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Like fluctuations, nondiagonal correlators of conserved charges provide a tool for the study of chemical
freeze-out in heavy ion collisions. They can be calculated in thermal equilibrium using lattice simulations, and
be connected to moments of event-by-event net-particle multiplicity distributions. We calculate them from
continuum-extrapolated lattice simulations at μB ¼ 0, and present a finite-μB extrapolation, comparing two
different methods. In order to relate the grand canonical observables to the experimentally available net-
particle fluctuations and correlations, we perform a hadron resonance gas model analysis, which allows us to
completely break down the contributions from different hadrons. We then construct suitable hadronic proxies
for fluctuation ratios, and study their behavior at finite chemical potentials. We also study the effect of
introducing acceptance cuts, and argue that the small dependence of certain ratios on the latter allows for a
direct comparison with lattice QCD results, provided that the same cuts are applied to all hadronic species.
Finally, we perform a comparison for the constructed quantities for experimentally available measurements
from the STAR Collaboration. Thus, we estimate the chemical freeze-out temperature to 165 MeV using a
strangeness-related proxy. This is a rather high temperature for the use of the hadron resonance gas; thus,
further lattice studies are necessary to provide first principle results at intermediate μB.
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I. INTRODUCTION

The study of the phase diagram of quantum chromody-
namics (QCD) has been the object of intense effort from
both theory and experiment in the last decades. Relativistic
heavy ion collision experiments both at the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC) have been able to create the quark gluon plasma
(QGP) in the laboratory, and explore the low-to-moderate
baryon density region of the QCD phase diagram.
At low baryon density, the transition from a hadron gas

to a deconfined QGP was shown by lattice QCD calcu-
lations to be a broad crossover [1] at T ≃ 155 MeV [1–4].
At large baryon densities, the nature of the phase transition
is expected to change into first order, thus implying the
presence of a critical end point. A strong experimental
effort is currently in place through the second Beam Energy
Scan (BES-II) program at the RHIC in 2019–2021, with the
goal of discovering such a critical point.
The structure of the QCD phase diagram cannot cur-

rently be theoretically calculated from first principles, as
lattice calculations are hindered by the sign problem at
finite density. Several methods have been utilized in order
to expand the reach of lattice QCD to finite density, like full
reweighting [5], Taylor expansion of the observables
around μB ¼ 0 [6–10], or their analytical continuation
from imaginary chemical potential [5,11–14].
We remark here that there are alternative approaches to

lattice QCD for the thermodynamical description. Specific
truncations of the Dyson-Schwinger equations allow the
calculation of the crossover line and also to extract baryonic
fluctuations [15,16]. Another theoretical result on the
baryon-strangeness correlator has been calculated using
functional methods from the Polyakov-loop-extended
quark meson model in [17,18].
The confined, low-temperature regime of the theory is

well described by the hadron resonance gas (HRG) model,
which is able to reproduce the vast majority of lattice QCD
results in this regime [19–24]. Moreover, the HRG model
has been extremely successful in reproducing experimental
results for particle yields over several orders of magnitude
[25–29]. These are usually referred to as thermal fits, since
the goal of the procedure is the determination of the
temperature and chemical potential at which the particle
yields are frozen. This moment in the evolution of a heavy
ion collision is called chemical freeze-out, and takes place
when inelastic collisions within the hot hadronic medium
cease. The underlying assumption is that the system
produced in heavy ion collisions eventually reaches thermal
equilibrium [30–32], and therefore a comparison between
thermal models and experiment is possible [33].
Although the net number of individual particles may

change after the chemical freeze-out through resonance
decays, the net baryon number, strangeness and electric
charge are conserved. Their event-by-event fluctuations are
expected to correspond to a grand canonical ensemble. In

general, when dealing with fluctuations in QCD, and in
particular in relation to heavy ion collisions, it is important
to relate fluctuations of such conserved charges and the
event-by-event fluctuations of observed (hadronic) species.
The former have been extensively studied with lattice
simulations [34–43], and are essential to the study of the
QCD phase diagram for multiple reasons. First, they are
directly related to the Taylor coefficients in the expansion
of the pressure to finite chemical potential and have been
utilized to reconstruct the equation of state of QCD at finite
density, both in the case of sole baryon number conserva-
tion [41,44,45], and with the inclusion of all conserved
charges [46]. Second, higher order fluctuations are
expected to diverge as powers of the correlation length
in the vicinity of the critical point, and have thus been
proposed as natural signatures for its experimental search
[47,48]. On the other hand, fluctuations of observable
particles can be measured in experiments, and are very
closely related to conserved charge fluctuations. With some
caveats [49–52], comparisons between the two can be
made, provided that certain effects are taken into account.
Previous studies found that, for certain particle species,

fluctuations are more sensitive to the freeze-out parameters
than yields [53]. In recent years, the STAR Collaboration
has published results for the fluctuations of net proton [54],
net charge [55], net kaon [56], and more recently net Λ [57]
and for correlators between different hadronic species
[57,58]. From the analysis of net-proton and net-charge
fluctuations in the HRG model, it was found that the
obtained freeze-out temperatures are lower than the corre-
sponding ones from fits of the yields [52]. More recent
analyses [59,60] of the moments of net-kaon distributions
showed that it is not possible to reproduce the experimental
results for net-kaon fluctuations with the same freeze-out
parameters obtained from the analysis of net proton and net
charge. In particular, the obtained freeze-out temperature is
consistently higher, with a separation that increases with
the collision energy. In [59], predictions for the moments of
net-Λ distributions were provided, calculated at the freeze-
out of net kaons and net proton/net charge.
Correlations between different conserved charges in QCD

provide yet another possibility for the comparison of theory
and experiment. They will likely receive further contribution
from measurements in the future, with new species being
analyzed and increased statistics allowing for better deter-
mination of moments of event-by-event distributions [58].
In this manuscript, we present continuum-extrapolated

lattice QCD results for all second-order nondiagonal corre-
lators of conserved charges. We then identify the contribu-
tion of the single particle species to these correlators,
distinguishing between measured and nonmeasured species.
Finally, we identify a set of observables, which can serve as
proxies to measure the conserved charge correlators. The
manuscript is organized as follows. In Sec. II we present the
continuum extrapolated lattice results for second-order
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nondiagonal correlators of conserved charges and discuss the
extrapolation to finite μB in Sec. III. In Sec. IV we show the
comparison with HRG model calculations, and describe
the breakdown of the different contributions to the observ-
ables shown in the previous section. In Sec. V we propose
new observables which can serve as proxies to directly study
the correlation of conserved charges. In Sec. VI we analyze
the behavior of the constructed proxies at finite chemical
potential, and study the effect of acceptance cuts in the HRG
calculations. We argue that the small dependence on
experimental effects allows for a direct comparison with
lattice QCD results. We also perform a comparison to
experimental results for selected observables in Sec. VII.
Finally, in Sec. VIII we present our conclusions.

