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Convolutional Neural Networks (CNN) are a class of machine learning models

predominately used in computer vision tasks and can achieve human-like

performance through learning from experience. Their striking similarities to

the structural and functional principles of the primate visual system allow for

comparisons between these artificial networks and their biological counterparts,

enabling exploration of how visual functions and neural representations may

emerge in the real brain from a limited set of computational principles. After

considering the basic features of CNNs, we discuss the opportunities and

challenges of endorsing CNNs as in silico models of the primate visual system.

Specifically, we highlight several emerging notions about the anatomical and

physiological properties of the visual system that still need to be systematically

integrated into current CNN models. These tenets include the implementation

of parallel processing pathways from the early stages of retinal input and the

reconsideration of several assumptions concerning the serial progression of

information flow. We suggest design choices and architectural constraints that

could facilitate a closer alignment with biology provide causal evidence of the

predictive link between the artificial and biological visual systems. Adopting this

principled perspective could potentially lead to new research questions and

applications of CNNs beyond modeling object recognition.

KEYWORDS

Convolutional Neural Networks (CNN), visual system, ventral stream, blindsight, superior
colliculus, pulvinar, V1-independent vision

The place of Convolutional Neural Networks
between neuroscience and cognitive sciences

The brain processes multidimensional and context-dependent information about the
world to generate appropriate behaviors. Models in cognitive sciences capture principles of
brain information processing but typically overlook fine details about the spatiotemporal
implementation of neuronal functions or biological components. On the other hand,
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neurobiological models recapitulate dynamics of action potentials
or signal propagation across neuronal populations. However, they
have limited success in understanding the computations that
support complex behaviors in real-life contexts (Kriegeskorte and
Golan, 2019).

In parallel to research in neuroscience, CNNs have become
a powerful tool in machine learning and AI that can attain
human-like performance. In fact, CNNs can approximate functions
in complex and real-world tasks, such as visual recognition
(Krizhevsky et al., 2012), language processing (Wolf et al., 2020),
or motor learning (Mnih et al., 2015; Dhawale et al., 2017), in
ways resembling biological agents. Fueled by the current success
of AI and computer vision, current studies suggest that CNNs
can potentially bridge the gap between “disembodied” descriptions
of cognitive functions and neurobiological models, thus offering
a new framework for predicting brain information processing
(Kriegeskorte and Golan, 2019). At its core, this framework
explains sensory, cognitive, and motor functions in terms of local
computations that emerge from experience in networks of units
aggregated in multiple (i.e., deep) layers.

Nevertheless, the synergy between neuroscience and AI
remains elusive unless the opportunities and challenges of
reframing classic questions in neuroscience as deep learning
problems are considered (Saxe et al., 2020). Why should we study
biological brains through the lens of CNNs? Which new research
question do CNNs allow to emerge in neuroscience? What do
they offer more than, or differently from, traditional models in
terms of predictions, interpretability, or explanatory power? In this
short review, we summarize basic concepts and describe recent
progress at the intersection between neuroscience and AI, limiting
our discussion to the primate visual system and its functions. We
then outline some principles in visual neuroscience that still need
to be systematically integrated into current CNN models of the
primate visual brain. These principles are cornerstones to improve
the neurobiological realism of CNNs, and we propose examples
of design choices and architectural constraints that may permit a
closer match to biology. To this end, we would like to contribute to
setting a roadmap for vision neuroscientists interested in drawing
on CNNs toolkit.

Basic principles of CNNs for vision
neuroscience

Convolutional Neural Networks are a particular class of
artificial neural networks inspired by the architecture and basic
functions of biological vision (LeCun et al., 1989; Gu et al.,
2018). In contrast to non-convolutional fully connected networks,
where each neuron in a layer is connected to all neurons in
the previous layer, CNNs employ local connectivity and shared
weights through convolutional layers. In general, a CNN consists of
many processing units akin to neurons, arranged in interconnected
layers typically interpreted as being analogous to brain areas, and
with connections defined by weights that mimic the integration
and activation properties of synapses. The output of one stage
of operations is typically a non-linear combination of the input
received and is then passed on to the next layer. This circuit motif
is repeated several times and creates a hierarchical organization

until the cascade culminates with a discriminative classification
or regression generated by the last layers used for readout.
A convolutional layer contains many filters with distinct receptive
fields that are applied to the input image through a convolution
operation, which allows the network to capture spatial and
temporal patterns in the input data. The filter’s weights are the
learnable parameters of these layers, with the learning process
typically managed by standard gradient descent algorithms (LeCun
et al., 2015; Yamins and DiCarlo, 2016; Barrett et al., 2019; Kragel
et al., 2019; Hasson et al., 2020).

Historically, the development of CNNs was informed by tuning
properties of simple and complex neurons in the primary visual
cortex (V1), the major cortical target of retinal information,
modeled through handcrafted Gabor filters (Fukushima, 1980;
Riesenhuber and Poggio, 2000). This bottom-up approach proved
effective in modeling V1 properties, but had limited success when
extended to higher-order cortical areas along the visual ventral
stream (Gallant et al., 1996; Kriegeskorte, 2009). These limitations
contributed to shifting the focus toward a goal-driven approach
by maximizing, for example, the classification accuracy (Yamins
and DiCarlo, 2016). Instead of characterizing the coding properties
of individual neurons to enforce model parameters, the workflow
of the goal-driven approach reverses the order: first, optimize the
CNN to perform an ecologically relevant visual task, then compare
artificial networks to real neural data.

Goal-driven CNNs learn to map input patterns (e.g., raw
images) to output classifications (e.g., sorting natural images
according to categories like faces, objects, and animals). They
learn through training, in the form of supervised feedback
or reward signals. Throughout this process, the network self-
organizes, meaning that computations emerge spontaneously
during training and weights change with repeated exposures
to labeled or rewarded images (e.g., using the backpropagation
algorithm) (LeCun et al., 2015). On the one hand, the classical
pattern of interleaving convolutional with pooling layers produces
filters with increasing receptive fields as the network layers are
traversed forward. On the other hand, the goal-driven learning
process does not explicitly enforce any kind of structure in the
internal computations. The researcher examines the population-
level description of how computations arise organically over
the course of network training. The underlying assumption is
that hidden layers of a good network model would functionally
behave like real neurons in the corresponding neural structures.
It has been observed that CNNs commonly learn hierarchies
of abstraction, with the first layers acting as Gabor filters
while deeper layers become detectors of more complex patterns
(Yamins and DiCarlo, 2016). This emergent property as sparked
speculations as to whether trained CNNs can functionally behave
like biological neurons in the corresponding neural structures
(Khaligh-Razavi and Kriegeskorte, 2014; Kuzovkin et al., 2018;
Van Dyck et al., 2021).

We argue that the bottom-up and the goal-driven approaches
are not mutually exclusive. It is not futile, indeed, to characterize
the coding properties of individual neurons, especially at the
early stages of visual analyses (i.e., in the retina, subcortical
structures receiving direct retinal input, or V1). Design choices
that permit a closer match to biology also improve subsequent
model fit to neural data or contribute to explaining the diversity
of structural and functional properties in the visual brain. For
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example, when connections between the first layers are constrained
with a bottleneck that reduces neurons at the virtual retinal output,
consistent with the anatomy of the optic nerve, early layers of the
CNN exhibit spontaneously concentric center-surround responses,
as in the thalamus, whereas later layers are tuned to orientations,
as in V1 (Lindsey et al., 2019). Likewise, the relationship between
high selectivity for orientation in simple cells and low selectivity
to spatial phase in complex cells of V1 has long been debated, as
some mammals lack orientation maps. Different forms of pooling
implemented in a Sparse Deep Predictive Coding (SDPC) model
account for the emergence of complex cells in V1, both with
and without orientation maps (Boutin et al., 2022). Pooling in
the feature space is responsible for the formation of orientation
maps, whereas pooling in the retinotopic space is related to the
emergence of complex cells. Therefore, CNN approaches to this
issue suggest that the presence or absence of orientation maps
results from diverse strategies employed by different species to
achieve invariance in complex natural stimuli.

Convolutional Neural Networks can thus differ considerably
in their objective function (the goal of the system), learning rule
(how parameters are updated to improve the goal), and circuit
architecture (how units are arranged and connected), which are
the three central components specified by design (Richards et al.,
2019). From an engineering perspective, CNNs are built to solve
a task better than prior models, with less computational effort
or fewer training examples. Exceeding human performance is
desirable, and biological plausibility is not a driving or required
factor. Conversely, a closer correspondence with biological brains
is paramount from a neuroscientific standpoint. In the latter case,
CNNs can be useful if they incorporate elements that parallel the
architecture and principles of functioning of the biological visual
system. By doing so, CNNs can offer mechanistic hypotheses and
enable empirical exploration of how a pattern of behaviors and
neural representations may arise in the real brain from a limited
set of computational principles.

CNN as (partial) models of the visual
brain: why and how

The visual system is typically represented as a constellation
of different but interconnected maps harbored in anatomically
distinguishable areas that analyses diverse input features, such as
curvature, color, or motion. The division of labor across these
areas is classically charted at the cortical level in two “pathways” or
“streams,” the dorsal and ventral, originally conceived to progress
linearly and hierarchically from a common antecedent in V1
(Ungerleider and Mishkin, 1982; Goodale and Milner, 1992). Along
the ventral stream, which courses from V1 to areas downstream up
to the temporal pole, retinotopy decreases, receptive fields become
progressively larger, and neural responses are increasingly complex
and invariant to low-level changes in the input space. This cascade
culminates at the apex of the ventral stream with “concept” cells
that are tuned to specific (sub)categories, such as (famous) faces,
bodies, or places (Quiroga et al., 2005).

The designed architecture of CNNs, as described herein,
parallels that of the ventral stream along several dimensions:
hierarchical sequence of organized stages, loose correspondence

between different layers and visual areas such as V1, V2,
V4 and IT, progressive increase of receptive field size and
complexity. These features, combined with the evidence that
artificial networks trained on an ecologically relevant task attain
human-level performance and learn abstraction hierarchies, make
CNNs credible candidates for modeling the ventral stream.
However, these structural features and the objective function of
CNNs are built by the experimenter. Arguably, artificial networks
should exhibit additional properties and representations that
are not explicitly engineered and that match those found in
biological brains.

