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Abstract
In dealing with rockfall risk mitigation, a proper assessment of the phenomenon is the key to correctly and precisely manag-
ing its possible consequences. In doing so, numerical simulations are an unavoidable step of the assessment process. The 
proper description of the slope and the falling rock is paramount. Thus, it is highly relevant to accurately assess block size 
and shape. Block size directly defines the kinetic energy involved in the phenomenon, whilst shape directly influences its 
trajectory. Tools to properly assess both block size and shape are available, either in analytical form or relying upon Discrete 
Fracture Network (DFN) models. However, at present, no concrete demonstration of the equivalence of these two methods 
is provided in the literature. Moreover, block size and shape are always treated separately, while it is likely that a relation-
ship of some sort exists between the two as they derive from the same features of the rock mass (i.e., the 3D geometry of 
its discontinuities). This paper presents a comprehensive study concerning (1) the comparison between DFN and analytical 
approaches and (2) the existence and quantification of a shape–size correlation. A modeling campaign consisting of 20 dif-
ferent geometrical structures is performed with both methods, with the aim of obtaining In Situ Block Size Distributions and 
Shape Distributions. Although the DFN and the analytical approach have different advantages and disadvantages, they have 
proved to be comparable in terms of results. Both methods identify the existence of a correlation between shape and size of 
the blocks: the shape distribution changes with reference to block size. This result points out the importance of implement-
ing shape distribution in rockfall numerical simulations. Finally, a suitable case study from the literature has been selected 
to test the applicability and usefulness of the new findings for the design of rockfall barriers.

Highlights

•	 In situ block size distribution assessment through different methods.
•	 Block shape assessment and shape distribution evaluation.
•	 Investigation of relationships between block size and shape.
•	 Application to rock fall hazard assessment.
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CV	� Coefficient of variation
REV	� Representative elementary volume
P32	� Fracture intensity
Ψ	� Expected value (mean) of dip angle of a dis-

continuity plane
α	� Expected value (mean) of dip direction angle 

of a discontinuity plane
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σΨ	� Variance of dip angle
σα	� Variance of dip direction angle
S 	� Spacing, intended for both a deterministic 

value and a continuous random variable
μ	� Expected value (mean) of spacing (coincident 

with E[S])
σ2	� Variance of spacing (coincident with Var[S])
V	� Volume
μv	� Expected value (mean) of volume
σv	� Variance of volume
N	� Number of data in the spacing or volume 

sample
E[V]	� Expected value (mean) of volume
Var[V]	� Variance of volume
Ki, Kj, Kk	� Discontinuity sets
Si, Sj, Sk	� Spacing of the three discontinuity sets generat-

ing the block
γij, γjk, γki	� Angles between pairs of discontinuity sets gen-

erating the block
δk-ij	� Angle between Kk and the intersection of Ki 

and Kj
q	� Dimensionless number calculated based on 

the orientation of the three discontinuity sets 
generating the block

Lo	� Length of the longest edge of the block
In	� Length of the intermediate edge of the block
Sh	� Length of the shortest edge of the block
Vn%	� Volume corresponding to n% cumulative fre-

quency in IBSD (i.e., V99% corresponds to 99% 
cumulative frequency of IBSD)

Ek	� Total kinetic energy of the block

1  Introduction

In dealing with rockfall risk mitigation, a proper assessment 
of the phenomenon is key for the correct and precise man-
agement of its possible consequences. In doing so, numeri-
cal simulations are an unavoidable step of the assessment 
process: in fact, rockfall hazard assessment involves the 
statistical analysis of the outputs of a large number of simu-
lations to evaluate, for instance, the variability of the pos-
sible runout paths, and consequently to quantify the energies 
involved (Volkwein et al. 2011). The accuracy of numeri-
cal simulations is directly influenced by the accuracy and 
reliability of the model they are based upon. Therefore, the 
proper description of the slope and the falling rock are para-
mount. Focusing exclusively on the rock mass, two of the 
most influential features, in terms of influence on the propa-
gation of a rockfall event, are block size and shape (Pfeiffer 
and Bowen 1989).

Block size directly defines the kinetic energy involved 
in the propagation phase of the phenomenon. It is generally 

assumed to be one of the most relevant parameters to be 
assessed and quantified in rockfall hazard analysis. In fact, 
traditional design methods for protection works are com-
monly referred to as energy-based (Wyllie 2015). Issues 
arise from the fact that block size suffers from natural vari-
ability as a consequence of the natural variability of the 
joint spacing and orientation within a given rock mass. 
Therefore, a single deterministic block size value cannot 
satisfy the high accuracy and reliability requirements of 
a proper hazard assessment. To solve this issue, which is 
not exclusively related to rockfall modeling, but rather to 
the general description of the geometric features of a rock 
mass, the concept of In-situ Block Size Distribution (IBSD) 
was introduced (Wang et al. 1991, 1993; Lu and Latham 
1999; Stavropoulou 2014; Umili et al. 2023). This approach 
allowed to step away from single deterministic values, mov-
ing towards a fully probabilistic description of block size, 
where the variable is presented as a cumulative frequency 
distribution. Such a distribution can be obtained by means 
of analytical equations, such as the original definition of 
IBSD intended: a good overview of the available empirical 
relations to quantify block volume is presented by Koulibaly 
et al. (2023). The IBSD can also be assessed by employing 
a discrete fracture network (DFN) to construct a numeri-
cal model of a jointed rock mass: DFNs, as introduced by 
Baecher (1983), Andersson et al. (1984), and Dershowitz 
and Einstein (1988), are an intuitive and very powerful tool 
to assess the geometrical features of a rock mass, directly 
simulating the discontinuities within a rock volume. An 
IBSD can be either employed to quantitatively justify the 
choice of a reference block size value or directly as input for 
numerical simulations; this means that the IBSD approach 
can still be employed in the conventional and traditional 
design approaches while also allowing for more sophisti-
cated techniques to be used (Taboni et al. 2023).