II. LATTICE QCD AND THE GRAND
CANONICAL ENSEMBLE

The lattice formulation of quantum chromodynamics
opens a nonperturbative approach to the underlying quantum
field theory in equilibrium. Its partition function belongs to a
grand canonical ensemble, parametrized by the baryochem-
ical potential μB, the strangeness chemical potential μS and
the temperature T. Additional parameters include the volume
L3, which is assumed to be large enough to have negligible
volume effects, and the quark masses. The latter control the
pion and kaon masses, and are set to reproduce their physical
values. At the level of accuracy of this study we can assume
the degeneracy of the light quarks mu ¼ md and neglect the
effects coming from quantum electrodynamics.
There is a conserved charge corresponding to each flavor

of QCD. The grand canonical partition function can be then
written in terms of quark number chemical potentials (μu,
μd, μs). The derivatives of the grand potential with respect
to these chemical potentials are the susceptibilities of quark
flavors, defined as

χu;d;si;j;k ¼ ∂iþjþkðp=T4Þ
ð∂μ̂uÞið∂μ̂dÞjð∂μ̂sÞk ; ð1Þ

with μ̂q ¼ μq=T. These derivatives are normalized to be
dimensionless and finite in the complete temperature range.
For the purpose of phenomenology we introduce for the B
(baryon number), Q (electric charge) and S (strangeness) a
chemical potential μB, μQ and μS, respectively. The basis of
μu, μd, μs can be transformed into a basis of μB, μQ, μS
using the B, Q and S charges of the individual quarks,

μu ¼
1

3
μB þ 2

3
μQ; ð2Þ

μd ¼
1

3
μB −

1

3
μQ; ð3Þ

μs ¼
1

3
μB −

1

3
μQ − μS: ð4Þ

Susceptibilities are then defined as

χBQS
ijk ðT; μ̂B; μ̂Q; μ̂SÞ ¼

∂iþjþkðpðT; μ̂B; μ̂Q; μ̂SÞ=T4Þ
∂μ̂iB∂μ̂jQ∂μ̂kS

: ð5Þ

It is straightforward to express the derivatives of p=T4

with respect to μB, μQ and μS in terms of the coefficients in
Eq. (1) [36,39,61]. For the cross-correlators we have

χBQ11 ¼ 1

9
½χu2 − χs2 − χus11 þ χud11 �; ð6Þ

χBS11 ¼ −
1

3
½χs2 þ 2χus11�; ð7Þ

χQS
11 ¼ 1

3
½χs2 − χus11�: ð8Þ

Such derivatives play an important role in experiment. In
an ideal setup the mean of a conserved charge i can be
expressed as the first derivative with respect to the chemical
potential,

hNii ¼ T
∂ logZðT; V; fμqgÞ

∂μi ; ð9Þ

while fluctuations and cross-correlators (say between
charges i and j) are second derivatives,

∂hNii
∂μj ¼ T

∂2 logZðT; V; fμqgÞ
∂μj∂μi ¼ 1

T
ðhNiNji − hNiihNjiÞ:

ð10Þ

In these formulas Ni indicates the net number of charge
carriers. For example, for the baryon number B, it corre-
sponds to the number of baryons minus the number of
antibaryons.
The procedure to define the chemical potential on the

lattice [62] and to extract the derivatives in Eq. (1) from
simulations that run at μu ¼ μd ¼ μs ¼ 0 has been worked
out long ago [6] and has been the basis of many studies ever
since [7,61,63,64]. Since the derivatives with respect to the
chemical potential require no renormalization, a continuum
limit could be computed as soon as results on sufficiently
fine lattices emerged [3,36]. Later the temperature range
and the accuracy of these extrapolations were extended
in [39,40].
In this work, we extend our previous results [39] to

nondiagonal correlators and calculate a specific ratio that
will be later compared to experiment.
These expectation values are naturally volume depen-

dent. Their leading volume dependence can, however, be
canceled by forming ratios. In [37,38,65] such ratios were
formed between various moments of electric charge fluc-
tuations, and also for baryon fluctuations. For the same
ratios the STAR experiment has provided proxies as part of
the Beam Energy Scan I program [54,55].
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The gauge action is defined by the tree-level Symanzik
improvement, and the fermion action is a one link staggered
with four levels of stout smearing. The parameters of the
discretization as well as the bare couplings and quark
masses are given in [39].
The charm quark is also included in our simulations, in

order to account for its partial pressure at temperatures
above 200 MeV, where it is no longer negligible [66]. In the
range of the expected chemical freeze-out temperature
between 135 and 165 MeV the effect of the charm quark
is not noticeable on the lighter flavors [39].
In this work we use the lattice sizes of 323 × 8, 403 × 10,

483 × 12, 643 × 16 as well as 803 × 20. Thus, the physical
volume L3 is given in terms of the temperature as LT ¼ 4
throughout this paper. The coarsest lattice was never in the

scaling region. The finest lattice lacks the precision of the
others, and we only use it when the coarser lattices, e.g.,
403 × 10, are not well in the scaling region and if, for a
particular observable, the 803 × 20 has small enough error
bars. If this was used, the data set is also shown in the plots.
We show here the continuum extrapolated cross-corre-

lators at zero chemical potential. In Fig. 1 we show an
example of continuum extrapolation for the three cross-
correlators, with T ¼ 150 MeV and the w0-based scale
setting [67]. Figure 2 shows χBQ11 ðTÞ for the four different
lattices, as well as the continuum extrapolation. Although
our simulation contains a dynamical charm quark, we did
not account for its baryon charge. Thus, the Stefan-
Boltzmann limit of this quantity is 0. This limit is reached
when the mass difference between the strange and light
quarks becomes negligible in comparison to the temper-
ature. The peak is seen at a higher temperature than
Tc ≈ 155 MeV, while in the transition region there is an
inflection point. Below Tc this correlator is dominated by
protons and charged hyperons. In Sec. IV we account in
detail for various hadronic contributions in the con-
fined phase.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  0.004  0.008  0.012  0.016

1/Nt
2

T=150 MeV
χQS

11 χBS
11 χBQ

11

FIG. 1. Examples for the continuum extrapolation. We show
the three cross-correlators on the lattices (from right to left): 323×
8, 403 × 10, 483 × 12, 643 × 16 and 803 × 20. The data points
correspond to the w0-based scale setting [67], one of the two
interpolation methods to align all simulation results to the same
temperature: T ¼ 150 MeV in this example. The error bars in the
continuum limit are obtained from the combination of the scale
setting, the interpolation, the selection of the continuum extrapo-
lation fit range, and whether a linear or 1/linear function is fitted.
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FIG. 2. The baryon-electric charge cross correlator from the
lattice at finite lattice spacing and its continuum limit.
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FIG. 3. The baryon-strangeness cross correlator from the lattice
at finite lattice spacing and its continuum limit.
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FIG. 4. The electric charge-strangeness cross correlator from
the lattice at finite lattice spacing and its continuum limit.
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The χBS11 ðTÞ correlator is shown in Fig. 3. Unlike the BQ
correlator, we have now a monotonic function with a high
temperature limit of −1=3, which is the baryon number of
the strange quark. The transition has a remarkably small
effect on this quantity. At low temperatures this correlator is
basically the hyperon free energy.
The χQS

11 ðTÞ correlator in Fig. 4 is also monotonic,
converging to 1=3 at high T, which is the electric charge
of the strange quark. At low temperatures this quantity is
dominated by the charged kaons, which were the focus of
recent experimental investigations [56].
The continuum-extrapolated results at μB ¼ 0 for χBQ11 ,

χBS11 , χQS
11 and the ratio χBS11 =χ

S
2 we discuss below are

provided in Table I of the Appendix.

