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A B S T R A C T

We consider an access link carrying data generated by streaming and elastic services requested by fixed or
mobile end users, and subjected to an admission control (AC) algorithm. For the performance analysis of such
link we develop a new queuing model and we show that, with the considered AC, the queuing model admits
a product form expression for the joint limiting probability distribution of the numbers of active services of
the different types. In addition, we prove that, when mobility can be neglected, i.e., in the case of either
fixed access or slow mobility, the queuing model is insensitive to the distribution of the amount of data to be
transferred for the fulfillment of the different service requests. Numerical results show unexpected oscillating
behaviors for several performance metrics, and provide interesting insight into the link performance.
1. Introduction

1.1. Motivation

Since the early days of data networks, the offering of different types
of constant bit rate services – that we call streaming services in this
paper – has been a playground for network design and planning. The
advent of packet networks has further complicated the scenario, with
the introduction of elastic services that can adapt their data rate to
better exploit the resources not used by streaming services.

While this mix of services appeared first in fixed networks, it
then moved also to mobile networks. Now, with the roll-out of 5G,
the mobile network operators (MNOs) goal is to allow their radio
access networks (RANs) to carry data generated by an extremely wide
range of different services, from video (like TV broadcasting) to audio
(like voice or music), to messages, to real-time interactions supporting
gaming, automated driving, factory automation, and all aspects of the
tactile Internet. The gamut of services offered by operators can only
be expected to increase with the arrival of 6G and the subsequent
generations of networks. Designers are considering the applications
related to the metaverse, including holographic virtual presence, and
cooperative populations of IoT devices [1] This means that the need
of designing and managing networks that can support many different
services, each with its own traffic patterns and quality requirements,
meeting for each service some specific set of key performance indicators
(KPIs), is today very pressing for both fixed and mobile networks.
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The prediction of the performance of such complex networks by
simulation is extremely costly, since the network internal behaviors
are complex, and the set of parameters that can be varied is extremely
large. The availability of analytical models that can be solved with
limited complexity is a critical asset that can be of enormous value in
this case, since analytical models allow network managers to explore
the RAN performance as a function of many system parameters, to
understand the main trade-offs, to possibly exploit models to drive
admission control (AC) and scheduling in real time, or to restrict
choices to a manageable number of options that can then be explored
with more detailed simulation models.

Unfortunately, not many tools are available for the performance
analysis of networks offering different types of services. Traditional
analytical models can be applied to either streaming or elastic services,
not to their mixes. Only few papers have tried to analytically model
the case of links loaded by a mixture of the two types of services,
mostly considering scheduling and AC, rarely considering the effect of
user mobility, and never before accounting for streaming services with
bit rate that can adapt to resource availability (as it normally happens
today with video). We briefly report on some of the relevant literature
in the related work section.

The natural approach for the development of an analytical model
of the type of system we consider lies in resorting to queuing theory.
Indeed, queuing theory is the standard instrument for the investigation
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of systems where a finite set of resources (the access link data rate,
in our case) is requested by a population of users (services, in our
case). If resources are available, service can start. If resources are not
immediately available, service requests could in general be forced to
wait, or be rejected (as it happens in our case, giving rise to blocking
of services).

1.2. Problem statement

The main objective of this paper is to propose a queuing model
that can bypass the limitations of previous approaches in terms of
complexity and scalability for the analysis of a portion of a RAN with
mixes of services and an AC scheme. In particular, in this paper,
extending the discussion in our conference paper [2], we present a
queuing model that considers an arbitrary number of streaming service
classes (e.g., real-time audio and video with different – and possibly
adaptable – data rates) and elastic services, corresponding to variable
data transfer rates (e.g., email, social network apps, non real-time
audio/video services or web traffic). The contention for the finite link
resources that arises in this scenario is solved by applying AC, and using
the resources not allocated to streaming for elastic services. Moreover,
mobility of users (hence of services) is taken into account to capture the
dynamics of a RAN. Given the different characteristics of streaming and
elastic services, the AC scheme acts differently on these two classes of
traffic. Streaming service requests are accepted if they do not exceed a
predefined maximum accepted number of requests and there is enough
available bandwidth to satisfy the new request without compromising a
minimum bandwidth dedicated to elastic services. For elastic services,
instead, the AC aims at trading off two quality metrics: starting time
of the service and throughput. The AC adjusts the acceptance of elastic
services to the data rate not used by streaming services so that the load
of elastic services is kept constant. This avoids that, by serving at too
low bitrate, the quality of elastic services deteriorates. Elastic service
in excess with respect to the target constant load are delayed.

When exponential assumptions are introduced, and with AC, the
Markov process underlying the queuing system is proved to admit
a product form solution, whose numerical tractability is shown to
be high for practical scenarios. The product form among streaming
service classes relies on the theory of Erlang-loss networks, whereas
the product form between the streaming service classes and the elastic
service classes was considered unlikely in the literature, and is unveiled
in our work for the first time, extending here the results we presented
in [2].

Thanks to the queuing model, we can efficiently compute a number
of relevant interesting performance indices for each service: e.g., the
distribution of the number of active services of the different types, the
rate of finished services due to either completion or mobility, and the
service request blocking probability.

When mobility is not considered, either because the model refers
to a fixed network or because its effects are negligible with respect to
service completion, we prove for the first time that performance indices
depend only on the first moment of the amount of data transferred by
services. This means that the crucial insensitivity property of processor
sharing and Erlang-B queues is maintained also in this more complex
scenario.

1.3. Contributions

The main contributions of the paper are the following.

• We define a novel queuing model of an access link supporting
several classes of streaming and elastic services, also accounting
for user mobility and access control.
2

• We study the queuing model under Markovian assumptions.
• We prove the existence of a product form solution for the joint
limiting probability distribution of the number of streaming and
elastic services when the proposed AC for elastic services is
adopted. This product form solution was considered too difficult
to prove in the previous literature.

• When mobility can be neglected, we prove the insensitivity of the
joint limiting probabilities to the distribution of the amount of
data to be transferred for the provision of the different services.
This insensitivity allows studying services with non-exponential
durations, which were considered too complex to analyze in the
previous literature.

• We show how our queuing model can account for streaming
services whose bit rate can adapt to resource availability. The case
of video services with adaptive data rate was considered out of
the modeling reach in the previous literature.

• We derive numerical results that show unexpected oscillating be-
haviors for blocking probabilities and other metrics.
Non-monotonic behaviors of loss probabilities were only reported
in one previous work [3], for a simpler case only including
streaming services, and of much lower amplitude.

• We validate the exponential assumptions introduced in the model
against results of simulations with non-exponential distributions
for service requirements and service request processes.

• We provide interesting insight from the discussion of numerical
results.

In particular, the proofs concerning product form and insensitivity
are an original contributions to both queuing theory and network
modeling.

1.4. Paper structure

The rest of this paper is organized as follows. Section 2 describes the
characteristics of the access link we consider, and Section 3 introduces
the corresponding queuing model. Section 4 presents the solution of
the queuing model in the exponential case, and Section 5 proves the
existence of a product form solution as well as the insensitivity of the
model to the distribution of the service requirements in the case of neg-
ligible user mobility. Section 6 discusses the use of the analytical model
to study the case of video streaming with adaptable data rate. Section 7
presents numerical results. Section 8 shows that the assumption of
independence between streaming and elastic services often produces
incorrect results. Section 9 presents simulation results that validate the
exponential assumptions introduced in the model. Section 10 discusses
some relevant previous work. Eventually, Section 11 concludes the
paper.

2. The access link

In this section, we describe the access link we consider in this
paper. Relevant parameters and corresponding notation are reported
in Table 1.