Assessing the behavioral correspondence

The equivalence between CNNs and biological brains can be
profitably understood in the context of the behavioral outcomes
they produce, beyond the overall accuracy in image classification
for which the network has been explicitly optimized. CNNs
trained for generic object recognition develop representations
and categorical similarity that relate closely to human perceptual
shape and semantic judgments (Kubilius et al., 2016). CNNs
match human and non-human primate error patterns across
object categories, viewpoint variations and similarity judgments
(Rajalingham et al., 2018). However, a more fine-grained analysis
of discrepancies at the level of individual images, typically
achieved by comparing confusion matrices, reveals that artificial
and biological agents make errors on different images. In
comparison to humans, CNNs (i) rely more on texture to classify
images, (ii) are more affected by perturbations that degrade
image quality, like pixelate noise, spatial frequency filtering or
occlusions, and (iii) exhibit robustness and generalizability still
lower than biological vision (Ghodrati et al., 2014; Geirhos et al.,
2017, 2018; Wichmann et al., 2017; Tang et al., 2018). While
we acknowledge that gross similarities in object recognition
between artificial and biological neural networks are encouraging,
the extent to which existing CNNs reproduce the multiple
ways biological agents classify natural images, especially at the
level of single items, should not be overstated. These areas of
mismatch are important endeavors to steer future research and
to improve both neurobiological plausibility and predictive power
of CNN models.

Examining neural correspondence

The overall similarities between CNNs and humans at the
behavioral outcomes level motivate comparing their internal
processing stages and representational transformations. How well
the features learned by CNNs can predict brain responses? To what
extent do top-down goals imposed at the output of the CNNs cause
hidden layers to respond like real neurons at different stages along
the ventral stream hierarchy?

One standard approach is to assess through a regression
procedure the correspondence between multi-unit neuronal
activity in different ventral stream areas of the primate brain,
and the activity of artificial units in different layers of the CNN
(Schrimpf et al., 2020). It turns out that neural activity at early
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stages of the visual hierarchy, like V1, is well predicted by early
layers of CNNs that develop Gabor-wavelet-like activation patterns
(Cadena et al., 2019). Intermediate areas, like V4, that respond to
complex curvature features are best reconstructed from activity
in intermediate layers of CNNs, and top hidden layers of CNNs
end up being predictive of infero-temporal (IT) neurons (Yamins
et al., 2014; Anand et al., 2021). Similar CNN models trained on
object categorization also predict responses at early and late stages
of the human ventral stream at the aggregate population level of
fMRI or MEG data (Cichy et al., 2016; Eickenberg et al., 2017).
In this context, Brain-Score is a recent platform to systematically
compare different artificial networks for object recognition on
how well they approximate the brain’s mechanisms of the ventral
stream according to multiple neural and behavioral benchmarks
(Schrimpf et al., 2018).

Another popular approach to assess the correspondence
between artificial networks and the brain is representational
similarity analysis (RSA) (Kriegeskorte, 2008). RSA builds up a
distance matrix that represents how dissimilar are the responses
for every pair of images presented to an “observer.” Observers
can be either biological brains (or specific brain areas) of
different species or artificial networks (or their layers). As the
dissimilarity is expressed in relative values, it abstracts from
the specific methods (neural spikes, fMRI) or the nature of the
observer wherein activity is recorded. For example, RSA was
used to relate object representation in the IT cortex of humans
and monkeys presented with the same images of real-world
objects (Kriegeskorte, 2009). The same method has been used to
compare different CNNs with representations in the human and
monkey IT (Kriegeskorte and Kievit, 2013; Khaligh-Razavi and
Kriegeskorte, 2014). These studies showed that better performing
CNN models are also more similar to IT, as they develop greater
clustering across categories and are also more sensitive to fine-
grained dissimilarities within categories (e.g., faces and bodies
form subclusters within animate items). In general, it seems that
biological and artificial networks both impose upon the visual input
certain categorical differentiations that are important for successful
behavior.

Notions of the visual brain
commonly overlooked in CNN
models

In this section, we outline several notions informing the
anatomical and physiological properties of the visual system
that still need to be systematically transposed in CNN models
through corresponding architectural and computational solutions,
respectively. These principles are variably rooted in the process
of phylogenetic evolution or acquired from learning in critical
developmental periods. They offer insights into the complex
interplay between the integration and segregation of functions
within the visual system and the constraints that enable the brain
to remodel itself through plasticity to compensate for the effects of
lesions. Incorporating these notions in CNNs would advance our
mechanistic explanation of how complex computations are possible
using the machinery available to the biological brains and their
driving forces across the life span.

Multiple routes bypass V1 and target
higher-order visual cortices

There are multiple routes through which the visual input
reaches the cortex from the retina (Pessoa and Adolphs, 2010;
Baldwin and Bourne, 2020). The best-studied route targets V1
after an intermediate relay in the lateral geniculate nucleus
of the thalamus (LGN). Standard CNNs loosely model this
retino-geniculo-striate pathway with an initial front-end that
approximates the retina and the two early layers thereafter.
However, multiple pathways bypass V1 and target extra-striate
visual areas (including ventral stream areas) through direct and
indirect connections from LGN, the pulvinar and the superior
colliculus (Bridge et al., 2016; Tamietto and Morrone, 2016;
Bruni et al., 2018; McFadyen et al., 2019, 2020). Each of these
subcortical structures receives direct projections from the retina.
Such projections however, come from different classes of retinal
ganglion cells (M, P, and K) specialized to respond to specific visual
features (Figure 1).

The characterization of these V1-independent pathways in
current CNN models of the visual system is important for several
reasons. First, V1-independent pathways are not simply vestigial
from a functional and anatomical perspective. After a lesion to
V1, extra-striate areas remain responsive from 20% (Schmid et al.,
2010) to 80% (Girard et al., 1992) of their pre-lesional activity. The
retinal projection to the superior colliculus alone comprises about
100,000 fibers, which is more than the whole human auditory nerve.
Second, these alternative pathways contribute to many important
functions such as orientation, motion discrimination, object
categorization and emotion processing, as these abilities can be
retained in patients with V1 damage (Ajina et al., 2015a; de Gelder
et al., 2015; Hervais-Adelman et al., 2015; Van den Stock et al., 2015;
Ajina and Bridge, 2018; Celeghin et al., 2019). Third, it is becoming
increasingly clear that the subcortical structures from which V1-
independent pathways originate are not passive relay centers.
Instead, they seem endowed with the necessary infrastructure and
computational capabilities to instantiate complex analyses of the
visual input (Bridge et al., 2016; Georgy et al., 2016; Basso et al.,
2021; Carretié et al., 2021; Isa et al., 2021). Lastly, mounting
evidence indicates that retino-recipient structures, like the superior
colliculus or the pulvinar, provide the developmental foundation of
what later in life become complex visual and attentional functions
typically ascribed to higher-order cortical areas (Warner et al.,
2012; Alves et al., 2022). For example, the superior colliculus
has been proposed to establish new-born preferences for faces
and facial expressions, and contribute to the maturation of “face
patches” in areas of the ventral stream, such as the fusiform gyrus
(Johnson, 2005; McFadyen et al., 2020). The pulvinar, through its
direct connections to the area middle temporal (MT), drives the
early maturation of the dorsal stream, which sustains global motion
perception and serves visuo-motor integration (Warner et al., 2015;
Kwan et al., 2021).

To the best of our knowledge, only one study has built a
neurobiologically inspired CNN that simulates the physiological,
anatomical, and connectional properties of the retino-collicular
circuit and its contribution to facial expression categorization
(Méndez et al., 2022; Figure 2). The model consists of a frontend
that emulates retinal functions of M, P, and K pathways, along
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FIGURE 1

Connections from the retinal ganglion cells to the visual cortex intermediate relays in LGN, SC and Pulv. The blue arrow indicates projections from
the M cells in the retina to the superficial layers of SC and magnocellular layers of the LGN. The Yellow arrow indicates the projection from K cells in
the retina to the superficial layers of the SC and the intermediate layers of the LGN. The Green arrow indicates projection from the P cells in the
retina to the magnocellular layers of the LGN. Gray arrows indicate projections originating from the superior colliculus and reaching the dorsal
stream cortical areas via the pulvinar. The red arrows indicate projections from pulvinar subnuclei and LGN to areas along the cortical ventral stream.
In LGN and superior colliculus, yellow layers indicate Koniocellular, blue Magnocellular, and green Parvocellular channels. In the pulvinar and SC
these pathways are not clearly segregated and shaded blue-yellow; green-blue colors indicate the conjoint presence of the respective channels in
given subdivisions. White denotes areas of the superior colliculus and pulvinar not interesting for the present purposes. PIcl, pulvinar inferior
centro-lateral; PIcm, pulvinar inferior centro-medial; PIm, pulvinar inferior medial; PIp, pulvinar inferior posterior; PLdm, pulvinar lateral
dorso-medial; PLvl, pulvinar lateral ventro-lateral; PM, pulvinar medial; TEO, temporal inferior posterior; TE, temporal inferior anterior.

with three layers analogous to the superficial strata of the primate
superior colliculus that receive direct retinal information. This
CNN matched error patterns and classification accuracy of patients
with V1 damage, developed spontaneous tuning to low spatial
frequencies in accordance with fMRI data, and generated saliency
maps that directed attention to different facial features depending
on expressions (Sahraie et al., 2010; Celeghin et al., 2015; Burra
et al., 2019). These findings contribute to superseding a cortico-
centric perspective on visual functions and to explore with CNNs
the encoding of emotional information.

Dorsal and ventral stream: how many
subsystems?

The division of extra-striate visual areas into dorsal and ventral
streams is a crucial framework that has been heuristically seminal
in visual neuroscience for the past four decades (Ungerleider and
Mishkin, 1982; Goodale and Milner, 1992). However, some of its
tenets have come under renewed scrutiny (de Haan and Cowey,
2011; Rossetti et al., 2017). For instance, the dorsal pathway is
now conceived as a multiplicity of at least three segregate pathways
based on different downstream projection targets that serve spatial
working memory, visually guided action, and navigation (Kravitz
et al., 2011). Similarly, the ventral stream has been proposed to
encompass up to six distinct cortico-subcortical systems, each with
specialized behavioral, cognitive, or affective functions (Kravitz
et al., 2013). More radically, recent evidence suggests the existence

of a third visual stream, terminating in the superior temporal sulcus
(STS) (Pitcher and Ungerleider, 2021). This third stream appears
specialized for the dynamic aspects of social perception and does
not fit within the traditional dichotomy altogether.

