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Abstract 
The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, 
some of which are endogenously produced and some that have been taken up from the 
environment1. The origins of specific compounds are known, including metabolites that are highly 
heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as 
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smoking5, or by diet6. However, the key determinants of most metabolites are still poorly 
understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and 
deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning 
algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut 
microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained 
statistically significant predictions for more than 76% of the profiled metabolites. Diet and 
microbiome had the strongest predictive power, and each explained hundreds of metabolites—in 
some cases, explaining more than 50% of the observed variance. We further validated microbiome-
related predictions by showing a high replication rate in two geographically independent cohorts7,8 

that were not available to us when we trained the algorithms. We used feature attribution analysis9 
to reveal specific dietary and bacterial interactions. We further demonstrate that some of these 
interactions might be causal, as some metabolites that we predicted to be positively associated with 
bread were found to increase after a randomized clinical trial of bread intervention. Overall, our 
results reveal potential determinants of more than 800 metabolites, paving the way towards a 
mechanistic understanding of alterations in metabolites under different conditions and to designing 
interventions for manipulating the levels of circulating metabolites. 

 

Main 
We used mass spectrometry to profile serum samples from 491 healthy individuals for whom we 
had previously collected extensive clinical, lifestyle, dietary, genetics and gut microbiome data10 
(Methods, Extended Data Table 1). Our untargeted metabolomics analysis measured the levels of 
1,251 metabolites, covering a wide range of biochemicals including lipids, amino acids, 
xenobiotics, carbohydrates, peptides and nucleotides, and approximately 30% unidentified 
compounds (Extended Data Fig. 1a, Methods, Supplementary Table 1). To classify unidentified 
metabolites and aid in biomarker discovery, we designed models that accurately predict the 
candidate biological pathway of the metabolites (Extended Data Fig. 2, Supplementary Note 1, 
Supplementary Table 2–5). Most metabolites we measured were prevalent across the cohort, 
including 498 metabolites that were detected in all samples and 1,104 metabolites that were 
detected in more than 50% of the samples (Extended Data Fig. 1b). After quality control (Methods), 
475 individuals with high-quality data were included in the subsequent analyses. 

To validate the accuracy of our metabolomic measurements, we compared the levels of creatinine 
and cholesterol to those obtained using standardized laboratory tests (Methods) that were performed 
independently on a second blood sample taken from the participants on the same visit, and found 
good agreement (creatinine, Pearson’s R = 0.87; cholesterol, R = 0.79; Extended Data Fig. 1c, d). 
We further found that, for 20 participants for which samples were taken one week apart, the two 
profiles were significantly correlated (Spearman ρ = 0.68 ± 0.06, median ± s.d.); this was in contrast 
to samples from different participants, which showed no correlation (Spearman ρ = 0.05 ± 0.12; 
Methods, Extended Data Fig. 1e). These results validate the reproducibility and accuracy of our 
data, are consistent with previous work showing long-term stability in the human metabolome11, 
and confirm that this metabolic profile is a unique, person-specific signature. 

Robust predictions of serum metabolites 
We trained gradient-boosted decision trees12 (GBDT) algorithms that predict metabolite levels in 
held-out individuals (Methods, Supplementary Note 2). GBDT systematically outperformed linear 
models (Lasso; Methods), with a median and maximum explained variance gain of 8.3% and 
43.2%, respectively, for prediction with diet data, and 4.6% and 14.9%, respectively, for 
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microbiome data (Extended Data Fig. 3). Notably, our predictions for more than 76% of the 
metabolite groups tested were statistically significant with at least one feature group after multiple 
hypothesis correction (Methods). In total, 335 metabolites were significantly explained by diet-
related features, and 182 by the microbiome (Fig. 1a, b). Our models explained more than 10% of 
the variance for 543 metabolite groups (median 10.2%; range 0–73.5%; Fig. 1d, Supplementary 
Table 6), and more than 50% of the variance for 17 metabolites. 

We next checked, for each feature group, whether any type of metabolite was enriched with 
superior predictions (Fig. 1c, Methods). We found that clinical data better predicted metabolites that 
were classified as blood lipids, amino acids and peptides, as opposed to xenobiotics and 
unidentified compounds, on which it performed worse than on other metabolites. By contrast, 
microbiome data better explained levels of xenobiotics (P < 10−4) and unidentified compounds (P < 
0.001), highlighting its potential for explaining the origins of the large number of unidentified 
compounds. We further found that predictions based on clinical data were significantly correlated 
with those based on diet (Spearman’s ρ = 0.30, P < 10−20), and had a weaker correlation with 
predictions based on the microbiome (R = 0.21, P < 10−11). Predictions based on microbiome data 
had the highest correlation with those based on diet (R = 0.44, P < 10−20). Finally, we found that 
metabolites associated with genetics could not be predicted by other feature groups, and there was a 
weak correlation between the prediction accuracy of a model containing all other features (‘full 
model’, Methods) and the heritability of metabolites (R = 0.09, P < 0.005). Altogether, each feature 
group was particularly informative with respect to a different set of metabolites (Extended Data 
Figs. 4, 5a). 

To estimate the relative predictive power of each feature group across all metabolites, we built 
models to predict the principal metabolomic components (Extended Data Fig. 5b). Diet had the 
largest predictive power, inferring 48.9% of the variance explained by a model containing all 
features (Methods), whereas lifestyle factors explained only 1.9% (Fig. 1e). Notably, the predictive 
power of microbiome data was 30.8% that of the full model. As a large portion of these predictions 
did not overlap with the predictions of other data, these results highlight the importance of 
microbiome data in predicting and potentially determining serum metabolite levels. 

Replication in external cohorts 
To test the robustness and reproducibility of the models based on gut microbiome data, we validated 
their accuracy in two geographically independent cohorts (Methods): 1,004 samples from healthy 
older participants from the UK (from the TwinsUK Registry7), and 245 samples from Northern 
European individuals with type 2 diabetes (from the IMI DIRECT cohort8; Extended Data Table 1). 
Validation data were not available to us while developing the prediction models, which were trained 
only on samples from the initial Israeli cohort. We obtained predictions for metabolites that had 
statistically significant predictions (false discovery rate (FDR) < 0.1) with R2 > 5% in the Israeli 
cohort (107 metabolites in TwinsUK, 50 in IMI DIRECT), using only microbiome data from the 
validation cohorts. Notably, 95 out of 107 and 28 out of 50 predictions were replicated (FDR < 0.1) 
in the healthy TwinsUK cohort and in the IMI DIRECT cohort of patients with type 2 diabetes, 
respectively, including all top 60 predictions in the TwinsUK cohort (Fig. 2, Supplementary Tables 
7, 8). We note that most of the replicated associations are accompanied by a reduction in effect size; 
this is expected, particularly as a result of study-specific biases. These results indicate that our 
models reveal robust associations between serum metabolites and the gut microbiome, despite 
differences between both the populations and the protocols and staff used to assemble these cohorts. 
Finally, most significant associations between metabolite levels and body mass index were also 
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replicated in the TwinsUK cohort13 with high accuracy (R = 0.85, P < 10−10; Extended Data Fig. 
5c, Supplementary Table 9). 

Diet and microbiome models are independent 
Because the diet modulates the gut microbiome14, we compared the explained variance of 
metabolites obtained by models based on either. Although some metabolites—mostly related to 
coffee consumption—were significantly predicted by both diet and microbiome data, many were 
not (Supplementary Table 10). Furthermore, adding microbiome data to a diet-based prediction 
model improved its accuracy in 66% of cases (median and maximum gain of 2.1% and 62.6% 
respectively; Supplementary Table 11), whereas adding permuted data reduced the performance in 
82% of cases (median and maximum gain of −1.7% and 7.4% respectively; Extended Data Fig. 5d–
f). Finally, 34 metabolites were significantly predicted only by microbiome data. Altogether, these 
results suggest that the gut microbiome may be modulating the production of many circulating 
metabolites, independent of diet. 

