (Unruh, 2000; Cecere et al., 2014;
Seto et al., 2016)
The bedrock of the “carbon lock-in” is represented by the existence of the
path dependency, a phenomenon which leads actors promoting or using dirty
technologies in the past, to find more profitable to keep investing in dirty
techs, instead of “going green”.

The third main strand of literature addresses the determinants of eco-innovation
diffusion, which represent another important element for our study, since
for the purpose of a paradigm transition, eco-innovation should be quickly
adopted and diffuse in the society. (Perez, 2010).
Dechezleprêtre et al. (2013) find that the main factors hindering the diffusion
of climate-friendly technologies are the following: lax Intellectual property
regimes, restrictions on international trade, foreign direct investment and lo-
cal technological capabilities.
Once again, it emerges that the role of national policies is of paramount
importance and, furthermore, Dechezleprêtre et al. (2015) highlights the im-
portance of environmental regulation even in the cross-border diffusion of new
technology, while Verdolini and Bosetti (2017) focus on the impact of domes-
tic environmental policies on the inward technology transfer of cleaner inno-
vation from abroad, finding that environmental policy contributes to attract-
ing foreign cleaner technology options, depending on the nature of the im-
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plemented policy instruments. In particular, market-based approaches posi-
tively impact technology transfer to both OECD and non-OECD economies,
while non-market based approaches have at best only a weak effect in OECD
countries. (Verdolini and Bosetti, 2017)

All in all, the national level plays a key role in pushing for the disruption of
the technological “Business as Usual” and the promotion of a progressively
green growth, through green industrial policies.
Green industrial policies, in fact, aim at accelerating the structural trans-
formation towards low-carbon, resource-efficient economy, in ways that also
enable productivity improvements. (Altenburg et al., 2017).
This may end in diverging national technological trajectories, reflecting soci-
etal preferences, factors endowments, power constellation and policy frame-
works. (Altenburg and Pegels, 2012)
In fact, some countries, because of their institutional choices, along with their
economic development and industrial policies, are “early movers” in the field
of the green economy, pioneering several types of green technologies.
For example, most of the OECD countries are forerunner in the production
and adoption of EST, with about 90% of green technologies originating in
OECD countries. (OECD, 2017)
On the other side, there are the so-called “latecomers”, those countries, which
are lagging behind in the promotion of a sustainable development and which
are now facing the trade-off between ’greening now’ or ’cleaning up later’.
(Altenburg and Pegels, 2019)
This trade-off is particularly true and strong for a special group of countries,
the so-called BRICS (Brazil, China, India, Russia and South Africa), which
have to manage fast rates of economic growth and serious environmental
challenges. These countries are providing different answers to the “sustain-
ability challenge”, as highlighted by Kılkış (2016).

The aim of this paper is to investigate how OECD and BRICS countries are
tackling the environmental challenge, by tracking their evolution in terms of
green technological over the time period between 1990 and 2015.
Our primary objective is to cluster countries by their green technological out-
put, in order to outline their green technological profile, by observing their
green techs quantity and specialization.
Lastly, we compare the positioning and the evolution of the countries in the
clusters with respect to their green technological profile in order to identify
possible common patterns at technological level.
In order to do so, we focus on patenting activities in green technology, using
OECD data on green patents. (OECD, 2016)
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In particular, we focus on a specific set of technologies, that are those in-
tended to the “climate change mitigation”, since they are considered the
main drivers of the technological paradigm change/shift, which we suppose
is underway.

As far as the methodology is concerned, most of the economic literature is
build around the concept of hypotheses testing and econometrics as the tool
to perform the analysis. (Varian, 2014)
However, economics of innovation has a long standing tradition in the use of
taxonomy, the classification of observations, to organize an otherwise chaotic
bulk of information.
Notable example is the Pavitt’s taxonomy, which groups sectors according to
their source of knowledge for the inventive activity. (Pavitt, 1984)
Another interesting example is offered by Malerba and Orsenigo (1996),
whose sectoral patterns of innovation base differences in the innovative qual-
ity on properties of the technology. Source of inspiration is also Ergas (1987),
which groups countries according to the type on innovation policy.

Thus, this paper is an attempt to map the pattern of green inventive activity
by using an unsupervised machine learning approach, in order to provide a
useful technological taxonomy for OECD and BRICS countries based on their
environmental patents. Furthermore, by analyzing the emerging taxonomy,
we try to verify whether a new technological paradigm geared towards climate
mitigation solutions is in the making.
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3 Data & Empirical Strategy

Our study employs OECD-based data and an unsupervised machine learning
approach, based on the Self-Organizing Map technique (SOM), of which we
provide a description in the next paragraphs.

As far as data are concerned, we employ patent data, which are not only used
a valid proxy for eco-innovation (Haščič and Migotto, 2015), they are also
considered a factor that can spur the development of environmental-sound
technologies (ESTs), by addressing the negative externality that arises from
the imperfect appropriability of knowledge. (Lybecker and Lohse, 2015)

3.1 The datasets

The dataset is composed by data retrieved from the section of the OECD
iLibrary devoted to the environment-related technological patents by coun-
try. (OECD iLIbrary, 2019)
The dataset counts 46 technological variables (45 categories of environmental
technological patents plus the total number of ’green’ patents) for 41 coun-
tries (36 OECD countries + 5 BRICS countries) over 3 years (1990, 2005,
2015).
Table 5.1 offers an overview of the environmental technologies encompassed
by this study, with their IPC class. The list is based on OECD (2016), which
identifies a selection of environmental-related technologies, divided in three
main areas:

• environmental management

• water-related adaptation

• climate change mitigation

OECD (2016) contains a broader list of technologies, encompassing +100
categories and subcategories of environmental-related patents, from which
we choose a selection of 45 macro-categories of environmental technological
patents in the 3 main areas, in order to help the algorithm to perform a
meaningful clustering based on these selected inputs.

Our study also uses data on GDP, GDP per capita, population and CO2 per
capita, which are retrieved from OECD online archives. (OECD, 2019)
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3.2 Pattern recognition and SOM

Traditionally, the taxonomic approach to epistemology, that is to create a
partition of empirical observations based on their characteristics, has been
carried on by a careful qualitative evaluation of data made by the researcher.
In the words of most philosophers of science, classification is a mean to ’bring
related items together’ (Wynar et al., 1985, p. 317), ”putting together like
things’ (Richardson, 1935) (Svenonius, 2000, p. 10), ’putting together things
that are alike’ (Vickery, 1975, p. 1) (see Mai (2011) for a review).
Of course, the antecedent of this dates back in the Aristotelian positive ap-
proach to science, which describes and compare vis á vis the Plato’s norma-
tive approach (Reale, 1985).
More recently, the availability of large data-set made a qualitative approach
to the creation of taxonomic possible only at the expense of a sharp a-priori
reduction of the information in data.
However, at the same time algorithm and computational power allow for
an automatic elaboration of the information with the purpose of creating
a taxonomic. This approach is known as pattern recognition, unsupervised
machine learning or clustering and has been introduced in science by the an-
thropologists Driver and Kroeber (1932) and the pyschologists Zubin (1938)
and Tyron (1939).
Typically, unsupervised algorithm are fed by rich data-sets in term of both
variables and observation and require as main output the number of groups
to be identified from the researcher. On this basis as output, they pro-
vide a classification which minimize within-group variation and maximize
between-groups variation, usually captured by some measures of distance in
the n-dimensional space of the n variables.
Although among these methods in social science the use of K-means algo-
rithm MacQueen et al. (1967) is the most widespread, it has some weaknesses
such as a possible dependence by initial condition and the risk of lock-in in lo-
cal optima. More recently, the Self-Organized Maps (SOM) (Kohonen, 1990)
gained attention as a new method in pattern recognition since they improves
on K-means and present other advantages such as a clear visualization of the
results.
SOM are based on artificial neural networks and consist in algorithm that
allows to explore datasets and a creating spatially organized internal rep-
resentations of the various features of input signals (Kohonen, 1990). The
results of this self-organization process are different types of maps, which
allows to capture similarities and complementary among the elements used
as input. The Self-Organizing Map (SOM) has advantages for information
extraction (i.e., without prior knowledge) and the efficiency of presentation
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(i.e., visualization), which make it suitable in several disciplines, from ecolog-
ical sciences (Chon, 2011) (Mostafa, 2010) to economics (Carlei and Nuccio,
2014) (Nuccio et al., 2019).
Since algorithms of pattern recognition’s process information without any a-
priori hypothesis, the educated ex-post evaluation of the output is a crucial
phase in the application of unsupervised modelling and, for this reason, an
easy visualization became pivotal.
Here, we do not present the details of the algorithm since they are easy to
access in other works, but we rather guide the reader in the interpretation
of the results. Specifically, we employs SOM to cluster OECD and BRICS
countries based on series of features which capture their green technological
endowments overtime, proxied by the number of patents.

4 Results

4.1 Clusters description and interpretation

The SOM input consists of 46 (45+1) variables summarized in table 5.1,
which describes the technological green profile of the country.
Since the SOM make use of an Euclidean distance in the 46-dimensional
space, we scale and center all the variables to make this operational mean-
ingful. The observations represent 41 countries (36 OECD and 5 BRICS)
described in 3 years (1990, 2005, 2015) for a total of 123 country-year obser-
vations.

As a further input of the algorithm, we define the topology of the output
that is in this case a 3X3 grid, for a total of nine groups 1.
Figure 4.1 on the left shows the 9 clusters and the distributions of the obser-
vations. Please recall, that the SOM output is not only a simple partition of
the observations, but also a projection of the between-clusters distance on a
2-dimensional surface in which neighbours clusters are more similar to each
other than with other distant ones.
Figure 4.1 on the right shows the distance between clusters: for instance the
upper right cluster 9 is isolated from the neighbour clusters, while the two
blue clusters in the bottom-right corner are very similar.

1the number of groups in the classification is arbitrary and depends on the research
question. There exist algorithms which suggest an optimal number of clusters based on
information measure, but the educated guess of the researcher is usually the best choice
(Carlei and Nuccio, 2014) (Ambrosino et al., 2018)
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Figure 4.1: Clusters (left) and Neighborhod distance (right)

An unsupervised exercise requires the ex-post educated interpretation of the
clusters.
To do that, we characterize clusters with some additional variables of inter-
ests, which were not included as SOM input and help clusters’ description.
Figure 4.2 shows the clusters’ average values for all these variables: total
number of green patents, GDP, GDP per capita, population and CO2 emis-
sion per capita.
Moreover, we provide information about clusters’ green technological profile,
captured by the number of green patents in each technological category and
shown by figure 4.3 and clusters’ green specialization, measured as Revealed
Technological Advantage 2 and shown by figure 4.4 .
Table 4.1 summarizes the clusters’ features, with the first two columns spec-
ifying for each cluster the three most prominent technologies for its charac-
terization and the three less important ones, according to the SOM input.