As described previously, CNN applications have been
essentially grounded on models of the ventral stream. However,
there are interesting attempts to predict neural responses along the
dorsal stream. Using an encoding model, a CNN has been trained
to recognize actions in videos and map stimuli to their constituent
features (Güçlü and van Gerven, 2017). These features were then
regressed to fMRI activity in subjects watching natural movies.
Through this method, it was possible to predict responses in the
dorsal stream, with deeper layers corresponding to activity in
downstream areas such as V3b and MT. Besides a few remarkable
exceptions, most studies have generally failed to appreciate that the
brain can exploit visual information to achieve different behavioral
goals beyond foveal object recognition. These environmental
constraints and adaptive pressures shape the functional segregation
of different input properties at early encoding stages (Milner and
Goodale, 1995). In this context, CNN models can be profitably
applied to probe the development of specialized sub-pathways by
investigating computational trade-offs and the underlying reasons
for the emergence of specialized and segregated sub-systems.
For example, a relatively generic architecture can be trained
from the same starting point to perform different tasks. Then,
the CNN is inspected to understand how many layers can be
shared before performance declines and the network needs to
split into specialized sub-streams to perform well on all tasks
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FIGURE 2

General overview of the model adopted in Méndez et al. (2022) and selected results. (A) In the upper left corner, an anatomical diagram of the SC,
viewed from a coronal section, highlights the relevant superficial layers that have been modeled with corresponding layers in the CNN. Stage 1:
input stimuli are color-transformed and processed. Each one of the three main P, M, and K channels is modeled by a function and the visual
information is projected in different proportions to the appropriate SC layers. The varying width of the arrows represent the proportional
contribution of each pathway to the corresponding superficial SC layer. Stage 2: the three layers composing the superficial SC are modeled with
fractal convolutional blocks and saliency modules that guide attention to select image regions for further analysis. Stage 3: after the final SC layer,
the network uses a global averaging stage before a classification layer, while the saliency masks are integrated and contribute to generate the final
output of the network. (B) Spontaneous emergence of spatial frequency tuning and orientation sensitivity. Discrimination performance across
gratings of different spatial frequencies (upper) and orientation (lower) in the SC model and in the AlexNet model that approximate V1 responses.
(C) Example of bubbles analysis on three subjects from the test dataset. (D) Effect of face manipulation toward M and P channels in the SC model
and in the fMRI activity of the human SC. Scatterplots and marginal distributions of classification probability for LSF and HSF filtered faces compared
to original images. The y-axis corresponds to the probability of belonging to the correct category assigned by the model to each unfiltered image,
while the x-axis represents the probability assigned when the instances are spatial frequency filtered. The red line and shaded area denote the best
linear regression fit to the data and its 95% confidence interval. Figure modified from Méndez et al. (2022).

(Kell et al., 2018). Variants of this approach have been recently
applied to study why and how face and object processing segregate
in the visual system (Rawat and Wang, 2017; Dobs et al., 2019),
or to provide computational foundations for dorsal and ventral
streams to arise based on different goals and learning principles
(Scholte et al., 2018).

Evaluating hierarchy and linearity of
information integration

Uncertainty about how to aggregate the fractioned architecture
of the visual brain into pathways also calls into question its
hierarchical organization, which also assumes a serial progression
of information and linear integration from lower-level to higher-
order visual areas. For example, information exchange is reciprocal
between adjacent structures, and, in most cases, backward
projections outnumber forward projections (Angelucci et al., 2002).
Moreover, “shortcut” connections link relatively distant areas:

V1 projects directly to V3, V4, and MT; V2 to TEO; and V4
to TE. Developmentally, the traditional view of a hierarchical
maturation, where V1 develops first followed by higher-order areas,
is contradicted by recent evidence that MT matures in parallel due
to driving pulvinar input in early postnatal phases (Bourne and
Morrone, 2017). Finally, visual areas like prostriate exhibit response
latency, receptive field characteristics, and projection patterns that,
to some extent, contradict each other for classifying its hierarchical
position and assignment to either the dorsal or ventral stream
(Mikellidou et al., 2017; Tamietto and Leopold, 2018).

Concerning hierarchical organization and feed-forward
vs. recursive interactions, standard CNNs approximate the
initial stages of visual processing (∼150 ms after stimulus
onset) when the dominant direction of signal flow within
occipito-temporal networks is feedforward (Tang et al., 2018;
Semedo et al., 2022). However, rapid feedback interactions
coexist with the initial feedforward sweep and can influence
basic levels of visual processing, while at longer latencies
information exchange gradually reverses to feedback (Bullier, 2001;
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Semedo et al., 2022). Adding recurrent connections between layers
improves equivalence with later stages of neural processing in
both the dorsal and ventral stream (Shi et al., 2018; Kar et al.,
2019; Kietzmann et al., 2019). One important extension of classical
CNNs could thus be to systematically incorporate feedback
connections and residual links that skip layers, as they seem to
increase receptive field size of corresponding cell units (Jarvers and
Neumann, 2019; Rawat and Wang, 2017). In fact, the comparison
of different feedback and feedforward architectures suggests that
including feedback connections and recurrence at either local and
global network level (i.e., within and between layers, respectively)
can improve network performance and robustness (Hasani et al.,
2019).

Improving neurobiological
plausibility of objective functions
and learning rules

As previously mentioned, CNNs are grounded in three essential
components: the objective function, the learning rules, and the
network architecture (Richards et al., 2019). The principles of the
primate visual brain discussed in the previous section can be mainly
transposed in the next generation of CNNs through architectural
solutions. We now complement the discussion with a focus
on approaches aimed at improving the biological plausibility of
artificial neural network through objective functions and learning
rules.

Objective functions as ethological task
constraints

Animals clearly possess objective functions crucial for
survival, which rely variably on both evolution and learning
processes. Examples of these functions include escaping predators,
recognizing conspecifics, and seeking food. Task constraints are
driving forces that shape brain architecture and functions to
enhance fitness. Thus, they should be an integral component in
developing neurobiologically plausible CNNs. For example, some
authors have proposed that the expansion of the visual system, the
rise of orbital convergence, and the development of foveal vision
evolved to cope with evolutionary pressures favoring the emergence
of visually guided reaching and grasping due to the arboreal
lifestyle of early primates (Sussman, 1991). These developments
have subsequently led to significant improvements in oculomotor
behaviors, enabling more efficient visual search and precise
localization of targets with minimal head or body movements
(Schütz et al., 2011). Other accounts have suggested that detecting
snakes before they strike was the primary selective pressure that
drove the development of the anthropoids’ visual system, with
foveal vision linked to the development of trichromatic color
perception (Isbell, 2006).

Recent examples provide insights into the potential benefits
of including task constraints as neurobiologically meaningful
objective functions in CNN design. Mnih et al. (2014) developed
a recurrent CNN that learned to track a simple object without

explicit training, reproducing foveation and saccading. Cheung
et al. (2017) trained a CNN to perform a visual search task using a
retinal front-end with a receptor lattice that could be moved across
input images to mimic eye movement, foveating specific features
and image parts. The optimization procedure resulted in a virtual
retina displaying characteristics of the biological one, featuring high
resolution and densely sampled fovea with small virtual receptive
fields, and more coarsely sampled periphery with lower resolution
and larger receptive fields. Notably, the CNN did not develop
these biologically realistic properties when the system was endowed
with additional actions, like zooming, which are absent in the
biological visual system. These findings suggest that the receptor
properties and arrangements in the primate retina can be profitably
studied with CNNs, and that several aspects of primate vision may
arise from evolutionary pressure to optimize visual world sampling
through the integration of eye movements and fixations.

Introducing “visuo-motor” goals as objective functions
seems especially ground-breaking when modeling dorsal stream
responses that exploit visual information to guide subsequent
actions. For example, motion parameters in retinal image must
be integrated with oculomotor and vestibular signal to avoid
collision, grasp objects, or stabilize gaze on items of interest while
we move through the environment (Burr and Morrone, 2022).
Accordingly, dorsal stream neuron response properties can be
better predicted by a 3D Resnet model trained to orient itself
during locomotion (i.e., estimating self-motion parameters from
image sequences) compared to networks simply trained on action
recognition (Mineault et al., 2021). Therefore, incorporating
ethologically relevant tasks as objective functions in CNNs, such
as navigation, object manipulation and visual search, can lead to
a more comprehensive understanding of the visual brain, and it
seems necessary to fully capture the diversity of biological vision,
its organizing principles, and relation to other brain functions.

An intriguing research direction in computer vision is neuro-
symbolic integration (Kroshchanka et al., 2022), which aims
to combine connectionist models with structured knowledge
representation. This approach aims to enforce a more structured
representation learning by enriching the loss function used to
train CNNs with additional domain-distilled information, such
as taxonomical relations between objects (Chen et al., 2019;
Bertinetto et al., 2020). Visual hierarchies (input images) are
matched with ontological hierarchies (enriched loss functions),
fostering robustness against adversarial attacks. Examining these
models’ behavioral and neural correspondence with the primate
visual system presents a promising avenue for research.

Learning rules and synaptic weights

Learning rules guide the optimization of model parameters,
expressed as synaptic weights, to achieve a specific objective
function. CNNs typically employ backpropagation, a highly
supervised learning process that provides explicit performance
feedback (Lindsay, 2021). In contrast, unsupervised learning builds
meaningful representations by utilizing the inherent structure
of the data (i.e., without instructions). Vision neuroscience has
traditionally emphasized unsupervised principles that modulate
synaptic changes and local plasticity rules, such as Hebbian learning
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and spike timing-dependent plasticity (Caporale and Dan, 2008;
Chauhan et al., 2021). These principles are embodied in Spiking
Neural Networks (SNNs), where network units process time-
varying spikes at the input and output stages, mimicking time-
dependent processing in natural vision (Maass, 1997; Tavanaei
et al., 2019).

Backpropagation calculates gradients and adjusts weights
between nodes during learning, relying on biologically unrealistic
assumptions, such as symmetrical feedback weights and separate
forward and backward information flows (McClelland et al., 1986;
Bengio et al., 2017). Despite this, biological brains can approximate
backpropagation learning when assumptions about inhibitory
microcircuits, short-term plasticity, or feedback connections are
considered (Körding and König, 2001; Roelfsema and van Ooyen,
2005; Lillicrap et al., 2016; Guerguiev et al., 2017; Scellier and
Bengio, 2017; Whittington and Bogacz, 2017; Pozzi et al., 2018;
Sacramento et al., 2018). Dynamic weight sharing has been recently
proposed as a learning rule capable of accounting for local
weight updates. It facilitates local weight adjustments via lateral
connections, enabling local neuron subgroups to equalize weights
through shared activity and anti-Hebbian learning (Pogodin et al.,
2021). Artificial networks with dynamic weight sharing exhibit a
better fit to ventral stream data, as measured by the Brain-Score,
performing almost as well as traditional CNNs.