III. RESULTS AT FINITE DENSITY

Since lattice QCD can be defined at finite values of the B,
Q and S chemical potentials, and is capable of calculating
derivatives of the free energy as a function of these chemical
potentials one could expect that the extension of the
simulations to finite density is a mere technical detail.
Unfortunately, at any finite real value of the quark chemical
potential μq the fermionic contribution to the action becomes
complex and most simulation algorithms break down.
There are several options to extract physics at finite

densities, nevertheless. It seems natural to use algorithms
that were designed to work on complex actions—both the
complex Langevin equation [68] and the Lefschetz thimble
approach [69] have shown promising results recently—yet
their direct application to phenomenology requires further
research.
Instead, we use here the parameter domain that is

available for mainstream lattice simulations. In fact, besides
zero chemical potential, simulations at imaginary μB are
also possible, and have been exploited in the past to
extrapolate the transition temperature [70–73], fluctuations
of conserved charges [42,43] and the equation of state [41].
In all these works it was assumed that the thermodynamical
observables are all analytical functions of μ̂2B.
A conceptually very similar method, the Taylor method,

provides the extrapolation in terms of calculating higher
derivatives with respect to μ̂B. The series is truncated at a
certain order, which is typically limited by the statistics of
the lattice simulation.
Since we relate the baryon-strangeness correlator to

experimental observables later on we use χBS11 as an example
for the Taylor expansion,

χBS11 ðT; μ̂Þ ¼ χBS11 ðT; 0Þ þ μ̂Bχ
BS
21 ðT; 0Þ þ μ̂Sχ

BS
12 ðT; 0Þ

þ μ̂2B
2
χBS31 ðT; 0Þ þ μ̂Bμ̂Sχ

BS
22 ðT; 0Þ

þ μ̂2S
2
χBS13 ðT; 0Þ þOðμ̂4Þ; ð11Þ

where the terms proportional to μ̂B and μ̂S vanish since they
contain odd derivatives, which are forbidden by the
C-symmetry of QCD. (The charge chemical potential is
omitted for simplicity).
In most phenomenological lattice studies the chemical

potentials are selected such that the strangeness vanishes
for each set of ðμB; μQ; μSÞ. More precisely, for each T and
μ̂B we select μ̂Q and μ̂S values such that

χS1ðT; fμ̂igÞ ¼ 0;

χQ1 ðT; fμ̂igÞ ¼ 0.4χB1 ðT; fμ̂igÞ: ð12Þ
The factor 0.4 is the typical Z=A ratio for the projectiles
in the heavy ion collision setup, and the value we use in
the HRG model calculations below. In our lattice study,
however, we use 0.5. This introduces a small effect com-
pared to the statistical and systematic errors of the extrapo-
lation, and results in substantial simplification of the
formalism: μQ can be chosen to be 0. The would-be μQ
value is about one tenth of μS in the transition region [37,38].
We checked the impact of our simplification on the results
we present here, with the Taylor expansionmethod. Utilizing
our simulations data from ensembles at μB ¼ 0, we calculate
the correction to the ratio χBS11 =χ

S
2 . By construction, this

correction vanishes at μB ¼ 0, and we find that it grows to at
most 1% at μB=T ¼ 1, and at most 1.5% at μB=T ¼ 2. These
systematic errors are considerably smaller than the uncer-
tainties we have on our results, as can be seen in Fig. 5.

A. Taylor method

The Taylor coefficients for correlators can be easily
obtained by considering the higher derivatives with respect
to μB. For later reference we select the quantity χBS11 =χ

S
2 for

closer inspection,

χBS11
χS2

����
μB=T

¼ χBS11
χS2

þ μ̂2B
2

χBS;ðNLOÞ
11 χS2 − χS;ðNLOÞ

2 χBS11
ðχS2Þ2

; ð13Þ

up to Oðμ̂4BÞ corrections, with

χBS;ðNLOÞ
11 ¼ χBS13 s

2
1 þ 2χBS22 s1 þ χBS31 ; ð14Þ

χS;ðNLOÞ
2 ¼ χBS22 þ 2χBS13 s1 þ χS4s

2
1; ð15Þ

s1 ¼ −χBS11 =χS2: ð16Þ

The derivatives on the right-hand side are all taken at
μB ¼ μS ¼ 0.
Whether we extract the required derivatives from a single

simulation (one per temperature) at μB ¼ μS ¼ 0 or we
determine the fourth order derivatives numerically by the
(imaginary) μB-dependence of second-order derivatives is a
result of a cost benefit analysis. The equivalence of these
two choices has been shown on simulation data (of the
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chemical potential dependence of the transition temper-
ature) in [73].
In [71] we calculated direct derivatives; however, we

obtained smaller errors by using imaginary μB simulations
in [43]. Thus, we take the Taylor coefficients from the latter
analysis, now extended to the new observable. The results
for several fixed temperatures are shown in Fig. 5. As a first
observable we show the μS=μB ratio that realizes strange-
ness neutrality. Then we show the χBS11 =χ

S
2 ratio as a function

of positive μ̂2B.
In the plots we show results from a specific lattice

483 × 12, which has the highest statistics, so that it pro-
vides the best ground to compare different extrapolation
strategies.

B. Sector method

In Fig. 5 we compare two extrapolation strategies; here
we describe the second approach, the sector method.

We are building on our earlier work in [74], where we
have written the pressure of QCD as a sum of the sectors

Pðμ̂B; μ̂SÞ ¼ PBS
00 þ PBS

10 coshðμ̂BÞ þ PBS
01 coshðμ̂SÞ

þ PBS
11 coshðμ̂B − μ̂SÞ

þ PBS
12 coshðμ̂B − 2μ̂SÞ

þ PBS
13 coshðμ̂B − 3μ̂SÞ: ð17Þ

These sectors were also studied in [75,76]. Obviously,
QCD receives contributions from sectors with higher
quantum numbers as well. The sectors in Eq. (17) are
the only ones receiving contributions from the ideal hadron
resonance gas model in the Boltzmann approximation. (The
dependence on the electric charge chemical potential is not
considered now, since we selected μQ ¼ 0.)
The partitioning of the QCD pressure in sectors is very

natural in the space of imaginary chemical potentials μ̂B ¼
iμ̂IB and μ̂S ¼ iμ̂IS,

Pðμ̂IB; μ̂ISÞ ¼
X
j;k

PBS
jk cosðjμ̂IB − kμ̂ISÞ: ð18Þ

It is expected that higher sectors are increasingly relevant as
Tc is approached from below. A study using Wuppertal-
Budapest simulation data has shown that below T ≈
165 MeV the sectors jBj ¼ 0, 1, 2 give a reasonable
description, e.g., by calculating χB4 from the sector coef-
ficients and comparing to direct results.
Thus, for this work we considered the next-to-leading

order of the sector expansion, including the

LO∶ PBS
01 ; P

BS
11 ; P

BS
12 ; P

BS
13 ;

NLO∶ PBS
02 ; P

BS
1;−1; P

BS
21 ; P

BS
22 : ð19Þ

It is somewhat ambiguous how theNLO is to be defined.
One option would be to include the next-higher jBj
quantum number, making our approach second order in
this expansion. We do include PBS

21 and PBS
22 ; however

adding further higher strangeness sectors, e.g., PBS
23 , did

not improve the agreement with our data, so it was not
included. Moreover, we included the multistrange sector
PBS
02 and the exotic sector PBS

1;−1, which is the coefficient of
the term proportional to coshðμ̂B þ μ̂SÞ. On the other hand,
removing the sectors included in the NLO never resulted in
higher temperatures in a smaller χ2 for the fit; e.g., at T ¼
160 MeV removing the terms PBS