By looking at the above-mentioned figures, we see that Cluster 9, which
includes only U.S. and South Korea in recent years (see table 4.2), clearly
stands up as the most green one along any dimension of green technological
classes together with Cluster 8 which always follows as the second. Cluster
8 groups Germany, Japan and China. The proximity on the map does not
come as a surprise since in the SOM grid similar clusters are neighbors.
Cluster 8 and 9 are also the clusters with the highest average of both total
green patents and GDP per capita. Cluster 9, despite grouping rich countries
with a high intensity of green technology, it is also the one with the largest
emission per capita in C02.

2RTAij =
n/

∑
nij∑

j

nij/
∑
i

∑
j

nij
, where n is the number of green patents
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Along this dimension also the neighbor cluster 6 show a very high level of
emission. Cluster 6 groups only countries from cluster 8 and 9 in previous
decades. Cluster 6 together with cluster 3 is also the only cluster with strong
orientation towards nuclear energy.
At the opposite side of the map, cluster 1 and 2 (Finland, Canada, Italy
and UK) are characterized by high GDP per capita, a high green patents
intensity and a lower emission per capita than cluster 8 and 9. Similarly
to cluster 9, cluster 1 and 2 are characterized by a specialization in carbon
capture and storage technologies.
The remaining clusters are not characterized by any clear vocation.
All in all, this description captures the distinction between a leading group of
large and rich countries with a high production of green patents and a mass
of relatively small and poor countries with a very low production of green
patents . Germany, Japan, U.S. and Korea are the leader in the produc-
tion of green technologies. France and China dominate the nuclear energy,
while UK, Canada, and Italy stay behind nevertheless the good performance.

The picture is much more scattered if we analyze the specialization profile,
which is measured with the Revealed Technological Advantage index and
shown by figure 4.4.
France and China co-evolved towards a specialization in nuclear energy and
in technology related to the processing of minerals.
Cluster 8 and 9 are specialized in all technologies related to climate mitiga-
tion and environmental monitoring, while all the other clusters show a vast
array of specialization profiles in their green profile, but always related with
the greening of more traditional areas (rail, oil, soil and water).

The picture sketched by these data does not rest a case for the evolution
towards a sixth revolution or a change of paradigm.
In fact, even cluster 9 which is developing most of the green technology is
mostly focus on on carbon capture and storage (CCS) technology, which
represent an advanced and sophisticated solution for the mitigation climate
change, but yet integrated in the fossil fuel based technological regime.
In fact, CCS technology involves capturing the CO2 produced during fossil-
fuel combustion and storing it in underground geologic reservoirs instead of
emitting it into the atmosphere’. (Stephens, 2006) CCS is certainly a tech-
nology capable of delivering significant emissions reductions from the use of
fossil fuels in power generation and industrial applications and when com-
bined with bioenergy, CCS can also remove CO2 from the atmosphere and
generate “negative emissions” (a potentially critical option for limiting future
temperature increases to 2C or below). (MIT-EDU, 2019)
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However, CCS technologies are not really new, since projects injecting CO2
for enhanced oil recovery (EOR) have been operating in the United States
since the early 1970s, while the Sleipner CCS Project in Norway 3 has marked
its 20th year of operation in 2016. (MIT-EDU, 2019)
But what is more important from our qualitative view point, CCS do not
help breaking world’s fossil fuel dependence, as they act as an end-of-pipe
solution part of the dominant technological regime.

To conclude, we would like to underline the absence of a cluster of countries
with a strong vocation in renewable energy generation or energy efficient
technologies, which could be considered a technological leader in the fight to
tackle the climate change challenge and in the pursue of the technological
paradigm change.

Given the features and the characterization of the clusters, in the next para-
graph we investigate the composition of the clusters, by looking at the coun-
tries inside them and their evolution over time.

3Sleipner was the world’s first commercial CO2 storage project, which was built in
Norway in order to evade the 1991 Norwegian CO2 tax. (MIT-EDU, 2019)
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Figure 4.2: SOM features
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Figure 4.3: Cluster Technological Profile

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4
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(e) Cluster 5 (f) Cluster 6

(g) Cluster 7 (h) Cluster 8

(i) Cluster 9
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Figure 4.4: Cluster Specialization Profile

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4
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(e) Cluster 5 (f) Cluster 6

(g) Cluster 7 (h) Còuster 8

(i) Cluster 9
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4.2 Countries’ evolution

In this section we intend to analyze countries’ evolution across the clusters
over time, in order to understand the technological dynamics occurred over
the period considered.
By inspecting table 4.2, which summarizes the cluster attribution of each
country, we observe that:

• in 1990, the most populated cluster is cluster 4, with 26 countries,
including 3 BRICS countries (Brazil, India and South Africa), followed
by cluster 7, with 10 countries (all OECD countries)

• in 2005, the most populated cluster is cluster 4, with 18 countries,
including 2 BRICS (Brazil and South Africa), followed by cluster 5,
with 8 countries (all OECD)

• in 2015, the most populated cluster is cluster 4, with 18 countries,
including 1 BRICS country (South Africa), followed by cluster 5, with
11 countries, including 2 BRICS (Brazil and India)

We notice that not only a large group of countries belongs to cluster 4 in
every time periods, but that the very same countries belonging to cluster 4
in 1990 keep belonging to cluster 4 also in 2005 and 2015.
This means that a considerable number of countries shows a persistent voca-
tion for green technologies related to maritime and waterways transport, air
transport and production and process of final industrial or consumers goods,
which are the most prominent technologies of cluster 4.
The persistent vocation in these sectors can be explained by the fact that
these sectors are characterized by a relatively slow innovation pattern (in avi-
ation see Lee and Mo (2011)), fueled by an incremental type of innovation,
which is less costly and favours a long-term commitment to the development
of technologies in these fields.
By cross-checking table 4.2 and figure 4.2, we learn that countries of cluster
4 are relatively small countries (low population), with low GDP per capita
(with exception of Luxembourg), but high GDP (they are all OECD, but
South Africa). We find that these countries’ features can be related to the
type of innovation (incremental) that is most common in the technological
sectors, which countries of cluster 4 are characterized by.
The other countries follow peculiar patterns of evolution over time.
Among the OECD countries, we observe some countries moving from one
cluster to another between 1990 and 2005, where they remain also after 10
years. This means that after a change in their green technological vocation,
they show a persistent vocation in specific green sectors.
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This kind of pattern is followed by Germany (cluster 6 in 1990, then cluster
8 in 2005 and 2015), Japan (cluster 3 in 1990, then cluster 8 in 2005 and
2015) and USA (cluster 6 in 19990, then in cluster 9 in 2005 and 2015).
In particular, Germany and Japan show a persistent vocation in green tech-
nologies related to road transport from 2005 onward, while USA are charac-
terized by technologies devoted to the carbon capture and storage (CCS) of
GHG.
These green vocation can be clearly attributed to Germany and Japan’s long
tradition in automotive sector and USA’s consolidated know-how in oil sector
(CCS is a technology originally employed during fossil fuels extraction).
We also observe that France and China have moved together from cluster 5
(vocation in water supply and carbon capture and storage) in 1990 to cluster
3 in 2015 (vocation in nuclear energy and processing of minerals). Among
BRICS countries, we observe South Africa maintaining the same green tech-
nological vocation over time (cluster 4 in 1990, 2005 and 2015), while the
other BRICS are less constant in their green technological vocation.
In fact, we see Brazil starting in cluster 4 (1990 and 2005) and ending up in
cluster 5 (2015), while Russia starting in cluster 5 (1990) and ending up in
cluster 3 (2005 and 2015).
China follows an even more peculiar technological patterns, since it shifts
from cluster 5 (1990), to cluster 8 (2005), ending up in cluster 3 (2015).
Similarly, India moves from cluster 4 (1990) to cluster 7 (2005), to reach
cluster 5 (2015).
This means that a part from South Africa, BRICS countries are still not char-
acterized by peculiar and specific green technologies (at least not until 2015).

Figure 4.5 shows the evolution of the countries across the clusters between
1990 and 2015.

We conclude by highlighting that the clustering exercise we performed has
represented and mirrored quite well the real technological evolution of the
countries over the time period considered.
In fact, if we focus, for example, on Germany, we find that its move from
cluster 3 (vocation in green technologies related to nuclear energy, rail trans-
port and process of minerals) to cluster 8 (vocation in green technologies
related to road transport, air pollution abatement and energy sector) consis-
tently represents the historical evolution of the country’s green technological
vocation.
In fact, in the 90s Germany is characterized by a consolidated nuclear energy
sector, a long-standing industrial tradition in the process of minerals (mining
activities in the Ruhr region) and a rail transport sector in expansion thanks
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to the “fall of the wall” in 1989; these national features are consistent with
the most prominent green technologies highlighted by the SOM for Germany
in 1990.
Germany has also a long-standing technological tradition in the automotive
sector, which starts to turn green in the early 2000s, mostly due to the in-
troduction and progressive tightening of national and European cars and air
regulations.
Tightened environmental regulations are also the trigger of the development
of air pollution abatement technologies and technological advancements in
the energy sector, that are the other two fields where Germany show a voca-
tion in 2005 and 2015 in, according to the SOM analysis.
Moreover, if we look at the specialization of clusters 3 and 8 we also find that
Germany has a persistent specialization in transport technologies.
Looking at the BRICS, Brazil’s SOM-based vocation in fuels of non fossil
origin in 2015 mirrors Brazil’s technological commitment to agrofuels, which
is a forerunner of.
SOM also reveals that Brazil is characterized by technologies in sectors such
as maritime and waterways, rail transport and production/process of final
goods in 1990, while CO2 capture and storage and water availability tech-
nologies in 2005 and 2015.
This shows that our SOM analysis based on patents data does not simply
confirm well-know technological vocations and specializations, but also pro-
vides new pieces of information about the country’s technological vocation
and specialization.