We consider an access link supporting both elastic and streaming
services. Streaming services are grouped in 𝑆 different classes, each re-
quiring a predefined data rate for a random time interval corresponding
to the service duration. The data rate of streaming services can be either
constant for the whole service duration or slowly varying to adapt to
periods of high (or low) service demand. We will initially consider the
constant data case, and show how to account for adaptivity later in
the paper. We denote by 𝑅(𝑠)

𝑖 and 𝜏(𝑠)𝑖 , respectively, the required data
rate and the random service duration of streaming services of class 𝑖, for
𝑖 ∈ {1, 2,… , 𝑆}. Thus, a streaming service of class 𝑖 requires the transfer
of 𝑅(𝑠)

𝑖 𝜏(𝑠)𝑖 = 𝜑(𝑠)
𝑖 bits. Durations of class 𝑖 services are independent and

identically distributed (i.i.d.). The different classes of service can for
example represent voice calls, multiparty voice/video conferences, real-

time audio or video distribution of sport events, etc. Elastic services are
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Table 1
Notation used for the system’s parameters.

System’s parameter Notation

Link data rate 𝐶

Dwell time (time in the cell), r.v. 𝛿

Number of streaming service classes 𝑆
Number of elastic service classes 𝐸

Maximum number of streaming services of class 𝑖 𝑁 (𝑠)
𝑖

Maximum number of elastic services of class 𝑖 𝑁 (𝑒)
𝑖

Number of active streaming services of class 𝑖 at time 𝑡 𝑛(𝑠)𝑖 (𝑡)
Number of active elastic services of class 𝑖 at time 𝑡 𝑛(𝑒)𝑖 (𝑡)

Minimum data rate for elastic services 𝜂
Required data date for a streaming service of type 𝑖 𝑅(𝑠)

𝑖

Duration of a streaming service of type 𝑖, r.v. 𝜏(𝑠)𝑖
Data to be transferred in a streaming service of class 𝑖, r.v. 𝜑(𝑠)

𝑖

Data to be transferred in an elastic service of class 𝑖, r.v. 𝜑(𝑒)
𝑖

grouped in 𝐸 different classes, each requiring the transfer of a random
mount of data at the maximum possible data rate. We denote with
he i.i.d. random variables 𝜑(𝑒)

𝑗 ,with 𝑗 ∈ {1, 2,… , 𝐸}, the amount of
data transferred by elastic services of class 𝑗. The different classes of
elastic service can for example represent text or images or short videos
transferred through messaging applications, web browsing, download
of songs or videos (or video chunks) from repositories, etc.

The considered link is capable of providing a maximum user-plane
data rate 𝐶, that can be allocated to end user services. The link
can accommodate a maximum number 𝑁 (𝑠)

𝑖 of simultaneous streaming
services of class 𝑖, reserving a minimum data rate 𝜂 to elastic services1,
so that:

𝐶 ≥ 𝜂 +
𝑆
∑

𝑖=1
𝑅(𝑠)
𝑖 𝑛(𝑠)𝑖 (𝑡) (1)

where 𝑛(𝑠)𝑖 (𝑡) ≤ 𝑁 (𝑠)
𝑖 , ∀𝑖 ∈ {1, 2,… , 𝑆} are the numbers of streaming

services of each class active at time 𝑡, since each service instance of
class 𝑖 must be allocated the fixed data rate 𝑅(𝑠)

𝑖 for the whole service
duration. Clearly, it must hold that 𝑁 (𝑠)

𝑖 ≤ ⌊(𝐶−𝜂)∕𝑅(𝑠)
𝑖 ⌋ for 𝑖 = 1,… , 𝑆 .

Elastic services accept a variable service rate, and equally share the
capacity that at any time instant is not allocated to active instances
of streaming services. The maximum number of simultaneous elastic
services of class 𝑗 that can be activated on the link is denoted by 𝑁 (𝑒)

𝑗 .
The state of the link at time 𝑡 is described by the vector  (𝑡) =

[ (𝑠)(𝑡), (𝑒)(𝑡)], with:

 (𝑠)(𝑡) = [𝑛(𝑠)1 (𝑡),… , 𝑛(𝑠)𝑆 (𝑡)] (2)

(𝑒)(𝑡) = [𝑛(𝑒)1 (𝑡),… , 𝑛(𝑒)𝐸 (𝑡)] (3)

here 0 ≤ 𝑛(𝑒)𝑗 (𝑡) ≤ 𝑁 (𝑒)
𝑗 , ∀𝑗 ∈ {1, 2,… , 𝐸}, are the numbers of elastic

ervices of each class at time 𝑡.
In the case of wireless access, base stations (BSs) interact with one

nother because of handovers of service instances generated by the
ovement of end users. The time spent by users within the cell defined

y the BS, i.e., the end user dwell time in the cell, is described by the
andom variable 𝛿. In the case of fixed access, users do not move, and
he dwell time can be considered infinite.

With respect to a BS access link, a service request can either cor-
espond to a new request for service that is started by a user located
ithin the cell, or to an incoming handover due to a user with an active

ervice entering the cell. A service completion in a BS access link can
ither be due to the end of a service while a user is within the cell, or

1 In most of this paper, we assume 𝜂 = 0, but results can be
straightforwardly generalized to the more general case.
3

to an outgoing handover because of the movement of the user out of
the cell.

The processes of new service requests and incoming handovers
can be considered to be either dependent or independent of the BS
state. The approach often adopted in the literature is to consider
those processes as related to the number of end users within the cell
defined by the BS, but otherwise independent of the BS state, unless a
state-dependent AC algorithm is applied.

In RANs, management procedures normally try to balance the load
in nearby cells by governing the end user associations to BSs, as well as
the selection of the cells for handovers, implementing an AC algorithm
with the objective of avoiding congestion of BSs. Similarly, in wired
access networks, new service requests can be rejected or delayed if
they jeopardize the quality of active services. We can thus assume that
some level of dependency of the processes of new service requests (and
incoming handovers) on the link state exists. It can be reasonable to
assume that dependency is higher for elastic services, whose quality is
more sensitive to the BS load, since they can only use the data rate
that remains after the allocation of the required data rate to all active
streaming services.

For these reasons, in this paper we assume that both the processes
of streaming and elastic service requests are subjected to an AC policy.
For streaming service requests, we simply assume that access of a
request of class 𝑖 is permitted until the admission of a request violates
the constraint represented by 𝜂, the minimum data rate reserved for
elastic services, or the maximum number of admissible class 𝑖 services
has been reached. Requests violating the constraint are rejected, and
must be resubmitted by the end user after a delay. In the case of
elastic services, we consider a quasi-optimal (as we will show) AC
policy, which is easy to implement, and leads to a very low complexity
analysis that can guide in real time the AC algorithm. The AC algorithm
has the objective of modulating the rates of accepted service requests
according to the data rate not used by streaming services so that
the load of elastic services on the bandwidth not used by streaming
services is kept constant (as we will see later, this is the key for
product form.) Requests for elastic services (both newly arriving and
waiting) are admitted when the load is low. Conversely, when the load
is high, requests are delayed to a period in which the link utilization
is low again or, in the case of a portion of a RAN comprising several
neighboring cells, requests are moved toward cells with more available
resources. In addition, class 𝑗 requests are rejected when the maximum
number of admissible class 𝑗 services has been reached. Note that
the implementation of the AC algorithms for streaming and elastic
services only requires information about the data rate collectively used
by streaming services and the number of active streaming and elastic
services of the different classes. These values can be easily monitored
by the AC algorithm implementation software.

3. Queuing model of the access link

We now describe the queuing model we propose to study the
considered system. Notation is reported in Table 2.

The operation of a wired or wireless link naturally maps onto a
queuing model where the service speed corresponds to the link data
rate 𝐶, and service instances are represented by customers. We will
primarily consider the wireless case, including thus the user dwell time
in the cell. In the wired case, the analysis is identical with an infinite
value for the dwell time. The customers corresponding to streaming ser-
vices (termed streaming customers) are handled according to a multiclass
multiserver paradigm with losses, while the customers corresponding to
elastic services (elastic customers) are handled according to a multiclass
processor sharing paradigm with losses, with an overall service speed
corresponding to the data rate not used by streaming customers.