We next used feature attribution analysis (SHAP9; Methods) to interpret these models, infer the 
drivers of each prediction, and examine interactions between different predictive factors (Extended 
Data Fig. 6, Supplementary Note 3). We found dozens of diet and bacterial features that were 
strongly predictive of blood metabolites in our models (Fig. 3a, Extended Data Fig. 7). Notably, the 
reported consumption of coffee (both long-term and short-term; Methods) was a stronger predictor 
than other dietary features for the levels of a large number of xenobiotics and unidentified 
compounds. These included metabolites from the xanthine metabolism pathway such as 
paraxanthine (diet prediction Pearson R = 0.64, P < 10−20) and caffeine (R = 0.68, P < 10−20), as 
previously reported15. These metabolites were also significantly predicted using microbiome data, 
with a Clostridiaceae species being the main predictor. Another strong feature was long-term fish 
consumption, which accurately predicted the levels of several blood lipids including 3-carboxy-4-
methyl-5-propyl-2-furanpropionic acid (diet R = 0.71, P < 10−20), a uraemic toxin that accumulates 
in the serum of patients with chronic kidney disease16 and has also been suggested to prevent and 
reverses steatosis17. X-16124 (microbiome R = 0.77, P < 10−20) and X-11850 (R = 0.7, P < 10−20) 
are two unidentified metabolites that were accurately predicted by microbiome data, and 
specifically by bacteria from the Eggerthellaceae family and Clostridium genus, respectively. 
Microbiome data was also highly predictive of the uraemic toxins phenylacetylglutamine (R = 0.63, 
P < 10−20) and indoxyl sulfate (R = 0.37, P < 10−20), which have been previously reported in 
association with cardiovascular disease18 and chronic kidney disease19; these predictions were 
driven by a species from the Lachnospiraceae family. 

To assess whether a few important taxa are sufficient for accurate prediction, we defined the ‘main 
predictor’ of each metabolite as the taxon with the maximal mean absolute SHAP value. Nineteen 
bacterial taxa were the main predictors for the top 50 microbiome-predicted metabolites (prediction 
R > 0.4; Supplementary Table 12). One Clostridiceae species was the main predictor of 22 of these, 
which are also strongly associated with coffee consumption in diet-based models. Clostridium sp. 
CAG:138 was the main predictor of five metabolites, including phenylacetylcarnitine (R = 0.47, P < 
10−20) and p-cresol-glucuronide (R = 0.64, P < 10−20) as previously reported20. Other taxa, 
however, were the main predictors of only one or two top metabolites, demonstrating that many 
different bacteria are required to accurately predict the levels of different metabolites. Among the 
main bacterial predictors of the top 100 metabolites, 89 belonged to Firmicutes, highlighting the 
strong predictive power of this phylum. It is notable that, although Bacteroidetes is the second most 
abundant phylum in our cohort (Extended Data Fig. 8a), none of its species were among these main 
predictors. 
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To check whether main predictors are sufficient for accurate prediction, for each metabolite we 
compared the accuracy of a full microbiome model to the accuracy of a model based only on its 
main predictor (Fig. 3b). We found that a model based on the main predictor could explain only a 
median of 36% of the explained variance of the full microbiome-based model. Cinnamoylglycine, 
for example, is significantly predicted using microbiome data (R = 0.49, P < 10−20); however, a 
model based on its main predictor fails to provide a significant prediction. By contrast, some 
metabolites are exclusively predicted by a single bacterial species, such as the unidentified 
metabolite X-16124, for which a model based on an Eggerthellaceae species explained 93% of the 
variance of a full microbiome-based model. Indeed, in 95% of the individuals in which this bacteria 
was detectable, X-16124 was also detectable in serum, compared to only 23% of individuals for 
which this bacteria was not detected (Mann–Whitney U-test, P < 10−20; Extended Data Fig. 8b). 

New genetic–metabolomics associations 
Several genome-wide association studies have found that human genetics influences serum 
metabolites2,3,21,22,23,24. The median serum metabolite ACE-heritability, using the traditional twin 
model, was estimated to be 25%, whereas the median narrow-sense heritability, based only on 
discovered genetic loci, was estimated to be 2.1%2. Because we measured several molecules that 
were not yet identified in these studies, we searched for associations between levels of these 
molecules and single nucleotide polymorphisms (SNPs; Supplementary Note 4). Notably, we found 
68 statistically significant associations (P < 5 × 10−11 for all), of which—to the best of our 
knowledge (Methods)—22 have not been previously reported (Supplementary Table 13). These 
include ethylmalonate, a branched fatty acid that has been reported in association with anorexia 
nervosa25 and that was associated with rs2066938, which explained 50% of its variance. This SNP 
is a variant of the 3′-untranslated region of the gene UNC119B, which we also found to be 
associated with butyrylcarnitine, in line with previous reports2. Other examples include 2′-O-
methyluridine and 2′-O-methylcytidine—both of which are nucleotides involved in pyrimidine 
metabolism—which we found to associate with a missense variant in the PHYHD1 gene and have 
been previously reported to be negatively correlated with PHYHD1 expression26. We further found 
that X-21441—which we predicted as an androgenic steroid (Supplementary Note 1)—was 
associated with rs8187710, a missense variant in the ABCC2 gene, explaining 11% of its variance 
(Extended Data Fig. 9). rs8187710 was previously demonstrated to be associated with non-alcoholic 
fatty liver disease27. Notably, X-21441 was also negatively correlated with age in our cohort (R = 
−0.3, P < 10−7), independent of the genotype (Extended Data Fig. 9c). This suggests that X-21441 
might be an independent metabolic risk factor that mediates the genetic susceptibility to non-
alcoholic fatty liver disease and age, a known risk factor for the disease28. 

Proof-of-concept clinical validation 
As a proof-of-concept analysis, we examined whether some of the feature–metabolite interactions 
we uncovered may be causal. We used our diet-based models to select the top 5% of metabolites 
that were either positively or negatively associated with normal consumption of white or whole 
wheat bread (Fig. 4a, b, Methods). We then analysed the serum metabolome from the beginning and 
the end of a previously conducted week-long intervention29, in which two randomized groups of ten 
healthy individuals increased their consumption of either wholegrain sourdough bread or industrial 
white bread (Fig. 4a, Methods). Notably, we found that metabolites that were positively associated 
with the consumption of whole wheat bread in our discovery cohort increased significantly more 
after the sourdough bread intervention (median fold change 1.62) than metabolites that were 
negatively associated with it (median fold change 0.66; Mann–Whitney U-test, P < 10−10; Fig. 4c). 
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Moreover, we found no statistically significant differences when comparing the mean fold change 
of these metabolites under the white bread intervention (P > 0.1; Fig. 4c). 

Some metabolites for which levels increased after the sourdough bread intervention were previously 
linked to the consumption of wholegrain wheat flour. A notable example is betaine, an amino acid 
that has been shown to improve vascular risk factors30 and is also highly abundant in wheat bran 
and germ31. We found that the mean fold change in betaine levels in the sourdough bread group was 
6.16, as opposed to 0.82 in the white bread group (Mann–Whitney U-test, P < 0.004; Fig. 4d). 
Another example is cytosine, for which the mean fold change was far greater in the sourdough 
bread group (78.5) compared to the white bread group (0.53) (P < 0.002; Fig. 4e) To the best of our 
knowledge, unlike betaine, cytosine levels have not previously been linked to bread consumption. 

A similar analysis of metabolites that were associated with white bread consumption in our cohort 
did not find significant changes in their levels after intervention, potentially due to high baseline 
white wheat consumption in the typical diet of the study population. Overall, these results suggest 
that some of the associations that we found here might be causal. 

 

Discussion 
Although our cohort is not the largest in which serum metabolomics were measured, it is—to our 
knowledge—the only one in which these measurements were coupled with such a diverse array of 
potential determinants. Still, it has several limitations. First, although drug intake has been shown to 
have a large effect on the serum metabolome profile32, our cohort was healthy and had limited drug 
intake. We are therefore likely to be underestimating the potential effect of drug intake on blood 
metabolites. Second, replication of results is still required for predictions by most factors other than 
the microbiome. Third, owing to the lack of reliable annotations, we have not associated 
metabolites with specific enzymes; this could be addressed in subsequent experimental studies by 
focusing on strongly predictive taxa. Finally, because this study is mainly based on observational 
data, interpretation of interactions should be made with caution, and the associations cannot be 
considered as causal. 