Recent studies on synaptic plasticity and learning have focused
on top-down attentional mechanisms and predictive coding, both
involving feedback connectivity and predicting varied activity
distributions (Kwag and Paulsen, 2009; Yagishita et al., 2014; Bittner
et al., 2017; Lacefield et al., 2019; Williams and Holtmaat, 2019).
For instance, the influence of fronto-parietal attentional network
over the visual system has been traditionally modeled in CNNs
using saliency modules that guide visual selection for further
processing of the most informative image parts (Itti et al., 1998).
Additionally, attentional learning modules have been adapted to
encode a topographic saliency map of the visual scene generated
by the superior colliculus (Méndez et al., 2022).

Non-invasive imaging techniques, such as fMRI and wide-
field calcium imaging, enable measuring the dynamics of
representational changes and comparing learning trajectories
during training. Estimating synaptic changes in vivo and relating
them to behavioral performance can facilitate comparisons between
artificial and biological brains based on learning procedures, rather
than solely on the final representations they generate.

Toward causal evidence:
closed-loop experiments and task
constraints

Closed-loop experiments through image
synthesis

Successful application of AI in neuroscience should permit
moving the research agenda beyond correlations toward new
approaches that gather causal evidence of the predictive link
between artificial and biological brains. “Closed-loop” experiments
harness CNNs activations to systematically manipulate brain

activity in pre-defined visual regions of the brain, such as V1
and V4, according to the following logic (Bashivan et al., 2019;
Ponce et al., 2019). First, a CNN presented with natural images
is trained to predict neural activity recorded in the real brain,
wherein the same images are shown to the animal. Then, the CNN
is used to synthesize optimal images that maximally excite specific
artificial units (or layers) by selecting their preferred features.
Finally, when these synthetic images are shown to the real neurons,
their responses are measured and found to match the predicted
firing rate. This demonstrates that the CNN can capture the
correspondence from pixels to neural responses (Olah et al., 2017;
Walker et al., 2019). By enabling non-invasive control over brain
activations, this closed-loop approach promises new causal insights
into the interplay of multiple brain areas during visual processing.
For example, the method permits stringent control of activity in
one brain region while establishing the impact on the functioning
of another related area.

Lesion analysis at the single neuron and
population level

Lesion-symptom mapping is probably the most straightforward
tool in neuroscience to establish the causal contribution of a
neural structure to a given function and to investigate the plastic
changes that intervene thereafter. However, this approach has
inevitable limitations when applied to biological brains. Performing
single-neuron ablations has traditionally proved challenging due to
technical limitations (Wurtz, 2015). The advent of optogenetics,
viral vectors, and two-photon stimulation techniques promise to
overcome these challenges (Kinoshita and Isa, 2015; Kinoshita
et al., 2019; Vanduffel and Li, 2020; Klink et al., 2021). However,
these methods are still in infancy and their application to animal
models phylogenetically proximal to humans has just begun. In
primates, surgical lesions are still the most used approach at the
areal or network level of analysis. Nevertheless, their precision
and specificity vary depending on multiple factors, whereas, in
humans, naturally occurring lesions obviously do not adhere to
cytoarchitectonic or functional boundaries between areas.

Artificial networks can fulfill “in silico neurophysiology” at the
single cell level exceedingly well, as we can characterize every unit’s
activity in response to predefined ablation and measure the impact
on neural computation and performance (Barrett et al., 2019). This
approach revealed that CNN accuracy drops as increasing numbers
of neurons are deleted (Morcos et al., 2018). Moreover, networks
that learn generalizable solutions are more robust to ablations
than those that simply memories the training data (Zhou et al.,
2018). Notably, neurons with clearly defined tuning properties
are not more important for classification performance than those
with complex or ambiguous tuning properties, as the latter often
contains substantial amounts of task-relevant information. These
findings contribute to reconsidering some basic assumptions in
neurophysiology, where single-cell selectivity to stimulus features
or categories has been traditionally regarded as the principal proxy
to infer functions.

Drop-out, a randomized temporal ablation technique, is widely
used in training artificial neural networks to ensure robustness.
Although predominantly employed for regularization, it can also
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profitably simulate “virtual lesions” and the resulting plasticity. To
model neuroplasticity using CNNs, researchers can simulate the
reorganization of neural connections and the emergence of new
response properties following lesions by adjusting the network’s
architecture, connectivity, or learning rules. Neuroplasticity can
be measured by evaluating the network’s adaptability to external
perturbations, such as introducing noise or limiting weight updates
in a specific layer. This approach may reveal how mid-level
features and new response properties emerge as the network
compensates for the loss of specific neural elements. For example,
how do response properties in intact visual structures change
following brain damage? Neural tuning in extra-striate visual areas
gradually recovers after V1 damage. However, this recovery does
not lead extra-striate neurons to emulate the response properties
of the damaged cortex but to resume their own original response
properties (Maffei and Fiorentini, 1973; Guido et al., 1992).
Furthermore, in humans, if V1 damage occurs in adulthood, the
response in MT neurons for motion and contrast reshapes to
resemble the response pattern of V1 in the intact brain (Ajina et al.,
2015b).

Lesion analysis can be applied to deep learning architectures
incorporating features like lateral connection or shortcut and
learning through an online procedure, where weights are updated
one data sample at a time. Investigating how shortcut connections
serve as alternative information pathways could also yield valuable
insights. CNNs can be exploited to address these issues with
new tools offering insights into the mechanisms underlying
neuroplasticity and potentially guiding the development of
interventions to promote recovery after brain damage.

Conclusion

The resurgence of interest in neural networks has sparked
both enthusiasm and skepticism regarding the relevance
of CNNs in understanding biological brains (Michel et al.,
2019). Experimenting with CNNs offers valuable insights for
neuroscience, especially if biological credibility is recognized
as a crucial factor in modeling network properties, and results
are deployed in assays on biological brains. In turn, laboratory
investigations should drive the design of future CNN models.
This iterative process offers a principled perspective to specifying
mechanistic hypotheses on how real brains may carry out visual
and cognitive functions.

Longstanding questions include whether perceptual
representations, like sensitivity to biological motion or face
recognition, are innate or learned from experience (Behrmann
and Avidan, 2022). While traditional supervised models used
for explaining primate object recognition demand vast labeled
data, primates develop sophisticated object understanding with
limited training and less examples (Saxe et al., 2020). However,
(quasi)innate behaviors can partly be conceived as learned
on an evolutionary timescale, and the relationship between
evolutionary and developmental variations can be reframed in
CNNs. Evolutionary diversity can be addressed by changing
architectural parameters that restructure the computational
primitives of the network, while development can be modeled
by modifying filter parameters and their learning algorithms,
imitating synaptic weights.

To align CNNs with biology and to steer future directions,
it seems useful to consider neural responses and their functions
as an emerging consequence of the interplay between objective
functions, learning rules and architecture. The environment and
its constraints seem to provide guidance in identifying which
objective functions are useful for biological brains to optimize.
Accordingly, introducing ethologically relevant tasks as objective
functions in CNNs, such as navigation, object manipulation, and
visual search, can lead to a more comprehensive understanding of
the visual brain.

By exploring unsupervised learning principles and spiking
neural networks, researchers can better understand the role of local
plasticity rules and time-varying signals in natural vision, thereby
improving the neural correspondence of CNNs. This may involve
exploring alternative learning algorithms, such as reinforcement
learning, that incorporate elements of reward-based learning and
decision-making. Analyzing the processing of affective signals
also offers a testing ground for the proposal that representation
formation is driven by the need to predict the motivational value
of experience and its interface with attention (Mnih et al., 2015).

Architecturally, it is important to incorporate the role of
subcortical structures and V1-independent pathways in visual
processing. This would quantify the respective contributions of
redundancy and synergy in the multiplicity of parallel routes
that help decode visual stimuli (Nigam et al., 2019; Luppi
et al., 2022). Systematically integrating feedback connections,
recurrent connectivity motifs, and residual links can enhance
performance, robustness, and equivalence with the brain’s
hierarchical organization and the balance between linear and
recursive interactions. CNN models can be utilized to probe the
development of functional segregation and the emergence of
specialized subsystems through computational trade-offs.

The use of closed-loop experiments and lesion analysis can
provide new causal insights into the predictive link between
artificial and biological brains, the mechanisms underlying
neuroplasticity, and the development of interventions to promote
recovery after brain damage. For example, what is the impact of
silencing a single structure on the computations performed in
other parts of the network at both the aggregate level of layers
and of single units? In CNN, this would imply assessing network
robustness to “virtual ablations” of individual components and can
help evaluate how the biological brain recruits plasticity.

Convolutional Neural Networks face the unavoidable trade-
off between complexity, interpretability, and energy consumption
(Petri et al., 2021). On this front, the sparsity of spike computing
is central to information processing where computationally
demanding tasks can be realized by a restricted subset of neurons
and disentangled from millions of examples through “direct fit”
(Olshausen and Field, 2004; Dalgleish et al., 2020; Hasson et al.,
2020). Transformer models originally applied to natural language
tasks are finding their way in the vision science community
(Khan et al., 2022). Unlike CNNs, transformers support parallel
processing, require minimal inductive biases for their design, and
allow simultaneous processing of multiple modalities.

The development of CNNs is progressing rapidly and spreading
in different directions and domains within neuroscience. The
theoretical discussion and sober consideration of the promises and
pitfalls accompanying these developments are needed to ensure
that neuroscientists make informed use of CNNs as falsifiable
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models of biological brains. By addressing these critical areas,
researchers can harness the full potential of CNNs to bridge the gap
between neuroscience and cognitive sciences, ultimately leading to
a deeper understanding of the primate visual system and advancing
artificial intelligence.

Author contributions

AC, CAMG, and MT contributed to the conception of the
study. MT, AC, CAMG, and AB wrote the first draft of the
manuscript. DO, MD, AP, and GP wrote sections of the manuscript.
All authors contributed to manuscript revision, read, and approved
the submitted version.