0;2, P
BS
1;−1 P

BS
2;1 or P

BS
2;0 from

the fit (removing only one term at a time) resulted in a
χ2=Ndof of 72.6=53, 181.1=53, 72.4=53, or 137.2=53,
respectively, while including all gave 72.3=52.
In Fig. 6 the results for the sectors in the LO and NLO

are shown at different temperatures. The results for the LO
sectors shown in the top panel (figure from Ref. [74]) are
continuum extrapolated—except for the jBj ¼ 0, jSj ¼ 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.5  1  1.5  2
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μS/μB
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FIG. 5. Comparison of two approaches to the finite density
extrapolation of two observables. The Taylor result is truncated
such that only the leading ∼μ̂2B contribution is considered. In the
sector method, contributions up to jBj ¼ 2 are included. (The
data were generated from a 483 × 12 lattice; the plots show the
intermediate result before continuum extrapolation.) We also
show the hadron resonance gas model prediction.
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sector. In the lower panel new results for the sectors in the
NLO are shown, generated from a 483 × 12 lattice.
The alert reader may ask why we do not include the PBS

10

sector, accounting e.g., for protons. In fact, the sectors with
jSj ¼ 0 do not contribute to the observables χBS11 , χ

S
2 or χS1

either at 0, or at any real or imaginary chemical potential. In
the analysis we included results for χS1, χ

S
2 , χ

BS
11 from various

data sets at various imaginary chemical potentials: at
μB ¼ 0, μS ¼ 0 the data of Sec. II, the μIB > 0, μS ¼ 0

data set of [43], the strangeness data set with μIB > 0 of
[41], and finally the set (only including χS1 and χS2) with
μB ¼ 0, μIS > 0 from [74]. For the lower temperatures the
model defined with the coefficients in Eq. (19) resulted in
good fits (Q values ranging from 0 to 1)—the worst fit was
at T ¼ 165 MeV with Q ≈ 0.05. This is the temperature
where the model is expected to break down.

Now we can compare the results to the Taylor expansion.
In Fig. 5 we show the sector results with error bars, while
the bands refer to the Taylor method. At low temperatures
we see good agreement even for large values of the
chemical potential; near the transition, however, the two
approaches deviate already in the experimentally relevant
region. It is obvious that the sector method breaks down
above Tc. Its systematic improvement to higher jBj
quantum numbers requires much higher statistics (the same
is true for the Taylor coefficients). Each further order
enables the extrapolation to somewhat larger chemical
potential, and in the case of the jBj sectors, to a somewhat
larger temperature. Let us note that the Taylor method has
limitations as well, slightly above Tc, because the sub-
sequent orders are not getting smaller [43]. The reason for
this behavior is the fact that, between T ¼ 160 MeV and
T ¼ 180 MeV, there is a crossover transition in the
imaginary domain of μ̂B; then higher Taylor coefficients
facilitate an extrapolation through that crossover.
In conclusion, we consider only the chemical potential

range where our two methods agree in the extrapolation. At
present, our lattice data allow a continuum extrapolation
from the sector method only, which we do using 403 × 10,
483 × 12 and 643 × 16 lattices in the temperature range
135–165 MeV for a selection of fixed real μ̂B values. The
method for the continuum extrapolation is the same we also
used in Sec. II. We show the result in Fig. 7.
The large error bars in comparison to the μB ¼ 0 results

and the limited range in μ̂B indicate that the extraction
of finite density physics from μB ¼ 0 or imaginary μB
simulations is a highly nontrivial task. Still, both the Taylor
and the sector methods can be systematically improved to
cover more of the range of interest for the Beam Energy
Scan II program. Given the high chemical freeze-out
temperatures for jSj ¼ 1 particles—see Sec. VII—that
emerge from STAR data ([56] and preliminary [57]), the
use of continuum extrapolated lattice simulations to
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calculate the grand canonical features of QCD is highly
motivated.

IV. CORRELATORS IN THE HRG MODEL

The HRG model is based on the idea that a gas of
interactinghadrons in theirgroundstatecanbewelldescribed
by a gas of noninteracting hadrons and resonances. The
partition functionof themodel can thus bewritten as a sumof
ideal gas contributions of all known hadronic resonances R,

p
T4

¼ 1

T4

X
R

pR ¼ 1

VT3

X
R

lnZRðT; μ⃗Þ; ð20Þ

with

lnZR ¼ ηR
VdR
2π2T3

Z
∞

0

dpp2 log ½1 − ηRzR exp ð−ϵR=TÞ�;

ð21Þ

where every quantity with a subscript R depends on the
specific particle in the sum. The relativistic energy is
ϵR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

R

p
, the fugacity is zR ¼ exp ðμR=TÞ, the

chemical potential associated to R is μR ¼ μBBR þ
μQQR þ μSSR, and the conserved charges BR, QR and SR
are the baryon number, electric charge and strangeness
respectively. Moreover, dR is the spin degeneracy, mR is
themass, and the factorηR ¼ ð−1Þ1þBR is1 for (anti-)baryons
and −1 for mesons.
The temperature and the three chemical potentials are not

independent, as the conditions in Eqs. (12) are imposed on
the baryon, electric charge and strangeness densities. We
use these constraints to set both μQðT; μBÞ and μSðT; μBÞ in
our HRG model calculations.
In this work we utilize the hadron list PDG2016+ from

[74], which was constructed with all the hadronic states
(with the exclusion of charm and bottom quarks) listed by
the Particle Data Group (PDG), including the less-estab-
lished states labeled by *, ** [78]. The decay properties of
the states in the list, when not available (or complete) from
the PDG, were completed with a procedure explained in
[79], and then utilized in [59,79].
In the HRGmodel the χBQS

ijk susceptibilities of Eq. (5) can
be expressed as

χBQS
ijk ðT; μ̂B; μ̂Q; μ̂SÞ¼

X
R

Bi
RQ

j
RS

k
RI

R
ijkðT; μ̂B; μ̂Q; μ̂SÞ; ð22Þ

where BR, QR, SR are the baryon number, electric charge
and strangeness of the species R and the phase space
integral at order iþ jþ k reads (note that it is completely
symmetric in all indices, hence iþ jþ k ¼ l),

IRl ðT; μ̂B; μ̂Q; μ̂SÞ ¼
∂lpR=T4

∂μ̂lR : ð23Þ

The HRG model has the advantage, when comparing to
experiment, of allowing for the inclusion of acceptance cuts
and resonance decay feed-down, which cannot be taken
into account in lattice QCD calculations.
The acceptance cuts on transverse momentum and

rapidity (or pseudorapidity) can be easily taken into
account in the phase space integrations via the change(s)
of variables,

1

2π2

Z
∞

0

dpp2 →
1

4π2

Z
yB

yA
dydpTpT cosh y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

q

→
1

4π2

Z
ηB

ηA
dη

Z
pB
T

pA
T

dpTp2
T cosh η; ð24Þ

in the case of rapidity and pseudorapidity respectively,
where in all cases the trivial angular integrals were carried
out [52].

