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Abstract

Moving from the abstract definition of monads, we introduce a version of the
call-by-value computational λ-calculus based on Wadler’s variant, without let, and
with unit and bind operators. We call the calculus computational core and study its
reduction, and prove it confluent. In particular, the reduction rules are the relation
obtained by orienting the monadic laws from left to right. The rules induced by
associativity and identity make the behaviour of the reduction, and the study of
its operational properties, non- trivial. This happens in the setting of any monadic
lambda-calculus, independently of the syntactic representation of the calculus that
internalizes them. Hence, the focus of our operational analysis is on two crucial
properties: returning a value and having a normal form. The cornerstone of our
analysis is factorization results. Weak factorization can be achieved by considering
the surface reduction relation, a contextual closure of calculi based on linear logic.
We expose the operational role of the rules associated with the monadic laws of
identity and associativity. We then analyze the property of having a normal form
(normalization), and then a family of normalizing strategies, i.e. sub-reductions
that are guaranteed to reach a normal form, if any exists. To deal with that we
rely on a quantitative analysis of the number of βc-steps.

In a second part, we study a Curry style type assignment system for the com-
putational core. We introduce an intersection type system inspired by Barendregt,
Coppo, and Dezani system for ordinary untyped λ-calculus, establishing type
invariance under conversion. Finally, we introduce a notion of convergence, which
is precisely related to reduction, and characterize convergent terms via their types.

In the last part, we study the semantics of an untyped lambda-calculus equipped
with operators representing read and write operations from and to a global store.
We adopt the monadic approach to model side-effects and treat read and write as
algebraic operations over a monad. We introduce an operational semantics.

The intersection type assignment system is indeed derived by solving a suitable
domain equation in the category of omega-algebraic lattices; the solution consists
of a filter-model generalizing the well known construction for ordinary lambda-
calculus. Then the type system is obtained out of the term interpretations into
the filter-model itself. The so obtained type system satisfies the “type-semantics”
property (the semantics of a term is precisely the set of types that can be assigned
to it) by construction.

Finally, we prove that types are invariant under reduction and expansion of
term and state configurations, and characterize convergent terms via their typings.
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PREFACE

An näive addressing This preface is supposed to be a preamble to the technical
contents that follow, without having any ambition of formality. On the contrary,
in the following pages, we essentially present the doubts, questions, and objectives
that ground the thesis work. This is the result of three years of research on how to
frame the investigation of the properties of monadic programs using intersection
type theory. Soon, in the course of the speculation, it will be realised that the
formalisation of an intersection type theory that could extend the results already
existing in the literature has to pass through a metalanguage that is as minimal
as possible but able to encapsulate the requirements for being monadic. So here
it is the first, main objective: extending results that were conceived for functional
programs into the word of non-functional programs, as framed via the notion of
monads. Let us first dwell on what it means to be monadic, which will be coupled
with other terms such as “with effects” or computational. Each of these synonyms
stresses the impure component of the program itself, but from slightly different
angles. But let us go step by step.

From functional to non-functional. Monads are pervasive structures in
many fields, especially those between computer science and mathematics, and, in
particular, they are a fundamental concept in extending functional programming.
Functional programming is a paradigm that treats computations as the evaluation
of mathematical functions, avoiding mutable data and changing-state. For each
input, a certain output is intended, without caring about the world around.
Functional programs will work the same way in every place and time, and will
only rely on themselves.

Let us call effects the intercommunications with the outside world. Through
effects, functional reality is augmented by means of additional structures and
operations to create and manage them. Roughly speaking, the codomain of
functions is embellished by means of these additional structures.

What kind of effects are we talking about? An instance is the ability to handle
exceptions, i.e. messages that are raised if something goes wrong and allowing
to decide how to proceed. Another simple and preliminary example includes
writing and/or reading strings from a screen (interactive input/output), or,
in general terms, the use of an auxiliary structure, a store, to save information
and to extract it when necessary. Other kinds of computational effects are
nondeterminism, that is the possibility to create more branches from a single
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Chapter 0. Preface

input, or a probabilistic choice, that is giving a weight to each of these branches.
For this reason, functional programming is very sensitive to effects: if you add

them to the theory, you soon realise that there is a need for a more general and
elegant framework than a mere case-by-case description of them.

Monads are the key concept to satisfy this general drive. A monad in functional
programming is seen as a type constructor, i.e. a bridge that takes programs
from the functional world into the enriched, non-functional world, all of course
regulated by specific monadic laws. This makes it possible to control effects
uniformly without the need to write ah hoc code. Monads has been incorporated
in functional programming languages like Haskell in order to handle non-functional
aspects in a purely functional language.

Monads. The concept of a monad was first introduced by Godement in
1958 (although, more precisely, he discussed comonads in [God58]). Godement
was studying sheaf theory, which is a way to capture local data about a manifold
and, in doing so, obtaining global properties. His definition was also named triple,
which is still used nowadays when it comes to the the definition of Kleisli triple.
The concept was later renamed “monad” by Mac Lane [Mac97], because of the
analogy with monoids. Monads are frequent in many branches of mathematics:
from universal algebra (very interesting is the connection with Lawvere theories,
see [HP07]) to mathematical analysis (since Cauchy completions are monads).
Monads also gave birth to a new way to describe non-functional programming in
theoretical computer science, since Moggi’s work in the late 80’s. In the technical
report [Mog88] and in subsequent papers [Mog89, Mog91], Moggi gave a unified
account of computational effects as monads.

Extending the λ-calculus. The λ-calculus is collection of formal theories
whose definition is given by three constructors and a single computational rule,
namely β-reduction; let us call this the “standard” or pure λ-calculus. The
grammar of the λ-calculus allows to write pure programs only, hence the connection
with functional programming, i.e. programs that can be described as mathematical
functions. λ-calculus originated from certain systems of combinatory logic that
were conceived around 1930 as a foundation of mathematics by Church and Curry.
Nowadays, the “bible” of pure λ-calculus is certainly [Bar85]. When one moves to
functions with embellished codomain, as in the monadic setting, one must also
try to mirror this by enriching the calculus syntax and, consequently, by adding
computational rules to manage effects: hence the name impure. This dichotomy
is well quoted at the beginning of one of Wadler’s paper [Wad95]: “shall I be
pure or impure?”. In fact, two approaches can actually take place: extend the
pure paradigm with extra features or accept to be impure tout court. The latter
approach will be the one adopted by us, motivated by the fact that in Kleisli
categories there is no distinction between pure and impure functions, as every
function has an embellished codomain. By the way, in [Wad95] the reader will
find another cornerstone for the investigation in this thesis. Indeed, our calculus,
that we baptize computational core has more affinity to Wadler’s formulation
of monads than to the computational λ-calculus by Moggi, although both are
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semantically equivalent.

Operational analysis. Reduction and operational semantics of the compu-
tational λ-calculus have been studied in the context of call-by-need calculi, e.g.
in [MOTW99, AFM+95], and confluence of reduction of Moggi’s λC has been
established recently in [Ham18], essentially depending on the strong normalization
property of the calculus. However the calculus we consider here is untyped, and
not strongly normalizing, syntactically different, simpler, and strictly speaking
not a sub-calculus of any of its ancestors, as it does not have neither the let, nor
functional application as primitive constructs. By the way, the calculus we are to
propose should not be labelled as a particular, quirky calculus, at all. In fact, its
theory of reduction shares essential properties with other well established calculi
in the literature. Some connections with different calculi are detailed, but there
would be many others with which it would be worthy to undertake an analysis and
comparison, both syntactic and semantic. In fact, the study of reduction theory
of the computational core is not only aimed to investigate its properties, but
also to stress the similarities with other systems and shed new light on them. In
addition, we stress the didactic approach to the analysis of the computational core
reduction theory: the reader will notice that the study of factorization, confluence,
and normalization is carried out with different techniques, from the most powerful
ones such as van Oostrom’s decreasing diagrams [vO94] to the more classical ones
such as Takahashi’s parallel reduction [Tak95]. This multiplicity of approaches
represents not only a learning experience, but also a set of techniques that can be
put into practice in the study of calculi comparable to the one presented here.

Intersection type theory. Intersection types were introduced in the late
70’s by Dezani and Coppo [CDC80] to overcome the limitations of Curry’s type
discipline and enlarge the class of terms that can be typed. This is reached by
means of a new type constructor, the intersection. A complete introduction to
intersection type disciplines can be found in [BDS13]. From there, we will adopt
the BCD intersection type system, hence our systems will be equipped with a
subtyping pre-order with a distinguished top element. The historical fortune of
this type system is certainly its expressiveness, i.e. allowing to capture various
properties of λ-terms that had escaped all previous typing systems.

One of the motivations for investigating intersection types is that, when
including a universal type (usually denoted by ω) that can be assigned to any
term, types are invariant under term conversion, instead of just reduction. By this
property, the term meaning, namely its functional behaviour, is fully characterized
by the set of its types. So, establishing such a system for the computational
core, opens the way to study the case of (untyped) λ-calculi with effects by well
established mathematical tools.

Intersection type disciplines allows to theoretically characterize weakly nor-
malizing terms, for instance, and also in this thesis we will reach a similar
characterization. In a nutshell, intersection types are able to strictly connect
the reduction behaviour of programs with their denotational semantics: we will
see how through our theories of intersection types we can qualify the terms that
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converge to a value, and in the case of the store monad we will also be able to
characterise these through a particular type.

Another interesting aspect of intersection type disciplines is their idiosyncratic
semantic flavour. Intersection types have a semantics based on duality, which is
related to (actually is a restriction of) Abramsky’s domain theory in logical form
[Abr91]. By this duality, type theories give rise to filter λ-models. Intersection type
assignment systems can then be viewed as finitary descriptions of the interpretation
of terms in such models, hence the meaning of a term is the set of types that can
be assigned to it. The filter-model presented in [BCD83] is a new λ-model which
is useful to study completeness properties of type assignment systems for terms of
the pure λ-calculus.

It turns out that filter-models have the structure of an algebraic lattice with
countable basis, where types are in one-to-one correspondence with the compact
points of such a domain.

Indeed, each inverse limit space obtained by the classical Scott’s D∞ con-
struction [Sco80], starting from a countably based lattice, is isomorphic to a
filter-model; a comprehensive reference is certainly [AS08]. In this thesis we will
deal with a filter-model that is isomorphic to a variant of the construction of D∞,
where the monad functor is involved in the domain equation.

In this thesis we intensively use such models, and in Part III we show how to
derive a type assignment system for an imperative lambda calculus (that is an
extension of the computational core) out of its D∞ model.

Thesis organization. This PhD thesis consists in three main parts. Each part
is provided with its own thematic introduction and is concluded by a discussion
of the results presented and a reference to the existing literature. This is done to
keep the parts stand-alone as much as feasible, exploiting the incremental nature
of the work. In the course of the thesis, in the introduction and conclusion of each
part, time and space will be spent to provide most appropriate references to the
topics. Since several macro-areas are touched upon, such as monads, reduction
theory, and intersection types, it is not appropriate to condense the entire state of
the art into a single section, like a large and varied grab bag.

Part I deals with the reduction theory of the computational core: this part first
presents preliminaries on the lambda calculus and rewriting theory, but also on
monads, because framing of the calculus has a strong foundation in the intended
semantics.

Part II presents an intersection type system for the computational core, leading
to the result of completeness. The most important result of the second part is
certainly the characterisation of the convergent terms.

This result is also mirrored in Part III, where the subject of study is an
extension of the computational core, namely a monadic calculus whose monad is
the store monad. This part is intended to be a case study in which the generic
monad is instantiated. In this case the type system is not presented ex abrupto
but is elegantly derived from the filter-model that is obtained by solving a suitable
domain equation.

The preliminaries presented in each part, for example aspects of domain theory,
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type theory, and other needed knowledge, are not described in detail. In fact, this
thesis has no ambition to be introductory or a good manual on basics, for which
historical and better established texts are cited.
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CHAPTER 1

INTRODUCTION AND
PRELIMINARIES

1.1 Introduction to the Calculus
The λ-calculus has been historically conceived as an equational theory of functions,
so that reduction had an ancillary role in Church’s view, and it was a tool
for studying the theory β, see [Bar85, Ch. 3]. The development of functional
programming languages like Lisp and ML, and of proof assistants like LCF, has
brought a new, different interest in the λ-calculus and its reduction theory.

The cornerstone of this change in perspective is Plotkin’s [Plo75], where the
functional parameter passing mechanism is formalized by the call-by-value rule βv,
allowing contraction only if the argument term is a value, that is a variable or an
abstraction. In [Plo75] it is also introduced the notion of weak evaluation, namely
no reduction in the body of a function (aka, an abstraction). This is now the
standard evaluation implemented by functional programming languages, where
values are the terms of interest (and the normal forms for weak evaluation in the
closed case). Full βv reduction is instead the basis of proof assistants like Coq,
where normal forms are the result of interest. More generally, the computational
perspective on λ-calculus has given a central role to reduction, whose theory
provides a sound framework for reasoning about program transformations, such
as compiler optimizations or parallel implementations.

The rich variety of computational effects in actual implementations of functional
programming languages brings further challenges. This dramatically affects the
theory of reduction of the calculi formalizing such features, whose proliferation
makes it difficult to focus on suitably general issues. A major change here is
the discovery by Moggi [Mog91] of a whole family of calculi that are based on a
few common treats, combining call-by-value with the abstract notion of effectful
computation represented by a monad, that has shown to be quite successful. But
Moggi’s computational λ-calculus is an equational theory in the broader sense;
much less is known of the reduction theory of such calculi: this is the main purpose
of the current chapter.
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Chapter 1. Introduction and Preliminaries

The computational calculus. Since the seminal work [Mog91], computational
λ-calculi have been developed as foundations of programming languages, formal-
izing both functional and non-functional features: see e.g. [WT03, BHM02] to
mention two, starting a thread in the literature that is still growing. The basic
idea of computational λ-calculi is to distinguish values and computations, so that
programs, represented by closed terms, are thought of as functions from values
to computations. Intuitively, computations embody richer structure than values
and do form a larger set in which values can be embedded. On the other hand,
the essence of programming is composition; to compose functions from values to
computations we need a mechanism to uniformly extend them to functions on
computations, while preserving their original behaviour over the (image of) values.

To model these concepts, Moggi used the categorical notion of monad, ab-
stractly representing the extension of the space of values to that of computations,
and the associated Kleisli category, whose morphisms are functions from values
to computations, which are the denotations of programs. Syntactically, following
[Wad95], we can express these ideas by means of a call-by-value λ-calculus with
two sorts of terms: values, ranged over by V,W , namely variables or abstractions,
and computations denoted by L,M,N . Computations are formed by means of
two operators: values are embedded into computations by means of the operator
[·] written return in Haskell programming language, whose name refers to the
unit of a monad in categorical terms; a computation M ⋆ (λx.N) is formed by the
binary operator ⋆, called bind (>>= in Haskell), representing the application to M
of the extension to computations of the function λx.N .

The monadic laws. The operational understanding of these new operators
is that evaluating M ⋆ (λx.N), which in Moggi’s notation reads letx :=M inN ,
amounts to first evaluate M until a computation of the form [V ] is reached,
representing the trivial computation that returns the value V . Then V is passed
to N by binding x to V , as expressed by the equation:

[V ] ⋆ λx.N = N{V/x} (1.1)

This is the first of the three monadic laws in [Wad95]. To understand the others,
let us define the composition of the functions λx.M and λy.N as

(λx.M) • (λy.N) := λx.(M ⋆ (λy.N))

where we can freely assume that x is not free in N ; this is named Kleisli composition
in category theory. Now the remaining laws are:

M ⋆ λx.[x] = M (1.2)
(L ⋆ λx.M) ⋆ λy.N = L ⋆ λx.(M ⋆ λy.N) with x /∈ fv(N) (1.3)

Equality (1.2) (identity) implies that (λz.M) • (λx.[x]) = λz.M , which paired
with the instance of (1.1): (λx.[x]) • (λy.N) = λx.N{x/y} =α λy.N (where =α is
the usual congruence generated by the renaming of bound variables), tells that
λx.[x] is the identity of composition •.

4



1.1. Introduction to the Calculus

Equality (1.3) (associativity) implies:

((λz.L) • (λz.M)) • (λy.N) = (λz.L) • ((λz.M) • (λy.N))

namely that composition • is associative.
The monadic laws correspond to the three equalities in the definition of a

Kleisli triple (see [Mog91]), that is an equivalent presentation of monads [Mac97].
Indeed, the calculus in [Mog91] is the internal language of a suitable category
equipped with a (strong) monad T , and with enough structure to internalize
the morphisms of the respective Kleisli category. As such, it is a simply typed
λ-calculus, where T is the type constructor associating to each type A the type
TA of computations over A. Therefore, [·] and ⋆ are polymorphic operators with
respective types (see [Wad92, Wad95]):

[·] : A −→ TA ⋆ : TA −→ (A −→ TB) −→ TB (1.4)

The computational core. The dynamics of λ-calculi is usually defined as a
reduction relation on untyped terms. Moggi’s preliminary report [Mog88] specifies
both an equational and, in §6, a reduction system even if only the former is
thoroughly investigated and appears in [Mog91], while reduction is briefly treated
for an untyped fragment of the calculus. However, when stepping from the typed
calculus to the untyped one, we need to be careful and avoid meaningless terms
to creep into the syntax, so jeopardizing the calculus theory. For example: what
should be the meaning of M ⋆N where both M and N are computations? What
about (λx.N) ⋆ V for any V ? Shall we have functional applications of any kind?

To answer these questions, in [dT20], as well as in Chapter 2, typability is
taken as syntactic counterpart of being meaningful: inspired by ideas in [Sco80],
the untyped computational λ-calculus is a special case of the typed one, where
there are just two types D and TD, related by the type equation D = D −→ TD,
that is Moggi’s isomorphism of the call-by-value reflexive object (see [Mog88], §5).
With such a proviso, we get the following syntax:

V,W ::= x | λx.M (Val)
M,N,L ::= [V ] |M ⋆ V (Com)

If we assume that all variables have type D, then it is easy to see that all
terms in Val have type D = D −→ TD, which is consistent with the substitution
of variables with values in (1.1). On the other hand, considering the typing of [·]
and ⋆ in (1.4), terms in Com have type TD. As we have touched above, there
is some variety in notation among computational λ-calculi; we choose the above
syntax because it explicitly embodies the essential constructs of a λ-calculus with
monads, but for functional application, which is definable: see Chapter 2 for
further explanations. We dub the calculus computational core, noted λ©.

From equalities to reduction. Similarly to [Mog88] and [SW97], the reduc-
tion rules in the computational core λ© are the relation obtained by orienting
the monadic laws from left to right. We indicate by βc, id, and σ the rules
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corresponding to (1.1), (1.2) and (1.3), respectively. The compatible closure of
these rules, denoted →©, has been proved confluent in [dT20], a proof reported
here in Section 4.1, which implies that equal terms have a common reduct and
the uniqueness of normal forms.

In [Plo75] call-by-value reduction →βv is an intermediate concept between
the equational theory and the evaluation relation →w βv , that models an abstract
machine. Evaluation consists of persistently choosing the leftmost βv-redex that
is not in the scope of an abstraction, i.e. evaluation is weak. The following crucial
result bridges the reduction (hence, the foundational calculus) with the evaluation
(implemented by an ideal programming language):

M→∗βv
V (for some value V ) if and only if M→w ∗βv

V ′ (for some value V ′) (1.5)

Such a result (Corollary 1 in [Plo75]) comes from an analysis of the reduction
properties of →βv , namely standardization.

As we will see, the rules induced by associativity and identity make the
behaviour of the reduction—and the study of its operational properties—non-
trivial in the setting of any monadic λ-calculi. The issues are inherent to the rules
coming from the monadic laws (1.2) and (1.3), independently of the syntactic
representation of the calculus that internalizes them. The difficulty appears clearly
if we want to follow a similar route to [Plo75], as we discuss next.

Reduction vs evaluation. Following [Fel88], reduction →© and evaluation →w ©

of λ© can be defined as the closure of the reduction rules under arbitrary and
under evaluation contexts, respectively. Consider the following grammars:

C ::= ⟨ ⟩ | [λx.C] | C ⋆ V |M ⋆ (λx.C) (arbitrary) contexts
E ::= ⟨ ⟩ | E ⋆ V evaluation contexts

where the hole ⟨ ⟩ can be filled by terms in Com, only. Observe that the closure
under evaluation context E is precisely weak reduction.
Weak reduction of λ©, however, turns out to be non-deterministic, non-confluent,
and its normal forms are not unique. The following is a counter-example to all
such properties—see Section 4.2 for further examples.

(([z] ⋆ z) ⋆ λx. M) ⋆ λy. [y]
w

- ([z] ⋆ z) ⋆ λx. (M ⋆ λy. [y])

([z] ⋆ z) ⋆ λx. M

w

?

Such an issue is not specific to the syntax of the computational core. The
same phenomena show up with the let-notation. Evaluation contexts are now
generated by

Elet ::= ⟨ ⟩ | letx :=Elet inN

and examples similar to the one above can be reproduced. We give the details in
Example 4.2.3.
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1.1. Introduction to the Calculus

Content and contributions. The focus of this part is an operational analysis
of two crucial properties of a term M :

i M returns a value (i.e. M →∗© [V ], for some V value).

ii M has a normal form (i.e. M →∗© N , for some normal N).

The cornerstones of our analysis are factorization results (also called semi-
standardization in the literature): any reduction sequence can be re-organized so
to first performing specific steps and then everything else.

Via factorization, we establish the following key result, analogous to (1.5),
relating reduction and evaluation:

M →∗© [V ] (for some value V ) ⇐⇒ M→w ∗βc
[V ′] (for some value V ′) (1.6)

We then analyze the property of having a normal form (normalization), and
define a family of normalizing strategies, i.e. sub-reductions that are guaranteed
to reach a normal form, if it exists.

We already discussed evaluation. Let us discuss more in detail some of the
other aspects.

Factorization. While →© cannot be factorized w.r.t. weak reduction,
factorization can be achieved by considering the surface reduction relation, which
is less constrained and better behaved than weak reduction. It disallows reduction
under the [·] operator, only. Intuitively, weak reduction does not act in the
body of a function, while surface reduction does not act in the scope of return.
The name surface is reminiscent of a similar notion in calculi based on linear
logic [Sim05, EG16], and actually we will see (Section 3.2.1) that there is a
correspondence, with the [·] operator behaving like a box.

Identity and associativity. Our analysis exposes the operational role of
the rules associated to the monadic laws of identity and associativity.

i To compute a value, only βc steps are necessary.

ii To compute a normal form, βc steps do not suffice: associativity (i.e. σ
steps) is necessary.

Normalization. The study of normalization is more complex than that of
evaluation, and requires some sophisticated techniques. We highlight some specific
contributions.

• We define two families of normalizing strategies in λ©. The first one, quite
constrained, relies on an iteration of weak reduction →w λ© . The second one,
more liberal, is based on an iteration of surface reduction→s λ© . The definition
and proof of normalization is parametric on both.

7



Chapter 1. Introduction and Preliminaries

• The technical difficulty in the proofs related to normalization comes from
the fact that neither weak nor surface reduction is deterministic. To deal
with that we rely on a fine quantitative analysis of the number of βc steps,
which we carry-on when we study factorization in Section 4.3.

Some of the most challenging proofs in this part are those concerned with nor-
malization via surface reduction. The effort is justified by the interest in having
a larger and more versatile strategy. The definition of strategy is not an actual
abstract machine but subsumes several ones, each following a different reduction
policies. It thus facilitates reasoning about optimization techniques and parallel
implementation.

A roadmap. Let us summarize the structure of this part.
Section 1.2 contains the background notions which are relevant to our concern-

ing.
Chapter 2 gives the formal definition of the computational core λ©, via

the categorical definition of computational monad, and its reduction.
In Section 3.2 and Section 4.2, we analyze the properties of weak and

surface reduction. We first study→βc , and then we move to the whole λ©, where
associativity and identity also come to play. In Section 4.1 we deal with the proof
of confluence of the calculus. In Section 4.3 we study several factorization results.
The cornerstone of our construction is surface factorization (Theorem 4.3.1). We
then further refine this result, first by postponing the id steps which are not βc

steps, and then with a weak factorization. This further phase is motivated by the
properties which we analyze in Section 4.2.

In Section 4.4 we study evaluation, and analyze some relevant consequences
of this result. We actually provide two different ways to deterministically compute
a value. The first is the one given by Equation (1.6), via an evaluation context.
The second way requires no contextual closure at all: simply applying βc and σ
rules will return a value, if possible.

In Chapter 5 we study normalization and normalizing strategies. The
conclusions and related works are presented in this part last chapter, Chapter 6.

1.2 Preliminaries

1.2.1 Basics in Rewriting
In this section we recall some standard definitions and notations in rewriting (see
for instance Terese [Ter03] or Baader and Nipkow [BN98]).

Rewriting System. An abstract rewriting system (ARS) is a pair (A,→)
consisting of a set A and a binary relation → on A whose pairs are written t −→ s
and called steps. A →-sequence from t is a sequence of →-steps. We denote by
→∗ (resp. →=; →+) the transitive-reflexive (resp. reflexive; transitive) closure of
→, and use ← for the reverse relation of →, that is, u ← t if t → u. We write
t →k s for a →-sequence t → t1 → . . . → tk = s of k ∈ N steps. If →1,→2 are
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binary relations on A then →1 · →2 denotes their composition, i.e. t→1 · →2 s if
there exists u ∈ A such that t→1 u→2 s. We often set →12 :=→1 ∪ →2.

A relation → is deterministic if for each t ∈ A there is at most one s ∈ A such
that t→ s. It is confluent if ←∗ · →∗ ⊆ →∗ · ←∗.

We say that u ∈ A is →-normal (or a →-normal form) if there is no t such
that u→ t. Confluence implies that each t ∈ A has unique normal form, if any
exists.

Normalization. Let (A,→) be an ARS. In general, a term may or may not
reduce to a normal form. And if it does, not all reduction sequences necessarily
lead to normal form. A term is weakly or strongly normalizing, depending on if
it may or must reduce to normal form. If a term t is strongly normalizing, any
choice of steps will eventually lead to a normal form. However, if t is weakly
normalizing, how do we compute a normal form? This is the problem tackled by
normalization: by repeatedly performing only specific steps, a normal form will be
computed, provided that t can reduce to any. We recall three important notions
of normalization:

Definition 1.2.1 (Normalizing).

1. t is strongly →-normalizing (or terminating): every maximal →-sequence
from t ends in a normal form ( i.e., t has no infinite →-sequence).

2. t is weakly→-normalizing (or just normalizing): there exist a →-sequence
from t which ends in a normal form.

A reduction → is strongly (resp. weakly) normalizing if each t ∈ A is. A reduction
→ is uniformly normalizing if its weakly normalization implies its strongly
normalization.

The restriction to a subreduction →e ⊆ → is a way to control that in a term
there are different possible choices of reduction. A normalizing strategy for → is
a reduction strategy which, given a term t, is guaranteed to reach its →-normal
form, if any exists.

Definition 1.2.2 (Normalizing strategies). A reduction→e ⊆→ is a normalizing
strategy for→ if→e has the same normal forms as→ whenever t has a→-normal
form. As a consequence, every maximal →e -sequence from t ends in a normal
form.

Factorization. In this part, we will extensively use factorization results.

Definition 1.2.3 (Factorization). Let (A,−→) be a rewriting system with →=
→e ∪→i . The relation → satisfies e-factorization, written Fact(→e ,→i ), if

Fact(→e ,→i ) : (→e ∪→i )∗ ⊆ →e ∗ · →i
∗ (Factorization)

The relation →i postpones after →e , written PP(→e ,→i ), if

PP(→e ,→i ) : →i
∗ · →e ∗ ⊆ →e ∗ · →i

∗. (Postponement)

9
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It is an easy result that e-factorization is equivalent to postponement, which
is a more convenient way to express it.

Lemma 1.2.4. The following are equivalent (for any two relations →e ,→i )

1. Postponement: PP(→e ,→i ).

2. Factorization: Fact(→e ,→i ).

Hindley [Hin64] first noted that a local property implies factorization. Let
→=→e ∪→i . We say that →i strongly postpones after →e , if

SP(→e ,→i ) : →i · →e ⊆ →e ∗ · →i
= (Strong Postponement)

Lemma 1.2.5 (Hindley [Hin64]). SP(→e ,→i ) implies Fact(→e ,→i ).

Observe that the following are special cases of Strong Postponement. The first
is linear in →e . We refer to it as linear postponement.

1. →i · →e ⊆ →e · →i
=

2. →i · →e ⊆ →e · →

Linear variants of postponement can easily be adapted to quantitative variants,
which allow us to “count the steps”, and will be useful to establish termination
properties. We do this in Section 4.3.3.

Diamonds. We recall also another quantitative result, which we will use.

Fact 1.2.6 (Newman [New42]). Given an ARS (A,→), (1) implies (2).

1. Quasi-diamond: ∀t ∈ A, (t1 ← t→ t2) implies (t1 = t2 or exists u such
that t1 → u← t2).

2. Random Descent: ∀t ∈ A, all maximal sequences from t have the same
number of steps, and all end in the same normal form, if any exists.

If a reduction is quasi-diamond, then it has Random Descent.

Postponement, Confluence and Commutation Both postponement and
confluence are commutation properties. Two relations ▷ and ▶ on A commute if

◁∗· ▶∗ ⊆ ▶∗ · ◁∗ . (Commutation)

A relation → on A is confluent if it commutes with itself. Postponement
and commutation can also be defined in terms of each other, simply taking →i
for ◁ and →e for ▶ (→i postpones after →e if and only ←i commutes with →e ).
As propounded in [vO20b], this fact allows for proving postponement by means
of the decreasing diagrams technique [vO94]. This is a powerful and general
tool to establish commutation properties, which reduces the problem of showing
commutation to a local test; in exchange of localization, the diagrams need to be
decreasing with respect to some labelling.
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Definition 1.2.7 (Decreasing). Let ▷ := ⋃
k∈K ▷k and ▶ := ⋃

j∈J ▶j. The pair
of relations ▷,▶ is decreasing if for some well-founded strict order on the set of
labels L = K ∪ J the following holds, for each k ∈ K, j ∈ J :

◁k· ▶j ⊆ (▶∗⟨k⟩ · ▶=
j · ▶∗⟨k,j⟩) · (◁∗⟨j⟩ · ◁=

k · ◁∗⟨k,j⟩),

where ⟨L⟩ = {i ∈ K ∪ J | ∃l ∈ L. l > i}.

Theorem 1.2.8 (Decreasing Diagrams [vO94]). If a pair of relations ▷, ▶ is
decreasing, then ▷ and ▶ commute.

Modularizing Confluence. A classic tool to modularize a proof of confluence
is Hindley-Rosen lemma, stating that the union of confluent reductions is itself
confluent if they all commute with each other.

Lemma 1.2.9 (Hindley-Rosen). Let →1 and →2 be relations on the set A. If →1
and →2 are confluent and commute with each other, then →1 ∪ →2 is confluent.

Like for postponement, strong commutation implies commutation.

Lemma 1.2.10 (Strong commutation [Hin64]). Strong commutation
←1 · →2 ⊆ →2

∗ · ←1
= implies commutation.

1.2.2 Basics on λ-calculus
We recall the syntax of λ-terms, and some relevant notions about the λ-calculus,
taking Plotkin’s call-by-value (CbV) λ-calculus [Plo75] as a concrete example.

λ-terms and values are generated by the grammars

V ::= x | λx.M (values Val) M,N ::= V |MN (terms Λ)

where x ranges over a countable set of variables. Terms of shape MN and
λx.M are called applications and abstractions, respectively.

Reduction.

• Contexts (with one hole ⟨ ⟩) are generated by

C ::= ⟨ ⟩ |MC | CM | λx.C (Contexts)

C⟨M⟩ stands for the term obtained from C by replacing the hole with the
term M (possibly capturing free variables of M).

• A rule ρ is a binary relation on Λ, which we also denote 7→ρ, writing
R 7→ρ R

′. R is called a ρ-redex.

• A reduction step →ρ is the closure under context C of ρ. Explicitly, if
T, S ∈ Term then T →γ S if T = C⟨R⟩ and S = C⟨R′⟩, for some context C
and R 7→γ R

′.
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The Call-by-Value λ-calculus. CbV λ-calculus is the rewrite system (Λ,→βv),
the set of λ-terms Λ, equipped with the βv-reduction, where the reduction →βv is
the contextual closure of the rule 7→βv :

(λx.P )V 7→βv P{V/x} (V ∈ Val).

Notice that here β-redexes can be fired only when the argument is a value.
Weak evaluation (which does not reduce in the body of a function) evaluates

closed terms to values. In the literature about CbV, there are three main weak
schemes: reducing from left to right, as defined by Plotkin [Plo75], from right to
left [Ler90], or in an arbitrary order [LM08]. Left contexts L, right contexts R,
and (arbitrary order) weak contexts W are, respectively, defined by

L ::= ⟨ ⟩ | Lt | vL R ::= ⟨ ⟩ | tR | Rv W ::= ⟨ ⟩ | Wt | tW

In general, given a rule 7→ρ on Λ, weak reduction →w ρ is the closure of 7→ρ under
weak contexts W; non-weak reduction →¬w ρ is the closure of 7→ρ under contexts C
that are not weak. Left and non-left reductions (→l ρ and →¬l ρ), right and non-right
reductions are defined in a similar way.

CbV Weak Factorization. Factorization of→βv allows for a characterization of
the terms which reduce to a value. Convergence below is a remarkable consequence
of factorization.

Theorem 1.2.11 (Weak Left Factorization [Plo75]).

• Left Factorization of →βv : →∗βv
⊆→l βv

∗ · →¬l βv
∗.

• Convergence: T →∗βv
V if and only if T →l βv

∗ V ′.

The same results hold for →w and →r βv in place of →l βv .

Recalling that for closed terms the normal forms of →l are exactly the values,
it means that given M a closed term, M has a βv-reduction to a value, if and only
if →l βv -reduction from M terminates.
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CHAPTER 2

THE COMPUTATIONAL CORE λ©

The title of the following section might lead the reader to think that he has not yet
entered the part of the text dedicated to reduction theory and, therefore, to a a
purely syntactical investigation. Actually, we think that the most appropriate way
to introduce the syntax of the computational core is through a description of the
monads and the intended model, since these concepts will have a great influence
on the design of the calculus itself. The “semantic” nature of the computational
core syntax will ensure that the terms of the grammar are only those that are
needed, i.e. avoiding redundancies, and reaching the requirement of minimality
whenever possible. This is why the calculus is called computational core, precisely
because it aims to be the heart of any calculus with effects.

2.1 Concrete Models of the Computational λ-
calculus

The computational λ-calculus, denoted λC , has been introduced in the seminal
works [Mog89, Mog91]. It is a typed calculus derived from the categorical con-
struction of a monad (T, η, µ) (see [Mac97] chap. VI) over a cartesian category C,
equipped with some more structure to model Kleisli exponents, which represent
internally the morphisms in CT (A,B) = C(A, TB), where CT is the Kleisli category
of the monad. For the precise definition see [Mog89], Defs. 3.2 and 3.5, or [Mog91]
Defs. 3.2 and 3.9; see also Definition 2.1.2, Proposition 2.1.3, and Proposition 2.1.4
below.

As said before, in Moggi’s construction C is cartesian. When looking at
Wadler’s type-theoretic definition of monads [Wad92, Wad95], that is at the basis
of the implementation of monads in Haskell language, a natural interpretation
of the calculus is into a cartesian closed category (ccc), such that two families
of combinators, or a pair of polymorphic operators called the “unit” and the
“bind”, exist satisfying the monad laws, namely (the syntactic counterpart of)
the three equations in Definition 2.1.1 below (see also Proposition 2.3.3). This
is more directly expressed by defining the interpretation of Wadler’s version of
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the λC-calculus into a (locally small) subcategory of Set which is a ccc: here C
will be called a concrete ccc. Examples are the category Dom of Scott domains
with continuous functions, and its subcategory Alg of algebraic lattices with a
countable basis.

Definition 2.1.1. (Computational Monad [Wad95] §3)
Let C be a concrete ccc. A functional computational monad, henceforth

functional monad over C is a triple (T, unit, ⋆) where T is a map over the objects
of C, and unit and ⋆ are families of morphisms

unitA : A −→ TA ⋆A,B : TA× (TB)A −→ TB

such that, writing ⋆A,B as an infix operator and omitting subscripts:

Left unit : unit a ⋆ f = f a
Right unit : m ⋆ unit = m
Assoc : (m ⋆ f) ⋆ g = m ⋆ λλ d.(f d ⋆ g)

where λλ is functional abstraction in the metalanguage: λλ d.(f d ⋆ g) means d 7→
f d ⋆ g.

This definition is the semantic counterpart of the type theoretic one in [Wad95],
but for the ⋆ which is curried in [Wad92] and Wadler’s subsequent papers, so that
it has type TA −→ (A −→ TB) −→ TB; we adopt here the uncurried form to avoid
the cumbersome double exponent.

Leaving aside the discussion about different ways to define a λC-model over
a ccc in general, for which the interested reader might consult [Pow00] and the
literature cited there, we limit ourself to show that a functional monad is indeed
a strong monad and a λC-model in the sense of Moggi. Clearly Definition 2.1.1
is quite close to the notion of a Kleisli triple (T, η, †), which is an equivalent
definition of a monad.

Definition 2.1.2. (Kleisli triple [Mog91], Def. 1.2)
A Kleisli triple over a category C is a structure (T, η, †) where T : ObjC −→ ObjC

is a map over the objects of C, and there are a family of morphisms ηA : A −→ TA
of C and a map †, we refer to as the extension map of T , sending any morphism
f : A −→ TB in C to a morphism f † : TA −→ TB of the same category, such that:

f † ◦ ηA = f, η†A = idT A, f † ◦ g† = (f † ◦ g)† (2.1)

where g : C −→ TA.

In case of concrete ccc, Definition 2.1.1 coincides with the notion of Kleisli
triple just given. In fact, the equivalence is obtained by relating maps η and † to
unit and ⋆ operators, as follows:

unitX = ηX a ⋆ f = f †(a)

The first equality is just a notational variation of the coercion of values into
computations. The latter, instead, establishes the connection between the ⋆
operator with the map †.

Let state and prove this equivalence formally.
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Proposition 2.1.3. A functional monad (T, unit , ⋆) over a concrete ccc C induces
a Kleisli triple over C.

Proof. Take ηA = unitA and f † = λλx.x ⋆ f : TA −→ TB for f : A −→ TB. By the
equation (Left unit) the following diagram commutes:

A

TA

unitA

?

f † = λλx. x ⋆ f
- TB

f

-

By definition we have that η†A = λλx.x ⋆ unitA; therefore by (Right unit), for all
a ∈ TA we have:

η†A a = (λλx.x ⋆ unitA) a = a ⋆ unitA = a

Finally by (Assoc) the following diagram commutes:

C A

TC

unitC

?

g†
- TA

unitA

?

f †
-

g

-

TB

f

-

TC

idT C

? (f † ◦ g)† = λλ y. y ⋆ (λλx. g x ⋆ f)
- TB

idT B

6

namely for all c ∈ TC:

(f † ◦ g)† c = c ⋆ (λλx. g x ⋆ f) = (c ⋆ g) ⋆ f

The above proof relies on the inter-definability of extension and bind by the
equation f †a = a ⋆ f . On the other hand by looking closely to this equation, we
see that what we have constructed is the morphism:

† = λλ f x. x ⋆ f : TBA −→ TBT A (2.2)

internalizing the Kleisli map. This is the essential step in the construction of what
is called a C-monad in [Pow00], §5.

Since then we have not completely exploited the fact that C is a ccc. As such
it has all finite products, so that for any A,B the morphism

tA,B : A× TB −→ T (A×B)
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is definable in terms of ⋆, pairing and projections as

tA,B = λλx. (π2 x) ⋆ λλ y. unit (π1 x, y) (2.3)

which is such that:
t (a,m) = m ⋆ λλ y.unit (a, y) (2.4)

Then t is a tensorial strength in the sense of [Mog91], Def. 3.2, as stated in
the following proposition.

Proposition 2.1.4. Given a monad (T, unit , ⋆) the t defined in Equation (2.3)
commutes with the natural isomorphisms rA : 1× A −→ A and αA,B,C : (A×B)×
C −→ A× (B × C):

i) t1,A ◦ rT A = TrA

ii) TαA,B,C ◦ tA×B,C = tA,B×C ◦ (idA × tB,C) ◦ αA,B,T C

Moreover:

iii) tA,B ◦ (idA × unitB) = unitA×B

iv) tA,B ◦ (idA × µB) = µA×B ◦ TtA,B ◦ tA,T B

where idA = λλx:A. x, µA = (idT A)† = λλ z. z ⋆ idT B and for any f : A −→ B,

Tf = (unitB ◦ f)† = λλ z. z ⋆ (unitB ◦ f)

Therefore (T, unit, ⋆, t) is a strong monad.

Proof. By definition unfolding and straightforward calculations.

2.2 The Computational Core λ©

The computational λ-calculus was introduced by Moggi in [Mog89, Mog91] as a
meta-language to describe non functional effects in programming languages via an
incremental approach. The basic idea is to distinguish among values of some type
D and computations over such values, the latter having type TD. Semantically
T is a monad, endowing D with a richer structure such that operations over
computations can be seen as algebras of T .

The monadic approach is not only useful when building compilers modularly
with respect to various kinds of effects [Mog91], to interpret languages with
effects like control operators via a CPS translation [Fil94], or to write effectful
programs in a purely functional language such as Haskell [Wad95], but also to
reason about such programs. In this respect, typed computational lambda-
calculus has been related to static program analysis and type and effect systems
[WT03, BHM02], PER based relational semantics [BKHB06], and more recently
co-inductive methods for reasoning about effectful programs have been investigated
[DGL17].

We aim to investigate the monadic approach to effectful functional languages
in the untyped case. This is motivated by the fact that similar, if not more elusive
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questions arise for effectful untyped languages as well as for typed ones; but also
because the untyped setting is the natural one where studying program analysis
via type assignment systems in Curry style, like in the case of intersection types
(as we do in Part II), which we advocate. Indeed, working out the approach in
the untyped case lays the foundation for doing the same also for typed languages,
either by seeing intersection types as refinement types, or by looking at them as to
the formulas of the endogenous logic of domain theoretic interpretations of types
[Abr91]. The tools we use to establish program equivalence are the classic theory
of reduction and intersection type assignment, which we exploit for defining the
logical semantics of programs.

As already said in the introduction, it might appear nonsense to speak of
monads w.r.t. an untyped calculus, as the monad T interprets a type constructor
both in Moggi’s and in Wadler’s formulation of the computational λ-calculus
[Mog91, Wad95]. However, much as the untyped λ-calculus can be seen as a
calculus with a single type, which is interpreted by a retract of its own function
space in a suitable category as formerly observed by Scott [Sco80], the untyped
computational λ-calculus λ© that we are going to introduce formally, has two
types: the type of values D and the type of computations TD. The type D is
a retract of D −→ TD, written D ◁ D −→ TD, that is an appropriate space of
functions from values to computations [Mog89]. Since we are interested in an
extensional model, instead of retractions we consider type isomorphisms. In fact,
in [Mog89], §5, the semantics of the untyped computational calculus is given by
two kinds of reflexive objects in the category of λC-models, which are the solution
of either the equation D = TD −→ TD in case of call-by-name, or

D = D −→ TD (2.5)

in case of call-by-value.
Since the distinction among values and computations is central in λC , which

has been conceived as a generalization of Plotkin’s call-by-value λ-calculus, we
adopt Equation (2.5) in defining the corresponding untyped calculus, which leads
to the syntax of our calculus in Definition 2.2.1.

Now we formally introduce the syntax and the reduction of the computational
core, shortly λ©, already presented in [dT20]. The notation in use for returned
values is line with [Wad95], another notation could be !. Playing with syntactical
changes would be convenient both to present the calculus in a more familiar
fashion, and to establish useful connections between λ© and two well known calculi,
namely Simpson’s calculus [Sim05] and Plotkin’s call-by-value λ-calculus [Plo75].
This topic will be detailed in Chapter 3.
Definition 2.2.1 (Terms of λ©). The terms consist of two sorts of expressions:

Val : V,W ::= x | λx.M (values)
Com : M,N ::= [V ] |M ⋆ V (computations)

where x ranges over a denumerable set Var of variables. We set Term := Val∪Com;
fv(V ) and fv(M) are the sets of free variables occurring in V and M , respectively,
and are defined in the obvious way. Terms are identified up to clash avoiding
renaming of bound variables (α-congruence).
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Because of Equation (2.5) it is easy to see that, if we assume that all variables
x have type D, then any value term V has type D and any computation term has
type TD. Indeed omitting contexts, we have:

x : D ⊢ x : D
x : D ⊢M : TD

λx.M : D −→ TD = D

V : D
[V ] : TD

M : TD V : D = D −→ TD

M ⋆ V : TD

(2.6)

Remark 2.2.2 (Application). In the grammar presented in Definition 2.2.1 there
is no functional application at all.

In fact, while VW might be included, yielding a term of type TD, none among
MV , VM and MN have a type in the calculus; indeed these are not well formed
terms according to Definition 2.2.1.

This may seem a strong limitation because we apparently cannot express
iterated application, since (VW )N is not well formed. Nonetheless, the application
among computations is definable:

MN ≡M ⋆ (λz.N ⋆ z) for z ̸∈ fv(N) (2.7)

Remark 2.2.3 (Let constructor). With respect to Moggi’s λC-syntax, we do
not have the let construct, which is considered as syntactical sugar for bind and
abstraction:

letx :=N inM ≡ N ⋆ λx.M

Last but not least, there is a deeper reason for not having functional application
as primitive, a reason connected to the actual implementation. The reason is
that the bind ⋆ itself represents an effectful form of application, such that by
redefining the unit and bind one obtains an actual evaluator for the desired
computational effects [Wad95]. Indeed one should keep in mind that both [·]
and ⋆ are abstractions of concrete realizations of such operators, depending on
the effects, and hence on the monad we want to model. Adding application as
primitive, and consequently the βv rule, extends the calculus by a kind of a pure
application that is in general different than the impure one, that is effectful and
represented by the bind: this is an advantage when designing a programming
language, but not with a foundational calculus.

2.3 Reflexive T -object and λ©-model
We end this introduction to λ© grammar by defining the notion of λ©-model in a
concrete ccc, by analogy to that of environment λ-model in [Mey82].

Definition 2.3.1 (Reflexive T -object and λ©-model). Let C be a concrete ccc, and
(T, unit, ⋆) a functional monad over C. Then an object D ∈ ObjC is T -reflexive
if there exist the C-morphisms Φ : D −→ TDD and Ψ : TDD −→ D such that
Φ ◦Ψ = idT DD .
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A λ©-model in C is a tuple M(D) = (D,T,Φ,Ψ) where T is a monad, D
is a reflexive T -object via Φ and Ψ. Then, setting Term-EnvD = Var −→ D
as the set of variable environments ranged over by ρ, we define a pair of maps
[[·]]D : Val× Term-EnvD −→ D and [[·]]T D : Com× Term-EnvD −→ D, such that:

i) [[x]]Dρ = ρ(x)

ii) [[λx.M ]]Dρ = Ψ(λλ d ∈ D.[[M ]]T D
ρ[x 7→d])

iii) [[[V ]]]T D
ρ = unit [[V ]]Dρ

iv) [[M ⋆ V ]]T D
ρ = [[M ]]T D

ρ ⋆ Φ([[V ]]Dρ )
where ρ[x 7→ d](x) = d and ρ[x 7→ d](y) = ρ(y) if y ̸≡ x. Finally we say that M
is extensional if also Ψ ◦ Φ = idD.

As in case of environment λ-models, these interpretations [[·]]D and [[·]]T D are
well defined depends on the fact that λλ d ∈ D.[[M ]]T D

ρ[x 7→d] ∈ TDD, which is easily
established by induction over M . In the following we shall write D for a λ©-model
M(D) whenever the context is unambiguous, and call it just a model.

By M{V/x} and W{V/x} we denote the capture avoiding substitution of x by
V in M and W , respectively. This means that x is not bound in M,W and that V
is free for x in M , namely fv(V )∩BV(M) = ∅, and similarly for W . Since we have
a denumerable set of variables and identify α-congruent terms, such conditions
can always be satisfied.
Lemma 2.3.2. Let D be a model. Then for all V,W ∈ Val and M ∈ Com, and
for all ρ ∈ Term-EnvD:

[[W{V/x}]]Dρ = [[W ]]Dρ[x7→[[V ]]Dρ ] and [[M{V/x}]]T D
ρ = [[M ]]T D

ρ[x 7→[[V ]]Dρ ]

Proof. By an easy induction over W and M .

For any model D and M,N ∈ Com, we write D |= M = N if for all ρ ∈
Term-EnvD it holds [[M ]]T D

ρ = [[N ]]T D
ρ . Then we write |= M = N if D |= M = N

for any model D.
Proposition 2.3.3 (Monad laws). For all V ∈ Val and M,N,L ∈ Com it holds
that:

i) |= [V ] ⋆ (λx.M) = M{V/x}

ii) |= M ⋆ λx.[x] = M

iii) |= (L ⋆ λx.M) ⋆ λy.N = L ⋆ λx.(M ⋆ λy.N) where x ̸∈ FV (N).
Proof. By definition unfolding and easy calculations. E.g. for arbitrary D and
ρ ∈ Term-EnvD:

[[[V ] ⋆ (λx.M)]]T D
ρ = unit [[V ]]Dρ ⋆ Φ(Ψ(λλ d ∈ D.[[M ]]T D

ρ[x 7→d]))
= unit [[V ]]Dρ ⋆ λλ d ∈ D.[[M ]]T D

ρ[x 7→d]

= (λλ d ∈ D.[[M ]]T D
ρ[x 7→d])[[V ]]Dρ

= [[M ]]T D
ρ[x 7→[[V ]]Dρ ] = [[M{V/x}]]T D

ρ

using Definition 2.3.1, equations Φ ◦Ψ = idT DD , Left unit and Lemma 2.3.2.
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2.4 The Reduction Relation
Henceforth, but just in this part, we will use a slightly different notational variant
of the computational core, representing the bind constructor just as an application:

VM := M ⋆ V

Note that, recalling Remark 2.2.2, this notational variation could be misleading,
since it seems that a functional application is taking place: this is not the case as
the bind operator is not just a functional application. This choice is to make the
rewriting treatment more readable and connection with other calculi more visible.

In conclusion, this allows to present the calculus in a more familiar fashion
and it also enlightens some issues left aside in the literature. But in [dT20], as
well as in Part II and Part III, the bind operator is explicitly presented, as in the
referred [Wad95]. In the authors’ opinion, the bind notation is convenient when it
comes to a semantical analysis, thanks to the its connection with monad laws. In
addition it useful to stress that the bind operator has a operational flavour, too:
it is a chronological point of view about the evaluation, as clearly understandable
in the connection with let constructor in Remark 2.2.3.

Definition 2.4.1 (Reduction). The relation λ© = βc ∪ id ∪ σ is the union of the
following binary relations over Com:

βc) (λx.M)([V ]) 7→βc M{V/x}
id ) (λx.[x])M 7→id M

σ ) (λy.N)((λx.M)L) 7→σ (λx.(λy.N)M)L for x ̸∈ fv(N)

The substitution is defined as aspected. The reduction →© is the contextual closure

of λ©, where contexts are defined as follows:

C ::= ⟨ ⟩ | [λx.C ] | V C | (λx.C)M Contexts

Remark 2.4.2. Let us continue with the Remark 2.2.2 and with the fact that the
application VW can be introduced in our calculus. In fact, as remarked in [dT20],
the only form of application which is admissible is VW , that is a computation
with type TD. By adding these new terms to Com, we have to consider the
axiom of βv-conversion, namely (λx.M)W = M{W/x}. However, this introduces
redundancies in the calculus; let VW be defined as abbreviation of V [W ], then
by Equation (1.1) and taking V = λx.M :

(λx.M)W ≡ (λx.M)[W ] 7→βc M{W/x} (2.8)

Remark 2.4.3 (βc and βv). We are now in place to show how a βv-reduction
is simulated by a βc-reduction, simulated possibly in more steps. Observe that
the reduction relation →© is only on computations, therefore no computation N
will ever reduce to some value V ; however, this is represented by a reduction
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N →∗© [V ], where [V ] is the coercion of the value V into a computation. Moreover,
let us assume that M →∗© [λx.M ′]. We have:

MN ≡ (λz.zN)M
→∗© (λz.z[V ])[λx.M ′]
→βc (λx.M ′)[V ]
→βc M ′{V/x}

where, if z ̸∈ fv(N) then z ̸∈ fv(V ).

Surface and weak reduction. As we shall see in the next sections, there are
two natural restriction of →©: weak reduction →w © which does not fire in the scope
of λ, and surface reduction →s ©, which does not fire in the scope of [·]. The former
is the evaluation usually studied in CbV λ-calculus (Theorem 1.2.11). The latter
is the natural evaluation in linear logic, and in Simpson’s calculus, whose relation
with λ© we discuss in Section 3.2.1.