Arrivals of streaming customers are assumed to follow Poisson
processes, with losses induced by the AC algorithm (in the case of
a BS we must account for both new service requests and incoming
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Fig. 1. Sketch of the queuing model of the access link.

Table 2
Notation used for the model.

Model parameters and assumptions Notation

State of the Markov chain model, vector  (𝑡)
Sub-vector of the state with active streaming services  (𝑠)(𝑡)
Sub-vector of the state with active elastic services  (𝑒)(𝑡)

Steady-state probability vector 𝜋

Poisson arrival rate of class 𝑖 streaming services 𝜆(𝑠)𝑖
Poisson arrival rate of class 𝑖 elastic services 𝜆(𝑒)𝑖

Rate of exponential dwell time 𝛿 𝜇𝐻

Rate of exponential duration of a streaming service of class 𝑖 𝜇(𝑠)
𝑖

Rate of exponential duration of an elastic service of class 𝑖 𝜇(𝑒)
𝑖 ( )

Rate of exponential amount of data in an elastic service of class 𝑖 𝛼(𝑒)
𝑖

Data rate used by an elastic service of class 𝑖 𝑟(𝑒)𝑖 ( )

handovers; in the case of a wired link, handovers are not present). The
arrival rate before losses of streaming customers of class 𝑖 is denoted
by 𝜆(𝑠)𝑖 .

Arrivals of elastic customers are also assumed to follow Poisson
processes with rates 𝜆(𝑒)𝑗 before AC, but become state-dependent Marko-
vian processes, after the AC algorithm is applied. The AC algorithm
modulates the rate of requests admitted in the queue according to the
data rate available to elastic services. In a real system this means that
during periods of scarce data rate for elastic services, the AC can either
offload a request to a neighboring cell or postpone a request to a period
of more abundance. Conversely, during periods of abundant data rate
for elastic services, the AC can either accept request offloads from a
neighboring cell or retrieve postponed requests.

The arrival rate of elastic customers of class 𝑗 in state  due to new
ervice requests (and incoming handovers in the wireless case) after AC
s denoted by 𝜆(𝑒)𝑗 ( ). Note that the state dependency does not alter the
verage arrival rate, i.e. 𝐸[𝜆(𝑒)𝑗 ( )] = 𝜆(𝑒)𝑗 .

Blocking of streaming customers of class 𝑖 can be due to reaching
he maximum number of permitted simultaneous services 𝑁 (𝑠)

𝑖 or to
eaching the maximum usable bandwidth at the BS. Blocking of elastic
ustomers of class 𝑗 is due to reaching the maximum number of
ermitted simultaneous services 𝑁 (𝑒)

𝑗 (we allow the data rate of elastic
ervices to temporarily drop to zero).

Service times of streaming customers of class 𝑖 are i.i.d. random vari-
bles 𝜏(𝑠)𝑖 , with general probability density function (pdf) and average
[𝜏(𝑠)𝑖 ] = 1∕𝜇(𝑠)

𝑖 . The service times of elastic customers of class 𝑗 are
omputed from the i.i.d. random variables 𝜑(𝑒)

𝑗 , with general pdf.
Customers, both streaming and elastic, are impatient : they remain at

he queue only for a random time 𝛿 (that models the dwell time in the
ase of wireless access and can instead be taken to be infinite in the
ase of fixed access), which is assumed to be distributed according to a
egative exponential pdf with rate 𝜇 (in case of fixed access 𝜇 = 0).
4

𝐻 𝐻
The queuing model of the access link is sketched in Fig. 1. Solid
ines represent customer flows. Dashed lines indicate the state in-
ormation given to the AC. The waiting box represents the offload-
ng/postponement component of the AC.

. Analysis of the queue in the exponential case

In order to study the queue with a continuous-time Markov chain
CTMC), it is necessary to introduce exponential assumptions for cus-
omer service times. The duration of streaming customer services of
lass 𝑖 is thus assumed to be an exponentially distributed random
ariable with rate 𝜇(𝑠)

𝑖 . The duration of elastic customer services of class
depends on the BS data rate not allocated to streaming services. We

ssume that the amount of data transferred by elastic services of class
, 𝜑(𝑒)

𝑗 , is an exponentially distributed random variable with rate 𝛼(𝑒)𝑗
its. The average duration of the file transfer is comprised between a
inimum 1∕(𝛼(𝑒)𝑗 𝐶) seconds (if the elastic service can use the whole

erver capacity 𝐶) and a maximum
∑𝐸

𝑗=1 𝑁
(𝑒)
𝑗

𝛼(𝑒)𝑗
[

𝐶 − 𝐶max
]

(4)

where

𝐶max = max
(

𝑆
∑

𝑖=1
𝑅(𝑠)
𝑖 𝑛(𝑠)𝑖 𝑠.𝑡.∀𝑖 𝑛(𝑠)𝑖 ≤ 𝑁 (𝑠)

𝑖 ∧
𝑆
∑

𝑖=1
𝑅(𝑠)
𝑖 𝑛(𝑠)𝑖 ≤ 𝐶 − 𝜂

)

.

Expression (4) corresponds to a service rate equal to the ratio between
the minimum data rate left by streaming services to elastic services
and the maximum number of simultaneous elastic services. It should
be noted that when the BS data rate for elastic services is large and
mobility is slow, elastic customers observe a system behaving like a
multiclass M/M/1-PS queue (i.e., a queue with Markovian arrivals, ex-
ponential service times and one server that equally divides its capacity
among all customers – possibly belonging to multiple classes – at the
queue in a processor sharing fashion) where service times are driven
by the elastic file sizes. On the contrary, when the BS data rate for
elastic services is small and mobility is fast, elastic customers observe
a system behaving like a multiclass M/M/m/m queue (i.e., a queue with
Markovian arrivals, exponential service times, no waiting line, and 𝑚
servers with equal capacity, each serving one customer) where service
times are driven by dwell times.

The rate of service of an elastic customer of class 𝑗 in state  is:

𝜇(𝑒)
𝑗 ( ) =

𝛼(𝑒)𝑗

[

𝐶 −
∑𝑆

𝑖=1 𝑅
(𝑠)
𝑖 𝑛(𝑠)𝑖

]

∑𝐸
𝓁=1 𝑛

(𝑒)
𝓁

(5)

The individual departure rate of a streaming customer of class 𝑖 in
any state  with 𝑛(𝑠)𝑖 > 0 is equal to:

𝛥(𝑠)
𝑖 ( ) = 𝜇𝐻 + 𝜇(𝑠)

𝑖 (6)

The individual departure rate of an elastic customer of class 𝑗 in any
tate  with 𝑛(𝑒)𝑗 > 0 is equal to:

(𝑒)
𝑗 ( ) = 𝜇𝐻 + 𝜇(𝑒)

𝑗 ( ) (7)

The expressions derived above allow the construction of a finite
TMC with a state space  comprising states such that 0 ≤ 𝑛(𝑠)𝑖 ≤

𝑁 (𝑠)
𝑖 , 0 ≤ 𝑛(𝑒)𝑗 ≤ 𝑁 (𝑒)

𝑗 , for all 𝑖 = 1, 2,… , 𝑆 and 𝑗 = 1, 2,… , 𝐸 and
∑𝑆

𝑖=1 𝑛
(𝑠)
𝑖 𝑅(𝑠)

𝑖 ≤ 𝐶 − 𝜂.
The CTMC is finite and irreducible, hence it admits a steady-state

distribution, which can be computed numerically, obtaining the lim-
iting state probabilities 𝜋 = lim𝑡→∞ 𝑃 { (𝑡)}, where 𝑃 { (𝑡)} is the
probability that the CTMC state at time 𝑡 is  (𝑡).