Funding

This study was supported by the European Research Council
(ERC) Consolidator Grant 2017 “LIGHTUP” (772953) and PRIN

2017 grant from the Ministero dell’Università e della Ricerca
(MIUR, Italy) (2017TBA4KS) to MT.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ajina, S., and Bridge, H. (2018). Blindsight relies on a functional connection between
hMT+ and the lateral geniculate nucleus, not the pulvinar. PLoS Biol. 16:e2005769.
doi: 10.1371/journal.pbio.2005769

Ajina, S., Kennard, C., Rees, G., and Bridge, H. (2015b). Motion area V5/MT+
response to global motion in the absence of V1 resembles early visual cortex. Brain
138, 164–178. doi: 10.1093/brain/awu328

Ajina, S., Pestilli, F., Rokem, A., Kennard, C., and Bridge, H. (2015a). Human
blindsight is mediated by an intact geniculo-extrastriate pathway. Elife 4:e08935. doi:
10.7554/eLife.08935

Alves, P. N., Forkel, S. J., Corbetta, M., and Thiebaut de Schotten, M. (2022).
The subcortical and neurochemical organization of the ventral and dorsal attention
networks. Commun. Biol. 5:1343. doi: 10.1038/s42003-022-04281-0

Anand, A., Sen, S., and Roy, K. (2021). Quantifying the brain predictivity of
artificial neural networks with nonlinear response mapping. Front. Comput. Neurosci.
15:609721. doi: 10.3389/fncom.2021.609721

Angelucci, A., Levitt, J. B., Walton, E. J. S., Hupé, J.-M., Bullier, J., and Lund,
J. S. (2002). Circuits for local and global signal integration in primary visual cortex.
J. Neurosci. 22, 8633–8646. doi: 10.1523/jneurosci.22-19-08633.2002

Baldwin, M. K. L., and Bourne, J. A. (2020). “The evolution of subcortical
pathways to the extrastriate cortex,” in Evolutionary neuroscience, ed. J. H.
Kaas (Cambridge, MA: Academic Press), 565–587. doi: 10.1016/B978-0-12-820584-
6.00024-6

Barrett, D. G., Morcos, A. S., and Macke, J. H. (2019). Analyzing biological and
artificial neural networks: Challenges with opportunities for synergy? Curr. Opin.
Neurobiol. 55, 55–64. doi: 10.1016/j.conb.2019.01.007

Bashivan, P., Kar, K., and DiCarlo, J. J. (2019). Neural population control via deep
image synthesis. Science 364:eaav9436. doi: 10.1126/science.aav9436

Basso, M. A., Bickford, M. E., and Cang, J. (2021). Unraveling circuits of visual
perception and cognition through the superior colliculus. Neuron 109, 918–937. doi:
10.1016/j.neuron.2021.01.013

Behrmann, M., and Avidan, G. (2022). Face perception: Computational insights
from phylogeny. Trends Cogn. Sci. 26, 350–363. doi: 10.1016/j.tics.2022.01.006

Bengio, Y., Goodfellow, I., and Courville, A. (2017). Deep learning, Vol. 1.
Cambridge, MA: MIT Press.

Bertinetto, L., Mueller, R., Tertikas, K., Samangooei, S., and Lord, N. A. (2020).
“Making better mistakes: Leveraging class hierarchies with deep networks,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
(Piscataway, NJ), 12506–12515.

Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., and Magee, J. C.
(2017). Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357,
1033–1036.

Bourne, J. A., and Morrone, M. C. (2017). Plasticity of visual pathways and function
in the developing brain: Is the pulvinar a crucial player? Front. Syst. Neurosci. 11:3.
doi: 10.3389/fnsys.2017.00003

Boutin, V., Franciosini, A., Chavane, F., and Perrinet, L. U. (2022). Pooling strategies
in V1 can account for the functional and structural diversity across species. PLoS
Comput. Biol. 18:e1010270. doi: 10.1371/journal.pcbi.1010270

Bridge, H., Leopold, D. A., and Bourne, J. A. (2016). Adaptive pulvinar circuitry
supports visual cognition. Trends Cogn. Sci. 20, 146–157. doi: 10.1016/j.tics.2015.10.
003

Bruni, S., Gerbella, M., Bonini, L., Borra, E., Coudé, G., Ferrari, P. F., et al. (2018).
Cortical and subcortical connections of parietal and premotor nodes of the monkey
hand mirror neuron network. Brain Struct. Funct. 223, 1713–1729. doi: 10.1007/
s00429-017-1582-0

Bullier, J. (2001). Integrated model of visual processing. Brain Res. Rev. 36, 96–107.
doi: 10.1016/S0165-0173(01)00085-6

Burr, D., and Morrone, M. C. (2022). Vision: Neuronal mechanisms enabling stable
perception. Curr. Biol. 32, R1338–R1340.

Burra, N., Hervais-Adelman, A., Celeghin, A., De Gelder, B., and Pegna, A. J. (2019).
Affective blindsight relies on low spatial frequencies. Neuropsychologia 128, 44–49.
doi: 10.1016/j.neuropsychologia.2017.10.009

Cadena, S. A., Denfield, G. H., Walker, E. Y., Gatys, L. A., Tolias, A. S., Bethge,
M., et al. (2019). Deep convolutional models improve predictions of macaque V1
responses to natural images. PLoS Comput. Biol. 15:e1006897. doi: 10.1371/journal.
pcbi.1006897

Caporale, N., and Dan, Y. (2008). Spike timing-dependent plasticity: A hebbian
learning rule. Annu. Rev. Neurosci. 31, 25–46. doi: 10.1146/annurev.neuro.31.060407.
12563

Carretié, L., Yadav, R. K., and Méndez-Bértolo, C. (2021). The missing link in early
emotional processing. Emot. Rev. 13, 225–244.

Celeghin, A., Bagnis, A., Diano, M., Méndez, C. A., Costa, T., and
Tamietto, M. (2019). Functional neuroanatomy of blindsight revealed by
activation likelihood estimation meta-analysis. Neuropsychologia 128, 109–118.
doi: 10.1016/j.neuropsychologia.2018.06.007

Celeghin, A., de Gelder, B., and Tamietto, M. (2015). From affective blindsight to
emotional consciousness. Conscious. Cogn. 36, 414–425. doi: 10.1016/j.concog.2015.
05.007

Chauhan, T., Masquelier, T., and Cottereau, B. R. (2021). Sub-optimality of the
early visual system explained through biologically plausible plasticity. Front. Neurosci.
15:727448. doi: 10.3389/fnins.2021.727448

Chen, H. Y., Tsai, L. H., Chang, S. C., Pan, J. Y., Chen, Y. T., Wei, W., et al. (2019).
Learning with hierarchical complement objective. arXiv [Preprint]. arXiv:1911.07257.

Frontiers in Computational Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2023.1153572
https://doi.org/10.1371/journal.pbio.2005769
https://doi.org/10.1093/brain/awu328
https://doi.org/10.7554/eLife.08935
https://doi.org/10.7554/eLife.08935
https://doi.org/10.1038/s42003-022-04281-0
https://doi.org/10.3389/fncom.2021.609721
https://doi.org/10.1523/jneurosci.22-19-08633.2002
https://doi.org/10.1016/B978-0-12-820584-6.00024-6
https://doi.org/10.1016/B978-0-12-820584-6.00024-6
https://doi.org/10.1016/j.conb.2019.01.007
https://doi.org/10.1126/science.aav9436
https://doi.org/10.1016/j.neuron.2021.01.013
https://doi.org/10.1016/j.neuron.2021.01.013
https://doi.org/10.1016/j.tics.2022.01.006
https://doi.org/10.3389/fnsys.2017.00003
https://doi.org/10.1371/journal.pcbi.1010270
https://doi.org/10.1016/j.tics.2015.10.003
https://doi.org/10.1016/j.tics.2015.10.003
https://doi.org/10.1007/s00429-017-1582-0
https://doi.org/10.1007/s00429-017-1582-0
https://doi.org/10.1016/S0165-0173(01)00085-6
https://doi.org/10.1016/j.neuropsychologia.2017.10.009
https://doi.org/10.1371/journal.pcbi.1006897
https://doi.org/10.1371/journal.pcbi.1006897
https://doi.org/10.1146/annurev.neuro.31.060407.12563
https://doi.org/10.1146/annurev.neuro.31.060407.12563
https://doi.org/10.1016/j.neuropsychologia.2018.06.007
https://doi.org/10.1016/j.concog.2015.05.007
https://doi.org/10.1016/j.concog.2015.05.007
https://doi.org/10.3389/fnins.2021.727448
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1153572 June 30, 2023 Time: 17:53 # 11

Celeghin et al. 10.3389/fncom.2023.1153572

Cheung, B., Weiss, E., and Olshausen, B. (2017). Emergence of foveal
image sampling from learning to attend in visual scenes. arXiv [Preprint].
arXiv:1611.09430v2.

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., and Oliva, A. (2016).
Comparison of deep neural networks to spatio-temporal cortical dynamics of human
visual object recognition reveals hierarchical correspondence. Sci. Rep. 6:27755. doi:
10.1038/srep27755

Dalgleish, H. W., Russell, L. E., Packer, A. M., Roth, A., Gauld, O. M., Greenstreet,
F., et al. (2020). How many neurons are sufficient for perception of cortical activity?
Elife 9:e58889. doi: 10.7554/eLife.58889

de Gelder, B., Tamietto, M., Pegna, A. J., and Van den Stock, J. (2015). Visual imagery
influences brain responses to visual stimulation in bilateral cortical blindness. Cortex
72, 15–26. doi: 10.1016/j.cortex.2014.11.009

de Haan, E. H. F., and Cowey, A. (2011). On the usefulness of ‘what’ and ‘where’
pathways in vision. Trends Cogn. Sci. 15, 460–466. doi: 10.1016/j.tics.2011.08.005

Dhawale, A. K., Smith, M. A., and Ölveczky, B. P. (2017). The role of variability
in motor learning. Annu. Rev. Neurosci. 40, 479–498. doi: 10.1146/annurev-neuro-
072116-031548

Dobs, K., Isik, L., Pantazis, D., and Kanwisher, N. (2019). How face perception
unfolds over time. Nat. Commun. 10:1258. doi: 10.1038/s41467-019-09239-1

Eickenberg, M., Gramfort, A., Varoquaux, G., and Thirion, B. (2017). Seeing it
all: Convolutional network layers map the function of the human visual system.
Neuroimage 152, 184–194. doi: 10.1016/j.neuroimage.2016.10.001

Fukushima, K. (1980). A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202.