Block shape is a direct consequence of the geometric 
characteristics of the rock mass, similarly to block size 
(Mauldon 1994). Shape also plays a significant role, as it 
directly influences the geometric side of the propagation 
phase of a rockfall event (i.e., the trajectory of the falling 
block) and its randomness (Kobayashi et al. 1990). For this 
reason, in recent years, the scientific literature has produced 
several works assessing the significance of block shape (Tor-
sello et al. 2021; Caviezel et al. 2021; Umili et al 2023) and 
the role of proper shape integration within numerical simu-
lations (Bourrier and Acary 2022). Moreover, nowadays, 
rockfall simulation software capable of integrating block 
shapes is common, although mainly limited to 3D simula-
tions and with different levels of accuracy and complexity 
(Pfeifer and Bowen 1989; Dorren 2016; Toe et al. 2018; 
Leine et al. 2014, 2021; Noël et al. 2016, 2021). Outside of 
the context of run-out numerical simulations, it should be 
noted how shape also influences the interaction between the 
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falling block and existing passive protection works, such 
as flexible barriers, along its path (Yu et al. 2021). Given 
that the natural variability of rock mass geometric proper-
ties influences block size as well as block shape, a tool to 
describe block shape variability quantitatively is required. 
Kalenchuk et al. (2006, 2008), while analyzing block shapes 
derived from both DFN derived from real case studies and 
purely synthetic DFN models, found that the actual shapes 
of the observed blocks can be plotted on a triangular shape 
classification diagram of their design. An application of 
this approach is provided by Buyer et al. (2020) and Kong 
et al. (2021). The same results were also found by Feng et al. 
(2011). Following a similar approach, Umili et al. (2023) 
expanded upon this and introduced the Shape Distribution 
(SD) in the context of rockfall problems; such distribution 
describes the relative abundance of each shape type with ref-
erence to Palmstrom’s classification of block shapes (Palm-
strom 2001): the intent was to provide an easy-to-reproduce 
analytical methodology, based upon a simplification of 
the actual geometry of the problem. In fact, the blocks are 
assumed to be orthogonal prisms, i.e., all sides are normal 
or very close to normal with respect to each other. Under 
this assumption, the distance between the opposite faces 
of the prism, namely the spacing between planes belong-
ing to the same discontinuity set, corresponds to the edge 
length. Therefore, the spacing distributions of the three joint 
sets also describe the prism edges. The shape classification 
selected to visualize the distribution is actually irrelevant, 
as the methodology works in any case. Thus, it can be seen 
that it is possible to derive a relative frequency distribution 
both from DFN models and analytical methods. It should 
be kept in mind that DFN models require the assessment 
of the Representative Elementary Volume (REV) to model 
any real case properly (Zhou et al. 2022; Huang et al. 2024). 
Such a distribution can be used to define a reference shape 
for numerical simulations (i.e., the most frequent one) if 
the distribution features one clearly dominant shape type. 
Alternatively, one can perform as many sets of numerical 
simulations as the considered shape classes and weight the 
results based on their relative frequency. Such an approach 
is presented by Taboni et al. (2023), providing also a practi-
cal application.

Thus, it is clear that tools to assess both block size and 
shape properly are available, either in analytical form or 
relying upon DFN models. Theoretically, both methods 
should yield similar or very similar results, given the same 
input data. In practice, to the best of the authors' knowledge, 
no concrete demonstration of this fact is provided in the 
literature. It also appears quite evident that relying on DFNs 
is significantly more common than employing analytical 
approaches when dealing with rock mass characterization 

and instability, independently of the scale of the phenomena 
(Bhusan et al. 2020; Wang and Cai 2020; Zhang et al. 2021; 
Singh et al. 2022; Fan et al. 2023;). Moreover, the two block 
features, namely size and shape, are always treated sepa-
rately for the sake of simplicity. In reality, though, it is likely 
that a relationship of some sort exists between the two fea-
tures, as they both depend on the same geometrical param-
eters (i.e., spacing and orientation of joints). As a matter of 
fact, both Kalenchuk et al. (2006, 2008) and, consequently, 
Umili et al. (2023) pointed out that when plotting the dis-
tribution of shapes with regard to the corresponding size of 
each plotted block, a trend is visible: the larger the volume, 
the higher the likelihood of an equidimensional shape.

In this paper, the authors present a comprehensive study 
concerning (1) the comparison between DFN and analyti-
cal approaches, highlighting the similarity of the results, 
methodological differences, and advantages or limitations; 
(2) the existence and quantification of a shape–size correla-
tion. A modeling campaign consisting of 20 different geo-
metrical structures is performed with both methods, with 
the aim of obtaining IBSDs and SDs. Although the DFN 
and the analytical approach have different advantages and 
disadvantages, they have proved to be comparable in terms 
of results. Finally, a suitable case study from the literature 
has been selected to test the applicability and usefulness of 
the new findings for the design of rockfall barriers.

2 � Materials and Methods

2.1 � Block Volume Assessment

The DFN approach provides the three-dimensional descrip-
tion of a rock mass discrete features. In fact, the geometrical 
structure of a rock mass can be modeled by employing DFN 
software: a defined volume is assumed as the box containing 
the rock mass. The input discontinuity sets, along with their 
geometrical features (i.e., orientation and spacing), control 
the number, size, and shape of the blocks constituting the 
model. Theoretically, an equivalent result can be obtained 
through an analytical approach based on the same input vari-
ables: in this case, however, the model is not explicitly or 
graphically created and, therefore, is not visible in a defined 
space; this method provides only a list of geometrical fea-
tures, not associated with specific coordinates in the space. 
In both cases, the natural variability of the geometrical fea-
tures in the rock mass can be modeled by associating fre-
quency distributions to the orientation and spacing input 
data of the main discontinuity sets.

Sections 2.1.1 and 2.1.2 contain a detailed explanation 
of both methods.
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2.1.1 � DFN‑Based Method for Volume Assessment

A DFN creates a 3D box representing the intact rock matrix 
and, through specific commands, cuts it into blocks by inter-
rupting its continuity along planes. A discontinuity set in 
the rock mass is modeled as a group of planes, by inputting 
the mean orientation, usually expressed by dip (Ψ) and dip 
direction (α) and their variability (σΨ, σα), the mean spacing 
(μ), and its variability (σ). In the research work presented 
here, the authors used 3DEC (ITASCA 2007) as a DFN: 
three perpendicular discontinuity sets were input to create 
regular blocks of six faces each. The choice of not assigning 
a variability to the orientation, combined with the adoption 
of fully persistent planes, was made to focus the attention 
on the effect of the variability of the spacing only. In this 
regard, spacing of the three sets was set to vary both in terms 
of μ and σ. 3DEC’s manual states that the input σ is used to 
assign a random deviation for each cut, generated by a call 
to a random number generator. This fact corresponds to the 
adoption of a Normal PDF.

The aim of utilizing a DFN in this work is to create the 
IBSD under specific input conditions. However, since the 
modeled volume is finite, the ratio between block volumes 
and model volume influences the representativeness of the 
results. In other words, it is of fundamental importance to 
find the REV. With reference to jointed rock masses, the 
REV can be defined as the volume of investigated rock con-
taining enough discontinuities and inhomogeneities so that 
the global average value is consistent for repeated measure-
ments (Esmaieli et al. 2010). The value of REV for a given 
case can be easily assessed with a diagram such as the one 
proposed by Hudson and Harrison (1997), where a variable 
is plotted against the reference volume in order to identify 
the REV size.

Therefore, the first series of experiments were designed 
to model five rock masses, each affected by the presence of 
three perpendicular discontinuity sets, characterized by five 
different triplets of average spacing values (μ1, μ2, μ3) and 
null standard deviation (σ1 = σ2 = σ3 = 0). Each triplet is asso-
ciated with a constant expected volume E[V] and a different 
expected block shape. Based on the chosen E[V], a series 
of cubic models with increasing edge length are generated 
to find the REV. For each of these models, the block list is 
extracted to build the IBSD and calculate the average block 
size μv and the corresponding block size standard deviation 
σv. The theoretical IBSD for each of these models is repre-
sented by a vertical line extending from 0 to 100%, whose 
abscissa is equal to E[V]. The choice of REV, namely the 
choice of the model edge length, is based on the comparison 
of the obtained IBSDs with the theoretical one; moreover, 
other criteria consist of the analysis of the trends of μv and 

σv, to assess the minimum model edge length for which the 
influence of model size becomes negligible on the results.