Surface and weak contexts are, respectively, defined by the grammars

S ::= ⟨ ⟩ | V S | (λx.S)M Surface Contexts
W ::= ⟨ ⟩ | VW Weak Contexts

For ρ ∈ {βc, id, σ, λ©}, weak reduction →w ρ is the closure of ρ under weak contexts
W, surface reduction →s ρ is its closure under surface contexts S. Non-surface
reduction →¬s ρ is the closure of ρ under contexts C that are not surface. Similarly,
non-weak reduction →¬w ρ is the closure of ρ under contexts C that are not weak.

Clearly, →w ρ⊆→s ρ. Note that →w βc is a deterministic relation, while →s βc is not.

Example 2.4.4. To clarify the difference between surface and weak, let us consider
the term (λx.III[x])[λy.III[y]], where III = λz.[z]. We underline the fired redex.

• (λx.III[x])[λy.III[y]]→s © (λx.[x])[λy.III[y]];

• (λx.III[x])[λy.III[y]]↛w © (λx.[x])[λy.III[y]];

• (λx.III[x])[λy.III[y]]↛s © (λx.III[x])[λy.[y]].

Remark 2.4.5 (Uniqueness of weak contexts). As we recalled in Section 1.2.2, in
CbV weak contexts can be given in three forms, according to the order in which
redexes which are not in the scope of abstractions are fired: L,R,W. When the
grammar of terms is restricted to computations, the three coincide. So in the
computational core there is only one definition of weak context.

In Section 3.2 and Section 4.2, we analyze the properties of weak and surface
reduction. We first study →βc , and then we move to the whole λ©, where σ and id
also come to play.
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Chapter 2. The Computational Core λ©

Computations are closed under reduction. The set of computations Com
is closed under substitutions and reduction:

Proposition 2.4.6.

1. If M ∈ Com and V ∈ Val then M{V/x} ∈ Com.

2. If M ∈ Com and M →ρ M
′ then M ′ ∈ Com, for ρ ∈ {βc, σ, id}. The same

property holds for surface reduction →s ρ and weak reduction →w ρ.

Proof. Item 1 follows by observing that in M{V/x} we just replace the value x
by another value V . Item 2 follows by item 1 and by induction over contexts.
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CHAPTER 3

RELATING λ© WITH OTHER
CALCULI

We relate the computational core to other well-known calculi: Sabry and Wadler’s
refined computational calculus, Simpson’s linear calculus, Plotkin’s CbV, Moggi’s
original computational calculus. These connections are done in order to place
the computational core in the existing literature, and transferring already known
properties from these calculi to the computational core .

3.1 The Computational Core and let-notation
It is natural to compare the core calculus λ© with other untyped computational
calculi with the let -constructor, as already mentioned in Remark 2.2.3. A useful
reference is [SW97], where Moggi’s untyped calculus λC [Mog88] is refined into a
variant, called λml∗ , that we display in Figure 3.1.

Values: V, W ::= x | λx.M

Computations: M, N ::= [V ] | let x :=M in N | V W

Reduction →ml∗ is the contextual closure of the following rules.

(c.β) (λx.M)V → M{V/x}
(c.η) λx.V x → V x ̸∈ fv(V )

(c.let.β) let x :=[V ] in N → N{V/x}
(c.let.η) let x :=M in [x] → M x ̸∈ fv(M)

(c.let.ass) let y :=(let x :=L in M) in N → let x :=L in (let y :=M in N)

Figure 3.1: λml∗ : Syntax and Reduction

To state a correspondence between λ© and λml∗ , consider the translations in
Figure 3.2. The translations induce an equational correspondence (in the sense of
[SF93]) by adding η-equality to λ©.

23



Chapter 3. Relating λ© with Other Calculi

(·)• : λml∗ −→ λ©

(x)• := x

(λx.M)• := λx.(M)•

(V W )• := V • [W •]
([V ])• := [V •]

(let x :=M in N)• := (λx.N•)M•

(·)◦ : λ© −→ λml∗

(x)◦ := x

(λx.M)◦ := λx.(M)◦

([V ])◦ := [V ◦]
(V [W ])◦ := V ◦W ◦

(xM)◦ := let y :=M◦ in xy

((λx.N)M)◦ := let x :=M◦ in N◦

where in the last two clauses for (·)◦, y ̸∈ fv(M) and M ̸= [W ] for any value W .

Figure 3.2: Translations

More precisely, let →η be the contextual closure of the rule
λx.(V [x]) 7→η V

Let =©η be the reflexive-transitive and symmetric closure of the reduction →©η =
→© ∪ →η, and similarly for =ml* with respect to →ml∗ .
Proposition 3.1.1. The following hold:

1. M =©η (M◦)• for every term M in λ©;

2. (P •)◦ =ml* P for every term P in λml*;

3. M =©η N implies M◦ =ml* N
◦;

4. P =ml* Q implies P • =©η Q
•.

Proof. By induction over the definition of the translations, see Appendix C.1 for
a detailed proof, and Proposition C.1.1 for another, more informative one.

In Proposition 3.1.1 we consider =©η, which includes η-conversion, since
xM ̸=© ((xM)◦)• = (λy.x[y])(M◦)•

(where =© is the reflexive-transitive and symmetric closure of→©) and so condition
(1) in Proposition 3.1.1 would not hold if we replace =©η with =©.

It is natural to wonder if there is a Galois connection as defined in [SW97].
This amounts to replace =©η with →∗©η and =ml* with →∗ml* in Proposition 3.1.1.
The answer is negative because the condition corresponding to (1), namely M →∗©η

(M◦)•, fails since xM ̸→∗©η ((xM)◦)•. The lack of a Galois connection means
that the two calculi do not have the same reduction theory, even if they share
the same convertibility theory, and have the same denotational semantics, by
Proposition 3.1.1

3.2 The Operational Properties of βc
Since β-reduction is the “engine” of any λ-calculus, we continue such comparisons
by focussing on the properties of →βc and its surface and weak restriction. We
do so by relating it first with the reduction →β! of Simpson’s linear λ-calculus
[Sim05], and then with →βv of Plotkin’s CbV calculus.
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3.2.1 Computational versus Bang Calculus
We call bang calculus the fragment of Simpson’s linear λ-calculus [Sim05] without
linear abstraction. It has also been studied in [EG16, GM19] (with the name bang
calculus, which we adopt), and it is closely related to Levy’s Call-by-Push-Value
[Lev99].

When considering only βc reduction, it is easy to see that (Com,→βc) is the
restriction of the bang calculus to computations. Therefore, βc has the same
syntactical properties, which we review below.

The bang calculus. We briefly recall the bang calculus (Λ!,→β!).
Terms Λ! are defined by

T, S,Q, P ::= x | TS | λx.T | !T (Terms Λ!)

Contexts (C) and surface contexts (S) are generated by the grammars:

C ::= ⟨⟩ | TC | CT | λx.C | !C (Contexts)
S ::= ⟨⟩ | TS | ST | λx.S (Surface Contexts)

The reduction →β! is the closure under context C of the rule

(λx.P )!Q 7→β! P{Q/x}

Surface reduction →s β! is the closure of the rule 7→β! under surface contexts S.
Non-surface reduction →s β! is the closure of the rule 7→β! under contexts C that
are not surface. Surface reduction factorizes →β! .

Theorem 3.2.1 (Surface Factorization [Sim05], Prop. 5.2). In (Λ!,→β!):

1. Surface Factorization of →β! : →∗β!
⊆ →s ∗β!

· →¬s
∗
β!

.

2. Boxes: T →∗β!
!Q if and only if T→s ∗β!

!P

Surface reduction is non-deterministic, but satisfies the diamond property of
Fact 1.2.6.

Theorem 3.2.2 (Confluence and diamonds [Sim05]). In Λ!:

• the relation →β! is confluent;

• the relation →s β! has the quasi-diamond property.

Restriction to Computations. The restriction of the calculus above to com-
putations, i.e. (Com!,→β!) is exactly the same as the fragment of λ© with βc-rule
as unique reduction rule, i.e. (Com,→βc).

First, observe that the set of computations Com defined in Chapter 2 is a
subset of the terms Λ!, and moreover it is closed under →βc reduction (exactly as
in Proposition 2.4.6). Second, observe that the restriction of context and surface
contexts to computations, give exactly the grammar defined in Chapter 2. Then
(Com!,→β!) and (Com,→βc) are in fact the same (modulo replacing the ! operator
with [·]), and:
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• M →β! N if and only if M →βc N .

• M →s β! N if and only if M →s βc N .

Hence, →βc in the computational core inherits all the syntactical properties of
the reduction →β! , and in particular, surface factorization and the quasi-diamond
property of →s β! . We will use both extensively.

Fact 3.2.3 (Properties of βc and its surface restriction). In λ©:
→βc is non deterministic and confluent,
→s βc is quasi-diamond, and so is confluent,
→βc satisfies surface factorization.

3.2.2 Computational versus Call-by-Value
(Com,→βc) is also isomorphic to the kernel of Plotkin’s CbV λ-calculus, that is
the restriction of →βv to the the terms Comv ⊆ Λ which are defined as follows.

Val v : V,W ::= x | λx.M
Comv : M,N,L ::= V | VM

The isomorphism between (Com,→βc) and (Comv,→βv) is given in Appendix C.2.
Observe also that the restriction of weak context to Comv gives exactly the
grammar defined in Chapter 2, and this for all three weak contexts (L,R,W),
which all collapse to the same shape. Summing up:

Fact 3.2.4 (Properties of βc and its weak restriction). In λ©:
→w βc is deterministic,
→βc satisfies weak factorization: →∗βc

⊆ →w βc
∗ · →¬w βc

∗

Call-by-value versus its kernel. Interestingly, the kernel of the CbV (and
hence →βc) is as expressive as CbV λ-calculus, as we discuss below. This result
was already shown by Accattoli [Acc12].1

With respect to its kernel, Plotkin’s CbV λ-calculus is more liberal in that
application is unrestricted (left-hand side need not be a value). The kernel has the
same expressive power as CbV calculus, because the full syntax can be encoded
into that of the restricted one, and because the kernel can simulate every reduction
sequence of the full calculus.

Formally, consider the translation (·)• from the CbV λ-calculus to the kernel.

(x)• = x (λx.P )• = λx.P • (PQ)• =
P •Q• if P is a value;

(λx.xQ•)P • otherwise.

Proposition 3.2.5 (Simulation of the CbVλ-calculus into its kernel). For every
term P in the CbV λ-calculus, if P →βv Q then P • →+

βv
Q•.

1Precisely, Accattoli studies the relation between the kernel calculus λvker and the value
substitution calculus λvsub, i.e. CbV and the kernel extended with explicit substitutions. The
syntax is slightly different, but not in an essential way.
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3.3 The Computational Core and the Original
Moggi’s Calculus

Moggi’s type free calculus in [Mog89] §6, called λC (a name we have been using
here for Moggi’s typed calculus) is clearly the ancestor of λ©, but the usage of unit
and bind in place of the let-constructor is not a little change.

On the one hand we have defined reduction by orienting the three monad
laws: this is simpler than having six rules plus η as in Moggi’s case. By the way,
relating the two calculi is not straightforward. Indeed the untyped λC includes
application of arbitrary terms and admits terms like letx :=M inN for non values
N ; also sorts are not preserved by reduction, and a non-value may reduce to a
value, as in CbV λ-calculus: however, if this is not disturbing in case of the latter,
it produces a semantic mismatch when monads are involved, since D and TD are
different domains, in general.

In [dT19], and here in Appendix C.3, we report the grammar and reduction
theory of λC and formally define a translation (·)◦ : λ© −→ λC , where (VM)◦
is equal to (letx := (M)◦ in (V )◦x). Actually, the translation will be formalized
between Moggi’s calculus and the notational variant of the computational core
where one has M ⋆ V that will be in use in Parts II and III. By the way, this
translation preserves conversion, but not reduction, for similar arguments that we
have encountered when dealing with λml∗ .

In the opposite direction, we have a translation (·)• : λC −→ λ© that is as
(n)• = (n)•Com and (v)• = [(v)•Val] where in Moggi’s terms n is a non value, v is
a value, and the translations (n)•Com and (v)•Val into Com and Val, respectively,
are mutually defined. E.g. in case of the let-expressions we have four clauses:

(letx :=n inn′)•Com = λx.(n′)•Com(n)•Com

(letx :=v inn′)•Com = λx.(n′)•Com[(v)•Val]
(letx :=n in v)•Com = λx.[(v)•Val](n)•Com

(letx :=v in v′)•Com = λx.[(v′)•Val][(v)•Val]

This translation preserves reduction when η is dropped from reduction in the
untyped λC ; otherwise, we must add ηc rule to the reduction relation, hence losing
confluence (see Example 4.1.4).

By this, both the confluence proof of λC in [MOTW99] §8.3, where it is called
comp, and the proof by checking critical pair using the tool PolySOL in [Ham18],
cannot be used in our case, and we have preferred to prove confluence of λ© from
scratch, although following a standard pattern: see e.g. [AFM+95]. Confluence
of comp is established in [MOTW99] via a translation from a call-by-need linear
λ-calculus, but without η, facing a similar difficulty as we mention at the end of
Section 4.1, where we treat a way to prove confluence of λ©.
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CHAPTER 4

OPERATIONAL PROPERTIES:
CONFLUENCE, FACTORIZATIONS,

AND RETURNING VALUES

4.1 Route to Confluence of λ©

A fundamental property of reduction in ordinary λ-calculus is confluence, estab-
lished in the Church-Rosser theorem.

Although the most essential notions of rewriting properties have already been
presented in Section 1.2.1, in the following, before the most crucial results, the
definitions of the properties we are going to prove will be covered again.

In this section we focus on proving confluence of → for the λ©-calculus, i.e.
without any differentiation on in which kind of context the reduction is taking
place. This is a harder task since reduction in λ© has three axioms instead of just
the β rule of the λ-calculus, whose left-hand sides generate a number of critical
pairs. Before embarking into the proof, let us see a few examples, some of them
could be a rephrase of already presented examples for different purposes.
Example 4.1.1. In this example we see how outer reduction by σ may overlap
with an inner reduction by βc. Representing the given reductions by solid arrows,
we see how to recover confluence by a reduction and a relation represented by a
dashed arrow and a dashed line, respectively:

(λy.N)((λx.M)[V ]) σ
- (λx. (λy.N)M)[V ]

(λy.N)(M{V/x})

βc

?

≡
((λy.N)M){V/x}

βc

?

where x ̸∈ fv(N), which is the side condition to rule σ; therefore the two terms in
the lower line of the diagram are syntactically identical.
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Example 4.1.2. In this example we see how outer reduction by σ, overlapping
with outer id, can be recovered by an inner reduction by id:

(λx. [x])((λy.N)M) σ
- (λy.(λx. [x])N)M

(λy.N)M
�

idid
-

Example 4.1.3. Here the outer reduction by σ overlaps with an inner reduction
by id. This is recovered by means of an inner reduction by βc:

(λy.N)((λx. [x])M) σ
- (λx.(λy.N) [x])M

(λy.N)M

id

?

α
(λx.N{x/y})M

βc

?

where x ̸∈ fv(N) as observed in Example 4.1.1, and therefore λx.N{x/y} is the
renaming by x of the bound variable y in λy.N : then the dashed line represents
α-congruence.

Example 4.1.4. We end by considering the issue of weak and full extensionality,
that have not been treated in Section 2.4. Weak extensionality, also called ξ-rule
of the ordinary λ-calculus, is reduction under abstraction. This is guaranteed by
the contextual closure, but only in the context of computation terms.

Concerning extensionality an analogous of η-rule is:

ηc) λx. (V [x])→ηc V, x ̸∈ FV (V ) (4.1)

This involves extending reduction from Com to the whole Term. However the
reduction obtained by adding ηc to →© is not confluent:

(λz.N)((λx. (y[x]))M) σ
- (λx.(λz.N) (y[x]))M

(λz.N)(yM)

ηc

?
- ?

?

After having inspected the above examples, one might by tempted to conclude
that the reduction in Definition 2.4.1 enjoys the diamond property, namely it is
confluent within (at most) two single steps, one per side (for the diamond property
see Equation (4.3) below: we say here ‘at most’ because → is not reflexive).
Unfortunately, this is not the case because of rule βc, that can multiplicate redexes
in the reduced term exactly as the β-rule in ordinary λ-calculus. Even worse, rule

30



4.1. Route to Confluence of λ©

σ generates critical pairs with all other rules and with itself, preventing the simple
extension of confluence proofs for β-reduction to succeed.

Following a strategy used in case of call-by-need calculi with the let-construct
(see e.g. [AFM+95, MOTW99]), we split the proof in three steps, proving conflu-
ence of βc ∪ id and σ, separately, and then combining these results by means of
the commutativity of these relations.

Confluence of βc∪ id. In this first step we adapt the parallel reduction method,
originally due to Tait and Martin Löf [Bar85], and further developed by Takahashi
[Tak95]. See e.g. the book [Ter03] ch. 10. Let’s define the following relation ◦−→:

Definition 4.1.5. The relation ◦−→ ⊆ Term× Term is inductively defined by:

1. x ◦−→ x

2. M ◦−→ N ⇒ λx.M ◦−→ λx.N

3. V ◦−→ V ′ ⇒ [V ] ◦−→ [V ]′

4. M ◦−→M ′ and V ◦−→ V ′ ⇒ VM ◦−→ V ′M ′

5. M ◦−→M ′ and V ◦−→ V ′ ⇒ (λx.M)[V ] ◦−→M ′{V ′/x}

6. M ◦−→M ′ ⇒ (λx.[x])M ◦−→M ′

By Item 1 - Item 4 above, relation ◦−→ is reflexive and coincides with its
compatible closure. Also →βcid⊆ ◦−→; intentionally, this is not the case w.r.t. the
whole →.

Lemma 4.1.6. For M,M ′ ∈ Com and V, V ′ ∈ Val and every variable x, if
M ◦−→M ′ and V ◦−→ V ′, then M{V/x} ◦−→M ′{V ′/x}.

Proof. By an easy induction on the definition of M ◦−→M ′ and V ◦−→ V ′.

Now, by means of Lemma 4.1.6 one easily proves that ◦−→ ⊆ →∗βcid .
The next step in the proof is to show that the relation ◦−→ satisfies the triangle

property TP defined in Section 1.2.1 :

∀P ∃P ∗ ∀Q. P ◦−→ Q ⇒ Q ◦−→ P ∗ (4.2)

where P, P ∗, Q ∈ Term. TP implies the diamond property DP, which for ◦−→ is:

∀P,Q,R. P ◦−→ Q & P ◦−→ R ⇒ ∃P ′. Q ◦−→ P ′ & R ◦−→ P ′ (4.3)

In fact, if TP holds then we can take P ′ ≡ P ∗ in DP, since the latter only depends
on P . We then define P ∗ in terms of P as follows:

1. x∗ ≡ x

2. (λx.M)∗ ≡ λx.M∗

3. [V ]∗ ≡ [V ∗]

31



Chapter 4. Operational properties

4. ((λx.M)[V ])∗ ≡M∗{V ∗/x}

5. ((λx.[x])M)∗ ≡M∗, if M ̸≡ [V ] for V ∈ Val

6. (VM)∗ ≡ V ∗M∗, M ̸≡ [W ] for W ∈ Val and V ̸≡ λx.[x]

Lemma 4.1.7. For all P,Q ∈ Term, if P ◦−→ Q then Q ◦−→ P ∗, namely ◦−→
satisfies TP.

Proof. By induction on P ◦−→ Q. The base case x ◦−→ x follows by x∗ ≡ x.
All remaining cases follow by the induction hypotheses; in particular, if P ≡
(λx.M)[V ] ◦−→ M ′{V ′/x} ≡ Q because M ◦−→ M ′ and V ◦−→ V ′, then by
induction M ′ ◦−→ M∗ and V ′ ◦−→ V ∗, so that M ′{V ′/x} ◦−→ M∗{V ∗/x} ≡ P ∗

by Lemma 4.1.6.

According to [Bar85], Def. 3.1.11, a notion of reduction R is said to be
confluent or Church-Rosser, shortly CR, if →∗R satisfies DP; more explicitly in our
setting for all M,N,L ∈ Com:

M →∗© N & M →∗© L⇒ ∃M ′ ∈ Com. N →∗© M ′ & L→∗© M ′

Corollary 4.1.8. The notion of reduction βc ∪ id is CR.

Proof. As observed above →βcid⊆ ◦−→, hence M →∗βcid N implies M ◦−→+ N ,
where ◦−→+ is the transitive closure of ◦−→, and similarly M ◦−→+ L. By
Lemma 4.1.7 ◦−→ satisfies TP, hence it satisfies DP. By an easy argument
(see e.g. [Bar85] Lemma 3.2.2) we conclude that N ◦−→+ M ′ and L ◦−→+ M ′ for
some M ′, from which the thesis follows by the fact that ◦−→ ⊆ →∗βcid .

Confluence of σ. To prove confluence of σ (more properly of its contextual
closure) we use Newman Lemma (see [Bar85], Prop. 3.1.24). A notion of reduction
R is weakly Church-Rosser, shortly WCR, if for all M,N,L ∈ Com:

M →R N & M →R L⇒ ∃M ′ ∈ Com. N →∗R M ′ & L→∗R M ′

Lemma 4.1.9. The notion of reduction σ is WCR.

Proof. It suffices to show the thesis for the critical pair M1 →σ M2 and M1 →σ M3
where:

M1 ≡ (λz.P )((λy.N)((λx.M)L))
M2 ≡ (λy.((λz.P )N))((λx.M)L)
M3 ≡ (λz.P )((λx.((λy.N)M))L)

Then in one step we have:

M2 →σ ((λx.(λy.((λz.P )N))M)L) ≡M4

but
M3 →σ ((λx.(λz.P )((λy.N)M)))L→σ M4

where the two reduction steps are necessary.
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Recall that a notion of reduction R is strongly normalizing, shortly SN, if there
exists no infinite reduction M →R M1 →R M2 →R · · · out of any M ∈ Com.

Lemma 4.1.10. The notion of reduction σ is SN.

Proof. Given M ∈ Com, let’s denote by the same M the expression obtained by
marking differently all applications in M , say �1, . . . , �n (every term is finite, so it
is the number of application constructors). For example M ≡ (λx.[x])((λy.[y])[z])
becomes with this slight change of notation (λx.[x]) �1 ((λy.[y]) �2 [z]).

We say that �j is to the right to �i in M if there exists a subterm V �i L of M
such that �j occurs in L. Finally, let’s denote by ♯M the number of pairs (�i, �j)
such that �j is to the right of �i in M .

If a term includes an σ-redex (λy.P ) �j ((λx.N) �i L), which is contracted to
(λx.(λy.P ) �j N) �i L, then �j is to the right of �i in the redex, but not in the
contractum. Also it is easily seen by induction on terms that, if �j is not to the
right of �i in M and M →σ N , the same holds in N .

It follows that, if M →σ N then ♯M > ♯N , hence σ is SN. The described
counter-clockwise movement is depicted in the image below:

�1

�2

Lλx

N

V

�1

�2

Lλx

V N

σ

Corollary 4.1.11. The notion of reduction σ is CR.

Proof. By Lemma 4.1.9, Lemma 4.1.10 and by Newman Lemma, stating that a
notion of reduction which is WCR and SN is CR.

The last step to confluence Finally we show that →βcid and →σ commute.

Lemma 4.1.12. Reductions →βcid and →σ commute.

Proof. By Lemma 1.2.10, two strongly commuting relations commute, and com-
mutativity is clearly symmetric; hence it suffices to show that

N βcid←−M →σ L⇒ ∃P ∈ Com. N →=
σ P βcid

∗←− L

We can limit the cases to the critical pairs, that are exactly those in Examples 4.1.1
to 4.1.3, which commute.

Theorem 4.1.13 (Confluence). The notion of reduction λ© = βc ∪ id ∪ σ is CR.

Proof. By the commutative union lemma (see [BN98], Lem. 2.7.10 and [Bar85],
Prop. 3.3.5, where it is called Hindley-Rosen Lemma), if →βcid and →σ and are
both CR (Corollary 4.1.8 and Corollary 4.1.11), and commute (Lemma 4.1.12),
then →© =→βcid ∪ →σ is CR.
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Consequence of Theorem 4.1.13 is the unicity of the normal form of a term, if
any. Also, by construction and Proposition 2.3.3, convertible terms, related by
the reflexive, symmetric and transitive closure =© of →©, namely its convertibility
relation, are equated in any model of λ©.

The image below aims to recap the process in proving the confluence of λ©:→βcid ⊆ ◦−→⊆→∗βcid

◦−→ has TP
σ is WCR

σ is SN

Newman lemma
σ is CR

Parallel reduction

Takahashi traslation

βc ∪ id is CR

βc ∪ id
strongly commutes with σ

βc ∪ id and σ
commute βc ∪ id ∪ σ is CR

Hindley-Rosen lemma

4.1.1 Recap: Confluence Properties of βc, σ, and id
Finally, we briefly revisit the confluence of λ©, in order to analyze the confluence
properties of the different subsystems. In fact, in Chapter 5 we will use confluence
of →σβc (Theorem 5.3.4). Sketching the following proof we highlight other ways
by which the confluence could have been proved.

Proposition 4.1.14 (Confluence of βc, σ and id).

1. Each of the relations →βc, →id, →σ is confluent.

2. (→βc ∪ →id) and (→βc ∪ →σ) are confluent.

3. (→βc ∪ →σ ∪ →id) is confluent.

4. (→σ ∪ →id) is not confluent.

Proof. 1. The confluence of →βc is stated in Theorem 3.2.2; →σ is locally
confluent and terminating, and so confluent (Corollary 4.1.11); →id satisfies
the diamond property of Fact 1.2.6, and so is confluent.

2. It is easily verified that →βc and →id strongly commute or as in Corol-
lary 4.1.8, and so also→βc and→σ. The claim then follows by Hindley-Rosen
Lemma.

3. →βc ∪ →id strongly commutes with →σ (Lemma 4.1.12). This point is
delicate because to close a diagram of the shape ←σ · →id may require a
→βc step, (see Example 4.2.7). The claim then follows by Hindley-Rosen
Lemma.

4. A counterexample is provided by the same diagram which is mentioned in
the previous point Example 4.2.7, requiring a →βc-step to close.
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4.2 Weak and Surface Reduction of λ©

The aim of studying factorization is to investigate evaluation and normalization.
The factorization theorems that will be presented in Section 4.3 are based on
both weak and surface reductions. The construction which we develop in the
next sections demands more work than one may expect. This is due to the fact
that the rules induced by the monadic laws of associativity and identity make
the analysis of the reduction properties non trivial, as seen for confluence. In
particular—as anticipated in the introduction— weak reduction does not factorize
λ©, and has severe drawbacks, which we explain next. Surface reduction behaves
better, but also has some issues. For this reason, we will use a combination of
both, surface and weak reductions. In the rest of this chapter, we examine their
respective properties.

4.2.1 Weak Reduction:
the impact of Associativity and Identity

Weak (left) reduction (Section 1.2.2) is one of the most common and studied way
to implement evaluation in CbV, and more generally in calculi with effects.

The closure →w βc of βc under weak context is a deterministic relation, as
expected. However, when including the rules induced by the monadic equation of
associativity and identity, the reduction is non-deterministic, non-confluent, and
normal forms are not unique.

This is somehow surprising, given the prominent role of such a reduction in
the literature of calculi with effects. Notice that the issues only come from σ and
id, not from βc. Summing up:

1. →w id and →w βcid are non-deterministic, but are both confluent.

2. →w σ, →w σβc , →w σid and →w © are non-deterministic, non-confluent and normal
forms are not unique. That is, adding σ, weak reduction loses confluence
and uniqueness of the normal form.

Example 4.2.1 (Non-confluence). An example of the non-determinism of →w id is
the following:

V ((λy.!y)N)←w id (λx.!x)(V ((λy.!y)N))→w id(λx.!x)(V N)

For an example of non-confluence of weak reduction (Point 2 above), consider
T = V ((λx.P )((λy.Q)L)) where V = λz.z[z] and P = Q = L = z[z]. Then,

M1 = (λx.V P )((λy.Q)L)←w σ T →w σV ((λy.(λx.P )Q)L) = N1

M1→w σM2 = (λy.(λx.V P )Q)L ̸= (λy.V ((λx.P )Q))L = N2 ←w σ N1

where N1↛w ©M2, and M1↛w ©N2, and both M2 and N2 are →w ©-normal.
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Reduction →βc (like →βv) admits weak factorization

→∗βc
⊆ →w ∗βc

· →¬w
∗
βc

This is not the case for →©. The following counter-example is due to van Oostrom
[vO20a] .
Example 4.2.2 (Non-factorization [vO20a]). →© does not admit weak factoriza-
tion. Consider the reduction sequence

M := (λy.III[y])(z[z]) →¬w βc (λy.[y])(z[z])→w id z[z]

No weak step is possible from M .

Let: Different Notation, Same issues. We stress that the issues are inherent
to the associativity and identity rules, not to the specific syntax of λ©. Exactly
the same issues appear in Sabry-Wadler’s λml∗ (Section 3.1).
Example 4.2.3 (Evaluation context in let-notation). In let-notation, weak reduc-
tion corresponds to sequencing. The evaluation context is

Elet = ⟨⟩ | let x = Elet in M

We write →e ml∗ for the closure of the λml∗ rules (in Section 3.1) under Elet. We
observe two problems, the first one due to the rule c.let.ass, the second one to the
rule c.let.η.

1. Non-confluence. Because of the associative rule (c.let.ass), the reduction
→e ml∗ is non-deterministic, non-confluent, and normal forms are not unique.
Consider the following term, where R = P = Q = L = zz

T := let z = (let x = (let y = L in Q) in P ) in R

There are two weak redexes, the overlined and the underlined one. So

T →e ml∗ let x = (let y = L in Q) in (let z = P in R)

→e ml∗ let y = L in (let x = Q in (let z = P in R)) := T ′

T →e ml∗ let z = (let y = L in (let x = Q in P )) in R

→e ml∗ let y = L in (let z = (let x = Q in P ) in R) := T ′′

Neither T ′ nor T ′′ can be further reduced. In fact, they are two different normal
forms with respect to the reduction →e ml∗ .

2. Non-factorization. Because of the c.let.η rule, factorization w.r.t. se-
quencing does not hold. That is, a reduction sequence M →∗ml∗ N cannot be
reorganized as weak steps followed by non-weak steps. Consider the following
variation on van Oostrom’s Example 4.2.2:

M := let y = (zz) in (let x = [y] in [x])
→¬w c.let.η let y = (zz) in [y] →w c.let.η (zz) =: N

No sequencing step is possible from M , so it is impossible to factorize the reduction
form M to N as M→w ∗ml∗ · →¬w

∗
ml∗ N
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4.2.2 Surface Reduction
In λ©, surface reduction is non-deterministic, but confluent, and well-behaving.

Fact 4.2.4 (Non-determinism). For ρ ∈ {λ©, βc, σ, id, σβc, βid, σid}, →s ρ is non-
deterministic (because in general more than one surface redex can be fired).

We now study confluence of surface reduction. We will use confluence of →s σβc

(point 2. below) in Chapter 5 (Theorem 5.3.3).

Proposition 4.2.5 (Confluence of surface reductions.).

1. Each of the relations →s βc, →s id, →s σ is confluent.

2. (→s βc ∪→s id) and (→s βc ∪→s σ) are confluent.

3. (→s βc ∪ →s σ ∪→s id) is confluent.

4. (→s σ ∪→s id) is not confluent.

Proof. We rely on confluence of →s βc (by Theorem 3.2.2), and on Hindley-Rosen
Lemma (Lemma 1.2.9).

We prove commutation via strong commutation (Lemma 1.2.10). The only
delicate point is the commutation of →s σ with →s id (points 3. and 4.).

1. →s σ is locally confluent and terminating, and so confluent. →s id satisfies the
diamond property of Fact 1.2.6, and so also confluence.

2. It is easily verified that →s βc and →s id strongly commute, and similarly for
→s βc and →s σ. The claim then follows by Hindley-Rosen Lemma.

3. →s βc ∪→s id strongly commutes with →s σ. This point is delicate because
to close a diagram of the shape ←s σ ·→s id may require a →s βc step, see
Example 4.2.7 . The claim then follows by Hindley-Rosen Lemma.

4. A counterexample is provided by the same diagram which is mentioned in
the previous point Example 4.2.7, requiring a →s βc-step to close.

Example 4.2.6 (Surface reduction). Let us give an example for non-determinism
and for confluence.

1. Consider the term (λx.R)((λy.R′)N) where R and R′ are any two redexes.

2. Consider the same term as in Example 4.2.1: T = V ((λx.P )((λy.Q)L)).
Then,

M2 ←s σ M1 ←s σ T →s σ N1→s σ N2

Now we can close the diagram:

M2 = (λy.(λx.V P )Q)L←s σ (λy.V ((λx.P )Q))L = N2
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Example 4.2.7. In the following example, where M = N = z!z, the σ-redex
overlaps with the id-redex. The corresponding steps are surface and the only way
to close the diagram is by means of a βc step, which is also surface.

(λy.N)((λx. [x])M) σ
- (λx.(λy.N) [x])M

(λy.N)M

id
? = (λx.N)M{x/y}

βc

?

Note that x ̸∈ fv(N), and therefore λx.N{x/y} is the renaming by x of the bound
variable y in λy.N .

This is also a counterexample to confluence of (→σ ∪ →id) and of (→s σ ∪→s id).

In Section 4.3, we prove that surface reduction does factorize →©, similarly to
what happens for Simpson’s calculus (see Theorem 3.2.1). Surface reduction also
has a drawback: it does not allows us to separate →βc and →σ steps. This fact
makes it difficult to reason about returning a value, treated in Section 4.4.

Example 4.2.8 (An issue with surface reduction). Define ∆ = λz.z[z]. Consider
the term

∆((λx.[∆])(xx))

which is normal for →βc and in particular for →s βc , but

∆((λx.[∆])(x[x]))→s σ(λx.∆[∆])(x[x])→s βc(λx.∆[∆])(x[x])

Here it is not be possible to postpone a step →s σ after a step →s βc .

4.3 Surface and Weak Factorization
In this section, we prove several factorization results for λ©. Surface factorization
is the cornerstone of the following developments.

Theorem 4.3.1 (Surface Factorization of λ©). λ© admits surface factorization:

M →∗© N implies M→s ∗© · →¬s
∗
© N

We then refine this result first by postponing id steps which are not also βc

steps, and then by means of weak factorization (on the surface steps). This further
phase serves two purposes: (1.) to separate →βc and →σ steps, by postponing
σ steps after the →w βc steps and (2.) to perform a fine analysis of quantitative
properties, namely the number of βc steps. We will need (1.) to define the
evaluation relation, and (2.) to define the normalizing strategies.
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Technical lemmas. In this rewriting investigation, we often exploit some basic
properties of the contextual closure, that we collect here. If a step T →ρ T

′ is
obtained by closure under non-empty context of a rule 7→ρ, then T and T ′ have
the same shape, that is, both terms are an application (resp. an abstraction, a
variable, or a returned value, i.e. a computation of shape [V ] for some value V ).

Fact 4.3.2 (Shape preservation). Let 7→ρ be a rule and →ρ be its contextual
closure. Assume T = C⟨R⟩ →ρ C⟨R′⟩ = T ′ and that the context C is non-empty.
Then T and T ′ have the same shape.

An easy-to-verify consequence is the following.

Lemma 4.3.3 (Redexes preservation). Assume T→¬s © S and γ ∈ {βc, σ, id}. T is
a γ-redex if and only if S is a γ-redex.

Proof. For γ ∈ {σ, βc}, see Corollary A.1.2. For γ = id, see Lemma B.1.1.

Notice the following inclusions, which we will use freely.

Fact 4.3.4. →w © ⊂ →s © and →¬s © ⊂ →¬w ©, because a weak context is necessarily a
surface context (but a surface context need not be a weak context).

4.3.1 Surface Factorization of λ© (modularly)
We prove surface factorization of λ©. We already know that surface factorization
holds for→βc (Theorem 3.2.1), so we can rely on it, and work modularly, following
the approach proposed in [AFG21]. The tests for call-by-name head factorization
and call-by-value weak factorization in [AFG21] easily adapt, yielding the following
convenient test. It modularly establishes surface factorization of a reduction
→βc ∪ →γ, where →γ is a new reduction added to →βc . Details are in the
Appendix.

Proposition 4.3.5 (A modular test for surface factorization). Let →βc be βc-
reduction and→γ be the contextual closure of a rule 7→γ. The reduction→βc ∪ →γ

satisfies surface factorization if:

1. Surface factorization of →γ: →∗γ ⊆ →s ∗γ · →¬s
∗
γ

2. 7→γ is substitutive: R 7→γ R
′ implies R{Q/x} 7→γ R

′{Q/x}.

3. Root linear swap: →¬s βc · 7→γ⊆ 7→γ · →∗βc
.

We will use the following easy property (which is an instance of Lemma A.1.4
in the Appendix).

Lemma 4.3.6. Let →ξ,→γ be the contextual closure of rules 7→ξ, 7→γ.
→¬s ξ· 7→γ⊆ →s γ· →=

ξ implies →¬s ξ · →s γ ⊆ →s γ· →=
ξ .
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Root Lemmas. Lemmas 4.3.7 and 4.3.8 below provide everything we need to
verify the conditions of the test, and so establish surface factorization of λ©.

Lemma 4.3.7 (σ-Roots). Let γ ∈ {σ, id, βc}. The following holds:

M→¬s γL 7→σ N implies M 7→σ · →γ N .

Proof. We have L = (λx.L1)((λy.L2)L3) 7→σ (λy.(λx.L1)L2)L3. Since L is a
σ-redex, M is also a σ-redex (Lemma 4.3.3). So M = (λx.M1)((λy.M2)M3)→¬s γ

(λx.L1)((λy.L2)L3) = L, where for only one i ∈ 1, 2, 3 Mi→¬s γLi and otherwise
Mj = Lj, for i ̸= j (by Fact A.1.1). Therefore M = (λx.M1)((λy.M2)M3) 7→σ

(λy.(λx.M1)M2)M3→¬s γ(λy.(λx.L1)L2)L3.

Lemma 4.3.8 (id-Roots). Let γ ∈ {σ, id, βc}. The following holds:

M→¬s γU 7→id N implies M 7→id · →γ N .

Proof. We have U = IIIN 7→id N . Since U is an id-redex, M also is (Lemma 4.3.3).
So M = IIIP→¬s γIIIN and P→¬s γN . Therefore M = IIIP 7→id P→¬s γN .

Let us make explicit the content of these two lemmas. By simply instantiating
γ Lemma 4.3.7 and Lemma 4.3.8 we know the following:

Fact 4.3.9. 1. t→¬s σ p 7→σ q implies t 7→σ · →=
σ q and so (Lemma 4.3.6 )

t→¬s σp→s σq implies t→s σ· →=
σ q, ( i.e. Strong Postponement holds).

2. t→¬s id p 7→σ q implies t 7→σ · →=
id q and so (Lemma 4.3.6 ) t→¬s id p→s σq

implies t→s σ· →=
id q.

3. t →¬s βc p 7→σ q implies t 7→σ · →=
βc
q.

Therefore, by instantiating γ, we have:

Fact 4.3.10. 1. t→¬s id p 7→id q implies t 7→id · →=
id q, and so (Lemma 4.3.6 )

t→¬s id p→s idq implies t→s id· →=
id q ( i.e. Strong Postponement holds).

2. t→¬s σp 7→id q implies t 7→id · →=
σ q, and so (Lemma 4.3.6 ) t→¬s σp→s idq implies

t→s id· →=
σ q

3. t →¬s βc p 7→id q implies t 7→id · →=
βc
q.

Now we are ready to combine everything, by using the modular test.
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Surface factorization of →id ∪ →σ. Surface factorization of →idσ follows
immediately from the root lemmas.

Lemma 4.3.11 (Surface factorization of idσ). Surface factorization of →id ∪ →σ

holds, because:

1. Surface factorization of →σ holds.

2. Surface factorization of →id holds.

3. Linear swap: →¬s id · →s σ ⊆ →s σ· →∗id

4. Linear swap: →¬s σ · →s id ⊆ →s id· →∗σ

Proof. (1) follows from Fact 4.3.9, point 1, by (linear) Strong Postponement.
(2) follows from Fact 4.3.10, point 1, by (linear) Strong Postponement. (3) is
Fact 4.3.9, point 2. (4) is Fact 4.3.10, point 2.

Surface factorization of λ©, modularly. We now use the test for modular
factorization (Proposition 4.3.5)

Theorem 4.3.1 (Surface Factorization of λ©). λ© admits surface factorization:

M →∗© N implies M→s ∗© · →¬s
∗
© N

Proof. All conditions in Proposition 4.3.5 hold, namely

1. Surface factorization of →id ∪ →σ holds.

2. Substitutivity: 7→id and 7→σ are substitutive.

3. Root linear swap. For ξ ∈ {id, σ}: →¬s βc · 7→ξ ⊆ 7→ξ · →=
βc

.

Indeed: (1) is Lemma 4.3.11, (2) is immediate, (3) is point 3. in Fact 4.3.9 and
Fact 4.3.10.

4.3.2 A Closer Look to id-steps, via Postponement
We establish a postponement result on which evaluation and normalization rely.

Observe that the rule →id overlaps with →βc . We define as →ι a →id step that
is not a →βc step.

7→ι := 7→id ∖ 7→βc (ι rule)
Clearly, →© =→βc ∪ →σ ∪ →ι.

In the proofs, it is convenient to split →βc in steps which are also →id steps,
and those which are not.

7→β1 := 7→id ∩ 7→βc (β1 rule)
7→β2 := 7→βc ∖ 7→id (β2 rule)

Notice that →βc =→β1 ∪ →β2.
We prove that →ι steps can be postponed after both →βc and →σ steps, by

using the Decreasing Diagrams technique (Theorem 1.2.8). The proof closely
follows van Oostrom’s proof of the postponement of η after β (in [vO20b])
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Theorem 4.3.12 (Postponement of ι). If M →©
∗ N then M →σβc

∗ · →ι
∗ N .

Proof. Let ◁ =→ι and let ▶ =→β1 ∪ →β2 ∪ →σ.
We equip the labels {β1, β2, σ, ι} with the following order

β2 < ι ι < β1 ι < σ

We prove that the pair of relations ▷,▶ is decreasing by checking the following
three local commutations hold (the technical details are in Appendix):

1. →ι · →β2 ⊆ →β1
∗ · →β2

= · →β1
∗ · →∗ι (see Lemma Lemma B.1.4)

2. →ι · →β1 ⊆ →β1
∗ · →=

ι (see Lemma Lemma B.1.3)

3. →ι · →σ ⊆ (→σ ∪ →β1)∗· →=
ι (see Lemma Lemma B.1.5)

Hence, by Theorem 1.2.8, the relations ▷ and ▶ commute. Otherwise stated, →ι

postpones after →βc ∪ →σ:

→∗ι · →σβc

∗ ⊆ →σβc

∗ · →∗ι .

Or, equivalently (Lemma 1.2.4)

→© ⊆ →σβc

∗ · →∗ι .

Corollary 4.3.13 (Surface Factorization, revisited).
If M →∗© N then M→s ∗σβc

· →¬s
∗
σβc
· →ι

∗ N .

Proof. Immediate consequence of Theorem 4.3.12 and of surface factorization of
βcσ reduction.

4.3.3 Weak Factorization
Surface factorization (Theorem 4.3.1) and ι-postponement (Theorem 4.3.12) imply
a result of weak factorization, from which we then obtain evaluation via weak βc

steps (Theorem 4.4.5).
Remarkably, weak factorization of a →s σβc-sequence has the property that

the number of βc steps is preserved. This property has no role with respect to
evaluation, but it will be crucial when we investigate normalizing strategies in
Chapter 5. For this reason we include it in the statement of Theorem 4.3.15.

Quantitative Linear Postponement. The condition in Lemma 1.2.5 — Hind-
ley’s strong postponement — can be refined into quantitative variants, which
allow us to “count the steps” and are useful to establish termination properties.

Lemma 4.3.14 (Linear Postponement). Given an ARS (A,→), assume →=
→e ∪→i .
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4.3. Surface and Weak Factorization

• If →i · →e ⊆ →e · →i
=, then M →∗ N implies M→e ∗ · →i

∗N and the two
sequences have the same number of →e steps.

• Assume (for l ∈ L an index set) →l =→e l ∪ →i l, →e = ⋃
l
→e l, →i = ⋃

l
→i l. If

(#) →i j · →e k⊆→e k · →j (j, k ∈ L)

Then M →∗ N implies M→e ∗ · →i
∗N and the two sequences have the same

number of →l steps for each l ∈ L.
Observe that in (#), the last step is →j, not necessarily →i j.

Weak Factorization.

Theorem 4.3.15 (Weak factorization).

1. M→s ∗σβc
N implies M→w ∗σβc

· →¬w
∗
σβc

N , where all steps are surface.
Moreover, the two sequences have the same number of βc steps.

2. M→w ∗σβc
N implies M→w ∗βc

· →w ∗σ N .
Moreover, the two sequences have the same number of βc steps.

Proof. In both claims, we use Lemma 4.3.14. Linearity allows us to count the βc

steps. In the proof, we write →w (resp. →s ) for →w σβc (resp. →s σβc).
1. Let →i = →s ∖→w (i.e. →i is a surface step whose redex is in the scope of

λ). We prove linear postponement:

(#) →i · →w ⊆ →w · →s

Assume M→i S→w N . M and S have the same shape, which is not [U ], otherwise
no weak or surface reduction is possible. We examine the cases.

• The step S→w N has empty context:

– S 7→βc N. Then S = (λx.P ′)[V ] 7→βc P ′{V/x} = N , and M =
(λx.P )[V ]→i (λx.P ′)[V ]. Therefore (λx.P )[V ] 7→βc P{V/x}→s P ′{V/x}.

– S 7→σ N . Then S = V ((λx.P )Q) 7→σ (λx.V P )Q,
and M = V0((λx.P0)Q0)→i V ((λx.P )Q) (where exactly one among
V0, P0, Q0 reduces).
Therefore, M = V0((λx.P0)Q0) 7→σ (λx.V0P0)Q0→i (λx.V P )Q.

• The step S→w N has non-empty context. Necessarily, we have S = V Q→w V Q′,
with Q→w Q′:

– Case M = MVQ→i V Q→w V Q′, then MVQ→w MVQ
′→i V Q

′

– Case M = VMQ→i V Q→w V Q′. We conclude by i.h..
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Observe that we have proved more than (#), namely we proved

→i j ·→w k ⊆ →w k · →s j (j, k ∈ {βc, σ})

Therefore, we conclude that the two sequences have the same number of βc steps,
by Lemma 4.3.14.

2. We prove →w σ · →w βc ⊆ →w βc · →w σ
=, and conclude by Lemma 4.3.14.

Observe that in particular the following holds

M→s ∗σβc
[V ] implies M→w ∗βc

· →w ∗σ · →¬w
∗
σβc

[V ]

and the two sequences have the same number of βc steps.

4.4 Returning a Value
In this section we focus on values, which are the terms of interest in CbV λ-calculus.
Recall that for weak reduction, values are exactly the normal forms of closed
terms, i.e. of programs. In a computational setting, we are interested in knowing
if a term M returns a value, i.e. if M →∗© [V ] for some value V .

If M returns a value, is there a deterministic reduction which is guaranteed to
return a value? The answer is positive. In fact, there are two such reductions:
→w βc and 7→βcσ, as we see in Theorem 4.4.2. Recall that 7→σβc = (7→βc ∪ 7→σ),
indicating the relations which are directly obtained by orienting the monadic laws
(→βc and →σ are their contextual closure).

Fact 4.4.1. • Reduction →w βc is deterministic.

• Reductions 7→βc, 7→σ, and their union 7→βcσ are deterministic.

Theorem 4.4.2 (Returning a value). The following are equivalent:

1. M returns a value, i.e. M →∗© [V ].

2. The maximal →w βc-sequence from M is finite and ends in a term [W ].

3. The maximal 7→βcσ-sequence from M is finite and ends in a term [W ].

Proof. 1. =⇒ 2. is Theorem 4.4.5, which we prove in Section 4.4.1.
2. =⇒ 3. is Proposition 4.4.10, which we prove in Section 4.4.2.
3. =⇒ 1. is trivial.

In the rest of the section we prove Theorem 4.4.2. Note that our analysis is
not restricted to closed terms.

Remark 4.4.3. An open term may well return a value. For example, [λx.[z]].
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4.4.1 Values via Weak βc Steps
The factorization results allow us to prove that →w βc-steps suffice to return a value.
This is an immediate consequence of surface factorization (Theorem 4.3.1), ι
postponement (Theorem 4.3.12), and weak factorization (Theorem 4.3.15), and
the fact that internal steps, ι steps, and σ steps cannot produce a return value.

Lemma 4.4.4. If M →© [V ] with a step which is not M→w βc [V ], then M = [W ].

Proof. Indeed, one can easily check the following

• If M →σ [V ], then M = [W ].

• If M →ι [V ], then M = [W ].

• If M→¬w βc [V ], then M = [W ].

Notice that →¬s © ⊆ →¬w ©, and so →¬s βc ⊆ →¬w βc

Theorem 4.4.5 (Values via βc steps). The following are equivalent

1. M →∗© [V ] (for some V ∈ Val);

2. M→w ∗βc
[U ] (for some U ∈ Val).

Proof. Point 2 trivially implies Point 1.
Let us show that Point 1 entails Point 2.

If M →∗© [V ] then by Corollary 4.3.13 M→s ∗σβc
· →¬s

∗
σβc
· →ι

∗ [V ].
By weak factorization (Theorem 4.3.15.1-2), and since →¬s ⊆ →¬w , we have

M→w ∗βc
M ′→w ∗σ · →¬w

∗
σβc
· →¬s

∗
σβc
· →∗ι [V ]

By iterating Lemma 4.4.4 from [V ] backwards, we have that all terms in the
sequence from M ′ to [V ] are returned values. So in particular, M ′ has shape
[U ].

Remark 4.4.6. Theorem 4.4.5 was already claimed in [dT20] and here it is
Lemma 9.1.4, for closed terms, involving a convergence predicate. However, the
inductive argument in [dT20] did not suffice to produce a proof, here with this
operational investigation we have fixed that proof.

4.4.2 Values via σβc Root Steps
We show also an alternative way to evaluate a term in λ©. Let us call root steps
the relations 7→βc , 7→σ and 7→id. They suffice to compute a value (in fact the first
two suffice), without need for a contextual closure.

Note that this property holds only because terms are restricted to computations
(for example, in Plotkin’s CbV λ-calculus, (IIIIII)(IIIIII) has a reduction step, but it is
not itself a redex, so (IIIIII)(IIIIII) ̸7→βv).

Closed computations have the following property, which is immediate.

45



Chapter 4. Operational properties

Fact 4.4.7 (Closed Computation). If M is a closed computation, then
• either M has shape [V ] ( i.e. M is weak-normal and surface-normal),

• or M is a βc-redex, or is a σ-redex.
As a consequence, every closed normal form is a return [V ].

More generally, the same holds for any computation which returns a value
(Corollary 4.4.9).
Lemma 4.4.8. Assume M→w ∗βc

[W ]. Then

• either M = [W ],

• or M = (λx.P )M ′ and M ′→w ∗βc
[U ], for some value U .

Therefore M has shape V0(V1...(Vn[U ])), where each Vi is an abstraction, and
moreover V0(V1...(Vn−1(λxn.Pn)[U ]))→w βcV1(V2...(Vn−1Pn{U/xn}).

Corollary 4.4.9 (Progression via root steps). Assume M returns a value (M →∗©
[W ]). Then M is either a βc-redex, or a σ-redex, or it has shape [U ].

Corollary 4.4.9 states a progression results: a 7→σβc-sequence from M may only
end in a return value. We still need to verify that such a sequence terminates.
Proposition 4.4.10 (week steps and root steps). If M→w ∗βc

[W ] then M 7→∗βcσ [W ].
Moreover, the two sequences have the same number of βc steps.
Proof. By induction on the number k of →w βc steps. If k = 0 the claim holds
trivially. Otherwise, M→w βcM1→w ∗βc

[W ] and by i.h.

(#) M1 7→∗βcσ [W ].

• If M is βc-redex, then M 7→βc M1, and the claim is proved.

• If M is a σ-redex, observe that by Lemma 4.4.8,

– M = λx0.P0(...(λxn−1.Pn−1(λxn.Pn)[U ])), and
– M1 = λx0.P0(...(λxn−1.Pn−1(Pn{U/xn}).

We apply to M all possible 7→σ steps, obtaining
M 7→∗σ (λxn−1.(...Pn−1))((λxn.Pn)[U ]) 7→σ λxn.(λxn−1.(...Pn−1)Pn))[U ] =
M ′ which is a βc-redex, so M ′ 7→βc λxn−1.(...Pn−1)(Pn{U/xn}).
We observe that M1 7→∗σ λxn−1.(...Pn−1)(Pn{U/xn}). We conclude, by using
(#), and the fact that 7→σβc is deterministic.