The average number of active streaming services of class 𝑖 is com-
uted as

[𝑛(𝑠)𝑖 ] =
∑

𝑛(𝑠)𝑖 𝜋 (8)
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and the average number of active elastic services of class 𝑗 is computed
as

𝐸[𝑛(𝑒)𝑗 ] =
∑


𝑛(𝑒)𝑗 𝜋 (9)

e denote by 𝐸[𝑛(𝑠)], and by 𝐸[𝑛(𝑒)] the average total (i.e., adding
ver all classes) number of active streaming and elastic services, re-
pectively. We have:

[𝑛(𝑠)] =
𝑆
∑

𝑖=1
𝐸[𝑛(𝑠)𝑖 ] (10)

nd:

[𝑛(𝑒)] =
𝐸
∑

𝑗=1
𝐸[𝑛(𝑒)𝑗 ]. (11)

inally, the total average number of active services is 𝐸[𝑛] = 𝐸[𝑛(𝑠)] +
[𝑛(𝑒)].

The average utilization of the access link is

=
∑


 (𝑒)=𝟎

𝑛(𝑠)𝑖 𝑅(𝑠)
𝑖

𝐶
𝜋 +

∑


 (𝑒)≠𝟎

𝜋 (12)

The residual capacity left by streaming services to elastic ones is
given by

𝐶 (𝑒)( ) = 𝐶 −
𝑆
∑

𝑖=1
𝑅(𝑠)
𝑖 (13)

The data rate used by an elastic service of class 𝑗 in state  with
(𝑒)
𝑗 ≥ 1 is

(𝑒)
𝑗 ( ) =

[

𝐶 −
∑𝑆

𝑖=1 𝑅
(𝑠)
𝑖 𝑛(𝑠)𝑖

]

∑𝐸
𝓁=1 𝑛

(𝑒)
𝓁

(14)

nd the corresponding probability is

{𝑟(𝑒)𝑗 ( )} =
𝜋

1 −
∑


 (𝑒)=0

𝜋
(15)

ence, the average data rate used by an elastic service of class 𝑗 is
omputed as

[𝑟(𝑒)𝑗 ] =
∑


 (𝑒)>0

𝑟(𝑒)𝑗 ( ) 𝑃 {𝑟(𝑒)𝑗 ( )} (16)

The blocking (or loss) probabilities for streaming services of class 𝑖
re

{loss(𝑠)𝑖 } =
∑


𝑛(𝑠)𝑖 =𝑁 (𝑠)

𝑖 ∨𝑅(𝑠)
𝑖 +

∑𝑆
𝑘=1 𝑛

(𝑠)
𝑘 𝑅(𝑠)

𝑘 >𝐶−𝜂

𝜋 (17)

nd the blocking (or loss) probability for elastic services of class 𝑗 is

{loss(𝑒)𝑗 } =

∑


𝑛(𝑒)𝑗 =𝑁 (𝑒)

𝑗

𝜆(𝑒)𝑗 ( )

∑


𝑛(𝑒)𝑗 ≤𝑁 (𝑒)

𝑗

𝜆(𝑒)𝑗 ( )
(18)

. Product form and insensitivity

The CTMC defined in Section 4 can be seen as a Markov modulated
rocess, where the active streaming calls are the modulating environ-
ent and the elastic request queue is the modulated system. Hence,

he marginal steady-state probabilities for the occupancy of streaming
equests can be computed independently of the state of the elastic
ervices queue.

It is well-known that the model of streaming services admits a
roduct form solution based on the theory of loss networks [4]. In
5

his section, we discuss the existence of a product form solution for
he limiting pdf of the number of streaming and elastic customers, and
he insensitivity of the limiting pdf to the service time distribution.
or the sake of a simple notation, we consider the case of just one
lass for both customer types, but the extension to multiple classes is
traightforward. In addition, for the sake of simplicity, we let 𝜂 = 0.

The state of the queue in this case is simply defined as  = [𝑛(𝑠), 𝑛(𝑒)],
ith 𝑛(𝑠) ∈ {0, 1, 2,… , 𝑁 (𝑠)} and 𝑛(𝑒) ∈ {0, 1, 2,… , 𝑁 (𝑒)}.

5.1. Product form

The marginal limiting pdf for streaming customers 𝜋𝑛(𝑠) =
lim𝑡→∞ 𝑃 {𝑛(𝑠)(𝑡)}, is expressed as:

𝜋𝑛(𝑠) =
1

𝑛(𝑠)!

(

𝜆(𝑠)

𝜇𝐻+𝜇(𝑠)

)𝑛(𝑠)

∑𝑁 (𝑠)

𝑘=0
1
𝑘!

(

𝜆(𝑠)
𝜇𝐻+𝜇(𝑠)

)𝑘 (19)

since the behavior of streaming customers is not influenced by the
number of elastic customers, and corresponds to that in an 𝑀∕𝑀∕𝑚∕𝑚
queue.

The number of streaming customers at the queue modulates the
service rate of elastic customers. Indeed, the total service rate of elastic
customers in state  is

𝜇(𝑒)
𝑇 ( ) = 𝜇(𝑒)

𝑇 (𝑛(𝑠)) = 𝛼(𝑒)
[

𝐶 − 𝑅(𝑠)𝑛(𝑠)
]

(20)

and thus depends on the number of streaming customers at the queue
𝑛(𝑠).

According to the results in [5,6], the product form between the mod-
ulating and modulated processes exists if the steady-state distribution
of the latter conditioned on the state of the former remains the same
for all the possible states. We emphasize that, in our case, the transition
rates of the process associated with elastic services vary according to
the state of the streaming queue, at least for what concerns the service
rate induced by the residual capacity.

Intuitively, we are required to define an adaptation of the arrival
process intensity such that this is higher when the available bandwidth
is high, and lower otherwise. Intriguingly, this is exactly what an AC
policy is expected to do, and we will observe that this leads to the
definition of a quasi-optimal AC policy.

More formally, under the condition

𝜆(𝑒)( )

𝜇(𝑒)
𝑇 ( ) + 𝑛(𝑒)𝜇𝐻

= 𝜌(𝑒)(𝑛(𝑒)) (21)

i.e., 𝜌(𝑒)(𝑛(𝑒)) does not depend on the number of streaming customers
(𝑠)) the marginal limiting pdf for elastic customers 𝜋𝑛(𝑒) =
lim𝑡→∞ 𝑃 {𝑛(𝑒)(𝑡)}, is simply expressed as:

𝑛(𝑒) =
∏𝑛(𝑒)

𝓁=1(𝜌
(𝑒)(𝓁))

∑𝑁 (𝑒)

𝑘=0
∏𝑘

𝓁=1(𝜌(𝑒)(𝓁))
(22)

nd the joint limiting pdf for the number of streaming and elastic
ustomers can be expressed in product form as:

 = 𝜋𝑛(𝑠) ,𝑛(𝑒) = 𝜋𝑛(𝑠)𝜋𝑛(𝑒) (23)

Note that this implies that the elastic customer arrival rate 𝜆(𝑒)( )
s modulated by the value of 𝑛(𝑠) so as to obtain (21).

Although the product form holds for any AC policy that satisfies
ondition (21), we define a policy with the following properties: (i) a
ob arriving at a saturated queue is simply discarded and (ii) on average
he arrival intensity served when the queue has room is 𝜆(𝑒) > 0.

Let 𝐶𝑅( ) and 𝐶𝑅 be the residual capacity not used by the stream-
ing service in state  and its expectation, respectively. Then, the
modulation performed by the following rule:

𝜆(𝑒)( ) =

⎧

⎪

⎨

⎪

𝜆(𝑒) 𝛼
(𝑒)𝐶𝑅()+(𝑛(𝑒)+1)𝜇𝐻
𝛼(𝑒)𝐶𝑅+(𝑛(𝑒)+1)𝜇𝐻

𝑛(𝑒) < 𝑁 (𝑒)

𝜆(𝑒) 𝑛(𝑒) = 𝑁 (𝑒)
(24)
⎩
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satisfies condition (21) and is nearly optimal, as we will show with
numerical experiments.