Once the REV is assessed, a further series of analyses can 
be carried out to assess the influence of spacing variability 
on the IBSD and SD. For this purpose, the same spacing tri-
plets as in the first series of models are considered, and three 
increasing standard deviations are assumed. In this way, a 
total of 20 volume distributions will be obtained from the 
generated models.

2.1.2 � Analytical Method for Volume Assessment

The analytical method (AM) here tested is based on the defini-
tion of IBSD introduced by Umili et al. (2023). It adopts the 
equation for calculating block volume proposed by Umili et al. 
(2024), which has been proven to be geometrically correct

where S1, S2, and S3 are the average spacing values of the 
three discontinuity sets generating the block. The coefficient 
q is a dimensionless number that depends only on the rela-
tive orientation of the three joint sets defining the block, 
namely the angles between normal vectors; it can be cal-
culated as

where γ12 is the angle between K1 and K2, and δ3-12 is the 
angle between K3 and the intersection of K1 and K2. If the 
block is a regular prism whose angles among sets are all 
equal to 90°, q is equal to 1.

Briefly, the analytical definition of the IBSD is based 
on the assumption that the spacing of a discontinuity set is 
a continuous random variable, which means that its CDF, 
denoted as F(s) = P(S ≤ s), defines the probability that a 
given spacing value S is less than s (Stavropoulou 2014). By 
adopting Eq. 1 and assuming that the spacing distributions 
of the three discontinuity sets are independent, the CDF of 
the block volume can be written as

which represents the analytical definition of the IBSD.
Under the assumption of constant q (E[q] = q, Var[q] = 0), 

Umili et al. (2023) demonstrate that it is possible to explic-
itly calculate the expected value and variance of the volume 
as follows:

(1)V =
S1S2S3

q
,

(2)q = sin�12cos�3−12 = sin�23cos�1−23 = sin�31cos�2−31,

(3)FV (v) =
FS1

(

s1
)

FS2

(

s2
)

FS3

(

s3
)

q
,

(4)E[V] =
μ1μ2μ3

q
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Equation (3) provides an average value of the volume, 
while Eq. (4) provides the variance of the volume, consider-
ing the combined effects of spacing variability, both in terms 
of mean and variance.

To compare the results with those obtained with the DFN 
models, the same PDF distribution type (i.e., normal) and 
the same parameters (μ and σ) are adopted for randomly 
generating sets of spacing values, with which to calculate 
volume samples and build the corresponding IBSDs.

It should be stressed, though, that the analytical approach 
is applicable as presented here only if no more than three 
joint sets are present; if this is not the case, a combinatory 
approach is suggested. In this regard, a DFN approach is 
more flexible.

2.2 � Block Shape Assessment

Following a similar approach, it is possible to define a Shape 
Distribution (SD), with reference to a given block size dis-
tribution. This tool allows for a proper assessment of block 
shape within a given case study. The SD can be computed 
from the block features identified in a DFN model, as was 
done by Kalenchuk et al. (2006, 2008); alternatively, it is 
possible to compute the SD by assuming that the joint sets 
are reciprocally orthogonal and employing their spacing fre-
quency distributions as descriptors for edge length, as was 
suggested by Umili et al. (2023) and Taboni et al. (2023). To 
compare the results of the DFN and the AM, the same clas-
sification system and diagram were used: for its simplicity 
and ease of calculation, we selected Palmstrom’s classifica-
tion (Palmstrom 2001). Such a classification defines four 
shape types, depending on the ratios between the length of 
the longest (Lo), intermediate (In), and shortest (Sh) edge 
of a block. The corresponding logarithmic diagram is, 
thus, divided into four sectors according to the following 
definitions:

•	 Equidimensional or compact prisms, with In/Sh < 2 and 
Lo/Sh < 2;

•	 Long prisms (rods), with In/Sh < 2 and Lo/Sh > 2;
•	 Long flat prisms (blades), with 2 < In/Sh < 1 + (Lo/

Sh–1)^0.5;
•	 Flat prisms (slabs), In/Sh > 1 + (Lo/Sh–1)^0.5.

Given that any classification system relies upon arbitrary 
boundaries to define its classes, it is easy to understand that 
an SD can present itself differently for different shape clas-
sifications. The existence of the SD, though, is independent 
of its representation on a diagram.

(5)
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2.2.1 � DFN‑Based Method for Shape Assessment

For each of the DFN models created, the list of vertices of 
each block, consisting of an identification number and its 
coordinates (X, Y, Z), is automatically extracted. The list is 
used to calculate the length of the six edges of each block. 
Due to the choice of three perpendicular sets, the edges with 
unique values are three for each block. They are then used 
to calculate the ratios In/Sh and Lo/Sh and plot the relative 
points on the shape diagram.

2.2.2 � Analytical Method for Shape Assessment

Based on the same samples of spacing values used to build 
the IBSD with the AM, it is possible to calculate the ratios 
In/Sh and Lo/Sh for each block and plot the relative points 
on the shape diagram.

3 � Calculation of the Required Data

3.1 � Choice of Input Data

The choice of input data for generating the blocks is bound, 
on the one hand, by the need to use only three discontinu-
ity sets to fulfill the requirements of the AM. On the other 
hand, it is constrained by the need to have perpendicular 
discontinuity sets to create regular blocks of six faces each 
and use the shape definition by Palmstrom (2001). Moreover, 
as described in Sect. 2.1.1, the need to assess the influence 
of spacing variability on the IBSD and SD must be coupled 
with the identification of the REV for the DFN models.

Fig. 1   Shape diagram with the five chosen combinations B1, B2, B3, 
B4, and B5
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For these reasons, five spacing triplets (μ1, μ2, μ3) rep-
resentative of five different points on the shape diagram 
are chosen (Fig. 1): they will be referred to as combina-
tions B1, B2, B3, B4, and B5 (Table 1). All the combi-
nations are characterized by the same orientation of the 
three mutually perpendicular sets (K1, K2, K3) and by an 
identical expected block volume E[V] (Eq. 4) equal to 5 
m3. According to the shape diagram, B1 is an equidimen-
sional block, B2 a rod-like one, B3 a blade-like block, and 
B4 a slab-like one; lastly, B5 describes the common point 
between all shapes, identified by the intersection of the 
lines dividing the diagram into the different shape sectors.

For each combination, a null and three increasing σ 
values (0.1, 0.2, 0.5 m) are assumed. A total of 20 sets of 

data were created and inputted both in DFN and AM, to 
perform a broad comparison of the results.