Gallant, J. L., Connor, C. E., Rakshit, S., Lewis, J. W., and Van Essen, D. C. (1996).
Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the
macaque monkey. J. Neurophysiol. 76, 2718–2739. doi: 10.1152/jn.1996.76.4.2718

Geirhos, R., Janssen, D. H., Schütt, H. H., Rauber, J., Bethge, M., and Wichmann,
F. A. (2017). Comparing deep neural networks against humans: Object recognition
when the signal gets weaker. arXiv [Preprint]. arXiv:1706.06969.

Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge, M., and Wichmann,
F. A. (2018). “Generalisation in humans and deep neural networks,” in Proceedings of
the 32nd international conference on neural information processing systems, (Red Hook,
NY), 7538–7550.

Georgy, L., Celeghin, A., Marzi, C. A., Tamietto, M., and Ptito, A. (2016).
The superior colliculus is sensitive to gestalt-like stimulus configuration in
hemispherectomy patients. Cortex 81, 151–161. doi: 10.1016/j.cortex.2016.04.018

Ghodrati, M., Farzmahdi, A., Rajaei, K., Ebrahimpour, R., and Khaligh-Razavi, S.-
M. (2014). Feedforward object-vision models only tolerate small image variations
compared to human. Front. Comput. Neurosci. 8:74. doi: 10.3389/fncom.2014.00074

Girard, P., Salin, P. A., and Bullier, J. (1992). Response selectivity of neurons in area
MT of the macaque monkey during reversible inactivation of area V1. J. Neurophysiol.
67, 1437–1446. doi: 10.1152/jn.1992.67.6.1437

Goodale, M. A., and Milner, A. D. (1992). Separate visual pathways for perception
and action. Trends Neurosci. 15, 20–25. doi: 10.1016/0166-2236(92)90344-8

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., et al. (2018). Recent
advances in convolutional neural networks. Pattern Recogn. 77, 354–377. doi: 10.1016/
j.patcog.2017.10.013

Güçlü, U., and van Gerven, M. A. J. (2017). Increasingly complex representations of
natural movies across the dorsal stream are shared between subjects. Neuroimage 145,
329–336. doi: 10.1016/j.neuroimage.2015.12.036

Guerguiev, J., Lillicrap, T. P., and Richards, B. A. (2017). Towards deep learning with
segregated dendrites. Elife 6:e22901.

Guido, W., Spear, P. D., and Tong, L. (1992). How complete is physiological
compensation in extrastriate cortex after visual cortex damage in kittens? Exp. Brain
Res. 91, 455–466. doi: 10.1007/BF00227841

Hasani, H., Soleymani, M., and Aghajan, H. (2019). Surround Modulation: A bio-
inspired connectivity structure for convolutional neural networks. Neural Inform.
Proc. Syst. 32, 15877–15888.

Hasson, U., Nastase, S. A., and Goldstein, A. (2020). Direct fit to nature: An
evolutionary perspective on biological and artificial neural networks. Neuron 105,
416–434. doi: 10.1016/j.neuron.2019.12.002

Hervais-Adelman, A., Legrand, L. B., Zhan, M., Tamietto, M., De Gelder, B., and
Pegna, A. J. (2015). Looming sensitive cortical regions without V1 input: Evidence
from a patient with bilateral cortical blindness. Front. Integr. Neurosci. 9:51. doi:
10.3389/fnint.2015.00051

Isa, T., Marquez-Legorreta, E., Grillner, S., and Scott, E. K. (2021). The
tectum/superior colliculus as the vertebrate solution for spatial sensory integration and
action. Curr. Biol. 31, R741–R762. doi: 10.1016/j.cub.2021.04.001

Isbell, L. A. (2006). Snakes as agents of evolutionary change in primate brains.
J. Hum. Evol. 51, 1–35. doi: 10.1016/j.jhevol.2005.12.012

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention
for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259.

Jarvers, C., and Neumann, H. (2019). “Incorporating feedback in convolutional
neural networks,” in Proceeding of the 2019 conference on cognitive computational
neuroscience, (Berlin), doi: 10.32470/ccn.2019.1191-0

Johnson, M. H. (2005). Subcortical face processing. Nat. Rev. Neurosci. 6, 766–774.
doi: 10.1038/nrn1766

Kar, K., Kubilius, J., Schmidt, K., Issa, E. B., and DiCarlo, J. J. (2019). Evidence
that recurrent circuits are critical to the ventral stream’s execution of core object
recognition behavior. Nat. Neurosci. 22, 974–983. doi: 10.1038/s41593-019-0392-5

Kell, A. J. E., Yamins, D. L. K., Shook, E. N., Norman-Haignere, S. V., and
McDermott, J. H. (2018). A task-optimized neural network replicates human auditory
behavior, predicts brain responses, and reveals a cortical processing hierarchy. Neuron
98, 630–644.e16. doi: 10.1016/j.neuron.2018.03.044

Khaligh-Razavi, S. M., and Kriegeskorte, N. (2014). Deep Supervised, but not
unsupervised, models may explain IT cortical representation. PLoS Comput. Biol.
10:e1003915. doi: 10.1371/journal.pcbi.1003915

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., and Shah, M. (2022).
Transformers in vision: A survey. ACM Comput. Surveys 54, 1–41. doi: 10.1145/
3505244

Kietzmann, T. C., Spoerer, C. J., Sörensen, L. K., Cichy, R. M., Hauk, O., and
Kriegeskorte, N. (2019). Recurrence is required to capture the representational
dynamics of the human visual system. Proc. Natl. Acad. Sci. U.S.A. 116, 21854–21863.
doi: 10.1073/pnas.1905544116

Kinoshita, M., and Isa, T. (2015). “Potential of optogenetics for the behavior
manipulation of non-human primates,” in Optogenetics, eds H. Yawo, H. Kandori, and
A. Koizumi (Tokyo: Springer), 279–290. doi: 10.1007/978-4-431-55516-2_19

Kinoshita, M., Kato, R., Isa, K., Kobayashi, K., Kobayashi, K., Onoe, H., et al. (2019).
Dissecting the circuit for blindsight to reveal the critical role of pulvinar and superior
colliculus. Nat. Commun. 10:135. doi: 10.1038/s41467-018-08058-0

Klink, P. C., Aubry, J., Ferrera, V. P., Fox, A. S., Froudist-Walsh, S., Jarraya, B., et al.
(2021). Combining brain perturbation and neuroimaging in non-human primates.
Neuroimage 235:118017. doi: 10.1016/j.neuroimage.2021.118017

Körding, K. P., and König, P. (2001). Supervised and unsupervised learning with
two sites of synaptic integration. J. Comput. Neurosci. 11, 207–215.

Kragel, P. A., Reddan, M. C., LaBar, K. S., and Wager, T. D. (2019). Emotion schemas
are embedded in the human visual system. Sci. Adv. 5:eaaw4358. doi: 10.1126/sciadv.
aaw4358

Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., and Mishkin, M. (2013).
The ventral visual pathway: An expanded neural framework for the processing of
object quality. Trends Cogn. Sci. 17, 26–49. doi: 10.1016/j.tics.2012.10.011

Kravitz, D., Saleem, K., Baker, C., and Mishkin, M. (2011). A new neural framework
for visuospatial processing. J. Vis. 11, 319–319. doi: 10.1167/11.11.923.t

Kriegeskorte, N. (2008). Representational similarity analysis–connecting the
branches of systems neuroscience. Front. Syst. Neurosci. 2:4. doi: 10.3389/neuro.06.
004.2008

Kriegeskorte, N. (2009). Relating population-code representations between man,
monkey, and computational models. Front. Neurosci. 3:363–373. doi: 10.3389/neuro.
01.035.2009

Kriegeskorte, N., and Golan, T. (2019). Neural network models and deep learning.
Curr. Biol. 29, R231–R236. doi: 10.1016/j.cub.2019.02.034

Kriegeskorte, N., and Kievit, R. A. (2013). Representational geometry: Integrating
cognition, computation, and the brain. Trends Cogn. Sci. 17, 401–412. doi: 10.1016/j.
tics.2013.06.007

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with
deep convolutional neural networks. Commun. ACM 60, 84–90. doi: 10.1145/3065386

Kroshchanka, A., Golovko, V., Mikhno, E., Kovalev, M., Zahariev, V., and Zagorskij,
A. (2022). “A neural-symbolic approach to computer vision,” in Open semantic
technologies for intelligent systems OSTIS 2021. Communications in computer and
information science, Vol. 1625, eds V. Golenkov, V. Krasnoproshin, V. Golovko, and
D. Shunkevich (Cham: Springer), doi: 10.1007/978-3-031-15882-7_15

Kubilius, J., Bracci, S., and Op de Beeck, H. P. (2016). Deep neural networks as a
computational model for human shape sensitivity. PLoS Comput. Biol. 12:e1004896.
doi: 10.1371/journal.pcbi.1004896

Kuzovkin, I., Vicente, R., Petton, M., Lachaux, J.-P., Baciu, M., Kahane, P., et al.
(2018). Activations of deep convolutional neural networks are aligned with gamma
band activity of human visual cortex. Commun. Biol. 1:107. doi: 10.1038/s42003-018-
0110-y

Kwag, J., and Paulsen, O. (2009). The timing of external input controls the sign of
plasticity at local synapses. Nat. Neurosci. 12, 1219–1221. doi: 10.1038/nn.2388

Kwan, W. C., Chang, C. K., Yu, H. H., Mundinano, I. C., Fox, D. M., Homman-
Ludiye, J., et al. (2021). Visual cortical area MT is required for development of the
dorsal stream and associated visuomotor behaviors. J. Neurosci. 41, 8197–8209. doi:
10.1523/JNEUROSCI.0824-21.2021

Lacefield, C. O., Pnevmatikakis, E. A., Paninski, L., and Bruno, R. M. (2019).
Reinforcement learning recruits somata and apical dendrites across layers of primary
sensory cortex. Cell Rep. 26, 2000–2008. doi: 10.1016/j.celrep.2019.01.093