From a practical point of view this condition can be satisfied by an
AC algorithm that either offloads or postpones elastic service requests
in periods of high load, and accepts offloads or reactivates postponed
requests in periods of low load. Note that this is done without altering
the average elastic request arrival rate 𝜆(𝑒).

We remark that previous works considered product form impossible,
and focused on deriving approximations or bounds. We instead proved
that product form holds under the mild condition expressed by (21),
which can be interpreted in terms of AC. Note however that for the
queue without AC, where streaming and elastic services coexist and
compete with each other, the product form does not hold; hence, the
product form derivation under the mild condition expressed by (21) can
be also seen as an approximation of the system without AC, making
up for the lack of computationally efficient methods for this type of
models.

5.2. Insensitivity

Insensitivity is an important property of some stochastic models
in equilibrium that states that its stationary probabilities depend only
on the first moment of a distribution that describes its behavior [7].
For example, certain queuing systems, such as the M/G/1/PS, are
insensitive to the pdf of the service time.

The insensitivity to the service time distribution of the M/M/m/m
queue is also well known even in the case of multiple classes with dif-
ferent resource demands [8], and is sufficient to prove the insensitivity
of 𝜋 to the pdf of the service time of streaming customers.

In this subsection, we thus focus on the insensitivity of 𝜋 to the
pdf of the amount of service requested by elastic customers, in the
special case in which the mobility of elastic customers can be neglected,
either because of a wired access link or due to the fact that the elastic
customer service time is much shorter than the user dwell time in the
cell (which is typically true for all those services in which the amount
of data to transfer is small, hence for most elastic services).

Assume that elastic customers have a 𝐾-phase Coxian distributed
service requirement, to be fulfilled by a server whose speed is modu-
lated by the queue state  (i.e., by the number of streaming and elastic
customers in service). Recall that the set of Coxian distributions is dense
in the field of all positive-valued distributions, thus they can arbitrarily
well approximate any service requirement pdf.

Each phase of the Coxian distribution is exponentially distributed
with rate 𝜉𝑘𝜇

(𝑒)
𝑇 ( ), where 𝑘 ∈ {1, 2,… , 𝐾} denotes the Coxian phase

and 𝜇(𝑒)
𝑇 ( ), defined in (20), is the server speed when the system is

in state  . In this context, we interpret 1∕𝛼(𝑒) as the average service
demand of the distribution. Let 𝑝𝑘 denote the probability of moving
from phase 𝑘 to phase 𝑘+ 1 (so that 1 − 𝑝𝑘 is the probability of service
completion at the end of phase 𝑘), with 𝑝𝐾 = 0. Note that 𝑝𝑘 does not
depend on  if we neglect customer impatience, but this would not be
the case if we included impatience, i.e., user mobility.

Then, the average individual elastic customer service rate, given  ,
is:

𝜇(𝑒)( ) = 𝜇(𝑒)
𝑇 ( )

( 𝐾
∑

𝑘=1

( 𝑘
∑

𝑡=1

1
𝜉𝑡

)

(1 − 𝑝𝑘)
𝑘−1
∏

𝑗=1
𝑝𝑗

)−1

The state of the PS queue with Coxian service requirement pdf is
𝐦 = (𝑚1,… , 𝑚𝐾 ), where 0 ≤ 𝑚𝑖 ≤ 𝑁 (𝑒) denotes the number of elastic
customers in the system that reached phase of service 𝑖. Now assume,
like in the previous subsection, that the arrival process of elastic cus-
tomers is a state-dependent Poisson process following Condition (21)
with 𝜇𝐻 = 0, and let 𝜆(𝑒)( ) be its intensity.

Condition (21) is sufficient for product form even in the case of
Coxian distributions. From a generic state 𝐦 the outgoing transitions
conditioned to  are shown in Fig. 2. If we divide all the rates
6

Fig. 2. Transition diagram conditioned to  of the Coxian queue. 𝐞𝑖 is the vector with
all 0s and a 1 in position 𝑖, 𝛿𝑃 is 1 when 𝑃 is true and 0 otherwise.

by 𝜇(𝑒)
𝑇 ( ) under Condition (21), we observe that the Markov chains

obtained by conditioning on  have the same steady-state distributions
and hence the product form result holds by [5,6]:

𝜋𝑛(𝑠) ,𝐦 = 𝜋𝑛(𝑠)𝜋
(𝑒)(𝐦)

where 𝜋(𝑒)(𝐦) is the stationary distribution of the PS queue with Coxian
service times. Since the joint state space of the system is the Cartesian
product of the state space of the PS queue and that of the M/M/m/m
queue, then there is no need to re-normalize probabilities.

Now, let us aggregate the state space so that macro-state (𝑛(𝑠), 𝑛(𝑒))
is the set of states such that:

(𝑛(𝑠), 𝑛(𝑒)) =

{

(𝑛(𝑠),𝐦) ∶
𝐾
∑

𝑘=1
𝑚𝑘 = 𝑛(𝑒)

}

Then, we have:

𝜋∗(𝑛(𝑠), 𝑛(𝑒)) =
∑

𝐦∶
∑𝐾
𝑘=1 𝑚𝑘=𝑛(𝑒)

𝜋𝑛(𝑠)𝜋
(𝑒)(𝐦)

= 𝜋𝑛(𝑠)
∑

𝐦∶
∑𝐾

𝑘=1 𝑚𝑘=𝑛(𝑒)
𝜋(𝑒)(𝐦) = 𝜋𝑛(𝑠)𝜋𝑛(𝑒)

with 𝜋𝑛(𝑒) given by (22), where the last equality follows by the insensi-
tivity property of the 𝑀∕𝐺∕1∕𝑃𝑆 queuing system (possibly with state
dependent arrival rates as in [9]). Since 𝜋∗(𝑛(𝑠), 𝑛(𝑒)) depends only on the
first moment of the Coxian distribution, we conclude that the PS system
in product form maintains the insensitivity property of the well-know
PS system with constant arrival and service rates.

We remark that this is a very powerful result, that greatly gener-
alizes previous works, showing that in the case of general service time
distributions, which was considered intractable in the literature, we not
only have product form, but also insensitivity, under the condition of
no (or limited) mobility.

6. Video streaming at adaptable data rate

Video streams can be delivered to users with different qualities that
typically correspond to quite different data rates. Standards for video
streaming specify data rates that vary over several orders of magnitude,
from few Mb/s for 640 by 480 pixels, 30 frames per second and aspect
ratio 4:3 (480p), up to several Gb/s for Ultra HD 8 K (uncompressed)
video.

Video streams are normally started at one of the available data rates,
but their data rate can dynamically change to another possible value,
according to the resources available along the path from transmitter to
receiver.

The model we presented in the previous sections is capable of
accommodating adaptable bit rate video with a finite number of video
qualities, hence of data rates.

For the sake of simplicity, we consider the case of just two data
rates for video: a lower data rate 𝑅𝑣𝑙 and a higher data rate 𝑅𝑣ℎ, with
𝑅𝑣𝑙 < 𝑅𝑣ℎ, but similar arguments can be applied to a larger number
of data rates. In addition, we assume that, while the video data rate
can be scaled according to data rate availability, the data rate of audio
streams remains constant.
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Table 3
Parameters used in the numerical evaluation. Basic scenario.
Parameter Value

Total data rate 300 Mb/s
Data rate video 6 Mb/s
Video average duration 1800 s
Data rate audio 0.1 Mb/s
Audio average duration 600 s
Elastic file average size 0.5 Mb
Maximum number of elastic services 50
Average time in the cell 600 s
Fraction of elastic arrivals 0.8
Fraction of audio/video arrivals 0.1

Video service requests are accepted if the available data rate is
t least 𝑅𝑣𝑙, possibly after reducing the data rate of some ongoing
ideo services from 𝑅𝑣ℎ to 𝑅𝑣𝑙, and blocked otherwise. During video
treaming, the video data rate can be increased from 𝑅𝑣𝑙 to 𝑅𝑣ℎ if

resources allow, as well as reduced from 𝑅𝑣ℎ to 𝑅𝑣𝑙 in order to make
room for an incoming streaming service request. When several video
streams are simultaneously active, as many as possible use the higher
data rate 𝑅𝑣ℎ, while the others only use 𝑅𝑣𝑙. Blocking of a new video
treaming service request occurs when the data rate available on the
ink is less than 𝑅𝑣𝑙.