3.2 � REV Identification

The input data of the five combinations (Table 1) are designed 
to produce DFN models with the same E[V], once the REV is 
adopted. In light of this fact, combination B1 is used to assess 
the REV. B1 represents a cube whose edge length is 1.71 m. 
The model edge length is varied from 10 m to 45 m (Table 2): 
this means that the cubic models will theoretically contain 
200 to 18225 blocks. By comparing the IBSDs obtained for 
the different edge lengths, it is possible to note that the curves 
tend to coincide with the theoretical one as the dimension 

Table 1   Orientation and 
spacing data assumed for each 
of the five combinations

Combination K1 K2 K3

Orientation [°] Spacing 
[m]

Orientation [°] Spacing 
[m]

Orientation [°] Spacing 
[m]

Ψ1/α1 μ1 σ1 Ψ2/α2 μ2 σ2 Ψ3/α3 μ3 σ3

B1 90/000 1.71 0 90/090 1.71 0 00/000 1.71 0
90/000 1.71 0.1 90/090 1.71 0.1 00/000 1.71 0.1
90/000 1.71 0.2 90/090 1.71 0.2 00/000 1.71 0.2
90/000 1.71 0.5 90/090 1.71 0.5 00/000 1.71 0.5

B2 90/000 0.77 0 90/090 0.85 0 00/000 7.69 0
90/000 0.77 0.1 90/090 0.85 0.1 00/000 7.69 0.1
90/000 0.77 0.2 90/090 0.85 0.2 00/000 7.69 0.2
90/000 0.77 0.5 90/090 0.85 0.5 00/000 7.69 0.5

B3 90/000 0.64 0 90/090 1.61 0 00/000 4.83 0
90/000 0.64 0.1 90/090 1.61 0.1 00/000 4.83 0.1
90/000 0.64 0.2 90/090 1.61 0.2 00/000 4.83 0.2
90/000 0.64 0.5 90/090 1.61 0.5 00/000 4.83 0.5

B4 90/000 0.58 0 90/090 2.92 0 00/000 2.92 0
90/000 0.58 0.1 90/090 2.92 0.1 00/000 2.92 0.1
90/000 0.58 0.2 90/090 2.92 0.2 00/000 2.92 0.2
90/000 0.58 0.5 90/090 2.92 0.5 00/000 2.92 0.5

B5 90/000 1.08 0 90/090 2.15 0 00/000 2.15 0
90/000 1.08 0.1 90/090 2.15 0.1 00/000 2.15 0.1
90/000 1.08 0.2 90/090 2.15 0.2 00/000 2.15 0.2
90/000 1.08 0.5 90/090 2.15 0.5 00/000 2.15 0.5

Table 2   Cube dimension 
and rock block volumes for 
Combination B1 (σ = 0)

Edge length 
[m]

Number of blocks Block volume

Theoretical Actual Maximum 
[m3]

Minimum [m3] Average 
value [m3]

Variance [m6]

10 200 343 5 0.06 2.92 3.22
20 1600 2197 5 0.02 3.64 3.25
30 5400 6859 5 0.01 3.94 3.13
35 8575 9261 5 0.78 4.63 0.67
40 12,800 13,824 5 0.30 4.63 1.01
45 18,225 19,683 5 0.49 4.63 0.74
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increases (Fig. 2). The actual number of blocks in the models 
converges to the theoretical one with increasing edge length: 
from 35 m, the difference remains stable at +8% with respect 
to the theoretical number. Moreover, by comparing the mean 
μv and standard deviation σv of the block samples generated by 
3DEC models with increasing edge length (Figure 3), one can 
observe a marked variation of both trends in correspondence 
with the model edge length equal to 35 m.

Similar considerations can be made based on fracture inten-
sity P32, which is defined as the ratio of the total area of discon-
tinuities and the volume of the rock mass considered (Zhang 
and Einstein 2000)

where V is the volume of the rock mass considered; S(k) is 
the entire area of the kth discontinuity; m(V) is the number of 
discontinuities (i.e., the number of discontinuity centroids) 
in volume V.

Values of P32 of the DFN models, created with edge 
lengths from 10 to 45 m for each of the five combinations 
B1–B5, are calculated: Fig. 4 depicts them. Considering this 
estimator, too, all the trends agree and show that from 35 m 
edge length, values are reasonably stable as they manifest 
an asymptotic trend.

In light of these observations, a dimension of the virtual 
rock mass of 35 m was chosen for the following analyses as 
the REV.

3.3 � DFN and AM Models Generation

The DFN was used to produce the 20 designed models based 
on the data in Table 1. For each model, the lists of the ver-
tices and block volumes were extracted and processed to 
build the IBSD and SD. Based on the number of blocks (N) 
obtained for a DFN model, the corresponding AM model 
is generated, so that it consists of N spacing data for each 
discontinuity set and, consequently, N blocks.

Matlab function normrnd is used to generate samples of 
random numbers from the Normal distribution, by inputting 
mean parameter (μ), standard deviation parameter (σ), and 
the number of values to be generated (N).

(7)P32 =
1

V

m(V)

∑

k=1

S(k),

Fig. 2   Comparison of IBSDs obtained for different values of model 
edge length

Fig. 3   Mean μv and standard deviation σv of the block samples gener-
ated by 3DEC models with increasing edge length

Fig. 4   Values of P32 calculated for the models generated by 3DEC 
with increasing edge length
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4 � Results and Discussion

Since the models created through DFN and AM have the 
same input data, the first step for a comprehensive com-
parison of the results is the analysis of their raw output 
values. In other words, due to the fact that, in this study, 
block volume is the product of three spacing values, the 
first check must be on the ability of the two methods to 
produce the expected spacing values. Considering that the 
input data (Table 1) describe the theoretical and, therefore, 
true PDF, it is possible to describe the obtained sample 
by means of its average value μ* and standard deviation 
σ*. Defining Δ the difference between the coefficients of 
variation CV* and CV

one can assess a normalized difference between the true 
PDF and the sample PDF: Δ equal to 0 represents complete 
equality. Figure 5 shows the Δ values obtained consider-
ing both methods: in general, values obtained with AM are 
closer to 0, particularly for small σ and μ greater than 1.5 m. 
This means that the process of values generation is rigorous, 
repeatable, and reliable. It is also evident that the spacing 
samples generated by the DFN suffer from an effect of trun-
cation due to the actual process of subdivision of the model 
by means of discontinuity planes. The generated spacing 
samples show a more chaotic behavior of Δ, due mainly to 
a greater difference between the obtained σ* and the true σ.

The analysis of spacing samples is essential for the 
investigation and assessment of volume samples. In fact, 
the effect of μ* and σ* deviation from μ and σ is reflected 

(8)Δ = CV∗ − CV =
�∗

�∗
−

�

�
,

in the difference among the volume PDFs. The theoretical 
E[V] and Var[V] calculated with Eqs. 4 and 5 can be com-
pared to those calculated based on block samples obtained 
using the DFN and AM approaches (Table 3). As expected 
and based on data reported in Fig. 5, the PDF obtained 
with the AM is closer to the theoretical one than the DFN 
one. This fact is true regardless of the σ value.