The converse is also true and immediate. Putting together Proposition 4.4.10
and Theorem 4.4.5, we can finally prove that root steps 7→βc and 7→σ suffice to
compute a value, without need for contextual closure.
Theorem 4.4.11 (Values via root βcσ steps). The following are equivalent

1. M →∗© [V ] (for some V ∈ Val);

2. M 7→∗βcσ [U ] (for some U ∈ Val).
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4.4.3 Observational Equivalence
In this section we summarize some consequences of Theorem 4.4.5. We recast the
notion of observational equivalence introduced by Plotkin for CbV λ-calculus in
λ©. Informally, two terms are observationally equivalent if they can be substituted
for each other in all contexts without observing any difference in their overall
behaviour. For a computation M , the “behaviour” of interest here is whether the
term returns a value. As we have seen, if M is a program, then M returns a value
whenever its evaluation by →w βv terminates. We write this M ⇓ (the evaluation of
M halts). Since →w βc is a deterministic reduction, halting is deterministic.

Following [Plo75], we define

Definition 4.4.12 (Observational equivalence.). M ∼= N if, for each context C,
C⟨M⟩ ⇓ if and only if C⟨N⟩ ⇓.

An easy argument, similar to that in [Plo75] gives:

Theorem 4.4.13 (Adequacy). If M →∗© M ′ then M ⇓ if and only if M ′ ⇓.

Corollary 4.4.14. If M =© N then M ∼= N .
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CHAPTER 5

OPERATIONAL PROPERTIES:
NORMALIZATION

Normalization and Normalizing Strategies In this chapter we study nor-
malization and normalizing strategies in λ©.

Reduction →© is obtained by adding →ι and →σ to →βc . What is the role
of ι steps and σ steps with respect to normalization in λ©? Perhaps surprisingly,
despite the fact that both →ι and →σ are strongly normalizing (Lemma 5.1.3
below), their role is quite different.

1. Unlike the case of terms returning a value, which we studied in Section 4.4,
βc steps do not suffice to capture λ©-normalization, in that σ steps may turn
a βc-normalizable term into one that is not λ©-normalizable. That is, σ steps
are essential to normalization in λ© (see Section 5.2).

2. ι steps instead are irrelevant for normalization in λ©, in the sense that they
play no role, in the sense that a term has a λ©-normal form if and only if it
has a σβc-normal form (see Section 5.1).

Taking into account both Point 1 and Point 2, in 5.3 we define two families
of normalizing strategies in λ©. The first one, quite constrained, relies on an
iteration of weak reduction →w ©. The second one, more liberal, is based on an
iteration of surface reduction →s ©. The interest of a rather liberal strategy is that
it provides a more versatile framework to reason about program transformations,
or optimization techniques such as parallel implementation.

Technical Lemmas: preservation of normal forms. We collect here some
properties of preservation of (full, weak and surface) normal forms, which we will
use along the section. The easy proofs are in Appendix B.2.

Lemma 5.0.1. Assume M →ι N .

1. M is βc-normal if and only if N is βc-normal.
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2. If M is σ-normal, so is N .

Lemma 5.0.2. If M →σ N , then: M is →w βc-normal if and only if so is N .

Lemma 5.0.2 fails if we replace →w βc with →s βc . Indeed, M →σ N for some M
→s βc-normal does not imply that N is→s βc-normal, as we will see in Example 5.2.1.

Lemma 5.0.3. Let →=→σ ∪ →βc and e ∈ {w, s}. Assume M →¬e N . Then, M
is e-normal if and only if N is e-normal.

5.1 Irrelevance of ι Steps for Normalization
We show that postponement of ι steps (Theorem 4.3.12) implies that →ι steps
have no impact on normalization, i.e. whether a term M has or not a λ©-normal
form. Indeed, saying that M has a λ©-normal form is equivalent to saying that M
has a βcσ-normal form.

On the one hand, if M →∗σβc
N and N is σβc-normal, to reach a λ©-normal

form it suffices to extend the reduction with ι steps to a ι-normal form (since
→ι is terminating, Lemma 5.1.3). Notice that here we use Lemma 5.0.1. On the
other hand, the proof that λ©-normalization implies βcσ-normalization is trickier,
because σ-normal forms are not preserved by performing a ι step backward (the
converse of Lemma 5.0.1.2 is false). Here is a counterexample.

Example 5.1.1. Consider

(λx.x[x])(III(z[z]))→ι (λx.x[x])(z[z])

where (λx.x[x])(z[z]) is σ-normal (actually λ©-normal) but (λx.x[x])(III(z[z])) is
not σ-normal.

Consequently, the fact thatM has a λ©-normal formN means (by postponement
of→ι) that M →∗βcσ P →∗ι N for some term P that (in Lemma 5.0.1) is guaranteed
to be βc-normal only, not σ-normal. To prove that M has a βcσ-normal form is
not even enough to take the σ-normal form of P , because a σ step can create a
βc-redex. To solve the problem, we need the following technical lemma.

Lemma 5.1.2. Assume M →k
ι N , where k > 0, and N is σι-normal. If M is not

σ-normal, then there exist M ′ and N ′ such that either M →σ M
′ →ι N

′ →k−1
ι N

or M →σ M
′ →βc N

′ →k−1
ι N .

We also use the fact that →σ and →ι are strongly normalizing (Lemma 5.1.3).
Instead of proving that→σ and→ι are —separately— so, we state a more general
result (its proof is in Appendix B.2).

Lemma 5.1.3 (Termination of σid). →id ∪ →σ is strongly normalizing.

Now we have all the elements to prove the following.

Theorem 5.1.4 (Irrelevance of ι for normalization). The following are equivalent:
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1. M is λ©-normalizing;

2. M is σβc-normalizing.

Proof. (1) =⇒ (2): If M is λ©-normalizing, then M →∗© N for some N λc-normal.
By postponement of ι steps (Theorem 4.3.12), for some P we have

M →∗βcσ P →∗ι N (5.1)

For any sequence of the form (5.1), let w(P ) = (wι(P ), wσ(P )), where wι(P )
and wσ(P ) are the lengths of the maximal ι-sequence and of the maximal
σ-sequence from T , respectively. Both wι(P ) and wσ(P ) are well-defined
because →ι and →σ are strongly normalizing (Lemma 5.1.3).
We proceed by induction on w(P ) ordered lexicographically to prove that
M →∗βcσ P

′ →∗ι N for some P ′ βcσ-normal (and so M is βcσ-normalizing).
By Lemma 5.0.1.1, P is βc-normal in (5.1).

• If w(P ) = (0, h) then P = N , so P is σ-normal and hence βcσ-normal.
• If w(P ) = (k, 0), then P is σ-normal and hence βcσ-normal.
• Otherwise, w(P ) = (k, h) with k, h > 0. By Lemma 5.1.2, M →∗βcσ

P ′ →∗ι N for some P ′ with w(P ′) < w(P ): indeed, either w(P ′) =
(k, h− 1), or w(P ′) = (k − 1, h). By i.h., we can conclude.

(2) =⇒ (1): If M is βcσ-normalizing, then M →∗βcσ N for some N βcσ-normal.
As→ι is strongly normalizing (Lemma 5.1.3), N →∗ι P for some P ι-normal.
By Lemma 5.0.1.1-2, P is also βc-normal and σ-normal. Summing up,
M →∗© P with P λ©-normal, that is, M is λ©-normalizing.

5.2 The Essential Role of σ Steps for Normaliza-
tion

In λ©, for normalization, σ steps play a crucial role, unlike ι steps. Indeed, σ
steps can unveil “hidden” βc-redexes in a term. Let us see this with an example,
where we consider a term that is βc-normal (no further βc step is possible), but is
diverging in λ© and this divergence is “unblocked” by a σ step.

Example 5.2.1 (Normalization in λ©). Let ∆ = λx.x[x]. Consider the σ step

Mz = ∆((λy.[∆])(z[z]))→σ (λy.∆[∆])(z[z]) = Nz

Mz is βc-normal, but not λ©-normal. In fact, Mz is diverging in λ©:

Mz →σ Nz →βc Nz →βc . . .

Note that the σ step is weak and that Nz is normal for →w βc but not for →s βc .
The fact that a σ step can unblock a hidden βc-redex is not limited to open

terms. Indeed, λz.Mz is closed and βc-normal, but divergent in λ©:

λz.Mz →σ λz.Nz →βc λz.Nz →βc . . .
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The example shows that, contrary to ι steps, σ steps are essential to determine
whether a term has or not normal form in λ©. This fact is in accordance with
the semantics. First, it can be shown that the term M ′ above and ∆[∆] are
observational equivalent. Second, the denotational models and type systems
studied in [Ehr12, dT20] and here in Part II interpret M ′ in the same ways as
∆[∆], which is a βc-divergent term. It is then reasonable to expect that the two
terms have the same operational behavior in λ©. Adding σ steps to βc-reduction
is a way to obtain this: both M ′ and ∆[∆] are divergent in λ©. Said differently,
σ-reduction restricts the set of normal forms in λ©, so as to exclude some βc-normal
(but not σβc-normal) forms that are semantically meaningless.

Actually, σ-reduction can only restrict the set of terms having a normal form:
it may turn a βc-normal form into a term that diverges in λ©, but it cannot turn a
βc-diverging term into a λ©-normalizing one. To prove this (Proposition 5.2.3), we
rely on the following lemma.

Lemma 5.2.2. If M is not βc-normal and M →σ L, then L is not βc-normal
and L→βc N implies M →βc · →=

σ N .

Roughly, Lemma 5.2.2 says that σ step on a term that is not βc-normal cannot
erase a βc-redex, and hence it can be postponed. Lemma 5.2.2 does not contradict
Example 5.2.1, because the former talks about a σ step on a term that is not
βc-normal, whereas the start terms in Example 5.2.1 are βc-normal.

Proposition 5.2.3. If a term is σβc-normalizing (resp. strongly σβc-normalizing),
then it is βc-normalizing (resp. strongly βc-normalizing).

Proof. As →βc ⊆→βcσ, any infinite βc-sequence is an infinite σβc-sequence. So, if
M is not strongly βc-normalizing, it is not strongly σβc-normalizing.

We prove now the part of the statement about normalization. If M is σβc-
normalizing, there exists a reduction sequence s : M →∗βcσ N with N σβc-normal.
Let |s|σ be the number of steps in s, and let |s|βc be the number of βc steps after
the last σ step in s (when |s|σ = 0, |s|βc is just the length of s). We prove by
induction on (|s|σ, |s|βc) ordered lexicographically that M is βc-normalizing. There
are three cases.

1. If s contains only βc steps (|s|σ = 0), then M →∗βc
N and we are done.

2. If s : M →∗βcσ L→+
σ N (s ends with a non-empty sequence of σ steps), then

L is βc-normal by Lemma 5.2.2, as N is βc-normal; by i.h. applied to the
sequence s′ : M →∗βcσ L (as |s′|σ < |s|σ), M is βc-normalizing.

3. Otherwise, s : M →∗βcσ L→σ P →βc Q→∗βc
N (L→σ P is the last σ step

in s, followed by a βc step). By Lemma 5.2.2, either there is a sequence
s′ : M →∗βcσ L →βc R →σ Q →∗βc

N , then |s′|σ = |s|σ and |s′|βc < |s|βc ;
or s′ : M →∗βcσ L →βc Q →∗βc

N and then |s′|σ < |s|σ. In both cases
(|s′|σ, |s′|βc) < (|s|σ, |s|βc), so by i.h. M is βc-normalizing.
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5.3 Normalizing Strategies
Irrelevance of ι steps (Theorem 5.1.4) implies that to define a normalizing strategy
for λ©, it suffices to define a normalizing strategy for σβc. We do so by iterating
either surface or weak reduction. Our definition of σβc-normalizing strategy and
the proof of normalization (Theorem 5.3.4) is parametric on either. The difficulty
here is that both weak and surface reduction are non-deterministic. The key
property we need in the proof is that the reduction which we iterate is uniformly
normalizing (see Definition 1.2.1). In Section 5.3.1 we establish that this hold
for both, weak and surface reduction. While uniform normalization is easy to
establish for the former, it is non-trivial for the latter. The proof is rather
sophisticated. Here we recap the fruits of the careful analysis of the number of βc

steps in Section 4.3.3.
In Section 5.3.2 we formalize the strategy and tackle normalization.

Notation. Since we are now only concerned with σβc steps, for the sake of
readability in the rest of the section, we often write → for →σβc , →s and →w for
→s σβc and →w σβc , respectively.

Understanding uniform normalization The fact that→s and→w are uniformly
normalizing is key in the definition of normalizing strategy and deserves some
discussion.

Assume we iterate surface reduction. The heart of the normalization proof
is that if M has a →-normal form N , and we perform surface steps, the process
terminates, that is, we reach a surface normal form. Notice that surface factoriza-
tion only guarantees that there exists a →s -sequence such that if M →∗ N then
M→s ∗U→¬s

∗N , where U is →s -normal. The existential quantification is crucial here
because →s is not a deterministic reduction. Uniform normalization of →s turns
the existential into an universal quantification. If M has a normal form (and so a
fortiori a surface normal form), then every sequence of →s -steps will terminate.
The normalizing strategy then iterates this process.

5.3.1 Uniform Normalization of Weak and Surface Reduc-
tion

We prove that both weak and surface reduction are uniformly normalizing, i.e.
for e ∈ {w, s}, if a term M is →e -normalizing, then it is strongly →e -normalizing.
In both cases, the proof relies on the fact that all maximal →e -sequences from a
given term M have the same number of βc steps.

Fact 5.3.1 (Number of βc steps). Given a →σβc-sequence s, the number of its βc

steps is finite if and only if s is finite.

Proof. The left-to-right implication is obvious. The right-to-left is an immediate
consequence of the fact that →σ is strongly normalizing (Lemma 5.1.3).
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A maximal →e -sequence from M is either infinite, or ends in a e-normal form.
Theorem 5.3.3 states that for e ∈ {w, s}, all maximal →e -sequence from the same
term M have the same behaviour, also quantitatively (with respect to the number
of βc steps). The proof relies on the following lemma. Recall that weak reduction
is not confluent (see Example 4.2.1); however, →w βc is deterministic.

Lemma 5.3.2 (Invariant). Given M , every sequence M→w ∗σβc
S where S is →w βc-

normal has the same number k of βc steps. Moreover

1. the unique maximal →w βc-sequence from M has length k, and

2. there exists a sequence M→w βc
k L→w ∗σ S.

Proof. The argument is illustrated by Figure 5.1. Assume that k is the number of
βc steps in a sequence s : M→w ∗σβc

S where S is →w βc-normal. By weak factorization
(Theorem 4.3.15.2) there is a sequence M→w βc

kL→w ∗σ S which has the same number
k of βc steps. Since S is→w βc-normal, so is L (Lemma 5.0.2). Hence, M→w βc

kL is a
maximal→w βc-sequence from M , which is unique because→w βc is deterministic.

Theorem 5.3.3 (Uniform normalization).

1. The reduction →w σβc is uniformly normalizing.

2. The reduction →s σβc is uniformly normalizing.

Moreover, all maximal →w σβc-sequences (resp. all maximal →s σβc-sequences) from
the same term M have the same number of βc steps.

Proof. We write → (resp. →w ,→s ) for →σβc (resp. →w σβc ,→s σβc).

Claim 1. Assume M is a term such that M→w ∗N , where N is →w -normal, and
so, in particular →w βc-normal. By Lemma 5.3.2, M→w βc

kL→w ∗σ N where M→w βc
kL is

the (unique) maximal →w βc-sequence from M . We prove that no →w -sequence from
M may have more than k βc steps. Indeed, every sequence s : M→w ∗N ′ can be
factorized (Theorem 4.3.15.2) into M→w ∗βc

L′→w ∗σ N ′ with the same number of βc

steps as s, and M→w ∗βc
L′ is a prefix of M→w βc

kL (as →w βc is deterministic).
We deduce that no infinite →w -sequence from M is possible (by Fact 5.3.1).

Claim 2. Assume that M→s ∗N with N →s -normal. Recall that →s is confluent
(Proposition 4.2.5.2), so N is the unique →s -normal form of M .

First, by induction on N , we prove that given a term M ,

(#) all sequences M→s ∗N have the same number of βc steps.
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Let s1, s2 be two such sequences. Figure 5.2 illustrates the argument.
By weak factorization (Theorem 4.3.15.1), there is a sequence M→w ∗S1→¬w

∗N

(resp. M→w ∗S2→¬w
∗N) with the same number of βc steps as s1 (resp. s2), and

whose steps are all surface. Note that S1 and S2 are →w -normal (by Lemma 5.0.3,
because N is in particular →w -normal), and so in particular →w βc-normal. By
Lemma 5.3.2, M→w ∗S1 , M→w ∗S2 have the same number k of βc steps, and so do
the sequences s′1 : M→w βc

k L→w ∗σ S1 and s′2 : M→w βc
k L→w ∗σ S2.

To prove (#), we have to show that the sequences s′′1 : S1→¬w
∗N has the same

number of βc steps s′′2 : S2→¬w
∗N .

By confluence of →s σ (Proposition 4.2.5.1), S1 →s ∗σ S3 ←s ∗σ S2, for some S3,
and (by confluence of →s , Proposition 4.2.5.2) there is a sequence t : S3→s ∗N . By
Lemma 5.0.2, since S1, S2 are →w -normal, terms in these sequences are →w -normal,
and therefore all steps are not only surface, but also →¬w steps. That is, S1→¬w

∗
σ S3,

S2→¬w
∗
σ S3, and t : S3→¬w

∗N . We conclude that S1, S2, S3 and N have the same
shape (Fact 4.3.2).

We examine the shape of N , and prove claim (#) by showing that s′′1 and s′′2
have the same number of βc steps as t (note that the sequences S1→¬w

∗
σ S3 and

S2→¬w
∗
σ S3 have no βc steps).

• N = [V ]. In this case, N = S1 = S2, and the claim (#) is immediate.

• N = (λx.P )Q, and Si = (λx.Pi)Qi (for i ∈ {1, 2, 3}). We have Pi→s ∗P and
Qi→s ∗Q. Since P and Q are →s -normal, by i.h. we have:

– the two sequences P1→s ∗ P and P1→s ∗σ P3→s ∗ P have the same number
of βc steps, and similarly Q1→s ∗Q and Q1→s ∗σ Q3→s ∗Q. Therefore s′′1
and t have the same number of βc steps.

– Similarly, s′′2 and t have the same number of βc steps.

This completes the proof of (#). We now can conclude that →s is uniformly
normalizing. If the term M has a sequence s : M→s ∗N where N is→s -normal, then
no→s -sequence can have more βc steps than s, because given any sequence M→s ∗T
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then (by confluence) T→s ∗N , and (by #) M→s ∗T→s ∗N has the same number of
βc steps as s. Therefore, all →s -sequences from M are finite.

5.3.2 Normalizing Strategies
We are ready to deal with normalizing strategies for λ©. Our definition is inspired,
and generalizes, the stratified strategy proposed in [Gue15, GPR17], which iterates
weak reduction (there called head reduction) according to a more strict discipline.

Iterated e-reduction. We define a family of normalizing strategies, paramet-
rically on the reduction to iterate, which can either be surface or weak reduction.
Let e ∈ {w, s}. The reduction →le is defined as follows, by iterating →e -reduction
in left to right order.

1. If M has →e -steps:
M→e M ′

M→le M
′

2. Otherwise, if M is →e -normal:

P→le P
′

M := [λx.P ]→le [λx.P ′]
P→le P

′

M := (λx.P )Q→le (λx.P ′)Q

V is σβc-normal Q→le Q
′

M := V Q→le V Q
′

Theorem 5.3.4 (Normalization). Assume M has a →σβc-normal form N . Let
e ∈ {w, s}. Then every maximal →le -sequence from M ends in N .

Proof. By induction on the term N . We write → for →σβc .
Assume s = M,M1,M2, . . . is a maximal →le -sequence from M .
We observe that

(**) every maximal →e -sequence from M is finite.

Indeed, from M →∗ N , by e-factorization, we have that M→e U →¬e
∗ N . Since N

is →e -normal, so is U (by Lemma 5.0.3) and (**) follows by uniform normalization
of →e (Theorem 5.3.3).

Let s′ ⊑ s be the maximal prefix of s such that Mi→e Mi+1. Since it is finite, s′

is M, . . . ,Mk, where Mk is e-normal. Let s′′ = Mk,Mk+1 . . . be the sequence such
that s = s′s′′.

We observe that all terms in s′′ are e-normal (by repeatedly using Lemma 5.0.3
from Mk), so Mk →¬e Mk+1 →¬e . . . , and (by shape preservation, Fact 4.3.2) all
terms in s′′ have the same shape as Mk.

By confluence of → (Proposition 4.1.14), Mk →∗ N . Again, all terms in this
sequence are e-normal, by repeatedly using Lemma 5.0.3 from Mk. So, Mk →¬e

∗ N ,
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and (by shape preservation, Fact 4.3.2) Mk and N have the same shape.

We have established that Mk and all terms in s′′ : Mk,Mk+1, . . . have the same
shape as N . Now we examine the possible cases for N .

• N = [x], and Mk = [x]. Trivially M→le
∗Mk = N .

• N = [λx.NP ] and Mk = [λx.P ] with P →∗ NP . Since NP is σβc-normal,
by i.h. every maximal →le -sequence from P terminates in NP , and so every
maximal →le -sequence from [λx.P ] terminates in [λx.NP ] = N . Since the
sequence s′′ = Mk,Mk+1, . . . is a maximal→le -sequence, we have that s = s′s′′

is as follows
M→le

∗Mk = [λx.P ]→le
∗[λx.NP ] = N.

• N = (λx.NP )NQ and Mk = (λx.P )Q, with P →∗ NP and Q→∗ NQ. Since
NP and NQ are both σβc-normal, by i.h.:

– every maximal →le -sequence from P ends in NP . So every →le -sequence
from (λx.P )Q eventually reaches (λx.NP )Q;

– every maximal →le -sequence from Q ends in NQ. So every →le -sequence
from (λx.NP )Q eventually reaches (λx.NP )NQ = N .

Therefore s is as follows

M→le
∗Mk = (λx.P )Q→le

∗(λx.NP )Q→le
∗(λx.NP )NQ = N.

• N = xNQ and Mk = xQ. Similar to the previous one.
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CHAPTER 6

CONCLUSIONS AND RELATED
WORK

On the Computational Core. The computational λ-calculus has been con-
structed as the theory of a categorical model; similarly in Section 2.1, we base
the definition of the λ©-calculus on strong monads over concrete ccc’s possessing
a call-by-value reflexive object. As remarked, models having unit and bind as
primitive operators are rather different from Moggi’s λC-models: this is discussed
in [Pow00], where in particular the concept of a C-monad seems the appropriate
generalization of our functional monad, which is based on a self enriched, concrete
ccc.

Since here our focus has been on operational properties and reduction theory,
we chose the computational core λ© [dT20] among the different variants of compu-
tational calculi in the literature inspired by Moggi’s seminal work [Mog88, Mog91].
Indeed, the computational core λ© has a “minimal” syntax that internalizes Moggi’s
original idea of deriving a calculus from the categorical model consisting of the
Kleisli category of a (strong) monad. For instance, λ© does not have to consider
both a pure and a (potentially) effectful functional application. So, λ© has less syn-
tactic constructors and less reductions rules with respect to other computational
calculi, and this simplifies our operational study.

In Section 3.1 we have considered the relationship between λ© and λml∗ from
[SW97], proving that there is an equational correspondence provided that the
analogous of rule η is added to λ©. We showed that such a result cannot be
strengthened to a Galois connection in the sense of [SW97].

Let us discuss the difference between λ© and Moggi’s λC . As observed in
Chapter 1 and Chapter 2, the first formulation of λC and of its reduction relation
was introduced in [Mog88], where it is formalized through the let operator. Indeed,
this operator is not just a syntactical sugar for the application of λ-abstraction. In
fact, it represents the extension to computations of functions from values to com-
putations, therefore interpreting Kleisli composition. Combining let with ordinary
abstraction and application is at the origin of the complexity of the reduction
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rules in [Mog88]. On the other side this allows to internalize extensionality. On
the contrary, adding the η-rule to λ© breaks confluence.

Beside using let, a major difference of λ© with respect to λC is the neat
distinction among the two syntactical sorts of terms, restricting the combination
of values and non-values since the very definition of the grammar of the language.
In spite of these differences, in [dT19] §9 and here in Appendix C.3, it has been
proved that there exists an interpretation of λC into λ© that preserves the reduction,
while there is a reverse translation that preserves convertibility, only.

On the reduction relation. We studied the properties of reduction in the
computational core λ© focusing on two questions: how to reach values and how to
reach normal forms. We faced issues caused by identity and associativity rules,
and dealt with them by means of factorization techniques. We assessed the role
of associativity as computational and not merely structural, and investigated in
depth the structure of normalizing reductions.

We found out that σ-reduction plays at least three distinct, independent roles:

• σ unblocks “premature” βc-normal forms so as to guarantee that there are
not λ©-normalizable terms whose semantics is the same as diverging terms,
as we have seen in Section 5.2;

• it internalizes the associativity of Kleisli composition into the calculus, as a
syntactic reduction rule, as explained in Chapter 1 after Equation (1.3);

• it “simulates” the contextual closure of the βc-rule for terms that reduce to
a value, as we have seen in Theorem 4.4.2.

Related Work. Sabry and Wadler [SW97] is the first work on the computational
calculus to put on center stage the reduction. Still the focus of the paper are the
properties of the translation between that and the monadic metalanguage—the
reduction theory itself is not investigated.

In [HZ09] a different refinement of λc has been proposed. The reduction rules
are divided into a purely operational system, a structural and an observational
system. It is proved that the purely operational system suffices to reduce any
closed term to a value. This result is similar to Theorem 4.4.5, with weak βc

steps corresponding to head reduction in [HZ09]. Interestingly, the analogous
of our rule σ is part of the structural system, while the rule corresponding to
our id is generalized and considered as an observational rule. Unlike our work,
normalization is not studied in [HZ09].

Surface reduction is a generalization of weak reduction that comes from linear
logic. We inherit surface factorization from the linear λ-calculus in [Sim05]. Such a
reduction has been recently studied in several variants of the λ-calculus, especially
for semantic purposes [AP12, CG14, AG16, EG16, GM19, Gue19].

Regarding the σ-rule, in [CG14] two commutation rules are added to Plotkin’s
CbV λ-calculus in order to remove meaningless normal forms—the resulting
calculus is called shuffling. The commutative rule there called σ3 is literally the
same as σ here. In the setting of the shuffling calculus, properties such as the fact
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that all maximal surface βvσ-reduction sequences from the same term M have the
same number of βv steps, and so such a reduction is uniformly normalizing, were
known via semantical tools [CG14, Gue19], namely non-idempotent intersection
types. In this part we give the first syntactic proof of such a result.

A relation between the computational calculus, [Sim05] and other linear calculi
are well-known in the literature, see for example [EMS09, SW97, MOTW99].

In [dT20], Theorem 8.4 states that any closed term returns a value if and only
if it is convergent according to a big-step operational semantics. That proof is
incomplete and needs a more complex argument via factorization, as we do here to
prove Theorem 4.4.5 (from which that statement in [dT20] and here Lemma 9.1.4
in Part II easily follows).
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CHAPTER 7

INTRODUCTION

The first, main concern of this part is the definition of an intersection type
assignment system for the untyped computational λ-calculus λ©.

Intersection types are an extension of Curry’s simple types introduced in the
80’s, such that relevant classes of λ-terms are characterized by means of their types:
see [BDS13] Part III, and the references there. The motivation for investigating
intersection types is that, when including a universal type, usually denoted by
ω, that can be assigned to any term, types are invariant under term conversion,
instead of just reduction; by this property the term meaning, namely its functional
behaviour, is fully characterized by the set of its types. So, having such a system
for the computational λ-calculus, opens the way to study by well established
mathematical tools the case of (untyped) λ-calculi with effects.

Intersection types are naturally interpreted as predicates over a λ-model,
and indeed intersection type systems have been originally conceived as a way
to characterize strongly normalizing, weakly normalizing and solvable terms
namely having head normal form. In order to develop analogous systems for the
computational λ-calculus, we introduce an intersection type assignment system
with two sorts of intersection types, namely value types ranged over by δ, and
computation types ranged over by τ , whose intended meanings are subsets of
D and TD, respectively. We then define the minimal type theories ThVal and
ThCom axiomatizing the preorders over value and computation types, respectively,
and construct a type assignment system which is a generalization of the BCD
type system for the ordinary λ-calculus in [BCD83]. Then, the subject reduction
property smoothly follows, and can be established along the lines of the analogous
property of system BCD.

We are looking at BCD type system because it defines a logical semantics of
λ-terms, whose meaning are just the sets of types that can be assigned to them,
which turn out to be filters of types. Such a model, named filter model, has the
structure of an algebraic lattice with countable basis. This fact is at the heart of
the proof of completeness of the system, namely that the denotation of a term
belongs to the interpretation of a type in any model if and only if the type can be
assigned to the term in the type system.
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However, the type interpretation over a T -model is much more problematic
than in case of intersection types and λ-models. The issue consists of ensuring that
computation types are closed under the two basic operations of the monad T , that
is unit and bind, which we dub monadic type interpretations. As we shall see in the
technical development, the natural clauses lead to a non inductive definition, hence
difficult to handle. To solve the problem we cannot resort to the correspondence of
intersection types to compact points in D and TD, because there is no information
about the compacts of TD, since the monad T is a parameter.

The solution we propose is to restrict type interpretation to the case of T -
models that are (pre-)fixed points of the functor F(X) = (X −→ TX), existing as
inverse limit constructions if T and therefore F is an ω-continuous functor. What
one obtains in this way is an instance of Scott’s D∞ model, which is the co-limit of
a chain of approximant domains Dn. By interpreting types as admissible subsets
of the Dn by induction over n, we obtain admissible subsets of D∞ and TD∞ by
the very same co-limit construction.

Coming to the filter model construction, we build over the fact that such
models can be seen as inverse limit domains, whose structure is determined by the
type preorder, that is the type theory one considers: see in particular [DHA03] and
[BDS13], Section 16.3. To avoid the rather inelegant shape of domain equations
arising from non-extensional filter models, we show here how an extensional T -
model can be constructed as a filter model, that is itself a limit model satisfying
the domain equation D = D −→ TD. This eventually leads to the completeness
theorem, of which subject expansion is a corollary.

To substantiate our claims, we consider a straightforward adaptation of Abram-
sky’s idea of convergence for the lazy λ-calculus, as the only observable property
of terms [Abr90, AO93]. We then relate convergence to reducibility to the trivial
computation of a value; eventually we show that convergent terms are exactly
those that have a type different than the universal type of computations. We
conclude that the filter model is computationally adequate.

Summary. The part is organized as follows: In Chapter 8 we introduce the
type assignment system, and in Section 8.2 we establish the subject reduction
and expansion theorems. After that we interpret types over λ©-models. The
filter model construction is introduced in Section 8.4 and it is used to prove the
soundness and completeness of the type system in Section 8.5.

The convergence predicate is defined in Section 9.1; it is related to the reduction
relation and the characterization theorem is established. Finally in section 10 we
discuss related work and propose some further developments.

What is presented in this part is a revised version of [dT20] and of the
unpublished paper [dT19]. We assume familiarity with λ-calculus, intersection
types and domain theory, for which we refer to textbooks such as [AC98] and
[BDS13] part III.
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CHAPTER 8

INTERSECTION TYPES FOR λ©

8.1 The Intersection Type Assignment System
Intersection types are an extension of Curry’s simple type assignment system to
untyped λ-terms, obtained by adding new types σ ∧ σ′ to be assigned to terms
that have both type σ and σ′. Intersection type assignment systems form a whole
family in the literature; of special interest to us is the system in [BCD83], usually
called BCD: see [BDS13] part III. In BCD it is introduced a notion of subtyping
together with a universal type ω, that can be assigned to any term, leading to a
notion called below type theory.

Definition 8.1.1 (Intersection types and Type theories). A language of intersec-
tion types T is a set of expressions σ, σ′, . . . including a constant ω and closed
under the intersection type constructor: σ ∧ σ′.

An intersection type theory (shortly a type theory) is a pair Th = (T ,≤)
where T is a language of intersection types and ≤ a pre-order over T such that ω
is the top, ∧ is idempotent and commutative, and

σ ∧ σ′ ≤ σ,
σ ≤ σ′ σ ≤ σ′′

σ ≤ σ′ ∧ σ′′

A type theory is a presentation of a meet-semilattice with ω as top element;
in particular ∧ turns out to be monotonic. Different type theories give rise to
different structures and hence to different type systems. We adapt BCD type
theory to the case of λ©, where two sorts of types correspond to the two sorts of
terms.

Definition 8.1.2 (Intersection types for values and computations). Let TypeVar
be a countable set of type variables, ranged over by α:

ValType : δ ::= α | δ → τ | δ ∧ δ | ωVal (value types)
ComType : τ ::= Tδ | τ ∧ τ | ωCom (computation types)
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Intersection types from Definition 8.1.2 are better understood as predicates
of values and computations, respectively, or as refinement types of the two types
of λ©, that is, using the notation in [MZ15], δ ⊏ D = D −→ TD in case of values,
and τ ⊏ TD in case of computations.

In the definition of language ValType and, consequently, ComType, the set of
TypeVar (also called atoms) is left unspecified and it is a parameter.

Definition 8.1.3 (Type theories ThVal and ThCom). The intersection type theories
ThVal = (ValType,≤Val) and ThCom = (ComType,≤Com) are the least type theories
such that:

δ ≤Val ωVal ωVal ≤Val ωVal −→ ωCom

(δ −→ τ) ∧ (δ −→ τ ′) ≤Val δ −→ (τ ∧ τ ′)
δ′ ≤Val δ τ ≤Com τ ′

δ −→ τ ≤Val δ
′ −→ τ ′

τ ≤Com ωCom Tδ ∧ Tδ′ ≤Com T (δ ∧ δ′)
δ ≤Val δ

′

Tδ ≤Com Tδ′

Remark 8.1.4. By writing =Val for ≤Val ∩ ≤−1
Val, and similarly =Com, we see

that all the axioms but δ ≤Val ωVal and τ ≤Com ωCom are actually equalities. In
particular, if τ ̸=Com ωCom then for a finite set of δi we have τ =Com

∧
i Tδi =Com

T (∧
i δi).

Type theories ThVal and ThCom depend on each other. Except for the distinction
among value and computation types, theory ThVal is exactly the same as the type
theory of BCD. Theory ThCom treats T as a type modality and as a morphism
of meet-semilattices: hence it is monotonic and preserves meets. An important
feature is that TωVal is strictly smaller than ωCom in general; this is consistent
with the interpretation of TωVal as the largest type of convergent terms. Indeed in
Corollary 9.2.4 we shall prove that ωC ≤Com TωVal is not derivable from the system
in Definition 8.1.3 by exhibiting a type interpretation such that this inequality
doesn’t hold.

Lemma 8.1.5. If τ ∈ ComType is such that τ ̸=Com ωCom then for some δ ∈
ValType we have τ =Com Tδ; hence τ ≤Com TωVal.

Proof. By induction over τ . The only non trivial case is when τ ≡ τ1 ∧ τ2. From
τ1 ∧ τ2 ̸=Com ωCom it follows that at least one of them is different than ωCom:
if say τ1 =Com ωCom then τ1 ∧ τ2 =Com τ2 ̸=Com ωCom so that τ2 =Com Tδ2 by
induction. Finally, if both τ1 and τ2 are not equated to ωCom then by induction
τ1∧τ2 =Com Tδ1∧Tδ2 =Com T (δ1∧δ2) ≤Com TωVal, for some δ1, δ2 ∈ ValType.

We are now in place to introduce the type assignment system for λ©.

Definition 8.1.6 (Type assignment). A basis is a finite set of typings Γ =
{x1 : δ1, . . . xn : δn} with pairwise distinct variables xi, whose domain is the set
dom (Γ) = {x1, . . . , xn}. A basis determines a function from variables to types
such that Γ(x) = δ if x : δ ∈ Γ, Γ(x) = ωVal, otherwise.
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A judgment is an expression of either shapes: Γ ⊢ V : δ or Γ ⊢ M : τ . It is
derivable if it is the conclusion of a derivation according to the rules:

x : δ ∈ Γ
(Ax)

Γ ⊢ x : δ
Γ, x : δ ⊢M : τ

(−→ I)
Γ ⊢ λx.M : δ −→ τ

Γ ⊢ V : δ
(unit I)

Γ ⊢ [V ] : Tδ
Γ ⊢M : Tδ Γ ⊢ V : δ −→ τ

(−→ E)
Γ ⊢M ⋆ V : τ

where Γ, x : δ = Γ ∪ {x : δ} with x : δ ̸∈ Γ, and the rules:

Γ ⊢ P : ω
(ω)

Γ ⊢ P : σ Γ ⊢ P : σ′

Γ ⊢ P : σ ∧ σ′
(∧I)

Γ ⊢ P : σ σ ≤ σ′

Γ ⊢ P : σ′
(≤)

where either P ∈ Val, ω ≡ ωVal, σ, σ′ ∈ ValType and ≤=≤Val or P ∈ Com,
ω ≡ ωCom, σ, σ′ ∈ ComType and ≤=≤Com.

In the proof texts we write Γ ⊢ V : δ and Γ ⊢ M : τ to mean that these
judgments are derivable. Because of rule (ω), it is not true in general that if
Γ ⊢ P : σ then fv(P ) ⊆ dom (Γ); however under the same hypothesis we have that
Γ ↾ fv(P ) ⊢ P : σ, where, for X ⊆ Var, Γ ↾ X = {x : δ | x : δ ∈ Γ & x ∈ X} (the
restriction of Γ to X).

Among the elementary properties of the system, we state the admissibility of
the following rules.

Lemma 8.1.7 (Weakening and Strengthening). The following rules are admissible:

Γ ⊢ P : σ Γ ⊆ Γ′
(W)

Γ′ ⊢ P : σ

Γ, x : δ ⊢ P : σ δ′ ≤Val δ
(S)

Γ, x : δ′ ⊢ P : σ

where P ∈ Term and σ is either in ValType or in ComType according to the sort
of P .

Proof. Admissibility of rule (W) is proved by a straightforward induction over
the derivation of Γ ⊢ P : σ. Concerning rule (S) we also reason by induction over
the derivation of Γ, x : δ ⊢ P : σ, where x is not bound in P as it is element of
dom (Γ, x : δ). It follows that in the derivation the only judgements in which x
is the subject of the right hand side typing are either instances of rule (≤) or
instances of (Ax), that is of the shape Γ′, x : δ ⊢ x : δ for some Γ′ ⊇ Γ. In the first
case the thesis follows by induction. In the second case we obtain a new reduction
with the same conclusion by replacing (Ax) by the inference

(Ax)
Γ′, x : δ′ ⊢ x : δ′ δ′ ≤Val δ

(≤)
Γ′, x : δ′ ⊢ x : δ
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8.2 Subject Reduction and Expansion
In this section we establish the minimal requirement for a sound type system,
namely that types are preserved by reductions. Moreover, we prove that types are
preserved by subject expansion, which is a characteristic property of intersection
type systems with universal type ω.

The next lemma is an extension of the analogous property of BCD type systems,
also called Inversion Lemma in [BDS13] 14A.1.

Lemma 8.2.1 (Generation Lemma). Assume that δ ̸= ωVal and τ ̸= ωCom, then:

i) Γ ⊢ x : δ ⇔ Γ(x) ≤Val δ

ii) Γ ⊢ λx.M : δ ⇔
∃I, δi, τi. ∀i ∈ I. Γ, x : δi ⊢M : τi & ∧

i∈I δi −→ τi ≤Val δ

iii) Γ ⊢ [V ] : τ ⇔ ∃I, δi ∀i ∈ I. Γ ⊢ V : δi & ∧
i∈I Tδi ≤Com τ

iv) Γ ⊢M ⋆ V : τ ⇔
∃I, δi, τi. ∀i ∈ I. Γ ⊢M : Tδi & Γ ⊢ V : δi −→ τi & ∧

i∈I τi ≤Com τ

Proof. The implications⇐ are immediate. To prove the implications⇒ we reason
by induction over the derivations, by case-distinctions on the last rule. Parts i)
and ii) are the same as for ordinary intersection types and λ-calculus; part iii) is
immediate by the induction hypothesis, hence we treat part iv) only.

If the last rule in the derivation of Γ ⊢ M ⋆ V : τ is (−→ E) just take I as a
singleton set. If it is (≤) then the thesis follows immediately by induction and
the transitivity of ≤Com. Finally, suppose that the derivation ends by

Γ ⊢M ⋆ V : τ ′ Γ ⊢M ⋆ V : τ ′′
(∧I)

Γ ⊢M ⋆ V : τ ′ ∧ τ ′′

and τ ≡ τ ′ ∧ τ ′′. Then by induction we have

∃I, δ′i, τ ′i . ∀i ∈ I. Γ ⊢M : Tδ′i & Γ ⊢ V : δ′i −→ τ ′i &
∧
i∈I

τ ′i ≤Com τ ′

and

∃J, δ′′j , τ ′′j . ∀j ∈ J. Γ ⊢M : Tδ′′j & Γ ⊢ V : δ′′j −→ τ ′′j &
∧
j∈J

τ ′′j ≤Com τ ′′

From this the thesis immediately follows by observing that∧
i∈I

τ ′i ≤Com τ ′ &
∧
j∈J

τ ′′j ≤Com τ ′′ ⇒
∧
i∈I

τ ′i ∧
∧
j∈J

τ ′′j ≤Com τ ′ ∧ τ ′′.
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We observe that the statements of Lemma 8.2.1 could be stronger, since
whenever we say that if Γ ⊢ P : σ then Γ′ ⊢ Q : σ′ it is always the case that the
derivation of the latter judgment is a subderivation of the former. Furthermore
the inverse of all implications hold.

The following lemma, necessary to the subsequent proofs, establishes a fun-
damental property of intersection type theories including arrow types, known as
extended applicative type structures, or EATS [CDHL84]. It has been stated the
first time in [BCD83], 2.4 (ii), and it has been widely covered for intersection type
theories in [BDS13] with the name β-soundness (Definition 14A.4).

Lemma 8.2.2. Let τ ̸=Com ωCom, then:∧
i∈I

(δi −→ τi) ≤Val δ −→ τ ⇔ ∃J ⊆ I. J ̸= ∅ & δ ≤Val
∧
j∈J

δj &
∧
j∈J

τj ≤Com τ

Proof. By induction over the definition of ≤Val and ≤Com.

Lemma 8.2.3 (Substitution lemma). If Γ, x : δ ⊢ M : τ and Γ ⊢ V : δ then
Γ ⊢M{V/x} : τ .

Proof. By induction over the derivation of Γ, x : δ ⊢M : τ . For the induction to
go through, one has to show the auxiliary statement that if Γ, x : δ ⊢ W : δ′ for
some W ∈ Val then Γ ⊢ W{V/x} : δ′. Details are routine.

Theorem 8.2.4 (Subject Reduction). If Γ ⊢M : τ and M → N then Γ ⊢ N : τ .

Proof. Let us assume that τ ̸= ωCom since the thesis is trivial, otherwise. The
proof is by induction over the definition of M → N , using Lemma 8.2.1. We treat
just the interesting cases.

Case (βc): then M ≡ [V ] ⋆ (λx.M ′) and N ≡ M ′{V/x}. From the hypothesis
Γ ⊢M : τ , by iii) and iv) of Lemma 8.2.1 we have that there exist a finite
set I and types δi, δ

′
i and τi for all i ∈ I such that:

1. Γ ⊢ V : δ′i with δ′i ≤ δi;
2. Γ ⊢ λx.M ′ : δi −→ τi with ∧

i∈I τi ≤Com τ

By ii) of the same lemma for all i ∈ I there is Ji such that for all j ∈ Ji:

3. Γ, x : δij ⊢M : τij with ∧
j∈Ji

δij −→ τij ≤Val δi −→ τi

In virtue of Lem. 8.2.2, we may assume w.l.o.g that the non empty Ji have
been chosen so that δi ≤Val

∧
j∈Ji

δij and ∧
j∈Ji

τij ≤Com τi for all i ∈ I.
It follows that δ′i ≤Val δi ≤Val δij for all i and j so that by ((a)) we have
Γ ⊢ V : δij by rule (≤). It follows by Lem. 8.2.3 and ((a)) that Γ ⊢
M ′{V/x} : τij; now ∧

i∈I

∧
j∈Ji

τij ≤Com τ , so that Γ ⊢ M ′{V/x} : τ by
repeated applications of rule (∧I) and (≤).

Case (σ): then M ≡ (L ⋆ λx.M ′) ⋆ λy.N ′ and N ≡ L ⋆ λx.(M ′ ⋆ λy.N ′) where
x ̸∈ fv(N ′). As before from Γ ⊢M : τ and Lem. 8.2.1 we know that there
exist I, δi, τi such that for all i ∈ I:
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4. Γ ⊢ L ⋆ λx.M ′ : Tδi

5. Γ ⊢ λy.N ′ : δi −→ τi with ∧
i∈I τi ≤Com τ

From (4) it follows that for all i ∈ I there are Ji, δij, τij such that for all
j ∈ Ji:

6. Γ ⊢ L : Tδij

7. Γ ⊢ λx.M ′ : δij −→ τij with ∧
j∈Ji

τij ≤Com Tδi

Reasoning as in case (βc), we obtain from (7) that for all j ∈ Ji there exist
Kj, δijk, τijk s.t.

8. Γ, x : δijk ⊢M ′ : τijk with ∧
k∈Kj

δijk −→ τijk ≤Val δij −→ τij

Assuming as before that the Ji and the Kj have been suitably chosen, by
Lem. 8.2.2 we have that

9. δi ≤Val
∧

j∈Ji
δij and ∧

j∈Ji
τij ≤Com Tδi

10. δij ≤Val
∧

k∈Kj
δijk and ∧

k∈Kj
τijk ≤Com τij

Therefore, for all i, j, k we have δij ≤Val δijk and τijk ≤Com Tδi; hence from
(8) by (S) and (≤) we have Γ, x : δij ⊢ M ′ : Tδi. On the other hand by
admissibility of rule (W), from (5) and the fact that x ̸∈ FV (N ′), we have
that Γ, x : δij ⊢ λy.N ′ : δi −→ τi. Hence for all i:

Γ ⊢ L : Tδij

Γ, x : δij ⊢M ′ : Tδi Γ, x : δij ⊢ λy.N ′ : δi −→ τi

Γ, x : δij ⊢M ′ ⋆ λy.N ′ : τi

Γ ⊢ λx.(M ′ ⋆ λy.N ′) : δij −→ τi

Γ ⊢ L ⋆ λx.(M ′ ⋆ λy.N ′) : τi

Now the thesis follows by rules (∧I) and (≤), using ∧
i∈I τi ≤Com τ .

Case id is immediate from Lem. 8.2.1; all cases dealing with the compatible closure
are easy consequences of the induction hypotheses.

Toward the proof of subject expansion, we need a lemma that is the inverse of
Lem. 8.2.3.

Lemma 8.2.5 (Expansion Lemma). If Γ ⊢ P{V/x} : σ with V ∈ Val, P ∈ Term
and either σ ∈ ValType or σ ∈ ComType according to the sort of P , then then
there exists δ ∈ ValType such that:

Γ ⊢ V : δ and Γ, x : δ ⊢ P : σ

Proof. If σ is either ωVal or ωCom then the thesis is trivial. Otherwise, let us
assume w.l.o.g. that x ̸∈ fv(P{V/x})∪dom (Γ) and that V is free for x in P , that
is fv(V )∩BV(P ) = ∅, which is a necessary condition for the substitution P{V/x}
to be capture avoiding. Then we proceed by induction over P{V/x}, and by cases
of P .
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Case P ≡ x: then σ is some δ ∈ ValType; since clearly x{V/x} ≡ V then
Γ ⊢ V : δ by the hypothesis, and Γ, x : δ ⊢ x : δ by (Ax), where Γ, x : δ is a
basis since x ̸∈ dom (Γ).

Case P ≡ y ̸≡ x: then we trivially have y{V/x} ≡ y, so that we obtain the thesis
by taking δ ≡ ωVal.

Case P ≡ λy.M : then P{V/x} ≡ λy.(M{V/x}); in particular since free variables
in V cannot be caught in P{V/x} by the binding λy, we freely assume that
y ̸∈ fv(V ). From the hypothesis Γ ⊢ λy.(M{V/x}) : σ, by ii) of Lem. 8.2.1,
it follows that there exist I and δi, τi such that Γ, y : δi ⊢ M{V/x} : τi for
all i ∈ I and ∧

i∈I δi −→ τi ≤Val σ.
By induction for all i ∈ I there exist δ′i such that Γ, y : δi ⊢ V : δ′i and
Γ, y : δi, x : δ′i ⊢ M : τi. Since y /∈ fv(V ), from Γ, y : δi ⊢ V : δ′i we
obtain Γ ⊢ V : δ′i. Taking δ = ∧

i∈I δ
′
i we obtain Γ ⊢ V : δ by rule

(∧I) and Γ, y : δi, x : δ ⊢ M : τi by (S). ; on the other hand we get
Γ, x : δ ⊢ λy.M : δi −→ τi for all i ∈ I by rule (−→ I) and (∧I). Hence we
conclude by rule (≤).

Case P ≡ [W ]: then P{V/x} ≡ [W{V/x}] and the thesis follows by iii) of Lem.
8.2.1 and the induction hypothesis.

Case P ≡ M ⋆ W : then P{V/x} ≡ (M{V/x}) ⋆ (W{V/x}). By iv) of Lem.
8.2.1 and induction, there exist I and δi, τi and δ′1, δ

′
2 such that Γ ⊢ V : δ′j,

Γ, x : δ′j ⊢ M : Tδi and Γ, x : δ′j ⊢ W : δi −→ τi for all i ∈ I and j = 1, 2,
such that ∧

i∈I τi ≤Com σ. Take δ = δ′1 ∧ δ′2: then Γ ⊢ V : δ by (∧I) and
Γ, x : δ ⊢ M : Tδi and Γ, x : δ ⊢ W : δi −→ τi for all i ∈ I by (S). Now
Γ, x : δ ⊢M ⋆W : σ follows by (−→ E), (∧I) and (≤).

Theorem 8.2.6 (Subject Expansion). If Γ ⊢ N : τ and M → N then Γ ⊢M : τ .

Proof. The proof is by induction over M → N , assuming that τ ̸=Com ωCom. The
only interesting cases are the following.

Case (βc): then M ≡ [V ] ⋆ (λx.M ′) and N ≡ M ′{V/x}. By Lem. 8.2.5 there
exists δ such that Γ ⊢ V : δ and Γ, x : δ ⊢ M ′ : τ . Then Γ ⊢ [V ] : Tδ
by rule (unit I) and Γ ⊢ λx.M ′ : δ −→ τ by rule (−→ I). We conclude that
Γ ⊢ [V ] ⋆ (λx.M ′) : τ by rule (−→ E).

Case (σ): then M ≡ (L ⋆ λx.M ′) ⋆ λy.N ′ and N ≡ L ⋆ λx.(M ′ ⋆ λy.N ′).
By iv) of Lem. 8.2.1, from Γ ⊢ N : τ there exist I, δi, τi such that for all
i ∈ I we have Γ ⊢ L : Tδi, Γ ⊢ λx.(M ′ ⋆ λy.N ′) : δi −→ τi and ∧

i∈I τi ≤Com τ .
By ii) of Lem. 8.2.1 for all i ∈ I there exist Ji, δij, τij such that Γ, x : δij ⊢
M ′ ⋆ λy.N ′ : τij and ∧

j∈Ji
δij −→ τij ≤Val δi −→ τi. From this and by iv) of

Lem. 8.2.1, for all j ∈ Ji there are Kj, δijk, τijk such that for all k ∈ Kj

we have Γ, x : δij ⊢ M ′ : Tδijk and Γ, x : δij ⊢ λy.N ′ : δijk −→ τijk and∧
k∈Kj

τijk ≤Com τij.
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Now, by Lem. 8.2.2, from ∧
j∈Ji

δij −→ τij ≤Val δi −→ τi we have that there
exists ∅ ≠ J ′i ⊆ Ji such that for all j ∈ J ′i , δi ≤Val δij and τij ≤Com τi.
Hence we obtain that Tδi ≤Com Tδij so that Γ ⊢ L : Tδij, for all i and the
appropriate j. On the other hand by rule (−→ I) we know that Γ ⊢ λx.M ′ :
δij −→ Tδijk, so that by rule (−→ E) we deduce Γ ⊢ L ⋆ λx.M ′ : Tδijk, for all
i and the appropriate j, k.
From Γ, x : δij ⊢ λy.N ′ : δijk −→ τijk and the fact that x ̸∈ fv(λy.N ′)
we have that Γ ⊢ λy.N ′ : δijk −→ τijk, that combined with the above,
yields Γ ⊢ (L ⋆ λx.M ′) ⋆ λy.N ′ : τijk by rule (−→ E). But we know that∧

j∈J ′
i ,k∈Kj

τijk ≤Com
∧

j∈J ′
i
τij ≤Com τi, for all i ∈ I: thus the thesis follows

by (∧I) and (≤) since ∧
i∈I τi ≤Com τ .