Taken together, our results reveal a comprehensive list of potential determinants for circulating 
blood metabolites. Many of the associations and interactions detected here replicate previously 
reported findings, supporting the validity of our results. The majority of them, however, are new, 
making them a useful resource for future studies, either for improving molecular understanding of 
health and disease, or for forming the basis of interventional studies aimed at altering the levels of 
blood metabolites. 

 

Methods 
No statistical methods were used to predetermine sample size. The experiments were not 
randomized and the investigators were not blinded to allocation during experiments and outcome 
assessment. 

Description of cohorts 
We analysed banked samples from two previously collected cohorts10,29, for a total of 491 Israeli 
individuals. Studies were approved by Tel Aviv Sourasky Medical Center Institutional Review 
Board (IRB), approval numbers TLV-0658-12, TLV-0050-13 and TLV-0522-10; Kfar Shaul 
Hospital IRB, approval number 0–73. All participants signed written informed consent forms. Full 
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study designs, including inclusion and exclusion criteria are described elsewhere10,29. In brief, 
participants in both studies were healthy individuals aged between 18 and 70. The participants 
answered detailed medical, lifestyle and nutritional questionnaires, provided stool and serum 
samples for metagenomic sequencing and metabolomics, were genotyped, underwent a 
comprehensive blood test, and for a period of at least one week, recorded all of their daily activities 
and nutritional intake in real-time using their smartphones with a specialized app provided to 
them29. Both blood and stool samples were not taken under strict fasting conditions. Sixteen 
samples of participants for which microbiome data was not available to us were excluded from all 
analyses. Meetings in which participants provided blood samples took place in two different 
centres, Weizmann (45% of participants) and Tel-Aviv (55% of participants). All meetings in 
Weizmann took place within the first half of the day, whereas most meetings in Tel-Aviv took place 
during the second half of the day (82% of the participants). 

Feature groups 
The ‘diet’ feature group includes both answers for a detailed food frequency questionnaire (FFQ) 
aimed at capturing long term dietary habits, and the daily mean consumption of different food 
types, computed over a week based on real-time logging. In both cases we kept only items that were 
reported to be consumed at least once by at least 1% of our participants, resulting in 670 different 
food types from logging, and 141 different items from the FFQ. 

The ‘macronutrients’ feature group includes the daily mean consumption of macronutrients (lipids, 
proteins, carbohydrates), calories and water, calculated from real-time logging. 

The ‘anthropometrics’ feature group includes weight, BMI, waist and hips circumference, and 
waist-to-hips ratio. 

The ‘cardiometabolic’ feature group includes systolic and diastolic blood pressure, heart rate in 
beats per minute and a glycemic status as previously described33. 

The ‘drugs’ feature group includes 30 binary features representing the intake of 20 common 
medications as reported in questionnaires, in addition to 10 medication groups as previously 
described33. We included only drugs reported to be used by at least 1% of our participants. 

The ‘clinical data’ feature group includes the age and sex of the participants, and the following 
feature groups described above: anthropometrics, cardiometabolic and drugs. 

The ‘lifestyle’ feature group includes smoking status (current, past), stress levels obtained from 
questionnaires, and the daily mean sleeping time, exercise time and midday sleep time based on real 
time logging. 

The ‘time of day’ feature is a binary feature indicating whether the sample was taken during the 
first half of the day. 

The ‘seasonal effects’ feature is the month in which the sample was taken. In some analyses we also 
grouped months by season (Winter: December–February; Spring: March–May; Summer: June–
August; Autumn: September–November). 

The ‘microbiome’ feature group includes bacterial relative abundance calculated both by 
considering coverage (see the following section ‘Microbiome preprocessing’), and by 
MetaPhlAn234, as well as the first 10 principal components computed over the log transformed 
relative abundance of a bacterial gene catalogue35 as previously described33,36. Preprocessing steps 
are described in the following section. 
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We further defined a full model that included all of the above. 

Metabolomics profiling and preprocessing 
Metabolite concentrations were measured in serum samples by Metabolon, by using an untargeted 
liquid chromatography coupled to mass spectrometry (LC–MS) platform as previously 
described2,37,38. A total of 540 serum samples were profiled, 19 of which were control samples 
(technical replicate) pooled from several individuals. The other 521 serum samples belonged to 491 
participants. 

We removed from further analysis 27 metabolites with fewer than 10 measurements across our 
cohort, and 54 metabolites that we found to have significantly different distributions in samples 
collected in two different recruitment centres (Mann–Whitney U-test, P < 0.05/1,251; Bonferroni 
corrected; Supplementary Table 14). For the remaining 1,170 metabolites, we performed robust 
standardization (subtracting the median and dividing by the standard deviation) over the log (base 
10)-transformed levels, followed by clipping outlier samples which were further than 5 standard 
deviations. We next used two separate normalization schemes: one for single metabolites, which we 
subsequently used in the feature attribution analysis, and the second for metabolite groups, which 
we used for global and enrichment analyses. 

For single metabolites, we regressed metabolite levels against storage times (only for metabolites 
present in at least 50 samples), and finally, imputed missing values as the minimum value per 
metabolite. For the second scheme, metabolites were grouped by correlation with a Spearman’s ρ 
threshold of 0.85. This is done in order to handle possible bias resulting from uncertainty of 
metabolite assignments and a high rate of highly correlated mass spectrometry peaks, and resulted 
in 1,067 metabolite groups, 982 of which are singletons. The value of the metabolite group was set 
to the mean. The category of each metabolite group was assigned based on majority vote, where 
unidentified compounds were excluded from the vote unless all metabolites in the group were 
unidentified. 

Microbiome preprocessing 
Sample collection, DNA extraction, and sequencing of the samples in this study was previously 
described10,29,33. In brief, we used only samples that were collected using swabs, filtered 
metagenomic reads containing Illumina adapters, filtered low-quality reads and trimmed low-
quality read edges. We detected host DNA by mapping with GEM39 to the human genome (hg19) 
with inclusive parameters, and removed human reads. We subsampled all samples to have 10 
million reads. 

Bacterial relative abundance estimation was performed by mapping bacterial reads to species-level 
genome bins (SGB) representative genomes40 (Supplementary Table 15). We selected all SGB 
representatives from groups with at least five genomes, and for these representatives genomes kept 
only unique regions as a reference dataset. Mapping was performed using Bowtie241 and abundance 
was estimated by calculating the mean coverage of unique genomic regions across the 50% most 
densely covered areas as previously described36,42. Feature names include the lowest taxonomy 
level identified. 

Comparing metabolomics to laboratory tests 
We compared the levels of both creatinine and cholesterol, which we previously obtained via 
standard laboratory tests10 with their metabolomic levels. Because the tests were performed by two 
different laboratories, we centred the tests by reducing from the value of each sample the mean of 
all tests taken in the laboratory in which it was performed. We then performed a standardization of 
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the resulting measurements. The metabolomic profiling and the laboratory tests were performed on 
two samples taken at the same blood draw. 

Correlation of metabolic profiles within and between individuals 
We compared the Spearman’s correlations between standardized metabolomic profiles of the same 
participant taken one week apart (n = 20) to correlations between standardized metabolomic profiles 
of different individuals (n = 475). Each pair of samples taken from the same participant was run in 
the same metabolomic batch. In the group of different individuals, only pairs of individuals from 
the same batch were included (resulting in a total of 3,835 such pairs), and were further stratified by 
sex. 