4.1 � Block Size

The results produced by the methodologies presented in 
Sects. 2.2.1 and 2.2.2 for the DFN approach and the AM 
one, respectively, are visible in Fig. 6: DFN derived IBSD 
on the left, AM calculated IBSD on the right. The results are 
divided according to the expected shape class of the blocks, 
as named in Fig. 1. In each diagram, four IBSDs are por-
trayed to show the effect of increasing σ in the three parent 
spacing distributions.

First of all, it can easily be appreciated that the AM IBSD 
tends to cover a wider range of volumes. This is especially 
visible at high σ values (i.e., 0.5 m), and for the B2 and B3 
blocks (rod- and blade-like shapes, respectively). In fact, 
the maximum volume computed by 3DEC in the case of B3 
is roughly equal to 18 m3, while for the same case, the ana-
lytical solution reaches a maximum volume of 35 m3. This 
can be interpreted as a consequence of the fact that 3DEC, 
or any DFN software for that matter, works on a model of 
pre-defined volume, which has to be equal to or greater than 
the REV to describe the rock mass geometric properties ade-
quately. This induces an unavoidable limitation on the size 
of blocks the DFN can identify, as they have to be smaller 
than the aforementioned pre-defined volume. Such a limita-
tion is absent in the case of the analytic approach, which, 
on the contrary, can benefit from the definition of a reason-
able upper volume limit: Umili et al. (2023) proposed to use 
V99%, i.e., the volume corresponding to 99% probability of 
not being exceeded.

A second feature of note, exclusively found on the DFN 
IBSDs, is the odd segmented curve describing low σ (i.e., 0 
or 0.1 m) block size distributions. This odd curve shape is 
related, once again, to the pre-defined volume of the model 
within which the DFN computes the rock mass properties; 
particularly, it is a consequence of how exactly the model 
can be divided by the discontinuities with the assigned 
spacing. In other words, when the discontinuities cut the 
model volume to define the rock mass fracture network, 
the blocks along the boundaries of the model are defined 
in geometry (i.e., size and shape) not only by the disconti-
nuities (i.e., their spacing and orientation) but also by the 
model boundaries themselves. This leads to a surplus of 
artificially smaller blocks, which alter the trend described 
by the larger blocks and, thus, the IBSD. The smaller the 
blocks, the more noticeable this trend: this is why the larger 

Fig. 5   Comparison between Δ calculated with DFN and AM for dif-
ferent values of σ
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Table 3   Expected value and 
variance of the theoretical 
volume PDF (calculated 
through Eqs. 4 and 5), expected 
value, and variance of the 
block samples obtained through 
DFN-based and AM, for the 
combinations B1–B5 and the 
four considered σ values

Theoretical PDF DFN PDF AM PDF

Equation 4 Equation 5

Id σ E[V] Var[V] E[V] Var[V] E[V] Var[V]

m m3 m6 m3 m6 m3 m6

B1 0 5.00 0.00 4.63 0.67 5.00 0.00
0.1 5.00 0.26 4.63 0.89 5.00 0.26
0.2 5.00 1.04 4.61 1.26 5.00 1.03
0.5 5.00 6.98 4.29 5.79 4.99 6.89

B2 0 5.03 0.00 4.38 1.04 5.03 0.00
0.1 5.03 0.79 4.40 1.35 5.04 0.76
0.2 5.03 3.23 4.42 2.62 5.02 3.24
0.5 5.03 23.35 4.59 9.85 5.85 20.93

B3 0 4.98 0.00 4.16 1.65 4.98 0.00
0.1 4.98 0.71 4.24 1.69 4.97 0.72
0.2 4.98 2.89 4.24 3.12 5.02 2.85
0.5 4.98 19.43 4.50 8.76 5.76 15.27

B4 0 4.95 0.00 4.16 2.26 4.95 0.00
0.1 4.95 0.79 4.16 2.61 4.94 0.80
0.2 4.95 3.17 4.16 4.36 4.97 3.22
0.5 4.95 20.71 4.38 10.04 5.98 14.74

B5 0 4.99 0.00 4.50 0.91 4.99 0.00
0.1 4.99 0.32 4.50 1.13 5.00 0.33
0.2 4.99 1.30 4.50 1.50 5.00 1.30
0.5 4.99 8.70 4.45 5.60 5.10 8.51

Fig. 6   IBSDs derived from both approaches for different values of σ in the three parent spacing distributions
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volume portion of the distributions is not affected. It should 
also be clear that the boundaries of the modeled volume can 
only reduce block size. The effect of this feature is clearly 
distinguishable only for low σ values: less than 0.1 m in our 
examples. The value of σ of the parent spacing distribu-
tions describes how dispersed, and therefore variable, the 
dataset is. In fact, as the dispersion of spacing increases, the 
likelihood of the appearance of smaller blocks increases as 
well, meaning that the presence of boundary-caused small 
blocks is, at least partially, masked in the appearance of the 
IBSD curve. The odd appearance of the IBSD curve can be 
removed by filtering out values below the expected one: this 
is conceptually fine, though, only for very small σ, as the 
block size value range is similarly small, and the IBSD tends 
towards a straight line. In all other instances, filtering out 
small blocks will also remove actual small blocks computed 
by the model. As the analytic approach does not rely on an 
REV or pre-defined model volume, such issues are absent 
from the AM-derived IBSDs.

Apart from these two features, the IBSDs presented in 
Fig. 6 appear remarkably similar: although a complete and 
exact identity between the results of the two approaches 
is unlikely, given that they are based on different princi-
ples and assumptions, the similarity is still significant. To 

express this fact, Table 4 describes the values at 50%, 75%, 
and 95% cumulative frequency provided for each model by 
the two approaches. The difference between volumes at 50% 
of cumulative frequency calculated with AM and DFN is 
expressed as ΔV50%. Similarly, ΔV75% and ΔV95% consider 
results obtained for 75% and 95% cumulative frequency, 
respectively.

As can be seen, these selected frequencies along the 
IBSDs yield very close results between the two methods. 
The difference can be quantified considering, for all the five 
shapes (B1–B5), the same σ value: by entering the relative 
IBSDs with the considered cumulative frequency, the cor-
responding volumes can be inferred and the average value 
calculated. The difference so calculated varies from 0.3 
to 0.4 m3 for V50%, regardless of σ. The difference ranges 
between 0.2 and 0.8 m3 for V75%, highlighting a more sig-
nificant effect of the increase of σ on the increase of the dif-
ference. The maximum difference occurs for V95%, as can be 
noticed by comparing the right tails of the IBSDs: it ranges 
from 0.1 to 2.2 m3 by increasing σ, confirming that the AM 
tends to produce wider IBSDs. This fact supports the choice 
of adopting V99% (Umili et al. 2023) as the maximum value 
for truncating the IBSD.