Frontiers in Computational Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2023.1153572
https://doi.org/10.1038/srep27755
https://doi.org/10.1038/srep27755
https://doi.org/10.7554/eLife.58889
https://doi.org/10.1016/j.cortex.2014.11.009
https://doi.org/10.1016/j.tics.2011.08.005
https://doi.org/10.1146/annurev-neuro-072116-031548
https://doi.org/10.1146/annurev-neuro-072116-031548
https://doi.org/10.1038/s41467-019-09239-1
https://doi.org/10.1016/j.neuroimage.2016.10.001
https://doi.org/10.1152/jn.1996.76.4.2718
https://doi.org/10.1016/j.cortex.2016.04.018
https://doi.org/10.3389/fncom.2014.00074
https://doi.org/10.1152/jn.1992.67.6.1437
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.neuroimage.2015.12.036
https://doi.org/10.1007/BF00227841
https://doi.org/10.1016/j.neuron.2019.12.002
https://doi.org/10.3389/fnint.2015.00051
https://doi.org/10.3389/fnint.2015.00051
https://doi.org/10.1016/j.cub.2021.04.001
https://doi.org/10.1016/j.jhevol.2005.12.012
https://doi.org/10.32470/ccn.2019.1191-0
https://doi.org/10.1038/nrn1766
https://doi.org/10.1038/s41593-019-0392-5
https://doi.org/10.1016/j.neuron.2018.03.044
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1145/3505244
https://doi.org/10.1145/3505244
https://doi.org/10.1073/pnas.1905544116
https://doi.org/10.1007/978-4-431-55516-2_19
https://doi.org/10.1038/s41467-018-08058-0
https://doi.org/10.1016/j.neuroimage.2021.118017
https://doi.org/10.1126/sciadv.aaw4358
https://doi.org/10.1126/sciadv.aaw4358
https://doi.org/10.1016/j.tics.2012.10.011
https://doi.org/10.1167/11.11.923.t
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.3389/neuro.01.035.2009
https://doi.org/10.3389/neuro.01.035.2009
https://doi.org/10.1016/j.cub.2019.02.034
https://doi.org/10.1016/j.tics.2013.06.007
https://doi.org/10.1016/j.tics.2013.06.007
https://doi.org/10.1145/3065386
https://doi.org/10.1007/978-3-031-15882-7_15
https://doi.org/10.1371/journal.pcbi.1004896
https://doi.org/10.1038/s42003-018-0110-y
https://doi.org/10.1038/s42003-018-0110-y
https://doi.org/10.1038/nn.2388
https://doi.org/10.1523/JNEUROSCI.0824-21.2021
https://doi.org/10.1523/JNEUROSCI.0824-21.2021
https://doi.org/10.1016/j.celrep.2019.01.093
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1153572 June 30, 2023 Time: 17:53 # 12

Celeghin et al. 10.3389/fncom.2023.1153572

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., et al.
(1989). Backpropagation applied to handwritten zip code recognition. Neural Comput.
1, 541–551. doi: 10.1162/neco.1989.1.4.541

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random
synaptic feedback weights support error backpropagation for deep learning. Nat.
Commun. 7:13276. doi: 10.1038/ncomms13276

Lindsay, G. W. (2021). Convolutional neural networks as a model of the visual
system: Past, present, and future. J. Cogn. Neurosci. 33, 2017–2031. doi: 10.1162/jocn_
a_01544

Lindsey, J., Ocko, S. A., Ganguli, S., and Deny, S. (2019). A unified theory of early
visual representations from retina to cortex through anatomically constrained deep
CNNs. bioRxiv [Preprint] doi: 10.1101/511535

Luppi, A. I, Mediano, P. A., Rosas, F. E., Holland, N., Fryer, T. D., O’Brien, J. T., et al.
(2022). A synergistic core for human brain evolution and cognition. Nat. Neurosci. 25,
771–782. doi: 10.1038/s41593-022-01070-0

Maass, W. (1997). Networks of spiking neurons: The third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/s0893-6080(97)00011-7

Maffei, L., and Fiorentini, A. (1973). The visual cortex as a spatial frequency analyser.
Vis. Res. 13, 1255–1267. doi: 10.1016/0042-6989(73)90201-0

McClelland, J. L., Rumelhart, D. E., and PDP Research Group (1986). Parallel
distributed processing, Vol. 2. Cambridge, MA: MIT Press, 20–21.

McFadyen, J., Dolan, R. J., and Garrido, M. I. (2020). The influence of subcortical
shortcuts on disordered sensory and cognitive processing. Nat. Rev. Neurosci. 21,
264–276. doi: 10.1038/s41583-020-0287-1

McFadyen, J., Mattingley, J. B., and Garrido, M. I. (2019). An afferent white matter
pathway from the pulvinar to the amygdala facilitates fear recognition. Elife 8:e40766.
doi: 10.7554/eLife.40766

Méndez, C. A., Celeghin, A., Diano, M., Orsenigo, D., Ocak, B., and Tamietto, M.
(2022). A deep neural network model of the primate superior colliculus for emotion
recognition. Philos. Trans. R. Soc. B Biol. Sci. 377:20210512. doi: 10.1098/rstb.2021.
0512

Michel, M., Beck, D., Block, N., Blumenfeld, H., Brown, R., Carmel, D., et al. (2019).
Opportunities and challenges for a maturing science of consciousness. Nat. Hum.
Behav. 3, 104–107. doi: 10.1038/s41562-019-0531-8

Mikellidou, K., Kurzawski, J. W., Frijia, F., Montanaro, D., Greco, V., Burr, D. C.,
et al. (2017). Area prostriata in the human brain. Curr. Biol. 27, 3056–3060. doi:
10.1016/j.cub.2017.08.065

Milner, A. D., and Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford
Psychological Press.

Mineault, P. J., Bakhtiari, S., Richards, B. A., and Pack, C. C. (2021). Your head is
there to move you around: Goal-driven models of the primate dorsal pathway. bioRxiv
[Preprint] 34. doi: 10.1101/2021.07.09.451701

Mnih, V., Heess, N., and Graves, A. (2014). “Recurrent models of visual attention,”
in Proceedings of the 27th international conference on neural information processing
systems, (Cambridge, MA), 27.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. Nature 518,
529–533. doi: 10.1038/nature14236

Morcos, A. S., Barrett, D. G. T., Rabinowitz, N. C., and Botvinick, M. (2018). On the
importance of single directions for generalization. arXiv [Preprint]. arXiv:1803.06959.

Nigam, S., Pojoga, S., and Dragoi, V. (2019). Synergistic coding of visual information
in columnar networks. Neuron 104, 402–411. doi: 10.1016/j.neuron.2019.07.006

Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature visualization. Distill 2:e7.
doi: 10.23915/distill.00007

Olshausen, B., and Field, D. (2004). Sparse coding of sensory inputs. Curr. Opin.
Neurobiol. 14, 481–487. doi: 10.1016/j.conb.2004.07.007

Pessoa, L., and Adolphs, R. (2010). Emotion processing and the amygdala: From a
‘low road’ to ‘many roads’ of evaluating biological significance. Nat. Rev. Neurosci. 11,
773–782. doi: 10.1038/nrn2920

Petri, G., Musslick, S., Dey, B., Özcimder, K., Turner, D., Ahmed, N. K., et al. (2021).
Topological limits to the parallel processing capability of network architectures. Nat.
Phys. 17, 646–651. doi: 10.1038/s41567-021-01170-x

Pitcher, D., and Ungerleider, L. G. (2021). Evidence for a third visual pathway
specialized for social perception. Trends Cogn. Sci. 25, 100–110. doi: 10.1016/j.tics.
2020.11.006

Pogodin, R., Mehta, Y., Lillicrap, T., and Latham, P. E. (2021). Towards biologically
plausible convolutional networks. Adv. Neural Inform. Proc. Syst. 34, 13924–13936.

Ponce, C. R., Xiao, W., Schade, P. F., Hartmann, T. S., Kreiman, G., and Livingstone,
M. S. (2019). Evolving images for visual neurons using a deep generative network
reveals coding principles and neuronal preferences. Cell 177, 999–1009.e10. doi: 10.
1016/j.cell.2019.04.005

Pozzi, I., Bohté, S., and Roelfsema, P. (2018). A biologically plausible learning rule
for deep learning in the brain. arXiv [Preprint]. arXiv:1811.01768.

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005). Invariant
visual representation by single neurons in the human brain. Nature 435, 1102–1107.
doi: 10.1038/nature03687

Rajalingham, R., Issa, E. B., Bashivan, P., Kar, K., Schmidt, K., and DiCarlo, J. J.
(2018). Large-scale, high-resolution comparison of the core visual object recognition
behavior of humans, monkeys, and state-of-the-art deep artificial neural networks.
J. Neurosci. 38, 7255–7269. doi: 10.1523/jneurosci.0388-18.2018

Rawat, W., and Wang, Z. (2017). Deep convolutional neural networks for image
classification: A comprehensive review. Neural Comput. 29, 2352–2449. doi: 10.1162/
neco_a_00990

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen,
A., et al. (2019). A deep learning framework for neuroscience. Nat. Neurosci. 22,
1761–1770. doi: 10.1038/s41593-019-0520-2

Riesenhuber, M., and Poggio, T. (2000). Computational models of object recognition
in cortex: A review (CBCL Paper 190/AI Memo 1695). Cambridge, MA: MIT Press,
doi: 10.21236/ADA458109

Roelfsema, P. R., and van Ooyen, A. (2005). Attention-gated reinforcement learning
of internal representations for classification. Neural Comput. 17, 2176–2214. doi: 10.
1162/0899766054615699

Rossetti, Y., Pisella, L., and McIntosh, R. D. (2017). Rise and fall of the two visual
systems theory. Ann. Phys. Rehabil. Med. 60, 130–140. doi: 10.1016/j.rehab.2017.
02.002

Sacramento, J., Ponte Costa, R., Bengio, Y., and Senn, W. (2018). “Dendritic cortical
microcircuits approximate the backpropagation algorithm,” in Advances in neural
information processing systems, eds B. Samy, W. Hanna, L. Hugo, G. Kristen, C. Nicolò,
and G. Roman (New York, NY: Curran), 31.

Sahraie, A., Hibbard, P. B., Trevethan, C. T., Ritchie, K. L., and Weiskrantz, L.
(2010). Consciousness of the first order in blindsight. Proc. Natl. Acad. Sci. U.S.A. 107,
21217–21222.

Saxe, A., Nelli, S., and Summerfield, C. (2020). If deep learning is the answer,
what is the question? Nat. Rev. Neurosci. 22, 55–67. doi: 10.1038/s41583-020-00
395-8

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: Bridging the gap
between energy-based models and backpropagation. Front. Comput. Neurosci. 11:24.
doi: 10.3389/fncom.2017.00024

Schmid, M. C., Mrowka, S. W., Turchi, J., Saunders, R. C., Wilke, M., Peters,
A. J., et al. (2010). Blindsight depends on the lateral geniculate nucleus. Nature 466,
373–377.