The state space of the resulting queuing model is the same as the
ne obtained by just considering videos at the lower rate 𝑅𝑣𝑙. Indeed,

the fact that a higher data rate for video is possible in some states just
induces a modification of the residual data rate for elastic services.

If the number of active streaming services at time 𝑡 is represented
by the pair (𝑛𝑎(𝑡), 𝑛𝑣(𝑡)), where 𝑛𝑎(𝑡) is the number of active audio
streams and 𝑛𝑣(𝑡) is the number of active video streams, the number of
video streams that use the high data rate 𝑅𝑣ℎ, denoted by 𝑛𝑣ℎ(𝑡), with
0 ≤ 𝑛𝑣ℎ(𝑡) ≤ 𝑛𝑣(𝑡), can be computed as:

𝑛𝑣ℎ(𝑡) =
⌊

𝐶 − 𝜂 − 𝑛𝑎(𝑡) 𝑅𝑎 − 𝑛𝑣(𝑡) 𝑅𝑣𝑙
𝑅𝑣ℎ − 𝑅𝑣𝑙

⌋

(25)

ence, the number of video streams that use the low data rate 𝑅𝑣𝑙,
enoted by 𝑛𝑣𝑙(𝑡), with 0 ≤ 𝑛𝑣𝑙(𝑡) ≤ 𝑛𝑣(𝑡), can be expressed as:

𝑣𝑙(𝑡) = 𝑛𝑣(𝑡) − 𝑛𝑣ℎ(𝑡) (26)

The residual data rate available to elastic services, including the
eserved data rate 𝜂, is

− 𝑛𝑎(𝑡) 𝑅𝑎 − 𝑛𝑣𝑙(𝑡) 𝑅𝑣𝑙 − 𝑛𝑣ℎ(𝑡) 𝑅𝑣ℎ (27)

It is interesting to observe that the blocking probability for video
ervice requests in the case of multiple data rates is the same as for the
ase in which videos can use just the lowest data rate.

. Numerical results

We present numerical results for a wireless access link correspond-
ng to a BS loaded by video and audio streaming traffic, and by elastic
raffic subjected to the AC algorithm described before. We set 𝜂 = 0
nd use the parameter values listed in Table 3, which define our basic
cenario.

.1. Oscillations of KPIs

We start the analysis by considering a basic scenario and we inves-
igate an interesting oscillating behavior for the KPIs.

The BS can simultaneously accommodate at most 50 video stream-
ng services, and up to 3000 audio services. We assume a maximum of
0 simultaneous elastic services. We plot results as a function of the
otal service request arrival rate, before losses and before AC. For all
alues of the arrival rate, 10% of the requests refer to video services,
7

0% refer to audio services, and 80% to elastic services. Note that this
mplies that streaming video produces most of the BS load, like in real
ystems, due to its data rate requirement and duration.

Fig. 3 reports blocking probabilities for audio and elastic services
a) and for video services (b); blocking probabilities are computed
s in (17) and (18) for streaming and elastic services, respectively.
he figure reports also the residual capacity in Mb/s not used by
treaming services that is therefore used by elastic services (c); this
PI is computed as in (13). It is extremely interesting to observe the
scillations induced by the mixture of streaming and elastic services
ith very different data rate requirements: oscillations are due to the

tep reduction in the number of active video services for increasing
rrival rate, as we will explain later on. In the literature, only one
tudy observed the possible non-monotonicity of blocking probabilities
ith respect to traffic intensity [3]. No previous work however unveiled

he possibility of oscillating behaviors for both blocking probability of,
nd bandwidth available to, elastic services, or showed oscillations of
he amplitude observed in Fig. 3. The oscillations observed for audio
ervices are likely to intermittently violate the service level agreement
onstraints (typically an average blocking probability limit of the order
f 1%), even for moderate load. The oscillations in blocking probability
f elastic services are due to the non-monotonicity of the data rate not
tilized by streaming services (dot-dashed blue line in the figure).

In order to explain the root causes of the behavior observed in Fig. 3,
ig. 4 shows the steady-state probabilities to have a large number of
ctive video calls (values between 46 and 50). The probability of 50
ctive video services is always extremely low, since the presence of one
udio service is sufficient to prevent access to the 50th video. Other
robabilities show peaks due to the interplay between audio and video
rrivals. The distance between peaks corresponds to an increase of the
verage number of active audio services equal to 60 (remember that
0 audio services consume the same data rate of 1 video). Indeed,
ith an audio service average duration in the cell equal to 300 s (also
ccounting for mobility), an increase of 60 audio services corresponds
o an increase in arrival rate equal to 0.2, which is close to the distance
etween consecutive peaks that we observe in the plots.

The behavior we just observed is shown also in the curves of
locking probabilities reported in Fig. 5, for a larger range of values and
n semilogarithmic scale. While the video service blocking probability
xhibits a familiar monotonic behavior, the audio service blocking
robability (which is much lower because of the lower data rate)
scillates, but the amplitude of oscillations reduces as video blocking
robability grows.

Fig. 6 shows the average number of active audio and video services,
o be read in the 𝑦-axis on the left and right, respectively. While
he average number of active audio services grows, again with some
scillations due to the phenomena described before, the average num-
er of active video services reaches a maximum for a video service
equest arrival rate close to 0.2 s−1, and then starts declining due to

the increasing amount of the BS resources occupied by audio services,
that increase the blocking probability for video.

The lesson learnt from these results is that the interplay among
classes of services with quite different requirements, even when exhibit-
ing the same kind of resource usage (i.e., constant bit rate), is complex,
and might lead to undesired behaviors, such as the non-monotonic
growth of blocking probability with load.

7.2. Effect of AC

Let us now consider what happens to elastic services. Fig. 7 reports,
on the 𝑦-axis on the left, the blocking probability of elastic services,
and, on the 𝑦-axis on the right, the average bandwidth that is available
to elastic services, i.e., the residual capacity not used by streaming
services. The blocking probability is reported for three cases: (i) elastic
services with the considered AC, (ii) with an optimal AC which relies
on full information (arrival times and amount of data to be transferred

of all service requests are known) and (iii) with no AC, labeled as
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Fig. 3. Blocking probability for audio, elastic (a) services, video (b), and expected residual capacity for elastic services (c), versus total service request rate. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Stationary probabilities of numbers of active video services between 46 and 50;
asic scenario.

‘constant rate’’ in the figure. Note that only the results with our pro-
osed AC are obtained with the product form solution derived before.
esults for the other two cases required the solution of Markovian
odels with extremely large state spaces, exploiting the capabilities of

ophisticated solvers [10], which have very high cost in terms of both
emory and computation. We see that our proposed AC exhibits almost

dentical performance to the optimal AC (the two curves overlap), while
8

Fig. 5. Blocking probability for audio and video services in the basic scenario.

it outperforms the case of no AC. Oscillations in residual capacity occur
with a decreasing pattern due to the increasing arrival rate of service
requests of all types. An interesting effect of the interplay between
audio and video streaming services is that, even under very heavy load
conditions, streaming services leave some resources for elastic services.
This effect is caused by the inability of streaming services to exploit
the entire available bandwidth, due to the very different data rate
requirements of the two classes of streaming services. This has the very
desirable effect of preventing starvation of elastic services even at very
high streaming traffic intensity.