8.3 Type Interpretation over λ©-Models
To interpret value and computation types we extend the usual interpretation of
intersection types over λ-models to λ©-models. Let (D,T,Φ,Ψ) be such a model,
as defined in Definition 2.3.1; then for d, d′ ∈ D we abbreviate: d · d′ = Φ(d)(d′).
Also, if X ⊆ D and Y ⊆ TD then X ⇒ Y = {d ∈ D | ∀d′ ∈ X. d · d′ ∈ Y }.

Definition 8.3.1. Let ξ ∈ TypeEnvD = TypeVar −→ 2D a type variable inter-
pretation; the maps [[·]]D : ValType × TypeEnvD −→ 2D and [[·]]T D : ComType ×
TypeEnvD −→ 2T D are type interpretations if:

[[α]]Dξ = ξ(α) [[δ −→ τ ]]Dξ = [[δ]]Dξ ⇒ [[τ ]]T D
ξ

[[ωVal]]Dξ = D [[δ ∧ δ′]]Dξ = [[δ]]Dξ ∩ [[δ′]]Dξ
[[ωCom]]T D

ξ = TD [[τ ∧ τ ′]]T D
ξ = [[τ ]]T D

ξ ∩ [[τ ′]]T D
ξ

Moreover the following implication holds:

d ∈ [[δ]]Dξ ⇒ unit d ∈ [[Tδ]]T D
ξ

We say that [[·]]T D is strict if

[[Tδ]]T D
ξ = {unit d | d ∈ [[δ]]ξ}

In the following, if D is a T -model then we assume that [[·]]D and [[·]]T D are type
interpretations satisfying all conditions in Definition 8.3.1 but are not necessarily
strict.

Lemma 8.3.2. Let D, [[·]]T D, and ξ ∈ TypeEnvD as above.
The couple (D, ξ) preserves ≤Val and ≤Com, that is: for all δ, δ′ ∈ ValType and for
all τ, τ ′ ∈ ComType, one has:

δ ≤Val δ
′ ⇒ [[δ]]Dξ ⊆ [[δ′]]Dξ and τ ≤Com τ ′ ⇒ [[τ ]]T D

ξ ⊆ [[τ ′]]T D
ξ

Clearly any strict type interpretation is a type interpretation. Let us define
(strict) truth and (strict) validity of typing judgments.
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Definition 8.3.3 (Truth and validity). We say that Γ ⊢ V : δ and Γ ⊢M : τ are
true in a T -model D w.r.t. the type interpretations [[·]]D and [[·]]T D if

1. ρ, ξ |=D Γ if ρ(x) ∈ [[Γ(x)]]Dξ for all x ∈ dom (Γ)

2. Γ |=D V : δ if ρ, ξ |=D Γ implies [[V ]]Dρ ∈ [[δ]]Dξ

3. Γ |=D M : τ if ρ, ξ |=D Γ implies [[M ]]T D
ρ ∈ [[τ ]]T D

ξ

We say that Γ ⊢ V : δ and Γ ⊢M : τ are valid, written Γ |= V : δ and Γ |= M : τ ,
respectively, if Γ |=D V : δ and Γ |=D M : τ for any T -model D and type
interpretations [[·]]D and [[·]]T D.

Finally we say that Γ ⊢ V : δ and Γ ⊢ M : τ are strictly true in D, written
Γ |=D

s V : δ and Γ |=D
s M : τ , respectively, if the interpretations [[·]]D and [[·]]T D

are strict; also they are strictly valid, written Γ |=s V : δ and Γ |=s M : τ , if
strictly true for any D.

Unfortunately, the type system in Definition 8.1.6 is not sound w.r.t. arbitrary
type interpretations. The difficulty comes from rule (−→ E), because in general
[[Tδ]]T D

ξ ⊇ {unit d | d ∈ [[δ]]ξ} and inclusion might be proper. In case of strict type
interpretations, however, this is an equality and the soundness of type assignment
is easily established.

Theorem 8.3.4 (Soundness w.r.t. strict interpretations).

Γ ⊢ V : δ ⇒ Γ |=s V : δ and Γ ⊢M : τ ⇒ Γ |=s M : τ

Proof. By simultaneous induction on the derivations of Γ ⊢ V : δ and Γ ⊢M : τ .
Rules (∧I) and (ω) are sound by the definition of type interpretation. Rule (≤) is
sound by Lemma 8.3.2, as we proved that (D, ξ) preserves ≤Val and ≤Com; rule
(unit I) is immediate by induction.

Rule (−→ I): if ρ, ξ |=D
s Γ and d ∈ [[δ]]Dξ then ρ[x 7→ d], ξ |=D

s Γ, x : δ; by induction
Γ, x : δ |=D

s M : τ which implies

[[λx.M ]]Dρ · d = [[M ]]T D
ρ[x 7→d] ∈ [[τ ]]T D

ξ

Hence [[λx.M ]]Dρ ∈ [[δ −→ τ ]]Dξ by the arbitrary choice of d.

Rule (−→ E): let ρ, ξ |=D
s Γ and assume by induction that [[M ]]T D

ρ ∈ [[Tδ]]T D
ξ ;

because of strictness we have that [[M ]]T D
ρ = unit d for some d ∈ [[δ]]Dξ ,

therefore

[[M ⋆ V ]]T D
ρ = [[M ]]T D

ρ ⋆ [[V ]]Dρ = unit d ⋆ [[V ]]Dρ = [[V ]]Dρ · d ∈ [[τ ]]T D
ξ

since [[V ]]Dρ ∈ [[δ −→ τ ]]Dξ by induction.
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8.3.1 Beyond Strictness
The hypothesis of strictness of type interpretation is quite restrictive (although
it suffices for proving computational adequacy: see Section 4.4.3). Consider for
example the state monad SX = [S −→ (X × S)⊥], where S is some domain of
states (e.g. S ⊆ L −→ D where L is some set of locations, and it is ordered by
s ⊑S s

′ if s(ℓ) ⊑D s′(ℓ) for all ℓ ∈ L), and according to [Mog91] define:

unitS d = λλ s ∈ S.(d, s) a ⋆S f = λλ s ∈ S. let (d, s′) :=a s in f d s′

Given some d ∈ D and ℓ ∈ L, let a = unitS d ∈ SD and

f = λλ d s. (d, updℓ(s, d)) ∈ D −→ SD,

where updℓ(s, d) is the update of s in ℓ to d. Now a s = (d, s) and therefore

(a ⋆S f)s = f d s = (d, updℓ(s, d))

namely a ⋆S f = λλ s.(d, updℓ(s, d)) which is a defined computation that is not
⊥SD but different than unitS d, therefore it does not belong to the strict type
interpretation of any non trivial type S δ.

We will discuss with deep details the case of state monad in Part III.

Definition 8.3.5 (Monadic type interpretation). Let D be a T -model; then type
interpretations [[·]]D and [[·]]T D are monadic if for any d ∈ D and a ∈ TD

∃δ′. d ∈ [[δ′ −→ Tδ]]Dξ & a ∈ [[Tδ′]]T D
ξ ⇒ a ⋆ d ∈ [[Tδ]]T D

ξ .

By the very definition, monadic type interpretations are not inductive; in
particular [[Tδ]]T D

ξ depends on itself and also on [[Tδ′]]T D
ξ for any δ′. To turn this

definition into an inductive one, we make essential use of the correspondence
among intersection types and the category of ω-algebraic lattices.

Henceforth D is the category of ω-algebraic lattices, which is a particular
category of domains (see e.g. [AJ94] and [AC98], ch. 5). Objects of D are
lattices whose elements are directed sup of the compact points c ∈ K(D) ⊆ D
they dominate, where c is compact if whenever X is directed and c ⊑ ⊔

X there is
some x ∈ X s.t. c ⊑ x; moreover K(D) is countable.

Suppose that the monad T is an ω-continuous functor over D, so that the
functor F(X) = X −→ TX is such. Let D∞ = lim←Dn where D0 is some fixed
domain, and Dn+1 = F(Dn) = [Dn −→ TDn] is such that for all n, Dn ◁ Dn+1 is
an embedding. As a consequence we have D∞ ≃ F(D∞) = [D∞ −→ TD∞] and we
call Φ the isomorphism. Also, by continuity of T , we have that TD∞ = lim← TDn.
If x ∈ D∞, we write xn for its projection to Dn; if x ∈ Dn then we identify x with
its injection into D∞. We fix the notation for the standard notions from inverse
limit construction. For all n ∈ N the following are injection-projection pairs:

• εn : Dn −→ Dn+1, πn : Dn+1 −→ Dn

• Let m > n. εn,m : Dn −→ Dm, πm,n : Dm −→ Dn

• εn,∞ : Dn −→ D∞, π∞,n : D∞ −→ Dn
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For definitions see any standard text on domain theory, e.g. [AC98]. The following
lemma lists some well known facts. We set the following abbreviation xn = π∞,n(x).

Lemma 8.3.6. Let x, y ∈ D∞:

1. x = ⊔
n xn

2. if x ∈ Dn then x = xn

3. x · y = ⊔
n xn+1(yn)

4. if y ∈ Dn then x · y = xn+1(y)

where xn = π∞,n(x).

To these we add:

Lemma 8.3.7. Let x ∈ D∞ and y ∈ TD∞:

1. (unitx)n = unit n+1x

2. (y ⋆ x)n = yn ⋆ xn

3. a ⋆ d = ⊔
n(an ⋆ dn+1).

If X ⊆ D∞ we write Xn = {xn | x ∈ X}, similarly for Yn when Y ⊆ TD∞.
By means of this we define a notion of approximated type interpretation such
that each type turns out to denote certain well behaved subset either of Dn or
TDn according to its kind, called admissible subset ([AJ94] sec. 2.1.6).

Definition 8.3.8. A predicate on (i.e. a subset of) a domain D is admissible if
it contains ⊥ and is closed under directed suprema. We write as Adm(D) the set
of all admissible predicates on a domain D. Fix a domain D and a subset X ⊆ D;
we define the following operator:

clD(X) =
⋂
{P ∈ Adm(D) | P ⊇ K(X)}

where K(X) are the elements of K(D) bounded above by the elements of X.

Our goal is to show that the type interpretations are admissible subsets of
either Dn or TDn provided that the ξ(α) are such. To enforce admissibility of the
ξ(α) we have introduced the clD operator.

Lemma 8.3.9. The operator clD : PD −→ PD is a closure, and clD(X) is an
object of D for all X ⊆ D, hence it is admissible and algebraic.

Next we define the notion of approximated type interpretation, that in the
limit is a monadic type interpretation (Theorem 8.3.14).
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Definition 8.3.10. Let ξ ∈ Term-EnvD∞; then we define a family of approximated
type interpretations [[δ]]Dn

ξ ⊆ Dn and [[τ ]]T Dn
ξ ⊆ TDn inductively over n ∈ N, and

then over types:

[[α]]Dn
ξ = clDn(ξ(α)n) [[ωVal]]Dn

ξ = Dn [[ωCom]]T Dn
ξ = TDn

[[δ ∧ δ′]]Dn
ξ = [[δ]]Dn

ξ ∩ [[δ′]]Dn
ξ [[τ ∧ τ ′]]T Dn

ξ = [[τ ]]T Dn
ξ ∩ [[τ ′]]T Dn

ξ

[[δ −→ τ ]]D0
ξ = D0 [[δ −→ τ ]]Dn+1

ξ = {d ∈ Dn+1 | ∀d′ ∈ [[δ]]Dn
ξ . d(d′) ∈ [[τ ]]T Dn

ξ }

[[Tδ]]T D0
ξ = TD0

[[Tδ]]T Dn+1
ξ = {unit d ∈ TDn | d ∈ [[δ]]Dn

ξ } ∪
{a ⋆ d ∈ TDn+1 | ∃δ′. d ∈ [[δ′ −→ Tδ]]Dn+1

ξ & a ∈ [[Tδ′]]T Dn
ξ }

The use of clDn in the definition of [[α]]Dn
ξ can be avoided if ξ(α)n is admissible,

for which it suffices that ξ(α) is admissible. We say that ξ is admissible if all ξ(α)
are such. Clearly clD(ξ(α)) = ξ(α) if ξ is admissible.

Lemma 8.3.11. Let ξ ∈ Term-EnvD∞. For all n ∈ N, every element of the
families [[δ]]Dn

ξ and [[τ ]]T Dn
ξ is an admissible predicate on Dn and TDn, respectively.

Moreover, they are algebraic domains. In addition, every such admissible predicate
is an ω-algebraic sublattice of Dn and TDn, respectively.

Lemma 8.3.12. Fix a ξ ∈ Term-EnvD∞.
Define εδ

n = εn ↾ [[δ]]Dn
ξ and πδ

n = πn ↾ [[δ]]Dn
ξ , where εn ↾ [[δ]]Dn

ξ = εn([[δ]]Dn
ξ ), that is

the image of [[δ]]Dn
ξ via εn; similarly for πn ↾ [[δ]]Dn

ξ .
Then, for all δ ∈ ValType (εδ

n, π
δ
n) is injection-projection pair.

Define εT δ
n = Tεδ

n and πT δ
n = Tπδ

n. By functoriality of T and Lemma 8.3.12
they are an injection-projection pair, too. This implies that the following subsets
of D∞ and TD∞ do exist.

Definition 8.3.13.

1. [[δ]]D∞
ξ = lim←[[δ]]Dn

ξ

2. [[Tδ]]T D∞
ξ = lim←[[Tδ]]T Dn

ξ

Theorem 8.3.14. Let ξ ∈ Term-EnvD∞ be admissible. Then the mappings [[·]]D∞
ξ

and [[·]]T D∞
ξ are monadic type interpretations; in particular:

1. d ∈ [[δ]]D∞
ξ ⇒ unit d ∈ [[Tδ]]T D∞

ξ

2. ∃δ′. d ∈ [[δ′ −→ Tδ]]D∞
ξ & a ∈ [[Tδ′]]T D∞

ξ ⇒ a ⋆ d ∈ [[Tδ]]T D∞
ξ

Proof. By Definition 8.3.10 [[δ −→ τ ]]Dn+1
ξ = [[δ]]Dn

ξ ⇒ [[τ ]]T Dn
ξ . Let d ∈ [[δ −→ τ ]]Dn+1

ξ

if and only if d = ⊔
n dn+1 where dn+1 ∈ [[δ −→ τ ]]Dn+1

ξ for all n. Similarly,d′ ∈ [[δ]]D∞
ξ

if and only if d′ = ⊔
n d
′
n+1 where d′n+1 ∈ [[δ −→ τ ]]Dn+1

ξ for all n. Now, by
Lemma 8.3.6, d · d′ = ⊔

n dn+1(d′n) and as seen so far dn+1(d′n) ∈ [[τ ]]T Dn
ξ . Hence,
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⊔
n dn+1(d′n) ∈ lim←[[τ ]]T Dn

ξ = [[τ ]]T D∞
ξ .

Now we prove the monadicity of the type interpretation. Let d ∈ [[δ]]D∞
ξ . In

particular, [[δ]]D∞
ξ = lim←[[δ]]Dn

ξ , thus d = ⊔
n dn where dn ∈ [[δ]]Dn

ξ . Since unit dn ∈
[[Tδ]]T Dn

ξ by definition, and since unit is continuous, unit d = unit (⊔
n dn) =⊔

n unit dn. As built so far, ⊔
n unit dn ∈ lim←[[Tδ]]T Dn

ξ = [[Tδ]]T D∞
ξ . So clause (i) is

satisfied.
Let a ∈ [[Tδ′]]T D∞

ξ and d ∈ [[δ′ −→ Tδ]]Dn+1
ξ . According to (iii) in Lemma 8.3.7, we

have a ⋆ d = ⊔
n(an ⋆ dn+1). By construction an ∈ [[Tδ′]]T Dn

ξ and dn+1 ∈ [[δ′ −→
Tδ]]Dn+1

ξ . By definition an ⋆ dn+1 ∈ [[Tδ]]T Dn+1
ξ , thus a ⋆ d ∈ lim←[[Tδ]]T Dn

ξ =
[[Tδ]]T D∞

ξ . So clause (ii) is satisfied.

Remark 8.3.15. As long as the monad T is generic and no algebraic operations
are considered, the only effects are produced by the trivial computations [V ];
hence in the term model for the pure core calculus the type interpretation is
actually strict. However the closure properties of the monadic interpretations are
necessary conditions for type interpretation in the general case, and do actually
hold in case of the state monad studied in Part III.

8.4 The Filter-Model Construction
Let (L,≤) be an inf-semilattice; a non empty F ⊆ L is a filter of L if it is upward
closed and closed under finite infs; F(L) is the set of filters of L. The next
proposition and theorem are known from the literature, e.g. [DP90, AC98]:

Proposition 8.4.1. If (L,≤) is an inf-semilattice then F(L) = (F(L),⊆) is an
algebraic lattice, whose compact elements are the filters ↑a = {a′ ∈ L | a ≤ a′}.
Hence F(L) is ω-algebraic if L is denumerable.

Any D ∈ |D| arises by ideal completion of K(D) taken with the restriction
of the order ⊑ over D; dually it is isomorphic to the filter completion of Kop(D),
that is K(D) ordered by ⊑op, the inverse of ⊑.

Theorem 8.4.2 (Representation theorem). Let D ∈ |D|; then Kop(D) is an
inf-semilattice and D ≃ F(Kop(D)) is an isomorphism in D.

Let Th = (T ,≤) be a type theory. Elements of F(T ) are the non empty
subsets F ⊆ T which are upward closed w.r.t. the preorder ≤ and such that
if σ, σ′ ∈ F then σ ∧ σ′ ∈ F . This definition, coming from [BCD83], is not the
same as that of F(L) because ≤ is just a preorder, and infs do exist only in
the quotient T/≤, which is indeed an inf-semilattice. The resulting partial order
F(Th) = (F(T ),⊆), however, is isomorphic to (F(T/≤),⊆).

Lemma 8.4.3. Let T/≤ be the quotient of the pre-order Th = (T ,≤), whose
elements are the equivalence classes [σ] = {σ′ ∈ T | σ ≤ σ′ ≤ σ}, ordered by
the relation [σ] ≲ [σ′] ⇔ σ ≤ σ′. Then (T/≤,≲) is an inf-semilattice; moreover
F(Th) ≃ F(T/≤) is an isomorphism in D.

Proof. Proving that ≲ is well defined and (T/≤,≲) is an inf-semilattice is routine.
The isomorphism F(Th) ≃ F(T/≤) is given by the map F 7→ {[σ] | σ ∈ F}.
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By Theorem 8.4.2 and Lemma 8.4.3, any D ∈ |D| is isomorphic to the filter
domain FD = F(TD) of some intersection type theory ThD = (TD,≤D), called the
Lindenbaum algebra of K(D) in [Abr91].

Definition 8.4.4.
For D,E ∈ |D|, the functional type theory ThD−→E = (TD−→E,≤D−→E) is the least
type theory such that TD−→E includes all expressions of the form δ −→ ε for δ ∈ TD

and ε ∈ TE and ≤D−→E is such that

ωD−→E ≤D−→E ωD −→ ωE (δ −→ ε) ∧ (δ −→ ε′) ≤D−→E δ −→ (ε ∧ ε′)
δ′ ≤D−→E δ ε ≤E ε′

δ −→ ε ≤D−→E δ′ −→ ε′

Also ThD−→E is continuous if∧
i∈I

(δi −→ εi) ≤D−→E δ −→ ε⇒
∧
{εi | i ∈ I & δ ≤D δi} ≤E ε (8.1)

Remark 8.4.5. The theory ThD−→E is an extended abstract type system, shortly
eats (see e.g. [AC98] ch. 3), but for the sorts of type expressions. It is continuous
if it is a continuous eats.

Proposition 8.4.6. Let ThD−→E be a continuous functional type theory. Then the
domain FD−→E = F(ThD−→E) is isomorphic to [FD −→ FE], namely the domain
of Scott continuous functions from D to E.

Proof. First if u ∈ FD−→E and d ∈ FD then

u · d = {ε ∈ TE | ∃ δ −→ ε ∈ u. δ ∈ d} ∈ FE

Then the isomorphism FD−→E ≃ [FD −→ FE] is given by

ΦF(u) = λλ d ∈ FD. u · d ΨF(f) = {
∧
i∈I

(δi −→ εi) | ∀i ∈ I. εi ∈ f( ↑δi)} (8.2)

To prove that ΦF ◦ΨF = id[FD−→FE ] and ΨF ◦ΦF = idFD−→E
it is enough to show

this for compact elements, which is obtained by simple calculations.

Definition 8.4.7. Let Th = (T ,≤) be a type theory and T a unary symbol; then
ThT = (T T ,≤T ) is the least type theory such that T T is defined by the grammar

φ ::= Tσ | φ ∧ φ′ | ωT

and, for σ, σ′ ∈ T

φ ≤T ωT σ ≤ σ′ ⇒ Tσ ≤T Tσ′ Tσ ∧ Tσ′ ≤T T (σ ∧ σ′)

Clearly ThCom = (ThVal)T that we abbreviate by ThT
Val; also, by Theorem 8.4.2,

if ThD is the theory of some D ∈ |D| then FT D = F(ThT
D) is again a domain with

theory ThT
D, and TD = FT D is a well defined, total map T : |D| −→ |D|.
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In the following we abbreviate FD = F(ThD) and FT D = F(ThT
D). We also

suppose that the set of atoms TypeVar0 is non empty and fixed, and in one-to-one
correspondence to the compacts K(D0) of some fixed domain D0; also assume
that αd ≤Val αe in the theory ThVal if and only if e ⊑ d in D0.

Finally, we enforce extensionality of the resulting T -model (see below) by
adding to ThVal some axioms that equate each atomic type α to an arrow type, for
which we have similar choices that is either all (in-)equations α =Val ωVal −→ Tα
by analogy to Scott’s models, or α =Val αVal −→ Tα by analogy to Park’s. No
matter which is the actual choice, we ambiguously call Thη

Val the resulting theory
and D∗ = F(Thη

Val) its filter domain.

Lemma 8.4.8. We have that Thη
Val = ThD∗−→TD∗ and it is a continuous functional

theory. Therefore D∗ ≃ [D∗ −→ TD∗].

Proof. By hypothesis Thη
Val = ThD∗ ; by definition ThCom = (Thη

Val)T = ThTD∗ .
By Definition 8.1.3 we have that ThD∗ = ThD∗−→TD∗ . To see that ThD∗−→TD∗ is a
continuous functional type theory it suffices to show that condition (Equation (8.1))
holds in ThVal (similar to the analogous proof for system BCD). Hence

D∗ ≃ F(ThD∗−→TD∗) ≃ [F(ThD∗) −→ F(ThTD∗)] ≃ [D∗ −→ TD∗]

by Proposition 8.4.6.

Lemma 8.4.9. Let T : |D| −→ |D| be as above. Define unitFD : FD −→ FT D and
⋆FD,E : FT D ×FD−→TE −→ FTE such that:

unitFD d = ↑{Tδ ∈ TTD | δ ∈ d} t⋆FD,Ee = ↑{τ ∈ TTE | ∃ δ −→ τ ∈ e. T δ ∈ t}

Then (T, unit F , ⋆F) is a monad over D.

Corollary 8.4.10. Let ΦF ,ΨF be defined by (Equation (8.2)). Then (D∗,T,ΦF ,ΨF)
is a T -model.

Next we show that D∗ is a limit T -model, hence it admits a monadic type
interpretation by Theorem 8.3.14. Let’s stratify types according to the rank
map: r(α) = r(ωVal) = r(ωCom) = 0, r(σ ∧ σ′) = max(r(σ), r(σ′)) (for σ ∧ σ′ ∈
ValType ∪ ComType), r(δ −→ τ) = max(r(δ) + 1, r(τ)) and r(Tδ) = r(δ) + 1. If T
is any language of intersection types, we set: Tn = {σ ∈ T | r(σ) ≤ n}.

Lemma 8.4.11. Let ≤n= ≤ ↾Tn × Tn (for both ≤Val and ≤Com) and Thn and
Dn = F(Thn) be the respective type theories and filter domains. Then the Dn

form a denumerable chain of domains such that D∗ = lim←Dn is a limit T -model.

Proof. Recall that Dn = F(Thη
n). Define εn : Dn −→ Dn+1, πn : Dn+1 −→ Dn as

follows:

εn(d) = {δ ∈ ValTypen+1 | ∃δ′ ∈ d. δ′ ≤n+1 δ} for d ∈ Dn = F(Thη
n)

πn(e) = {δ ∈ e | r(δ) ≤ n} for e ∈ Dn+1 = F(Thη
n+1)

Let d ∈ Dn and e = εn(d). Both εn(d) an πn(e) are filters. Clearly d ⊆
εn(d) ∩ ValTypen, hence d ⊆ πn(e).
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Vice versa if δ ∈ πn(e) then r(δ) ≤ n and for some δ′ ∈ d, δ′ ≤n+1 δ. But
≤n+1↾ ValTypen × ValTypen = ≤n, hence δ′ ≤n δ which implies δ ∈ d as the
latter is a filter. We conclude that πn(e) = d, and therefore πn ◦ εn = idDn by the
arbitrary choice of d.

On the other hand if d = πn(e) for some arbitrary e ∈ Dn+1 and δ ∈ εn(d) it
follows that there exists δ′ ∈ e such that r(δ′) ≤ n and δ′ ≤n+1 δ, which implies
that δ ∈ e being e a filter w.r.t. ≤n+1.

In conclusion εn ◦ πn ⊑ idDn+1 where ⊑ is the point-wise ordering induced by
subset inclusion. Combining with the previous equation we conclude that (εn, πn)
is an injection-projection pair, and hence D∗ ⊆ lim←Dn. To see the inverse
inclusion just note that any filter d ∈ D∗ is the union of all its restrictions to the
rank n, namely in Dn, and hence is a filter in D∞.

Remark 8.4.12. It is not the case that Dn ⊆ Dn+1: indeed let δ −→ τ ∈ d ∈ Dn

and take any δ′ such that r(δ′) = n; hence r(δ∧δ′ −→ τ) = n+1 and δ∧δ′ −→ τ ̸∈ d.
But δ −→ τ ≤n+1 δ ∧ δ′ −→ τ , therefore the latter type belongs to any filter in Dn+1
including d. Then we see that εn cannot be just set theoretic inclusion. The very
same example shows that πn(e) ⊆ e is a proper inclusion in general.

8.5 Soundness and Completeness of the Type
System

In the following, let us fix a T -model D and assume that [[·]]T D is a monadic type
interpretation. Also we assume ξ ∈ TypeEnvD is admissible and ρ ∈ Term-EnvD.

Lemma 8.5.1. Let D, [[·]]T D, and ξ ∈ TypeEnvD as above.
The couple (D, ξ) preserves ≤Val and ≤Com, that is: for all δ, δ′ ∈ ValType and for
all τ, τ ′ ∈ ComType, one has:

δ ≤Val δ
′ ⇒ [[δ]]Dξ ⊆ [[δ′]]Dξ and τ ≤Com τ ′ ⇒ [[τ ]]T D

ξ ⊆ [[τ ′]]T D
ξ

Theorem 8.5.2 (Soundness).

Γ ⊢ V : δ ⇒ Γ |= V : δ and Γ ⊢M : τ ⇒ Γ |= M : τ

Proof. By simultaneous induction on the derivations of Γ ⊢ V : δ and Γ ⊢M : τ .
Rules (∧I) and (ω) are sound by a quick inspection on the definition of type
interpretation. Rule (≤) is sound by Lemma 8.5.1, as we proved that (D, ξ)
preserves ≤Val and ≤Com.

In order to prove soundness of rule (−→ I), assume Γ, x : δ ⊢ M : τ and
ρ, ξ |= Γ, one has to show that [[λx.M ]]Dρ ∈ [[δ −→ τ ]]Dξ . Let d ∈ [[δ]]Dξ , the
thesis is equivalent to say that [[M ]]T D

ξ[x 7→d] ∈ [[τ ]]T D
ξ , by the arbitrary choice of

d, because in any model this is the same as [[λx.M ]]Dρ · d ∈ [[τ ]]T D
ξ . If we set

FD = {e ∈ D | ∃M,ρ. e = [[λx.M ]]Dρ } then the semantic interpretation of rule
(−→ I) says that {e ∈ FD | ∀d.; d ∈ [[δ]]Dξ ⇒ e · d ∈ [[τ ]]T D

ξ } ⊆ [[δ −→ τ ]]dξ .
For what concerns rule (unit I), suppose that the assertion is true for the derivation
of Γ ⊢ V : δ, namely Γ |= V : δ, and ρ, ξ |= Γ. To prove that Γ |= [V ], one has to
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show that [[[V ]]]T D
ρ ∈ [[Tδ]]T D

ξ , that is equivalent to unit [[V ]]Dρ ∈ [[Tδ]]T D
ξ and this

true by (i) of Theorem 8.3.14 Soundness of rule (−→ E) follows a very similar path,
invoking propriety (ii) of of the same theorem.

Recall that D∗ = F(Thη
Val). Let ξ0 ∈ TypeEnvD∗ be defined by ξ0(α) = {d ∈

D∗ | α ∈ d} ∪ { ↑ ωVal}, that is admissible. Also let [[·]]D∗ and [[·]]T D∗ be the
monadic interpretations of Definition 8.3.13.

Lemma 8.5.3.

[[δ]]D∗
ξ0 = {d ∈ D∗ | δ ∈ d} and [[τ ]]T D∗

ξ0 = {a ∈ TD∗ | τ ∈ a}.

Proof. D∗ is a T -model by Corollary 8.4.10, and [[·]]D∗ and [[·]]T D∗ are monadic,
hence Lemma 8.5.1 applies.

Lemma 8.5.4 (Type Semantics Theorem). For any ρ ∈ Term-EnvD∗:

1. [[V ]]D∗
ρ = {δ ∈ ValType | ∃Γ. ρ, ξ0 |= Γ & Γ ⊢ V : δ}

2. [[M ]]T D∗
ρ = {τ ∈ ComType | ∃Γ. ρ, ξ0 |= Γ & Γ ⊢M : τ}

Proof. By Theorem 8.5.2 and the fact that D∗ is a T -model and type interpreta-
tions are monadic, both inclusions ⊇ follow by Lemma 8.5.3. To see inclusions ⊆
we reason by induction over V and M .

Case V ≡ x: if δ ∈ [[x]]D∗
ρ = ρ(x) take Γ = x : δ. Then clearly Γ ⊢ x : δ. On the

other hand ρ, ξ0 |= x : δ if ρ(x) ∈ [[δ]]D∗
ξ0 that is if δ ∈ ρ(x) by Lemma 8.5.3,

which holds by hypothesis.

Case V ≡ λx.M : if δ ∈ [[λx.M ]]D∗
ρ , recall from Definition 2.3.1and Proposi-

tion 8.4.6 that:

[[λx.M ]]D∗
ρ = ΨF(λλ d. [[M ]]T D∗

ρ[x 7→d])
= ↑{∧i∈I(δi −→ τi) | ∀i ∈ I. τi ∈ [[M ]]T D∗

ρ[x 7→ ↑δi]}

By induction for all i ∈ I there exists Γi s.t. ρ[x 7→ ↑ δi], ξ0 |= Γi and
Γi ⊢ M : τi. This implies that ρ(x) ∈ ↑ δi hence there is no theoretical
loss in supposing that Γi = Γ′i, x : δi. Let Γ′ = ∧

i∈I Γ′i be the pointwise
intersection of the Γ′i; it follows that Γ′, x : δi ⊢ M : τi for all i ∈ I.
Therefore by (−→ I) we have Γ′ ⊢ λx.M : δi −→ τi for all i ∈ I, so that by
(∧I) we conclude that Γ′ ⊢ λx.M : ∧

i∈I(δi −→ τi), and the thesis follows by∧
i∈I(δi −→ τi) ≤Val δ and rule (≤).

Case M ≡ [V ]: if τ ∈ [[[V ]]]T D∗
ρ = unit [[V ]]D∗

ρ = ↑ {Tδ | δ ∈ [[V ]]D∗
ρ }. By

induction there is Γ such that ρ, ξ0 |= Γ and Γ ⊢ V : δ, from which it follows
that Γ ⊢ [V ] : Tδ by (unit I).

Case M ≡M ′ ⋆ V : if τ ∈ [[M ′ ⋆ V ]]T D∗
ρ where:

[[M ′ ⋆ V ]]T D∗
ρ = [[M ′]]T D∗

ρ ⋆ [[V ]]D∗
ρ = ↑{τ | ∃δ −→ τ ∈ [[V ]]D∗

ρ . T δ ∈ [[M ′]]T D∗
ρ }
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By induction there exist Γ′ and Γ′′ such that:

ρ, ξ0 |= Γ′ & Γ′ ⊢M ′ : Tδ and ρ, ξ0 |= Γ′′ & Γ′′ ⊢ V : δ −→ τ

Now let Γ = Γ′ ∧ Γ′′; we have that ρ, ξ0 |= Γ′ implies that Γ′(x) ∈ ρ(x)
for all x ∈ dom (Γ′) by Lemma 8.5.3, and similarly Γ′′(y) ∈ ρ(y) or all
y ∈ dom (Γ′′); hence for all z ∈ dom (Γ) = dom (Γ′) ∪ dom (Γ′′) we have
Γ(z) = Γ′(z) ∧ Γ′′(z) ∈ ρ(z) since ρ(z) is a filter. It follows that ρ, ξ0 |= Γ
and, since Γ ≤Val Γ′,Γ′′ that both Γ ⊢ M ′ : Tδ and Γ ⊢ V : δ −→ τ , from
which we obtain Γ ⊢M ′ ⋆ V : τ by (−→ E).

Theorem 8.5.5 (Completeness).

Γ |= V : δ ⇒ Γ ⊢ V : δ and Γ |= M : τ ⇒ Γ ⊢M : τ.

Proof. We show the second implication as the first one is similar. Assume that
Γ |= M : τ , then in particular we have Γ |=D∗ M : τ . Let ρΓ ∈ Term-EnvD∗

be defined by ρΓ(x) = ↑Γ(x). By construction, we have ρΓ, ξ0 |= Γ and hence
[[M ]]T D∗

ρΓ
∈ [[τ ]]T D∗

ξ0 . Thus, τ ∈ [[M ]]T D∗
ρΓ

by Lemma 8.5.3. Therefore, there exists Γ′
such that ρΓ, ξ0 |= Γ′ and Γ′ ⊢M : τ by Lemma 8.5.4.
Without loss of theoretical generality, we can assume X := dom Γ = dom Γ′ =
fv(M). For all x ∈ X, Γ′(x) ∈ ρΓ(x) = ↑Γ(x) implies that Γ ≤Val Γ′. From this
last consideration we conclude that Γ ⊢M : τ .

Subject expansion, already proved in Theorem 8.2.6, can be also obtained as a
corollary of the above theorem:

Corollary 8.5.6 (Subject expansion). If Γ ⊢M : τ and N →M then Γ ⊢ N : τ .

Proof. Since M → N , for all model D and every ρ, [[N ]]Dρ = [[M ]]Dρ by Proposi-
tion 2.3.3. In particular, by assuming D = D∗, [[N ]]T D∗

ρΓ
= [[M ]]T D∗

ρΓ
.

Γ ⊢M : τ ⇒ τ ∈ [[M ]]T D∗
ρΓ

by Theorem 8.5.2 and Lemma 8.5.3
⇒ τ ∈ [[N ]]T D∗

ρΓ

⇒ ∃Γ′. ρΓ, ξ0 |= Γ′ and Γ′ ⊢M : τ by Lemma 8.5.4
⇒ Γ ⊢ N : τ as in proof of Theorem 8.5.5.
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CHAPTER 9

CHARACTERIZATION OF
CONVERGENCE

In this chapter we introduce a big-step operational semantics that is proved to
be equivalent to the reduction relation introduced in Section 2.4. By means
of this convergence predicate, we reach the main result of this part, that is a
characterization of convergent programs by non trivial typings, Theorem 9.2.1.
Methodologically, we obtain this result using the Tait’s computability method.

9.1 Equivalence Between Big-Step and Small-
Step Operational Semantics

Operational semantics of λ-calculi, as well as of programming languages, consists of
giving meaning to terms via a definition of their execution. This can be done either
by a small-step reduction relation (more precisely by considering some reduction
strategy), or via an evaluation relation of terms to their values, often called
convergence predicate. Both are examples of structural operational semantics in
Plotkin’s sense [Plo04], but serve different purposes. Instead of describing the
evaluation process in detail, which is also defined on open (sub)-terms, convergence
is a relation among “programs”, that are closed terms and the closed values to
which programs evaluate. Having treated reduction for λ© in Part I, we now
introduce a convergence predicate, whose definition is inspired by the analogous
relation for the call-by-value λ-calculus.

In denotational semantics using domain theoretic models, computational
adequacy is the property that divergent programs are precisely those interpreted
by ⊥. This notion is relative to the operational semantics at hand and to the
observational notion of convergence. For this to make sense in the present setting,
we introduce a notion of convergence inductively, and relate it to the reduction
relation, that is the small-step operational semantics that we have introduced and
deeply discussed in Part I.
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Henceforth in this section, terms are closed if not otherwise stated. Let Com0

and Val 0 be the set of closed computations and values, respectively.

Definition 9.1.1 (Convergence). The convergence relation ⇓ ⊆ Com0×N×Val0,
is defined as follows:

[V ] ⇓0 V
M ⇓m V ′ N{V ′/x} ⇓n V

M ⋆ (λx.N) ⇓m+n+1 V

Notation:
M ⇓ V ⇔ ∃n.M ⇓n V

M ⇓ ⇔ ∃V.M ⇓ V

The notation M ⇓n V could have been written as M ⇓n [V ], in the sense that a
term of the shape [V ] is a sort of weak normal form of M w.r.t. the reduction
→ which is defined among computations, not among computation and values.
By choosing the definition above we intend to emphasize that [V ] is the “trivial”
computation of V , that is terminated; in the context of λc this is not the same
as V , and we want to save the idea that convergence relates programs, namely
computations, to their results, that are values. The two concepts are related as
stated in the lemma:

Lemma 9.1.2. M ⇓ V ⇒M →∗ [V ]

Proof. By hypotheses M ⇓ V , that is M ⇓n V for some n ∈ N. Then we reason
by induction over n. If n = 0 then M ≡ [V ] and trivially [V ]→∗ [V ].

Otherwise, M ≡M ′ ⋆ λy.N ⇓n V and for some W ∈ Val0:

M ′ ⇓p W N{W/y} ⇓q V

M ′ ⋆ λy.N ⇓n V
where n = p+ q + 1

By induction M ′ →∗ [W ] and N{W/y} →∗ [V ] so that

M ′ ⋆ λy.N →∗ [W ] ⋆ λy.N → N{W/y} →∗ [V ].

The inverse implication does not hold. Indeed if N → N ′ then
[λx.N ] → [λx.N ′], that is λx.N ′ is a more refined value than λx.N ; however,
[λx.N ] ̸⇓ λx.N ′. We can only prove the weaker statement as in Lemma 9.1.4,
which nonetheless suffices. Before doing so, let us establish an useful equivalence
lemma between weak βc-reduction and the big-step predicate. This equivalence
can be proved following the sufficient requirements that are established in [Cio13],
§ 3. In our case, we prefer to prove it directly.

Lemma 9.1.3. M→w βc
∗ [W ] ⇒M ⇓ W

Proof. By induction over the length of M→w βc
∗ [U ].

If M→w βc
0 [W ], then M ≡ [W ], and the thesis is trivial since [W ] ⇓0 W . Otherwise,
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suppose that M→w βcN→w βc
n−1[W ]. Now we proceed by induction on the contextual

closure.
The first case to consider is if M→w βcN where →w βc is a root step. Then

M ≡ [V ] ⋆ λx.P and N ≡ P{V/x}. We conclude as follows

[V ] ⇓ V N ≡ P{V/x} ⇓ W by i.h.
M ≡ [V ] ⋆ λx.P ⇓ W

The second case is the case in which the reduction M→w βcN is not a root step.
That is M ≡M ′⋆λx.P and there exists N ′ such that M ′→w βcN

′ and N ≡ N ′⋆λx.P .
By first induction hypothesis N ≡ N ′ ⋆ λx.P ⇓ W , and it is possible if

N ′ ⇓ U ′ P{U ′/x} ⇓ W

N ′ ⋆ λx.P ⇓ W

Since M ′→w βcN
′ by second induction hypothesis M ′ ⇓ U ′ and then M ≡ M ′ ⋆

λx.P ⇓ W

Lemma 9.1.4. M →∗ N and N ⇓ V ⇒ ∃W. M ⇓ W and [W ]→∗ [V ].

Proof. If M →∗ N and N ⇓ V , by Lemma 9.1.2 it means that M →∗ N →∗ [V ],
that is M →∗ [V ]. By a very similar argument as in Theorem 4.4.5, there exists a
reduction path from M to [V ] and a value W such that M→w βc

∗ [W ] and [W ]→∗ [V ].
It remains to prove that M→w βc

∗[W ]⇒M ⇓ W and this follows by Lemma 9.1.3.

Theorem 9.1.5. M ⇓ ⇔ ∃V. M →∗ [V ]

Proof. Immediate consequence of Lemma 9.1.2 and Lemma 9.1.4.

9.2 Characterization of Convergence
In view of Theorem 9.1.5, the predicate M ⇓ is non trivial. Indeed consider the
closed term:

ΩCom ≡ [(λx.[x] ⋆ x)] ⋆ (λx.[x] ⋆ x)

that is a translation of the well known term Ω ≡ (λx.xx)(λx.xx) from ordinary
λ-calculus. Then the only reduction out of ΩCom is

ΩCom → ([x] ⋆ x){λx.[x] ⋆ x/x} ≡ ΩCom by βc

which is not of the shape [V ] for any V ∈ Val, hence ΩCom ̸⇓. The main purpose
of this section is to show that typing in our system characterizes convergent terms.
We say that τ ∈ ComType is non trivial if τ ̸=Com ωCom. Then we want to show:

Theorem 9.2.1 (Convergence characterization). For all M ∈ Com0 we have:

M ⇓ ⇔ ∃ non trivial τ. ⊢M : τ.
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Towards the proof, and following the pattern of Tait’s computability method,
we introduce some auxiliary notions.

Definition 9.2.2. Let I : TypeVar −→PVal0 be a map; then define |δ|I ⊆ Val0
and |τ |I ⊆ Com0 by induction as follows:

i) |α|I = I(α)

ii) |δ −→ τ |I = {V ∈ Val0 | ∀M ∈ |Tδ|I . M ⋆ V ∈ |τ |I}

iii) |Tδ|I = {M ∈ Com0 | ∃V ∈ |δ|I .M ⇓ V }

iv) |ωVal|I = Val0 and |ωCom|I = Com0

v) |δ ∧ δ′|I = |δ|I ∩ |δ′|I and |τ ∧ τ ′|I = |τ |I ∩ |τ ′|I.

Lemma 9.2.3. Let I be arbitrary. Then:

i) δ ≤Val δ
′ ⇒ |δ|I ⊆ |δ′|I

ii) τ ≤Com τ ′ ⇒ |τ |I ⊆ |τ ′|I

Proof. By checking axioms and rules in Definition 8.1.3. The only non trivial
cases concern the arrow and T -types.

Let V ∈ |(δ −→ τ1)∧(δ −→ τ2)|I = |δ −→ τ1|I∩|δ −→ τ2|I , then for all M ∈ |Tδ|I we
have M ⋆V ∈ |τi|I for both i = 1, 2; hence M ⋆V ∈ |τ1|I ∩ |τ2|I = |τ1 ∧ τ2|I .

Suppose that δ1 ≤Val δ2 and let M ∈ |Tδ1|I ; then there exists V ∈ |δ1|I such that
M ⇓ V . By induction |δ1|I ⊆ |δ2|I so that immediately we have M ∈ |Tδ2|I .

LetM ∈ |Tδ1∧Tδ2|I = |Tδ1|I∩|Tδ2|I . Then there exists V1 ∈ |δ1|I and V2 ∈ |δ2|I
such that M ⇓ V1 and M ⇓ V2. By Lemma 9.1.2 we have M →∗ [V ]i for
both i = 1, 2 and these terms are in normal form; hence V1 ≡ V2 by Theorem
4.1.13. It follows that there exists a unique V ∈ |δ1|I ∩ |δ2|I = |δ1 ∧ δ2|I
such that M →∗ [V ], hence M ∈ |T (δ1 ∧ δ2)|I .

Suppose that δ2 ≤Val δ1 and τ1 ≤Com τ2. Let V ∈ |δ1 −→ τ1|I and M ∈ |Tδ2|I ;
by the above M ∈ |Tδ1|I so that M ⋆ V ∈ |τ1|I . By induction |τ1|I ⊆ |τ2|I
hence M ⋆ V ∈ |τ2|I so that V ∈ |δ2 −→ τ2|I by the choice of M .

Corollary 9.2.4. A type τ ∈ ComType is non trivial if and only if τ ≤Com TωVal.

Proof. By contradiction, if TωVal =Com ωCom then |TωVal|I = |ωCom|I for any I
by ii) of Lem. 9.2.3. But |TωVal|I = {M ∈ Com0 |M⇓} ≠ Com0 = |ωCom|I since
ΩCom ̸⇓. The remaining part of the thesis now follows from Lem. 8.1.5.

We are now in place to show the only if part of Theorem 9.2.1.

Lemma 9.2.5. M ⇓ ⇒ ∃ τ non trivial . ⊢M : τ
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Proof. If M ⇓ then M →∗ [V ] for some V ∈ Val0 by Lemma 9.1.2; now ⊢ V : ωVal
so that ⊢ [V ] : TωVal by rule (unit I); it follows that ⊢ M : TωVal by Theorem
8.2.6, where TωVal is non trivial by Cor. 9.2.4.

We say that a subset X ⊆ Com0 is saturated if for all M ∈ Com0, M → N
and N ∈ X imply M ∈ X.

Lemma 9.2.6. For all τ ∈ ComType and I the set |τ |I is saturated.

Proof. By induction over τ . The case τ ≡ ωCom is trivial; the case τ ≡ τ1 ∧ τ2 is
immediate by induction. Let τ ≡ Tδ: then by hypothesis there exists V ∈ |δ|I
such that N⇓ V . By Lem. 9.1.2 we have that N →∗ [V ] so that M →∗ [V ] and
we conclude by Lem. 9.1.4.

Lemma 9.2.7. Let Γ ⊢ M : τ where Γ = {x1 : δ1, . . . , xk : δk} and M ∈
Com. For any V1, . . . , Vk ∈ Val0 and I, if Vi ∈ |δi|I for all i = 1, . . . , k then
M{V1/x1} · · · {Vk/xk} ∈ |τ |I.

Proof. We strength the thesis by adding that if Γ ⊢ W : δ for W ∈ Val, then
W{V1/x1} · · · {Vk/xk} ∈ |δ|I under the same hypotheses. Then we reason by
simultaneous induction over the derivations of Γ ⊢ M : τ and Γ ⊢ W : δ. The
cases of (Ax) and (ω) are straightforward; cases (unit I) and (∧I) are immediate
by induction; case (≤) follows by induction and Lemma 9.2.3. Let us abbreviate
M{V⃗ /x⃗} ≡M{V1/x1} · · · {Vk/xk} and similarly for W{V⃗ /x⃗}.

Case (−→ I): then the derivation ends by:

Γ, y : δ′ ⊢M ′ : τ ′
(−→ I)

Γ ⊢ λy.M ′ : δ′ −→ τ ′

where W ≡ λy.M ′ and δ ≡ δ′ −→ τ ′. Let M ′′ ≡M ′{V⃗ /x⃗} and assume that
y ̸∈ x⃗; to prove that (λy.M ′){V⃗ /x⃗} ≡ λy.M ′′ ∈ |δ′ −→ τ ′|I we have to show
that N ⋆ λy.M ′′ ∈ |τ ′|I for all N ∈ |Tδ′|I .
Now if N ∈ |Tδ′|I then there exists V ′ ∈ |δ′|I such that N ⇓ V ′. This
implies that the hypothesis that Vi ∈ |δi|I for all xi : δi ∈ Γ now holds for
the larger basis Γ, y : δ′ so that by induction we have M ′′{V ′/y} ∈ |τ ′|I . But

N ⋆ λy.M ′′ →∗ ([V ]′) ⋆ λy.M ′′ →M ′′{V ′/y}

and the thesis follows since |τ ′|I is saturated by Lemma 9.2.6.

Case (−→ E): then the derivation ends by:

Γ ⊢M ′ : Tδ Γ ⊢ W ′ : δ −→ τ

Γ ⊢M ′ ⋆ W ′ : τ

where M ≡ M ′ ⋆ W ′. Let M ′′ ≡ M ′{V⃗ /x⃗} and W ′′ ≡ W ′{V⃗ /x⃗}, so that
(M ′ ⋆W ′){V⃗ /x⃗} ≡M ′′ ⋆W ′′. By induction M ′′ ∈ |Tδ|I and W ′′ ∈ |δ −→ τ |I
and the thesis follows by definition of the set |δ −→ τ |I .
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We can now finish the proof of Theorem 9.2.1.

Proof. By Lem. 9.2.5 it remains to show that if ⊢ M : τ for some non trivial τ
then M⇓. Since M ∈ Com0 and the basis is empty, the hypothesis of Lem. 9.2.7
are vacuously true, so that we have M ∈ |τ |I for all I. On the other hand, by
Cor. 9.2.4, we know that τ ≤Com TωVal since τ is non trivial. By Lem. 9.2.3 it
follows that M ∈ |τ |I ⊆ |TωVal|I = {N ∈ Com0 | N⇓} and we conclude.

In the next corollary we write [[M ]]T D∗ for M ∈ Com0 omitting the term
environment ρ which is irrelevant.

Corollary 9.2.8 (Computational Adequacy). In the model D∗ we have that for
any M ∈ Com0:

M ⇓ ⇔ [[M ]]T D∗ ̸= ⊥T D∗

Proof. By Lemma 8.5.4, [[M ]]T D∗ = {τ ∈ ComType | ⊢M : τ}. By Theorem 9.2.1
M ⇓ if and only if ⊢M : τ for some non trivial τ ; but

⊥T D∗ = ↑ωCom ⊂ ↑τ ⊆ [[M ]]T D∗

where the inclusion ↑ωCom ⊂ ↑τ is strict since τ is non trivial.
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CHAPTER 10

CONCLUSION AND RELATED WORK

10.1 Related Work
The main inspiration for our intersection type system is [BDS13]. In [dT19] we
study the type interpretation over a λ©-model, which is problematic since it is
not inductive. We show there that if the Equation (2.5) is solved in a category
of algebraic domains by the inverse limit construction, then such interpretation,
which we call monadic, exists, and the type system is sound and complete w.r.t.
monadic type interpretations.

Intersection types have been used in [DP00] in a λ-calculus with side effects
and reference types. In their work a problem appears, since left distributivity of
the arrow over intersection (a rule in [BDS13], that is an axiom of the theory ThVal
in Definition 8.1.3 above) is unsound. This is remedied by restricting intersection
introduction to values. However, Davies and Pfenning’s work is not concerned
with monads, so that value and non-value terms and types are of the same sorts.
On the contrary, by working in a system like in Definition 8.1.6, these types are
distinct: we conjecture that, if actual definitions of unit and bind for the state
monad are consistent with their typings, a type system can be constructed that is
an instance of ours, such that it is sound without imposing any ad hoc constraint.

The convergence relation in Section 9.1 is the adaptation of a similar concept
introduced in [Abr90, AO93] for the lazy λ-calculus, which represents the only
observable property in the definition of the applicative bisimulation. It shares
some similarity with the convergence relation considered in [DGL17], where
Abramsky’s idea is extended to a computational λ-calculus very similar to λ©.
However, differently than in Abramsky’s work and the relation in Definition 9.1.1,
the authors define their predicate as a relation among syntax and semantics,
co-inductively defining the interpretation of terms.

Theorem 9.2.1, characterizing convergent terms by non trivial typings, is
evidence of the expressive power of our system. However, since convergence is
undecidable, non-trivial typability in the system is also undecidable. If the system
should be useful in practice, say as a method for abstract interpretation and static
analysis or program synthesis, then restricted subsystems should be considered,
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like bounded intersection type systems recently proposed in [DMRU12, DR17a,
DR17b].

10.2 Further Developments
Concerning future developments, we see at least three lines of research. The type
system we have presented is about a generic monad T : what about typing calculi
with specific monads, like partiality, exceptions, state (developed in Part III), or
input-output? The question itself of what means to instantiate the λ©-calculus and
the type assignment system to a particular one, knowing of sufficient conditions
guaranteeing that good properties studied here are inherited, is both of theoretical
and practical interest.

The λ©-calculus is pure, namely without constants. To formalize data types we
need algebraic terms and suitable typing rules; in the framework of intersection
type systems, types provide a logical semantics to terms, which is the consequence
of type invariance under conversion, and, at the same time, can be seen as
a denotational semantics in the category of algebraic domains: see the filter
model construction in [BDS13] and Abramsky’s domain logic theory [Abr91]. A
natural question is then what kind of algebraic and co-algebraic specifications
and principles are sound in the logical semantics, when induced by an intersection
type system with monads.