Finally, we would like to underline that there can be some discrepancies
between the SOM-based technological vocation and specialization and the
actual countries’ technological endowments; this can be due to the fact that
our study relies on patents, which are a good proxy for innovation develop-
ment, but a weak one for innovation adoption and deployment.
Therefore, there are some countries which lag or lack in terms of green in-
novation development, but they are advanced in terms of green technologies
adoption and deployment, which would require other types of proxy to be
captured (e.g. number of green technologies installed).
This is the case of Netherlands or Denmark, whose longstanding tradition
in renewable energy technologies, which have been widely adopted on their
territory, does not emerge from our patent-based study.
On the whole, our study offers a reliable technological taxonomy based on
SOM-generated clusters and an interesting picture of countries green tech-
nological evolution, which blaze the trail to further investigations on world
green innovation patterns.
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Figure 4.5: Evolution of countries green profile from 1990 to 2015
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Table 4.2: Countries within the clusters over time

Cluster
Countries

1990 2005 2015

SOM 1 Belgium, Finland Finland

SOM 2 Canada, France Canada, Italy

UK UK

SOM 3 Japan Russia France, China

Russia

SOM 4 Belgium, Chile Chile, Estonia Chile, Czech

Czech, Denmark Greece, Hungary Estonia, Greece

Estonia, Finland Iceland, Ireland Hungary, Iceland

Greece, Hungary Latvia, Lithuania Ireland, Latvia

Iceland, Ireland Luxembourg, Mexico Lithuania, Luxembourg

Israel, Latvia New Zealand, Portugal New Zealand, Norway

Lithuania, Luxembourg Slovak, Slovenia Portugal, Slovak

Mexico, New Zealand Turkey, Brazil Slovenia, Turkey

Norway, Portugal South Africa South Africa

Slovak, Slovenia

Spain, Turkey

Brazil, India

South Africa

SOM 5 Canada, France Australia, Austria Australia, Austria

China, Russia Denmark, Italy Belgium, Denmark

Netherlands, Spain Netherlands, Poland

Sweden, Switzerland Spain, Sweden

Switzerland, Brazil

India

SOM 6 Germany, USA

SOM 7 Australia, Austria Czech, Israel Israel, Mexico

Italy, Korea Norway, Poland

Netherlands, Poland India

Sweden, Switzerland

UK

SOM 8 Germany, Japan Germany, Japan

Korea, China

SOM 9 USA Korea, USA
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4.3 Technological evolution and paradigm change

In this section we conclude our reasoned analysis of the technological evo-
lution occurred in the time period considered, pursuing the goal of evalu-
ating whether countries are moving and pushing towards the technological
paradigm change identified by several scholars. (Freeman, 1992; Perez, 2004,
2010; Pernick and Wilder, 2007; Milunovich and Rasco, 2008; Mathews, 2013)

First, we highlight the presence of a conspicuous group of countries with
a persistent green specialization in technologies aimed at tackling climate
change in transports, with focus on maritime, waterways and air transport,
and in the production and process of final goods (countries in cluster 4).
This means that, since from 1990, a relevant group of countries, which are
characterized by low population, low GDP per capita, but high GDP (see fig-
ures ??), have been developing technologies contributing to the reduction of
anthropic impact on climate of relevant sectors (air and maritime transport
are among the most polluting sectors, as well as production of final goods)
and this trend has endured over time.
This trend could imply that small countries with low GDP per capita have
set off in a pathway towards the adoption of a more sustainable technological
paradigm, even though a more insightful analysis of the types of innovation
involved (incremental vs radical) would be advisable in order to reach better
conclusions.
Moreover, as shown by figures 4.2, countries in cluster 4 have a low level
of total green patents, which can be an indicator of a slow-paced transition
towards green technologies.
On the other hand, countries with the highest level of green patents produc-
tion (countries in cluster 9), that are USA (2005, 2015) and Korea (2015)
(see figure 4.2 and table 4.2), show a vocation in carbon capture and storage
(CCS) technologies, which implies that a large share of their green inventive
activity is devoted to the development of this kind of technologies.
In spite of the fact that CCS are included among the technologies intended
to the climate change mitigation (OECD, 2016), CCS represent technologies
that are complementary to those aimed at the energy production using fossil
fuels, which incarnate the fossil fuel-based technological paradigm.
In fact, CCS technology involves capturing the CO2 produced during fossil-
fuel combustion and storing it in underground geologic reservoirs instead of
emitting it into the atmosphere. (Stephens, 2006)
Moreover, countries with the second highest level of total green patents (coun-
tries in cluster 8), that are Germany (2005, 2015), Japan (2005, 2015) and
China (2005), show a green vocation in road transport, pollution abatement
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and enabling technologies for energy, which are sectors characterized not only
by radical types of innovation, but also and often by incremental and mod-
ular types of innovation (e.g. refinements of the ICE, end-of-pipe solutions).
(Aghion et al., 2016)
This implies that their green vocation is oriented towards innovations that
are not much disruptive with respect to the incumbent technology, but that
can be part of the dominant technological regime.

Therefore, we conclude that there is a current transition toward more sus-
tainable technological solutions, but countries that are leading the way in
terms of green patents productivity are specialized in technologies that are
still integrated in the old technological regime. Hence, based on these data,
we are not facing a technological paradigm change.
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5 Conclusion

The world is being challenged by an increasing number of environmental de-
fies (climate change, natural resources depletion, pollution), which ask for
an urgent answer from the countries, in terms of new economic paradigm,
innovative technological trajectories and bold policy choices.
The aim of this paper is to investigate how OECD and BRICS countries are
tackling the environmental challenge, by tracking their green technological
profile over time.
Our research is based on an unsupervised machine learning approach, which
consists in the use of an algorithm to group countries according to their
’green’ technological similarities.
By running the so-called Self-Organizing-Map (SOM) algorithm on data
about 46 technological variables (45 categories of environmental technological
patents plus the total number of green patent) over 41 countries (36 OECD
countries + 5 BRICS countries) for 3 years (1990, 2005, 2015), we obtain 9
clusters of countries, each of which has a specific green specialization, alias
green technological profile. We also use data on countries features, such as
GDP, GDP per capita and CO2 per capita, in order to better characterize
clusters.
The analysis of the clusters highlights that there is a quantitative distinction
between a leading group of large and rich countries (Germany, Japan, U.S.
and Korea) with a high production of green patents and a mass of small and
relatively poor countries with a very low production of green patents.
The picture is much more scattered if we analyze the specialization profile.
It emerges that clusters 8 and 9 are characterized by technologies related to
climate mitigation and environmental monitoring, while all the other clusters
show a vast array of specialization profiles in their green profile, but always
related with the greening of more traditional areas (rail, buildings, soil and
water).
By analyzing countries’ technological evolution inside the clusters, our SOM-
based study substantially confirms the real technological evolution experi-
enced by the countries, whose green specialization tends to show constant
patterns over time, apart from those of BRICS, which display rather variable
patterns of specialization over time.
Finally, the picture sketched by these data does not rest a case for the evolu-
tion towards a sixth revolution or a change of paradigm. In fact, even cluster
9, which is developing most of the green technology, is mostly focused on
carbon capture and storage (CCS) technology, which represent an advanced
and sophisticated solution for the mitigation climate change, but yet inte-
grated in the fossil fuel based technological regime.

27



Hence, we conclude that, based on these data, we capture the presence of
a transition toward more sustainable technological solutions, but we are not
facing a drastic change in the technological paradigm.

As many other empirical investigations, also this one presents some caveats
to be mentioned.
First, in order to obtain meaningful results from the algorithm, our study
does not include all 141 green technological categories, as in the dataset from
OECD (2016).
This prevent us from performing a more grain-refined research on the type
of countries’ green specialization. However, wider technological classes allow
a better grasp of countries’ technological trends.
Second, we analyze patents, which are good proxy for innovation develop-
ment, but a weak one in terms of innovation adoption and deployment.
Therefore, there can be some discrepancies between the SOM-based techno-
logical specializations and the actual countries’ technological endowments,
due to the fact that there are some countries lag or lack in terms of green
innovation development, while they are advanced in terms of green technolo-
gies adoption and deployment, which would require other types of proxy to
be captured (e.g. number of green technologies installed).
This is the case of Netherlands or Denmark, whose long-standing tradition
in renewable energy technologies, which have been widely adopted on their
territory, does not emerge from our patent-based study.

Our study intends to contribute to the literature of economics of innovation
by providing a kind of technological taxonomy thanks to a clustering exercise.
However, our study could offer interesting sparks also for an analysis oriented
towards the geography of innovation. (Breschi and Malerba, 2001)
We conclude by hoping that this study can encourage further investigations
on the answers provided by the “socio-techno-institutional complex” to the
environmental challenge, by means of classical econometric methods as well
as innovative research tools.

28



T
ab

le
5.

1:
T

ec
h
n
ol

og
ic

al
ty

p
es

w
it

h
th

ei
r

co
rr

es
p

on
d
in

g
IP

C
cl

as
s

T
y
p

e
of

T
ec

h
n

o
lo

g
y

IP
C

C
la

ss

1
.
E
N
V
IR

O
N
M

E
N
T
A
L

M
A
N
A
G
E
M

E
N
T

v
a
ri
o
u
s

1.
1

A
IR

P
O

L
L

U
T

IO
N

A
B

A
T

E
M

E
N

T
va

ri
o
u

s

1.
2

W
A

T
E

R
P

O
L

L
U

T
IO

N
A

B
A

T
E

M
E

N
T

va
ri

o
u

s

1.
3

W
A

S
T

E
M

A
N

A
G

E
M

E
N

T
va

ri
o
u

s

1.
4

S
O

IL
R

E
M

E
D

IA
T

IO
N

B
0
9
C

1.
5

E
N

V
IR

O
N

M
E

N
T

A
L

M
O

N
IT

O
R

IN
G

F
0
1
N

1
1
,

G
0
8
B

2
1
/
1
2
-1

4

2
.
W

A
T
E
R
-R

E
L
A
T
E
D

A
D
A
P
T
A
T
IO

N
v
a
ri
o
u
s

2.
1

D
E

M
A

N
D

-S
ID

E
T

E
C

H
N

O
L

O
G

IE
S

(w
at

er
co

n
se

rv
at

io
n

)
va

ri
o
u

s

2.
2

S
U

P
P

L
Y

-S
ID

E
T

E
C

H
N

O
L

O
G

IE
S

(w
at

er
av

ai
la

b
il
it

y
)

va
ri

o
u

s

3
.
C
L
IM

A
T
E

C
H
A
N
G
E

M
IT

IG
A
T
IO

N
v
a
ri
o
u
s

3
.1

C
L
IM

A
T
E

C
H
A
N
G
E

M
IT

IG
A
T
IO

N
R
E
L
A
T
E
D

T
O

E
N
E
R
G
Y

Y
0
2
E

(g
e
n
e
ra

ti
o
n
,
tr
a
n
sm

is
si
o
n

o
f
d
is
tr
ib
u
ti
o
n
)

3.
1.

1
R

E
N

E
W

A
B

L
E

E
N

E
R

G
Y

G
E

N
E

R
A

T
IO

N
Y

0
2
E

1
0

3.
1.

2
E

N
E

R
G

Y
G

E
N

E
R

A
T

IO
N

F
R

O
M

F
U

E
L

S
O

F
N

O
N

-F
O

S
S

IL
O

R
IG

IN
Y

0
2
E

5
0

3.
1.

3
C

O
M

B
U

S
T

IO
N

T
E

C
H

S
W

IT
H

M
IT

IG
A

T
IO

N
P

O
T

E
N

T
IA

L
(e

.g
.

u
si

n
g

fo
ss

il
fu

el
s,

b
io

m
a
ss

,
w

a
st

e,
et

c.
)

Y
0
2
E

2
0

3.
1.

4
N

U
C

L
E

A
R

E
N

E
R

G
Y

Y
0
2
E

3
0

3.
1.

5
E

F
F

IC
IE

N
T

E
L

E
C

T
R

IC
A

L
P

O
W

E
R

Y
0
2
E

4
0

G
E

N
E

R
A

T
IO

N
,

T
R

A
N

S
M

IS
S

IO
N

O
R

D
IS

T
R

IB
U

T
IO

N

3.
1.

6
E

N
A

B
L

IN
G

T
E

C
H

N
O

L
O

G
IE

S
Y

0
2
E

6
0

T
ec

h
n

o
lo

g
ie

s
w

it
h

p
o
te

n
ti

a
l

o
r

in
d

ir
ec

t
co

n
tr

ib
u

ti
on

to
em

is
si

on
s

m
it

ig
at

io
n

3.
1.