A. Correlators of measured particle species

The rich information contained in the system created in a
heavy ion collision about the correlations between con-
served charges is eventually carried over to the final stages
through hadronic species correlations and self-correlations.
It is convenient, in the framework of the HRG model, to
consider the hadronic species which are stable under strong
interactions, as these are the observable states accessible to
experiment. However, due to experimental limitations,
charged particles and lighter particles are easier to measure,
and so we cannot access every relevant hadron related to
conserved charges. Thus, historically protons have served
as a proxy for baryon number, kaons have served as a proxy
for strangeness, and net electric charge is measured through
p, π, and K.
In our framework, we consider the following species,

stable under strong interactions: π0, π�, K�, K0, K̄0, p, p̄,
n, n̄, Λ, Λ̄, Σþ, Σ̄−, Σ−, Σ̄þ, Ξ0, Ξ̄0, Ξ−, Ξ̄þ, Ω−, Ω̄þ. Of
these, the commonly measured ones are the following:

π�; K�; pðp̄Þ;ΛðΛ̄Þ;Ξ−ðΞ̄þÞ;Ω−ðΩ̄þÞ:

A few remarks are in order here. First of all, we refer to
the listed species as commonly measured because, although
some others are potentially measurable (especially the
charged Σ baryons), results for their yields or fluctuations
are not routinely performed both at the RHIC and the LHC.
In the following, we keep our nomenclature of measured
and “nonmeasured” in accordance to the separation we
adopt here. Obviously, neutral pions can be measured with
the process π0 → γγ, but they are not included here as
they do not carry any of the conserved charges of strong
interactions. An additional note is necessary for K0

S:
although the measurement of K0

S is extremely common
in experiments, it is not of use for the treatment we carry on
in this work. This is because, from K0

S only, it is not
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possible to construct a net-particle quantity (it is its own
antiparticle), and additionally part of the information on the
mixing between K0 and K̄0 is lost because K0

L cannot be
measured. For this reason, in the following we consider K0

and K̄0 instead, and treat them as “not measured.” Finally,
we note that, since the decay Σ0 → Λþ γ has a branching
ratio of ∼100%, effectively what we indicate with Λ
contains the entire Σ0 contribution as well; this well
reproduces the experimental situation, where Λ and Σ0

are treated as the same state.
It is straightforward to adapt the HRG model so that it is

expressed in terms of stable hadronic states only. The sum
over the whole hadronic spectrum is converted into a sum
over both the whole hadronic spectrum and the list of states
which are stable under strong interactions,

X
R

Bl
RQ

m
RS

n
RI

R
p →

X
i∈stable

X
R

ðPR→iÞpBl
iQ

m
i S

n
i I

R
p; ð25Þ

with lþmþ n ¼ p, and where the first sum only runs over
the particles which are stable under strong interactions, and
the sum PR→i ¼

P
αN

α
R→in

R
i;α gives the average number of

particle i produced by each particle R after the whole decay
chain. The sum runs over particle R decay modes, where
Nα

R→i is the branching ratio of the mode α, and nRi;α is the
number of particles i produced by a particle R in the
channel α.
In light of the above considerations, it is useful to define

the contribution to the conserved charges from final state
stable hadrons. In the following, we adopt the convention
where the net number of particles of species A (i.e., the
number of particles A minus the number of antiparticles Ā)
is Ã ¼ A − Ā.
With this definition, we can express conserved

charges as

net-B∶ p̃þ ñþ Λ̃þ Σ̃þ þ Σ̃− þ Ξ̃0 þ Ξ̃− þ Ω̃−;

net-Q∶ π̃þ þ K̃þ þ p̃þ Σ̃þ − Σ̃− − Ξ̃− − Ω̃−;

net-S∶ K̃þ þ K̃0 − Λ̃ − Σ̃þ − Σ̃− − 2Ξ̃0 − 2Ξ̃− − 3Ω̃−:

ð26Þ

Using this decomposition, we can write as an example
the BQ correlator

χBQ11 ðT; μ̂B; μ̂Q; μ̂SÞ ¼
X
R

ðPR→net−BÞðPR→net−QÞ

× IR2 ðT; μ̂B; μ̂Q; μ̂SÞ; ð27Þ

where PR→net−B¼PR→p̃þPR→ñþPR→Λ̃þPR→Σ̃þþPR→Σ̃−þ
PR→Ξ̃0þPR→Ξ̃−þPR→Ω̃− , and e.g., PR→p̃ ¼ PR→p − PR→p̄.
Analogous expressions apply to net-Q and net-S.

The result of this decomposition is that each of the
correlators one can build between conserved charges is
formed from the sum of many different particle-particle
correlations. In particular, the sum of those correlators
which entirely consist of observable species yields the
measured part of a certain correlator, while its nonmeasured
part consists of all other terms, which include at least one
nonobservable species. In Fig. 8 the nondiagonal correla-
tors are shown as a function of the temperature at vanishing
chemical potential. The measured and nonmeasured con-
tributions are shown with blue, dashed-dotted and red,
dashed lines, respectively, while the full contribution is
shown with a solid, thicker black line. Alongside the HRG
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model results, continuum extrapolated lattice results are
shown as magenta points as introduced in Sec. II.
We notice that both the BQ and QS correlators are

largely reproduced by the measured contribution (for the
BQ correlator, the measured portion even exceeds the full
one, as the nonmeasured contribution is negative), while
the BS correlator is roughly split in half between measured
and nonmeasured terms. This is because the former are
unsurprisingly dominated by the net-proton and net-kaon
contributions, respectively, which in this temperature
regime form the bulk of particle production, together with
the pions. The BS correlator conversely receives its main
contributions from strange baryons, which are almost
equally split between measured and nonmeasured.

B. Breakdown of the measured and
nonmeasured contributions

The decomposition in Eq. (26) allows one to break down
the different contributions to any cross correlator, as well as
the diagonal ones, entirely. In Figs. 9 and 10, we show the
breakdown of the measured portion of the single final state
hadronic (self-) correlations to the nondiagonal and diago-
nal correlators, respectively. Let us start from the non-
diagonal case.
A few features can be readily noticed. First, in all cases

only a handful of the most sizable contributions account for
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the measured portion of the corresponding observable. As
stated above, the BQ and QS correlators are expected to be
dominated by the contribution from net-proton and net-
kaon self-correlations, respectively: indeed, in both cases
the measured part almost entirely consists of these major
contributions. Second, it is worth noticing how, with the
only exception of the proton-pion correlator within χBQ11 , all
correlators between different species yield a very modest
contribution. This is the case for the proton-kaon, kaon-
pion, Lambda-pion and Lambda-kaon correlators in χBQ11
and χQS

11 , as well as theproton-kaon, Lambda-kaon and
Lambda-proton correlators in χBS11 . In our setup, correlations
between different particle species can only arise from the
decay of heavier resonances. Whenever a resonance R has a
nonzero probability to decay, after the whole decay
cascade, both into stable species A and B, then a correlation
arises between A and B. It can be seen from Eq. (27) that
only when both probabilities in parentheses are nonzero
can a nonzero correlation arise. For the same reason,
correlations between different baryons arise, although no
single decay mode with more that one baryon (or anti-
baryon) is present in our decay list. In fact, if a state exists
which has a finite probability to produce—after the whole
decay cascade—both baryon A and baryon B, then a
correlation between A and B is generated through
Eq. (27). Finally, since both Ξ− and Ω− carry all three
conserved charges, they contribute to all three correlators
through their self-correlations, and their contribution is not
negligible in all cases.
The case of χBS11 is slightly different, as the measured part

is smaller than in the cases of χQS
11 and χBQ11 . This is due to the

fact that there is no significant separation in mass between
the lightest observable particle carrying both baryon number
and strangeness—the Λ baryon—and the lightest of the
nonmeasured ones—the Σ� baryons. In fact, the contribu-
tion from both charged Σ baryons is comparable to the one
from the Λ, which thus cannot play as big of a role as the
proton and kaon in the other two correlators, as well as
because of the previously mentioned fact that correlators of
different species do not contribute significantly.
In the diagonal case, a similar picture appears. The χQ2

correlator is almost identical to its measured portion,
dominated by the self-correlations of pions, kaons, and
protons. The other two correlators have a similar situation
to that of χBS11 , with the measured part roughly amounting to
half of the total. Again, the only non-negligible correlator
between different species is the proton-pion correlator in
χQ2 . We notice that in general, the leading single contribu-
tion is not as close to the whole measured portion, as it was
in the case of the cross-correlators. This aspect is important
in the following, where we move to the analysis of ratios of
correlators, and look for suitable proxies.
In Figs. 11 and 12 we show the breakdown of the

nonmeasured portion of the final state hadronic (self-)

correlations, analogously to what we showed in Figs. 9 and
10 for the measured portion. The situation in this case is
slightly different from the previous one: it is generally more
difficult to identify a leading contribution, with multiple
terms yielding comparable results. In the case of BQ and
QS, leading terms come with opposite signs, which further
complicates the picture. The reasons for these features
come from the fact that (i) the number of single contribu-
tions that are not measured is much larger than that of the
measured ones, hence it is less probable that few terms
dramatically dominate; and (ii) in general, nonmeasured
species are heavier than the measured ones, hence single
contributions tend to be smaller. Obviously, exceptions to
this are the neutron and K0. In fact, the diagonal correlators
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hadronic observables are shown with different colored dashed
and dashed-dotted lines.