Table 4   Comparison of the 
block size values at 50%, 
75%, and 95% of cumulative 
frequency (V50%, V75%, and 
V95%, respectively) for all the 
models and both methodologies. 
ΔV represents the difference 
between the results of the AM 
and DFN methods

DFN AM ΔV=VAM—VDFN

σ V50% V75% V95% V50% V75% V95% ΔV50% ΔV75% ΔV95%

[m] [m3] [m3] [m3] [m3] [m3] [m3] [m3] [m3] [m3]

B1 0 4.7 4.8 4.9 5.0 5.0 5.0 0.3 0.2 0.1
0.1 4.7 5.1 5.6 4.9 5.2 5.8 0.2 0.2 0.1
0.2 4.4 5.1 6.1 4.7 5.4 6.6 0.2 0.3 0.4
0.5 3.6 5.3 8.2 4.1 6.0 9.4 0.5 0.7 1.2

B2 0 4.7 4.8 4.9 5.0 5.0 5.0 0.4 0.2 0.1
0.1 4.3 5.0 5.7 4.7 5.4 6.4 0.5 0.4 0.6
0.2 4.1 5.2 7.0 4.4 5.7 7.8 0.3 0.4 0.8
0.5 3.5 6.0 10.2 3.4 6.7 13.1 -0.1 0.7 2.9

B3 0 4.7 4.8 4.9 5.0 5.0 5.0 0.3 0.1 0.0
0.1 4.4 4.9 5.6 4.7 5.3 6.2 0.3 0.4 0.6
0.2 3.9 5.2 7.2 4.4 5.6 7.5 0.5 0.5 0.3
0.5 3.5 5.9 9.6 4.1 6.9 12.3 0.6 1.0 2.7

B4 0 4.7 4.8 4.9 4.9 4.9 4.9 0.2 0.1 0.0
0.1 4.3 5.0 5.7 4.7 5.3 6.2 0.3 0.3 0.5
0.2 4.0 5.3 7.4 4.4 5.6 7.5 0.4 0.3 0.1
0.5 3.5 6.0 9.7 4.4 7.3 12.4 0.9 1.2 2.7

B5 0 4.7 4.8 4.9 5.0 5.0 5.0 0.2 0.1 0.1
0.1 4.6 5.1 5.6 4.8 5.2 5.8 0.2 0.2 0.3
0.2 4.3 5.1 6.2 4.7 5.5 6.8 0.4 0.4 0.6
0.5 3.6 5.5 8.3 3.7 5.8 9.6 0.1 0.3 1.3
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Fig. 7   Computed SDs in the case of reference block B1

Fig. 8   Computed SDs in the case of reference block B2
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Fig. 9   Computed SDs in the case of reference block B3

Fig. 10   Computed SDs in the case of reference block B4
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4.2 � Block Shape

Similar to what has been done for the IBSDs, Shape Dis-
tributions (SDs) have been separated according to the five 
reference block shapes shown in Fig. 6. Figures 7, 8, 9, 10, 
11 portray Palmstrom’s diagrams of blocks B1–B5, show-
ing the effect of increasing σ value (from 0 to 0.5 m) for the 
parent spacing distributions.

The first noteworthy feature of these figures is the fact 
that as σ of the spacing distributions increases, the result-
ing blocks are plotted in an increasingly dispersed cloud 
stretching towards the right side of the diagram. Moreover, 
just as anticipated, if we distinguish the blocks based on 
their size (in our case, relative to the expected block size 
E[V]), it can be seen that the larger blocks (purple and red 
colored dots) tend to concentrate on the left side of the dia-
gram. In the figures, this fact appears more clearly in the 
case of the AM-derived IBSDs, and is particularly evident 
in the case of block B3 (blade-like shape, Fig. 9). This is in 
part due to the issues with the way the DFN model is set up 
and its need for a pre-defined REV, as detailed in the previ-
ous Sect. 4. For such reasons, the size–shape distributions 
(SSDs) derived from the DFN model appear less homoge-
neously dispersed. Moreover, even in the case of σ = 0 for 
the spacing distributions, when the dot representing the sin-
gle value SSD is expected to correspond directly with the 
reference point (the star in the diagrams), this condition is 

satisfied by all the AM-derived distributions, except for the 
B1 case (equidimensional shape), whilst the DFN derived 
distributions always show a degree of dispersion around the 
reference point. Again, this is a consequence of boundary 
effects along the pre-defined REV required to construct the 
DFN model. In this regard, it is clear that the AM-derived 
distributions, for both size and shape, appear to yield more 
consistent and reliable results.

These considerations regarding the effects of the DFN 
reliance on a pre-defined REV and boundary effects at the 
edges of the calculation volume can be extended to all the 
other cases described in Figs. 7, 8, 9, 10. In fact, by defini-
tion, a DFN analyzes only a pre-defined volume (i.e., the 
REV), considering it a model of the studied rock mass. Thus, 
the model size, although cautious and justified through quan-
titative means, as shown in this paper, still consists of a sin-
gle, finite value. Therefore, the DFN-based approach appears 
intrinsically finite in nature, especially when compared to 
the AM, which does not require any model size but is purely 
based on the orientation and spacing distributions describ-
ing the joint sets. In other words, the AM describes the rock 
mass exclusively on a probabilistic level.

Alongside Palmstrom’s diagrams, the easiest and clearest 
representation of an SD is a pie chart. In Figs. 12, 13, 14, 15, 
16, two sets of pie charts are presented, describing the actual 
SD for each of the five reference shapes with increasing σ. 

Fig. 11   Computed SDs in the case of reference block B5
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In Figs. 17, 18, 19, 20, 21, a second set describing the cor-
responding size distribution is presented.

A glance at the SD pie charts shows how similar the out-
puts of both methodologies are for high σ values (0.2 and 
0.5 m) for the parent spacing distributions: in most cases, the 
difference between the DFN-derived and the AM-derived 
SDs are within a few percentage points. The results are sig-
nificantly different among the two methods for low σ values 
(0 and 0.1 m): in almost all cases, the AM SD all show the 
expected shape as dominant, whilst the DFN SD allows for 
other shapes to appear, amounting to up to 16% of the distri-
butions. The only exception is reference block B3 (blade-like 
block), where for σ = 0.1 m the AM SD, too, shows some 
variability in the possible shapes. This fact is, once again, 
related to the issues of the deterministic approach required 
by the DFN to work. Major differences are also found for 
reference block B4 (slab-like shape), where the AM SD 
describes the absence of non-slab-like blocks for cases with 
σ = 0, 0.1 and 0.2 m, whilst the DFN-derived SD states that 
non-slab-like blocks amount to approximately 15% (Fig. 15).

Considered here separately, for its specific and special 
nature, is reference block B5, which falls on the intersec-
tion of the shape domains within Palmstrom’s diagram. 
This point describes a limit condition where none of the 

four classes upon which the shape classification is defined 
are applicable. Conversely, this point can be seen as sharing 
features of all the four classes, without belonging to one in 
particular. The special nature of this point is also linked to 
the fact that depending on the definitions of the boundaries 
between the four shape classes, one and only one set of con-
ditions identifies the point. This means that the likelihood of 
a block appearing with this shape is extremely low, but more 
importantly, no other point outside of it can be classified in 
the same manner. Therefore, it is an especially interesting 
position to visualize the SSD (Figs. 16, 21).