7
O

T
H

E
R

E
N

E
R

G
Y

C
O

N
V

E
R

S
IO

N
O

R
M

A
N

A
G

E
M

E
N

T
S

Y
S

T
E

M
S

R
E

D
U

C
IN

G
G

H
G

E
M

IS
S

IO
N

S
Y

0
2
E

7
0

3
.2

C
A
P
T
U
R
E
,
S
T
O
R
A
G
E
,
S
E
Q
U
E
S
T
R
A
T
IO

N
O
R

D
IS

P
O
S
A
L

O
F

G
R
E
E
N
H
O
U
S
E

G
A
S
E
S

Y
0
2
C

3.
2.

1
C

O
2

C
A

P
T

U
R

E
O

R
S

T
O

R
A

G
E

(C
C

S
)

Y
0
2
C

1
0

3.
2.

2
C

A
P

T
U

R
E

O
R

D
IS

P
O

S
A

L
O

F
G

R
E

E
N

H
O

U
S

E
G

A
S

E
S

O
T

H
E

R
T

H
A

N
C

O
2

Y
0
2
C

2
0

29



T
y
p

e
of

T
ec

h
n

o
lo

g
y

IP
C

C
la

ss

3
.3

C
L
IM

A
T
E

C
H
A
N
G
E

M
IT

IG
A
T
IO

N
R
E
L
A
T
E
D

T
O

T
R
A
N
S
P
O
R
T
A
T
IO

N
Y
0
2
T

3.
3.

1
R

O
A

D
T

R
A

N
S

P
O

R
T

Y
0
2
T

1
0

3.
3.

2
R

A
IL

T
R

A
N

S
P

O
R

T
Y

0
2
T

3
0

3.
3.

3
A

IR
T

R
A

N
S

P
O

R
T

Y
0
2
T

5
0

3.
3.

4
M

A
R

IT
IM

E
O

R
W

A
T

E
R

W
A

Y
S

T
R

A
N

S
P

O
R

T
Y

0
2
T

7
0

3.
3.

5
E

N
A

B
L

IN
G

T
E

C
H

N
O

L
O

G
IE

S
IN

T
R

A
N

S
P

O
R

T
Y

0
2
T

9
0

3
.4

C
L
IM

A
T
E

C
H
A
N
G
E

M
IT

IG
A
T
IO

N
R
E
L
A
T
E
D

T
O

B
U
IL

D
IN

G
S

Y
0
2
B

3.
4.

1
IN

T
E

G
R

A
T

IO
N

O
F

R
E

N
E

W
A

B
L

E
E

N
E

R
G

Y
S

O
U

R
C

E
S

Y
0
2
B

1
0

3.
4.

2
E

N
E

R
G

Y
E

F
F

IC
IE

N
C

Y
IN

B
U

IL
D

IN
G

S
va

ri
o
u

s

3.
4.

3
A

R
C

H
IT

E
C

T
U

R
A

L
O

R
C

O
N

S
T

R
U

C
T

IO
N

A
L

E
L

E
M

E
N

T
S

IM
P

R
O

V
IN

G
T

H
E

R
M

A
L

P
E

R
F

O
R

M
A

N
C

E
O

F
B

U
IL

D
IN

G
S

Y
0
2
B

8
0

3.
4.

4
E

N
A

B
L

IN
G

T
E

C
H

N
O

L
O

G
IE

S
IN

B
U

IL
D

IN
G

S
Y

0
2
B

9
0

3
.5
.
C
L
IM

A
T
E

C
H
A
N
G
E

M
IT

IG
A
T
IO

N
R
E
L
A
T
E
D

T
O

W
A
S
T
E
W

A
T
E
R

T
R
E
A
T
M

.
/
W

A
S
T
E

M
A
N
A
G
E
M

E
N
T

Y
0
2
W

3.
5.

1
W

A
S

T
E

W
A

T
E

R
T

R
E

A
T

M
E

N
T

Y
0
2
W

1
0

3.
5.

2
S

O
L

ID
W

A
S

T
E

M
A

N
A

G
E

M
E

N
T

Y
0
2
W

3
0

3.
5.

3
E

N
A

B
L

IN
G

T
E

C
H

N
O

L
O

G
IE

S
W

IT
H

A
P

O
T

E
N

T
IA

L
O

R
IN

D
IR

E
C

T
C

O
N

T
R

IB
U

T
IO

N
T

O
G

H
G

M
IT

IG
A

T
IO

N
Y

0
2
W

9
0

(e
.g

.
b

io
-p

ac
ka

g
in

g
)

3
.6

C
L
IM

A
T
E

C
H
A
N
G
E

M
IT

IG
A
T
IO

N
R
E
L
A
T
E
D

T
O

T
H
E

P
R
O
D
U
C
T
IO

N
O
R

P
R
O
C
E
S
S
IN

G
O
F

G
O
O
D
S

Y
0
2
P

3.
6.

1
T

E
C

H
N

O
L

O
G

IE
S

R
E

L
A

T
E

D
T

O
M

E
T

A
L

P
R

O
C

E
S

S
IN

G
Y

0
2
P

1
0

3.
6.

2
T

E
C

H
N

O
L

O
G

IE
S

R
E

L
A

T
IN

G
T

O
C

H
E

M
IC

A
L

IN
D

U
S

T
R

Y
Y

0
2
P

2
0

3.
6.

3
T

E
C

H
N

O
L

O
G

IE
S

R
E

L
A

T
IN

G
T

O
O

IL
R

E
F

IN
IN

G
A

N
D

P
E

T
R

O
C

H
E

M
IC

A
L

IN
D

U
S

T
R

Y
Y

0
2
P

3
0

3.
6.

4
T

E
C

H
N

O
L

O
G

IE
S

R
E

L
A

T
IN

G
T

O
T

H
E

P
R

O
C

E
S

S
IN

G
O

F
M

IN
E

R
A

L
S

Y
0
2
P

4
0

3.
6.

5
T

E
C

H
N

O
L

O
G

IE
S

R
E

L
A

T
IN

G
T

O
A

G
R

IC
U

L
T

U
R

E
L

IV
E

S
T

O
C

K
O

R
A

G
R

O
-A

L
IM

E
N

T
A

R
Y

IN
D

U
S

T
R

IE
S

Y
0
2
P

6
0

3.
6.

6
T

E
C

H
N

O
L

O
G

IE
S

IN
T

H
E

P
R

O
D

U
C

T
IO

N
P

R
O

C
E

S
S

F
O

R
F

IN
A

L
IN

D
U

S
T

R
IA

L
O

R
C

O
N

S
U

M
E

R
P

R
O

D
U

C
T

S
Y

0
2
P

7
0

3.
6.

7
C

L
IM

A
T

E
C

H
A

N
G

E
M

IT
IG

A
T

IO
N

fo
r

S
E

C
T

O
R

-W
ID

E
A

P
P

L
IC

A
T

IO
N

S
Y

0
2
P

8
0

3.
6.

8
E

N
A

B
L

IN
G

T
E

C
H

N
O

L
O

G
IE

S
W

IT
H

A
P

O
T

E
N

T
IA

L
C

O
N

T
R

IB
U

T
IO

N
T

O
G

H
G

E
M

IS
S

IO
N

S
M

IT
IG

A
T

IO
N

Y
0
2
P

9
0

T
O
T
A
L

G
R
E
E
N

P
A
T
E
N
T
S

a
ll

30



References

Acemoglu, D., Aghion, P., Bursztyn, L., and Hemous, D. (2012). The
environment and directed technical change. American economic review,
102(1):131–66.

Aghion, P., Dechezleprêtre, A., Hemous, D., Martin, R., and Van Reenen,
J. (2016). Carbon taxes, path dependency, and directed technical change:
Evidence from the auto industry. Journal of Political Economy, 124(1):1–
51.

Aghion, P., Hemous, D., and Veugelers, R. (2009). No green growth without
innovation. Bruegel Policy Brief-2009/07.

Altenburg, T., Assmann, C., Rodrik, D., Padilla, E., Ambec, S., Esposito,
M., Haider, A., Semmler, W., Samaan, D., Cosbey, A., et al. (2017). Green
industrial policy: Concept, policies, country experiences.

Altenburg, T. and Pegels, A. (2012). Sustainability-oriented innovation
systems–managing the green transformation. Innovation and development,
2(1):5–22.

Altenburg, T. and Pegels, A. (2019). Latecomer development in a “greening”
world.

Ambec, S., Cohen, M. A., Elgie, S., and Lanoie, P. (2013). The porter
hypothesis at 20: can environmental regulation enhance innovation and
competitiveness? Review of environmental economics and policy, 7(1):2–
22.

Ambrosino, A., Cedrini, M., Davis, J. B., Fiori, S., Guerzoni, M., and Nuc-
cio, M. (2018). What topic modeling could reveal about the evolution of
economics. Journal of Economic Methodology, 25(4):329–348.

Bergman, N., Markusson, N., Connor, P., Middlemiss, L., and Ricci, M.
(2010). Bottom-up, social innovation for addressing climate change. Energy
transitions in an interdependent world: what and where are the future social
science research agendas, pages 25–26.

Breschi, S. and Malerba, F. (2001). The geography of innovation and
economic clustering: some introductory notes. Industrial and corporate
change, 10(4):817–833.

31



Carlei, V. and Nuccio, M. (2014). Mapping industrial patterns in spatial
agglomeration: A som approach to italian industrial districts. Pattern
Recognition Letters, 40:1–10.

Cecere, G., Corrocher, N., Gossart, C., and Ozman, M. (2014). Lock-in and
path dependence: an evolutionary approach to eco-innovations. Journal
of Evolutionary Economics, 24(5):1037–1065.

Chesnais, F. (1993). The french national system of innovation. National
innovation systems: A comparative analysis, pages 192–229.

Chon, T.-S. (2011). Self-organizing maps applied to ecological sciences. Eco-
logical Informatics, 6(1):50–61.

Dechezleprêtre, A., Glachant, M., and Ménière, Y. (2013). What drives the
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Essay 3.
Smart cities and sustainable

mobility: the effect of a smart
and sustainable mobility policy

on urban air quality in Paris
region



Abstract

As urban air pollution continues to reach warning levels and an increasing
number of urban areas embrace the “smart city” paradigm, sustainable mo-
bility gains a central role for cities to become “green” and truly “smart”.
Paris, as one of the leading world smart cities, is engaged in the promotion
of global and local commitments to sustainability, including an ambitious
package of mobility policies, which are transforming the city in a laboratory
of a new kind of urban mobility.
The paper aims at investigating the impact of a Paris’ innovative sustainable
urban mobility policy, the electric car- sharing service Autolib, on air quality
in Paris region.
In order to detect a possible variation of urban air pollution trends due to
the introduction of this service, we use a “Difference in Difference” model,
whose application is partially backed by a preliminary graphical analysis.
The empirical results shows that Autolib has had a negative and statistically
significant impact on PM10, the most representative urban air pollutant, cor-
responding to a greater than 12% cut of the average level of the pollutant.
Similar results are found for other 2 key urban air pollutants: NOx and NO2.
Some robustness checks, based on the use of alternative pollutant indicators,
provide further support to the study.
These findings suggest that the availability of the electric car-sharing service
in Paris region has contributed to induce a shift in transport modes, reduc-
ing the number of circulating private cars, thus cutting the emissions and the
concentrations of key urban pollutants, with benefits for the environment and
human health.