The computational λ-calculus has been proposed as a foundation for the static
analysis of effectful calculi and programming languages. In [WT03], extended
version of the previously published [Wad98], this is compared to Lucassen and
Gifford [LG88] and Talpin and Jouvelot [TJ94] type and effect discipline (see
[NNH99] chap. 5 for an exposition, and the relation to other static analysis tech-
niques). The same topic has been treated by Benton and others in [BHM02] and
[BKHB06]. While it is known that intersection types and abstract interpretation
are related, see [Jen95] and [CF93], we do not know of any research work relating
intersection types to effect systems. Now that we have introduced intersection
types for the computational λ-calculi, we have the right theoretical framework to
investigate this topic.

10.3 Conclusion
Starting with the general domain equation of the type-free call-by-value computa-
tional λ-calculus we have tailored term and type syntax and defined a type theory
and an intersection type assignment system that is sound and complete w.r.t. the
interpretation of terms and types in a class of models. This class is parametrically
defined w.r.t. the monad at hand, as well as the system itself that induce a family
of filter models. If the monad is the trivial one, originating from the identity
functor, then our system collapses to BCD. The filter model we have obtained is
for a generic monad; we conjecture that the model is initial in a suitable category,
to which all its instances belong. We leave this question to further research. In
the end we have proved that our Curry style, simple type assignment system, is
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expressive enough to characterize convergent terms by their typings.
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CHAPTER 11

INTRODUCTION TO THE CASE OF
STORE MONAD

The problem of integrating non functional aspects into functional programming
languages goes back to the early days of functional programming; nowadays, even
procedural and object-oriented languages embody more and more features from
declarative languages, renewing interest and motivations in the investigation of
higher-order effectful computations.

Since Strachey and Scott’s work in the 60’s, λ-calculus and denotational
semantics, together with logic and type theory, have been recognized as the
mathematical foundations of programming languages. Nonetheless, there are
aspects of actual programming languages that have shown to be quite hard to
treat, at least with the same elegance as the theory of recursive functions and of
algebraic data structures; a prominent case is surely side-effects.

Focusing on side-effects, the method used in the early studies to treat the
store, e.g. [FF89, Tof90, WF94] and [SRI91], is essentially additive: update and
dereferentiation primitives are added to a (often typed) λ-calculus, possibly with
constructs to dynamically create and initialize new locations. Then, a posteriori,
tools to reason about such calculi are built either by extending the type discipline
or by means of denotational and operational semantics, or both.

The introduction of notions of computation as monads and of the computational
λ-calculus by Moggi in [Mog91] greatly improved the understanding of “impure”,
namely non functional features in the semantics of programming languages, by
providing a unified framework for treating computational effects: see [Wad92,
Wad95], the introductory [BHM02], and the large body of bibliography thereafter;
a gentle introduction and further references can be found e.g. in [Gav19]. The key
idea is to model effectful computations as morphisms of the Kleisli category of a
monad in [Mog91], starting a very rich thread in the investigation of programming
language foundations based on categorical semantics, which is still flourishing.
The methodological advantage is that we have a uniform and abstract way of
speaking of various kinds of effects, and the definition of equational logics to
reason about them. At the same time computational effects, including side-effects,
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can be safely embodied into purely functional languages without disrupting their
declarative nature, as shown by Wadler’s [Wad92, Wad95] together with a long
series of papers by the same author and others.

Monads alone model how morphisms from values to computations compose,
but do not tell anything about how the computational effects are produced. In
the theory of algebraic effects [PP02, PP03, Pow06], Plotkin and Power have
shown under which conditions effect operators live in the category of algebras of
a computational monad, which is equivalent to the category of models of certain
equational specifications, namely varieties in the sense of universal algebra [HP07].

Initiating with Parts I and II, we have approached the issue of modelling effects
in an untyped computational λ-calculus, studying its operational semantics by
introducing a reduction relation and a syntactical convergence predicate that is
characterized in terms of an intersection type assignment system.

Our approach was limited to a calculus without constants, where the unit and
bind operations are axiomatized by the monadic laws from [Wad95].

In the present part, we add to the calculus syntax denumerably many operations
getℓ and setℓ, indexed over an infinite set of locations, to access a global store, and
define an operational semantics in SOS style, which turns out to be the small-step
correspondent to the big-step operational semantics proposed in [Gav19], chap. 3.
From there, we call the calculus λimp.

Reasoning about such a calculus is challenging. One possible approach has
been investigated in [DGL17], generalizing Abramsky’s functional bisimulation
to computational λ-calculi. In the present work, we advocate a more abstract
method based on the denotational semantics and domain theory.

Following [Mog88], λimp can be modelled into a domain D satisfying the
equation D = D −→ SD, clearly reminiscent of Scott’s D = D −→ D reflexive
object, where S is instantiated to a variant of the state monad in [Mog91], called
the partiality and state monad in [DGL17].

The method we follow is to solve such equation in the category of ω-algebraic
lattices, whose objects and morphisms can be described via intersection type
theories, that are the “logic” of such domains in the sense of [Abr91]: see also
[ADCH04]. Intersection types denote compact points in such a domain, there-
fore we can recover from the domain theoretic definition of the monad all the
information needed to build a sound and complete type assignment system.

Exploiting the above approach, subtyping and typing rules are derived in a
uniform way, leading to a type assignment system which enjoys the “type-semantics”
property, namely that denotational semantics of terms is fully characterized by
their typings in the system. Then, the results we obtain are type invariance under
reduction and expansion, and the characterization by a single type of convergent
computations, where we say that a term converges if it evaluates to a value and a
final state, whatever the initial state is.

Summary and results. In Section 12.1 we outline the syntax of the untyped
imperative λ-calculus λimp and in Section 12.2 we illustrate its reduction rela-
tion. The convergence predicate and its relation w.r.t. evaluation is shown in
Section 12.3. In Section 13.1 we deal with solving the domain equation thoroughly.
To do this we consider the state and partiality monad S. In the same section,
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we tackle the solution of the domain equation by breaking the circularity that
arises out of the definition of the monad S itself. We conclude the section by
modelling algebraic operators over the monad S and formalizing the model of
λimp. In Section 13.2, we solve the domain equation by inductively constructing
type theories that induce a filter-model.

Section 13.3 explains how to derive the type assignment system from the
filter-model construction. We conclude establishing the type semantics theorem
for our calculus.

In Section 13.4 we present how to type configurations and illustrate the
type system w.r.t. the operational semantics. Its type invariance is proved in
Section 14.1. Then, in Section 14.2 we treat the second main result of this part,
namely the characterization of the convergence predicate by a single type.

Finally, Section 15.1 is devoted to the discussion of our results and to related
works.

We assume familiarity with λ-calculus and intersection types; a comprehensive
reference is [BDS13], Part III. Notions from domain theory, computational monads,
and algebraic effects, are shorty recalled in the following; for further references
see e.g. [AC98], [BHM02], and [Gav19] chap. 3.

What follows is a revised and extended version of [dT21b] and [dT21a].
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CHAPTER 12

AN IMPERATIVE λ-CALCULUS

12.1 An Untyped Imperative λ-calculus
Imperative extensions of the λ-calculus, both typed and type-free, are usually based
on the call-by-value λ-calculus, enriched with constructs for reading and writing
to the store. Aiming at exploring the semantics of side effects in computational
calculi, where “impure” functions are modeled by pure ones sending values to
computations in the sense of [Mog91], we consider the computational core λ©, to
which we add syntax denoting algebraic effect operations à la Plotkin and Power
[PP02, PP03, Pow06] over a suitable state monad.

Let L = {ℓ0, ℓ1, . . .} be a denumerable set of abstract locations. Borrowing
notation from [Gav19], chap. 3, we consider denumerably many operator symbols
getℓ and setℓ, obtaining:

Definition 12.1.1 (Term syntax).

Val : V,W ::= x | λx.M
Com : M,N ::= [V ] |M ⋆ V

| getℓ(λx.M) | setℓ(V,M) (ℓ ∈ L)

As for λ©, terms are of sorts either Val or Com, representing values and compu-
tations, respectively. The new constructs are getℓ(λx.M) and setℓ(V,M). The
variable x is bound in λx.M and getℓ(λx.M); terms are identified up to renaming
of bound variables so that the capture avoiding substitution M{V/x} is always
well defined; FV (M) denotes the set of free variables in M . We call Val 0 the
subset of closed V ∈ Val; similarly for Com0.

With respect to the syntax of the “imperative λ-calculus” in [Gav19], we do not
have the let construct, nor the application VW among values. The justification is
the same as for the computational core. These constructs are definable:

letx :=M inN ≡ M ⋆ (λx.N) VW ≡ [W ] ⋆ V

where ≡ is syntactic identity. In general, application among computations can be
encoded by MN ≡M ⋆ (λz. N ⋆ z), where z is fresh.
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Chapter 12. An Imperative λ-calculus

In a sugared notation from functional programming languages, we could have
written:

letx :=!ℓ inM ≡ getℓ(λx.M) ℓ := V ;M ≡ setℓ(V,M)

representing location dereferentiation and assignment. Observe that we do not
consider locations as values; consequently they cannot be dynamically created
like with the ref operator from ML, nor is it possible to model aliasing. On the
other hand, since the calculus is untyped, “strong updates” are allowed. In fact,
when evaluating setℓ(V,M), the value V to which the location ℓ is updated bears
no relation to the previous value, say W , of ℓ in the store: indeed, in our type
assignment system W and V may well have completely different types. This will
be, of course, a major challenge when designing the type assignment system in
the next sections.

12.2 Operational Semantics
We define the operational semantics of our calculus via a reduction relation
(M, s) → (N, t), where M,N ∈ Com and s, t are store terms, which are defined
below.

Definition 12.2.1 (Store and Lookup terms). Let V vary over Val; then define:

Store ∋ s ::= emp | updℓ(u, s)
Lkp ∋ u ::= V | lkpℓ(s) ℓ ∈ dom(s)

dom(emp) = ∅
dom(updℓ(u, s)) = {ℓ} ∪ dom(s)

Store terms represent finite mappings from L to Val. emp is the empty store,
that is the everywhere undefined map; updℓ(V, s) is the update of s, representing
the same map as s, but for ℓ where it holds V .

To compute the value of the store s at location ℓ we add the expressions
lkpℓ(s) ∈ Lkp, whose intended meaning is the lookup (partial) function searching
the value of ℓ in the store s; more precisely lkpℓ(s) picks the value V from the
leftmost outermost occurrence in s of a subterm of the shape updℓ(V, s′), if any.

To avoid dealing with undefined expressions like lkpℓ(emp), we have asked that
ℓ ∈ dom(s) for the lookup expression lkpℓ(s) to be well formed. Then the meaning
of store and lookup terms can be defined axiomatically as follows.

Definition 12.2.2 (Store and Lookup Axioms). The axioms of the algebra of
store terms and well formed lookup expressions are the following:

1. lkpℓ(updℓ(u, s)) = u

2. lkpℓ(updℓ′(u, s)) = lkpℓ(s) if ℓ ̸= ℓ′

3. updℓ(lkpℓ(s), s) = s
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4. updℓ(U, updℓ(W, s)) = updℓ(U, s)

5. updℓ(U, updℓ′(W, s)) = updℓ′(W, updℓ(U, s)) if ℓ ̸= ℓ′

We write ⊢ s = t to stress that the equality s = t has been derived from
the above axioms using reflexivity, symmetry, transitivity, and congruence of
equational logic.

The equalities in Definition 12.2.2 are folklore for terms representing the
store in the literature: see e.g. [Mit96], chap. 6; also they are essentially, albeit
not literally, the same as those ones for global state in [PP02]. This is a non
trivial and decidable theory; since we have not found any good reference to
establish the properties we shall use in the subsequent sections, we devote the next
paragraphs to the study of this theory. The main results are Theorem 12.2.10 and
Corollary 12.2.11.

Lemma 12.2.3. ℓ ∈ dom(s)⇒ ∃V ∈ Val. lkpℓ(s) = V

Proof. By induction over s; since dom(s) ̸= ∅ we have that s ̸≡ emp and the
lookup expression lkpℓ(s) is wellformed, so that there are two cases to consider:

s ≡ updℓ(u, s′): then by axiom 12.2.2.1 we have lkpℓ(updℓ(u, s′)) = u. If u ≡ V ∈
Val then we are done; otherwise, u ≡ lkpℓ(s′′), and the size of s′′ is strictly
smaller than that of s, so that the thesis follows by induction.

s ≡ updℓ′(u, s′), with ℓ′ ≠ ℓ: then lkpℓ(updℓ′(u, s′)) = lkpℓ(s′) by axiom 12.2.2.2,
and the thesis follows by induction.

As expected, the relation ⊢ lkpℓ(s) = V is functional:

Lemma 12.2.4. If ⊢ lkpℓ(s) = V and ⊢ lkpℓ(s) = W then V ≡ W .

Proof. By induction over the derivations of lkpℓ(s) = V .

Definition 12.2.5. We say that s, t ∈ Store are extensionally equivalent, written
s ≃ t, if there exists L ⊆ L such that:

1. dom(s) = L = dom(t)

2. ∀ℓ ∈ L. lkpℓ(s) = lkpℓ(t)

Lemma 12.2.6. ⊢ s = t⇒ s ≃ t

Proof. The thesis holds immediately of the axioms 12.2.2.3-12.2.2.4; then the
proof is a straightforward induction over the derivation of s = t.

Toward establishing the converse of Lemma 12.2.6 let us define s \ ℓ ∈ Store
by:

emp \ ℓ ≡ emp
updℓ(u, s) \ ℓ ≡ s \ ℓ
updℓ′(u, s) \ ℓ ≡ updℓ′(u, s \ ℓ) if ℓ′ ̸= ℓ
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Lemma 12.2.7.

1. s \ ℓ ≡ s⇔ ℓ ̸∈ dom(s)

2. dom(s \ ℓ) = dom(s) \ {ℓ}

3. s ≃ t⇒ (s \ ℓ) ≃ (t \ ℓ)

Proof. Parts (1) and (2) are immediate consequences of the definitions; part (3)
follows from (1) and (2).

Lemma 12.2.8. ℓ ∈ dom(s)⇒ ⊢ s = updℓ(lkpℓ(s), s \ ℓ)

Proof. By induction over s. By the hypothesis ℓ ∈ dom(s) we have that lkpℓ(s) is
well-formed, and s ̸≡ emp; so that we have the cases:

s ≡ updℓ(V, s′): then we have ⊢ lkpℓ(s) = V by Definition 12.2.2.1 so that

⊢ updℓ(V, s′) = updℓ(lkpℓ(s), s′)

Now if ℓ ̸∈ dom(s′) we have

updℓ(lkpℓ(s), s′) ≡ updℓ(lkpℓ(s), s′ \ ℓ) by Lemma 12.2.7.1
≡ updℓ(lkpℓ(s), s \ ℓ) by s \ ℓ ≡ updℓ(V, s′) \ ℓ ≡ s′ \ ℓ

If instead ℓ ∈ dom(s′) then lkpℓ(s′) is well formed and

updℓ(lkpℓ(s), s′) = updℓ(lkpℓ(s), updℓ(lkpℓ(s′), s′ \ ℓ)) by induction
= updℓ(lkpℓ(s), s′ \ ℓ) by axiom 12.2.2.4

s ≡ updℓ′(V, s′) and ℓ′ ̸= ℓ: in this case ℓ ∈ dom(s) = dom(updℓ′(V, s′)) implies
ℓ ∈ dom(s′), so that

updℓ′(V, s′) = updℓ′(V, updℓ(lkpℓ(s′), s′ \ ℓ)) by induction
= updℓ(lkpℓ(s′), updℓ′(V, s′ \ ℓ)) by axiom 12.2.2.5
≡ updℓ(lkpℓ(s′), updℓ′(V, s′) \ ℓ) by definition of updℓ′(V, s′) \ ℓ
= updℓ(lkpℓ(s), updℓ′(V, s′) \ ℓ) as ⊢ lkpℓ(updℓ′(V, s′)) = lkpℓ(s′)

by axiom 12.2.2.2

Next, we define nf(s) ∈ Store, a normal form of s, by:

nf(emp) ≡ emp
nf(updℓ(u, s)) ≡ updℓ(u, nf(s \ ℓ))

In nf(s) each ℓ ∈ dom(s) occurs just once.

Corollary 12.2.9. ⊢ s = nf(s)
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Proof. By simultaneous induction over s and the cardinality of dom(s). If
dom(s) = ∅ then s ≡ emp ≡ nf(emp). Otherwise, suppose s ≡ updℓ(u, s′),
then

nf(updℓ(u, s′)) ≡ updℓ(u, nf(s′ \ ℓ)) by definition of nf
Now if ℓ ̸∈ dom(s′) then s′ \ ℓ ≡ s′ by Lemma 12.2.7.1 and ⊢ s′ = nf(s′) by
induction, and we are done.

If ℓ ∈ dom(s′) then, recalling that s ≡ updℓ(u, s′):

s = updℓ(lkpℓ(s), s \ ℓ) by Lemma 12.2.8
= updℓ(lkpℓ(s), nf(s \ ℓ)) by 2 and by ind. since |s| > |dom(s \ ℓ)|
≡ updℓ(lkpℓ(s), nf(s′ \ ℓ)) since s \ ℓ ≡ updℓ(u, s′) \ ℓ ≡ s′ \ ℓ
= updℓ(u, nf(s′ \ ℓ)) since lkpℓ(s) ≡ lkpℓ(updℓ(u, s′)) = u
≡ nf(s) by definition of nf

Theorem 12.2.10 (Completeness of Store Axioms). ⊢ s = t⇔ s ≃ t

Proof. The only if part is proved by Lemma 12.2.6. To prove the if part, assume
s ≃ t and let L = dom(s) = dom(t), which is finite; then we reason by induction
over the cardinality of L. If L = ∅ then s ≡ emp ≡ t and the thesis follows
by reflexivity. Otherwise, let ℓ ∈ L be arbitrary; by Lemma 12.2.7.3 we have
that s \ ℓ ≃ t \ ℓ, therefore we may assume by induction ⊢ s \ ℓ = t \ ℓ since
L \ {ℓ} = dom(s \ ℓ) = dom(t \ ℓ) has cardinality |L| − 1. Now

s = updℓ(lkpℓ(s), s \ ℓ) by Lemma 12.2.7.3
= updℓ(lkpℓ(t), s \ ℓ) by the hypothesis s ≃ t
= updℓ(lkpℓ(t), t \ ℓ) by induction
= t by Lemma 12.2.7.3

The consequence of Theorem 12.2.10 is that each store term is equated to a
normal form:

Corollary 12.2.11. If s ∈ Store with non empty dom(s) = {ℓ1, . . . , ℓn} then there
exist V1, . . . , Vn ∈ Val such that

⊢ s = updℓ1(V1, · · · updℓn
(Vn, emp) · · · )

Therefore the algebra of stores and lookup terms is decidable.

Proof. Observe that, if dom(s) = {ℓ1, . . . , ℓn} is non empty then

nf(s) ≡ updℓ1(u1, · · · updℓn
(un, emp) · · · )

By Lemma 12.2.3 we know that there exists Vi ∈ Val such that ⊢ ui = Vi for all
i = 1, . . . , n, and these are unique for each ui by Lemma 12.2.4. Then we have

⊢ nf(s) = updℓ1(V1, · · · updℓn
(Vn, emp) · · · )
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([V ] ⋆ (λx.M), s)→ (M{V/x}, s) (βc)
(M, s)→ (N, t)

(M ⋆ V, s)→ (N ⋆ V, t)
(⋆-red)

lkpℓ(s) = V

(getℓ(λx.M), s)→ (M{V/x}, s)
(get-red)

(setℓ(V,M), s)→ (M, updℓ(V, s)) (set-red)

Figure 12.1: Reduction relation.

where the only differences among the left and the right hand sides are in the
ordering of the ℓi, which is immaterial by axiom 12.2.2.5. By Corollary 12.2.9 we
conclude that

⊢ s = updℓ1(V1, · · · updℓn
(Vn, emp) · · · )

Combining this with Theorem 12.2.10, we conclude that ⊢ s = t if and only if
dom(s) = L = dom(t) and nf(s) ≃ nf(t), which is decidable as nf is computable
and extensional equality is decidable.

The reduction relation. A configuration is a pair (M, s), with M ∈ Com and
s ∈ Store; then the one-step reduction is the binary relation over configurations
inductively defined by the rules in Figure 12.1.

The reduction relation is deterministic, reflecting the strictly sequential nature
of evaluation for programming languages with side-effects. A configuration of
the shape ([V ], t) is irreducible, and it is the result of the evaluation of (M, s)
whenever (M, s)→∗ ([V ], t), where →∗ is the reflexive and transitive closure of
→. Infinite reductions exist; consider the term:

Ωc ≡ [(λx.[x] ⋆ x)] ⋆ (λx.[x] ⋆ x)

which is such that (Ωc, s)→ (Ωc, s), for any s.
Not every irreducible configuration represents some properly terminating

computation; the simplest example is (getℓ(λx.[x]), emp), because lkpℓ(emp) is
undefined. In general, the set of blocked configurations can be inductively defined
by:

(B, s) ::= (getℓ(λx.M), s) for ℓ ̸∈ dom(s)
| (B ⋆ V, s)

Example 12.2.12. To see how the mutation of the value associated to some
location ℓ is modelled in the operational semantics, consider the following reduction,
where we omit external brackets of configurations for readability:

setℓ(W, setℓ(V, getℓ(λx.[x]))), s
→ setℓ(V, getℓ(λx.[x])), updℓ(W, s)
→ getℓ(λx.[x]), updℓ(V, updℓ(W, s))
→ [V ], updℓ(V, updℓ(W, s))
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where the last step is justified by the equation

lkpℓ(updℓ(V, updℓ(W, s))) = V

Then we say that the value W , formerly associated to ℓ, has been overridden by
V in updℓ(V, updℓ(W, s)). Indeed ⊢ updℓ(V, updℓ(W, s)) = updℓ(V, s).

Example 12.2.13. Define the abbreviation: M ;N ≡ M ⋆ λ .N for sequential
composition, where is a dummy variable not occurring in N ; then, omitting
external brackets of configurations as before:

setℓ(V, [W ]) ; getℓ(λx.N), s

≡ setℓ(V, [W ]) ⋆ λ .getℓ(λx.N), s

→ [W ] ⋆ λ .getℓ(λx.N), updℓ(V, s)
→ getℓ(λx.N), updℓ(V, s)
→ N{V/x}, updℓ(V, s)

Notice that, while the value W is discarded according to the semantics of sequential
composition, the side-effect of saving V to the location ℓ binds x to V in N .

12.3 Convergence
Following [PS98], in [Gav19] the operational semantics of the imperative lambda
calculus is defined via a convergence predicate. This is a relation among configura-
tions and their results, which in [Gav19] are semantical objects. To adapt such
definition to our syntactical setting, we use store terms instead.

Recall that Val 0 and Com0 are the sets of closed values and computations,
respectively. We say that s ∈ Store is closed if V ∈ Val 0 for all the value terms V
occurring in s; we denote the set of closed store terms by Store0. We say that the
configuration (M, s) is closed if both M and s are such; we call a result any pair
(V, s) of closed V and s.

Definition 12.3.1 (Big-step). The relation (M, s) ⇓ (V, t) among the closed
configuration (M, s) and the result (V, t) is inductively defined by the rules in
Figure 12.2.

As suggested by the name used in 12.3.1, convergence is nothing else than the
big-step semantics corresponding to the small-step semantics we have defined via
the reduction relation in Figure 12.1.

Lemma 12.3.2. (M, s)→∗ (N, t)⇒ (M ⋆ V, s)→∗ (N ⋆ V, t)

Proof. By induction over the definition of (M, s) →∗ (N, t). The base case
(M, s) ≡ (N, t) is obvious. Otherwise, (M, s)→ (M ′, s′)→∗ (N, t) for some M ′, s′;
then (M ⋆ V, s) → (M ′ ⋆ V, s′) by rule (⋆-red), and (M ′ ⋆ V, s′) →∗ (N ⋆ V, t) by
induction.

Lemma 12.3.3. (M, s)→ (N, s′) & (N, s′) ⇓ (V, t)⇒ (M, s) ⇓ (V, t)
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([V ], s) ⇓ (V, s)
(Val-conv)

(M, s) ⇓ (V, s′) (N{V/x}, s′) ⇓ (W, t)
(M ⋆ (λx.N), s) ⇓ (W, t)

(⋆-conv)

lkpℓ(s) = V (M{V/x}, s) ⇓ (W, t)
(getℓ(λx.M), s) ⇓ (W, t)

(get-conv)

(M, updℓ(V, s)) ⇓ (W, t)
(setℓ(V,M), s) ⇓ (W, t)

(set-conv)

Figure 12.2: Convergence predicate.

Proof. By induction over (M, s)→ (N, s′).

Case (βc): (M ≡ [W ] ⋆ (λx.M ′), s) → (M ′{W/x}, s); by hypothesis we know
that (M ′{W/y}, s) ⇓ (V, t), then:

(Val-conv)
([W ], s) ⇓ (W, s) (M ′{W/y}, s) ⇓ (V, t)

(⋆-conv)
([W ] ⋆ λy.M ′, s) ⇓ (V, t)

Case ⋆-red: (M ′ ⋆ W, s)→ (N ′ ⋆ W, s′) because (M ′, s)→ (N ′, s′).
In this case we have W ≡ λx.L, since W ∈ Val0. By hypothesis (N ′ ⋆
λx.L, s′) ⇓ (V, t), so there exist W ′, s′′ such that

(N ′, s′) ⇓ (W ′, s′′) (L{W ′/x}, s′′) ⇓ (V, t)
(⋆-conv)

(M ′ ⋆ λx.L, s′) ⇓ (V, t)

Since (M ′, s) → (N ′, s′) and (N ′, s′) ⇓ (W ′, s′′), by induction hypothesis
(M ′, s′) ⇓ (W ′, s′′) and therefore we have the derivation

(M ′, s′) ⇓ (W ′, s′′) (L{W ′/x}, s′′) ⇓ (V, t)
(⋆-conv)

(M ′ ⋆ λx.L, s′) ⇓ (V, t)

The remaining cases (getℓ(λx.M ′), s) → (M ′{W/x}, s) where lkpℓ(s) = W , and
(setℓ(W,M ′), s)→ (M ′, updℓ(W, s) ≡ s′), easily follow by induction.

Proposition 12.3.4. For all M ∈ Com0, V ∈ Val 0, and s, t ∈ Store0, we have:

(M, s) ⇓ (V, t) ⇐⇒ (M, s)→∗ ([V ], t)

Proof. The only if part is proved by induction over the definition of (M, s) ⇓ (V, t),
the case (Val-conv) is trivial. Consider the case (⋆-conv). We know by induction
that
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HI1 (M,S)→∗ ([V ], s′)

HI2 (N{V/x}, s′)→∗ ([W ], t)

(M ⋆ λx.N, s) →∗ ([V ] ⋆ λx.N, s′) by (HI1) and Lemma 12.3.2
→ (N{V/x}, s′) by βc

→∗ ([W ], t) by (HI2)
The cases of (get-conv) and (set-conv) are immediate by induction hypothesis.
The if part is proved by induction over (M, s) →∗ ([V ], t). The base case is

(M ≡ [V ], s ≡ t) then ([V ], s) ⇓ (V, s) by (Val-conv). Otherwise, there exists
(N, s′) such that (M, s) → (N, s′) →∗ ([V ], t). By induction (N, s′) ⇓ (V, t) so
that (M, s) ⇓ (V, t) by Lemma 12.3.3.

Proposition 12.3.4 justifies the name “result” we have given to the pairs (V, t);
indeed, since the reduction relation is deterministic, the same holds for convergence,
so that computations can be seen as partial functions from stores to results:

M(s) =
{

(V, t) if (M, s) ⇓ (V, t)
undefined else (12.1)

Notice that M(s) is undefined if either the reduction out of (M, s) is infinite, or if
it reaches some blocked configuration (B, t).

The convergence predicate essentially involves the stores, that are part of
configurations and results, and are dynamic entities, much as when executing
imperative programs. However, when reasoning about programs, namely (closed)
computations, we abstract from the infinitely many stores that can be fed together
with inputs to the program, and returned together with their outputs. This
motivates the following definition:

Definition 12.3.5 (Convergence). For M ∈ Com0 and s ∈ Store0 we set:

1. (M, s) ⇓ ⇐⇒ ∃V, t. (M, s) ⇓ (V, t)

2. M ⇓ ⇐⇒ ∀s ∈ Store0. (M, s) ⇓

The definition of (M, s) ⇓ is similar to that in [PS98], but simpler since we
do not treat local states. The definition of M ⇓ is equivalent to (M, emp) ⇓. To
see why, consider the term P ≡ getℓ(λx.[x]); the configuration (P, s) converges if
and only if lkpℓ(s) is defined; in particular, the configuration (P, emp) is blocked
and it does not yield any result. Conversely, if a given configuration (M, emp)
converges, either no get operation occurs as the main operator of a configuration
(N, s′) in the convergent out of (M, emp), or if any such operation does, with say
N ≡ getℓ(λx.M ′), then there exists a term of shape setℓ(V,N ′) in a configuration
that precedes (N, s′) in the reduction path, “initializing” to V the value of ℓ.
Therefore, if (M, emp) ⇓ then (M, s) ⇓, for any s.

We say that (M, s) is divergent, written (M, s) ⇑, if not (M, s) ⇓. By Proposi-
tion 12.3.4 a divergent configuration (M, s) either reduces to a blocked configura-
tion or the unique reduction out of (M, s) is infinite.
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CHAPTER 13

STORE MONAD

13.1 Denotational Semantics
We illustrate a denotational semantics of the calculus λimp introduced in Sec-
tion 12.1 in the category of domains. The model is based on the solution of the
domain equation:

D = [D −→ [S −→ (D × S)⊥]] (13.1)

where S is a suitable space of stores over D, and SD = [S −→ (D × S)⊥] is a
variant of the state monad in [Mog91], which is called the partiality and state
monad in [DGL17].

Before embarking on solving the equation (13.1), let us recall definitions
of monad S (for a general definition of monad see Definition 2.1.1), algebraic
operators, and fix notations.

The partiality and state monad. We recall Wadler’s type-theoretic definition of
monads [Wad92, Wad95], that is at the basis of their successful implementation in
Haskell language, a natural interpretation of the calculus is into a cartesian closed
category (ccc), such that two families of combinators, or a pair of polymorphic
operators called the “unit” and the “bind”, exist satisfying the monad laws. In
what follows, C will be a concrete ccc, namely with sets as objects and certain
maps as morphisms. Examples that are relevant to us are the category Dom
of Scott domains with continuous functions, and its full subcategory ω-ALG of
algebraic lattices with a countable basis.

Now, let us look closer how monads model effectful computations. Let X be
an object in Dom; then TX is the domain, or the type, of computations with
values in X. In general TX has a richer structure than X itself, modeling partial
computations, exceptions, non-determinism etcetera, including side-effects. The
mapping unitX : X −→ TX is interpreted as the trivial computation unitX(x) just
returning the value x, and it is an embedding if T satisfies the requirement that all
the unitX are monos. Now a function f : X −→ TY models an “impure” program
P with input in X and output in Y via a pure function returning the computation
f(x) ∈ TY .
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Chapter 13. Store Monad

To relate Equation (13.1) to the monad S we have to be more precise about
the domain S of stores. Given a domain X, let X⊥ be the lifting of X, namely the
poset X ∪ {⊥} (with ⊥ ̸∈ X) where x ⊑X⊥ x′ if either x = ⊥ or x ⊑X x′. Then
we define (X⊥)L as the domain of stores over X with locations in L. Such a poset,
ranged over by ς, can be seen as the domain of partial maps from locations in L
to points of X, where ς(ℓ) = ⊥ represents the fact that ℓ ̸∈ dom(ς). It is ordered
pointwise, that is ς ⊑(X⊥)L ς ′ if ς(ℓ) ⊑X⊥ ς ′(ℓ) for all ℓ ∈ L.

Remark 13.1.1. In [dT21a] the domain of stores over X was just defined as
XL. This definition is sound w.r.t. the interpretation of terms, but it equates the
everywhere undefined store, which is the interpretation of emp in Definition 13.4.1,
with any store ς such that ς(ℓ) = ⊥X for any ℓ. As we will see such a distinction
is crucial when establishing the characterization of convergence in Theorem 14.2.6,
while it was erroneously stated in [dT21b].

We also notice that the similar definition of the store space over X as (XL)⊥
would not be sufficient for our proposes. Indeed, although the everywhere undefined
store is now distinct from all the others, the stores ℓ 7→ ⊥X and ℓ′ 7→ ⊥X with
⊥X being the infimum of X, would be identified, even if ℓ ̸= ℓ′, which is equally
wrong.

The definition of FX = (X⊥)L is clearly functorial by setting F (g) = g⊥ ◦ :
(X⊥)L −→ (Y⊥)L, where for any g : X −→ Y g⊥(x) = g(x) if x ∈ X, and g⊥(⊥) = ⊥
else. The functor F is locally continuous, being the composition of lifting and
exponentiation, that are both such.

We are now in place to properly define the partiality and state monad S in
terms of Definition 2.1.1.

Definition 13.1.2. (Partiality and state monad) Given the domain S =
(X⊥)L representing a notion of state, we define the partiality and state monad
(S, unit , ⋆), as the mapping

SX = [S −→ (X × S)⊥]

where (X × S)⊥ is the lifting of the cartesian product X × S, equipped with two
(families of) operators unit and ⋆ defined as follows:

unit x ::= λλ ς.(x, ς)

(c ⋆ f)ς = f †(c)(ς) ::=
{
f (x)(ς ′) if c(ς) = (x, ς ′) ̸= ⊥
⊥ if c(ς) = ⊥

where we omit subscripts.

Remark 13.1.3. A function f : X −→ SY has type X −→ S −→ (Y × S)⊥, which
is isomorphic to (X × S) −→ (Y × S)⊥; if f is the interpretation of an “imperative
program” P , and it is the currying of f ′, then we expect that f x ς = f ′(x, ς) =
(y, ς ′) if y and ς ′ are, respectively, the value and the final store obtained from the
evaluation of P (x) starting in ς, if it terminates; f x ς = f ′(x, ς) = ⊥, otherwise.
Clearly, f ′ is the familiar interpretation of the imperative program P as a state
transformation mapping.
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A domain equation. Evidently, the domain FX = (X⊥)L depends on X itself;
in contrast, while defining SX the domain S has to be fixed, since otherwise the
definition of the ⋆ operator does not make sense, and S is not even a functor. A
solution would be to take S = FD, where D ∼= [D −→ SD], but this is clearly
circular.

To break the circularity, we define the mixed-variant bi-functor G : Domop ×
Dom −→ Dom by

G(X, Y ) = [FX −→ (Y × FY )⊥]
whose action on morphisms is illustrated by the diagram:

FX ′
Ff

- FX

(Y ′ × FY ′)⊥

G(f, g)(α)

?
�

(g × Fg)⊥
(Y × FY )⊥

α

?

where f : X ′ −→ X, g : Y −→ Y ′ and α ∈ G(X, Y ). Now it is routine to prove that
G is locally continuous so that, by the inverse limit technique, we can find the
initial solution to the domain equation (which is the same as Equation (13.1)):

D = [D −→ G(D,D)] (13.2)

In summary we have:

Theorem 13.1.4. There exists a domain D such that the state monad S with
state domain S = (D⊥)L is a solution in Dom to the domain equation:

D = [D −→ SD]

Moreover, it is initial among all solutions to such equation.

Proof. Take D to be the (initial) solution to Equation (13.2); now if S = FD =
(D⊥)L then SD = G(D,D).

Algebraic operations over S. Monads are about composition of morphisms
of some special kind. However, thinking of f : X −→ SX as the meaning of a
program with side-effects does not tell anything about side-effects themselves,
that are produced by reading and writing values from and to stores in S.

To model effects associated to a monad, Plotkin and Power have proposed in
[PP02, PP03, Pow06] a theory of algebraic operations. A gentle introduction to
the theory can be found in [Gav19], chap. 3, from which we borrow the notation.

Suppose that T is a monad over a category C with terminal object 1 and
all finite products; then an algebraic operation op with arity n is a family of
morphisms opX : (TX)n −→ TX, where (TX)n = TX × · · · × TX is the n-times
product of TX with itself, such that

opX ◦ Πnf
† = f † ◦ opX (13.3)
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where f : X −→ TX and Πnf
† = f † × · · · × f † : (TX)n −→ (TX)n. In case of the

concrete category Dom, 1 is a singleton and products are sets of tuples, ordered
componentwise. Then opX is an operation of arity n of an algebra with carrier TX;
since f † : TX −→ TX, we have that (Πnf

†)⟨x1, . . . , xn⟩ = ⟨f †(x1), . . . , f †(xn)⟩,
and Equation (13.3) reads as:

opX(f †(x1), . . . , f †(xn)) = f †(opX(x1, . . . , xn))

namely the functions f † are homomorphisms w.r.t. opX .
Algebraic operations opX : (TX)n −→ TX do suffice in case T is, say, the

nondeterminism or the output monad, but cannot model side-effects operations in
case of the store monad. This is because read and write operations implement
a bidirectional action of stores to programs and of programs to stores. What is
needed instead is the generalized notion of operation proposed in [PP02] (and
further studied in [HP06]); such construction, that is carried out in a suitable
enriched category, can be instantiated to the case of Dom as follows:

op : P × (TX)A −→ TX ∼= (TX)A −→ (TX)P

where P is the domain of parameters and A of generalized arities, and the rightmost
“type” is the interpretation in Dom of Def. 1 in [PP02]. For such operations
Equation (13.3) is generalized as follows (see [Gav19], Def. 13):

op(p, k) ⋆ f = f †(op(p, k)) = op(p, f † ◦ k) = op(p, λλ x.(k(x) ⋆ f)) (13.4)

where f : X −→ TX, p ∈ P and k : A −→ TX.
Denotational semantics of terms. Given the monad (S, η, †) and the domain
D from Theorem 13.1.4, we first interpret the constants getℓ and setℓ as generalized
operations over S. By taking P = 1 and A = D we define:

[[getℓ]] : 1× (SD)D −→ SD ≃ (SD)D −→ SD by [[getℓ]] d ς = d (ς (ℓ)) ς

where d ∈ D is identified with its image in D −→ SD, and ς ∈ S = DL. On the
other hand, taking P = D and A = 1, we define:

[[setℓ]] : D × (SD)1 −→ SD ≃ D × SD −→ SD by [[setℓ]](d, c) ς = c(ς[ℓ 7→ d])

where c ∈ SD = S −→ (D × S)⊥ and ς[ℓ 7→ d] is the store sending ℓ to d and it is
equal to ς, otherwise.

Then we interpret values from Val in D and computations from Com in
SD. More precisely we define the maps [[·]]D : Val −→ Term-Env −→ D and
[[·]]SD : Com −→ Term-Env −→ SD, where Term-Env = Var −→ D is the set of
environments interpreting term variables:

Definition 13.1.5. A λimp-model is a structure D = (D, S, [[·]]D, [[·]]SD) such
that:

1. D is a domain s.t. D ∼= D −→ SD via (Φ,Ψ), where S is the partiality and
state monad of stores over D;
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2. for all e ∈ Term-Env, V ∈ Val and M ∈ Com:

[[x]]De = e(x)
[[λx.M ]]De = Ψ(λλ d ∈ D. [[M ]]SDe[x 7→ d])
[[ [V ] ]]SDe = unit ([[V ]]De)

[[M ⋆ V ]]SDe = ([[M ]]SDe) ⋆ Φ([[V ]]De)
[[getℓ(λx.M)]]SDe = [[getℓ]] Φ([[λx.M ]]De)
[[setℓ(V,M)]]SDe = [[setℓ]]([[V ]]De, [[M ]]SDe)

By unravelling definitions and applying to an arbitrary store ς ∈ S, the last
two clauses can be written:

[[getℓ(λx.M)]]SDe ς = [[M ]]SD(e[x 7→ ς(ℓ)]) ς
[[setℓ(V,M)]]SDe ς = [[M ]]SDe (ς[ℓ 7→ [[V ]]De])

We say that the equation M = N is true in D, written D |= M = N , if
[[M ]]SDe = [[N ]]SDe for all e ∈ Term-Env.

Proposition 13.1.6. The following equations are true in D:

1. [V ] ⋆ (λx.M) = M{V/x}

2. M ⋆ λx.[x] = M

3. (L ⋆ λx.M) ⋆ λy.N = L ⋆ λx.(M ⋆ λy.N)

4. getℓ(λx.M) ⋆ W = getℓ(λx.(M ⋆W ))

5. setℓ(V,M) ⋆ W = setℓ(V,M ⋆W )

where x ̸∈ FV (λy.N) in (3) and x ̸∈ FV (W ) in (4).

Proof. By definition and straightforward inferences. For example, to see (4),
let ς ∈ S be arbitrary and e′ = e[x 7→ ς(ℓ)]; then, omitting the apices of the
interpretation mappings [[·]]:

[[getℓ(λx.M) ⋆ W ]]e ς = ([[W ]]e)†([[M ]]e′) ς

On the other hand:

[[getℓ(λx.(M⋆W ))]]e ς = ([[λx.(M⋆W )]]e) ς(ℓ) ς = [[M⋆W ]]e′ ς = ([[W ]]e′)†([[M ]]e′) ς

But x ̸∈ FV (W ) implies [[W ]]e′ = [[W ]]e, and we are done.

Equations (1)-(3) in Proposition 13.1.6 are the monadic laws from Defini-
tion 2.1.1, Equations (4)-(5) are instances of Equation (13.4).
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13.2 The Filter-Model Construction
In this section we recap some basic facts about intersection types and algebraic
lattices with countable basis, which are well known from the literature; then we
apply these results to the domain equation studied in the previous section and
build a filter-model of λimp.

Recall from domain theory that a non-empty subset X ⊆ D of a partial order
(D,⊑D) is directed if for all x, y ∈ X there exists z ∈ X with x ⊑D z D⊒ y. D is
said to have all directed sups if the sup ⊔

X ∈ D exists whenever X is directed.
We often write ⊔↑X to stress ⊔

X is directed. A point e ∈ D is compact if for all
directed X, e ⊑D

⊔↑X implies e ⊑D x for some x ∈ X; the set of compact points
of D is denoted K(D).

Here we consider the category ω-ALG of ω-algebraic lattices. ω-ALG is the
full subcategory of Dom of complete lattices (D,⊑D) such that K(D) is countable
and D is algebraic, namely d = ⊔↑{e ∈ K(D) | e ⊑D d} is a directed sup for all
d ∈ D. In case of algebraic domains the upward cones of compact points form a
basis for the Scott topology over D; therefore abusing terminology the set K(D)
is often referred to as a “basis” for such a topology.

As a complete lattice, D has arbitrary sups, but a morphism f : D −→
E ∈ ω-ALG is just a Scott-continuous map preserving directed sups, that is
f(⊔↑X) = ⊔↑

x∈X f(x); a continuous function does not necessarily preserve the sup⊔
Y for arbitrary Y ⊆ D.

Definition 13.2.1. An intersection type theory, shortly itt, is a pair ThA =
(LA,≤A) where LA, the language of ThA, is a countable set of type expressions
closed under ∧, and ωA ∈ LA is a special constant; ≤A is a pre-order over LA

closed under the following rules:

α ≤A ωA α ∧ β ≤A α α ∧ β ≤A β
α ≤A α′ β ≤A β′

α ∧ β ≤A α′ ∧ β′

In the literature, the operator ∧ is called intersection, and ωA the universal
type. Informally, ThA is identified with the set of inequalities α ≤A β, so that,
abusing terminology, we shall also say that ≤A is a type theory. Clearly, the
quotient LA/≤A

is an inf-semilattice, with ∧ as inf and ωA as top element. Being
the meet commutative and associative, we shall write α1∧· · ·∧αn omitting braces
and abstracting from the order; also we use the notations ∧n

i=1 αi and ∧
i∈I αi for

α1 ∧ · · · ∧ αn where I = {1, . . . , n}; in particular ∧
i∈∅ αi = ωA. Finally we write

α =A β if α ≤A β ≤A α; since α ∧ α =A α, we assume that in the type expression∧
i∈I αi all the αi are distinct.

Definition 13.2.2. A non empty F ⊆ LA is a filter of ThA if it is closed under
∧ and upward closed w.r.t. ≤A; let FA be the set of filters of ThA. The principal
filter over α is the set {β ∈ LA | α ≤A β}.

For any X ⊆ LA we write ↑A X for the least filter in FA including X; this
can be equivalently defined as ⋂{F ∈ FA | X ⊆ F} or as the set {β ∈ LA |
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∃n, α1, . . . , αn ∈ X.
∧n

i=1 αi ≤A β}; in particular the principal filter over α is
↑A {α}, also written ↑A α, coinciding with the upward closure of {α}. The
mapping ↑ · is evidently a closure operator; in the following we shall write just
↑X and ↑α whenever A is understood.

The Theorem 13.2.4 is the fundamental fact about intersection types and
ω-algebraic lattices; before its proof, we recap some basic properties of the poset
(FA,⊆) in the following lemma.

Lemma 13.2.3. Consider the poset (FA,⊆) and let X ⊆ FA be a family of filters:

1. the sets ⋂X and ↑(⋃X ) are the inf and the sup of X in FA, respectively;

2. if X is directed w.r.t. ⊆, then ↑(⋃X ) = ⋃X .

Proof. Part (1) is immediate; in particular, that ⋂X is a filter follows by the
fact that any F ∈ X is such, and the intersection of filters must satisfy the same
closure properties of all the elements of X . Note that the closure ↑· is necessary
in ↑ (⋃X ): take X = {↑α, ↑β}, with types α, β ∈ LA unrelated w.r.t. ≤A, then
α ∧ β ̸∈ ↑α∪ ↑β.

Part (2): any directed X is non empty, hence there is an F ∈ X such that
ωA ∈ F ⊆

⋃X , hence ⋃X is nonempty. If α ∈ ⋃X then there is an F such that
α ∈ F ⊆ ⋃X ; hence if α ≤A β then β ∈ F ⊆ ⋃X as F is a filter.

Let α, β ∈ ⋃X ; then there are F, F ′ ∈ X such that α ∈ F and β ∈ F ′. By
hypothesis there exists an F ′′ ∈ X such that F ⊆ F ′′ ⊇ F ′, hence α, β ∈ F ′′ and
therefore α ∧ β ∈ F ′′ ⊆ ⋃X .

In view of Lemma 13.2.3, we write ⊔Y = ↑(⋃Y) for the sup of an arbitrary
family of filters Y , and ⊔↑X = ⋃X for a directed family X .

Theorem 13.2.4 (Representation theorem). The partial order (FA,⊆) of the
filters of an intersection type theory ThA is an ω-algebraic lattice, whose com-
pact elements are the principal filters. Vice versa, any ω-algebraic lattice A is
isomorphic the poset (FA,⊆) of filters of some intersection type theory ThA.

Proof. To prove the first part note that, by Lemma 13.2.3.1, we know that (FA,⊆)
is a complete lattice. Let X ⊆ FA be directed; then ↑ α ⊆ ⋃X = ⊔↑X and,
since α ∈↑α, there exists F ∈ X such that α ∈ F ; it follows that ↑α ⊆ F , since
F is upward closed w.r.t. ≤A. This proves that ↑ α ∈ K(FA); vice versa let
F ∈ K(FA) and let X = {↑α | α ∈ F}, then X is directed since if α, β ∈ F then
α ∧ β ∈ F and ↑α ⊆ ↑α ∧ β ⊇ ↑β; moreover F = ⋃X = ⊔↑X . By assumption
F is compact, hence for some α ∈ F we have F ⊆ ↑α, but also ↑α ⊆ F as F is a
filter, hence F = ↑α.

By the above we conclude that K(FA) = {↑α | α ∈ LA} which is countable as
LA is such. Finally from the equality F = ⊔↑{↑α | α ∈ F} = ⋃{↑α | α ∈ F} we
conclude that (FA,⊆) is ω-algebraic.

To the second part, let LA = {αd | d ∈ K(A)} (where each αd is a new type
constant) which is countable by hypothesis, and take ThA = {αd ≤A αe | e ⊑ d}.
By observing that αd ∧A αe =A αd⊔e, where d⊔ e ∈ K(A) if d, e ∈ K(A), and that
ωA =A α⊥, we have that ThA is an intersection type theory and that LA/≤A

is
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isomorphic to Kop(A) ordered by the opposite to the ordering of A. From this it
follows that FA is isomorphic to the ideal completion of K(A), which in turn is
isomorphic to A by algebraicity.

The above theorem substantiates the claim that intersection type theories are
the logic of the domains in ω-ALG. The theory ThA is called the Lindenbaum
algebra of A in [Abr91]; Theorem 13.2.4 is the object part of the construction
establishing that intersection type theories, together with a suitable notion of
morphisms among them, do form a category that is equivalent to ω-ALG; such
equivalence is an instance of Stone duality as studied in [Abr91] w.r.t. the category
of 2/3 SFP domains, when ω-ALG is viewed as a subcategory of topological
spaces: see e.g. [ADCH04].

The second part in the proof of Theorem 13.2.4 is the most relevant to us: it
provides a recipe to describe a domain via a formal system, deriving inequalities
among type expressions that encode “finite approximations” of points in a domain,
hence of the denotations of terms if the domain is a λimp-model. Therefore, we
seek theories ThD and ThS such that:

FD
∼= [FD −→ [FS −→ (FD ×FS)⊥]] (13.5)

The first step is to show how the functors involved in the equation above,
namely the lifting, the product, and the (continuous) function space can be put
in correspondence with the construction of new theories out of the theories which
determine the domains combined by the functors. As this is known after [Abr91],
we just recall their definitions, and fix the notation.

Definition 13.2.5. Suppose that the theories ThA and ThB are given, then for
α ∈ LA and β ∈ LB define:

LA⊥ α⊥ ::= α | α⊥ ∧ α′⊥ | ωA⊥

LA×B π ::= α× β | π ∧ π′ | ωA×B

LA−→B ϕ ::= α −→ β | ϕ ∧ ϕ′ | ωA−→B

LAL σ ::= ⟨ℓ : α⟩ | σ ∧ σ′ | ωAL

Then, we define the following sets of axioms:

1. α ≤A α′ ⇒ α ≤A⊥ α′.

2. ωA×B ≤A×B ωA × ωB and all instances of

(α× β) ∧ (α′ × β′) ≤A×B (α ∧ α′)× (β ∧ β′)

3. ωA−→B ≤A−→B ωA −→ ωB and all instances of

(α −→ β) ∧ (α −→ β′) ≤A−→B α −→ (β ∧ β′)

4. ωAL ≤AL ⟨ℓ : ωA⟩ and all instances of

⟨ℓ : α⟩ ∧ ⟨ℓ : α′⟩ ≤AL ⟨ℓ : α ∧ α′⟩
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Finally, the theories ThA×B, ThA−→B and ThAL are closed under the rules:

α ≤A α′ β ≤B β′

α× β ≤A×B α′ × β′
α′ ≤A α β ≤B β′

α −→ β ≤A−→B α′ −→ β′

α ≤A α′

⟨ℓ : α⟩ ≤AL ⟨ℓ : α′⟩

In the semantics of λimp functional application and abstraction play a central
role; below we define such operations in the case of domains of filters, toward
establishing some properties of them.

Definition 13.2.6. If X ∈ FA−→B and Y ∈ FA, we define:

X · Y = {ψ ∈ LB | ∃φ ∈ Y. φ −→ ψ ∈ X}

We write φ =A ψ if φ ≤A ψ ≤A φ. For a map f : FA −→ FB, define

Λ(f) = ↑A−→B {φ −→ ψ ∈ LA−→B | ψ ∈ f(↑A φ)}

Lemma 13.2.7. If X ∈ FA−→B and Y ∈ FA then X · Y ∈ FB. Moreover, the
map · is continuous in both its arguments.

Proof. We have X ∋ ωA−→B ≤ ωA −→ ωB and that ωA ∈ Y , hence ωB ∈ X · Y .
Since −→ is monotonic in its second argument, X · Y is upward closed. Finally, if
ψ1, ψ2 ∈ X ·Y then φi ∈ Y and φi −→ ψi ∈ X for i = 1, 2 and some φ1, φ2; then, by
antimonotonicity of−→ w.r.t. its first argument, φi −→ ψi ≤ φ1∧φ2 −→ ψi ∈ X being
X upward closed, and φ1 ∧φ2 −→ ψ1 ∧ψ2 = (φ1 ∧φ2 −→ ψ1)∧ (φ1 ∧φ2 −→ ψ2) ∈ X
since X is closed under intersections.

Concerning continuity, we have to show that X · Y = ⊔Z where Z = {↑ φ · ↑
ψ | φ ∈ X & ψ ∈ Y }. Inclusion from left to right follows by observing that if
χ ∈ X · Y then ψ −→ χ ∈ X for some ψ ∈ Y , and of course χ ∈ ↑ (ψ −→ χ) · ↑ ψ.
Viceversa if χ ∈ ⊔Z then for finitely many ψi, χi we have that ∧

i χi ≤ χ, ψi ∈ Y
and ψi −→ χi ∈ X. It follows that χi ∈ X · Y for all i, hence the thesis since X · Y
is a filter by the above.

Lemma 13.2.8. If f : FA −→ FB is continuous then Λ(f) ∈ FA−→B. Λ(·) is itself
continuous and such that:

Λ(f) ·X = f(X) Λ(λλY.(X · Y )) = X

Proof. Easy by unfolding definitions and by Lemma 13.2.7.