Predictive models of metabolite groups 
We used gradient boosting decision trees from the LightGBM (v.2.1.2) package12, in order to 
predict the levels of 1,067 metabolite groups on the basis of 7 feature groups in held-out 
individuals. In order to estimate the EV of each metabolite group we ran a fivefold cross-validation 
(CV) model using each feature group as input, and evaluated the results using the coefficient of 
determination (R2). For all prediction results except those based on human genetics (Methods) we 
computed 95% confidence intervals and P values via 1,000 iterations of bootstrapping43. In each 
bootstrap iteration, we performed a random fivefold cross validation, in which in each fold we 
randomly sampled (with replacement) a group of participants from the training set to have the same 
size as the current training set. We next used this set to train our model and evaluated the 
performance of the model on the set of participants in the remaining fold. Finally, we computed the 
coefficient of determination between the measured values of the metabolite and the concatenation 
of the CV’s predicted values as obtained from the bootstrapping iteration. We applied the Fisher 
transformation to the estimations of the explained variance we got from bootstrapping in order to 
induce normality44, and then computed a standard error, and estimated the P values via the normal 
cumulative distribution function using the Wald test45, such that our null hypothesis is that the 
explained variance should distribute normally with zero mean. Confidence intervals were computed 
empirically from the bootstrapping results. We corrected P values of predictions for multiple 
hypotheses using the Benjamini–Hochberg procedure over all feature groups (10% FDR). In all CV 
and bootstrapping runs we used a fixed and predetermined set of hyperparameters: for the 
microbiome and diet feature groups: learning_rate = 0.005, max_depth = default, feature_fraction = 
0.2, num_leaves = default, min_data_in_leaf = 15, metric = L2, early_stopping_rounds = None, 
n_estimators = 2000, bagging_fraction = 0.8, bagging_freq = 1; for other feature groups: 
learning_rate = 0.01, max_depth = 5, feature_fraction = 0.8, num_leaves = 25, min_data_in_leaf = 
15, metric = L2, early_stopping_rounds = None, n_estimators = 200, bagging_fraction = 0.9, 
bagging_freq = 5. 

Human genetics based prediction models 
To obtain the predictions based on human genetics, we used a similar fivefold CV scheme, in which 
in every fold we calculated the associations between SNPs and metabolite levels within the training 
fold, and then trained a model on only the top 10 SNPs that reached genome-wide significance 
(Bonferroni-adjusted). For folds in which no SNP reached the significance level, we assigned every 
sample in the test fold with the mean metabolite level of the training fold. Owing to high 
complexity and running time issues, P values and confidence intervals were not computed based on 
bootstrapping; rather, we estimated the P values of the Pearson’s correlation between the true and 
predicted metabolite levels. Metabolites for which the R2 was negative were assigned a P value of 
1. 
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Testing for SNP associations with metabolites 
Genotype processing and imputation of 413 individuals were described previously33. We performed 
genome-wide associations for single metabolites (n = 1,170) and calculated the P value and the 
estimated effect sizes using plink (v.1.07). When declaring a genome-wide significance for the 
SNP–metabolite associations we used a conservative Bonferroni adjustment procedure to control 
for the false discovery rate due to the large number of SNPs tested (P < (5 × 10−8)/1,170). We 
performed all genome wide associations using imputed genotypes. 

For named molecules, their chemical identification, super and sub pathways are presented as 
provided by Metabolon. For unidentified molecules, super and sub pathways are estimated on the 
basis of our biological pathway classifier. We did our best to scan the available literature for known 
associations between genetic loci and metabolites before reporting an association as novel. The 
main resources included the GWAS Catalog46 and the GWAS server2,22. 

Pathway category enrichment analysis 
For each pathway category we used a Mann–Whitney U-test comparing the prediction accuracy of 
metabolites from that category compared to prediction accuracy of metabolites from other 
categories. Direction of enrichment was determined by the sign of the Mann–Whitney U-test 
statistic. We considered only metabolite groups for which at least one feature group had a 
significant prediction (after correcting for multiple hypotheses), resulting in 819 metabolite groups. 

Validation of metabolite predictions based on microbiome 
We validated the robustness of the associations between the gut microbiome composition and the 
levels of circulating metabolites in two independent cohorts in which we had access to both 
metagenomics sequencing. Serum metabolomics in these cohorts were performed using the same 
Metabolon platform that we used for the discovery cohort. The first validation cohort included 
1,004 samples of healthy participants from the TwinsUK cohort7, for which there was an average of 
0.9 ± 1.3 years gap between the collection of faecal and blood samples. The second validation 
cohort included 245 samples of participants of European ancestry with type 2 diabetes (T2D) from 
the IMI DIRECT consortium8. Data from both these validation cohorts were not available to us 
while developing the prediction models. The metagenomics samples from both cohorts went 
through the exact same analysis pipeline as our discovery cohort to extract the bacterial features that 
our prediction models were based on. We then applied our models on these data to obtain the 
metabolite predictions for both cohorts. Only metabolites that were significantly predicted based 
only on microbiome data with R2 > 5% (FDR <0.1) in our discovery cohort were considered for 
further analysis (107 metabolites out of 678 in TwinsUK, 50 metabolites out of 261 in IMI 
DIRECT). Within every validation cohort, we performed robust standardization (subtracting the 
median and dividing by the standard deviation) over the log (base 10) transformed levels, followed 
by clipping outlier samples which were further than 5 standard deviations, and finally, imputed 
missing values as the minimum value per metabolite. The analysis of these geographically distinct 
cohorts holds multiple potential sources of noise, including different methods, centres and staff 
involved in assembling these cohorts, as well as different cohort demographics, clinical 
manifestations, different genetic background and dietary and lifestyle preferences. Therefore, we 
defined a successful replication as one that restores the original ranking of the participants as 
dictated by the true levels of the metabolite in hand. Hence, for every metabolite, in each validation 
cohort, we computed the Spearman’s correlation between its true levels and its predicted levels. A 
replication was considered significant if the FDR adjusted P value of the Spearman’s correlation 
was lower than 0.1 and the correlation coefficient was strictly positive. 
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Feature attribution analysis 
To explain the output of our machine learning models and find specific associations between 
features and metabolite levels, we used SHAP (Shapley additive explanations)47, a recently 
introduced framework for interpreting predictions, which assigns each feature an importance value 
for a particular prediction. In brief, for a specific prediction, the SHAP value of a feature is defined 
as the change in the expected value of the output of the model when this feature is observed versus 
when it is missing. It is computed using a sum that represents the effect of each feature being added 
to the model averaged over all possible orderings of features being introduced. Shapley-value-based 
analysis in gut microbiome data was recently demonstrated to be useful, as it enabled the estimation 
of complex contributions of gut microbiome taxa to functional shifts, while maintaining global 
community composition properties48. 

Individual SHAP values were computed for held-out individuals in fivefold CV using the module 
TreeExplainer (v.0.24.0)9,49, based on models trained only on features from the respective feature 
group. Before training, we standardized the levels of target metabolites, so that SHAP values from 
different models would be comparable (they are measured in the same units as the target). In each 
CV fold we ran a random hyperparameter search consistent of 10 iterations using the module 
RandomizedSearchCV from sklearn (v.0.20.4), and chose the best model for predicting the held-out 
individuals and computing SHAP values. In all feature attribution analyses we used the ungrouped 
list of 1,170 metabolites. 

For every feature, we computed the mean absolute SHAP value across all instances in a specific 
model, reflecting the mean effect of each feature on the predictions and serving as a feature 
importance measure. We further used these values to compute directional mean absolute SHAP 
values, by multiplying them with the sign of the Spearman correlation between the population 
feature and the target. Here, positive values indicate that higher feature values lead, on average, to 
higher predicted values, whereas negative values indicate that lower feature values lead, on average, 
to higher predicted values. 

When performing feature attribution analysis with gut microbiome data as input, we included only 
the relative abundance of SGB representative genomes as features, taking only features which were 
present in over 5% of the samples, resulting with 753 bacterial taxa. When using diet as input, we 
considered only features that were present in at least 5% of the samples, resulting with 398 food 
types from logging and items from the FFQ. 

Comparing gradient boosting decision trees with a linear model 
We compared the EV of every single metabolite obtained for a GBDT and a Lasso regression 
model. The EV of all models were calculated in fivefold CV, where in each fold we ran a 
hyperparameter search consistent of 10 iterations as described above. We used LightGBM as the 
GBDT model, and Lasso regression (sklearn, v.0.20.4) as the linear model, since its regularization 
scheme is better suited for a large number of features, as in the case of diet and gut microbiome 
composition. Because GBDT handles missing values well, we first imputed all missing values as 
the median of each feature to assure a fair comparison. When applying the models on the 
microbiome data, we used log10-transformed values. 