Keywords : environmental sustainability, smart mobility, policy evaluation
JEL: O30, Q55



1 Introduction

Traffic and its pollution represent a huge issue for cities and metropolitan
centers, since they affect urban air quality (environmental effects) and the
quality of life of citizens and cities’ visitors (health effects).

The transport sector is responsible for a large proportion of urban air pollu-
tion. (WHO, 2019)
In particular, transport is a significant and growing contributor to particu-
late air pollution; in fact, road transport is estimated to be responsible for
up to 30% of particulate emissions (PM) in European cities and up to 50%
of PM emissions in OECD countries. (WHO, 2019)
Besides particulates, namely PM10 and PM2.5, other relevant transport-
related air pollutants are ground-level ozone (O3), nitrogen oxides (NOx),
nitrogen dioxides (NO2), carbon monoxide (CO), together with carbon diox-
ide (CO2) and methane (CH4), which are strong greenhouse gases. (WHO,
2019)
The adverse effects on health of the air pollutants have been deeply inves-
tigated (Krzyżanowski et al., 2005), with several short-term and long-term
studies revealing that exposure to air pollutants, such as airborne particu-
late matter and ozone, is associated with increases in mortality and hospital
admissions due to respiratory and cardiovascular disease. (Brunekreef and
Holgate, 2002)
Moreover, the scientific uncertainty about the presence of a threshold con-
centration, below which no effects on health are likely, makes the exposure
to such pollutants more dangerous, even at low levels. (Brunekreef and Hol-
gate, 2002)

Paris and its big surrounding metropolitan area suffer from systematic traffic-
borne air pollution and its related human health impacts.
Despite a declining trend of some key air pollutants during the period 2007-
2017, the concentrations keeps being problematic for most of the pollutants
(AirParif, 2019) and the health consequences are serious.
In fact, among 100 major urban areas worldwide, Paris has ranked 27th in
population and 17th in the number of deaths attributable to transportation
emissions in 2015, meaning that the health burden from transportation emis-
sions in Paris is disproportionately heavy. (Anenberg et al., 2019)
As a result, Paris has had the ninth-highest fraction of deaths from air pol-
lution attributable to transportation emissions in 2015, being among the ten
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worst cities worldwide. (Anenberg et al., 2019) 1

On the other hand, Paris is engaged to become a smart and sustainable
city, with the current administration promoting and supporting several local
plans and international commitments, aimed at tackling the most urgent ur-
ban environmental issues, among which, the transport-related air pollution
emergency gains a primary role.
With the aim of pursuing a smart and sustainable mobility, Paris city is de-
veloping and implementing a series of innovative policies, devoted to address
the environmental externalities of the mobility.
First of all, the city has recently started to gradually ban diesel vehicles
(2016), in order to totally phase them out by 2024.
Moreover, the officials responsible for the urban transport policy are planning
a complete exit from combustion engine vehicles, or fossil-energy vehicles, by
2030.
Besides these “command and control” measures, the city is also involved in
the creation and extension of pedestrian areas, 20km/h & 30 km/h zones,
which represent “soft” interventions, yet giving a significant contribution to
the lowering of polluting emissions.
Among the “soft and smart” policies adopted by the city to promote sustain-
able mobility solutions, there is the deployment and diffusion of an electric-
car sharing service, the so-called Autolib, which has been introduced, first in
Europe and worldwide, in 2011.

The aim of the paper is to investigate the impact of this “soft and smart”
policy, that is the introduction of the electric car-sharing service Autolib in
Paris region, on a selection of air quality indicators (PM10, NOx and NO2)2.
By using environmental data from AirParif and data retrieved from Autolib
and local administrative websites, we apply a Difference in Difference esti-
mation model to examine the variation of air pollution trends in treated and
untreated zones of Paris region, after the introduction of the Autolib service,
while controlling for other relevant mobility policies and factors.
By doing so, the study finds that Autolib is an effective instrument, able to
reduce the annual average pollution of 3 key air pollutants, namely PM10,
NOx and NO2, which results to diminish respectively by 10%, 12% and 27%,
with respect to their average.

1The ten cities are, in order, Milan, Rotterdam, Turin, Stuttgart, Mexico City, Leeds,
Manchester, London, Paris, and Cologne. (Anenberg et al., 2019)

2Some investigations have been carried out also on PM2.5 and Tropospheric Ozone
(O3), but lack of data prevented from conducting any reliable empirical analysis with
these indicators
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These results have relevant policy implications, since they show that the
promotion of a soft and smart mobility policy, taking the form of the in-
troduction of an innovative sustainable mobility service, namely Autolib, is
proved to be beneficial for the environment, helping to pursue urban sustain-
ability.
This makes advisable to support such measures, which encourage the volun-
tary use of sustainable means of transport, in order to achieve urban envi-
ronmental and health quality goals.

The rest of the paper is structured as follows.
Section 2 outlines the theoretical framework, introducing the concept of ex-
ternalities related to urban mobility, their evaluation methods, the types of
policy intervention available to tackle them and some study-cases evaluating
mobility policy effectiveness.
Section 3 present the mobility policy examined and the hypothesis of the
current study, while section 4 and 5 describe respectively data and the em-
pirical model, through which test the above-mentioned hypothesis.
Section 6 shows and discusses results, while section 7 provides some robust-
ness check and section 8 concludes.
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2 Theoretical framework

2.1 Road transports & externalities

Road transports, especially automobile-related transports in urban areas,
produce negative externalities, which consist in the social costs of trans-
ports, occurring when the marginal external costs of transport born by the
whole urban community exceed private costs of transportation. (Calthrop
and Proost, 1998)
The main externalities produced by car transportation are congestion, ac-
cidents, noise, local air pollutants and greenhouse gases, with the last two
elements representing the so-called environmental externalities of transporta-
tion.
Foster (1974) actually identifies 13 specific local forms of adverse environmen-
tal effects due to urban transport alone, among which, air pollution plays a
key role.
The main transport-generated air pollutants affecting urban areas are Par-
ticulate Matter with a dimension equal to/below 10 micron and Particulate
Matter with dimension equal to/below 2.5 micron, which originate from the
combustion process of the internal combustion engines and the use of wheels
and blacktop by cars.
Further significant air pollutants are represented by Nitrogen Oxides and Ni-
trogen Dioxide, which are mainly originated from fuel combustion.
They are both precursors of Tropospheric or “ground-level” Ozone, another
relevant transport-related air pollutant, which is known to be a key factor in
chronic respiratory diseases, such as asthma, and also to damage ecosystem
structures and functions. (WHO, 2019)

2.2 Environmental externalities & the internalization
issue

Transports’ environmental externalities basically leads to market failure in
providing environmentally harmless transportation, since transport users, in
particular private car users, do not have the incentives to fully bear all the
costs of their chosen mode of transport.
In fact, road transports deal with resources which are public, such as clean
air, which is an example of perfect public good (non-excludable and non-rival)
or quasi-public, such roads, which represents a congestible good (excludable,
but partially non-rival). (Perman et al., 2003)
As a consequence, the purely market-based management of transports tends
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to be inefficient and under-optimal, since each transport’s consumers is un-
willing or unable to bear the full costs of a car-oriented transportation mode.
This causes a need for policy intervention and internalization instruments,
in order to fully take into account the environmental costs of transport.
However, also an institutional transport management can fall into failure,
the so-called regulation failure, which is due to the fact that institutional
manipulation of transport provision often does not take fully into account
environmental costs. (Button, 1990)

2.3 Environmental externalities & policy interventions

We now examine the main regulatory instruments that policy makers have
in their tool kit in order to manage transport environmental externalities.
There are three different routes to tackle transport’s environmental external-
ities: assignment of property rights, pollution taxes or eco-friendly subsidies,
and the so-called “command and control” measures.
The solution of the assignment of property rights represent the classical Coase
approach, which is used when the environmental externalities are caused by
the absence of markets and it consists in the bargaining between the parties
and the production of an efficient level of the externality.
With this approach, pollution production becomes efficient since the marginal
value of additional production to the polluter equals the marginal dis-benefit
to the affected party. (Button, 1990)
An example of practical solution based on the Coase approach is represented
by the so-called “cap-and-trade” systems, used to regulate environmental ex-
ternalities in the energy sector.
The main shortcomings of the Coase approach are associated with non-
excludability of the public goods, the high transaction costs and the free
riders incentives, which make the efficient bargaining unlikely.
An effective and efficient bargaining is also made difficult by the presence of a
bargaining asymmetry between transport users, who form clearly identifiable
groups and possible lobbies and those affected by environmental degradation,
who are dispersed and also belonging to future generations.
The solution to this issue can be represented by the transfer of resources from
the wider population to transport sector, by funding large scale investments
for road transports and redesigning of urban areas.
A different approach to address environmental externalities is the one pro-
posed by Pigou, which consists in imposing taxes or promoting subsidies,
with the aim of aligning the private cost and demand functions, so that they
reflect the full social costs and benefits.
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Fullerton and West (2000) highlights that, despite individual car’s emissions
cannot be measured reliably enough to impose a Pigouvian tax, a second-
best combination of taxes (on gas, size, vintage) and subsidies (to buy small
cars or to scrap the old ones) can help achieving welfare improvements from
a zero-tax scenario.
Congestion charges are also an example of taxes imposed at urban level, in
order to try to make car-users pay the full cost of their day trips to the city
centres.
The main shortcomings of the so-called Pigouvian approach are represented
by the fact that this approach is informationally demanding and it faces pos-
sible regulatory failure in its implementation. (Button, 1990)
In fact, since the size and the scope of taxes and subsidies are determined by
governments, and because of their imperfect knowledge of the market, the
outcome is likely to be inefficient.

Both the Coase and the Pigouvian approaches belong to the so-called “incentive-
based” economic instruments aimed at addressing and correcting the problem
of transport externalities. (Santos et al., 2010)
The alternative set of economic instruments is represented by the so-called
“command-and-control” measures, which involve the specification of stan-
dards for environmentally adverse activities, such as technological standards,
emission or fuel standards.
Also this solution is informationally demanding and faces the possibility of
regulatory failure.