Now we can establish:

Proposition 13.2.9. The following are isomorphisms in ω-ALG:

FA⊥
∼= (FA)⊥, FA×B

∼= FA ×FB,

FA−→B
∼= [FA −→ FB], FAL ∼= (FA)L.

Proof. That FA⊥
∼= (FA)⊥ is a consequence of the fact that ωA <A⊥ ωA⊥ is strict,

hence ↑ ωA⊥ is the new bottom added to FA. FA×B
∼= FA ×FB is induced by the

continuous extension of the map ↑ (α× β) 7→ (↑ α, ↑ β), that is clearly invertible.
That FA−→B

∼= [FA −→ FB] is immediate by Lemma 13.2.8.
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Finally, to see that FAL ∼= (FA)L let us define the maps F 7→ ςF from FAL to
(FA)L and ς 7→ Fς from (FA)L to FAL by

ςF (ℓ) =
⊔
{↑α | ⟨ℓ : α⟩ ∈ F} = {α | ⟨ℓ : α⟩ ∈ F}

and
Fς =

⊔
{↑⟨ℓ : α⟩ | α ∈ ς(ℓ)} = ↑{⟨ℓ : α⟩ | α ∈ ς(ℓ)}

Then it is routine to prove that these maps are morphisms of ω-ALG and inverse
each other.

The next step is to apply Proposition 13.2.9 to describe the compact elements
of D ∼= FD and of S ∼= FS and the (inverse of) their orderings. Alas, this cannot
be done directly because of the recursive nature of the Equation (13.5), but it can
be obtained by mirroring the inverse limit construction, e.g. along the lines of
[ADCH04, AS08]. Although possible in principle, such a construction requires
lots of machinery from the theory of the solution of domain equations; instead
we follow the shorter path to define the type theories below simply by mutual
induction:

Definition 13.2.10. Recall that S = (D⊥)L and let us abbreviate C = (D × S)⊥
and SD = S −→ C; then define the following type languages by mutual induction:

LD : δ ::= δ −→ τ | δ ∧ δ′ | ωD

LS : σ ::= ⟨ℓ : δ⊥⟩ | σ ∧ σ′ | ωS δ⊥ ∈ LD⊥

LC : κ ::= δ × σ | κ ∧ κ′ | ωC

LSD : τ ::= σ −→ κ | τ ∧ τ ′ | ωSD

Then the respective itt’s ThD = (LD,≤D), ThS = (LS,≤S), ThC = (LC ,≤C)
and ThSD = (LSD,≤SD) are defined according to Definition 13.2.5.

We assume that ∧ and × take precedence over −→ and that −→ associates to
the right so that δ −→ τ ∧ τ ′ reads as δ −→ (τ ∧ τ ′) and δ′ −→ σ′ −→ δ′′ × σ′′ reads as
δ′ −→ (σ′ −→ (δ′′ × σ′′)).

Remark 13.2.11. We observe that, in the language LS we have both types
⟨ℓ : ωD⟩ and ⟨ℓ : ωD⊥⟩, where ωD and ωD⊥ are not equated in ThD⊥ . Therefore,
⟨ℓ : ωD⊥⟩ = ωS, but ⟨ℓ : ωD⟩ is strictly smaller than ωS.

In comparison to the theory ThS in [dT21b, dT21a] the key difference is that
in those papers there was no distinction among ωD and ωD⊥ (as the latter is not
included in the type syntax) so that the equation ωS = ⟨ℓ : ωD⟩ was part of the
theory. The present change essentially amounts to drop such an equation.

The following definition will be essential in the technical development:

Definition 13.2.12. For any σ ∈ LS define dom(σ) ⊆ L by:

dom(⟨ℓ : δ⟩) =
{
{ℓ} if δ ̸=D⊥ ωD⊥

∅ otherwise
dom(σ ∧ σ′) = dom(σ) ∪ dom(σ′)

dom(ωS) = ∅
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Remark 13.2.13. Let us observe some relevant properties of store types.
The set dom(σ), which is always finite, is computable because it is decidable

whether δ ̸=D⊥ ωD⊥ . Indeed, LD ⊂ LD⊥ and any type δ ∈ LD⊥ \ LD is either an
intersection of ωD⊥ or it can be equated to a type δ′ ∧ ωD⊥ , with δ′ ∈ LD, that is
clearly equal to δ′.

If σ ≤S σ
′ then dom(σ) ⊇ dom(σ′), as a consequence

σ ≤S ⟨ℓ : ωD⟩ ⇔ ℓ ∈ dom(σ)

In fact, the ⇒ part follows since then dom(σ) ⊇ {ℓ} = dom(⟨ℓ : ωD⟩). Vice versa,
by definition of dom(σ) and of ThD⊥ , σ = ⟨ℓ : δ⟩∧σ′ for some σ′ ∈ LS and δ ∈ LD.
So that, ⟨ℓ : δ⟩ ∧ σ′ ≤S ⟨ℓ : δ⟩ ≤S ⟨ℓ : ωD⟩.

From the above observations we deduce that σ ≤S ⟨ℓ : ωD⟩ is decidable.

Remark 13.2.14. Observe that the only constants used in Definition 13.2.10 are
the ω’s; also we have plenty of equivalences φ = ψ, namely relations φ ≤ ψ ≤ φ,
involving these constants, that are induced by the definition of the itt’s above.
For example δ −→ ωSD = ωD is derivable since ωD ≤D δ −→ ωSD ≤D ωD are axioms
of ThD; similarly, ωS −→ ωC = ωSD.

However, none of the theories above is trivial, because of the strict inequalities:

(i) ⟨ℓ : ωD⟩ <S ωS, for any ℓ ∈ L;

(ii) ωD × ωS <S ωC ;

(iii) ωS −→ ωD × ωS <SD ωS −→ ωC =SD ωSD.

Therefore, ↑ωS ⊂↑
∧

i∈I⟨ℓi : ωD⟩, for any non empty I, and ↑ωC ⊂ ↑(ωD×ωS),
that is ↑ωC corresponds to the new bottom element added to FD×S

∼= FD ×FS

in FC = F(D×S)⊥
∼= (FD ×FS)⊥.

Theorem 13.2.15. The theories ThD and ThS induce the filter domains FD and
FS which satisfy Equation (13.5).

Proof. By Proposition 13.2.9 we have

FD−→SD
∼= [FD −→ FSD] ∼= [FD −→ [FS −→ (FD ×FS)⊥]]

where FS = F(D⊥)L . Then the thesis follows since FD = FD−→SD by construction.

Remark 13.2.16. The choice of not having atomic types in LD is minimalistic,
and parallels the analogous definition 5.2.1 of [AO93], where the only constant in
the domain logic of a lazy λ-model D ∼= [D −→ D]⊥ is t (true), corresponding to
our ωD, and having t ̸≤ (t −→ t)⊥ in the theory.

As a more detailed description of FD would show, by relating its construction
to the solution of Equation (13.2) in Theorem 13.1.4, the reason why the ω’s
suffice is that FD is (isomorphic to) the non trivial initial solution to the domain
equation.
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Adding atomic types ξ to LD also leads to a filter-model FD′ of λimp, which is
however not isomorphic to [FD′ −→ S(FD′)]. To restore the desired isomorphism
it suffices to add axioms ξ =D′ ωD′ −→ ωS −→ (ξ × ωS) for all atomic ξ: these
correspond to the axioms ξ = ω −→ ξ in [BCD83], which are responsible of
obtaining a “natural equated” solution to the equation D = [D −→ D] of Scott’s
model: see [AS08].

The λimp filter-model. According to Definition 13.1.5, to show that FD is a
λimp-model it remains to see that FSD

∼= SFD can be endowed with the structure
of a monad, which amounts to say that the maps unitF : FD −→ FSD and
⋆F : FSD× [FD −→ FSD] −→ FSD are definable in such a way to satisfy the monadic
laws. This follows by instantiating Definition 13.1.2 to filter domains:

unitFX def= Λ(λλY ∈ FS.(X, Y )) = ↑{σ −→ δ × σ ∈ LSD | δ ∈ X} (13.6)

On the other hand, observing that FSD× [FD −→ FSD] −→ FSD
∼= FSD×FD −→ FSD,

for all X ∈ FSD, Y ∈ FD and Z ∈ FS we expect that:

(X ⋆F Y ) · Z = let (U, V ) :=X · Z in (Y · U) · V

=
{

(Y · U) · V if X · Z = U × V ̸= ↑C ωC

↑C ωC otherwise

Hence we define X ⋆F Y by

↑{σ −→ δ′′ × σ′′ ∈ LSD | ∃δ′, σ′. σ −→ δ′ × σ′ ∈ X & δ′ −→ σ′ −→ δ′′ × σ′′ ∈ Y }
(13.7)

Lemma 13.2.17. Both unitFX and X ⋆F Y are continuous in X and in X and
Y , respectively.

Proof. By definition, unitF(↑ δ) = ↑ {σ −→ δ′ × σ | σ ∈ LS & δ′ ∈ ↑δ}; on the
other hand if δ0 ≤D δ1 then ↑δ1 ⊆ ↑δ0, therefore

unitF(↑δ1) = ↑{σ −→ δ′ × σ | σ ∈ LS & δ′ ∈ ↑δ1}
⊆ ↑{σ −→ δ′′ × σ | σ ∈ LS & δ′′ ∈ ↑δ0}
= unitF(↑δ0)

Hence unitF(↑δ) ⊆ unitF(↑(δ ∧ δ′)) ⊇ unitF(↑δ′) for all δ, δ′; this implies that the
family {unitF(↑δ) | δ ∈ X} is directed for any filter X. Now

unitFX = unitF(⋃
δ∈X ↑δ) as X = ⊔↑

δ∈X ↑δ = ⋃
δ∈X ↑δ

= ↑{σ −→ δ′ × σ | σ ∈ LS & δ′ ∈ ⋃
δ∈X ↑δ} by def. of unitF

= ⋃
δ∈X ↑{σ −→ δ′ × σ | σ ∈ LS & δ′ ∈ ↑δ} as {↑δ | δ ∈ X} is directed

= ⋃
δ∈X unitF(↑δ) by def. of unitF

= ⊔↑
δ∈X unitF(↑δ) by Lemma 13.2.3.2

and the above remark

The proof of the continuity of X ⋆F Y is similar.
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The final step is to define the interpretations of getℓ : (FD −→ FSD) −→ FSD
∼=

FD −→ FSD and setℓ : FD × FSD −→ FSD, which also are derivable from their
interpretation into a generic model D.

Definition 13.2.18. Let X ∈ FS, ℓ ∈ L:

X · {ℓ} = ↑{δ ∈ LD | ⟨ℓ : δ⟩ ∈ X}

The above operation represents the application of the “store” X to the location
ℓ. Observe that if X = ↑ωS then there is no ⟨ℓ : δ⟩ ∈ X, hence the closure ↑ · is
necessary.

According to Definition 13.1.5, for any X ∈ FD and Y ∈ FS we must have:

getFℓ (X) · Y = X · (Y · {ℓ}) · Y

where we assume that · associates to the left. Now, let Z = {τ ∈ LSD | ∃δ ∈
⟨ℓ : δ⟩ ∈ Y & δ −→ τ ∈ X} then

X · (Y · {ℓ}) · Y = Z · Y

If τ = ωSD then δ −→ τ = ωD, which trivially belongs to any filter; if instead
τ ̸= ωSD then τ = ∧

I σi −→ κi and δ −→ τ = ∧
i∈I δ −→ σi −→ κi ∈ X if and only if

δ −→ σi −→ κi ∈ X for all i ∈ I. From this we conclude that

Z · Y = {κ ∈ LC | ∃σ ∈ Y | σ −→ κ ∈ Z}
= {κ ∈ LC | ∃⟨ℓ : δ⟩ ∧ σ ∈ Y. δ −→ σ −→ κ ∈ X}

and therefore the appropriate definition of getFℓ (X) is

getFℓ (X) def= ↑{(⟨ℓ : δ⟩ ∧ σ) −→ κ ∈ LSD | δ −→ (σ −→ κ) ∈ X} (13.8)

Similarly, again by Definition 13.1.5, for any X ∈ FD, Y ∈ FSD and Z ∈ FS we
expect:

setFℓ (X, Y ) · Z = Y · (Z[ℓ 7→ X])
where Z[ℓ 7→ X] is supposed to represent the update of Z by associating X to ℓ,
namely:

Z[ℓ 7→ X] =↑{⟨ℓ : δ⟩ | δ ∈ X} ∪ {⟨ℓ′ : δ′⟩ | ⟨ℓ′ : δ′⟩ ∈ Z & ℓ′ ̸= ℓ}

Then

Y · (Z[ℓ 7→ X]) = ↑{κ | ∃σ −→ κ ∈ Z[ℓ 7→ X]. σ −→ κ ∈ Y }
= ↑{κ | ∃σ′ ∈ Z, δ ∈ X. ⟨ℓ : δ⟩ ∧ σ′ −→ κ ∈ Y & ℓ ̸∈ dom(σ′)}

and therefore we define:

setFℓ (X, Y ) def= ↑{σ′ −→ κ ∈ LSD | ∃δ ∈ X. ⟨ℓ : δ⟩ ∧ σ′ −→ κ ∈ Y & ℓ ̸∈ dom(σ′)}
(13.9)

Lemma 13.2.19. Both getFℓ (X) and setFℓ (X, Y ) are continuous in X and in X
and Y , respectively.
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Proof. We know that getFℓ (X) · Y = X · (Y · {ℓ}) · Y , hence by Lemma 13.2.7 to
prove that it is continuous in X it suffices to show that Y · {ℓ} is such in Y , as
the composition of continuous functions is continuous. Now

Y · {ℓ} = ↑{δ | ⟨ℓ : δ⟩ ∈ Y }
= ↑{δ | ⟨ℓ : δ⟩ ∈ ⋃

σ∈Y ↑σ}
= ⋃

σ∈Y ↑{δ | ⟨ℓ : δ⟩ ∈ ↑σ}
= ⋃

σ∈Y (↑σ · {ℓ})
= ⊔↑

σ∈Y (↑σ · {ℓ})

by directness of {↑σ · {ℓ} | σ ∈ Y } and Lemma 13.2.3.
The proof of continuity of setFℓ (X, Y ) is similar, using setFℓ (X, Y ) · Z =

Y · (Z[ℓ 7→ X]), the continuity of application and the fact that Z[ℓ 7→ X] =⊔
δ∈X Z[ℓ 7→↑δ] that is easily seen.

Eventually we have:

Theorem 13.2.20. The structure F = (FD,S, [[·]]FD , [[·]]FSD) is a λimp-model
where, for e : Var −→ FD the interpretations [[V ]]FDe ∈ FD and [[M ]]FSDe ∈ FSD

are such that:

[[x]]FDe = e(x)
[[λx.M ]]FDe = ↑{δ −→ σ | σ ∈ [[M ]]FSDe[x 7→ ↑δ]}

[[[V ]]]FSDe = ↑{σ −→ δ × σ ∈ LSD | δ ∈ [[V ]]FDe}
[[M ⋆ V ]]FSDe = ↑{σ −→ δ′′ × σ′′ | ∃δ′, σ′. σ −→ δ′ × σ′ ∈ [[M ]]FSDe

& δ′ −→ σ′ −→ δ′′ × σ′′ ∈ [[V ]]FDe}
[[getℓ(λx.M)]]FSDe = ↑{(⟨ℓ : δ⟩ ∧ σ) −→ κ ∈ LSD | δ −→ (σ −→ κ) ∈ [[λx.M ]]FDe}
[[setℓ(V,M)]]FSDe = ↑{σ′ −→ κ | ∃δ ∈ [[V ]]FDe. ⟨ℓ : δ⟩ ∧ σ′ −→ κ ∈ [[M ]]FSDe

& ℓ ̸∈ dom(σ′)}

Proof. By an easy induction over M , we can show that

[[M ]]Fe[x 7→ X] =
⊔↑

δ∈X
[[M ]]Fe[x 7→ ↑δ]

It follows that the function λλX ∈ FD. [[M ]]FSDe[x 7→ X] is continuous. Therefore,
applying the clauses of Definition 13.1.5 to the model F , we get:

[[x]]FDe = e(x)
[[λx.M ]]FDe = Λ(λλX ∈ FD. [[M ]]FSDe[x 7→ X])

[[[V ]]]FSDe = unitF([[V ]]FDe)
[[M ⋆ V ]]FSDe = ([[M ]]FSDe) ⋆F ([[V ]]FDe)

[[getℓ(λx.M)]]FSDe = getFℓ ([[λx.M ]]FDe)
[[setℓ(V,M)]]FSDe = setFℓ ([[V ]]FDe, [[M ]]FSDe)

Then the thesis follows by equations (13.6)-(13.9).
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13.3 Deriving the Type Assignment System
The definition of a type assignment system can be obtained out of the construction
of the filter-model. The system is nothing else than the description of the
denotation of terms in the particular λimp-model F , which is possible because
both [[V ]]FDe ∈ FD and [[M ]]FSDe ∈ FSD, and filters are sets of types.

Types are naturally interpreted as subsets of the domains of term interpretation,
namely FD or FSD according to their kind; by applying to the present case the
same construction as in [BCD83] and [Abr91], originating from Stone duality for
boolean algebras, we set:

Definition 13.3.1. For A = D,S,C, and SD, and φ ∈ LA define:

[[φ]]F = {X ∈ FA | φ ∈ X}

Such interpretation is a generalization of the natural interpretation of intersec-
tion types over an extended type structure [CDHL84], which in the present case
yields:

Proposition 13.3.2. For A = D,S,C, and SD, and φ, ψ ∈ LA we have:

[[φ ∧ ψ]]F = [[φ]]F ∩ [[ψ]]F , [[ωA]]F = FA and φ ≤ ψ ⇒ [[φ]]F ⊆ [[ψ]]F

Moreover:

1. [[δ −→ τ ]]F = {X ∈ FD | ∀Y ∈ [[δ]]F . X · Y ∈ [[τ ]]F}

2. [[⟨ℓ : δ⟩]]F = {X ∈ FS | X · {ℓ} ∈ [[δ]]F}

3. [[δ × σ]]F = {X ∈ FD×S | π1(X) ∈ [[δ]]F & π2(X) ∈ [[σ]]F}

4. [[σ −→ κ]]F = {X ∈ FSD | ∀Y ∈ [[σ]]F . X · Y ∈ [[κ]]F}

where, for X ∈ FD×S
∼= (FD×FS), π1(X) = {δ ∈ LD | ∃σ ∈ LS. δ× σ ∈ X} and

similarly for π2(X).

Proof. The first part is immediate from the definition of type interpretation and
of filters.

To see (1) observe that ↑φ ∈ [[φ]]F . Hence, if X ∈ [[δ −→ τ ]]F then δ −→ τ ∈ X,
which implies that X· ↑δ = ↑τ ∈ [[τ ]]F . Viceversa if X · Y ∈ [[τ ]]F for all Y ∈ [[δ]]F
then in particular X· ↑ δ = ↑ τ ∈ [[τ ]]F , which implies that for some δ′ ∈ ↑ δ,
δ′ −→ τ ∈ X; but then δ ≤D δ′ so that δ′ −→ τ ≤D δ −→ τ and therefore δ −→ τ ∈ X
as X is upward closed.

All the other cases are similar and easier. We just remark that in part
(3) π1(X) is a filter: indeed it is nonempty and upward closed because X is
such. If δ1, δ2 ∈ π1(X) then δ1 × σ1, δ2 × σ2 ∈ X for some σ1 and σ2; then
X ∋ (δ1 × σ1) ∧ (δ2 × σ2) = (δ1 ∧ δ2)× (σ1 ∧ σ2), so that δ1 ∧ δ2 ∈ π1(X).

Let us define the notion of typing context in our setting.

Definition 13.3.3. A typing context Γ is a finite set {x1 : δ1, . . . , xn : δn} where
n ≥ 0, the xi’s are pairwise distinct, and δi ∈ LD for all i.
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(var)
Γ, x : δ ⊢ x : δ

Γ, x : δ ⊢M : τ
(λ)

Γ ⊢ λx.M : δ −→ τ

Γ ⊢ V : δ
(unit)

Γ ⊢ [V ] : σ −→ δ × σ

Γ ⊢M : σ −→ δ′ × σ′ Γ ⊢ V : δ′ −→ σ′ −→ δ′′ × σ′′

(⋆)
Γ ⊢M ⋆ V : σ −→ δ′′ × σ′′

Γ, x : δ ⊢M : σ −→ κ
(get)

Γ ⊢ getℓ(λx.M) : (⟨ℓ : δ⟩ ∧ σ) −→ κ

Γ ⊢ V : δ Γ ⊢M : (⟨ℓ : δ⟩ ∧ σ) −→ κ ℓ ̸∈ dom(σ)
(set)

Γ ⊢ setℓ(V, M) : σ −→ κ

Figure 13.1: Intersection type assignment system for λimp

We can now build the type assignment system as the description, via type
derivations, of the semantics of terms and types in the model F . First, type
contexts Γ = {x1 : δ1, . . . , xn : δn} are put into correspondence with environments
eΓ : Var −→ FD by setting eΓ(xi) = ↑D δi and eΓ(y) = ↑ωD if y ̸∈ dom(Γ). Second,
typing judgments translate the statements:

Γ ⊢ V : δ ⇐⇒ ([[V ]]FDeΓ) ∈ [[δ]]F ⇐⇒ δ ∈ [[V ]]FDeΓ

and similarly, Γ ⊢M : τ ⇐⇒ τ ∈ [[M ]]FSDeΓ.
Third and final step, typing rules of the shape

Γ1 ⊢ P1 : φ1 · · · Γn ⊢ Pn : φn

Γ ⊢ Q : ψ
are the translations of equations

[[Q]]FeΓ = ↑{ψ | φ1 ∈ [[P1]]FeΓ1 & · · · & φn ∈ [[Pn]]FeΓn} (13.10)

from Proposition 13.3.2 and Theorem 13.2.20. We take advantage of the factor-
ization of the right hand sides of Equations (13.10) into a set of types U and its
closure ↑U , by adding the rules:

(ω)
Γ ⊢ P : ω

Γ ⊢ P : φ Γ ⊢ P : ψ
(∧)

Γ ⊢ P : φ ∧ ψ
Γ ⊢ P : φ φ ≤ ψ

(≤)
Γ ⊢ P : ψ

(13.11)
Therefore, we are left to translate set inclusions

[[Q]]FeΓ ⊇ {ψ | φ1 ∈ [[P1]]FeΓ1 & · · · & φn ∈ [[Pn]]FeΓn} (13.12)
where ψ is neither an intersection nor an ω:
Definition 13.3.4. (Intersection type assignment system for λimp) The sys-
tem is obtained by adding to the rules in Equation (13.11) the rules in Figure 13.1.

The rules in Definition 13.3.4 are obtained by instantiating the inclusion (13.12)
to Equations (13.6) - (13.9). By such a construction, we obtain for our type system
the analogous of the “Type-semantics theorem” for intersection types and the
ordinary λ-calculus (see [BDS13], Thm. 16.2.7). Toward such a theorem we define
the following concept:
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Definition 13.3.5. If e ∈ Term-EnvF then for any type context Γ:

e |=F Γ⇔ ∀x : δ ∈ Γ. e(x) ⊆ [[δ]]F

It is immediate by Definition 13.3.1 that e |=F Γ if and only if δ ∈ e(x) for all
x : δ ∈ Γ. On the other hand, from the very construction of the type system, we
have:

Lemma 13.3.6. Let Q ∈ Term and Γ be any typing context, then

[[Q]]FeΓ = {φ | Γ ⊢ Q : φ}

Proof. The proof is based on Theorem 13.2.20 that characterizes [[Q]]FeΓ
in terms

of operations over filters: it will be used without explicit mention below.
The inclusion [[Q]]FeΓ

⊆ {φ | Γ ⊢ Q : φ} is shown by induction over Q.

Case Q ≡ x: then [[x]]FeΓ
= eΓ(x). If x : δ ∈ Γ for some δ then eΓ(x) = ↑ δ and

Γ ⊢ x : δ′ for all δ′ ≥ δ by rules (var) and (≤). Otherwise, x ̸∈ dom(Γ)
implies that eΓ(x) = ↑ωD so that Γ ⊢ x : δ for any δ = ωD by rules (ω) and
(≤).

Case Q ≡ λx.M : then by Definition 13.2.6 we have

[[λx.M ]]FeΓ = Λ(λλX ∈ FD. [[M ]]FSDeΓ[x 7→ X])
= ↑{δ −→ τ | τ ∈ [[M ]]FeΓ[x 7→ ↑δ]}

By definition of the ↑ operator, the filter above consists of intersections∧
i∈I δi −→ τi such that τi ∈ [[M ]]FeΓ[x 7→ ↑ δi] for all i ∈ I. Observing that

eΓ[x 7→ ↑ δi] = eΓ,x:δi
we have by induction that Γ, x : δi ⊢ M : τi and

therefore Γ ⊢ λx.M : δi −→ τi by rule (λ) for all i ∈ I. Hence Γ ⊢ λx.M :∧
i∈I δi −→ τi by repeated use of rule (∧).

Case Q ≡ [V ]: then [[[V ]]]FeΓ =↑{σ −→ δ × σ | δ ∈ [[V ]]FeΓ} by Equation (13.6).
By induction we have Γ ⊢ V : δ and the thesis follows by rule (unit).

Case Q ≡M ⋆ V : then, by Equation (13.7), [[M ⋆ V ]]FeΓ is the filter

↑{σ −→ δ′′ × σ′′ | ∃δ′, σ′. σ −→ δ′ × σ′ ∈ [[M ]]FeΓ & δ′ −→ σ′ −→ δ′′ × σ′′ ∈ [[V ]]FeΓ}

As in the case of λ-abstraction, the types in such a filter have the shape∧
i∈I σi −→ δ′′i × σ′′i and σi −→ δ′i × σ′i ∈ [[M ]]FeΓ and δ′i −→ σ′i −→ δ′′i × σ′′i ∈

[[V ]]FeΓ for all i ∈ I. Therefore by rule (⋆) we have
Γ ⊢M ⋆ V : σi −→ δ′′i × σ′′i for all i ∈ I and we conclude by repeated use of
rule (∧).

Case Q ≡ getℓ(λx.M): then by Equation (13.8) we have that [[getℓ(λx.M)]]FeΓ
is the filter

↑{(⟨ℓ : δ⟩ ∧ σ) −→ κ | δ −→ (σ −→ κ) ∈ [[λx.M ]]FeΓ}

Reasoning as above we know that δ −→ (σ −→ κ) ∈ [[λx.M ]]FeΓ implies that
σ −→ κ ∈ [[M ]]FeΓ,x:δ; hence by induction Γ, x : δ ⊢M : σ −→ κ, from which
the thesis follows by rule (get).
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Case Q ≡ setℓ(V,M): then by Equation (13.9) we know that [[setℓ(V,M)]]FeΓ is
the filter

↑{σ′ −→ κ | ∃δ ∈ [[V ]]FeΓ. ⟨ℓ : δ⟩ ∧ σ′ −→ κ ∈ [[M ]]FeΓ & ℓ ̸∈ dom(σ′)}

By induction Γ ⊢ V : δ and Γ ⊢ M : ⟨ℓ : δ⟩ ∧ σ′ −→ κ; now condition
ℓ ̸∈ dom(σ′) allows to apply rule (set), and we are done.

The inclusion [[Q]]FeΓ
⊇ {φ | Γ ⊢ Q : φ} is proved by induction over the

derivation of Γ ⊢ Q : φ. The cases of rules (ω), (∧) and (≤) are immediate by the
induction hypothesis and the fact that [[Q]]FeΓ

is a filter.

Case (var): then Q ≡ x, φ ≡ δ and x : δ ∈ Γ; hence

[[x]]FeΓ = eΓ(x) = ↑δ ∋ δ

Case (λ): then Q ≡ λx.M , φ ≡ δ −→ τ and the premise is
Γ, x : δ ⊢ M : τ . By induction τ ∈ [[M ]]FeΓ,x:δ; on the other hand, as
observed above, [[λx.M ]]FeΓ =↑{δ −→ τ | τ ∈ [[M ]]FeΓ[x 7→ ↑δ]}, and eΓ[x 7→
↑δ] = eΓ,x:δ, hence we conclude that δ −→ τ ∈ [[λx.M ]]FeΓ.

Case (unit): then Q ≡ [V ], φ ≡ σ −→ δ × σ and the premise is Γ ⊢ V : δ.
By induction δ ∈ [[V ]]FeΓ hence σ −→ δ × σ ∈ unitF [[V ]]FeΓ = [[[V ]]]FeΓ by
Equation (13.6).

Case (⋆): then Q ≡ M ⋆ V , φ ≡ σ −→ δ′′ × σ′′ which is derived from the
premises Γ ⊢ M : σ −→ δ′ × σ′ and Γ ⊢ V : δ′ −→ σ′ −→ δ′′ × σ′′. By
induction σ −→ δ′ × σ′ ∈ [[M ]]FeΓ and δ′ −→ σ′ −→ δ′′ × σ′′ ∈ [[V ]]FeΓ so that
σ −→ δ′′ × σ′′ ∈ [[M ]]FeΓ ⋆

F [[V ]]FeΓ = [[M ⋆ V ]]FeΓ by Equation (13.7).

Case (get): then Q ≡ getℓ(λx.M), φ ≡ (⟨ℓ : δ⟩ ∧ σ) −→ κ and the premise is
Γ, x : δ ⊢ M : σ −→ κ. By induction σ −→ κ ∈ [[M ]]FeΓ, x:δ so that, by
reasoning as in case (λ), we have that δ −→ σ −→ κ ∈ [[λx.M ]]FeΓ, from which
we conclude (⟨ℓ : δ⟩ ∧ σ) −→ κ ∈ getFℓ ([[λx.M ]]FeΓ) = [[getℓ(λx.M)]]FeΓ by
Equation (13.8).

Case (set): then Q ≡ setℓ(V,M), φ ≡ σ −→ κ and the premises are Γ ⊢ V : δ and
Γ ⊢ M : (⟨ℓ : δ⟩ ∧ σ) −→ κ; also we know that ℓ ̸∈ dom(σ). By induction
δ ∈ [[V ]]FeΓ and (⟨ℓ : δ⟩ ∧ σ) −→ κ ∈ [[M ]]FeΓ. Then we conclude that φ ≡
σ −→ κ ∈ setFℓ ([[V ]]FDeΓ, [[M ]]FSDeΓ) = [[setℓ(V,M)]]FSDeΓ by Equation (13.9).

Definition 13.3.7. Over TypeEnvF we define the ordering:

e ⊑ e′ ⇔ ∀x ∈ Var. e(x) ⊆ e′(x)

The poset (TypeEnvF ,⊑) is a cpo, with bottom e⊥ such that e⊥(x) = ↑ωD for
all x ∈ Var. We extend the definition of directed sups in FD to directed families
E ⊆ TypeEnvF , putting:

∀x ∈ Var. (
⊔↑E)(x) def=

⋃
e∈E

e(x)
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Handy notations in the next lemmas are: Γ(x) = δ if x : δ ∈ Γ, Γ(x) = ωD

otherwise; and for contexts Γ and Γ′ we define the context

Γ ∧ Γ′ def= {x : δ ∈ Γ | x ̸∈ dom(Γ′)}
∪ {x : δ′ ∈ Γ′ | x ̸∈ dom(Γ)}
∪ {x : δ ∧ δ′ | x : δ ∈ Γ & x : δ′ ∈ Γ′}

As a consequence (Γ ∧ Γ′)(x) = Γ(x) ∧ Γ′(x).

Lemma 13.3.8.

1. For all e ∈ TypeEnvF the set E = {eΓ | e |=F Γ} is directed and e = ⊔↑ E
2. For all Q ∈ Term and directed E, the family of filters {[[Q]]Fe | e ∈ E} is

directed and
[[Q]]F(

⊔↑E) =
⊔↑

e∈E
[[Q]]Fe

Proof. Part (1): by Definition 13.3.5 and the definition of eΓ we have that

e |=F Γ⇔ ∀x ∈ Var. Γ(x) ∈ e(x) ⇐⇒ ∀x ∈ Var. eΓ(x) =↑Γ(x) ⊆ e(x)

namely eΓ ⊑ e if and only if e |=F Γ. In particular

(eΓ ⊔ eΓ′)(x) = ↑Γ(x) ⊔ ↑Γ′(x)
= ↑(Γ(x) ∧ Γ′(x))
= ↑(Γ ∧ Γ′)(x)

hence eΓ ⊔ eΓ′ = eΓ∧Γ′ by the arbitrary choice of x ∈ Var. Since Γ(x) ∈ e(x)
and Γ′(x) ∈ e(x) imply that Γ(x) ∧ Γ′(x) = (Γ ∧ Γ′)(x) ∈ e(x) as e(x) is a
filter, we have that e |=F Γ and e |=F Γ′ imply that e |=F Γ ∧ Γ′, so that we
conclude that E is directed.

From the above it follows that ⊔ E ⊑ e; to see the inverse it suffices to
observe that if δ ∈ e(x), then e{x:δ} ∈ E so that

δ ∈ e{x:δ}(x) ⊆
⋃

eΓ∈E
eΓ(x) = (

⊔↑E)(x)

for any x ∈ Var, therefore e ⊑ ⊔ E .

Part (2): we reason by induction over Q ∈ Term.

Case Q ≡ x: then {[[Q]]Fe | e ∈ E} = {e(x) | e ∈ E}, which is directed by
the hypothesis that E is such. Then

[[Q]]F(
⊔
E) = (

⊔↑E)(x) =
⋃
e∈E

e(x) =
⊔↑

e∈E
([[Q]]Fe)
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Case Q ≡ λx.M : let X = {[[λx.M ]]Fe | e ∈ E}, and recall that [[λx.M ]]Fe =
↑{δ −→ τ | τ ∈ [[M ]]Fe[x 7→ ↑δ]}. Let F1, F2 ∈ X , namely Fi = [[λx.M ]]Fei

for some ei ∈ E and i = 1, 2. By directness of E , there exists e3 ∈ E
such that e1, e2 ⊑ e3; then take F3 = [[λx.M ]]Fe3 ∈ X .
W.l.o.g. a non trivial element Fi for i = 1, 2 has the shape δi =∧

j∈Ji
δ

(i)
j −→ τ

(i)
j where τ (i)

j ∈ [[M ]]Fei[x 7→ ↑ δ(i)
j ] for all j ∈ Ji. Now

the set {e1, e2, e3} is directed with sup e3, so that by induction the
set of filters {[[M ]]Fei[x 7→ ↑ δ(i)

j ] | i = 1, 2, 3} is directed with sup
[[M ]]Fe3[x 7→ ↑ δ(i)

j ], for all j ∈ Ji. This implies that δ(i)
j −→ τ

(i)
j ∈

[[λx.M ]]Fe3 for all j ∈ Ji, and hence δi ∈ [[λx.M ]]Fe3 as the latter is a
filter. We conclude that F1, F2 ⊆ F3, so X is directed. Now
[[Q]]F(⊔↑ E) = ↑{δ −→ τ | τ ∈ [[M ]]F(⊔↑ E)[x 7→ ↑δ]}

= ↑{δ −→ τ | τ ∈ ⋃
e∈E [[M ]]Fe[x 7→ ↑δ]}

by induction and (⊔↑ E)[x 7→ ↑δ] = ⊔↑
e∈E e[x 7→ ↑δ]

= ⋃
e∈E ↑{δ −→ τ | τ ∈ [[M ]]Fe[x 7→ ↑δ]}

since E is directed
= ⋃

e∈E [[λx.M ]]Fe
= ⊔↑

e∈E [[Q]]Fe

Case Q ≡M ⋆V : then {[[M ⋆V ]]Fe | e ∈ E} is directed since {[[M ]]Fe | e ∈
E} and {[[V ]]Fe | e ∈ E} are such by induction, [[M⋆V ]]Fe = ([[M ]]Fe)⋆F
([[V ]]Fe), and the operator ⋆F is continuous by Lemma 13.2.17, and
hence monotonic. Now
[[Q]]F(⊔ E) = [[M ]]F(⊔ E) ⋆F [[V ]]F(⊔ E)

= (⊔
e∈E [[M ]]Fe) ⋆F (⊔

e′∈E [[V ]]Fe′) by induction
= ⊔

e,e′∈E([[M ]]Fe) ⋆F [[V ]]Fe′) by continuity of ⋆F

= ⊔
e′′∈E([[M ]]Fe′′) ⋆F [[V ]]Fe′′) by directness of E

= ⊔
e′′∈E [[Q]]Fe′′

The remaining cases of [V ], getℓ(λx.M) and setℓ(V,M) are similar, using
the continuity of unitF( ), getFℓ ( ) and setFℓ ( , ), respectively.

Theorem 13.3.9 (Type semantics). For all V ∈ Val and M ∈ Com:
1. [[V ]]FDe = {δ ∈ LD | ∃Γ. e |=F Γ & Γ ⊢ V : δ}

2. [[M ]]FSDe = {τ ∈ LSD | ∃Γ. e |=F Γ & Γ ⊢M : τ}
Proof. Recall that e |=F Γ if and only if eΓ ⊑ e:
[[V ]]FDe = [[V ]]FD(⊔{eΓ | e |=F Γ}) by Lemma 13.3.8.1

= ⊔
eΓ⊑e [[V ]]FDeΓ by Lemma 13.3.8.2

= ⋃
eΓ⊑e [[V ]]FDeΓ as {[[V ]]FDeΓ | eΓ ⊑ e} is directed

by Lemma 13.3.8.2
= ⋃

eΓ⊑e{δ | Γ ⊢ V : δ} by Lemma 13.3.6
= {δ | ∃Γ.Γ ⊢ V : δ & e |=F Γ}
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The proof in case of [[M ]]FSDe is similar.

13.4 Typing Configurations
After having obtained a type system for λimp out of its denotational semantics,
and more precisely from the filter-model F , we now look at the relation among the
type system and the operational semantics, as presented in Sections 12.2 and 12.3.

However, there is still a mismatch among the type system and the reduction
semantics, or its equivalent formulation in terms of convergence, which is due to
the fact that the former deals with terms only, whereas the reduction is a relation
among configurations (M, s), with M ∈ Com and s ∈ Store. Therefore we fill the
gap by defining the interpretations of store terms and configurations.

Definition 13.4.1. Let D = (D, S, [[·]]D, [[·]]SD) be a λimp-model, where S = (D⊥)L.
Then we interpret store terms by the maps [[·]]S : Store −→ Term-Env −→ S and
[[·]]L : Lkp −→ Term-Env −→ D where:

[[emp]]Se = ⊥S

[[updℓ(u, s)]]Se = ([[s]]Se)[ℓ 7→ [[u]]Le]
[[V ]]Le = [[V ]]De

[[lkpℓ(s)]]Le = [[s]]Se ℓ

where, if ς ∈ S, ℓ ∈ L and d ∈ D, then the map ς [ℓ 7→ d] is the updating of ς that
associates d to ℓ.

By instantiating Definition 13.4.1 to the filter-model F we obtain:

[[emp]]FSe = ↑ωS

[[updℓ(u, s)]]FSe = ([[s]]FSe)[ℓ 7→ [[u]]Le]
= ↑ ({⟨ℓ : δ⟩ | δ ∈ [[s]]FSe} ∪ {σ ∈ [[s]]FSe | ℓ ̸∈ dom(σ)})

[[V ]]FLe = [[V ]]FDe

[[lkpℓ(s)]]FLe = ([[s]]FSe) · {ℓ} = ↑{δ | ⟨ℓ : δ⟩ ∈ [[s]]FSe}

From the interpretations of store and lookup terms in F and using the same
method as in the previous section, we obtain the following typing rules:

Γ ⊢ V : δ
(upd1)Γ ⊢ updℓ(V, s) : ⟨ℓ : δ⟩

Γ ⊢ s : ⟨ℓ′ : δ⟩ ℓ ̸= ℓ′

(upd2)Γ ⊢ updℓ(V, s) : ⟨ℓ′ : δ⟩
(13.13)

and
Γ ⊢ s : ⟨ℓ : δ⟩

(lkp)
Γ ⊢ lkpℓ(s) : δ

(13.14)

Remark 13.4.2. Interpreting store and lookup terms into S and D, respectively,
provides a model of the theory axiomatized in Definition 12.2.2. Indeed, by
Theorem 12.2.10 the equation s = t is derivable if and only if s ≃ t, namely s
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and t are extensionally equivalent: dom(s) = dom(t) and for all ℓ in their domain
lkpℓ(s) ≡ lkpℓ(t), where we stress that this is syntactic identity.

Since the interpretation of store terms is functional and [[lkpℓ(s)]]Le = [[s]]Se ℓ,
we immediately conclude that if ⊢ s = t then [[s]]Se = [[t]]Se for all e ∈ Term-Env.
The vice versa does not hold: that [[s]]Se ℓ = [[V ]]De = [[W ]]De = [[t]]Se ℓ does not
imply that V ≡ W : take e.g. V ≡ λx.[x] and W ≡ λy. ([y] ⋆ V ).

Finally, notice that [[emp]]Se = ⊥S ≠ [[updℓ(V, s)]]Se for any V, s. In particular,
if Γ ⊢ emp : σ then σ = ωS, while Γ ⊢ updℓ(V, s) : ⟨ℓ : ωD⟩ ≠ ωS.

Remark 13.4.3. By the same technique used in the proof of Theorem 13.3.9,
we can show that [[s]]FSe = {σ ∈ LS | ∃Γ. e |=F Γ & Γ ⊢ s : σ}, and similarly
for [[lkpℓ(s)]]FLe; hence semantically equal store and lookup terms have exactly
the same types. As argued in Remark 13.4.2, the interpretation maps [[·]]S and
[[·]]L provide a model of the equational theory of such terms in any λimp-model D,
hence in F . Therefore if ⊢ s = t then s and t have the same types.

On the other hand, by Corollary 12.2.11 any s ∈ Store with s ̸≡ emp can be
equated to a term of the form:

updℓ1(V1, · · · updℓn
(Vn, emp) · · · )

with distinct locations ℓ1, . . . , ℓn, so that we may focus on the typing of these
terms.

If s ̸≡ emp then n > 0 and Γ ⊢ Vi : δi for some δi and each 1 ≤ i ≤ n, so
that we can derive Γ ⊢ s : ⟨ℓi : δi⟩ for all i by either using rule (upd1) or (upd2).
Hence, by repeated use of (∧), the judgment Γ ⊢ s : ∧

1≤i≤n⟨ℓi : δi⟩ can be derived,
expressing that s associates to each ℓi a value of type δi. In summary, the following
rule is derivable:

Γ ⊢ V1 : δ1 · · · Γ ⊢ Vn : δn

Γ ⊢ updℓ1(V1, · · · updℓn
(Vn, emp) · · · ) :

∧
1≤i≤n

⟨ℓi : δi⟩ (13.15)

Vice versa, if s has type ∧
1≤i≤n⟨ℓi : δi⟩ then lkpℓi

(s) = Vi has type δi, by rules (≤)
and (lkp).

Recall that [[M ]]SDe ∈ [S −→ (D × S)⊥] and that [[s]]Se ∈ S; therefore, the
following definition of the semantics of a configuration (M, s) is quite naturally
the functional application of the meaning of M to that of s:

Definition 13.4.4. Given a λimp-model D and the interpretation maps [[·]]S and
[[·]]L from Definition 13.4.1, we interpret configurations (M, s) into C = (D× S)⊥
by

[[(M, s)]]Ce = [[M ]]SDe ([[s]]Se)

Once again we look at the instance F of D, where:

[[(M, s)]]FCe = ([[M ]]FSDe) · ([[s]]FSe) = ↑{κ | ∃σ ∈ [[s]]FSe. σ −→ κ ∈ [[M ]]FSDe}

from which we derive the typing rule for configurations:
Γ ⊢M : σ −→ κ Γ ⊢ s : σ

(conf)
Γ ⊢ (M, s) : κ

(13.16)
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For the reader convenience the rules of the full system are reported in Fig-
ure 13.2.
Illustrating the type system w.r.t. the operational semantics. So far the
type assignment system has been obtained by means of abstract concepts; here we
turn to a more concrete understanding of such rules, looking to the operational
semantics. The discussion is informal and includes some examples; the technical
analysis of the typing system and operational semantics is deferred to the next
sections.

Definition 13.4.4 perfectly matches the operational interpretation of (M, s) as
the application M(s) in Section 12.3 (see eq. (12.1) and the comments thereafter),
where it returns a pair (V, t) if (M, s) ⇓ (V, t) and it is undefined, otherwise. Such
a correspondence, together with the interpretation of typings, provides the basis
for illustrating the typing rules in Figure 13.2.

As usual the interpretation of types are sets or, equivalently, properties of
terms. In the present setting this is the content of Proposition 13.3.2, hence the
intended meaning of a typing judgment Γ ⊢ Q : φ is that Q satisfies the property
φ under the hypothesis that x satisfies Γ(x) for all x ∈ dom(Γ).

Since term variables range over values and are values themselves, in a typing
context Γ we only have typing judgments of the form x : δ with δ ∈ LD.

Rules for ω, intersection, and subtyping

(ω)
Γ ⊢ Q : ω

Γ ⊢ Q : φ Γ ⊢ Q : φ′
(∧)

Γ ⊢ Q : φ ∧ φ′
Γ ⊢ Q : φ φ ≤ φ′

(≤)
Γ ⊢ Q : φ′

Rules for Val and Com terms

(var)
Γ, x : δ ⊢ x : δ

Γ, x : δ ⊢M : τ
(λ)

Γ ⊢ λx.M : δ −→ τ

Γ ⊢ V : δ
(unit)

Γ ⊢ [V ] : σ −→ δ × σ
Γ ⊢M : σ −→ δ′ × σ′ Γ ⊢ V : δ′ −→ σ′ −→ δ′′ × σ′′

(⋆)
Γ ⊢M ⋆ V : σ −→ δ′′ × σ′′

Γ, x : δ ⊢M : σ −→ κ
(get)

Γ ⊢ getℓ(λx.M) : (⟨ℓ : δ⟩ ∧ σ) −→ κ

Γ ⊢ V : δ Γ ⊢M : (⟨ℓ : δ⟩ ∧ σ) −→ κ ℓ ̸∈ dom(σ)
(set)

Γ ⊢ setℓ(V,M) : σ −→ κ

Rules for Store, Lkp terms and configurations

Γ ⊢ V : δ
(upd1)Γ ⊢ updℓ(V, s) : ⟨ℓ : δ⟩

Γ ⊢ s : ⟨ℓ′ : δ⟩ ℓ ̸= ℓ′

(upd2)Γ ⊢ updℓ(V, s) : ⟨ℓ′ : δ⟩
Γ ⊢ s : ⟨ℓ : δ⟩

(lkp)
Γ ⊢ lkpℓ(s) : δ

Γ ⊢M : σ −→ κ Γ ⊢ s : σ
(conf)

Γ ⊢ (M, s) : κ

Figure 13.2: Type assignment system for λimp
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Rules for ω, intersection and subtyping Rules for ωA, intersection and
subtyping are the same as in [BCD83], instantiated to the four kinds of judgment
of the present system. The universal types ωA are interpreted as the whole set
of terms that can be typed by a type of sort LA (see Definition 14.2.2); they are
usually called trivial types since do not carry any information about their subjects,
but for the sort in the language. Intersection and subtyping are understood set
theoretically, which justifies rules (∧) and (≤). In particular if φ = φ′ then
Γ ⊢ Q : φ implies Γ ⊢ Q : φ′.

Rules for Val and Com terms Coming to the rules for values and com-
putations, rule (var) is obvious. About rule (λ) we observe that in our syntax
abstractions have the shape λx.M where M ∈ Com, so that they represent func-
tions from values (the variable x can be substituted only by terms in Val) to
computations. Also, abstractions are values and by rule (λ) are assigned functional
types δ −→ τ ∈ LD if δ is the type of x and τ ∈ LSD is a type of M , as usual.

We observe that δ ≤D ωD ≤D⊥ ωD⊥ , therefore any value V has ωD⊥ as its type
by rule (≤).

Rules (unit) and (⋆) are instances of the corresponding rules in pure compu-
tational λ-calculus in [dT20], specialized to the case of the state monad. The
term [V ] represents the trivial computation returning V ; as a function of stores
it is such that [V ](s) = (V, s) behaving as the constant function w.r.t. the value
V , and as the identity w.r.t. the store s; therefore if δ is a type of V any type
σ −→ δ × σ can be assigned to [V ] by rule (unit).

In rule (⋆) the first premise says that applying M to a store s of type σ yields
a result M(s) = (W, t) such that W : δ′ and t : σ′. We abbreviate this by saying
that (W, t) = [W ](t) has type δ′ × σ′. In the second premise the value V of type
δ′ −→ σ′ −→ δ′′ × σ′′ is the currified version of a function of type δ′ × σ′ −→ δ′′ × σ′′
(which is not a type in our formalism) sending (W, t) to some new result of type
δ′′ × σ′′. By the operational semantics of the ⋆ operator, we then conclude that
for arbitrary s of type σ, (M ⋆ V )(s) yields a result of type δ′′ × σ′′, hence the
typing M ⋆ V : σ −→ δ′′ × σ′′ in the conclusion of the rule.

Rules for Store, Lkp terms, and configurations Since there is no rule
explicitly typing emp, Γ ⊢ emp : ωS is the only typing of emp in the any context
Γ, up to =S.

According to rule (get), the result of (getℓ(λx.M))(s) has type κ if s has type
⟨ℓ : δ⟩ ∧ σ, hence it has both type ⟨ℓ : δ⟩ and σ. As we have seen above, if s has
type ⟨ℓ : δ⟩ and δ ̸= ωD⊥ then lkpℓ(s) = V for some value V of type δ. Now, from
the operational semantics we may argue that (getℓ(λx.M))(s) = (M{V/x})(s);
hence if s has type σ then a sufficient condition to produce a result M(s) of type
κ is to assume that x in M has type δ, as required in the premise of the rule.

Rule (set) is the central and subtlest rule of the system. Reasoning as before,
we argue that

(setℓ(V,M))(s) = M(updℓ(V, s))

and we look for sufficient conditions for the result having type κ whenever s has
type σ. Now if V has type δ as in the first premise, then updℓ(V, s) has type
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⟨ℓ : δ⟩; moreover, as discussed with reference to the derived rule (13.15), it has
also type σ, because ℓ ̸∈ dom(σ), namely the side condition of the rule, so that it
suffices that M has type ⟨ℓ : δ⟩ ∧ σ −→ κ to conclude, which is the second premise.

The rules (set) and (get) are dual, in a sense. Consider the derivation:

Γ ⊢ V : δ
Γ, x : δ ⊢M : σ −→ κ

(get)
Γ ⊢ getℓ(λx.M) : (⟨ℓ : δ⟩ ∧ σ) −→ κ ℓ ̸∈ dom(σ)

(set)
Γ ⊢ setℓ(V, getℓ(λx.M)) : σ −→ κ

Since ⟨ℓ : δ⟩ is strictly smaller than ωS for any δ, it follows that ωS −→ κ < ⟨ℓ :
δ⟩ ∧σ −→ κ for any δ and σ. Indeed, as a consequence of Theorem 14.2.6, we know
that Γ ̸⊢ getℓ(λx.M) : ωS −→ ωD × ωS.

In fact, getℓ(λx.M) ̸⇑ because (getℓ(λx.M), emp) is a blocked configuration.
But if the term getℓ(λx.M) is placed in a suitable context, as in the conclusion of the
derivation above, then the type ωS −→ ωD × ωS is derivable for setℓ(V, getℓ(λx.M))
depending on the typing of M . E.g. consider M ≡ [x], one can take σ = ωS and
κ = ωD × ωS; from the derivation above, we see that M ′ = setℓ(V, getℓ(λx.[x]))
has type ωS −→ ωD × ωS. On the other hand, (M ′, emp) converges:

(M ′, emp)→ (getℓ(λx.[x]), updℓ(V, emp))→ ([V ], updℓ(V, emp))

It remains to explain why the side condition ℓ ̸∈ dom(σ) in rule (set) is not
only sufficient, but also necessary. Recall that ℓ ̸∈ dom(σ) implies that there exists
no δ ∈ LD such that σ ≤S ⟨ℓ : δ⟩, see Remark 13.2.13. Therefore, if σ = ∧

i⟨ℓi : δi⟩
where δ ∈ LD, then for all i we have ℓi ̸= ℓ. This means that from the side
condition no information about the value associated to ℓ by stores of type σ is
recorded in the type.

Therefore the typing M : (⟨ℓ : δ⟩ ∧ σ) −→ κ in the second premise does not
depend on any information about the value of the store at ℓ, but for the δ in
⟨ℓ : δ⟩, which is the type of V in the first premise.

Dropping the side condition we could have, say, M : ⟨ℓ : δ⟩∧⟨ℓ : δ′⟩ −→ κ where
⟨ℓ : δ⟩ ∧ ⟨ℓ : δ′⟩ = ⟨ℓ : δ ∧ δ′⟩, with both δ, δ′ ∈ LD, and hence we could derive the
type ⟨ℓ : δ′⟩ −→ κ for setℓ(V,M) in the conclusion. Now this says that if s has type
⟨ℓ : δ′⟩ then (setℓ(V,M))(s) = M(updℓ(V, s)) will have type κ, notwithstanding
that the value of updℓ(V, s) at ℓ is V , of which we only know that it has type δ,
not δ′.