Scholte, H. S., Losch, M. M., Ramakrishnan, K., de Haan, E. H., and Bohte, S. M.
(2018). Visual pathways from the perspective of cost functions and multi-task deep
neural networks. Cortex 98, 249–261. doi: 10.1016/j.cortex.2017.09.019

Schrimpf, M., Blank, I., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., et al.
(2020). Artificial neural networks accurately predict language processing in the brain.
bioRxiv [Preprint] doi: 10.1101/2020.06.26.174482

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., et al.
(2018). Brain-score: Which artificial neural network for object recognition is most
brain-like? bioRxiv [Preprint]. bioRxiv 407007.

Schütz, A. C., Braun, D. I., and Gegenfurtner, K. R. (2011). Eye movements and
perception: A selective review. J. Vis. 11:9.

Semedo, J. D., Jasper, A. I., Zandvakili, A., Krishna, A., Aschner, A., Machens, C. K.,
et al. (2022). Feedforward and feedback interactions between visual cortical areas use
different population activity patterns. Nat. Commun. 13:1099. doi: 10.1038/s41467-
022-28552-w

Shi, J., Wen, H., Zhang, Y., Han, K., and Liu, Z. (2018). Deep recurrent neural
network reveals a hierarchy of process memory during dynamic natural vision. Hum.
Brain Mapp. 39, 2269–2282.

Sussman, R. W. (1991). Primate origins and the evolution of angiosperms. Am. J.
Primatol. 23, 209–223. doi: 10.1002/ajp.1350230402

Tamietto, M., and Leopold, D. A. (2018). Visual cortex: The eccentric area prostriata
in the human brain. Curr. Biol. 28, R17–R19. doi: 10.1016/j.cub.2017.11.006

Tamietto, M., and Morrone, M. C. (2016). Visual plasticity: Blindsight bridges
anatomy and function in the visual system. Curr. Biol. 26, R70–R73. doi: 10.1016/j.
cub.2015.11.026

Tang, H., Schrimpf, M., Lotter, W., Moerman, C., Paredes, A., Ortega Caro, J., et al.
(2018). Recurrent computations for visual pattern completion. Proc. Natl. Acad. Sci.
U.S.A. 115, 8835–8840. doi: 10.1073/pnas.1719397115

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida, A.
(2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63. doi:
10.1016/j.neunet.2018.12.002

Ungerleider, L. G., and Mishkin, M. (1982). “Two cortical visual systems,” inAnalysis
of visual behavior, eds D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield (Cambridge,
MA: MIT Press), 549–586.

Frontiers in Computational Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2023.1153572
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1162/jocn_a_01544
https://doi.org/10.1162/jocn_a_01544
https://doi.org/10.1101/511535
https://doi.org/10.1038/s41593-022-01070-0
https://doi.org/10.1016/s0893-6080(97)00011-7
https://doi.org/10.1016/0042-6989(73)90201-0
https://doi.org/10.1038/s41583-020-0287-1
https://doi.org/10.7554/eLife.40766
https://doi.org/10.1098/rstb.2021.0512
https://doi.org/10.1098/rstb.2021.0512
https://doi.org/10.1038/s41562-019-0531-8
https://doi.org/10.1016/j.cub.2017.08.065
https://doi.org/10.1016/j.cub.2017.08.065
https://doi.org/10.1101/2021.07.09.451701
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.neuron.2019.07.006
https://doi.org/10.23915/distill.00007
https://doi.org/10.1016/j.conb.2004.07.007
https://doi.org/10.1038/nrn2920
https://doi.org/10.1038/s41567-021-01170-x
https://doi.org/10.1016/j.tics.2020.11.006
https://doi.org/10.1016/j.tics.2020.11.006
https://doi.org/10.1016/j.cell.2019.04.005
https://doi.org/10.1016/j.cell.2019.04.005
https://doi.org/10.1038/nature03687
https://doi.org/10.1523/jneurosci.0388-18.2018
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.21236/ADA458109
https://doi.org/10.1162/0899766054615699
https://doi.org/10.1162/0899766054615699
https://doi.org/10.1016/j.rehab.2017.02.002
https://doi.org/10.1016/j.rehab.2017.02.002
https://doi.org/10.1038/s41583-020-00395-8
https://doi.org/10.1038/s41583-020-00395-8
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1016/j.cortex.2017.09.019
https://doi.org/10.1101/2020.06.26.174482
https://doi.org/10.1038/s41467-022-28552-w
https://doi.org/10.1038/s41467-022-28552-w
https://doi.org/10.1002/ajp.1350230402
https://doi.org/10.1016/j.cub.2017.11.006
https://doi.org/10.1016/j.cub.2015.11.026
https://doi.org/10.1016/j.cub.2015.11.026
https://doi.org/10.1073/pnas.1719397115
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1016/j.neunet.2018.12.002
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1153572 June 30, 2023 Time: 17:53 # 13

Celeghin et al. 10.3389/fncom.2023.1153572

Van den Stock, J., Tamietto, M., Hervais-Adelman, A., Pegna, A. J., and
de Gelder, B. (2015). Body recognition in a patient with bilateral primary
visual cortex lesions. Biol. Psychiatry 77, e31–e33. doi: 10.1016/j.biopsych.2013.
06.023

Van Dyck, L. E., Kwitt, R., Denzler, S. J., and Gruber, W. R. (2021). Comparing object
recognition in humans and deep convolutional neural networks—an eye tracking
study. Front. Neurosci. 15:750639. doi: 10.3389/fnins.2021.750639

Vanduffel, W., and Li, X. (2020). Optogenetics: Exciting inhibition in primates. eLife
9:e59381. doi: 10.7554/eLife.59381

Walker, E. Y., Sinz, F. H., Cobos, E., Muhammad, T., Froudarakis, E., Fahey, P. G.,
et al. (2019). Inception loops discover what excites neurons most using deep predictive
models. Nat. Neurosci. 22, 2060–2065. doi: 10.1038/s41593-019-0517-x

Warner, C. E., Kwan, W. C., and Bourne, J. A. (2012). The early maturation of visual
cortical area MT is dependent on input from the retinorecipient medial portion of
the inferior pulvinar. J. Neurosci. 32, 17073–17085. doi: 10.1523/JNEUROSCI.3269-
12.2012

Warner, C. E., Kwan, W. C., Wright, D., Johnston, L. A., Egan, G. F., and Bourne,
J. A. (2015). Preservation of vision by the pulvinar following early-life primary visual
cortex lesions. Curr. Biol. 25, 424–434. doi: 10.1016/j.cub.2014.12.028

Whittington, J. C., and Bogacz, R. (2017). An approximation of the error
backpropagation algorithm in a predictive coding network with local hebbian synaptic
plasticity. Neural Comput. 29, 1229–1262. doi: 10.1162/NECO_a_00949

Wichmann, F. A., Janssen, D. H. J., Geirhos, R., Aguilar, G., Schütt, H. H.,
Maertens, M., et al. (2017). Methods and measurements to compare men

against machines. Electron. Imaging 29, 36–45. doi: 10.2352/issn.2470-1173.2017.14.
hvei-113

Williams, L. E., and Holtmaat, A. (2019). Higher-order thalamocortical inputs gate
synaptic long-term potentiation via disinhibition. Neuron 101, 91–102. doi: 10.1016/j.
neuron.2018.10.049

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., et al.
(2020). “Transformers: State-of-the-art natural language processing,” in Proceedings
of the 2020 conference on empirical methods in natural language processing: System
demonstrations, (Miami, FL), doi: 10.18653/v1/2020.emnlp-demos.6

Wurtz, R. H. (2015). Using perturbations to identify the brain circuits underlying
active vision. Philos. Trans. R. Soc. B Biol. Sci. 370:20140205. doi: 10.1098/rstb.2014.
0205

Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. C., Urakubo, H., Ishii, S., and Kasai,
H. (2014). A critical time window for dopamine actions on the structural plasticity of
dendritic spines. Science 345, 1616–1620.

Yamins, D. L. K., and DiCarlo, J. J. (2016). Using goal-driven deep learning models
to understand sensory cortex. Nat. Neurosci. 19, 356–365. doi: 10.1038/nn.4244

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and DiCarlo,
J. J. (2014). Performance-optimized hierarchical models predict neural responses in
higher visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8619–8624. doi: 10.1073/pnas.
1403112111

Zhou, B., Bau, D., Oliva, A., and Torralba, A. (2018). Interpreting visual
representations of neural networks via network dissection. J. Vis. 18:1244. doi: 10.1167/
18.10.1244

Frontiers in Computational Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2023.1153572
https://doi.org/10.1016/j.biopsych.2013.06.023
https://doi.org/10.1016/j.biopsych.2013.06.023
https://doi.org/10.3389/fnins.2021.750639
https://doi.org/10.7554/eLife.59381
https://doi.org/10.1038/s41593-019-0517-x
https://doi.org/10.1523/JNEUROSCI.3269-12.2012
https://doi.org/10.1523/JNEUROSCI.3269-12.2012
https://doi.org/10.1016/j.cub.2014.12.028
https://doi.org/10.1162/NECO_a_00949
https://doi.org/10.2352/issn.2470-1173.2017.14.hvei-113
https://doi.org/10.2352/issn.2470-1173.2017.14.hvei-113
https://doi.org/10.1016/j.neuron.2018.10.049
https://doi.org/10.1016/j.neuron.2018.10.049
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1098/rstb.2014.0205
https://doi.org/10.1098/rstb.2014.0205
https://doi.org/10.1038/nn.4244
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1167/18.10.1244
https://doi.org/10.1167/18.10.1244
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

	Convolutional neural networks for vision neuroscience: significance, developments, and outstanding issues
	The place of Convolutional Neural Networks between neuroscience and cognitive sciences
	Basic principles of CNNs for vision neuroscience
	CNN as (partial) models of the visual brain: why and how
	Assessing the behavioral correspondence
	Examining neural correspondence

	Notions of the visual brain commonly overlooked in CNN models
	Multiple routes bypass V1 and target higher-order visual cortices
	Dorsal and ventral stream: how many subsystems?
	Evaluating hierarchy and linearity of information integration

	Improving neurobiological plausibility of objective functions and learning rules
	Objective functions as ethological task constraints
	Learning rules and synaptic weights

	Toward causal evidence: closed-loop experiments and task constraints
	Closed-loop experiments through image synthesis
	Lesion analysis at the single neuron and population level

	Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