Estimating relative predictive power of feature groups 
To estimate the relative predictive power of different feature groups we first applied a principal 
component analysis over the metabolite groups data to get the first 400 PCs which constitute more 
than 99% of the total variance in the data (Extended Data Fig. 5b). We then used fivefold CV 
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prediction models as described above to predict the PCs on the basis of the different feature groups 
independently. As baseline, we used the full model, which consists of all features combined to 
predict the levels of the PCs, and estimated the overall fraction of variance explained by: 

 

where EVi is the fraction of EV that the model recovers for PC i. PCi is the fraction of variance that 
PC i explains out of the overall variation in the data. nPC is the number of the first PCs, those 
which capture the most variation. For the features we have collected, we defined this sum obtained 
for the full model as the total explainable variance in circulating blood metabolites. Next, for every 
feature group we computed a similar expression and calculated the relative predictive power by 
dividing this expression by that of the full model. The estimates we present are for nPC = 15, as the 
overall EV of the full model that we estimated using the first 15 PCs constitutes over 97% of the 
overall EV of the full model based on all 400 PCs. 

Biological sub pathway prediction 
We used gradient boosting decision trees from the LightGBM (v.2.1.2) package12, in order to build 
a multiclass classifier to predict the biological sub pathways of metabolites as annotated by 
Metabolon. When developing the classifier, we considered only named metabolites from biological 
sub pathways which include over 10 metabolites each in our data, resulting with 28 sub pathways 
covering a total of 572 named molecules (sub pathway size range 11–44). The rationale behind this 
is that we tried to find the balance between covering as many metabolites and types of metabolites 
possible while keeping the number of classes reasonable. 

We trained our model in a leave-one-out CV scheme, in which in every training fold we used 20% 
of the training samples as internal validation to perform an early stopping of 50 rounds. We then 
obtained a soft max of size 28 per metabolite, representing the probabilities of every metabolite 
being labelled as one of the 28 sub pathways. For the prediction of the unidentified molecules, we 
used a model trained once using all 572 metabolites. The features used for the training of the model 
included the normalized levels of metabolites across our main discovery cohort, the mean raw count 
of the metabolite and the fraction of missing values across the discovery cohort. In addition, to 
capture the associations between metabolites and their predictive features, we included the 
directional mean absolute SHAP values for every pair of metabolite–feature computed from the 
‘full model’ as described above. The final vectors of probabilities were determined as an ensemble 
of three models: the first, trained only on the SHAP values; the second, trained only on metabolite 
levels, means and fraction of missing values; and the third, trained on all combined. Finally, the 
mean of these three models was computed. 

When evaluating the performance of our classifier on the named labelled molecules, we 
concatenated all vectors of probabilities resulting from the leave-one-out procedure. For every sub 
pathway we computed a classification report including the classification precision (TP/(TP + FP)), 
recall (TP/(TP + FN)) and f1-score (2 × (precision × recall)/(precision + recall)), to account for the 
imbalanced class sizes. The overall accuracy was computed as the fraction of metabolites with 
correctly assigned labels out of all metabolites from all sub pathways which were included in the 
training phase. In all runs we used a fixed and predetermined set of hyperparameters (objective = 
multiclass, num_leaves = 25, max_depth = 4, learning_rate = 0.005, bagging_fraction = 0.8, 
feature_fraction = 0.8, bagging_freq = 1, bagging_seed = 2018, class_weight = balanced, 



13 
 

n_estimators = 2000, early_stopping_rounds = 50). TP, true positive; FP, false positive; FN, false 
negative. 

Characterization of unidentified metabolites by metabolon 
Characterization of unidentified metabolites was done as previously described21. In brief, 
identification of tentative structural features for unidentified biochemicals incorporates a detailed 
analysis of mass spec data, that is, gathering information such as the accurate monoisotopic mass, 
the elution time and fragmentation pattern of the primary ion, and correlation to other molecules. 
The accurate monoisotopic mass is used to identify a probable structural formula for the 
unidentified biochemical, which is then used to search against chemical structure databases. When a 
candidate structure fits the accurate monoisotopic mass and fragmentation data, an authentic 
standard is commercially purchased or synthesized (when possible). Conformation of a proposed 
structure is based on a match to three primary criteria, including co-elution with the unidentified 
molecule of interest, and a high degree match to both the accurate monoisotopic mass and 
fragmentation pattern. 

Interaction networks 
We used a graphical layout in order to visualize the associations of features with the levels of 
metabolites. The nodes are either metabolites or features, and the edges are the directional mean 
absolute SHAP values computed from models trained only on features from the respective feature 
group as described above. All networks were constructed using Cytoscape50. The threshold for 
presenting SHAP values as edges was determined as 0.12, keeping the network sparse enough for 
convenience of visualization. 

Analysis of bread intervention 
In order to find the associations between metabolite levels and the consumption of both types of 
bread in the study cohort we computed the directional mean absolute SHAP values of the reported 
consumption of both white and whole-wheat bread for all metabolites. The SHAP values were 
computed in cross validation from models based only on the reported consumption of each type of 
bread. We ranked the metabolites according to their directional mean absolute SHAP value for each 
type of bread and used the top 5% positively and negatively driven metabolites for further analysis. 
The prediction models were constructed using 458 samples of distinct individuals, a subset of our 
cohort from which we excluded all samples of individuals which participated in the intervention 
study. 

For each metabolite in every individual, we computed the fold change of metabolite levels between 
the samples taken at the end of the first week of intervention and the start of that week. Before 
computing fold change we imputed missing values with the minimum per metabolite and 
standardized their log (base 10) transformed levels. Furthermore, for each intervention group, we 
computed the mean fold change of every metabolite based on the 10 samples from that group. We 
then compared the mean fold change of the top 5% positively and negatively associated metabolites 
mentioned above within each intervention group by performing a rank sum test (two-sided Mann–
Whitney U-test) over the mean fold change. 

For comparing the fold change of betaine and cytosine between the two intervention groups, we 
used a two-sided Mann–Whitney U-test. 
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Linear mixed models-based estimates of the explained variance of metabolites using gut 
microbiome 
For the in-sample estimation of EV for metabolites based on gut microbiome we used a linear 
mixed model framework that we had recently developed33. In brief, we used GCTA51, a tool used in 
statistical genetics for the estimating of SNP-based genetic kinship. Instead of a matrix of host 
SNPs, as is commonly used in GCTA, we used a kinship matrix computed over the presence-
absence of microbial species which were also used as features in the out-of-sample prediction 
models. We added the storage time as a covariate to the model. P values were computed using RL-
SKAT52. 

Statistical analysis 

For all statistical analysis and prediction models we used Python 2.7.8 with the following packages: 
pandas 0.23.4, numpy 1.14.2, scikit-learn 0.20.4, scipy 1.1.0, shap 0.24.0, LightGBM 2.1.2. 
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Fig. 1: Diet, gut microbiome, genetics and clinical data predict the levels of most serum 
metabolites. 

 

 

 

This dataset arises from fivefold cross-validation predictions of metabolite levels based on separate 
models for each feature group. a, Box and swarm plots (centre, median; box, interquartile range 
(IQR); whiskers, 1.5 × IQR) showing the explained variance (EV; R2) of the top 50 significantly 
predicted metabolites (when available) of each feature group (group names are listed in c). b, Heat 
map with colour gradient from left to right corresponding to the 95% confidence interval for the 
EV, for each metabolite by every feature group. Only metabolites with significant predictions (FDR 
< 10%) are shown, and the number of metabolites per group is shown in brackets at the top. P 
values and confidence intervals were estimated using bootstrapping (Methods). c, Enrichment of 
metabolite types in the predictions by each feature group (two-sided Mann–Whitney U-test; 
Methods). Only significant enrichments are shown (P < 0.05 after 10% FDR correction). Exact P 
values are written in each cell. d, Histogram of the number of metabolites with each value of EV 
obtained using the full model. The inset shows the EV range of 0.3–0.8. e, The fraction of total EV 
of each feature group compared to the total EV of a model with all feature groups excluding 
genetics (full model). The total EV is the sum of the EV of the first 15 metabolite principal 
components weighted by the EV of each principal component (Methods). 
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Fig. 2: Validation of microbiome-based predictions of metabolites in two independent cohorts. 