The average number of elastic services in progress computed as
in (11) is shown in Fig. 8, again in the cases with or without the
AC algorithm and for the optimal control. With the considered AC,
we observe a phase transition for an overall service request arrival
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Fig. 6. Average number of active audio and video services in the basic scenario.

Fig. 7. Blocking probabilities and residual capacity for elastic services in the basic
scenario with and without admission control.

Fig. 8. Average number of active elastic services in the basic scenario with and without
admission control.

rate equal to 7.5 requests per second, which corresponds to the value
for which the load of elastic services equals 1. For lower values, the
residual bandwidth is enough to satisfy elastic traffic, and the number
of services in progress is low. For higher values, the residual bandwidth
is low and the system is overloaded; hence, the number of elastic
services in progress quickly approaches 50, the maximum permitted
9

value. In the case of no AC, the average number of elastic services in
progress oscillates, with peaks corresponding to minima of the residual
bandwidth. Before saturation, the average number of elastic services
in progress is larger than in the case of AC, because of the expected
beneficial effect of the algorithm. After saturation, the average number
of elastic services in progress is lower than in the case of AC, because
of the higher blocking probability, as can be seen in Fig. 7.

Figs. 7 and 8 show the quasi optimality of the AC algorithm for
elastic services. When the bandwidth available to elastic services is such
that their load is less than 1, no loss occurs, and the average number
of elastic services in progress is close to the case of the ideal control
algorithm. When the bandwidth available to elastic services is such
that load exceeds 1, losses occur and the number of elastic services in
progress is close to 50 (exactly 50 for the full information algorithm).

7.3. Constant video request rate

As a second scenario we consider a variation of the basic scenario
that shows that the phenomena described above occur also when the
growth of the service request rates of the three classes of service is not
the same. In particular, in the modified scenario the service request rate
for video is fixed at 0.2 requests per second, and the request rates for
audio and elastic services grow, keeping the same ratio between elastic
and audio request rate as in the basic scenario.

Fig. 9 shows the audio and video blocking probabilities versus
the total service request arrival rate. The audio blocking probability
oscillates, with a frequency similar to the case of the basic scenario.
The video blocking probability now has a smoothed staircase behavior
(in spite of the constant load generated by videos) because of the
progressive erosion of the available resources due to audio services.

The explanation of these behaviors can again be found in the plot
of the steady-state probabilities that the number of active video calls is
equal to values between 46 and 50, which is reported in Fig. 10.

Finally, Fig. 11 reports the average bandwidth in Mb/s that is not
occupied by video and voice services, and that can be exploited by
elastic services. Once more, the oscillations are clearly visible.

7.4. Video at adaptable data rate

We now consider the case of video streams that adapt their data
rate to the amount of resources that are available on the access link.
In particular, we assume that two data rates are available for video
streaming: 6 and 10 Mb/s (on the contrary, the data rate for audio
services remains fixed at 0.1 Mb/s, for simplicity). If enough resources
are available to allow all or some of the active video streams to operate
at the higher data rate, then they use 10 Mb/s. The remaining video
streams operate at the lower data rate. For example, if audio services
collectively consume 9 Mb/s (i.e., 90 audio services are in progress)
and 30 video streams are active, the 291 Mb/s not used by audio are
used to serve 27 video streams at 10 Mb/s and 3 video streams at 6
Mb/s, for a total of 288 Mb/s, so that 3 Mb/s remain to serve elastic
traffic.

In Fig. 12 we plot the blocking probability for audio and elastic
services, as well as the expected residual capacity for elastic services,
versus the total service request rate in the case of the basic scenario
with variable data rate video services. These results must be compared
with those in Fig. 3 that refer to constant video data rate. We can see
that the effect of the adaptable data rate of video is a faster decrease of
the residual capacity and larger oscillations of the blocking probability
of elastic services. Note that the curve of the blocking probability of
audio services is the same in the two figures. Also the curve of the
blocking probability of video services (not shown in Fig. 12) is the same
in the two cases.

In Fig. 13 we plot the average number of active elastic services in
the basic scenario with and without admission control in the case of
adaptable data rate video services. These results must be compared with
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Fig. 9. Blocking probability for audio and video services in the modified scenario.

Fig. 10. Stationary probability of occupancy between 46 and 50 for video services in
the modified scenario.

Fig. 11. Residual bandwidth for elastic services in the modified scenario.

hose in Fig. 8, that refer to the case of constant data rate video. We
an see that the variability of the video data rate makes the number of
ctive elastic services grow much earlier than with constant data rate
ideo. This is coherent with the faster decrease of the residual data rate,
hich makes elastic services last longer.

In Fig. 14 we plot the blocking probability for elastic services in
he case of adaptable data rate video services. These results must be
ompared with those in Fig. 7, that refer to the case of constant data
10

ate video. Also this metric shows that elastic services suffer due to the
Fig. 12. Blocking probability for audio and elastic services, and expected residual
capacity for elastic services, versus total service request rate with adaptable data rate
video services. Basic scenario.

Fig. 13. Expected occupancy of elastic services with adaptable data rate for the video
services.

Fig. 14. Blocking probability for elastic services with adaptable data rate video.

variability of the video data rate and the subsequent reduction in the
residual capacity.

8. Assuming independence

The complexity of scenarios with heterogeneous service types de-
rives by the interplay between the allocation of resources and their use
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Fig. 15. Comparison between the exact model and the one that assumes independence
between streaming and elastic traffic: blocking probability for elastic services.

by requests of different types. Thanks to the existence of a product form
solution, our model is effective and scalable. However, in this section,
we aim to further highlight the importance of a detailed model that
takes into account the complex interplay among services of different
types. To do so, we compare our model against a simpler approach
in which the interplay between services is taken into account in a
simplified, but approximate, way.

In particular, we consider results obtained by assuming that the two
traffic types are independent. Since streaming traffic is not influenced
by the presence of elastic traffic, the steady-state number of active
streaming services can be simply derived as in (19).

By assuming independence, the steady-state probability to have 𝑛(𝑒)

active elastic services can be derived (by the theorem of total probabil-
ity) as the weighted sum of the conditional steady-state probabilities of
𝑛(𝑒) active elastic services given that 𝑛(𝑠) streaming services are active
multiplied by the steady-state probability to have 𝑛(𝑠) active services.
In formulas:

𝜋𝑛(𝑒) =
∑

𝑛(𝑠)∈ (𝑠)

𝑃 {𝑛(𝑒)|𝑛(𝑠)}𝜋𝑛(𝑠) (28)

here 𝑃 {𝑛(𝑒)|𝑛(𝑠)} is obtained from the solution of a processor sharing
/M/1 queue in which the server works at the rate corresponding to

he residual capacity.
Fig. 15 reports the blocking probability of elastic services 𝐸[𝑛(𝑒)]

omputed with (28) and with the exact model, when no AC is assumed
nd the basic scenario is considered.

We can see that (28) reproduces the general oscillating behavior
bserved for the loss probability, as expected because this directly
erives from the oscillation of available bandwidth for elastic traffic.
owever, the value of the loss probability is overestimated for low
alues of load and underestimated for high load.

The reason for this discrepancy lies in the fact that the assumption of
ndependence and expression (28) consider both processes of streaming
nd elastic services to be in steady state. However, this is not the
ase in practice, since a variation in active streaming services induces
transient on the behavior of elastic services that requires time to

pproach the steady state, and is likely disrupted by another change
n the number of active streaming services. This means that elastic
ervices cannot be considered in steady state for a given configuration
f streaming services, and the system behavior can only be captured
ith a model like ours, that accounts for the interplay of the two service
11

ypes.
Table 4
Average number of active audio and video services and blocking probability for audio
and video, with variable coefficient of variation for the duration of audio and video
services. Basic scenario.