There exist also a further category of instruments, the so-called “soft solu-
tions”, consisting in sustainable and smart mobility measures, such as car-
sharing, electric-car-sharing services, bike-sharing and electric bike sharing,
which are offered by the policy-makers to provide alternative options to usual
transport modes.
These solutions, along with bike lanes and low speed streets can be consid-
ered part of the large-scale investments aimed at reshape urban mobility and
geography. (Croci and Rossi, 2014)
All the above-mentioned instruments can be used separately or together, but
their implementation is being increasingly necessary to effectively tackle the
problem of transport externalities.
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2.4 Urban transport policy evaluation

Policy evaluation is a crucial part of the transport management and several
studies have been carried out to evaluate the effectiveness of the main urban
transport policies.
The literature on transport policy evaluation divides in two main strands:
one examining the policy impact on urban welfare, the other focusing on
policy impact on urban environmental quality.
On the welfare side, Proost and Van Dender (2001) discovers that regulation
of emission technology and of fuel efficiency does not lead to welfare gains,
while transport pricing policies yield substantial gains for the urban areas.
More recently, Mayer and Trevien (2017), evaluates the impact of the ex-
tension of urban rail transport in Paris on its employment and population
growth, finding that the opening of new regional rail stations caused a sig-
nificant rise in employment in the municipalities connected to the network,
while it did not produce any effect on overall population growth.
On the environmental side, Safonov et al. (1999) provides an intriguing simu-
lation study predicting urban mobility impacts on urban air quality in Brus-
sels Capital region, based on two possible policy scenarios.
The first scenario, the so-called “Business as Usual” one, entailing no intro-
duction of any sustainable mobility policy in the region, outlines a growth of
traffic and fuel consumption with a subsequent increase of the CO2 and PM
emissions.
The second scenario, the so-called “voluntarist” one, entailing the introduc-
tion of a series of measures and policies aimed at reducing private cars traffic
in the region, forecasts a substantial decrease of traffic, fuel consumption and
emissions (CO2, PM, SO2).
Davis (2008) offers an interesting econometric insight of the effect of the in-
troduction of driving restrictions on air quality in Mexico City.
The study, in fact, estimates the environmental impact of the introduction of
the urban traffic program “Hoy No Circula”, based on an alternate number
plate system, finding no evidence that the driving restrictions have improved
air quality, which on the contrary experienced a worsening due to a “rebound
effect”.

Besides Davis (2008), there has been almost no relevant econometric study
investigating the impact of specific urban mobility policies on urban air qual-
ity.
The present paper aims at filling this gap in the literature, being the first one
to provide a preliminary econometric appraisal of the impact of an electric
car-sharing service on urban air quality.

7



3 Hypothesis development

Paris city, together with its surrounding municipalities, has been the first
European and world city to introduce in 2011 a private-public electrical car-
sharing service, which has registered an increasing number of users and has
been active under the name Autolib, until August 2018.
Hence, this paper comes timely to evaluate the impact of this service on
Paris air quality, since the service’s main goal was to promote the shift from
the use of private polluting cars to the employment of shared clean vehicles,
reducing the number of circulating polluting vehicles and the traffic-borne
polluting emissions.

Here below, the hypothesis that the paper aims to test.

Hypothesis 1 The impact of Autolib on PM10
The first hypothesis of the paper aims at investigating whether the introduc-
tion of the electric car-sharing service Autolib, a “soft” sustainable mobility
policy, has had an impact on air quality in the area of Paris/Ile de France,
causing a reduction specifically of PM10 levels.

Hypothesis 2 The impact of Autolib on NOx
The second hypothesis of the paper aims at investigating whether the in-
troduction of the electric car-sharing service Autolib, a “soft” sustainable
mobility policy, has had an impact on air quality in the area of Paris/Ile de
France, causing a reduction specifically of NOx levels.

Hypothesis 3 The impact of Autolib on NO2
The third hypothesis of the paper aims at investigating whether the introduc-
tion of the electric car-sharing service Autolib, a “soft” sustainable mobility
policy, has had an impact on air quality in the area of Paris/Ile de France,
causing a reduction specifically of NO2 levels .

Sections 4 and 5 respectively describe the data and the model of estimation.
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4 Data

The present section describes the dataset and the variables used, providing
relevant summary statistics and graphical analysis.

4.1 Dataset

Our dataset is the result of the match of three separate data sources: Air-
Parif, Autolib and Paris Ma Ville.
We firstly use data from AirParif (2019), an online dataset with the statistics
and trends of the main urban pollutants recorded in the area of Paris, from
the early 90s to the current years.
We also use data from Autolib website, the official website of Paris electric
car-sharing service, providing information on the electric cars and parking
stations available within the service in the Paris region.
We also employ data retrieved from Paris Ma Ville website and other local
agencies web portals, in order to construct the covariates of our study.
The dataset is a panel, composed by 286 observations distributed on 22 se-
lected monitoring stations, taken from 2005 to 2017.

4.2 The variables

4.2.1 Dependent variables

For the dependent variables, we use the following proxies of the urban air
quality:

• Particulate Matter less than 10 micron (PM10 ),

• Nitrogen Oxides (NOx ),

• Nitrogen Dioxides (NO2 )

• Tropospheric or ground-level Ozone (O3 ).

Then, we select as relevant indicator for the above-mentioned pollutants their
annual average level.
As PM10 indicator, in fact, we use the annual average quantity of PM10,
whose limit value is set at 40 µg/m3 and its quality target is set at 30 µg/m3.3

3according to French and European environmental rules -see AirParif (2019)-
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The NOx indicator corresponds to the annual average quantity of NOx, whose
maximum annual value is set at 30 µg/m3.4

The NO2 indicator corresponds to the annual average quantity of NOx, whose
maximum annual value is set at 40 µg/m3.5

The pollutants are measured by AirParif monitoring stations, located in dif-
ferent neighborhoods, namely arrondissments, of Paris region.
Table 1 shows the list of the monitoring stations and their location, by de-
partment and arrondissment.
A geographical overview of the Île de France and its department and ar-
rondissments is also available at the end of the paper in Figures 3 and 4

4.2.2 Explanatory variable

The independent variable under investigation is represented by Autolib, the
private-public electric car-sharing service, introduced in the Paris region in
2011.
This variable is a dummy, taking value 1, when the service is working in the
arrondissments where a AirParif monitoring station is located, and value 0
when it is not.
Table 1 shows the list of the arrondissments, where Autolib has been acti-
vated, with respect to the monitoring stations of AirParif.
Autolib is considered active with respect to the AirParif monitoring station,
if the electric car-sharing service is working in the arrondissment where the
AirParif station is located.

Data on Autolib electric car-sharing stations have been retrieved from the
official Autolib website.

4according to French and European environmental rules -see AirParif (2019)-
5according to French and European environmental rules -see AirParif (2019)-
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Box 4.1 AUTOLIB’: a brief history
Autolib’ is an electric car sharing service, which was inaugurated in Paris, in
December 2011.
The Autolib’ system was a follow-up to Paris’ successful Velib’ bike sharing
scheme, whose operations began in 2007.
The scheme introduced a fleet of all electric cars, called Bluecars, for public
use on a paid subscription basis, employing a citywide network of parking
and charging stations.
The system’s electric cars were supplied by the Bolloré industrial group, as
the result of a collaboration with the Italian automotive firms Cecomp and
Pininfarina.
Construction of the Autolib’ stations began in mid-2011, and 66 of the
scheme’s Bolloré Bluecars were deployed for a two-month preliminary trial
period between October and December 2011.
The system entered service on 5th December 2011, with an initial fleet of
250 Bluecars and 250 Autolib’ rental stations serving the city of Paris and
18 surrounding communities (96 in 2016), grouped into the syndicate of as-
sociated collectivities “Autolib’ Métropole”.
At the scheme’s inception, car availability was a problematic issue, as more
Parisians than expected subscribed to the service.
By July 2012, 650 parking and charging stations had been deployed around
Paris and the 46 communes participating in the scheme, and by February
2013 there were 4,000 charging points.
The program’s user base grew from 6,000 subscribers at the end of December
2011 to 27,000 in July 2012, and reached 37,000 by early October 2012, of
which 13,000 had an annual subscription.
By July 2014, Autolib’ had 2,500 operational vehicles and over 150,000 sub-
scribers, and its cars had covered a cumulative mileage of over 30,000,000
km (19,000,000 mi) since the scheme’s introduction.
As of 3 July 2016, 3,980 Bluecars had been registered for the service, and
the scheme had more than 126,900 registered subscribers.
In addition to charging its own vehicles, the Autolib’ scheme has been of-
fering charging services for private owners of electric cars and motorcycles,
providing to customers the so-called “recharge” fee option.
On the wave of the success of the Paris experience, in early 2013, the Bolloré
Group announced plans to launch a similar car sharing service in Lyon and
Bordeaux, but under a different brand name and with no cost to the cities.
In July 2018 the scheme has ceased to operate in Paris, because of the end
of the Bolloré contract (and absence of profitability of the service).
The city of Paris, in conjunction with four different mobility operators (Ada,
Communauto, Drivy and Ubeeqo), is launching now Mobilib’, a car-sharing
service, including electric and plug-in hybrid cars.
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4.3 Covariates

The first covariate is Vélib, the public bike-sharing service, introduced in the
Paris region in 2007.
The variable is a dummy, taking value 1, when Vélib service is active around
the monitoring station, while value 0 when it is not.
As controls, we also use two variables, represented by 20 km/h zones and
30 km/h zones, which are two political measures, respectively introduced in
2008 and in several different periods.
They consist in the introduction of urban areas characterised by lower speed-
limits for cars, along with pedestrian and bike priority lanes.
The variables take the form of two dummies, taking value 1, when the mon-
itoring station is located within an arrondissment where cars cannot exceed
20 km/h or 30 km/h, while they take value 0, when any more stringent
speed-limit is enforced in the station’s arrondissment.
The last covariate is represented by the traffic restriction zones, the so-called
“Zones à Circulation Reduite”, ZCR, which consists in a measure, introduced
in 2017, aimed at excluding old and polluting vehicles from traffic in certain
city areas.
The variable ZCR is a dummy, taking value 1, when the station lies within
an arrondissment covered by the measure and the policy is enforced, while it
takes value 0, when the station is out of the zones interested by the measure
or the policy has not been implemented yet.

4.4 Descriptive statistics

4.4.1 Summary statistics

The dataset used in the empirical analysis is a station-level dataset, consist-
ing in 286 station-year observations.

Table 2 provides summary statistics about the dependent variables, which
are the environmental indicators measuring the average level of key air pol-
lutants: PM10, NOx and NO2.

INSERT TABLE 2 AROUND HERE

PM10 has an average value of 27.2 µg/m3, which is slightly below the critical
value of 30 µg/m3. Nitrogen Oxides have a mean value of 80.77 µg/m3, while
the threshold value is set at 30 µg/m3.
Nitrogen Dioxides have a mean value of 38.06 µg/m3, a slightly higher value
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than the threshold value set at 30 µg/m3; NO2 also has the highest number
of observations (268).

4.4.2 Graphical inspection: parallel trends and absolute trends

We firstly graphically inspect the data on air pollutants to test the parallel
trends assumption, which represents the qualitative prerequisite for the ap-
plication of the Difference in Difference (DinD) model of estimation.
The parallel trend assumption entail that pollutants show a similar, “paral-
lel”, trend on average, before the introduction of the policy, between treated
and untreated, while a divergent trend on average, after the introduction of
the policy, between treated and untreated.
Examining Figure 1, we do not observe the presence of the expected parallel
trends for any of the pollutants.
By contrast, Figure 1 show a divergent trend of PM10 between treated
(TRUE) and untreated (FALSE) before the introduction of the policy in
2011, while a surprising parallel trend, between treated (TRUE) and un-
treated (FALSE), after 2011.
Similar pattern evolution shows up also for NOx and NO2.
Hence, the parallel trend assumption graphically fails to hold for each of the
pollutants used as proxy for urban air quality.