 

 

 

a, c, R2 of predicted metabolites in our cohort plotted against the rate of replicated associations in 
the replication cohorts (TwinsUK, a; IMI DIRECT, c), computed as the fraction of significant 
replications out of all predictions with equal or higher predicted R2 in our cohort (left y axis; blue; 
FDR <10%), and the cumulative number of metabolites (right y axis; red). b, d, Spearman 
correlation between true and predicted levels of metabolites in our cohort plotted against the same 
correlations in the replication cohorts (TwinsUK, b; IMI DIRECT, d). Metabolites are coloured by 
the replication success (replicated, blue (n = 95 (b), n = 28 (d)); not replicated, red (n = 12 (b), n = 
22 (d)); FDR < 10%). 
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Fig. 3: Diet and gut microbiome data independently explain a wide range of biochemicals. 

 

 

a, Subset of a heat map showing the directional mean absolute SHAP values (Methods) of various 
features (x axis) computed from fivefold cross-validation models that predict metabolite levels (y 
axis) using two separate models, one based on diet and another on gut microbiome data. Positive 
(negative) SHAP values indicate that higher (lower) feature values lead, on average, to higher 
predicted values. Shown are the top 100 predicted metabolites using diet and gut microbiome, and 
the top 30 features by maximum mean absolute SHAP value across all metabolites. See extended 
heat map in Extended Data Fig. 7g. b, The EV of every metabolite from microbiome-based 
prediction models (x axis) compared to using only the top predictor of that metabolite, selected as 
the feature with the largest mean absolute SHAP value (y axis). Dashed red lines mark different y:x 
ratios. PAGln, phenylacetylglutamine; hydroxy-CMPF*, hydroxy-3-carboxy-4-methyl-5-propyl-2-
furanpropanoic acid. 
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Fig. 4: Increases in levels of metabolites explained by bread after an intervention of increased 
bread consumption. 

 

 

a, Schematic of the measurement of metabolites and of white bread and whole wheat bread 
consumption. The prediction models were constructed using samples from distinct participants who 
consumed and recorded their normal diet for one week10 (n = 458 participants). We analysed 
samples from the first week of a randomized controlled trial29, in which 10 participants increased 
their consumption of wholegrain sourdough bread and 10 others increased their consumption of 
industrial white bread. b, Histogram of directional mean absolute SHAP values of whole wheat 
bread consumption for metabolites computed on the basis of held-out samples from our cohort. The 
top 5% (n = 59; blue) positively associated metabolites and the top 5% (n = 59; red) negatively 
associated metabolites are used for further analysis. c, Box plots (centre, median; box, IQR; 
whiskers, 1.5 × IQR) showing the mean fold change in the top 5% positively (blue) and negatively 
(red) associated metabolites, separated by intervention group. They show a significantly higher 
mean fold change for the top 5% positively associated metabolites compared with the top 5% 
negatively associated metabolites under the sourdough bread intervention (two-sided Mann–
Whitney U-test, P = 5 × 10−11). d, e, The fold changes of metabolite levels for both betaine (d; 
two-sided Mann–Whitney U-test, P = 0.0036) and cytosine (e; P = 0.0014) were higher in the 
sourdough bread group compared to the white bread group. 
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Extended Data Fig. 1: Accurate and reproducible untargeted serum metabolomics. 

 

a, Breakdown of the 1,251 measured metabolites by type. b, Number of samples (y axis) in which 
each metabolite (x axis) was identified, sorted by prevalence. c, d, Mass-spectrometry 
measurements (y axis) versus standardized lab tests results (x axis; Methods) for creatinine (c; 
Pearson’s R = 0.87, P < 10−20) and cholesterol (d; R = 0.79, P < 10−20). e, Spearman correlations (y 
axis: centre, median; box, IQR; whiskers, 1.5 × IQR) between standardized metabolomic profiles 
(Methods) of different individuals (n = 475; median Spearman’s ρ 0.05, s.d. 0.12) stratified by sex, 
and between standardized metabolomic profiles of the same participant (n = 20; median Spearman ρ 
0.68, s.d. 0.06) taken one week apart. C&V, cofactors and vitamins; a.u., arbitrary units. 
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Extended Data Fig. 2: Biological sub pathway prediction of unidentified molecules. 

 

Figure panels refer to the results of a leave-one-out cross validation prediction model of sub 
pathways of metabolites based on their normalized levels, raw mean, percentage of missing values, 
and SHAP values (Methods). Results shown are for a model trained using only sub pathways that 
include over 10 molecules in our data (28 sub pathways, 572 named metabolites). a, The overall 
accuracy of the sub pathway classifier (y axis) when a success is considered as having the true label 
in one of the top k predictions (x axis). b, The log loss of the classifier (y axis) computed over the 
resulting soft max (raw probabilities; blue) and a dichotomous matrix in which for every metabolite 
we only keep the top predicted sub pathway as 1 and zero-out all other predictions (red). c, The 
overall accuracy of the model (left y axis; blue) and the corresponding fraction of metabolites (right 
y axis; red) when considering only metabolites for which the classifier predicted a maximal 
probability above some threshold (x axis). d, A confusion matrix showing the predicted sub 
pathways (x axis), determined as the label with the highest probability per metabolite, versus the 
true annotated sub pathways (y axis). Each cell in the matrix counts the number of metabolites of a 
certain true sub pathway (y axis) which were assigned with some predicted sub pathway (x axis) by 
our model. The rightmost column is the sum of every row and represents the number of metabolites 
annotated for every sub pathway. The matrix is ordered by the higher order biological pathway 
(super pathway). Cell colours are log scaled. e, Classification results summarizing the f1-score, 
precision and recall per sub pathway. Rows correspond to the sub pathway annotation in d. f, For 
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every sub pathway (y axis) shown are the fraction of metabolites truly annotated as such (black), 
predicted as such by the classifier (blue; out of the named molecules in the support of the model), 
and the fraction of unidentified molecules predicted as such (out of all unidentified molecules). M., 
metabolism; Xeno., xenobiotics; Ptds, peptides; AAs, amino acids. 
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Extended Data Fig. 3: Comparative analysis of linear versus nonlinear models and in-sample 
versus out-of-sample predictions. 

 

a, Metabolite prediction R2 of GBDT versus Lasso regression models using diet data. Shown are 
only metabolites for which at least one model achieved significant predictions with R2 greater than 
0.05. b, Histogram of the differences between the R2 of GBDT compared to Lasso regression using 
the diet data. c, The levels of the metabolite hydroxy-CMPF* (y axis: centre, median; box, IQR; 
whiskers, 1.5 × IQR) versus the monthly consumption of cooked, baked or grilled fish as reported 
in a food frequency questionnaire. The comparison of Spearman’s and Pearson’s correlation 
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coefficients suggests that the relationship between the metabolite and the numerical values of the 
question are monotonic yet nonlinear, which explains why GBDT performs better in predicting the 
levels of hydroxy-CMPF* from diet data. The x axis is not to scale. d, e, Same as a, b for 
microbiome. f, Estimations of gut microbiome explainability (b2) of metabolite levels obtained via 
applying a linear mixed model on the bacterial species composition as previously described (y axis) 
versus the explained variance (R2) of metabolites from out-of-sample prediction models based on 
the same gut microbiome data. Shown are only metabolites with significant b2 estimates (5% FDR). 
g, Histogram of the differences between the b2 estimates and the R2 of out-of-sample prediction 
using the gut microbiome data. 

  



27 
 

Extended Data Fig. 4: Comparison of explained variance of metabolites for every pair of 
feature groups. 

 

Dot plots of the explained variance of the metabolite groups (y axis) from models based on every 
pair of feature groups (x axis). Panels on the diagonal show the marginal distribution of explained 
variance of metabolite groups for a certain feature group. 
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Extended Data Fig. 5: Comparative analysis of different feature groups. 