OFF-DIAGONAL CORRELATORS OF CONSERVED CHARGES … PHYS. REV. D 101, 034506 (2020)

034506-11



χB2 and χS2 show a sizable input from σ2n (the variance of the
neutron distribution), and both σ2K0 and σK0K , respectively.

The case of χQ2 is peculiar since, as evident from Fig. 8, the
nonmeasured contribution is almost negligible, when com-
pared to the measured one.

C. Isospin randomization

Another important effect we have not addressed yet,
which is present in experiment, is the isospin randomiza-
tion [50,51]. This effect is caused by reactions that take
place in the hadronic phase between nucleons and pions,
and consist of the generation and decay of Δ resonances
[Δð1232Þ prominently], through processes like

pþ π0 ↔ Δþ ↔ nþ πþ;

pþ π− ↔ Δ0 ↔ nþ π0; ð28Þ

with analogous ones for the antibaryons. For collision
energies

ffiffiffi
s

p ≳ 10 GeV, the lifetime of the fireball is long
enough to allow several of such cycles to take place,
resulting in a complete randomization of the isospin of the
nucleons [50,51]. This expectation has been confronted
with data in [80] confirming a complete randomization with
the exception of the highest energy:

ffiffiffi
s

p ¼ 200 GeV. For
this paper, though, we assume complete randomization
throughout.
The distributions of protons and neutrons then factorize

and the correlation between the two is erased. The average
number of protons and neutrons, as well as antiprotons and
antineutrons, and consequently the average net-proton
and net-neutron number, are left unchanged by such
reactions, but fluctuations are not. In particular, this results
in an enhancement of both the net-proton and net-neutron
variance, at the expense of the correlation between the two
(note that the variance of net nucleon σ2N ¼ σ2p þ 2σpn þ σ2n
cannot be changed by these reactions). Similarly, charge
conservation ensures that the sum Q̃ ¼ p̃þ π̃ is conserved
in the reactions in Eq. (28). It can be shown that this results
in the net-pion variance σ2π being increased by the same
amount as the net-proton variance σ2p. Since the sum
σ2pþπ ¼ σ2p þ 2σpπ þ σ2π must also be left unchanged, we
have that σpπ is decreased by the same amount again: σpn.
Thus there is information lost through the process of

randomization, and the original σpn or σ2p cannot be
reproduced from data individually. The experimental
access to those correlators where either of these plays an
important role is very difficult. This is the case e.g., for χBQ11 ,
which is completely dominated by σ2p.

V. PROXIES

The issue of having particles that cannot be detected
poses the problem of a loss of conserved charges.
Historically, the proxies for baryon number, electric charge,
and strangeness have been the protons, the p, π, K
combination, and the kaons themselves, respectively.
We have seen in Figs. 9 and 10 how the single hadronic,

measured (self-) correlators relate to the fluctuations of
conserved charges. We can then find a correspondence
between fluctuations of conserved charges and measurable
(and calculable) hadronic fluctuations.
Both in theory and experiment, it is customary to

consider ratios of fluctuations, in order to eliminate, at
least at leading order, the dependence on the system
volume. For this reason, we focus on the ratios χBS11 =χ

S
2

and χQS
11 =χ

S
2 , for which we construct proxies using solely

fluctuations of (measured) hadrons. The underlying
assumption when considering ratios is that the freeze-out
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FIG. 12. Breakdown of the different final state hadronic
contributions to the diagonal correlators of the conserved charges
B, Q, S at second order. The total contribution and the non-
measured part are shown as solid black and dashed red lines,
respectively. The main single contributions from nonmeasured
hadronic observables are shown with different colored dashed
and dashed-dotted lines.

R. BELLWIED et al. PHYS. REV. D 101, 034506 (2020)

034506-12



of all species involved occurs at the same time in the
evolution of the system, hence at the same volume.
Let us start considering the χBS11 correlator. One could

expect that, having both kaons and protons in the bulk of
particle production, their correlator σpK would be a good
proxy. However, as we can see in Fig. 9, this is clearly not
the case, as the proton-kaon correlator gives a negligible
contribution to χBS11 . On the contrary, the variance of the net-
Lambda distribution σ2Λ represents a much more sizable
contribution to the total correlator.
In the upper panel of Fig. 13 we show the HRG model

results for the ratio χBS11 =χ
S
2 at μB ¼ 0 (black, thicker line).

As already mentioned, from Figs. 9 and 10 we see how the
leading contributions to the two correlators come from σ2Λ
and σ2K, respectively. We can then construct a tentative
proxy as

C̃Λ;K
BS;SS ¼ σ2Λ=σ

2
K; ð29Þ

which is shown as a green, dashed line. We see that, although
this quantity reproduces very well the full result at low
temperatures—where the kaons dominate—it overshoots at
higher temperatures, and in particular around the QCD
transition and chemical freeze-out temperatures, which are
obviously the interesting regime. It is worth noticing that, in
order to construct a good proxy for a ratio of conserved
charges fluctuations, it is not sufficient to choose the best
proxy for both the numerator and the denominator. In fact, a
good proxy for the ratio is obtained when the proxy in the
numerator and the denominator are equally good. Some
guidance in this construction is then provided by Fig. 10,
where the extent to which a hadronic correlator reproduces
the corresponding BQS fluctuation is most evident. For this
reason, we consider adding the contribution from the net-Λ
fluctuations to χS2 too, and define

C̃Λ;ΛK
BS;SS ¼ σ2Λ=ðσ2K þ σ2ΛÞ; ð30Þ

which is shown as a blue, dotted line. We see how this
second proxy is much better at reproducing the full result, as
it is very close to it at all temperatures, including in
the vicinity of the QCD transition. In addition, again
referring to Figs. 9 and 10, it is interesting to try and include
the contributions from multistrange hadrons, both in the
numerator and denominator. With these, one has

C̃ΛΞΩ;ΛΞΩK
BS;SS ¼ ðσ2Λ þ 2σ2Ξ þ 3σ2ΩÞ=ðσ2Λ þ 4σ2Ξ þ 9σ2Ω þ σ2KÞ;

ð31Þ

which is shown as the orange, dashed-dotted line, and also
reproduces very well the behavior of the full ratio, although
not really improving the situation over the previous one.
As a final check, one can build a proxy from the σpK
correlator as

C̃pK;ΛK
BS;SS ¼ σpK11 =ðσ2K þ σ2ΛÞ; ð32Þ

which is shown as the yellow, dashed-double-dotted line.
Not unexpectedly, this combination is not able to serve as a
good proxy.
The case of χQS

11 =χ
Q
2 follows directly from the previous

one, and is shown in the lower panel of Fig. 13. In fact, in a
system with 2þ 1 quarks (with no isospin symmetry
breaking) the following relation applies:

2hQSi − hBSi ¼ hSSi; ð33Þ

from which one can derive that

χQS
11

χS2
¼ 1

2

�
1 −

χBS11
χS2

�
: ð34Þ

Thus, exploiting this relation and the good proxy C̃Λ;ΛK
BS;SS we

have defined for χBS11 =χ
S
2, we can define
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FIG. 13. The temperature dependence of the ratios −χBS11 =χS2
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11 =χ
S
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the total contribution is shown with a solid black line, along with
different proxies: (upper panel) C̃Λ;K

BS;SS (dashed green line), C̃
Λ;ΛK
BS;SS

(dotted blue line), C̃ΛΞΩ;ΛΞΩK
BS;SS (dashed-dotted orange line) and

C̃pK;ΛK
BS;SS (dashed-double-dotted yellow line), defined in Eqs. (29)–

(32), respectively; (lower panel) C̃K;ΛK
QS;SS (dotted blue line) defined

in Eq. (35).
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C̃K;ΛK
QS;SS ¼

1

2
σ2K=ðσ2Λ þ σ2KÞ; ð35Þ

and have a proxy for χQS
11 =χ

S
2 for free, which indeed works

very well over the whole temperature range.
Now, we wish to consider the correlator χBQ, which is the

only one of the three nondiagonal correlators to be
influenced by the isospin randomization discussed in the
previous section. By looking at Figs. 9 and 10, it is natural
to construct the proxy

C̃p;Net-Q
BQ;QQ ¼ σ2p=σ2Net-Q; ð36Þ

where the net charge is typically defined as Q̃ ¼ p̃þ
π̃ þ K̃. In Fig. 14 the total contribution and this proxy are
shown with a solid, thick black line and a dashed green line,
respectively, and the agreement is extremely good. When
including the effect of isospin randomization—which does
not affect the denominator—the situation is radically
different, and the corresponding curve is shown with a
dotted blue line. The increase in the net-proton variance
spoils the effectiveness of this proxy. A quantity which is
not affected by this effect is the sum σ2p þ σpπ , from which
we can define the ratio

C̃pπ;Net-Q
BQ;QQ ¼ ðσ2p þ σpπÞ=σ2Net-Q: ð37Þ

This quantity is also shown in Fig. 14 as a dashed-dotted
orange line, and clearly cannot serve as a good proxy. It is
interesting to notice how the increase that σ2p receives by
the isospin randomization is almost exactly equal to σpπ . As
we discussed in Sec. IV C the effect of isospin randomi-
zation on σ2p amounts to σpn. The presently used HRG-
based approach introduces a p − π (σpπ) and p − n (σpn)
correlation through the decay of the same resonances (Δ).

From Fig. 14 we see that, because of this effect, it is not
possible to build a suitable proxy for χBQ11 =χ

Q
2 . For analo-

gous reasons, it is not possible to create a good proxy for
the ratio χBQ11 =χ

B
2 .

Having discussed all three combinations of the off-
diagonal cross-correlators we are lacking a good proxy
for a correlator ratio involving only the light quarks. As a
detour from the main line of the discussion we show that
this is also a difficult task in the case of the diagonal
correlators. Consider the ratio χB2 =χ

Q
2 . In Fig. 15 we see the

temperature dependence of this ratio at μB ¼ 0, and the
behavior of some tentative proxies alongside it. We start by
considering the quantity

C̃Net-N;Net-Q
BB;QQ ¼ σ2Net-N=σ

2
Net-Q; ð38Þ

where we take advantage of the fact that, after the isospin
randomization, one has σ2Net-N ¼ 2σ2p. This quantity is
shown in Fig. 15 as a green dashed line, and we see that
its contribution is not sufficient. We then consider adding
the contribution from Λ baryons, and show as a dotted blue
line the quantity

C̃Net-NΛ;Net-Q
BB;QQ ¼ ðσ2Net-N þ σ2ΛÞ=σ2Net-Q; ð39Þ

which improves on the previous one, but is still not
satisfactory. We then try removing the contribution from
net kaons at the denominator—which we can do regardless
of isospin randomization,

C̃Net-NΛ;pπ
BB;QQ ¼ ðσ2Net-N þ σ2ΛÞ=ðσ2p þ 2σpπ þ σ2πÞ; ð40Þ

and finally include the contribution from multistrange
baryons in the numerator,
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C̃Net-NΛΞΩ;pπ
BB;QQ ¼ ðσ2Net-N þ σ2Λ þ σ2Ξ þ σ2ΩÞ=ðσ2p þ 2σpπ þ σ2πÞ:

ð41Þ
These last two proxies are also shown in Fig 15 as an

orange dashed-dotted and as a yellow-double-dotted line,
respectively. We see that both compare relatively well with
the total contribution, with the latter being the better one. It
is quite interesting how difficult it was to construct a
suitable proxy for light-quark-dominated observables, in
comparison to the previous cases of χBS11 and χQS

11 . This is
mainly due to the fact that (i) net charge is such a good
proxy for χQ2 that is hard to match for other correlators, and
(ii) isospin randomization prevents one from building
proxies with fluctuations of net proton only.
We have seen in this section how to construct good

proxies for ratios including both diagonal and cross-
correlators of conserved charges. The proxies including
strangeness make use of only a couple of hadronic
observables, namely the variances σ2K and σ2Λ, more

precisely, only their ratio. It is also remarkable how the
addition of multistrange baryons to the proxy for χBS11 =χ

S
2 is

not necessary, as it does not improve the existing agree-
ment. We also saw that for light-quark-dominated observ-
ables, isospin randomization modifies the correlators of net
proton, net pion and net neutron, preventing the construc-
tion of useful proxies for such observables.

VI. FINITE CHEMICAL POTENTIAL AND
KINEMATIC CUTS

Since experimental measurements for moments of net-
particle distributions are currently available both from the
LHC and RHIC, it is interesting to analyze the behavior
of the quantities we are studying also at finite values of
the baryon chemical potential. In the left panel of
Fig. 16, we show the behavior of the proxies along para-
metrized chemical freeze-out lines—shifted in T from the
parametrization in [81]—with T intersects at T0 ¼
145; 165 MeV, so to “bracket” the crossover region of
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FIG. 16. Behavior of the ratios −χBS11 =χS2 and χQS
11 =χ

S
2 along parametrized chemical freeze-out lines with T0 ¼ 145 MeV and

T0 ¼ 165 MeV. For a comparison we also show the diagonal χB2 =χ
Q
2 in the third row. For each ratio, the best proposed proxy is shown as

well, for both temperatures: C̃Λ;ΛK
BS;SS for −χBS11 =χS2, C̃

K;ΛK
QS;QQ for χQS

11 =χ
S
2 and C̃

NΛΞΩ;pπ
BB;QQ for χB2 =χ

Q
2 . In the left panel, we show the results in the

case without kinematic cuts: the total contribution is shown with black and burgundy solid lines for T0 ¼ 145 MeV and T0 ¼ 165 MeV,
respectively; the proxy is shown with a yellow dashed-double-dotted and orange dashed-dotted line for T0 ¼ 145 MeV and
T0 ¼ 165 MeV. In the central panel, we show the results in the case with the “mock” cuts discussed in the text: in this case the proxy is
shown with a cyan dashed and purple dotted line for T0 ¼ 145 MeV and T0 ¼ 165 MeV. Finally, in the right panel we compare the
behavior of the proxies with and without the introduction of cuts, and keep the same color code as from the right and central panel.
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QCD. The ratios χBS11 =χ
S
2 and χQS