Coefficient Average active Average active 𝑃 {𝑙𝑜𝑠𝑠} 𝑃 {𝑙𝑜𝑠𝑠}
of variation audio video audio video

1 147.6 46.8 0.01 0.79
1.2 144.4 46.8 0.01 0.79
1.4 138.6 46.9 0.02 0.79
1.6 134.9 46.8 0.03 0.78
1.8 130.7 47.0 0.03 0.78
2.0 124.7 47.2 0.05 0.77
2.2 121.0 47.3 0.05 0.77
2.4 118.2 47.4 0.05 0.77
2.6 114.6 47.5 0.05 0.76
2.8 113.1 47.6 0.04 0.76
3.0 109.8 47.6 0.03 0.75

9. Validation of exponential assumptions

In order to validate our analytical results, that in the case of a
RAN cell serving mobile users require exponential assumptions, we
compare analytical results against simulation estimates obtained in the
non-exponential case. In particular, in Table 4 we show what happens
to the number of active video and audio services and to the blocking
probabilities when we increase the coefficient of variation of the service
duration in the basic scenario, defined by the parameters reported in
Table 3. Considering that the duration of streaming services have been
observed to have distributions with variances higher than those of an
exponential, we vary the coefficient of variation from 1 (corresponding
to an exponential distribution) to 3 (corresponding to a rather large
variance, equal to 9 times the square of the mean). This is obtained by
using a 2-stage hyperexponential distribution where one stage (having
probability 0.95) describes the core of the distribution and the other
(having probability 0.05) models the tail of the distribution.

Results in Table 4 show that the average number of active video
services is only marginally impacted by the changes of the coefficient of
variation: an increase from 1 to 3 corresponds to an increase from 46.8
to 47.6 (i.e., an increase of 1.7% only). More relevant is the variation
in the average number of active audio services, that decrease from
147.6 to 109.8 (i.e., by 25%). This is due to the much lower amount of
bandwidth consumed by audio with respect to video.

If we turn our attention to blocking probabilities, we see that
for video the increase of the coefficient of variation implies a lim-
ited reduction of the blocking probability from 0.79 to 0.75. Quite
interestingly, we instead observe the blocking probability for audio
services to first grow with the coefficient of variation and then decrease
(always remaining in the range between 1 and 5%), again showing an
unexpected non-monotonic behavior.

10. Related work

The coexistence of streaming and elastic traffic flows, and their
interaction, is studied in the literature for both wired and wireless
networks. The paper [11] studies an integrated AC scheme for a wired
network loaded by both streaming and elastic flows, using a fluid model
that provides a good approximation under rather general and realistic
traffic conditions. In [12,13] the authors study a UMTS cell loaded with
both streaming and elastic traffic submitted to AC with no mobility,
and develop approximate analysis approaches; the authors state that
exact analysis is non-tractable in general. Channel-aware scheduling
algorithms for streaming and elastic services in a base station are
discussed in [14] and evaluated using an approximate approach which
is shown to be very accurate against simulations, again disregarding
user mobility.

The papers [15,16] delve into the analysis of a multi-server queuing

system characterized by two categories of service requests, namely
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Table 5
Comparison between this paper and the most relevant previous works modeling mixes of streaming and elastic services (AC
stands for access control; MC stands for Markov chain; PF stands for product form; QN stands for queuing network).

Reference Main content of reference Improvement of this paper

[11] AC scheme; fluid model Mobility; exact analysis;
PF; insensitivity

[12,13] AC scheme; approximate model Mobility; exact analysis;
PF; insensitivity

[14] Scheduler; approximate model Mobility; exact analysis;
PF; insensitivity

[15] MC model Mobility, PF; insensitivity

[16] MC model; elastic mobility PF; insensitivity

[17,18] Resource management; Exact analysis; PF; insensitivity
AC; QN model

[19] MC model Exact analysis; insensitivity

[20] AC; approximate MC; mobility PF; insensitivity

[21] MC model Mobility; PF; insensitivity

[22] Approximate MC Mobility; exact analysis,
PF; insensitivity
inelastic and elastic. In the context of this queuing system, the compu-
tation of performance metrics is carried on through the utilization of
the stationary distribution derived from the multidimensional Markov
chain governing the system’s dynamics.

In [17,18], and [19] the authors use queuing models to study a re-
source management scheme for an integrated cellular/WLAN network
to support streaming and elastic service classes. Resource sharing is
based on virtual partitioning, and a dynamic load balancing policy is
proposed to distribute the traffic load.

The work in [20] studies an AC policy for cellular networks support-
ing both streaming and elastic traffic, also accounting for user mobility.
The AC is based on virtual partitioning. Resources are quantized, and an
approximate Markovian analysis is used to derive performance metrics.
When the total traffic demand of elastic flows exceeds the available
capacity some flows might be aborted due to impatience. A similar
approach is used in [21] to derive the performance of streaming and
elastic services in a multiservice network with a dynamic channel allo-
cation scheme where different classes of traffic have different quality
of service requirements. The authors of [22] develop an approximate
Markovian model of a wired or wireless system loaded with streaming
and elastic traffic. The model is based on a two-dimensional Markov
process, which approximates the real process in the system. To validate
and verify the model, an original and purpose-made simulator was
used. The results of the simulation confirm the model accuracy.

The main characteristics of the above references and the differences
with respect to our work are very concisely summarized in Table 5.

It is worth underlining that the AC strategy adopted in our paper has
different characteristics compared to those proposed in the above cited
references. First of all, our AC strategy, by using a re-shaping of the flow
of incoming requests, reduces the waste of bandwidth due to session
premature terminations (see for instance [20,23], and [24]). Moreover,
our AC strategy, allowing a re-shaping of the input that can be both
spatial (using adjacent cells to compensate for over/under-load) and
temporal (adding a delay), can be applied to both wired and wireless
environments.

In [25], the authors propose a new approximate technique for the
analysis of Markov modulated models called MARC, where the response
time of the modulated process can be approximated up to an additive
constant. The method differs from that considered here since it requires
to compute a function that is the solution of a Poisson equation that
allows one to understand the trend of the response time as function of
the intensity of the workload. Notice that the additive constant may
be relevant in low and moderate load conditions and since we aim to
estimate the blocking probabilities of elastic services this may cause
12

inaccurate estimates in practical scenarios.
Queuing models combining elastic and inelastic service requests
find extensive application in modeling communication networks, dis-
tributed systems, and computing systems. For example, in [26] the
authors consider data center workloads consisting in inelastic and
elastic jobs, and they develop analytical models to study properties of
scheduling algorithms.

The papers [27,28] offer a compelling exploration of intriguing re-
search problems associated with these models, and of their applications
to the performance evaluation of data centers and cloud systems.

11. Conclusions

In this paper, we have developed queuing models of access links of
wired and wireless multiservice access networks, showing unexpected
oscillatory phenomena in the system performance that were mostly
neglected in the literature.

We have defined a quasi-optimal AC algorithm for elastic services
that leads to a product form expression of the joint probability of the
numbers of active services of the different classes, and to an insensitiv-
ity of the system performance to the distribution of the amount of data
to be transferred, in the case of no mobility.

The phenomena that we observed, and in particular the oscillations
of several performance metrics, are mainly due to the large difference
in the data rate requirements of different classes of streaming services.
It is important to state that we have not exaggerated the data rate
differences in our analysis. We used 6 Mb/s for video and 100 kb/s for
audio, but today a HD streaming of a sport event easily requires over 10
Mb/s, and a one-on-one voice-only call on any of the multiparty voice
conference platforms that have become so popular in times of pandemic
normally consumes about 10 kb/s.

The use of AC for elastic services is very important for the provision
of quality of service. In our setting, we observed that with a service
request rate around 6 requests per second, i.e., with an elastic service
load of the order of 80% of the bandwidth not used by streaming
services, Poisson arrivals generate a blocking probability around 20%,
while both our proposed scheduler and the full information scheduler
produce hardly any blocking.

The extension of the work presented in this paper will consider
portions of a radio access network, including several base stations that
define macro and small cells over which end users roam while accessing

the network.
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