 

a, Spearman correlations computed between the EV of metabolites for every pair of feature groups. 
b, The proportion of variance explained by each of the first 400 principal components (left y axis; 
black) and their cumulative EV (right y axis; blue). c, R2 multiplied by the sign of the Pearson 
correlation coefficient (x axis) between metabolite levels and BMI in our study, versus the mean R2 
multiplied by the sign of the Pearson correlation coefficient (y axis) of BMI associated metabolites 
recently reported by a different group13. Shown are 36 (out of 49) BMI associated metabolites that 
were also measured in this cohort. P value for the Pearson correlation, P = 7 × 10−11. Line and 
shaded colouring represent the fitting of a linear model and the 95% confidence interval. d, The EV 
of every metabolite from prediction models based on the gut microbiome (x axis) versus diet (y 
axis). Dashed red line is y = x. e, Same for prediction models based on both gut microbiome and 
diet (x axis) compared to using only diet (y axis). f, Same for prediction models based on diet and 
permuted gut microbiome (x axis) compared to using only diet (y axis). MB, microbiome. 
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Extended Data Fig. 6: Networks of interactions between phenotypes explain diverse 
metabolites. 

 

Interactions between features from different feature groups predictive of similar metabolites are 
presented in a graphical layout, in which nodes are either metabolites or features, and edges are the 
directional mean absolute SHAP values (Methods) computed from models trained only on features 
from the respective feature group. Circular nodes, metabolites; predictive feature nodes, squares; 
both coloured by relevant categories. Shown are only edges with a mean absolute SHAP value 
greater than 0.12. a, Network of associations for the following feature groups: macronutrients, diet, 
microbiome, lifestyle, drugs and seasonal effects. b, A large group of metabolites for which 
predictions are mainly driven by the reported consumption of coffee and the relative abundance of a 
bacteria from the Clostridiales order. c, Metabolites explained by seasonal fruit consumption. d, 
Selected examples of interactions between metabolites and features in predictive models. 
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Extended Data Fig. 7: Specific dietary features and bacterial taxa underlie the accurate 
prediction of circulating metabolites. 

 

a–f, Predicted (y axis) versus measured (x axis) levels (arbitrary units) of X-16124 (a; Pearson’s R 
= 0.77, P < 10−20), phenylacetylglutamine (b; R = 0.63, P < 10−20), p-cresol-glucuronide (c; R = 
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0.64, P < 10−20), caffeine (d; R = 0.68, P < 10−20), hydroxy-CMPF (e; R = 0.72, P < 10−20) and 
stachydrine (f; R = 0.5, P < 10−20). Predictions of a–c are based only on microbiome data, and 
coloured by the relative abundance of the bacterial taxa having the highest mean absolute SHAP 
value for each metabolite. Predictions of d–f are based only on diet data, and coloured by the 
reported consumption of the dietary item having the highest mean absolute SHAP value for each 
metabolite. P values for prediction were estimated via bootstrapping. g, Heat map showing the 
directional mean absolute SHAP values (Methods) of various features (x axis) computed from 
fivefold cross validation models that predict metabolite levels (y axis) using two separate models, 
one based on diet and another on gut microbiome data. Positive (negative) SHAP values indicate 
that higher (lower) feature values lead, on average, to higher predicted values. Shown are the top 
150 predicted metabolites using diet and gut microbiome, and the top 40 features by maximum 
mean absolute SHAP value across all metabolites. 

  



32 
 

Extended Data Fig. 8: Distribution of phyla and a taxa from the Eggerthellaceae family. 

 

a, Stacked bar plots per sample (x axis) showing the relative abundance of bacterial phyla (y axis). 
Samples are sorted by the relative abundance of the most abundant phylum, Firmicutes. 
Bacteroidetes is the second most abundant phylum in our cohort. Relative abundance of a phylum is 
computed as the sum over relative abundances of all bacterial features belonging to that phylum. b, 
The levels of the unidentified compound X-16124 in individuals for which the bacterial taxa from 
the Eggerthellaceae family was detectable in stool versus individuals for which it was not (P < 
10−20, two-sided Mann–Whitney U-test). 

  



33 
 

Extended Data Fig. 9: The unidentified molecule X-21441 associates with rs8187710 
independent of age. 

 

a, A table showing the coefficients, standard errors and P values resulted from a multiple linear 
regression model with levels of the unidentified molecule X-21441 as the dependent variable, the 
allele dosage of rs8187710 (0–2) and age (years) as the independent variables: yX-21441 = constant 
+ β1 × rs8187710 + β2 × Age. b, The levels of X-21441 (y axis; centre, median; box, IQR; whiskers, 
1.5 × IQR) versus the genotype of the participants (x axis). The number of participants with each 
genotype is indicated below the tick labels. The explained variance of X-21441 by rs8187710 as 
estimated using plink (Methods) is indicated on the upper right corner of the panel. c, The levels of 
X-21441 versus the age of the participants (x axis) coloured by genotype of participants. Line and 
shaded colouring represent the fitting of a linear model and the 95% confidence interval. SE, 
standard error. 
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Extended Data Table 1 Basic characteristics and demographics of our main and validation 
cohorts 

 



Supplementary Information 

Supplementary Note 1: Prediction of candidate biological pathways of unidentified 
compounds 

In our data, unidentified molecules represent approximately 30% of the pool of currently 
identifiable metabolites in human serum. These unidentified molecules, being relatively 
unexplored, hold new opportunities for biomarker discovery and for a more complete 
understanding of the metabolic landscape. Therefore, a major priority is to infer their chemical 
identity and biological relevance. To that end, we developed a machine learning classifier to 
predict the biological pathway of metabolites based on their measured levels in our cohort, as 
well as on their interactions with the comprehensive profiling of our participants as captured by 
the SHAP values described above (Methods).  

To evaluate our model, we used a leave-one-out cross validation scheme, in which we 
obtained a prediction of the high resolution biological pathway (termed sub pathway) for every 
named molecule. We found that the overall accuracy across subpathways which include over 10 
molecules in our data was 63.1%. These pathways consist of the 28 most common 
subpathways, covering a total of 572 metabolites, where the fraction of the most common sub 
pathway was only 7.7%. A common evaluation metric for multi-label classification problems53 is 
the accuracy of the model allowing for the true label to be among the top several predictions 
(usually 2-5). Having the true label among the few top predictions of a classifier implies that 
these next best predictions should also be considered when the uncertainty is high. Indeed, 
when allowing for the true label to be among the top two/five predictions, the overall accuracy 
went up to 76.6%/89.3% (Extended Data Fig. 2a), respectively, while the cumulative fraction of 
the two/five most common sub pathways was only 14.7%/30%. Accordingly, the log loss of the 
model’s error was significantly lower when computed over the raw classifier output 
(probabilities), compared to the log loss computed over a dichotomous prediction vector 
(assigning 1 for the top scoring prediction, and 0 to all others; Extended Data Fig. 2b). For 
some sub pathways, mostly including structural related compounds such as plasmalogens, 
lysophospholipids but also for distinctive phenotype related compounds such as androgenic 
steroids and xanthine metabolites, our model achieved near perfect classification results, 
assigning almost all related metabolites with the right label. Yet, for several sub pathways, 
mostly classified as amino acids such as histidine and lysine metabolism, but also xenobiotics, 
for which the classification into drugs, chemicals or food/plant components is rather artificial and 
sometimes context dependent, our model had lower rates of precision and recall (Extended 
Data Fig. 2d,e). As another measure to estimate the performance and uncertainty of our model, 
we asked how its accuracy would change if we only considered cases in which the maximal 
predicted probability was above some threshold. We found that in cases for which our model 
assigned its top prediction with a probability of 0.6 or higher (covering 47.3% of the relevant 
metabolites), its overall accuracy was 89.7% (Extended Data Fig. 2c). 
 We next applied our model to the unidentified metabolites and obtained predictions of 
their underlying sub pathways (Supplementary Table 2). According to our model, the 