11 =χ
S
2 are shown in the first

and second row, respectively. We see that for these ratios,
the agreement with the considered proxies does not worsen
with the increase in the chemical potential, and the curves
remain very close for a broad range of collision energies.
This means that the scope of the proxies we have
constructed to reproduce the behavior of fluctuations of
conserved charges is not limited to small μB, but can be
extended to the study in the Beam Energy Scan as well.
In Sec. IV we have mentioned that one of the strengths of

the HRG model is the possibility it offers to include effects
that are present in the experimental situation, like the use of
cuts on the kinematics. In the central panel of Fig. 16 we
show the same scenario as in the left panel, but with the
inclusion of exemplary mock cuts: 0.2 ≤ pT ≤ 2.0 GeV,
jyj ≤ 1.0. These cuts do not correspond to any past or
ongoing measurement at the LHC or RHIC, but are
constructed such as to be reproducible in the experiment,
and still give a hint of the effect of including the cuts at all.
For a systematic treatment of the dependence of fluctua-
tions on the kinematic cuts—which is beyond the scope of
this work—see [82], where it is studied in a thermal model
with an older hadron list and without the inclusion of
resonance decays. In our example, the same cuts are
applied to all particle species. We see that for all the
observables considered the agreement between net-charge
fluctuation ratios and proxies remains the same as in the
case without cuts, for both freeze-out lines.
Finally, in the right panel of Fig. 16 we show the selected

proxies, for both freeze-out curves, comparing the cases
with and without the cuts. We see that the effect is very
minimal for the two ratios χBS11 =χ

S
2 and χQS

11 =χ
S
2 . This is

obviously of key importance in light of a potential direct
comparison to results from lattice QCD calculations, as the
one discussed in Sec. III for χBS11 =χ

S
2. This is one of the main

reasons these proxies were built in the first place.
The third row in Fig. 16 shows the behavior of the ratio

χB2 =χ
Q
2 when acceptance cuts are introduced. As opposed to

the discussed off-diagonal ratios it shows a large depend-
ence on the cuts. Thus, even though this ratio does not
suffer from the effect of isospin randomization, a com-
parison to lattice simulations can be problematic. Thus, we
focus on the strangeness related off-diagonal correlators in
the next section, where we compare to experimental data.

VII. COMPARISON TO
EXPERIMENTAL RESULTS

In the previous section we have considered the impact of
including kinematic cuts on the proxies we have defined
previously, by considering some exemplary cuts which
were chosen to be the same for all particle species.
However, experimental measurements exist for different
species, and it is possible to test how the proxies we
constructed compare to the experimental results, this time

including the corresponding cuts on a species-by-species
(or measurement-by-measurement) basis.
In Fig. 17 we show the behavior of the proxies C̃Λ;ΛK

BS;SS

and C̃K;ΛK
QS;SS from Eqs. (30) and (35), along the same freeze-

out lines used in Fig. 16, and compare them to available
experimental results from the STAR Collaboration [56,57].
The important difference is that now the experimental cuts
are the ones taken from the actual measurements, and
namely they are not the same for the different species.
We see that the proxy (it is only one independent

quantity as discussed above) works well also in com-
parison with available experimental data, when the con-
sidered freeze-out line is the one with a temperature
TðμB ¼ 0Þ ¼ 165 MeV. This is in line with results from
other analyses, which indicate that strange particles seem to
prefer a higher chemical freeze-out temperature [59].
One more remark is in order: by comparing, e.g., the

curves in Figs. 17 (top panel) and 16 (first row, left or
central panel), we can see how crucial it is that the same
cuts are applied to the different hadronic species utilized in
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a certain proxy. In fact, the same ratio C̃Λ;ΛK
BS;SS is shown, with

the difference that in Fig. 16 the same cuts are applied to
both Λ and K, while in Fig. 17 the cuts utilized are those
from the experimental analyses, namely 0.9 < pT <
2.0 GeV, jyj < 0.5 for net-Λ [57] and 0.4 < pT <
1.6 GeV, jyj < 0.5 for net kaon [56]. Due to this difference
in the applied kinematic cuts, more than a factor 2 separates
the two curves. For this reason, a direct comparison to
lattice QCD would be premature.

VIII. CONCLUSIONS

In this work, we first presented new continuum-
extrapolated lattice QCD results for second-order non-
diagonal correlators of conserved charges. While the
continuum extrapolation is a straightforward task at
μB ¼ 0, results need to be extrapolated to the real μB
regime, which cannot be simulated directly. This is always
ambiguous, so we compared two different schemes for the
ratio χBS11 =χ

S
2 and performed a continuum extrapolation in

the regime where the two approaches agree.
We performed an HRG-model-based study on the second-

order correlators, both diagonal and nondiagonal. At μB ¼ 0
we found agreement with lattice. Then we showed how they
relate to fluctuations of those hadronic species which can be
measured in heavy ion collision experiments. What percent-
age of these correlators is accounted for by particles that can
actually be detected in the experiment varies quite consid-
erably from observable to observable.
In order to compare either to lattice QCD results or

experimental measurements, we focused on ratios of
fluctuations, whose behavior can be reproduced through
commonly measured hadronic observables, i.e., proxies.
In the following we summarize the findings for a ratio

with each of the three possible cross-correlators of baryon
(B), electric charge (Q) and strangeness (S).
The BQ correlator in equilibrium is dominated by proton

fluctuations, with the other contributions—most notably the
proton-pion correlation and hyperons self-correlations—
almost perfectly canceling each other. Nonetheless, the
information loss caused by isospin randomization prevents
one from constructing successful proxies for ratios includ-
ing χBQ11 .
Luckily, neither the isospin randomization nor the

introduction of cuts on the kinematics had a significant
effect on either χBS11 or χQS

11 . Because of this, we were able to
construct proxies for the ratios χBS11 =χ

S
2 and χQS

11 =χ
S
2 that are

within 10% of the grand canonical prediction. These two
ratios are not independent, since in the isospin symmetric
case they are related by the Gell–Mann-Nishijima formula.
It is striking that only two measured quantities, namely the
variances of net-kaon and net-Lambda distributions, were
sufficient to build the proxies for χBS11 =χ

S
2 and χQS

11 =χ
S
2 .

We showed that the inclusion of multistrange hyperons
does not improve the quality of the proxy. Moreover,

although these are cross-correlators of conserved charges,
particle species cross-correlators do not contribute signifi-
cantly. In fact, none of the particle cross-correlators
contributes to any of the charge fluctuations or cross-
correlators, with the exception of the proton-pion one, but
the latter is largely affected by isospin randomization.
Thus, we have a ratio at hand that is available both from

lattice simulations and for experimental measurement. The
ratio χBS11 =χ

S
2 behaves as a strangeness-related thermometer

for chemical freeze-out. We provided continuum extrapo-
lated results at 0 and finite chemical potential for this
quantity.
Finally, we compare our results to experiment. A direct

use of lattice data in the experimental context would require
the use of the same kinematic cuts for Λ and K. The STAR
Collaboration has published results for fluctuations of K
and preliminary results for Λ fluctuations, though with
different kinematic cuts. To test our proxy, we recalculated
its HRG model prediction with the actual cuts used in
experiment. We saw that the σ2Λ=ðσ2K þ σ2ΛÞ ratio quite
evidently favors the higher freeze-out temperature, in line
with what was already shown by other analyses [59,60].
These high temperatures for the chemical freeze-out

motivates the use of lattice QCD in future studies since they
fall at the limit of the validity of the HRG model.
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APPENDIX: TABULATED LATTICE RESULTS

In this appendix we give the results of the continuum extrapolations explained in Fig. 1 and plotted in Figs. 2, 4 and 3.
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