We further illustrate the point in the next example.

Example 13.4.5. A key issue in defining the system in Figure 13.2 is how to type
terms like M ≡ setℓ(W, setℓ(V, getℓ(λx.[x]))) from Example 12.2.12, exhibiting the
strong update property of the calculus. Let us abbreviate N ≡ setℓ(V, getℓ(λx.[x])),
and suppose that ⊢ V : δ and ⊢ W : δ′; we want to derive ⊢ M : σ −→ κ for
suitable σ and κ. Suppose that the derivation ends by (set), then

⊢ W : δ′ ⊢ N : ⟨ℓ : δ′⟩ ∧ σ −→ κ ℓ ̸∈ dom(σ)
(set)

⊢M ≡ setℓ(W,N) : σ −→ κ

where the derivation of the second premise is
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⊢ V : δ ⊢ getℓ(λx.[x]) : ⟨ℓ : δ⟩ ∧ ⟨ℓ : δ′⟩ ∧ σ −→ κ (∗)
(set)

⊢ N ≡ setℓ(V, getℓ(λx.[x])) : ⟨ℓ : δ′⟩ ∧ σ −→ κ

and (∗) is ℓ ̸∈ dom(⟨ℓ : δ′⟩ ∧ σ). Since ℓ ̸∈ dom(σ), (∗) implies that δ′ = ωD⊥ , and
therefore, σ −→ κ = ωS ∧ σ −→ κ = ⟨ℓ : ωD⊥⟩ ∧ σ −→ κ.

On the other hand, for all σ:

x : δ ⊢ [x] : σ −→ κ
(get)

⊢ getℓ(λx.[x]) : ⟨ℓ : δ⟩ ∧ σ −→ δ × σ

Hence, M has type σ −→ δ × σ.
Now, suppose that ⊢ s : σ: hence ⊢ (M, s) : δ × σ. From Example 12.2.12,

we know that (M, s) →∗ ([V ], updℓ(V, updℓ(W, s))); since we expect that the
types are preserved by reduction (see Theorem 14.1.4), we must be able to type
⊢ [V ] : σ −→ δ × σ, which is plain by (unit) and the hypothesis that ⊢ V : δ, and
⊢ updℓ(V, updℓ(W, s)) : σ.

Let us assume that σ ̸= ωS (otherwise the thesis is trivial). Then σ = ∧
i⟨ℓi : δi⟩

with δi ̸= ωD⊥ for all i, so that ℓ ̸∈ dom(σ) implies that ℓ ≠ ℓi for all i. Therefore
⊢ s : ⟨ℓi : δi⟩ for all i by (≤) and

⊢ s : ⟨ℓi : δi⟩
(upd2)⊢ updℓ(W, s) : ⟨ℓi : δi⟩

(upd2)⊢ updℓ(V, updℓ(W, s)) : ⟨ℓi : δi⟩

Now by repeated applications of (∧) we conclude ⊢ updℓ(V, updℓ(W, s)) : σ, as
desired.

On passing we observe that updℓ(V, updℓ(W, s)) = updℓ(V, s) in the algebra of
store terms, and that the latter has the same types as the former.

Remark 13.4.6. From the example above, we realize that the following rule is
derivable

Γ ⊢M : σ −→ κ ℓ ̸∈ dom(σ)
(set′)

Γ ⊢ setℓ(V,M) : σ −→ κ

By adding this rule to the assignment system, we could restrict type for values
just to δ ∈ LD. We prefer the present system to save the symmetry among the
rules (set) and (get).
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CHAPTER 14

CHARACTERIZATION OF
CONVERGENCE

14.1 Type Invariance
A characteristic property of intersection types for ordinary λ-calculus is invariance
both under reduction and expansion of the subject. The analogous results are
proved for the pure computational λ-calculus in [dT20]. Here we extend such
results to the present calculus w.r.t. the typing of algebraic operations.

A preliminary lemma states a fundamental property of subtyping of arrow
types, both in ThD and in ThSD:

Lemma 14.1.1. Let τ ̸= ωSD and κ ̸= ωC, then:

1. ∧
i∈I(δi −→ τi) ≤D δ −→ τ ⇐⇒
∃J ⊆ I. J ̸= ∅ & δ ≤D

∧
j∈J δj & ∧

j∈J τj ≤SD τ

2. ∧
i∈I(σi −→ κi) ≤SD σ −→ κ ⇐⇒
∃J ⊆ I. J ̸= ∅ & σ ≤S

∧
j∈J σj & ∧

j∈J κj ≤C κ

Proof. By induction over the definition of ≤.

The next lemma is an extension of the analogous property of the system in
[BCD83], also called Inversion Lemma in [BDS13] 14.1 because it is the backward
reading of the typing rules.

Lemma 14.1.2 (Generation lemma). Assume that δ ̸= ωD, σ ̸= ωS, and τ ̸= ωSD,
then:

1. Γ ⊢ x : δ ⇐⇒ Γ(x) ≤D δ

2. Γ ⊢ λx.M : δ ⇐⇒ ∃I, δi, τi. ∀i ∈ I. Γ, x : δi ⊢M : τi & ∧
i∈I δi −→ τi ≤D δ

3. Γ ⊢ [V ] : τ ⇐⇒
∃I, δi, σi. ∀i ∈ I. Γ ⊢ V : δi &∧

i∈I σi −→ δi × σi ≤SD τ
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4. Γ ⊢M ⋆ V : τ ⇐⇒
∃I, τi = σi −→ δi × σ′i, δ′′i , σ′′i . ∀i ∈ I. Γ ⊢M : σi −→ δ′′i × σ′′i &
Γ ⊢ V : δ′′i −→ σ′′i −→ δi × σ′i & ∧

i∈I τi ≤SD τ

5. Γ ⊢ getℓ(λx.M) : τ ⇐⇒
∃I, δi, σi, κi. ∀i ∈ I. Γ, x : δi ⊢M : σi −→ κi &∧

i∈I(⟨ℓ : δi⟩ ∧ σi −→ κi) ≤SD τ

6. Γ ⊢ setℓ(V,M) : τ ⇐⇒
∃I, δi, σi, κi. ∀i ∈ I. Γ ⊢M : ⟨ℓ : δi⟩ ∧ σi −→ κi &
Γ ⊢ V : δi & ∧

i∈I(σi −→ κi) ≤SD τ &
ℓ ̸∈ dom(∧

i∈I σi)

7. Γ ⊢ s : σ ⇐⇒
∃I, li, δi. ∀i ∈ I. ∃Vi. lkpℓi

(s) = Vi &
Γ ⊢ Vi : δi & σ ≤S

∧
i∈I⟨ℓi : δi⟩

8. Γ ⊢ lkpℓ(s) : δ ⇐⇒ ∃I, δi. ∀i ∈ I. Γ ⊢ s : ⟨ℓ : δi⟩ & ∧
i∈I δi ≤D δ

9. Γ ⊢ updℓ(V, s) : σ ⇐⇒
∃I, δi, ℓi, δ. ∀i ∈ I. s = ∧

i∈I⟨ℓi : δi⟩ where ℓi ̸= ℓ &
Γ ⊢ V : δ & ⟨ℓ : δ⟩ ∧ ∧

i∈I⟨ℓi : δi⟩ ≤ σ

10. Γ ⊢ (M, s) : κ ⇐⇒
∃I, σi, κi. ∀i ∈ I. Γ ⊢M : σi −→ κi &
Γ ⊢ s : σi & ∧

i∈I κi ≤ κ

Proof. The implications ⇐ are immediate. To see the implications ⇒ we reason
by induction over the derivations, by distinguishing some cases based on the last
rule. Parts i) and 2 are the same as for ordinary intersection types and λ-calculus;
part 3 is immediate by the induction hypothesis, hence we treat part 4, 5, and 6,
only.

4. If the last rule in the derivation of Γ ⊢ M ⋆ V : τ is (⋆) just take I as a
singleton set. If it is (≤) then the thesis follows immediately by induction and
the transitivity of ≤SD. Finally, suppose that the derivation ends by

Γ ⊢M ⋆ V : τ1 Γ ⊢M ⋆ V : τ2
(∧)

Γ ⊢M ⋆ V : τ1 ∧ τ2

and τ ≡ τ1 ∧ τ2. Then by induction we have ∃I, τi = σi −→ δi × σ′i, δ′′i , σ′′i . ∀i ∈
I. Γ ⊢ M : σi −→ δ′′i × σ′′i & Γ ⊢ V : δ′′i −→ σ′′i −→ δi × σ′i & ∧

i∈I τi ≤SD τ1 and
∃J, τj = σj −→ δj × σ′j, δ′′j , σ′′j . ∀j ∈ J. Γ ⊢ M : σj −→ δ′′j × σ′′j & Γ ⊢ V : δ′′j −→
σ′′j −→ δj × σ′j & ∧

i∈I τj ≤SD τ2. From this, the thesis immediately follows by
observing that∧

i∈I

τi ≤SD τ1 &
∧
j∈J

τj ≤SD τ2 ⇒
∧
i∈I

τi ∧
∧
j∈J

τj ≤SD τ1 ∧ τ2.

5. If the last rule in the derivation of Γ ⊢ getℓ(λx.M) : τ is (get) just take I
as a singleton set, as before. Also case subsumption case is a routine proof by i.
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h. Let’s suppose the derivation ends by
Γ ⊢ getℓ(λx.M) : τ1 Γ ⊢ getℓ(λx.M) : τ2

(∧)
Γ ⊢ getℓ(λx.M) : τ1 ∧ τ2

Then by induction we have:
∃I, δi, σi, κi. ∀i ∈ I. Γ, x : δi ⊢M : σi −→ κi & ∧

i∈I(⟨ℓ : δi⟩ ∧ σi −→ κi) ≤SD τ1
and ∃J, δj, σj, κj. ∀j ∈ J. Γ, x : δj ⊢M : σj −→ κj & ∧

j∈J(⟨ℓ : δj⟩ ∧ σj −→ κj) ≤SD

τ2 Since τ ̸= ωSD then also τ1, τ2 ̸= ωSD, hence w.l.o.g. we can suppose that for
i = 1, 2 there exist σ̄i and κ̄i such that τi has the shape σ̄i −→ κ̄i.

By Part (2) of Lemma 14.1.1 we know that ∃Ī ⊆ I. Ī ̸= ∅ & σ̄1 ≤S∧
i∈Ī σi ∧ ⟨ℓ : δi⟩ & ∧

i∈Ī κi ≤C κ̄1 and ∃J̄ ⊆ J. J̄ ̸= ∅ & σ̄2 ≤S
∧

j∈J̄ σj ∧ ⟨ℓ :
δj⟩ & ∧

j∈J̄ κj ≤C κ̄2 By this, the thesis follows by observing that ⟨ℓ : ∧
i∈Ī δi ∧∧

j∈J̄ δj⟩ ∧
∧

i∈Ī σi ∧
∧

j∈J̄ σj −→
∧

i∈Ī κi ∧
∧

j∈J̄ κj ≤SD τ1 ∧ τ2 = τ
6. As in the previous parts, let’s discuss just about the case in which the last

rule in the derivation is (∧):

Γ ⊢ setℓ(V,M) : τ1 Γ ⊢ setℓ(V,M) : τ2
(∧)

Γ ⊢ setℓ(V,M) : τ1 ∧ τ2

then, by induction we have:
∃I, δi, σi, κi. ∀i ∈ I. Γ ⊢ M : ⟨ℓ : δi⟩ ∧ σi −→ κi & Γ ⊢ V : δi & ∧

i∈I(σi −→
κi) ≤SD τ1 & ℓ ̸∈ dom(∧

i∈I σi)
∃J, δj, σj, κj. ∀j ∈ J. Γ ⊢ M : ⟨ℓ : δj⟩ ∧ σj −→ κj & Γ ⊢ V : δj & ∧

j∈J(σj −→
κj) ≤SD τ2 & ℓ ̸∈ dom(∧

j∈J σj).
The thesis by similar use of Part (2) of Lemma 14.1.1 as in the previous

point and by the fact that by Definition 13.2.12 we have that ℓ ̸∈ dom(∧
i∈I σi) ∪

dom(∧
j∈J σj), hence ℓ ̸∈ dom(∧

i∈I σi ∧
∧

j∈J σj).

Lemma 14.1.3 (Substitution and expansion).

1. If Γ, x : δ ⊢M : τ and Γ ⊢ V : δ then Γ ⊢M{V/x} : τ .

2. If Γ ⊢M{V/x} : τ then there exists δ ∈ LD such that:

Γ ⊢ V : δ and Γ, x : δ ⊢M : τ

Proof. Both parts are proved by induction over derivations, using Lemma 14.1.1
and Lemma 14.1.2.

We are now ready to establish the type invariance property w.r.t. reduction
and expansion:

Theorem 14.1.4 (Subject reduction).

Γ ⊢ (M, s) : κ & (M, s)→ (N, t) ⇒ Γ ⊢ (N, t) : κ

Proof. Let us assume that κ ̸= ωC since the thesis is trivial, otherwise. The proof
is by induction over the definition of (M, s)→ (N, t), using Lemma 14.1.2. We
treat the interesting cases. From the hypothesis Γ ⊢ (M, s) : κ and by Part 10 of
Lemma 14.1.2 we have that there exist a finite set I and types σi, κi such that for
all i ∈ I:
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(a) Γ ⊢M : σi −→ κi;

(b) Γ ⊢ s : σi

(c) ∧
i∈I κi ≤C κ.

Case ([V ] ⋆ (λx.M ′), s)→ (M ′{V/x}, s):
By ((a)), and using Parts 3 and 4 of Generation Lemma 14.1.2, for all i ∈ I
there is Ji, δij, δ

′
ij, δ

′′
ij, σ

′′
ij such that for all j ∈ Ji:

(d) Γ ⊢ V : δ′ij with ∧
j∈Ji

δ′ij ≤D δij, where Γ ⊢ [V ] : σij −→ δ′ij × σij

(e) Γ ⊢ λx.M ′ : δij −→ τij with ∧
j∈Ji

τij ≤C σi −→ κi, where τij = σ −→
δ′′ij × σ′′ij.

By applying Part 3 of Generation Lemma 14.1.2 to ((e)), for all i ∈ I, j ∈ Ji,
there is a finite set Kij, δijk, δ

′′
ijk, σijk such that for all k ∈ Kij:

(f) Γ, x : δijk ⊢ M ′ : σijk −→ δ′′ijk × σ′′ijk with ∧
k∈K(δijk −→ σijk −→ δ′′ijk ×

σ′′ijk) ≤SD δij −→ τij.

Set σijk −→ δ′′ijk × σ′′ijk =: τijk. In virtue of Lemma 14.1.1, we may assume
w.l.o.g. that there exists a not empty set K ⊆ Kij such that δij ≤D

∧
k∈K δijk

and ∧
k∈K τijk ≤SD τij.

By ((e)) we have: δ′ij ≤D δij ≤D δijk ⇒ Γ ⊢ V : δijk.
By ((f)) we have: ∧

i∈I

∧
j∈Ji

∧
k∈K ≤SD τij ≤SD σi −→ κi.

In conclusion, by Substitution Lemma 14.1.3, Γ ⊢M ′{V/x} : σi −→ κi, hence
by (conf) Γ ⊢ (M ′{V/x}, s) : κi; now by repeated applications of rule (∧)
and (≤), Γ ⊢ (M ′{V/x}, s) : κ.

Case (setℓ(V,M), s)→ (M, updℓ(V, s)):
By applying Part 6 of Generation Lemma to ((a)):
∀i ∈ I. ∃Ji, δij, σij, κij such that for all j ∈ Ji:

1. Γ ⊢M ′ : ⟨ℓ : δij⟩ ∧ σij −→ κij

2. Γ ⊢ V : δij

3. ∧
j∈Ji

(σij −→ κij) ≤SD σi −→ κi

4. ℓ ̸∈ dom(∧
j∈Ji

σij)

By Parts 3 and 4 of Generation Lemma 14.1.2 and Lemma 14.1.1: there
exists J ∈ Ji

σi ≤S

∧
j∈J

σij &
∧
j∈J

κij ≤C κi

Moreover, by (upd2) and (∧): Γ ⊢ updℓ(V, s) : σi ∧ ⟨ℓ : δij⟩. We conclude by
(conf) and (≤).
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Case (getℓ(λx.M), s)→ (M{V/x}, s) where lkpℓ(s) = V :
By applying Part 5 of Generation Lemma to (a), for all i ∈ I there exist
Ji, δij, σij, κij such that for all j ∈ Ji:

Γ, x : δij ⊢M ′ : σij −→ κij &
∧

j∈Ji

(⟨ℓ : δij⟩ ∧ σij −→ κij) ≤SD σi −→ κi

By Lemma 14.1.1 there exists J ∈ Ji

σi ≤S

∧
j∈J

⟨ℓ : δij⟩ ∧ σij &
∧
j∈J

κij ≤C κi

By Part 7 of Generation Lemma 14.1.2 we know that there exist at least
one V such that lkpℓ(s) = V and Γ ⊢ V : δij. We conclude by applying
Substitution Lemma 14.1.3 and then routine arguments.

All other cases are immediate by Lemma 14.1.2.

In order to prove Subject Expansion, we have to to establish some properties
of stores, relating store terms with their types.

Lemma 14.1.5.

(a) ℓ ̸∈ dom(σ)⇒ [Γ ⊢ s : σ ⇐⇒ Γ ⊢ updℓ(V, s) : σ]

(b) Γ ⊢ updℓ(V, s) : σ & σ ≤S ⟨ℓ : δ⟩ ≠ ωS ⇒ Γ ⊢ V : δ

Proof. ((a)) The if part is immediate by induction over the derivation of Γ ⊢
updℓ(V, s) : σ. For the only if part, when σ = ωS the thesis follows by (ω).
Otherwise, let σ = ∧

i∈I⟨ℓi : δi⟩. Then I ̸= ∅ and for all i ∈ I we have
δi ̸= ωD and then ℓi ̸= ℓ because ℓ ̸∈ dom(σ). Therefore, for all i ∈ I,
Γ ⊢ s : ⟨ℓi : δi⟩ by (≤) and Γ ⊢ updℓ(V, s) : ⟨ℓi : δi⟩ by (upd2), and we
conclude by (∧).

((b)) By hypothesis σ = ∧
i∈I⟨ℓi : δi⟩ ≤S ⟨ℓ : δ⟩, where w.l.o.g. we assume that

in ∧
i∈I⟨ℓi : δi⟩ the ℓi are pairwise distinct. Then there exists exactly one

i′ ∈ I such that ⟨ℓi′ : δi′⟩ ≤S ⟨ℓ : δ⟩, so that ℓi′ = ℓ and δi′ ≤D δ. Now
Γ ⊢ updℓ(V, s) : σ implies that Γ ⊢ updℓ(V, s) : ⟨ℓi′ : δi′⟩ ≡ ⟨ℓ : δi′⟩ which is
derivable only if Γ ⊢ V : δi′ . Then from δi′ ≤D δ we conclude by (≤).

Proposition 14.1.6. Γ ⊢ s : σ & ⊢ s = t⇒ Γ ⊢ t : σ

Proof. By checking axioms in Definition 12.2.2. The only interesting case is when
s ≡ updℓ(V, updℓ(W, s′)) and t ≡ updℓ(V, s′). If ℓ ̸∈ dom(σ) then Γ ⊢ s : σ iff
Γ ⊢ s′ : σ iff Γ ⊢ t : σ by Part ((a)) of Lemma 14.1.5.

If ℓ ∈ dom(σ) then there exist δ ̸= ωD and σ′ such that σ = ⟨ℓ : δ⟩ ∧ σ′ and
ℓ ̸∈ dom(σ′). By the above and that Γ ⊢ σ ≤ σ′, we have that Γ ⊢ s′ : σ′; by Part
((b)) of Lemma 14.1.5, Γ ⊢ V : δ, hence Γ ⊢ t ≡ updℓ(V, s′) : ⟨ℓ : δ⟩ by (upd1). By
Part ((a)) of Lemma 14.1.5 Γ ⊢ t : σ′, hence we conclude by (∧).
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We are now in place to prove the Subject expansion property of the typing
system.

Theorem 14.1.7 (Subject expansion).

Γ ⊢ (N, t) : κ & (M, s)→ (N, t) ⇒ Γ ⊢ (M, s) : κ

Proof. The proof is by induction over (M, s) → (N, t), assuming that κ ̸= ωC .
The only interesting cases are the following.

Case: M ≡ [V ] ⋆ (λx.M ′) and N ≡M ′{V/x} and s = t.
By the last part of Lemma 14.1.2, ∃I, σi, κi. ∀i ∈ I. Γ ⊢ N : σi −→ κi &
Γ ⊢ t : σi & ∧

i∈I κi ≤ κ. By Lemma 14.1.3, for all i ∈ I there exist δi such
that Γ ⊢ V : δi and Γ, x : δi ⊢M ′ : σi −→ κi. Then Γ ⊢ [V ] : σi −→ δi × σi by
rule (unit) and Γ ⊢ λx.M ′ : δi −→ σi −→ κi by rule (λ). We conclude that
Γ ⊢ [V ] ⋆ (λx.M ′) : σ −→ κ by rule (⋆) and (∧).

Case (getℓ(λx.M ′), s)→ (M ′{V/x}, s) where lkpℓ(s) = V .
As before, by the last part of Generation Lemma 14.1.2, and by Lemma 14.1.3,
∃I, σi, κi. ∀i ∈ I. Γ ⊢ N : σi −→ κi & Γ ⊢ s : σi & ∧

i∈I κi ≤ κ, and for
all i ∈ I there exist δi such that Γ ⊢ V : δi and Γ, x : δi ⊢ M ′ : σi −→ κi.
Since Γ ⊢ V : δi we derive by rule (upd1) that Γ ⊢ s = updℓ(V, s′) : ⟨ℓ : δi⟩,
where we can assume w.l.o.g. that s = updℓ(V, s′) where l ̸∈ dom(s′) by
Definition 12.2.2. By Γ, x : δi ⊢ M ′ : σi −→ κi and by (get) we obtain:
Γ ⊢ getℓ(λx.M ′) : (⟨ℓ : δi⟩ ∧ σi) −→ κi. By this and Γ ⊢ s : ⟨ℓ : δi⟩ ∧ σi, we
conclude that Γ ⊢ getℓ(λx.M ′) : κ by (conf) and (≤).

Case (setℓ(V,M ′), s)→ (M ′, updℓ(V, s)).
By the last part of Lemma 14.1.2, ∃I, σi, κi. ∀i ∈ I. Γ ⊢ N : σi −→ κi &
Γ ⊢ updℓ(V, s) : σi & ∧

i∈I κi ≤ κ. We distinguish two cases. Suppose
ℓ ̸∈ dom(σi), then

Γ ⊢ V : ωD Γ ⊢M ′ : (⟨ℓ : ωD⟩ ∧ σi) −→ κi
(set)

Γ ⊢ setℓ(V,M ′) : σi −→ κi

By lemma 14.1.5.(i) we know that Γ ⊢ s : σi. Hence, the thesis follows by
(conf) and (∧).
Otherwise, suppose ℓ ∈ dom(σi). By lemma 14.1.5.(ii), we have that there
exist δi such that σi ≤ ⟨ℓ : δi⟩ and Γ ⊢ V : δi. We can assume wlog
σi = ⟨ℓ : δi⟩ ∧ σ′i with ℓ ̸∈ dom(σ′i):

Γ ⊢ lkpℓ(V, s) : σi ⇒ Γ ⊢ lkpℓ(V, s) : σ′i
⇒ Γ ⊢ s : σ′i since ℓ ̸∈ dom(σ′i) and by 14.1.5.(b)
⇒ Γ ⊢ (setℓ(V,M ′), s) : κi

The thesis follows by application of (conf) and (∧).
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Γ ⊢ V : δ

Γ ⊢W : δ′

(unit)
Γ ⊢ [W ] : (⟨ℓ : δ⟩ ∧ σ) −→ δ′ × (⟨ℓ : δ⟩ ∧ σ) ℓ ̸∈ dom(σ)

(set)
Γ ⊢ setℓ(V, [W ]) : σ −→ δ′ × (⟨ℓ : δ⟩ ∧ σ)

Γ, x : δ ⊢ N : σ −→ κ

(get)
Γ ⊢ getℓ(λx.N) : (⟨ℓ : δ⟩ ∧ σ) −→ κ

( ; )
Γ ⊢ setℓ(V, [W ]) ; getℓ(λx.N) : σ −→ κ

Figure 14.1: Type derivation in Example 14.1.8

Example 14.1.8. In Example 12.2.13 we have seen that

(setℓ(V, [W ]) ; getℓ(λx.N), s)→∗ (N{V/x}, updℓ(V, s))

where M ;N ≡M ⋆ λ .N . To illustrate subject reduction, let’s first specialize the
typing rule (⋆) to the case of M ;N as follows:

Γ ⊢M : σ −→ δ′ × σ′ Γ ⊢ N : σ′ −→ δ′′ × σ′′
( ; )

Γ ⊢M ;N : σ −→ δ′′ × σ′′

Now, consider the derivation of Γ ⊢ setℓ(V, [W ]) ; getℓ(λx.N) : σ −→ κ as in
Figure 14.1; therefore, assuming Γ ⊢ s : σ we conclude

Γ ⊢ (setℓ(V, [W ]) ; getℓ(λx.N), s) : κ

by rule (conf).
The obvious substitution lemma implies that the following rule is admissible:

Γ ⊢ V : δ Γ, x : δ ⊢ N : σ −→ κ

Γ ⊢ N{V/x} : σ −→ κ

On the other hand, we have that ℓ ̸∈ dom(σ) implies that σ = ∧
i∈I⟨ℓi : δi⟩ and

ℓ ̸= ℓi for all i ∈ I. Therefore, by (upd2) and (∧), from the assumption that Γ ⊢ s
we have Γ ⊢ updℓ(V, s) : σ, hence Γ ⊢ (N{V/x}, updℓ(V, s)) : κ by (conf).

Notice that the typing of W does not take part to the derivation of Γ ⊢
(N{V/x}, updℓ(V, s)) : κ, which corresponds to the fact that W gets discarded in
the reduction from (setℓ(V, [W ]) ; getℓ(λx.N), s) to (N{V/x}, updℓ(V, s)).

14.2 The Characterization Theorem
The main result of the chapter is Theorem 14.2.6 below, where convergent terms
are characterized by typeability with a single type in the intersection type system
from Section 13.4:

∀M ∈ Com0. M ⇓ ⇐⇒ ⊢M : ωS −→ ωD × ωS

To prove the only-if part it suffices the equivalence of the big-step and the small-
step operational semantics, namely reduction, established in Proposition 12.3.4,
and Theorems 14.1.4 and 14.1.7; more precisely, the needed part of this theorem is
subject expansion, and in particular that if Γ ⊢ ([V ], t) : κ and (M, s)→∗ ([V ], t)
then Γ ⊢ (M, s) : κ.
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Lemma 14.2.1.

∀M ∈ Com0. M ⇓ ⇒ ⊢M : ωS −→ ωD × ωS

Proof. First note that

M ⇓ ⇒ (M, emp) ⇓
⇒ ∃V, t. (M, emp) ⇓ (V, t)
⇒ ∃V, t. (M, emp)→∗ ([V ], t) (*)

by Proposition 12.3.4. Now consider the type derivation:

(ω)
⊢ V : ωD

(unit)
⊢ [V ] : ωS −→ ωD × ωS

(ω)
⊢ t : ωS

(conf)
⊢ ([V ], t) : ωD × ωS

By (*) and Theorem 14.1.7, we have that ⊢ (M, emp) : ωD × ωS so that ⊢ M :
ωS −→ ωD × ωS since ωD × ωS ̸=C ωC and, as observed in Section 13.4, ⊢ emp : ωS

is the only typing of emp in the empty context up to =S.

The proof of the if part of Theorem 14.2.6 is more difficult. We adapt to the
present calculus the technique of saturated sets used in [Kri93] to denote certain
sets of terms of ordinary λ-calculus, that are closed by β-expansion. Saturated
sets correspond to Tait’s computable predicates (see [vB95] Definition 3.2.2) and
are called “stable” in [BDS13], §17.2.

Definition 14.2.2 (Saturated sets). Let ♠,♣ be new symbols and let M(s) = ♠
if (M, s) ⇑. Then define | · | as a map associating to each type a subset of closed
terms, stores, or their combinations, depending on the its kind, plus the symbol
♠,♣:

1. |ωD⊥| = Val 0 ∪ {♣}

2. |δ| ⊆ Val 0 by |ωD| = Val 0, and
|δ −→ τ | = {V | ∀W ∈ |δ|. [W ] ⋆ V ∈ |τ |}

3. |σ| ⊆ Store 0 by
|⟨ℓ : ωD⊥⟩| = |ωS| = Store 0 and
|⟨ℓ : δ⟩| = {s | ℓ ∈ dom(s) & ∃V ∈ |δ|. lkpℓ(s) = V }
where δ is not an intersection and δ ̸≡ ωD⊥,
|⟨ℓ : δ ∧ δ′⟩| = |⟨ℓ : δ⟩| ∩ |⟨ℓ : δ′⟩|

4. |κ| ⊆ (Val 0 × Store 0) ∪ {♠} by
|ωC | = (Val 0 × Store 0) ∪ {♠} and |δ × σ| = |δ| × |σ|

5. |τ | ⊆ Com 0 by |ωSD| = Com 0 and
|σ −→ κ| = {M | ∀s ∈ |σ|. M(s) ∈ |κ|}

6. |φ ∧ φ′| = |φ| ∩ |φ′| for φ of any sort.
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Remark 14.2.3. Definition 14.2.2 is of interest on itself, because it provides an
interpretation of types in LD and LSD as sets of terms and of subtyping as the
subset relation.

Differently from [Kri93], in the above definition the interpretation of a type
does not depend on a mapping I for type variables, since in this setting the
only atoms are the ω’s. Nonetheless, the interpretation of types δ and τ are, in
general, non trivial subsets of Val 0 and Com 0, respectively. First, observe that
|ωC | ̸= |δ × σ| for all δ and σ, since ♠ ̸∈ |δ × σ|. As a consequence, we have that

M ∈ |σ −→ δ × σ′| ⇔ ∀s ∈ |σ| ∃(V, t) ∈ |δ × σ′|. (M, s) ⇓ (V, t)
For example, the interpretation of the type ωD −→ (ωS −→ ωD × ωS) is

{V | ∀M, s. ([W ] ⋆ V )(s) ∈ |ωD × ωS|}
therefore, λx.[x] ∈ |ωD −→ (ωS −→ ωD × ωS)|, but λx.Ωc does not belong to such
set because ([W ] ⋆ λx.Ωc)(s) = Ωc(s) = ♠ for any W .
Lemma 14.2.4. For any φ, φ′ of any kind, if φ ≤ φ′ then |φ| ⊆ |φ′|.
Proof. By induction over the definition of type pre-orders.

The saturated sets yield a sound interpretation of type judgments as stated in
the next lemma:
Lemma 14.2.5. Let Γ ⊢M : τ with Γ = {x1 : δ1, . . . , xn : δn} and M ∈ Com. For
any V1, . . . , Vn ∈ Val 0, if Vi ∈ |δi| for i = 1, . . . , n then M{V1/x1} · · · {Vn/xn} ∈
|τ |.
Proof. By induction over the derivation of Γ ⊢ M : τ . We abbreviate M ≡
M{V1/x1} · · · {Vn/xn}. The thesis is immediate if the derivation consists just of
(var), and it follows immediately by induction hypothesis if the derivation ends
by either (λ), (unit) or (∧). In case it ends by (≤) we use Lemma 14.2.4. The
following are the remaining cases.
Case (⋆): then M ≡M ′ ⋆ V , τ ≡ σ −→ δ′′ × σ′′ and the derivation ends by:

Γ ⊢M ′ : σ −→ δ′ × σ′ Γ ⊢ V : δ′ −→ σ′ −→ δ′′ × σ′′

Γ ⊢M ′ ⋆ V : σ −→ δ′′ × σ′′

By induction M ′ ∈ |σ −→ δ′ × σ′|, hence for all s ∈ |σ| there exists a result
(W, s′) ∈ |δ′ × σ′| such that (M ′, s) ⇓ (W, s′). Now

(M ′, s) ⇓ (W, s′)
⇒ (M ′, s)→∗ ([W ], s′) by Prop. 12.3.4
⇒ (M ′ ⋆ V , s)→∗ ([W ] ⋆ V , s′) (*)

Also by induction, we know that V ∈ |δ′ −→ σ′ −→ δ′′ × σ′′|, therefore there
exists (U, t) ∈ |δ′′ × σ′′| such that ([W ] ⋆ V , s′) ⇓ (U, t); on the other hand:

([W ] ⋆ V , s′) ⇓ (U, t)
⇒ ([W ] ⋆ V , s′)→∗ ([U ], t) by Prop. 12.3.4
⇒ (M ′ ⋆ V , s)→∗ ([U ], t) by (*)
⇒ (M ′ ⋆ V , s) ⇓ (U, t) by Prop. 12.3.4

Then we conclude that M ′ ⋆ V ≡M ′ ⋆ V ∈ |σ −→ δ′′ × σ′′|.
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Case (get): then M ≡ getℓ(λx.M ′), τ ≡ (⟨ℓ : δ⟩∧σ) −→ κ and the derivation ends
by:

Γ, x : δ ⊢M ′ : σ −→ κ

Γ ⊢ getℓ(λx.M ′) : (⟨ℓ : δ⟩ ∧ σ) −→ κ

Assume s ∈ |⟨ℓ : δ⟩ ∧ σ| = |⟨ℓ : δ⟩| ∩ |σ|. Since x : δ is in the premise
context, we have δ ∈ LD by context definition. By induction hypothesis for
all V ∈ |δ| we have M ′{V/x} ∈ |σ −→ κ|.
We have to prove that (getℓ(λx.M ′))(s) ≡ (getℓ(λx.M ′))(s) ∈ |κ| if s ∈ |⟨ℓ :
δ⟩ ∧ σ| = |⟨ℓ : δ⟩| ∩ |σ|
So we have to handle just two cases: δ is an intersection or not. The most
interesting case is when δ is not an intersection. By hypothesis we have:

(a) s ∈ |⟨ℓ : δ⟩| ⇒ ℓ ∈ dom(s) & ∃V ∈ |δ|. lkpℓ(s) = V

(b) s ∈ |σ| & V ∈ |δ| ⇒ (M ′{V/x})(s) ∈ |κ|

Since lkpℓ(s) = V , (getℓ(λx.M ′), s) → (M ′{V/x}, s), and by Proposi-
tion 12.3.4 we have (getℓ(λx.M ′))(s) = (M ′{V/x})(s) ∈ |κ|
Now consider the remaining case when δ is an intersection, that is δ = ∧

i∈I δi,
where every δi is not an intersection. By definition we know that V ∈ |δ| ⇔
∀i ∈ I. V ∈ |δi|. Reasoning as in the previous case, we conclude that
getℓ(λx.M ′) ∈ |⟨ℓi : δi⟩ ∧ σ −→ κ|. But ⟨ℓ : δi⟩ ∧ σ −→ κ ≤ ⟨ℓ : ∧

i∈I δi⟩ ∧ σ −→
κ ≡ ⟨ℓ : δ⟩ ∧ σ −→ κ. We conclude by Lemma 14.2.4.

Case (set): then M ≡ setℓ(V,M ′), τ ≡ σ −→ κ and the derivation ends by:

Γ ⊢ V : δ Γ ⊢M ′ : (⟨ℓ : δ⟩ ∧ σ) −→ κ ℓ ̸∈ dom(σ)
Γ ⊢ setℓ(V,M ′) : σ −→ κ

In this case M ≡ setℓ(V ,M ′). Now, let s ∈ |σ| be arbitrary: then

(setℓ(V ,M ′), s)→ (M ′, updℓ(V , s))

so that setℓ(V ,M ′)(s) = M ′(updℓ(V , s)). From the side condition ℓ ̸∈ dom(σ)
and the hypothesis s ∈ |σ| we deduce that for some set of indexes J , labels
in dom(σ) = {ℓj | j ∈ J} and types δj ∈ LD:

|σ| = |
∧
j∈J

⟨ℓj : δj⟩| =
⋂
j∈J

|⟨ℓj : δj⟩|

where ℓ ≠ ℓj for all j ∈ J . By the Equation 2 in Definition 12.2.2 we have,
for all j ∈ J :

lkpℓj
(updℓ(V , s)) = lkpℓj

(s) ∈ |δj| and ℓj ∈ dom(s)

hence updℓ(V , s) ∈ |σ| as well. On the other hand

lkpℓ(updℓ(V , s)) = V ∈ |δ|
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by induction, so that updℓ(V, s) ∈ |⟨ℓ : δ⟩| and hence

updℓ(V, s) ∈ |⟨ℓ : δ⟩| ∩ |σ| = |⟨ℓ : δ⟩ ∧ σ|

It follows that

setℓ(V ,M ′)(s) = M ′(updℓ(V , s)) ∈ |κ|

since M ′ ∈ |(⟨ℓ : δ⟩ ∧ σ) −→ κ| by induction.

Theorem 14.2.6 (Characterization of convergence).

∀M ∈ Com0. M ⇓ ⇐⇒ ⊢M : ωS −→ ωD × ωS

Proof. The only-if part is Lemma 14.2.1. To show the if part, by Lemma 14.2.5
⊢ M : ωS −→ ωD × ωS implies M ∈ |ωS −→ ωD × ωS|, where the typing context
Γ = ∅ and no substitution are considered since M is closed.

Recall that |ωS| = Store 0 and |ωD × ωS| = Val 0 × Store 0. Therefore, for any
s ∈ Store 0 we have M(s) ∈ |ωD×ωS|, namely there exist V ∈ Val 0 and t ∈ Store 0

such that (M, s) ⇓ (V, t), hence M ⇓.
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CHAPTER 15

CONCLUSIONS AND RELATED
WORK

15.1 Discussion and Related Work
The calculus and its monadic semantics But for the operators getℓ and
setℓ, the calculus syntax is the same as in Part I, where we considered a pure
untyped computational λ-calculus, namely without operations nor constants.
Therefore, the monad T and the respective unit and bind were generic, so that
types cannot convey any specific information about the domain TD, nor about
effects represented by the monad. However, the reduction relation in Section 12.2
is strictly included in that one considered there, which is the compatible closure of
the monadic laws from [Wad95], oriented from left to right. In contrast, here we
just retain rule (βc) and take the closure under rule (⋆-red). On the other hand,
we have shown in Part I that the reduction rules corresponding to the (right)
identity and associativity of the bind operator are not essential when considering
convergent terms.

The algebraic operators getℓ and setℓ come from Plotkin and Power [PP02,
PP03, Pow06]. The algebra of store terms is inspired to [PP02], where the store
monad in [Mog91] is generated by the update and lookup operations. Such a
construction, however, does not perfectly match to ours, because here the set L
of locations is infinite.

We have borrowed the notation for getℓ and setℓ from the “imperative λ-calculus”
in chapter 3 of [Gav19], where also a definition of the convergence predicate of a
configuration to a result is considered. Such a definition is a particular case of
the analogous notion in [DGL17, LG19] for generic algebraic effects. It is stated
in semantic terms, while we preferred the syntactical treatment in the algebra of
store terms in Section 12.2.

Intersection types and computational effects Intersection types are an
extension of Curry simple types, whose intended meaning is that of predicates
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of untyped terms. In particular, intersection types embody a form of ad hoc-
polymorphism, where one may consider the conjunction of semantically unrelated
types. As an instance of the Leibnitz’s law of identity of indiscernibles, terms can
be identified with the set of their properties, namely types. As a consequence,
updating the value associated to a location may radically change the types of the
store itself.

On the other hand, intersection types are a description of the value of a term,
which in our setting is the result of evaluating a configuration. This is the proper
reading of the typing rule (set): in the type of M we do not keep track of all the
intermediate changes of the store s when evaluating (M, s). Rather we foresee the
property of the final store in the result of (M, s), if any, under the assumption
that s satisfies the hypothesis expressed in the antecedent of the arrow type of M .

Our store types are not reference types, and indeed we do not consider the
locations among the values, nor we have a construct for dynamic allocation. This
makes difficult the comparison to [DP00] and to the subsequent [DCRDR07].
In Pfenning’s and others work, intersection types are added to the Hindley-
Milner type system for ML to enhance type expressivity and to strengthen
polymorphism. However, the resulting system is unsound, which forces the
restriction of intersection types to values and the loss of subtyping properties, that
are essentially those in Lemma 14.1.1. The issue is due to reference types in ML,
where the type of a location is its “intrinsic” type in the sense of Reynolds [Rey00].
In contrast, our store types are predicates over the stores, namely “extrinsic”
types, telling what are the meanings of the values associated to the locations in
the store.

Type and effect systems A further line of research is to use our type system
to investigate a semantic understanding of type and effect systems, introduced in
[GL86] and pursued in [TJ94]. In the insightful paper [WT03] a type and effect
judgement Γ ⊢ e : A, ε is translated into and ordinary typing Γ ⊢ e : T εA, where
T is a monad. This has fostered the application of type systems with monadic
types to static analysis for code transformation in [BKHB06, BKBH09], but also
raised the question of the semantics of the types T εA.

In the papers by Benton and others, the semantics of monadic types with
effect decorations is given in terms of PERs that are preserved by read and write
operations. Such a semantics validates equations that do hold under assumptions
about the effects of the equated programs; e.g. only pure terms, neither depending
on the store nor causing any mutation, can be evaluated in arbitrary order, or
repeated occurrences of the same pure code can be replaced by a reference where
the value of the code is stored after computing it just once. Such properties are
nicely reflected in our types: if λx.M has type δ −→ σ −→ δ′ × σ, and dom(σ)
includes all the ℓ occurring in M , then we know that the function represented
by λx.M is pure; similarly if M : σ −→ δ × σ and N : σ −→ δ′ × σ then for any
P : σ −→ κ both M ;N ;P and N ;M ;P will have the same types, and hence the
same behaviour. In general this suggests how to encode regions with store types
in our system.
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Filter-model construction Since [BCD83] we know that a λ-model can be
constructed by taking the filters of types in an intersection type system with
subtyping. The relation among the filter-model and Scott’s D∞ construction
has been subject to extensive studies, starting with [CDHL84] and continuing
with [DHA03, ADCH04, ABD06, AS08]. In the meantime Abramsky’s theory of
domain logic in [Abr91] provided a generalization of the same ideas to algebraic
domains in the category of 2/3 SFP, of which ω-ALG is a (full) subcategory,
based on Stone duality.

A further research direction is to move from ω-ALG to other categories such
as the category of relations. The latter is deeply related to non-idempotent
intersection types [dC18, BEM07] that have been shown to catch intensional
aspects of λ-calculi involving quantitative reasoning about computational resources.
If the present approach can be rephrased in the category of relations, then our
method could produce non-idempotent intersection type systems for effectful
λ-calculi.

In the perspective of considering categories other than ω-ALG, it is natural to
ask whether the synthesis of an “estrinisic” type system in the sense of Reynolds
out of the denotational semantics of a calculus, either typed or not, can be
described in categorical terms.

Refinement, essential, and non idempotent intersection types Another
view of intersection types is as refined types of ordinary types (see [Abr91]),
so that conjunction makes sense only among subtypes of the same type. This
seems in contrast with the main example in the literature which is the type
(σ ∧ (σ −→ τ)) −→ τ of the term λx.xx. However, both σ and σ −→ τ are subtypes
of ω = ω −→ ω in [BCD83], which is the counterpart of Scott’s domain equation
D = D −→ D. Here we have the equations ωD = ωD −→ ωSD and ωSD = ωS −→ ωC ,
representing the solution of the domain equation D = D −→ TD, where T is (a
variant of) the state monad in [Mog91]. The study of type interpretation in the
category of models of computational λ-calculi deserves further investigation.

As already mentioned, our type system is inspired by [BCD83], where the
intersection types are related by the subtyping relation. It is known that subtyping
can be avoided e.g. in the “essential” system in [vB95], which has syntax directed
rules. Compared to the system in [BCD83], the essential intersection type system
is equally powerful w.r.t. the characterization of strongly normalizable λ-terms
and other similar properties, but it is unrelated to the Scott D∞ model of the
λ-calculus, which is instead isomorphic to the filter-model in [BCD83]. In general,
the correspondence exploited in [Abr91] among type theories and domains gets
lost in case of essential types, describing webbed-models like Engeler’s. On the
other hand the essential type system is undecidable right because its expressive
power, as it is the case of ours because of Theorem 14.2.6.

Another family of intersection type systems have been introduced in [dC18].
Moving from Engeler’s model, De Carvalho obtains a system where intersection is
not idempotent, that is σ is not a subtype of σ ∧ σ. This provides an intensional
type system that is sensible to the temporal complexity of the reduction of terms to
normal form. It is a natural development of our work to design a non idempotent
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system for the side-effects with higher-order stores.

Towards a categorical perspective A development of the present work would
be a method for synthesizing intersection type systems for a computational λ-
calculus with algebraic operators for generic effects in the sense of [PP03]. Such a
process should be described in categorical terms; indeed, while it is well known
how to present the denotational semantics of the calculus as a functor into a
suitable category of meanings, it has been shown in [MZ15] that a system like
ours is itself a particular functor. A natural question is whether the latter functor
can be uniformly obtained from the categorical semantics of the calculus.

15.2 Conclusion
In this part we presented a type assignment system as a way to study the semantics
of an imperative computational λ-calculus equipped with global store and algebraic
operators. The system defines the semantics of the untyped calculus, and we
obtained a type theoretic characterization of convergence.

Deriving the type system from semantics as in Section 13.3 is the first con-
tribution of this part. In the present work, we exploited denotational semantics
of type systems, in general, but reversing the process from semantics to types.
Usually, one starts with a calculus and a type system, looking for a semantics
and studying properties of the model. On the contrary, we move from a domain
equation and the definition of the denotational semantics of the calculus of interest
and synthesize a filter-model and an intersection type system. This synthetic use
of domain logic is, in our view, prototypical w.r.t. the construction of logics catch-
ing properties of any computational λ-calculus with operators. We expect that
the study of such type systems will be of help in understanding the operational
semantics of such calculi, a topic that has been addressed in [DGL17, LG19], but
with different mathematical tools. Indeed, addressing the investigation in such a
way, we smoothly obtain the soundness and, possibly, the completeness.

The second result is that (closed) terms that are meant to be convergent w.r.t.
their natural operational semantics can be characterized via their typings in the
system. More precisely there exists exactly one type that can be assigned to all
convergent terms, which is akin to the lazy λ-calculus [AO93], where convergent
terms are characterized by the type ω −→ ω in the endogenous logic of the calculus,
in the sense of [Abr91].
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Since Moggi’s seminal papers [Mog89, Mog91], a substantial body of research has
been carried out about the computational λ-calculus and usage of the concept of
monad, both in theory and in practice of functional programming languages.

There is still a long way to go before we have a full understanding of what has
been presented in this thesis. The need for generalisation is evident from both a
syntactic and a semantic point of view.

Syntactic knowledge. In the beginning of our investigation, a strong re-
duction was considered (i.e. rewriting steps could occur anywhere in the term)
and then, via surface reduction, a weak one, which is deterministic. The results
achieved in Part I motivate the weak reduction considered in the case of the state
monad. This turning of interest is justified by the fact that, when interested in
returning a value, weak βc steps suffice. In addition, the theoretical result mirrors
the actual evaluation of programs, for example, in Haskell. But what is a general
pattern that one has to follow when it comes with a particular instance of the
monad?

On a syntactic level, we should understand what it means to add generic
operations to monadic constructors and, consequently, which is the shape of the
reduction rules when modelling generic effects. After that the first question that
arises is what kind of contextual closure would be taken into account.

In general, there is the need of reaching a top-down view of these reductions:
when to be more permissive and, instead, when to force effects to be produced just
at root level. A strictly connected issue is the generalisation of the factorization
results for generic effects.

From general to particular and back. We have discussed the monadic
interpretation in Part II. This interpretation has the defect of not addressing
generic effects, and therefore generic algebraic operators. This is difficult to do,
since one has to comprehend a multiplicity of behaviours via a purely equational
axiomatization.
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In the thesis the plot has consisted in considering a generic monad and then
instantiate the calculus for a particular, interesting case. Now the time to turn
back has come: using the insights gained through the study of state monad and
applying them in the case of the generic one.

Comonadic treatment. Sometimes, monadic aspects are combined with
comonadic ones. It is therefore natural to consider a λ-calculus modelling co-
computations over a generic comonad C. This involves defining and solving a
new domain equation D = CD −→ D from which to extract a calculus and a type
assignment system, following a modus operandi similar to the one adopted in this
thesis in Part III. The final goal is to combine the computational core with the
obtained comonadic calculus.

Switching categories. A natural question is how to move from ω-ALG,
and from Scott’s domains, to other categories of domains; surely the case of
the category of relations is interesting. In fact, REL is deeply related to non-
idempotent intersection types that have been shown to catch intensional aspects
of λ-calculi involving quantitative reasoning about computational resources. We
expect that the process presented in Part III, if worked out in this category,
would bring to an non-idempotent intersection type discipline, that in the case of
probabilistic monad, for example, is surely more proper. In the end, we aim to
produce non-idempotent intersection type systems for generic effectful λ-calculi.

Refinement types. Intersection types were born as an extension of the
Curry system for the untyped λ-calculus. Reynolds and Pfenning viewed in-
tersection types as extrinsic types, namely as refinement of ordinary, intrinsic
types. In Abramsky’s domain logic, refinement types denote compact points of
the interpretations of the ordinary types that they refine. If we interpret the D∞
construction as the denotation of a recursive type, intersection types in BCD-like
systems are refinement types of that type. This is the key to distil a type system
from a domain equation. Can such a process be framed in categorical terms, where
refinement type system is a functor, as proposed in [MZ15]?
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APPENDIX A

GENERAL PROPERTIES OF THE
CONTEXTUAL CLOSURE

Shape Preservation. We start by recalling a basic but key property of contextual
closure. If a step →γ is obtained by closure under non-empty context of a rule 7→γ , then
it preserves the shape of the term. We say that T and T ′ have the same shape if both
terms are an application (resp. an abstraction, an variable, a term of shape !P ).

Fact 4.3.2 (Shape preservation). Let 7→ρ be a rule and →ρ be its contextual closure.
Assume T = C⟨R⟩ →ρ C⟨R′⟩ = T ′ and that the context C is non-empty. Then T and T ′

have the same shape.

Note that a root steps 7→ is both a weak and a surface step.
The implication in the previous lemma cannot be reversed as the following example

shows:

M = V (IP )→ι V P = N

M is a σ-redex, but N is not.

Substitutivity. A relation ↪→ on terms is substitutive if

R ↪→ R′ implies R{Q/x} ↪→ R′{Q/x}. (substitutive)

An obvious induction on the shape of terms shows the following ([Bar85] p. 54).

Fact A.0.1 (Substitutive). Let →γ be the contextual closure of 7→γ.

1. If 7→γ is substitutive then →γ is substitutive: T →γ T ′ implies T{Q/x} →γ

T ′{Q/x}.

2. If Q→γ Q′ then T{Q/x} →∗γ T{Q′/x}.
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Appendix A. General Properties of the Contextual Closure

A.1 Properties of the Syntax Λ!

In this section, we consider the set of terms Λ! (the same syntax as the full bang calculus,
as defined in Section 3.2.1), endowed with a generic reduction →ρ (from a generic rule
7→ρ). We study some properties that hold in general in (Λ!,→ρ).

Terms are generated by the grammar:

T, S, R ::= x | ST | λx.T | !T (terms Λ!)

Contexts (C), surface contexts (S) and weak contexts (W) are generated by the
grammars:

C ::= ⟨⟩ | TC | CT | λx.C | !C (contexts)
S ::= ⟨⟩ | TS | ST | λx.S (surface contexts)

W ::= ⟨⟩ | TW |WT | !W (weak contexts)

If 7→ρ is a rule, the reduction →ρ its the closure under context C. Surface reduction
→s ρ (resp. weak reduction →w ρ) is the closure of 7→ρ under surface contexts S (resp. weak
contexts W). Non-surface reduction →¬s ρ (resp. non-weak reduction →¬w ρ) is the closure
of 7→ρ under contexts C that are not surface (resp. not weak).

A.1.1 Shape Preservation for Internal Steps in Λ!

Fact 4.3.2 (p. 39) implies that →¬s ρ and →¬w ρ steps always preserve the shape of terms.
We recall that we write 7→ρ to indicate the step→ρ obtained by empty contextual closure.
The following property immediately follows from Fact 4.3.2.

Fact A.1.1 (Internal Steps). Let 7→ρ be a rule and →ρ be its contextual closure. →¬w ρ

and →¬s ρ preserve the shapes of terms. Moreover, the following hold for →i ρ∈ {→¬s ρ, →¬w ρ}:

1. There is no T such that T →i ρ x, for any variable x.

2. T →i ρ !U1 implies T = !T1 and T1 →ρ U1.

3. T →i ρ λx.U1 implies T = λx.T1 and T1 →ρ U1.

4. T →i ρ U1U2 implies T = T1T2, with either (i) T1 →i ρ U1 (and T2 = U2), or (ii)
T2 →i ρ U2 (and T1 = U1). Moreover, T1 and U1 have the same shape, and so T2

and U2.