unidentified molecules are significantly enriched for xenobiotics, as the fraction of compounds 
which the model predicted to be food or plant components (a sub pathway of xenobiotics) was 
28%, compared to only 10.6% in the identified metabolites (p<10-10, Binomial test; Extended 
Data Fig. 2f; Supplementary Table 3). Other sub pathways which seem to be in higher 
abundance in the unidentified pool of molecules are tryptophan metabolism (7.6% vs 2.6%, 
p<10-5) and dicarboxylates (8.8% vs 4%, p<10-4). In contrast, our model predicts that some 
lipids such as sphingolipids and lysophospholipids are significantly underrepresented among the 
unidentified metabolites, which is further supported by the high recall of our model for these sub 
pathways. Still, we expect that the accuracy of the model for the unidentified molecules to be 
lower than for the identified ones, as the unidentified metabolites are likely to also cover less 
common sub pathways which are not represented in the pool of named molecules. As partial 
validation of the performance of our model on the unidentified molecules, we examined its 
biological pathway predictions on a set of 85 unidentified metabolites which were recently 
identified or partly identified by Metabolon (Supplementary Table 4; Methods). Among these 
85 metabolites, only 43 belong to sub pathways which were covered by our model, while the 
rest are either partly characterized (17), belong to an uncommon pathway (8) or were only 
assigned with a candidate structure (17). Using only our model’s best guess, we correctly 
predicted the sub pathway for 18 out of the 43 metabolites, while the true label was among the 
top three predictions in 30 out of 43 cases (Supplementary Table 5). 
 Of particular interest are metabolites which are accurately predicted by the gut 
microbiome, as they may be modulated by perturbing the bacterial community. Since many of 
the metabolites that were predicted by the gut microbiome with high accuracy are unidentified, 
our predictions of their biological pathway may help elucidate their role in chemical reactions 
and in bacterial metabolism in general. Among these molecules, some are predicted by the 
microbiome with the highest accuracy, including X-11850, X-12126, X-12216 and X-11843. 
These were all predicted with R2>0.25 using the microbiome, and according to a recent effort by 
Metabolon, are likely to be derivatives of aromatic amino acids, a class of molecules known to 
be metabolized by the gut microbiome54. Indeed, our model predicts that these metabolites are 
most likely to take part in the tryptophan and tyrosine metabolism pathways. Another prominent 
class of molecules are secondary bile acids derivatives, which are derived by the enzymatic 
action of intestinal bacteria55,56. Notable examples of these molecules include X-17469, X-
14662, X-16654 and X-11491, which Metabolon has recently identified as lithocholic acid 
sulfate, glycoursodeoxycholate sulfate, deoxycholic acid 12-sulfate and deoxycholic acid 
glucuronide, with accordance to our model’s prediction of these metabolites being secondary 
bile acid derivatives. Using our model, we predict that several other unidentified metabolites are 
in fact part of the secondary bile acid metabolism pathway, such as X-22834, X-22520, X-
17612, X-19438 and X-21467. 

Overall, our model persistently predicts that among the 75 unidentified metabolites best 
explained by gut microbiome data (R2>5%), most are xenobiotics (e.g. food or plant 
components, benzoate metabolites and other chemicals), aromatic amino acid derivatives 
(tryptophan, histidine and tyrosine metabolites), fatty acids and secondary bile acid derivatives. 
Finally, as unidentified molecules constitute a large portion of metabolites explained by the 
human microbiome, our predictions of their biological pathways constitute a major step towards 
mapping the metabolic producing and modulating potential of the human gut microbiome. 



Supplementary Note 2: Out-of-sample performance evaluation 

Across this study we purposely decided to report only estimates computed via out-of-sample 
predictions, since we view such evaluation of performance based only on unseen samples as 
the most strict and conservative estimate of performance. As such, our results constitute a very 
conservative estimate for the amount of variance in metabolite levels that may be explained by 
the various features we examined. Furthermore, unlike age, sex, or other clinical parameters 
which have a simple structure and can be measured accurately, features such as diet and gut 
microbiome composition have inherent measurement noise and their complexity makes them 
much harder to represent, further emphasizing that our results are conservative, as advances in 
methodologies for analysis of such data may increase prediction power. The heterogeneity of 
our data is yet another aspect in which out-of-sample prediction comes in handy, since its 
estimates do not depend on modeling assumptions, as compared to in-sample methodologies 
such as linear mixed models (LMM) which are commonly used in estimation of genetic 
heritability57. Indeed, by applying a LMM-based methodology that we have recently proposed for 
the estimation of explainability of the gut microbiome composition33, we demonstrate that 
estimates obtained via out-of-sample predictions are much more conservative, as we can obtain 
a median gain of 13.9% in EV of metabolites levels by applying these in-sample models 
(Extended Data Fig. 3f,g; Methods). 

Supplementary Note 3: Features interact in metabolome predictions 

We next examined how different feature groups interact in explaining the levels of various 
metabolites, by building separate models based on each, and using SHAP in order to estimate 
the impact of each feature on the output of the models. We uncovered a dense network of 
interactions between feature groups in explaining metabolite levels (Extended Data Fig. 6a; 
Methods).  

As mentioned above, we found that coffee consumption was linked to a large number of 
metabolites, most of which are unidentified compounds and xenobiotics from the xanthine 
metabolism pathway. Notably, we found that a specific Clostridiales species was linked to many 
of these (Extended Data Fig. 6b), suggesting a possible interaction between coffee 
consumption and the presence of these bacteria in explaining the levels of these metabolites. 
Being the most predictive features among their feature categories, coffee consumption and this 
Clostridiales species may be targets for validation using interventional studies. 

The consumption of citrus fruits such as oranges positively affected (on average) the 
prediction of several metabolites such as stachydrine, a known biomarker for the consumption 
of citrus fruits58 (also named proline betaine; significantly predicted by diet, Pearson R=0.50, 
p<10-20), which in turn had higher values in samples taken in winter months, consistent with the 
fact that oranges are seasonal fruits available in Israel mostly during winter (Extended Data 
Fig. 6c). Another example is N-methyltaurine (R=0.35, p<10-20), an amino acid which has higher 
levels in samples taken during winter, and whose prediction was negatively affected by the 
consumption of watermelon, a summer seasonal fruit (Extended Data Fig. 6c). 
Additionally, to further assess the quality of our results, we explored several associations which 
were previously reported (Extended Data Fig. 6d). We found that the levels of cortisol were 
lower in samples taken during the second half of the day (Prediction with time of day, R=0.63, 



p<10-20, positive SHAP value for samples taken in the morning), consistent with previous studies 
showing that cortisol levels peak early in the morning59. We also found that tobacco-related 
metabolites such as cotinine (Prediction R=0.72 by lifestyle, p<10-20) had higher levels in active 
smokers (positive SHAP values for smoking), and that no other feature could significantly 
explain their levels. Finally, we found that blood serotonin levels (Prediction R=0.46 by drugs, 
p<10-6) were lower in participants who reported taking psychiatric drugs (negative SHAP 
values), despite serotonin being a therapeutic target for selective serotonin reuptake inhibitors60 
prescribed to increase serotonin levels in the brain. 

Supplementary Note 4: Limited statistical power for the identification of low effect size 
genetic variants 

We previously argued33 that assessing the impact of human genetics on continuous traits (SNP 
heritability) requires much larger cohorts, as high confidence heritability estimates are feasible 
only when cohort size exceeds several thousands of participants. We nevertheless included 
analysis of human genetics in this study, as it is well established that genetics have a wide 
influence over the levels of blood metabolites2,3,21–24. As the size of our cohort is moderately 
small compared to other cohorts used in the field of human genetics, ranging between tens of 
thousands to hundreds of thousands61, we were limited in terms of the statistical power needed 
for the identification of relatively small effect variants (R2<10%), hence we only report of 
associations with large effect size. Reporting only large effect variants further introduces bias to 
the estimates, as we were unable to include associations of smaller effect size, which are highly 
prevalent and likely to occur, even if they are detectable in our data. Though our cohort is not 
the largest in which serum metabolomics was coupled with human genetics, it is still the only 
cohort in which serum metabolomics was coupled with other phenotyping assays, allowing 
comparison of the relative contribution of many established potential determinants of the serum 
metabolome. It will be interesting to revisit these comparisons of the predictive power of 
genetics, diet, and gut microbiome and validate our results in a much larger cohort in which all 
these data are profiled. 
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