As a further preliminary test for the Difference in Difference model, we also
graphically inspect the absolute trends of the pollutants before and after the
introduction of the Autolib service in 2011, in order to verify whether the
pollutants show any general pattern before and after the introduction of the
treatment in 2011.
Figure 2 shows that some of the pollutants experience a general decline after
the introduction of the policy in 2011.
In particular, PM10 displays a declining trend starting right after 2011, as
shown by part a) of Figure 2.
On the contrary, Part b) of Figure 2 shows that NOx has a substantially
constant pattern before and after the policy implementation.
Part c) of Figure 2 displays that NO2 has a slightly declining absolute trend
before the policy implementation and a steeper declining trend right after
the year of the policy implementation.
To conclude, our graphical inspection of the absolute trends of the pollutants
provides some qualitative support to the implementation of a DinD model.
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Figure 1: Parallel Trend Plots for PM10, NOX and NO2
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Figure 2: Average annual trends by pollutant
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5 Empirical model

The study investigates the impact of the introduction of the electric car-
sharing service, Autolib, on air quality, which is measured by monitoring
stations in some of the most relevant arrondissments of the Paris region.
(See Table 1)
We use as dependent variable, the annual average concentration of the fol-
lowing key air pollutants: PM10, PM2.5, NOx, NO2 and O3.
We implement a “Difference in Difference” (DinD) model, which entails tak-
ing the difference between the average pollutant trend in the treated stations
and the average pollutant trend in the untreated stations, before and after
the introduction of the policy measure. We perform the DinD analysis for
each type of pollutant.

The DinD model takes the following basic form :

PollutAnnAvit = β0 + β1Post2011 + β2Policy + δ0Post ∗ Policy + εit (1)

PollutAnnAv is the annual average level of the pollutant, measured in each
of the 22 monitoring stations.
Post2011 correspond to a dummy equal to 1, when the year is 2011 or after
2011 and 0 otherwise.
Policy is a dummy equal to 1, when the Autolib service is active and 0 oth-
erwise.
Post*Policy is a an interaction term between Post2011 and Policy, taking
value 1, when the year is equal or after 2011 and Autolib is active, while 0
otherwise.

In order to control for possible annual trends in weather conditions, which
could affect pollution trends, we introduce time fixed effects, with the DinD
model taking the following form:

PollutAnnAvit = β0+β1Post2011+β2Policy+δ0Post∗Policy+αt+εit (2)

where αt is the time fixed term.

We finally control also for station and department fixed effects, producing
the following form of the DinD model:

PollutAnnAvit = β0+β1Post2011+β2Policy+δ0Post∗Policy+αt+γi+θj+εit
(3)

where γi stands for the stations fixed term.
where θj stands the departments fixed term.
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6 Results

The results of the econometric estimations testing Hypothesis 1 are reported
in Table 3.

INSERT TABLE 3 AROUND HERE

The first column presents the baseline estimations, testing the impact of Au-
tolib on PM10 annual average concentration, without any control.
The coefficient of the DinD term, the interaction between Autolib and Post
2011, is negative and statistically significant.
In column (2), we show the extended version of the model, which includes ad-
ditional controls: Vélib, the bike-sharing service, zone20 and zone30, which
are zones with pedestrian and bike priority, along with speed-limitations.
The negative and significant effect of Autolib is confirmed also in this setting.
In column (3), we show the results of the model including time controls, find-
ing a persistent negative and significant coefficient of the DiD term.
It means that, even when controlling for possible year-based interference,
which can be caused by particular yearly weather or traffic conditions, the
effect of Autolib on PM10 still remains and it is negative.
In columns (4) and (5), we further extend the set of control variables, includ-
ing station (4) and department (5) controls: we keep finding a negative and
significant coefficient of the DiD term.
In this final setting, the introduction of Autolib has reduced PM10 average
level by 3.367 points, which correspond to a 12% decrease of the pollutant
with respect to its average level.

We, then, test Hypothesis 2 and 3, by running additional estimations over
NOx and NO2 pollutants, the results of which are reported in Tables 4 and 5.

Column (1) of Table 4, presents the baseline estimations, testing the impact
of Autolib on NOx annual average concentration, without any control.
The effect is large (-226.776), negative and statistically significant.
Column (2) of Table 5 shows the results of an extended model, which in-
cludes the above-mentioned controls: Velib, the bike-sharing service, zone20
and zone30, which are zones with pedestrians and bikes priority, along with
speed-limitations. The Autolib effect is a bit smaller than in the baseline
model, but still negative and significant.
Column (3) of Table 5 provides the estimations of the model including time
controls, finding a persistent negative and significant coefficient of the DiD
term. It means that, even when controlling for possible year-based interfer-
ence, which can be caused by particular yearly weather or traffic conditions,
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the effect of Autolib on NOx still remains and it is negative.
In columns (4) and (5) of table 4, we further extend the set of control vari-
ables, including station (4) and department (5) controls: we keep finding a
negative and significant coefficient of the DiD term.
In this final setting, the introduction of Autolib has reduced NOx average
level by 12.092 points, which correspond to a 15% decrease of the pollutant,
with respect to its average level.

INSERT TABLE 4 AROUND HERE

Similarly to the test of Hypothesis 2, we also tested Hypothesis 3, by run-
ning DinD estimations of Autolib over NO2 without controls, with controls,
with time fixed effects, with station fixed effects and with department fixed
effects.
The result stored in Table 5 shows that, also in this case, we always find a
negative and statistically significant effect of Autolib over NO2.
We highlight that, within the final setting, including all possible fixed effects,
we observe a decrease of the pollutant by 29%, with respect to its average
level.

INSERT TABLE 5 AROUND HERE

Overall, the empirical results are substantially in line with our hypothesis
and expectations, finding that the introduction of the electric car-sharing
service Autolib in Paris region has had a negative effect on all the key air
pollutants examined.
In fact, it reduces has reduced the average level of PM10, NOx and NO2.
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7 Robustness checks

A series of checks are carried out to test the robustness of our results, verify-
ing that the policy examined has had a real impact on urban air pollutants.
In particular, we use different indicators for urban pollutants, with the aim
of “double checking” the effect produced by the introduction of the electric
car-sharing service Autolib’ on urban air quality in Paris region.

First, as an alternative PM10 indicator, we employ the number of days with
PM10 above 50 µg/m3, which is a warning threshold for urban air quality.
(AirParif, 2019)
We always apply a “Difference in Difference” model of estimation, with full
set of covariates and entity and time fixed effect.
Table 6 shows that the policy has had a negative and statistically significant
impact also on number of days with PM10 above 50 µg/m3, causing a de-
crease of -50.825 points (last column).
It means that the presence of the electric car-sharing service has caused an
annual reduction of the number of days with PM10 above the warning thresh-
old of 50 µg/m3 equal to around 51 days.
This outcome confirms the results obtained using the annual average indica-
tor, bringing further evidence in favour of hypothesis 1.

INSERT TABLE 6 AROUND HERE

Second, as an alternative NO2 indicator, we use the number of days with
NO2 above 200 µg/m3, which is a warning threshold for urban air quality.
(AirParif, 2019)
We always apply a “Difference in Difference” model of estimation, with full
set of covariates and entity and time fixed effect.
Table 7 shows that the policy has had a negative and statistically significant
impact also on number of days with NO2 above 200 µg/m3, causing a de-
crease of -160.21 points (last column).
It means that the presence of the electric car-sharing service has caused an
annual reduction of the number of days with NO2 above the warning thresh-
old of 200 µg/m3 equal to around 160 days.
This outcome confirms the results obtained using the annual average indica-
tor, bringing further evidence in favour of hypothesis 3.

INSERT TABLE 7 AROUND HERE
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8 Conclusion

In this paper, we investigate the impact of a soft and smart urban mobility
policy on the urban air quality.
The hypothesis that our study intends to check is whether the introduction of
an electric car-sharing service, namely Autolib, in Paris region, has reduced
the average levels of three key air pollutants, which are responsible for major
health problems in urban area: Particulate Matter (PM10), Nitrogen Oxides
(NOx) and Nitrogen Dioxide (NO2) 6.
Our empirical investigation is based on data retrieved from 3 main online
open sources (AirParif database, Autolib website and Paris Ma Ville web-
site) and applies a “Difference in Difference” model of estimation, whose
employment is partially supported by a preliminary graphical inspections of
the data.
The results of the econometric analysis confirm our three hypothesis, show-
ing that Autolib has significantly reduced the average level of PM10, NOx
and NO2, determining a decrease of respectively 10%, 12% and 27% with
respect to their average level.
Moreover, the robustness checks carried out with the use of some alternative
pollutants indicators produce further evidence in support of our results.
As many other empirical investigations, also this one presents some caveats
to be mentioned.
First, the data on pollutants fail to pass the graphical test for the parallel
trends assumption, which would provide a relevant qualitative support to our
estimation model.
However, the results of the inspection on pollutants’ absolute trends provides
a partial backing to the “Difference in Difference” model.
Second and main issue is represented by endogeneity, due to two possible
causes: 1) other factors affecting pollutants levels, which might be over-
looked, and 2) the not random assignment of the treatment (electric cars
stations could be deployed where the pollutant levels are already lower or
show declining trends).
The first cause of endogeneity, which is responsible for a possible omitted
variable bias of the estimations, has been tackled by including a list of rele-
vant covariates.
The second cause of endogeneity could be overcome by using the Propensity
Score Matching (PSM) method, which allows to reduce the possibility of bias
due to the difference in the average outcome between treated and untreated

6Some investigations have been carried out also on PM2.5 and Tropospheric Ozone
(O3), but the paucity of data prevented us from conducting any reliable empirical analysis.
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groups, caused by a factor that predicts treatment rather than treatment it-
self. Unfortunately, the PSM solution cannot be applied because the dataset
is composed by too few data.
However, our results are robust to the introduction of both station and de-
partment fixed effects, which control for the variables affecting pollution at
monitoring station and department level.
Moreover, in spite of the fact that the assignment of the policy (treatment) is
not random, but depends on a series of factors which can be correlated with
pollution levels (outcome variables), the assignment is at least heterogeneous
across departments and arrondissments ; in fact, the treated areas are both
in centre and in peripheral zones, thus covering areas with different traffic
and pollution patterns.
Another issue that could arise handling environmental data is represented
by the spatial correlation, that is when dependant variables, independent
variables and/or errors show spatial correlation patterns.
A way to detect the presence of spatial correlation is the Moran test, which
verifies residual correlation with nearby residuals. However, we were not
able to perform such test, because of the unavailability of data on the spatial
coordinates of the observations (they are necessary to construct a weights
matrix). However, we try to prevent our study from suffering from possible
spatial correlation issue, by running a spatial autoregressive model for panel
data without coordinates, which, unfortunately, did not produce any result
because of insufficient observations.
A further space-related issue is represented by the fact that our study relies
on the assumption that the Autolib’ cars available within an arrondissment
are expected to be used and impact the traffic (and pollution) only within
that arrondissment, while actually they could overcome the neighbourhood’s
’frontiers’. This assumption is rather strong, even though it is credible that
car-sharing cars are mostly used for short-run trips.