Regarding the shape frequency pie charts (Fig. 16), apart 
from the case of σ = 0 m, the two methodologies produce 
very similar results: most of the larger blocks tend to fall 
clearly within the domain of equidimensional shapes. This 
is evident even in the case of the DFN-derived SSD: at 
σ = 0.5 m, the difference is approximately 1%. Regarding 
the volume distribution pie charts (Fig. 21), the special point 
B5 does not exhibit special features and behaves in accord-
ance with all the others.

Looking at the second set of pie charts (Figs. 17, 18, 19, 
20, 21), differences appear between the two methodologies. 
In general, the DFN-derived distributions tend to have a 
more significant number of blocks smaller than the expected 

Fig. 12   Shape distribution pie charts for the B1 reference block
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block size (V < 1 E[V]) and usually miss entirely the largest 
ones (V > 6 E[V]). As σ of the parent spacing distributions 
increases, the dispersion of the size data throughout the 
considered classes increases, and the differences between 
the two methods tend to reduce. In fact, for σ = 0.5 m, the 
distributions are significantly close to each other, taking into 
account the tendency of the DFN data to have a higher count 
of smaller blocks. For instance, in the case of reference block 
B1 (equidimensional shape, Fig. 17), most of the computed 
blocks fall within 1 E[V] and 1.5 E[V], with remarkably sim-
ilar percentages for both approaches: for 1 E[V], 32% in the 
case of the DFN derived data, 33% for the AM; for 1.5 E[V], 
26% and 28%, respectively. It should be noted that the issues 
of the DFN model are the same discussed in the paragraph 
on block size (Sect. 4.2): boundary issues introduce artifi-
cially smaller blocks and impose an upper limit to block size.

4.3 � Case Study

To show an application of what has been introduced in the 
previous paragraphs regarding the block size–shape relation-
ship, a case study has been selected. In Taboni et al. (2023), 
the rockfall hazard assessment of the site of Grangia Cruset 
(Municipality of Bellino, Province of Cuneo, Piemonte 

Region) is presented. Located in the westernmost portion 
of Varaita Valley, in the Western Italian Alps, the exposed 
buildings are located at the toe of a steep slope overhung by 
rocky peaks, which act as rockfall sources. The most recent 
event was registered in 2017 and involved a total volume of 
approximately 100 m3 of fallen rocks, estimated by meas-
uring the scar left on the rockface. Most of the blocks that 
actually reached the exposed buildings had a volume of 
approximately 1 m3, while the largest single boulder reached 
6 m3. No data are available on the number or volume of the 
originally detached blocks: although no evidence of frag-
mentation was found, it is not impossible that during the 
rockfall the original blocks experienced it. Thus, as the ref-
erenced data describe the blocks measured after the event 
and at their stopping position, their size represents a lower 
bound on the initially released block sizes. Thus, the pos-
sible fragmentation of larger volumes was not considered. 
The authors produced a new methodology for rockfall hazard 
assessment, employing IBSD to describe block size and an 
SD for its shape; they then ran four sets of one thousand 
3D simulations of block trajectories, one for each of the 
four shape types defined by Palmstrom (2001), and inte-
grated the result for a global description of the problem. The 
SD used was referred to the entire IBSD, which may differ 

Fig. 13   Shape distribution pie charts for the B2 reference block
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Fig. 14   Shape distribution pie charts for the B3 reference block

Fig. 15   Shape distribution pie charts for the B4 reference block
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Fig. 16   Shape distribution pie charts for the B5 reference block

Fig. 17   Pie charts describing block size for reference block B1
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significantly as the volume increases, as it was shown in the 
previous paragraphs. Thus, as the relationship between block 
size and volume was not addressed in the original paper, the 
same case study can be used to provide a quick but reliable 
example of how to implement it in a real situation without 
increasing complexity at the point of making the methodol-
ogy impractical and, thus, useless. It should be mentioned 
that only the AM was employed for the case study at hand.

For the purpose of this study, the same IBSD and SD 
described in Taboni et al. (2023) are considered: they are 
reported in Table 5. To properly integrate the size–shape 
correlation into the rockfall numerical analysis, the approach 
consists of filtering out the shapes of the SD belonging to 
rock blocks whose volumes fall out of a given interval. A 
reasonable interval can be derived from the existing regula-
tions regarding passive rockfall mitigation works, which usu-
ally insist upon incrementing the reference design volume 
by applying a partial factor (UNI 11211 2019) to account 
for a higher effect of the acting force, namely the kinetic 
energy of the impacting block. For this reason, we chose to 
filter the SD within a range of ± 10% of the reference vol-
ume, which was estimated to be 6.5 m3 (slightly larger than 
the largest block recorded on site, amounting to 6 m3). To 
assess the effect of size–shape correlation on smaller blocks, 

the average registered block (1 m3) was also modeled. By 
filtering out all the blocks that fall out of the interval, the 
resulting filtered SD now describes only the relative abun-
dances of the shapes associated with blocks comparable to 
the reference volume; therefore, the filtered SD provides a 
more accurate shape sample.

Finally, following the same workflow of the original 
paper, new global results for the 3D numerical simulations 
based on the filtered SDs were produced by calculating, as 
suggested by Taboni et al. (2023), and average weighted over 
the relative abundances of the four shape classes, according 
to the following relation:

where SO is the global output; POe, POr, POs, and POb are 
the partial output for the equidimensional, rod-like, slab-
like, and blade-like shape, respectively; e, r, s and b are the 
relative abundance of the equidimensional, rod-like, slab-
like, and blade-like shapes within the considered SD.

The Grangia Cruset case study presented by Taboni et al. 
(2023) has been modified and integrated to account for the 
shape–size correlation. The IBSD employed in the original 
paper has been filtered out, extracting two different portions: 
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Fig. 18   Pie charts describing block size for reference block B2
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the one within a 10% range around the reference design 
value (6.5 m3) and the one within a 10% range around the 
average recorded falling block (1 m3); then, the two new SDs 
have been computed and new numerical simulations carried 
out. The slope model is exactly the same as the original 
paper. From here onward, the same methodology detailed 
in Taboni et al. (2023) has been followed to combine the 
contributions of each of the four shapes. Figure 22 shows 
the comparison between the original global SD and the new 
ones, focused on the two considered block sizes.

As it can be seen, the difference is significant: for 
instance, in the 6.5 m3 case, equidimensional blocks are 
more relevant (+ 12%) than in the global SD, while rod-
like blocks are less frequent (−14%); meanwhile, for the 1 
m3 case, equidimensional blocks are less frequent (−7%), 
alongside blade-like blocks (−10%), whilst slab-like blocks 
appear to be more prominent (+ 12%). Once again, the 
increase of equidimensional blocks at higher volumes, or 
conversely, their decrease at lower volumes, is appreciable. 
The effect of the new SDs on the maps produced by the 3D 
rockfall software Rockyfor3D (Dorren 2016) is difficult to 
appreciate based solely on the maps themselves. To quantify 
the difference, data regarding total kinetic energy (Ek) have 
been extracted along a line, symbolizing the extent of a pos-
sible protection work. Figure 23 describes the case for the 

6.5 m3 block, while the Fig. 24 compares the Ek values of the 
original run of simulations and the new one along that line.