Corollary A.1.2. Let 7→ρ be a rule and →ρ be its contextual closure. Assume T→¬s ρ S

or T →¬w ρ S.

• T is a β!-redex if and only if S is.

• T is a σ-redex if and only if S is.

Proof. By repetitively applying Fact A.1.1.
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A.1. Properties of the Syntax Λ!

A.1.2 Surface Factorization, Modularly
In an abstract setting, let us consider a rewrite system (A,→) where →=→ξ ∪ →γ .
Under which condition → admits factorization, assuming that both →ξ and →γ do? To
deal with this question, a technique for proving factorization for compound systems in a
modular way has been introduced in [AFG21]. The approach can be seen as an analogous
for factorization of the classical technique for confluence based on Hindley-Rosen lemma:
if →ξ,→γ are e-factorizing reductions, their union →ξ ∪ →γ also is, provided that two
local conditions of commutation hold.

Theorem A.1.3 ([AFG21] Modular factorization). Let →ξ = (→e ξ ∪ →i ξ) and →γ =
(→e γ ∪ →i γ) be e-factorizing relations. Let →e :=→e ξ ∪ →e γ, and →i :=→i ξ ∪ →i γ. The union
→ξ ∪ →γ satisfies factorization Fact(→e ,→i ) if the following swaps hold

→i ξ · →e γ ⊆ →e γ · →∗ξ and →i γ · →e ξ ⊆ →e ξ · →∗γ (Linear Swaps)

Extensions of the bang calculus. Following [FG21], we now consider a calculus
(Λ!,→), where →=→β! ∪ →γ and →γ is the contextual closure of a new rule 7→γ .
Theorem A.1.3 states that the compound system→β! ∪ →γ satisfies surface factorization
if Fact(→s β! ,→¬s β!), Fact(→s γ ,→¬s γ), and the two linear swaps hold. We know that
Fact(→s β! ,→¬s β!) always hold. We now show that to verify the linear swaps reduces to a
single simple test, leading to Proposition 4.3.5.

First, we observe that each linear swap condition can be tested by considering for
the surface step only 7→, that is, only the closure of 7→ under empty context. This is
expressed in the following lemma, where we include also a useful variant.

Lemma A.1.4 (Root linear swaps). In Λ!, let →ξ,→γ be the contextual closure of rules
7→ξ, 7→γ.

1. →¬s ξ· 7→γ⊆ →s γ · →∗ξ implies →¬s ξ · →s γ ⊆ →s γ · →∗ξ .

2. Similarly, →¬s ξ· 7→γ⊆ →s γ · →=
ξ implies →¬s ξ · →s γ ⊆ →s γ · →=

ξ .

Proof. Assume M→¬s ξU→s γN . If U is the redex, the claim holds by assumption. Other-
wise, we prove M→s γ · →∗ξ N , by induction on the structure of U . Observe that both M

and N have the same shape as U (by Property 4.3.2 ).

• U = U1U2 (hence M = M1M2 and N = N1N2). We have two cases.

1. Case U1→s γN1. By Fact A.1.1, either M1 →ξ U1 or M2 →ξ U2.

(a) Assume M := M1M2→¬s ξU1M2→s γN1M2 =: N .
We have M1→¬s ξU1→s γN1, and we conclude by i.h..

(b) Assume M := U1M2→¬s ξU1U2→s γN1U2 =: N .
Then U1M2→s γN1M2 →ξ N1U2.

2. Case U2→s γN2. Similar to the above.

• U = λx.U0 (hence M = λx.M0 and N = λx.N0). We conclude by i.h..

Cases U = !U0 or U = x do not apply.
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As we study →β! ∪ →γ , one of the linear swap is →¬s γ · →s β!⊆ →s β! · →∗γ . We show
that any →γ linearly swaps after →s β! as soon as 7→γ is substitutive.

Lemma A.1.5 (Swap with→s β!). If 7→γ is substitutive, then →¬s γ · →s β!⊆ →s β! · →∗γ always
holds.

Proof. We prove →¬s γ · 7→β! ⊆ →s β! · →∗γ , and conclude by Lemma A.1.4.
Assume M→¬s γ(λx.P )!Q 7→β! P{Q/x}. We want to prove M→s β! · →∗γ P{Q/x}. By

Fact A.1.1, M = M1M2 and either M1 = λx.P0 →γ λx.P or M2 = !Q0 →γ !Q.

• In the first case, M = (λx.P0)!Q, with P0 →γ P . So, M = (λx.P0)!Q 7→β!

P0{Q/x} and we conclude by substitutivity of →γ (Fact A.0.1.1).

• In the second case, M = (λx.P )!Q0 with Q0 →γ Q. Therefore M = (λx.P )!Q0 7→β!

P{Q0/x}, and we conclude by Fact A.0.1.2.

Summing up, since surface factorization for β! is known, we obtain the following
compact test for surface factorization in extensions of →β! .

Proposition A.1.6 (A modular test for surface factorization). Let →β! be β!-reduction
and →γ be the contextual closure of a rule 7→γ. The reduction →β! ∪ →γ satisfies
surface factorization if:

1. Surface factorization of →γ: →∗γ ⊆ →s ∗γ · →¬s
∗
γ

2. 7→γ is substitutive: R 7→γ R′ implies R{Q/x} 7→γ R′{Q/x}.

3. Root linear swap: →¬s β! · 7→γ⊆ 7→γ · →∗β!
.

A.1.3 Restriction to Computations
In Com, let 7→ρ be a rule and →ρ be its contextual closure. The restriction of reduction
to computations preserves →ρ,→s ρ,→¬s ρ,→w ρ, →¬w ρ steps. Thus, all properties that hold
for (Λ!,→ρ) (e.g. Fact A.1.1 and corollary A.1.2) also hold for (Com,→ρ).

In particular, Proposition 4.3.5 is immediate consequence of Proposition A.1.6.
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APPENDIX B

OPERATIONAL PROPERTIES

B.1 Properties of Reduction in λ©

We now consider λ©, that is (Com,→©). As we have just seen above, the properties we
have studied in Appendix A.1 also hold when restricting reduction to computations.
Moreover, λ© satisfies also specific properties that do not hold in general, as the following.

Lemma B.1.1. Assume M ∈ Com and M→¬s © L. M is a id-redex (resp. a ι-redex) if
and only if L is.

Proof. If M is a id-redex, this means that M = (λz.[z])P→¬s γ(λz.[z])N = L where
P→¬s γN , hence L is a id-redex. Moreover, if M is a ι-redex, then P ̸= [V ], hence by
fact A.1.1 L ̸= [V ]′ for any V ′. Thus L is a ι-redex.

Let us prove that if L is a id-redex, so is M . Since L = (λz.[z])N , by fact A.1.1,
M is an application; we have the following cases:
(i.) Either M = (λz.P )N→¬s γ(λz.[z])N where P→¬s γ [z].
(ii.) or M = (λz.[z])P→¬s γ(λz.[z])N where P→¬s γN .
The case (i.) is impossible because otherwise P = [V ] for some value V , by Fact A.1.1,
such that V →γ z, but such a V does not exist. Therefore we are necessarily in case
(ii.), i.e. M is a id-redex. Moreover, if L is a ι-redex, then N ̸≡ [V ], hence N is an
application, and so is P by Fact A.1.1.

Lemma B.1.2. There is no P ∈ Com such that P →ι [x]

Proofs of the lemma for the postponement of ι. Notation: ⇒ 1⃝::=→∗β1
→=

ι

Lemma B.1.3 (ι vs. β1).

M →ι L→β1 N implies M →∗β1 · →
=
ι N

Proof. By induction on L. Note that if L = [x] there is no β1 reduction from it, so this
case is not in the scope of the induction. Cases:
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• L = (λx.[x])[V ] 7→β1 [V ] = N . Then, there are two possibilities.
Either M = (λz.[z])L 7→ι L then

M = (λz.[z])((λx.[x])[V ])→β1 (λz.[z])[V ]→β1 [V ] = N.

Or M = (λx.[x])[W ] with [W ]→ι [V ], and then

M = (λx.[x])[W ]→β1 [W ]→ι [V ] = N

• L = [λx.P ] →β1 [λx.P ′] = N where P →β1 P ′. In this case note that M has
necessary the shape [λx.Q] where Q →ι P . Otherwise, M should have been
(λz.[z])L 7→ι L but it is impossible by definition of 7→ι since L = [λx.P ]. The
thesis follows by induction, since we have Q→ι P →β1 P ′, Q⇒ 1⃝ P .

• L = V P →β1 V ′P ′ = N where →β1 is not root steps, that is:

a either V →β1 V ′ and P = P ′;
b or V = V ′ and P →β1 P ′.

By Fact 4.3.2, M , L, N are applications. So, M has the following shape:

1. M = V Q with Q→ι P

2. M = WP with W →ι V

3. M = (λx.[x])(V P ) 7→ι V P = L

We distinguish six sub-cases:

Case a1 We have M = V Q→β1 V ′Q→ι V ′P = N , switching the steps →ι and
→β1 , directly.

Case b1 Q→ι P →β1 P ′, then the thesis follows by i.h., that is: Q⇒ 1⃝ P ′ and
then M = V Q⇒ 1⃝ V P ′ = N .

Case a2 W →ι V →β1 V ′, then the thesis follows by i.h., that is: W ⇒ 1⃝ V ′ and
then M = WP ⇒ 1⃝ V ′P = N .

Case b2 We have M = WP →β1 WP ′ →ι V P ′ = N , switching the steps →ι

and →β1 , directly.
Case a3 M = (λx.[x])(V P )→β1 (λx.[x])(V ′P ) 7→ι V ′P = N

Case b3 M = (λx.[x])(V P )→β1 (λx.[x])(V P ′) 7→ι V P ′ = N

Notation ⇒ 2⃝::=→∗β1
→=

β2
→∗β1
→∗ι

Lemma B.1.4 (ι vs. β2).

M →ι L→β2 N implies M →∗β1→
=
β2→

∗
β1→

∗
ι N

Proof. By induction on L. Note that if L = [x] there is no β2 reduction from it, so this
case is not in the scope of the induction. Cases:

• L = (λx.P ′)[V ′] 7→β2 P ′{V ′/x} = N . Then, there are three possibilities.
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i M = (λx.P )[V ′] with P →ι P ′

ii M = (λx.P ′)[V ] with V →ι V ′

iii M = (λx.[x])L 7→ι L

So by analizyng each of the three cases above, we can postpone the →ι step as
follows:

Case i M = (λx.P )[V ] 7→β2 P{V/x} →ι P ′{V/x} where the last reduction step
is possible by Fact A.0.1.1. Note that P ̸= [x] otherwise would not possible
P →ι P ′, as assumed.

Case iii M = (λx.P )[V ] 7→β2 P{V/x} →∗ι P{V ′/x} where the last reduction
step is possible by Fact A.0.1.2.

Case iii M = (λx.[x])L 7→β2 (λx.[x])N 7→ι N

• L = [λx.P ] →β2 [λx.P ′] = N where P →β2 P ′. In this case note that M has
necessary the shape [λx.Q] where Q →ι P . Otherwise, M should have been
(λz.[z])L 7→ι L but it is impossible by definition of 7→ι since L = [λx.P ]. The
thesis follows by induction, since we have Q→ι P →β2 P ′, Q⇒ 2⃝ P .

• L = V P →β2 V ′P ′ = N where →β2 is not root steps, that is:

a either V →β2 V ′ and P = P ′;
b or V = V ′ and P →β2 P ′.

By Fact 4.3.2, M , L, N are applications. So, M has the following shape:

1. M = V Q with Q→ι P

2. M = WP with W →ι V

3. M = (λx.[x])(V P ) 7→ι V P = L

We distinguish six sub-cases:

Case a1 We have M = V Q→β2 V ′Q→ι V ′P = N , switching the steps →ι and
→β2 , directly.

Case b1 Q→ι P →β2 P ′, then the thesis follows by i.h., that is: Q⇒ 2⃝ P ′ and
then M = V Q⇒ 2⃝ V P ′ = N .

Case a2 W →ι V →β2 V ′, then the thesis follows by i.h., that is: W ⇒ 2⃝ V ′ and
then M = WP ⇒ 2⃝ V ′P = N .

Case b2 We have M = WP →β2 WP ′ →ι V P ′ = N , switching the steps →ι

and →β2 , directly.
Case a3 M = (λx.[x])(V P )→β2 (λx.[x])(V ′P ) 7→ι V ′P = N

Case b3 M = (λx.[x])(V P )→β2 (λx.[x])(V P ′) 7→ι V P ′ = N

Notation: ⇒ 1⃝::= (→σ ∪ →β1)∗ →=
ι

Lemma B.1.5 (ι vs. σ).

M →ι L→σ N implies M →∗σ · →=
ι N
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Proof. By induction on L. Distinguishing if the last →σ is a root step or not.
If L 7→σ N then L = V ((λx.P )Q) and N = (λx.V P )Q. In this case, M can be of 4

different shapes:

i M = (λz.[z])(V ((λx.P )Q))

ii M = V ((λz.[z])((λx.P )Q))

iii M = V ((λx.(λz.[z])P )Q)

iv M = (V ((λx.P )((λz.[z])Q)))

v M = W ((λx.P )Q) with W →ι V and →ι is not a root step

vi M = V ((λx.R)Q) with R→ι P and →ι is not a root step

vii M = V ((λx.P )R) with R→ι Q and →ι is not a root step

So by analizyng each of the four cases above, we can postpone the →ι step as follows:

Case i M = (λz.[z])(V ((λx.P )Q))→σ (λz.[z])((λx.V P )Q) 7→ι (λx.V P )Q = N

Case ii M = V ((λz.[z])((λx.P )Q))→σ V ((λx.(λz.[z])P )Q)→σ (λx.V ((λz.[z])P ))Q→γ

(λx.V P )Q = N where in the last step γ is ι or β1 depending on whether P is of
the form [W ] or not.

Case iii M = V ((λx.(λz.[z])P )Q)→σ (λx.V ((λz.[z])P ))Q→γ (λx.V P )Q = N where
in the last step γ is ι or β1 depending on whether P is of the form [W ] or not.

Case iv M = V ((λx.P )((λz.[z])Q))→s σ(λx.V P )((λz.[z])Q)→γ (λx.V P )Q = N where
in the last step γ is ι or β1 depending on whether Q is of the form [W ] or not.

Case v M = W ((λx.P )Q) 7→σ (λx.WP )Q→ι (λx.V P )Q = N

Case vii M = V ((λx.R)Q) 7→σ (λx.V R)Q→ι (λx.V P )Q = N

Case vii M = V ((λx.P )R) 7→σ (λx.V P )R→ι (λx.V P )Q = N

Consider the case where L = [λx.P ]→σ [λx.P ′] = N where P →σ P ′. In this case
note that M has necessary the shape [λx.Q] where Q→ι P . Otherwise, M should have
been (λz.[z])L 7→ι L but it is impossible by definition of 7→ι since L = [λx.P ]. The
thesis follows by induction, since we have Q→ι P →σ P ′, Q⇒ 3⃝ P .

The last case to consider is L = V P →σ V ′P ′ = N where →σ is not root steps, that
is:

a either V →σ V ′ and P = P ′;

b or V = V ′ and P →σ P ′.

By Fact 4.3.2, M , L, N are applications. So, M has one of the following shapes:

1. M = (λz.[z])L 7→ι V P = L

2. M = WP with W →ι V

3. M = V Q with Q→ι P

Hence, we distinguish six sub-cases:
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Case a1 M = (λx.[x])(V P )→σ (λx.[x])(V ′P ) 7→ι V ′P = N

Case b1 M = (λx.[x])(V P )→σ (λx.[x])(V P ′) 7→ι V P ′ = N

Case a2 W →ι V →σ V ′, then the thesis follows by i.h., that is: W ⇒ 3⃝ V ′ and then
M = WP ⇒ 3⃝ V ′P = N .

Case b2 We have M = WP →σ WP ′ →ι V P ′ = N , switching the steps →ι and →σ,
directly.

Case a3 We have M = V Q →σ V ′Q →ι V ′P = N , switching the steps →ι and →σ,
directly.

Case b3 Q →ι P →σ P ′, then the thesis follows by i.h., that is: Q ⇒ 3⃝ P ′ and then
M = V Q⇒ 3⃝ V P ′ = N .

B.2 Normalization of λ©

Lemma 5.0.3. Let →=→σ ∪ →βc and e ∈ {w, s}. Assume M →¬e N . Then, M is
e-normal if and only if N is e-normal.

Proof. By easy induction on the shape of M . Observe that M and N have the same
shape, because the step M →¬e N is not a root step.

• M = [V ], and N = [V ′]: the claim is trivial.

• M = V P and N = V ′P ′. Either V →¬e V ′ (and P ′ = P ) or P →¬e P ′ (and V = V ′).
Assume M = V P is e-normal. Since V and P are e-normal, by i.h. so are V ′ and
P ′. Moreover, N is not a redex, by Corollary A.1.2, so N is normal. Assuming
N = V ′P ′ normal is similar.

Fact B.2.1. The reduction ι is quasi-diamond. Therefore, if S →k
ι N where N is

ι-normal, then any maximal ι-sequence from S ends in N , in k steps.

Lemma 5.0.1. Assume M →ι N .

1. M is βc-normal if and only if N is βc-normal.

2. If M is σ-normal, so is N .

Proof. Easy to prove by induction on the structure of terms.

Fact B.2.2 (Shape preservation of ι-sequences). If S is not an ι-redex, and S →k
ι N

then no term in the sequence is an ι-redex, and so N has the same shape as S:

1. S = [(λx.Q)] implies N = [(λx.NQ)]. Moreover, Q→k
ι NQ.

2. S = xP implies N = xNP . Moreover, P →k
ι NP .

3. S = (λx.Q)P implies N = (λx.NQ)NP . Moreover, Q →k1
ι NQ, P →k2

ι NP and
k = k1 + k2.
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Lemma 5.1.2. Assume M →k
ι N , where k > 0, and N is σι-normal. If M is not

σ-normal, then there exist M ′ and N ′ such that either M →σ M ′ →ι N ′ →k−1
ι N or

M →σ M ′ →βc N ′ →k−1
ι N .

Proof. The proof is by induction on M .
Assume M is a is a σ-redex, i.e. M = V ((λx.P )L) where V is an abstraction.

• If M is also an ι-redex, then V = I, and:

1. If P = [U ], then M = I((λx.[U ])L) →ι (λx.[U ])L →k−1
ι N and M →σ

(λx.I[U ])L→β (λx.[U ])L.
2. If P ≠ [U ], then M = I((λx.P )L) →ι (λx.P )L →k−1

ι N and M →σ

(λx.IP )L→ι (λx.P )L.

• Otherwise, if M = V (IL), then M →ι V L →k−1
ι N and M →σ (λz.V [z])L →β

V L.

• No other case is possible, because M = V ((λx.P )L) not an ι-redex implies (by
Fact B.2.2) that N = N1N2, with N1 ∈ Abs. If (λx.P ) ̸= I, then N would be a
σ-redex, because again N2 = N ′2N ′′2 with N ′2 ∈ Abs (by Fact B.2.2).

Assume M is not a σ-redex. We examine the shape of S and use Fact B.2.2.

• M = [λx.Q]. We have N = [λx.NQ], Q →k
ι NQ, where Q is not σ-normal, and

NQ is σι-normal. We conclude by i.h..

• M = IP . We have IP →ι P →k−1
ι N . Since P is not σ-normal, we use the i.h. on

P →k−1
ι N , obtaining that P →ι N ′ →k−2

ι N and P →σ P ′ →βcι N ′. Therefore
also IP →σ IP ′ →βcι IN ′→i N ′→i

k−1N .

• M = (λx.Q)P (M is not an ι-redex). We have N = (λx.NQ)NP , where NQ and
NP are σι-normal. We distinguish two cases.

– If Q is not σ-normal, we note that Q →k1
ι NQ, and conclude by i.h. In-

deed, by i.h., we obtain that Q →ι N ′Q →k1−1
ι NQ, and Q →σ Q′ →βcι

N ′Q. So, (λx.Q)P →ι (λx.N ′Q)P →k1−1
ι (λx.NQ)P →k2

ι (λx.NQ)NP , and
(λx.Q)P →σ (λx.Q′)P →βcι (λx.N ′Q)P .

– If P is not σ-normal, we note that P →k2
ι NP , and conclude by i.h.

Lemma 5.1.3 (Termination of σid). →id ∪ →σ is strongly normalizing.

Proof. We define two sizes s(M) and sσ(M) for any term M .

s(x) = 1 sσ(x) = 1
s(λx.M) = s(M) + 1 sσ(λx.M) = sσ(M) + s(M)

s(V M) = s(V ) + s(M) sσ(V M) = sσ(V ) + sσ(M) + 2s(V )s(M)
s([M ]) = s(M) sσ([M ]) = sσ(M)

Note that s(M) > 0 and sσ(M) > 0 for any term M . It easy to check that
if M →id ∪ →σ N , then (s(N), sσ(N)) <lex (s(M), sσ(M)), where <lex is the strict
lexicographical order on N2. Indeed, if M →id N , then s(M) > s(N); and if M →σ N
then s(M) = s(N) and sσ(M) > sσ(N). The proof is by straightforward induction on
M . We show only the root-cases, the other cases follow from the i.h. immediately.
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• If (λx.[x])M 7→id M then s((λx.[x])M) = s(λx.[x]) + s(M) > s(M).

• If (λx.M)((λy.N)L) 7→σ (λy.(λx.M)N)L then clearly
s((λx.M)((λy.N)L)) = s((λy.(λx.M)N)L) and

sσ((λx.M)((λy.N)L))
= sσ(λx.M) + sσ((λy.N)L) + 2s(λx.M)s((λy.N)L)
= sσ(λx.M) + sσ(λy.N) + sσ(L) + 2s(λy.N)s(L) + 2s(λx.M)s((λy.N)L)
= sσ(λx.M) + sσ(N) + s(N) + sσ(L) + 2s(N)s(L) + 2s(L) + 2s(λx.M)s(λy.N) + 2s(λx.M)s(L)
= sσ(λx.M) + sσ(N) + s(N) + sσ(L) + 2s(N)s(L) + 2s(L)ť + 2s(λx.M) + 2s(λx.M)s(N) + 2s(λx.M)s(L)
> sσ(λx.M) + sσ(N) + 2s(λx.M)s(N) + s(λx.M) + s(N) + sσ(L) + 2s(λx.M)s(L) + 2s(N)s(L) + 2s(L)
= sσ(λx.M) + sσ(N) + 2s(λx.M)s(N) + s(λx.M) + s(N) + sσ(L) + 2s((λx.M)N)s(L) + 2s(L)
= sσ((λx.M)N) + s((λx.M)N) + sσ(L) + 2s(λy.(λx.M)N)s(L)
= sσ(λy.(λx.M)N) + sσ(L) + 2s(λy.(λx.M)N)s(L)
= sσ((λy.(λx.M)N)L)
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RELATING CALCULI

C.1 Equational Correspondence between λ© and
λml∗

Proposition 3.1.1. The following hold:

1. M =©η (M◦)• for every term M in λ©;

2. (P •)◦ =ml* P for every term P in λml*;

3. M =©η N implies M◦ =ml* N◦;

4. P =ml* Q implies P • =©η Q•.

Proof. (1.) By induction over terms in λ©η

x◦• ≡ x

(λx.M)◦• = λx.M◦• i.h.=©η λx.M

([V ])◦• = [V ◦]• = [V ◦•] i.h.=©η [V ]

((λx.M)[V ])◦• = ((λx.M)◦V ◦)• = ((λx.M)◦• [V ◦•]) i.h.=©η (λx.M)[V ]

(xM)◦• = (let y :=M◦ in xy)• = (λy.(x[y]))M◦• →η xM◦• i.h.=©η xM

((λx.N)M)◦• = (let x :=M◦ in N◦)• = (λx.N◦•)M◦• i.h.=©η (λx.N)M

(2.) By induction over terms in λml∗ .

x•◦ ≡ x by definition

(λx.M)•◦ = (λx.M•)◦ = (λx.M•◦) i.h.=ml* λx.M

[V ]•◦ = ([V •])◦ = [V •◦] i.h.=ml* [V ]

(V W )•◦ = (V •[W •])◦ = V •◦W •◦ i.h.=ml* V W
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(let x :=M in N)•◦ = ((λx.N•)M•)◦.
We distinguish two subcases: a. M = [V ], b. M ̸= [V ] for any V .

a. ((λx.N•)[V •])◦ = (λx.N•◦)V •◦ 7→c.β N•◦{V •◦/x}. On the other side, (let x :=
[V ] in N)•◦ 7→c.let.β (N{V/x})•◦. The thesis follows by substitutivity of both the
translations.

b.((λx.N•)M•)◦ = (let x :=M•◦ in N•◦) i.h.=ml* let x :=M in N

(3.) By cases over reductions in λ©η

(βc) (λx.N)[V ]→ N{V/x}
((λx.N)[V ])◦ = let x :=[V ◦] in N◦ →c.let.β N◦{V ◦/x} = (N{V/x})◦ by substitutiv-
ity of ◦

(id) (λx.[x])M →M
(λx.[x])M)◦ = let x :=M◦ in [x]→c.let.η M◦

(η) trivial.

(σ) (λy.N)((λx.M)L)→ (λx.(λy.N)M)L
We distinguish 4 cases:

1. L = [V ] and M = [W ]
(λy.N)((λx.[W ])[V ])◦ = let y :=(λx.[W ◦])V ◦ in N◦ →β let y :=[W ◦{V ◦/x}] in N◦

→c.let.β N◦{W ◦{V ◦/x}/y}
((λx.(λy.N)[W ])[V ])◦ = (λx.((λy.N◦)W ◦))V ◦ ↠β N◦{W ◦{V ◦/x}/y}

2. L = [V ] and M ̸= [W ]
(λy.N)((λx.M)[V ])◦ = let y :=(λx.M◦)V ◦ in N◦ →β let y :=M◦{V ◦/x} in N◦

((λx.(λy.N)M)[V ])◦ = λx.(let y :=M◦ in N◦)V ◦ →β let y :=M◦{V ◦/x} in N◦

3. L ̸= [V ] and M = [W ]
(λy.N)((λx.[W ])L)◦ = let y := (let x := L◦ in [W ◦]) in N◦ →c.let.ass let x :=
L◦ in (let y :=[W ◦] in N◦)→c.let.β let x :=L◦ in N◦{W ◦/y}
((λx.(λy.N)[W ])L)◦ = let x :=L◦ in (λy.N◦)[W ◦]→β let x :=L◦ in (N◦){W ◦/y}

4. L, M ̸= [V ]
(λy.N)((λx.M)L)◦ = let y := (let x := L◦ in M◦) in N◦ →c.let.ass let x :=
L◦ in (let y :=M◦ in N◦) = ((λx.(λy.N)M)L)◦

(4.) By cases over reductions in λml∗ .

(c.β) (λx.M)V →M{V/x}
((λx.M)V )• = (λx.M•)[V •] →βc M•{V •/x} = (M{V/x})• by substitutiv-
ity of •.

(c.η) λx.V x→ V x ̸∈ fv(V )
(λx.V x)• ≡ λx.V •[x]→η V •

(c.let.β) let x :=[V ] in N → N{V/x}
(let x :=[V ] in N)• = (λx.N•)[V •]→βc N•{V •/x} = (M{V/x})• by substi-
tutivity of •.

(c.let.η) let x :=M in [x]→M x ̸∈ fv(M)
(let x :=M in [x])• = (λx.[x])M• →id M•
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(c.let.ass) let y :=(let x :=L in M) in N → let x :=L in (let y :=M in N)
(let y :=(let x :=L in M) in N)• = (λy.N•)((λx.M•)L•)→σ

(λx.(λy.N•)M•)L• = let x :=L in (let y :=M in N)

The following is a more informative version of Proposition 3.1.1.

Proposition C.1.1 (Correspondence between λ© and λml∗). The following hold:

1. M →∗©η (M◦)• for every term M in λ©;

2. (P •)◦ =β,let.β P for every term P in λml*;

3. if M →© N then M◦ =ml∗∖η N◦; if M →©η N then M◦ =ml* N◦;

4. if P →ml∗∖η Q then P • →© Q•; if P →©η Q then P • →©η Q•.

Proof.

1. By induction over terms in λ©.

• x◦• = x• = x.

• (λx.M)◦• = (λx.M◦)• = λx.(M◦•)
i.h.
→∗η λx.M .

• ([V ])◦• = [V ◦]• = [V ◦•]
i.h.
→∗η !V .

• (W [V ])◦• = (W ◦V ◦)• = W ◦• [V ◦•]
i.h.
→∗η W [V ].

• For M ̸= [V ] for any value V , (xM)◦• = (let y :=M◦ in xy)• = (λy.(x [y]))M◦• →η

xM◦•
i.h.
→∗η xM .

• For M ̸= [V ] for any value V , ((λx.N)M)◦• = (let x := M◦ in N◦)• =

(λx.N◦•)M◦•
i.h.
→∗η (λx.N)M .

2. By induction over terms in λml∗ .

• x•◦ = x◦ = x.
• (λx.P )•◦ = (λx.P •)◦ = λx.(P •◦) i.h.=β,let.β λx.P .

• [V ]•◦ = ([V •])◦ = [V •◦] i.h.=β,let.β [V ].

• (V W )•◦ = (V • [W •])◦ = V •◦W •◦ i.h.=β,let.β V W .
• (let x :=P in Q)•◦ = ((λx.Q•)P •)◦. We distinguish two subcases:

(a) P = [V ] and so P • = [(V )•]: ((λx.Q•)[V •])◦ = (λx.Q•◦)V •◦ i.h.=β,let.β
(λx.Q)V 7→c.β Q{V/x} c.let.β←[ let x :=[V ] in Q;

(b) P ̸= [V ] for any V : ((λx.Q•)P •)◦ = (let x :=P •◦ in Q•◦) i.h.=β,let.β let x :=
P in Q.

3. By induction over the reduction M →©η N in λ©η. First, we consider the root-steps.

(βc) If (λx.N)[V ] 7→βc N{V/x} then ((λx.N)[[]V ])◦ = (λx.N◦)V ◦ 7→c.β N◦{V ◦/x} =
(N{V/x})◦ by substitutivity of ◦.

177



Appendix C. Relating Calculi

(id) If (λx.[x])M 7→id M then there are two subcases:
(a) if M = [V ] for some value V , then ((λx.[x])M)◦ = ((λx.[x])[V ])◦ =

(λx.[x])V ◦ 7→c.β [V ◦] = M◦;
(b) if M ̸= [V ] for any value V , then ((λx.[x])M)◦ = let x := M◦ in [x]
7→c.let.η M◦.

(η) If λx.V [x] 7→c.η V with x /∈ fv(V ), then (λx.V [x])◦ = λx.V ◦x 7→c.η V ◦.
(σ) (λy.N)((λx.M)L) 7→σ (λx.(λy.N)M)L with x /∈ fv(N)∪{y}. We distinguish

4 cases:
(a) if L = [V ] and M = [W ], then

((λy.N)((λx.[W ])[V ]))◦ = let y :=(λx.[W ◦])V ◦ in N◦

→w c.β let y :=[W ◦{V ◦/x}] in N◦

→c.let.β N◦{W ◦{V ◦/x}/y}
c.β←[ (λy.N◦)W ◦{V ◦/x}
c.β←[ (λx.((λy.N◦)W ◦))V ◦

= ((λx.(λy.N)[W ])[V ])◦;

(b) if L = [V ] and M ̸= [W ], then

((λy.N)((λx.M)[V ]))◦ = let y :=(λx.M◦)V ◦ in N◦

→w c.β let y :=M◦{V ◦/x} in N◦

c.β←[ (λx.(let y :=M◦ in N◦))V ◦

= ((λx.(λy.N)M)[V ])◦;

(c) if L ̸= [V ] and M = [W ], then

((λy.N)((λx.[W ])L))◦ = let y :=(let x :=L◦ in [W ◦]) in N◦

7→c.let.ass let x :=L◦ in (let y :=[W ◦] in N◦)
→¬w c.let.β let x :=L◦ in N◦{W ◦/y}

c.β← let x :=L◦ in (λy.N◦)W ◦

= ((λx.(λy.N)[W ])L)◦;

(d) if L ̸= [V ] and M ̸= [W ] for any values V, W , then

(λy.N)((λx.M)L)◦ = let y :=(let x :=L◦ in M◦) in N◦

7→c.let.ass let x :=L◦ in (let y :=M◦ in N◦)
= ((λx.(λy.N)M)L)◦

Let us now consider the inductive cases.

Application right: If M = V M ′ →ρ V N ′ = N with M ′ →ρ N ′ and ρ ∈ {ml∗ ∖
η, η}, then M ′◦ =ρ N ′◦ by i.h., and there are five subcases:

• if M ′ = [W ], then N ′ = [W0] for some value W0 and hence M◦ =
V ◦W ◦ =ρ V ◦W ◦

0 = N◦;
• if V = x and M ′ ̸= [W ] ̸= N ′ for any value W , then M◦ = let y :=

M ′◦ in xy =ρ let y :=N ′◦ in xy = N◦;

178



C.1. Equational Correspondence between λ© and λml∗

• if V = x and M ′ ̸= [W ] but N ′ = [W ] for some value W , then M = xM ′

and N = x [W ], hence M◦ = let y := M ′◦ in xy =ρ let y := N ′◦ in xy =
let y :=[W ◦] in xy →c.let.β x W ◦ = N◦;

• if V = λx.L and M ′ ̸= [W ] ̸= N ′ for any value W , then M◦ = let x :=
M ′◦ in L◦ =ρ let x :=N ′◦ in L◦ = N◦;

• if V = λx.L and M ′ ̸= [W ] but N ′ = [W ] for some value W , then M =
(λx.L)M ′ and N = (λx.L)[W ], hence M◦ = let x :=M ′◦ in L◦ =ρ let x :=
N ′◦ in L◦ = let x := [W ◦] in L◦ 7→c.let.β L◦{W ◦/x} c.β← [ (λx.L◦)W ◦ =
N◦.

Application left: If M = (λx.M ′)[V ] →ρ (λx.N ′)[V ] = N with M ′ →ρ N ′ and
ρ ∈ {ml∗ ∖ η, η}, then M ′◦ =ρ N ′◦ by i.h., and hence M◦ = (λx.M ′◦)V ◦ =ρ

(λx.N ′◦)V ◦ = N◦.

Unit: If M = [λx.M ′] →ρ [λx.N ′] = N with M ′ →ρ N ′ and ρ ∈ {ml∗ ∖ η, η},
then M ′◦ =ρ N ′◦ by i.h., so M◦ = [λx.M ′◦] =ρ [λx.N ′◦] = N◦.

4. By induction over the reduction P →ml∗ Q in λml∗ .
First, we consider the root-steps.

(c.β) If (λx.P )V 7→c.β P{V/x} then ((λx.P )V )• = (λx.P •)[V •] 7→βc P •{V •/x}
= (P{V/x})• by substitutivity of (·)•.

(c.η) If λx.V x 7→c.η V with x ̸∈ fv(V ) then (λx.V x)• = λx.V •[x] 7→η V •.

(c.let.β) If let x :=[V ] in P 7→c.let.β P{V/x} then (let x :=[V ] in P )• = (λx.P •)[V •] 7→βc

P •{V •/x} = (P{V/x})• by substitutivity of (·)•.

(c.let.η) If let x :=P in [x] 7→c.let.η P then (let x :=P in [x])• = (λx.!x)P • 7→id P •.

(c.let.ass) If let y :=(let x :=L in P ) in Q 7→c.let.ass let x :=L in (let y :=P in Q), then
(let y :=(let x :=L in P ) in Q)• = (λy.Q•)((λx.P •)L•) 7→σ (λx.(λy.Q•)P •)L• =
(let x :=L in (let y :=P in Q))•.

Let us consider now the inductive cases.

Explicit substitution left: If let x := P in Q →ml∗ let x := P ′ in Q and P →ml∗ P ′,
then P • →©η P ′• by i.h., and hence (let x := P in Q)• = (λx.Q•)P • →©η

(λx.Q•)P ′• = (let x :=P ′ in Q)•.

Explicit substitution right: If let x := Q in P →ml∗ let x := Q in P ′ and P →ml∗ P ′,
then P • →©η P ′• by i.h., and hence (let x := Q in P )• = (λx.P •)Q• →©η

(λx.P ′•)Q• = (let x :=Q in P )•.

Application left: If (λx.P )V →ml∗ (λx.P ′)V and P →ml∗ P ′, then P • →©η P ′• by
i.h., and hence ((λx.P )V )• = (λx.P •)[V •]→©η (λx.P ′•)[V •] = ((λx.P ′)V )•.

Application right: If V (λx.P ) →ml∗ V (λx.P ′) and P →ml∗ P ′, then P • →©η P ′•

by i.h., and so (V (λx.P ))• = V • [λx.P •]→©η V • [λx.P ′•] = (V (λx.P ′))•.

Unit: If [λx.P ]→ml∗ [λx.P ′] and P →ml∗ P ′, then P • →©η P ′• by i.h., and hence
[λx.P ]• = [λx.P •]→©η [λx.P ′•] = [λx.P ′]•.

Remark C.1.2. Proposition C.1.1.4 can be refined to weak reduction in the following
sense: if P →w ml∗∖η Q then P • →w © Q•; if P →w ©η Q then P • →w ©η Q•.
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C.2 (Com,→βc) and (Comv,→βv) are Isomorphic
To establish the isomorphism between (Com,→βc) (the fragment of λ© with βc as
unique reduction rule) and (Comv,→βv ) (the kernel of Plotkin’s CbV calculus defined
in Section 3.2.2), consider the translation (·)• from Term to Termv, and, conversely, the
translation (·)◦ from Termv to Term, where Termv := Val v ∪ Comv.

(·)• : Term −→ Termv (·)◦ : Termv −→ Term
variables (x)• = x (x)◦ = [x]
abstraction (λx.P )• = λx.(P )• (λx.M)◦ = [λx.(M)◦]
returned values ([V ])• = V •

bind/application (V P )• = V •P • (V P )◦ =
xP ◦ if V = x

(λx.Q◦)P ◦ if V = λx.Q

Essentially, the translation (·)• simply forgets the operator [·], and dually the
translation (·)◦ inserts each value that is not in the functional position of an application
in the operator [·]. These two translations form an isomorphism.
Proposition C.2.1.

1. (M◦)• = M for every term M in Termv;

2. (P •)◦ = P for every term P in Term;

3. M →βv N implies M◦ →βc N◦;

4. P →βc Q implies P • →βv Q•.

Proof. Immediate by definition unfolding.

C.3 Equational Correspondence between λ© and
Moggi’s λC-calculus

Definition C.3.1 (Values and computations). The Moggi’s computational λ-calculus,
shortly λC , is a calculus of two sorts of expressions:

Terms : e, e′ ::= v | n
Values : v ::= x | λx.e

NonValues : n ::= let x :=e in e′ | ee′

Definition C.3.2 (Reduction). The reduction relation > ⊆ Term×Term is defined as
follows:

βv (λx.e)v > e{v/x}
ηv λx.vx > v

id let x :=e in x > e

comp (let x2 :=(let x1 :=e1 in e2) in e) >

(let x1 :=e1 in (let x2 :=e2 in e))
letv (let x :=v in e) > e{v/x}
let.1 ne > (let x :=n in xe)
let.2 vn > (let x :=n in vx)
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where e{v/x} denotes the capture avoiding substitution of v for all free occurrences of x
in e.

Definition C.3.3 (Compatible Closure). Let e, e1, e2 ∈ Term and suppose e1 > e2:

λx.e1 > λx.e2

e1e > e2e ee1 > ee2

let x :=e1 in e > let x :=e2 in e

let x :=e in e1 > let x :=e in e2

C.3.1 Translation of λ© into λC

Define a function from λ©-Term to λC-Term as follows:
(·)◦ : λ© − Term→ λC − Term

(x)◦ ≡ x (λx.M)◦ ≡ λx.(M)◦

([V ])◦ ≡ (V )◦ (M ⋆ V )◦ ≡ let x :=(M)◦ in (V )◦x (for x fresh)

Lemma C.3.4 (Substitution lemma for (·)◦). Let M, V, W ∈ λ©-Term

(i) (V {W/x})◦ ≡ (V )◦{(W )◦/x}

(ii) (M{W/x})◦ ≡ (M)◦{(W )◦/x}

Proof. By induction on the complexity of λ©-Term:

(x{W/x})◦ ≡ (W )◦ ≡ (x)◦{(W )◦/x}

(x{W/x})◦ ≡ y ≡ (y)◦{(W )◦/x} where y ̸≡ x

((λz.M){W/x})◦ ≡ (λz.M{W/x})◦

≡ λz.(M{W/x})◦

≡ λz.(M)◦{(W )◦/x} byi.h.

≡ (λz.M)◦{(W )◦/x}

(([V ]){W/x})◦ ≡ ([V ]{W/x})◦

≡ (V {W/x})◦ by i.h.
≡ (V )◦{(W )◦/x}
≡ ([V ])◦{(W )◦/x}

((M ⋆ V ){W/x})◦ ≡ (M{W/x} ⋆ V {W/x})◦

≡ let z :=(M{W/x})◦ in (V {W/x})◦z
≡ let z :=(M)◦{(W )◦/x} in (V )◦{(W )◦/x}z by i.h.
≡ (let z :=(M)◦ in (V )◦z){(W )◦/x}
≡ ((M ⋆ V )◦){(W )◦/x}

Lemma C.3.5. Let M, N ∈ λ©-Term. If M → N , then (M)◦ = (N)◦, where = stands
for the convertibility relation induced by >.

Proof. Proof by induction on the generation of M → N .
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(βc) ([V ]) ⋆ (λx.M)→M{V/x}

(([V ]) ⋆ (λx.M))◦ ≡ let z :=([V ])◦ in ((λx.M))◦z
≡ let z :=(V )◦ in (λx.(M)◦)z

Since (V )◦ ∈ Values, one has:

let z :=(V )◦ in (λx.(M)◦)z > (λx.(M)◦)(V )◦ by letv and z ̸∈ fv((M)◦)
> (M)◦{(V )◦/x} by βv

≡ (M{V/x})◦ by substitution lemma C.3.4

(id) M ⋆ λx.[x]→M

(M ⋆ λx.[x])◦ ≡ let z :=(M)◦ in ((λx.[x]))◦z
≡ let z :=(M)◦ in (λx.x)z
> let z :=(M)◦ in z > (M)◦ by λC-id

(ass) (L ⋆ λx.M) ⋆ (λy.N)→ L ⋆ λx.(M ⋆ λy.N) where x ̸∈ fv(N)

((L ⋆ λx.M) ⋆ (λy.N))◦ ≡ let z2 :=((L ⋆ λx.M))◦ in ((λy.N))◦z2

≡ let z2 := let z1 :=(L)◦ in (λx.M)◦z1 in ((λy.N))◦z2

> let z1 :=(L)◦ in (let z2 :=(λx.(M)◦z1) in ((λy.N))◦z2)
by λC-comp

≡ let z1 :=(L)◦ in (let z2 :=(λx.(M)◦)z1 in ((λy.N))◦z2)
≡ let z1 :=(L)◦ in (let z2 :=(M{z1/x})◦ in ((λy.N))◦z2)
< let z1 :=(L)◦ in (λx.let z2 :=(M)◦ in ((λy.N))◦z2)z1

≡ (L ⋆ λx.(M ⋆ λy.N))◦

Since z ̸≡ z2, x ̸∈ fv(N) and then x ̸∈ fv((N)◦). From this consideration, one has:
(let z2 :=(M)◦ in ((λy.N)◦)z2){z1/x} ≡ let z2 :=(M{z2/x})◦ in (λy.N)◦z2

Remark C.3.6. Reduction → over λ©-Term has been defined devoid of η nor ξ rules.
Both can be added by extending reduction relation over values:

ξ :
M → N

λx.M → λx.N
η : λx.[x] ⋆ V → V if x ̸∈ fv(V )

With respect to previous lemma, concerning ξ-rule: (M)◦ = (N)◦ by induction hypothe-
sis and (λx.M)◦ = λx.(M)◦ = λx.(N)◦ = (λx.N)◦.
Concerning η:

(λx.[x] ⋆ V )◦ ≡ λx.let z :=x in (V )◦z
> λx.(V )◦x by letv

> (V )◦ by ηv
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C.3.2 Translation of λC into λ©

Define a function from λC-Term to λ©-Term as follows:
(·)•Val : λC − V alues→ Val (·)•Com : λC −NonV alues→ Com

(x)•Val = x

(λx.v)•Val = λx.[(v)•Val] (λx.n)•Val = λx.(n)•Com

(vn)•Com = (n)•Com ⋆ (v)•Val

(vv′)•Com = [(v′)•Val] ⋆ (v)•Val

(nv)•Com = (n)•Com ⋆ (λx.[(v)•Val] ⋆ x) for fresh x

(nn′)•Com = (n)•Com ⋆ (λx.(n′)•Com ⋆ x) for fresh x

(let x :=n in n′)•Com = (n)•Com ⋆ λx.(n′)•Com

(let x :=v in n′)•Com = [(v)•Val] ⋆ λx.(n′)•Com

(let x :=n in v)•Com = (n)•Com ⋆ λx.[(v)•Val]
(let x :=v in v′)•Com = [(v)•Val] ⋆ λx.[(v′)•Val]

Lemma C.3.7 (Substitution lemma for (·)•). Let w, v ∈ V alues and n ∈ NonV alues;

(i) (w{v/x})•Val ≡ (w)•Val{(v)•Val/x}

(ii) (n{Wv/x})•Com ≡ (n)•Com{(v)•Val/x}

Proof. (i)
w ≡ x :

(x{v/x})•Val = (v)•Val = (x)•Val{(v)•Val/x}

w ≡ y ̸≡ x :

(y{v/x})•Val = (y)•Val = y = (y)•Val{(v)•Val/x}

w ≡ λy.w, where y ̸≡ x and y ̸∈ fv(w):

(λy.w{v/x})•Val = (λy.(w{v/x}))•Val

= λy.[(w{v/x})•Val]
= λy.[(w)•Val{(v)•Val/x}] by i.h.
= (λy.[(w)•Val]){(v)•Val/x}
= (λy.w)•Val{(v)•Val/x}

w ≡ λy.n :

((λy.n){v/x})•Val = (λy.(n{v/x}))•Val

= λy.(n{v/x})•Com

= λy.(n)•Com{(v)•Val/x} by i.h.
= (λy.(n)•Com){(v)•Val/x}
= (()•Valλy.n){(v)•Val/x}

(ii)
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n ≡ wn′ :

((wn′){v/x})•Com = ((w{v/x})(n′{v/x}))•Com

= (n′{v/x})•Com ⋆ (w{v/n})•Val

= (n′)•Com{(v)•Val/x} ⋆ (w)•Val{(v)•Val/x} by i.h.
= ((n′)•Com ⋆ (w)•Val){(v)•Val/x}
= (wn′)•Com{(v)•Val/x}

n ≡ ww′

((ww′){v/x})•Val = ((w{v/x})(w′{v/x}))•Val

= [(w′{v/x})•Val] ⋆ (w{v/n})•Val

= [(w′)•Val{(v)•Val/x}] ⋆ (w)•Val{(v)•Val/x} by i.h.
= ((w′)•Val ⋆ (w)•Val){(v)•Val/x}
= (ww′)•Com{(v)•Val/x}

n ≡ n′w

((n′w){v/x})•Com = ((n′{v/x})(w{v/x}))•Com

= (n′{v/x})•Com ⋆ (λy.[(w{v/n})•Val] ⋆ y)
= (n′)•Com{(v)•Val/x} ⋆ (λy.[(w)•Val{(v)•Val/n}] ⋆ y)
= ((n′)•Com ⋆ (λy.[(w)•Val] ⋆ y)){(v)•Val/x}
= (n′w)•Com{(v)•Val/x}

n ≡ n′m

((n′m){v/x})•Com = ((n′{v/x})(m{v/x}))•Com

= (n′{v/x})•Com ⋆ (λy.(m{v/n})•Com ⋆ y)
= (n′)•Com{(v)•Val/x} ⋆ (λy.(m)•Com{(v)•Val/n} ⋆ y)
= ((n′)•Com ⋆ (λy.(m)•Com ⋆ y){(v)•Val/n}
= (n′m)•Com{(v)•Val/n}

n ≡ (let y :=m in n′)

((let y :=m in n′){v/x})•Com = ((let y :=m{v/x} in n′{v/x}))•Com

= (m{v/x})•Com ⋆ λy.(n′{v/x})•Com

= (m)•Com{(v)•Val/x} ⋆ λy.(n′)•Com{(v)•Val/x} by i.h.
= ((m)•Com ⋆ λy.(n′)•Com){(v)•Val/x}
= (let y :=m in n′)•Com{(v)•Val/x}

Similarly, the statement is proved for remaining cases.

Definition C.3.8. Let’s define a function (·)• that maps λC-Term into λ©-Com, as
follows:
For all n ∈ NonV alues and v ∈ V alues

(n)• = (n)•Com (v)• = (v)•Val

Corollary C.3.9. (e{v/x})• = (e)•{(v)•Val/x}
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Proof. By induction on the structure of e ∈ λC-Term:
e ≡ w ∈ V alues, then (w{v/x})• = [(w{v/x})•Val] = [(w)•Val{(v)•Val/x}] by part (i) of
C.3.7. This is equivalent to ([(w)•Val]){(v)•Val/x}, that is equivalent to (w)•{(v)•Val/x}
hence the thesis by definition C.3.8.
If e ≡ n ∈ NonV alues:

(n{v/x})• = (n{v/x})•Com

= (n)•Com{(v)•Val/x} by part (ii) of C.3.7
= (n)•{(v)•Val/x}

Lemma C.3.10. e > e′ ⇒ (e)• ∗−→ (e′)•

Proof. By induction on the definition of >:

((λx.w)v)• = ((λx.w)v)•Com

= [(v)•Val] ⋆ λx.[(w)•Val] →βc ([(w)•Val]){(v)•Val/x}
= (w)•{(v)•Val/x} by definition C.3.8
= (w{v/x})• by the previous corollary

((λx.n)v)• = ((λx.n)v)•Com

= [(v)•Val] ⋆ λx.(n)•Com →βc (n)•Com{(v)•Val/x}
= (n{(v)•Val/x})•Com by part (ii) of C.3.7
= (n{v/x})• by definition C.3.8

ηv: (λx.vx)• = λx.(vx)•Com = λx.[x] ⋆ (v)•Val →η (v)•Val

(id).1 : (let x :=v in x) > v

(let x :=v in x)• = (let x :=v in x)•Com

= [(v)•Val] ⋆ λx.[(x)•Val]
= [(v)•Val] ⋆ λx.[x]
→(id) [(v)•Val] = (v)•

Regarding rule (comp), the proof is done after proving 8 different cases, here we will
show just two of them.

(let y := let x :=m in n in n′)• = (let y := let x :=m in n in n′)•Com

= ((m)•Com ⋆ λx.(n)•Com) ⋆ λy.(n′)•Com

→(ass) (m)•Com ⋆ λx.((n)•Com ⋆ λy.(n′)•Com)
= (let x :=m in let y :=n in n′)•

(let y := let x :=v in n in n′)• = ([(v)•Val] ⋆ λx.(n)•Com) ⋆ λy.(n′)•Com

→(ass) [(v)•Val] ⋆ λx.((n)•Com) ⋆ λy.(n′)•Com)
= let x :=[(v)•Val] in let y :=(n)•Com in (n′)•Com

= (let x :=v in let y :=n in n′)•
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letv case splits in two different sub-cases:

(let x :=v in n)•Com = [(v)•Val] ⋆ λx.(n)•Com

→βv (n)•Com{(v)•Val/n}
= (n{v/x})• by part (ii) of C.3.7

(let x :=v in w)•Com = [(v)•Val] ⋆ λx.[(w)•Val]
→βv ([(w)•Val]){(v)•Val/n}
= (w)•{(v)•Val/n} by definition of (·)•Val

= (w{v/x})• by the previous corollary

let1 case splits in two different sub-cases:

(nv)•Com = (n)•Com ⋆ λx.[(v)•Val] ⋆ x

(let x :=n in xv)•Com = (n)•Com ⋆ λx.(xv)•Com = (n)•Com ⋆ (λx.[(v)•Val] ⋆ x)

Since the above equalities, one has proved that (nv)•Com = (let x :=n in xv)•Com. Then,
a fortiori (nv)•Com →∗ (let x :=n in xv)•Com, since →∗ is also a reflexive closure of →.

(nm)•Com = (n)•Com ⋆ λx.(m)•Com ⋆ x

(let x :=n in xm)•Com = (n)•Com ⋆ λx.(xm)•Com = (n)•Com ⋆ (λx.(m)•Com ⋆ x)

The conclusion follows analogous considerations stated in the previous sub-case.

Theorem C.3.11. There exists an interpretation (·)• from λC into λ© that preserves
reductions.
There exists an interpretation (·)◦ from λ© into λC that preserves the convertibility
relation.
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