Despite these caveats, the study brings about interesting policy implications,
since our empirical results show that the promotion of a “soft and smart”
mobility policy, taking the form of the introduction of an electric car-sharing
service, is beneficial for the environment, with subsequent positive effects
also on the health outcomes in the metropolitan area.
Therefore, this study opens up stimulating avenues of further research in the
area of “soft policy” evaluation in the urban context. In fact, it would be of
interest to further investigate the environmental and health impact of oth-
ers soft mobility policies, which encourage the voluntary use of sustainable
means of transport, in order to achieve the urban environmental and health
quality goals.
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Table 1: List of AirParif stations and Autolib localization

AirParif Station Département Arrondissment Autolib
Paris Centre Paris I-IV YES
Tour Eiffel Paris VII YES
Champs Elisées Paris VIII YES
Place Victor Basch Paris XIV YES
Boulevard Peripherique Auteuil Paris XVI YES
Paris 18éme Paris XVIII YES
Gennevilliers Hauts-de-Seine Nanterre YES
La Défense Hauts-de-Seine many YES
Bobigny Seine-Saint-Denis Bobigny YES
Villemomble Seine-Saint-Denis Bobigny YES
Tremblay en France Seine-Saint-Denis Le Raincy YES
Nogent sur Marne Val-de-Marne Nogent-sur-Marne YES
Champigny sur Marne Val-de-Marne Nogent-sur-Marne YES
Cachan Val-de-Marne Hay-les-Roses YES
Vitry sur Seine Val-de-Marne Créteil YES
Lognes Seine-et-Marne Torcy NO
Melun Seine-et-Marne Melun NO
Mantes-la-Jolie Yvelines Mantes-la-Jolie NO
Montgeron Essonne Evry YES
Les Ulis Essonne Palaiseau NO
Cergy-Pontoise Val-d’Oise Pontoise NO
Gonesse Val-d’Oise Sarcelles NO
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Table 2: Summary statistics

Variable Mean Variance Min Max N. Obs
Annual average PM10 27.2 62.25 17 50 183
Annual average NOx 80.77 7005.51 19 405 253
Annual average NO2 38.06 449.24 15 114 268
N. days PM10 above 50 mg/m3 27.8 974.7 0 149 182
N. days NO2 above 200 mg/m3 10.6 1601 0 312 258
Autolib 0.39 0.24 0 1 286
Vélib 0.38 0.24 0 1 286
Zone20 0.35 0.23 0 1 169
Zone30 0.44 0.25 0 1 182
ZCR 0.02 0.02 0 1 286
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Table 3: Difference in Difference over annual average PM10 levels

(1) (2) (3) (4) (5)
PM10 PM10 1 PM10 1 PM10 1 PM10 1

POST 2011 -6.013∗∗∗ 3.521 0.594 -3.209 -3.209
(1.066) (2.157) (4.430) (1.693) (1.693)

Autolib 21.045∗∗∗ 12.797∗∗∗ 14.685∗∗∗ 2.780∗∗ 2.780∗∗

(0.859) (2.586) (2.971) (0.931) (0.931)

POST 2011 AUTOLIB -15.766∗∗∗ -16.655∗∗∗ -18.953∗∗∗ -3.367∗∗∗ -3.367∗∗∗

(1.391) (3.117) (3.311) (1.089) (1.089)

Vélib 10.641∗∗∗ 10.987∗∗∗ -1.132 -1.132
(1.805) (1.595) (0.667) (0.667)

zone20 -9.270∗∗∗ -9.275∗∗∗ 1.228 1.228
(2.594) (2.525) (0.734) (0.734)

zone30 -1.041 -0.429 -0.168 -0.168
(2.693) (2.659) (0.647) (0.647)

ZCR -3.174 -1.034 -0.128 -0.128
(2.277) (3.102) (1.931) (1.931)

YEAR NO NO YES YES YES

STATIONS NO NO NO YES YES

DEPARTMENTS NO NO NO NO YES

cons 27.955∗∗∗ 26.602∗∗∗ 27.000∗∗∗ 37.332∗∗∗ 37.332∗∗∗

(0.859) (1.241) (3.490) (0.780) (0.780)
N 183 110 110 110 110

R2 0.088 0.443 0.475 0.980 0.980

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4: Difference in Difference over annual average NOx levels

(1) (2) (3) (4) (5)
NOx NOx NOx NOx NOx

POST 2011 -42.064∗∗∗ -30.997∗ -18.764 -17.725∗ -17.725∗

(7.573) (13.762) (47.118) (8.041) (8.041)

Autolib 278.211∗∗∗ 206.979∗∗∗ 231.337∗∗∗ 7.320 7.320
(7.498) (32.354) (35.871) (5.281) (5.281)

POST 2011 AUTOLIB -226.776∗∗∗ -171.807∗∗∗ -207.539∗∗∗ -12.092∗∗ -12.092∗∗

(11.730) (33.011) (34.463) (5.657) (5.657)

Vélib 80.198∗∗∗ 103.975∗∗∗ -9.728∗ -9.728∗

(18.353) (15.816) (4.585) (4.585)

zone20 -31.983 -32.770 6.107 6.107
(34.544) (37.732) (4.433) (4.433)

zone30 -2.868 -9.503 -0.194 -0.194
(33.693) (34.641) (3.154) (3.154)

ZCR -40.780 -96.194 -6.661 -6.661
(39.543) (49.306) (11.153) (11.153)

YEAR NO NO YES YES YES

STATIONS NO NO NO YES YES

DEPARTMENTS NO NO NO NO YES

cons 80.789∗∗∗ 74.691∗∗∗ 111.250∗∗ 173.768∗∗∗ 173.768∗∗∗

(7.498) (12.818) (36.197) (6.214) (6.214)
N 253 142 142 142 142

R2 0.078 0.212 0.255 0.994 0.994

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 5: Difference in Difference over annual average NO2 levels

(1) (2) (3) (4) (5)
NO2 NO2 NO2 NO2 NO2

POST 2011 -16.654∗∗∗ -11.330∗∗ -15.273 -6.387∗∗ -6.387∗∗

(2.007) (3.588) (10.727) (1.906) (1.906)

Autolib 74.317∗∗∗ 57.601∗∗∗ 62.272∗∗∗ 8.714∗∗∗ 8.714∗∗∗

(1.920) (8.406) (9.815) (1.941) (1.941)

POST 2011 AUTOLIB -57.137∗∗∗ -47.167∗∗∗ -54.792∗∗∗ -11.005∗∗∗ -11.005∗∗∗

(2.873) (8.491) (9.582) (2.084) (2.084)

Vélib 22.216∗∗∗ 27.728∗∗∗ -0.905 -0.905
(4.347) (3.747) (1.084) (1.084)

zone20 -6.378 -5.189 0.939 0.939
(8.601) (9.524) (1.421) (1.421)

zone30 -3.388 -4.925 1.193 1.193
(8.642) (8.896) (1.216) (1.216)

ZCR -8.754 -15.948 -2.136 -2.136
(10.486) (12.686) (2.547) (2.547)

YEAR NO NO YES YES YES

STATIONS NO NO NO YES YES

DEPARTMENTS NO NO NO NO YES

cons 39.683∗∗∗ 37.571∗∗∗ 46.667∗∗∗ 67.433∗∗∗ 67.433∗∗∗

(1.920) (3.081) (7.884) (1.083) (1.083)
N 268 152 152 152 152

R2 0.119 0.267 0.302 0.990 0.990

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 6: Difference in Difference over the n. of days with PM10 > 50 µg/m3

(1) (2) (3) (4) (5)
PM10 PM10 2 PM10 2 PM10 2 PM10 2

POST 2011 -13.711∗∗ 18.642∗ 7.050 -11.093 -11.093
(4.114) (8.733) (17.200) (13.295) (13.295)

Autolib 119.466∗∗∗ 85.818∗∗∗ 97.972∗∗∗ 41.090∗∗∗ 41.090∗∗∗

(3.574) (12.231) (12.745) (8.185) (8.185)

POST 2011 AUTOLIB -105.987∗∗∗ -107.854∗∗∗ -118.603∗∗∗ -50.825∗∗∗ -50.825∗∗∗

(5.268) (13.997) (14.850) (10.441) (10.441)

Vélib 39.488∗∗∗ 38.418∗∗∗ 5.236 5.236
(8.409) (7.634) (4.478) (4.478)

zone20 -32.747∗∗ -30.529∗∗ 19.271∗∗ 19.271∗∗

(11.942) (11.055) (6.711) (6.711)

zone30 -1.127 1.860 -10.435 -10.435
(13.120) (12.327) (5.953) (5.953)

ZCR -19.759∗ -12.586 -5.263 -5.263
(7.661) (11.246) (13.127) (13.127)

YEAR NO NO YES YES YES

STATIONS NO NO NO YES YES

DEPARTMENTS NO NO NO NO YES

cons 28.534∗∗∗ 23.821∗∗∗ 24.000 49.457∗∗∗ 49.457∗∗∗

(3.574) (4.469) (12.336) (4.562) (4.562)
N 182 110 110 110 110

R2 0.098 0.387 0.444 0.916 0.916

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

28



Table 7: Difference in Difference over the n. of days with NO2 > 200 µg/m3

(1) (2) (3) (4) (5)
NO2 D NO2 D NO2 D NO2 D NO2 D

POST 2011 -11.780∗∗ -7.774 -7.557 -21.447 -21.447
(3.785) (5.153) (14.855) (23.037) (23.037)

Autolib 285.120∗∗∗ 250.175∗∗∗ 264.014∗∗∗ 151.504∗∗∗ 151.504∗∗∗

(3.783) (13.921) (14.298) (23.130) (23.130)

POST 2011 AUTOLIB -276.093∗∗∗ -252.299∗∗∗ -268.250∗∗∗ -160.209∗∗∗ -160.209∗∗∗

(4.962) (13.848) (14.845) (22.846) (22.846)

Vélib 21.218 23.967∗ 0.942 0.942
(10.742) (9.214) (8.674) (8.674)

zone20 -24.085 -24.396∗ 22.313 22.313
(14.162) (12.140) (14.742) (14.742)

zone30 12.832 16.603 -11.929 -11.929
(15.863) (15.375) (12.699) (12.699)

ZCR -17.909∗ -24.485∗ 13.612 13.612
(7.940) (10.023) (22.013) (22.013)

YEAR NO NO YES YES YES

STATIONS NO NO NO YES YES

DEPARTMENTS NO NO NO NO YES

cons 11.880∗∗ 12.776∗∗ 15.667 6.511 6.511
(3.783) (4.872) (11.093) (7.705) (7.705)

N 258 146 146 146 146

R2 0.208 0.283 0.303 0.799 0.799

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 3: Île de France and its departments
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Figure 4: Île de France and its arrondissments
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