As can be seen, the energy involved in a rockfall event 
for a 6.5 m3 block is consistently lower if the filtered SD is 
considered. On average, the difference is between 5 and 10% 
of the original value (between 1000 and 2000 kJ). Unfor-
tunately, considering that the reference energy level of the 
modeled phenomenon, as stated in the original paper, is in 
the range of 25,000 kJ, a difference of 10% does not signifi-
cantly affect the design process of any kind of protection 
work. A similar trend can be observed also for the bounce 
height. Figures 24 and 25 present the results for the 1 m3 
case.

While in the previous case, the new set of simulations 
produced lower Ek outputs, and the difference is between 10 
and 20%, in this second instance, the new values are actu-
ally higher than the original outputs. More importantly, as 
the maximum energy value extracted is close to 5000 kJ, a 
difference of 1000 kJ signifies a skip between different com-
mercial classes of passive protection works, such as flexible 
barriers. This is important, as commercial rockfall barriers 
are sold in pre-defined energy categories: for example, if 
referencing the original outputs, a 5000 kJ barrier would 
have been enough, while for the new results, a higher energy 
level is required. Usually, this means employing an 8000 kJ 
kit, with a significant increase in the costs.

Fig. 19   Pie charts describing block size for reference block B3



	 B. Taboni et al.

The fact that in both Figs. 24 and 26, the new model 
appears very similar to the original one, simply shifted 
towards higher or lower energy levels, is not to be intended 
in any way as a feature of the approach presented here. This 
fact is likely due to two aspects: first and foremost, the con-
figuration of the model (i.e., the topography and the features 
of the slope) is the same in both simulations; second, the 
case study manifests an apparent propensity to concentrate 
almost all the trajectories along the paths highlighted in 
Figs. 23 and 25. By filtering the SD around the reference 
block sizes, the achieved effect is akin to extracting a precise 
portion of the simulated blocks from the more generalized 
original set of simulations. This is to say that the new results 
being similar to the original ones are, at least in this specific 
case, to be expected.

In general, therefore, two things can be said: first, 
accounting for the Shape–Size correlation could produce 
tangible effects on the modeling of the rockfall process; 
second, mass, and thus block size, seems to have a more 
relevant role, as for larger blocks the difference in the com-
puted values decreases and is less relevant.

5 � Conclusions

The present work aims to compare the DFN-based and the 
AM-based approaches to the characterization of rock masses 
geometrical structure for rockfall assessment purposes. 
These two methods are based on different assumptions and 
different calculation algorithms. On the one hand, a DFN is 
able to generate a virtual model of the rock mass by cutting 
the defined box along input planes representing discontinui-
ties. Therefore, blocks volume and side lengths are outputs 
of the modeling process, which requires the assessment of 
the REV to reduce the boundary effect. On the other hand, 
the proposed AM-based approach is a purely analytical 
method, incapable of materializing and modeling the rock 
mass structure, but able to calculate an IBSD based on its 
analytical definition, without the need to assess a REV. In 
conclusion, it was seen that both approaches are viable when 
dealing with:

–	 Block size assessment, although the DFN-based meth-
odology has some intrinsic limitations (boundary effects 
on smaller blocks; upper size limit) that may hinder the 
accuracy of the outputs in some specific circumstances 
(low σ of the parent spacing distributions). The DFN-

Fig. 20   Pie charts describing block size for reference block B4
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Fig. 21   Pie charts describing block size for reference block B5

Table 5   Parameters of the best-
fitting distributions of spacing 
samples for the three joint sets 
identified in the case study 
analyzed by Taboni et al. (2023)

K1 K2 K3

PDF μ1 σ1
2 PDF μ2 σ2

2 PDF μ3 σ3
2

[m] [m2] [m] [m2] [m] [m2]

LogNormal 2.21 7.69 Weibull 1.91 2.48 Weibull 1.69 1.30

Fig. 22   SDs for the Bellino case 
study: the original SD (left) 
(from Taboni et al. 2023), the 
SD focused on the 6.5 m3 block 
(middle), and the SD focused on 
the 1 m3 block (right)
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based approach has no issues in dealing with instances 
where more than three joint sets are identifiable, while 
the analytic one would require a combinatory application 
of the method; finally, the analytic method can handle 
different types of PDF without particular issues, but in 
the case of rock masses characterized by more than three 
joint sets, the approach cannot be directly employed, ren-
dering it, in that specific case, less flexible than a DFN. 
Both approaches yield consistently similar and compa-
rable results.

–	 Block shape assessment, although the basic assumptions 
of the DFN-based method tend to produce more clustered 
outputs for low σ of parent spacing distributions.

Moreover, both methodologies identify the existence of a 
correlation between shape and size of the computed blocks, 
which dictates that the SD changes with reference to block 
size. The method to assess such correlation, as well as the 
way to implement it in rockfall numerical simulations or 
hazard assessment shown in this study, can easily be applied 
to both DFN-derived and AM-derived data.

Fig. 23   Runout model for the 6.5 m3 case, with the most frequent path in red and the trace of a hypothetical protection work

Fig. 24   Comparison between Ek of the original (black line) and new 
6.5 m3 simulations (red line) along the hypothetical protection work
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The case study allowed us to visualize and quantify the 
differences that arise when accounting for the shape–size 
correlation. Moreover, it demonstrated that size plays a more 
significant role, as in the case of larger blocks, the effects 
of a quite different SD are less relevant than in the case of 
a smaller block.

It is crucial to notice that two important questions 
remain open. First of all, the actual appearance of an 
IBSD, its corresponding SD, and the correlation between 
the two are derived from safe and reasonable assumptions 
(Umili et al. 2023) and have yielded accurate and reliable 
results. Further studies are required to demonstrate such 
assumptions and the considerations derived from them.

The information provided by modeling the geometric 
features of a rock mass, either by means of DFNs or ana-
lytical methods, is critical to properly constructing a model 
for numerical simulations of the phenomenon. Thus, it 
is highly important for practitioners and designers, who 
directly rely on the output of such simulations to acquire 
the needed data required to design protection structures 
or other mitigation measures correctly. This is also true 

Fig. 25   Runout model for the 1 m3 case, with the most frequent path in red and the trace of a hypothetical protection work

Fig. 26   Comparison between Ek of the original (black line) and new 
1.0 m3 simulations (red line) along the hypnotized protection work
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for land planners, as numerical simulations are usually 
involved in hazard and risk assessment and mapping. Both 
block size and block shape are highly relevant parameters 
for rockfall, which yield direct influences on the outcomes 
of the simulations. This is especially significant given the 
now widespread presence of software based on the rigid 
body approach to rockfall, which are able to account for 
both rock size and shape.

Being able to produce more precise and accurate models 
from a reliable input dataset, rigorously produced through a 
solid and repeatable methodology, is a significant improve-
ment across all fields of application.
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