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Abstract

The mitogen-activated protein kinase (MAPK)/extracellular
signal-regulated kinase (ERK) signaling network is a key
transducer of signals from various receptors, including recep-
tor tyrosine kinases (RTKSs). It controls cell-cycle entry, sur-
vival, motility, differentiation, as well as other fates. After four
decades of studying this pathway with biochemical methods,
the use of fluorescent biosensors has revealed dynamic be-
haviors such as ERK pulsing, oscillations, and amplitude-
modulated activity. Different RTKs equip the MAPK network
with specific feedback mechanisms to encode these different
ERK dynamics, which are then subsequently decoded into
cytoskeletal events and transcriptional programs, actuating
cellular fates. Recently, collective ERK wave behaviors have
been observed in multiple systems to coordinate cytoskeletal
dynamics with fate decisions within cell collectives. This em-
phasizes that a correct understanding of this pathway requires
studying it at multiple scales.
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Introduction

The mitogen-activated protein kinase (MAPK)/extra-
cellular signal-regulated kinase (ERK) pathway serves as
a major transducer of signals from receptor tyrosine ki-
nases (RTKs) and other plasma-membrane receptors,
including G-protein-coupled receptors and integrins.
RTKSs’ activation turns on the small GTPase Ras, which
subsequently initiates a signaling cascade involving
rapidly accelerated fibrosarcoma (RAF), mitogen-acti-
vated protein kinase kinase (MEK), and ERK kinases

(Figure 1a). Upon activation, ERK phosphorylates
multiple cytosolic substrates and a portion of ERK
translocates to the nucleus, where it phosphorylates
nuclear substrates, thereby inducing broad transcrip-
tional programs. The MAPK network has been the
subject of intense biochemical research for four decades.
Western blots with phospho-ERK antibodies have typi-
cally measured steady-state cell population—averaged
outputs of ERK activity, providing the intuition that
ERK is either in an ON or OFF state. Early studies
however have suggested that ERK activity dynamics
[1,2] (from now on referred to as ERK dynamics), rather
than steady states control fate decisions, providing an
explanation on how one signaling pathway controls a
large number of fates. The advent of fluorescent bio-
sensors to measure single-cell ERK activity in the past
decade, reviewed in Ref. [3], clearly shows that ERK
dynamics are crucial for cell-fate decision-making.
Importantly, the heterogeneity of single-cell ERK dy-
namics means that population-average measurements
can be highly misleading. Here, we review recent de-
velopments into our understanding of how the MAPK
network can produce a wide variety of single-cell ERK
dynamics. Furthermore, we report on the recent findings
that, thanks to mechanochemical feedback loops,
multicellular ERK wave patterns can emerge and allow
for coordination of cytoskeletal dynamics and fate de-
cisions. This emphasizes that a correct understanding of
the MAPK network requires its measurement and
manipulation at adequate length and time scales.

MAPK network wiring with distinct
topologies encode different ERK dynamics
Live imaging of fluorescent biosensors has revealed a
rich repertoire of transient [4], sustained [4,5], pulsatile
[6], oscillatory ERK dynamics [7,8] that fluctuate on
minute timescales (Figure 1a). In the classic PC12
model system, epidermal growth factor (EGF) and
nerve growth factor (NGF), respectively, trigger tran-
sient and sustained ERK activity [2,4]. Fibroblast
growth factor (FGF) induces another behavior consist-
ing of sustained ERK dynamics of different amplitudes,
depending on the FGF concentration [5]. Thus, three
growth factors (GFs) evoke different ERK dynamics in
PC12 cells in a GF concentration—dependent manner.
In epithelial systems, EGF triggers population hetero-
geneous nonperiodic 20- to 30-min-long ERK pulses
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The MAPK pathway produces single-cell and collective dynamics.

(a) The MAPK pathway is equipped with multiple positive- and negative-feedback loops: (1) ERK-RAF negative-feedback loop [2,4]; (2) ERK-RSK-SOS
negative-feedback loop [46]; (3) ERK-RAF positive-feedback loop [2]; (4) modulation of the ERK-RAF negative-feedback loop by EGF stimulation [4]; (5)
modulation of the ERK-RAF positive-feedback loop by NGF stimulation [4]. The different wiring of each receptor tyrosine kinase (RTK) allows the MAPK
pathway to differentiate among multiple inputs by producing different temporal dynamics. Cells then are capable to decode these different ERK dynamics
into specific cellular responses and cell-fate decisions. (b) The ability of ERK dynamics to be propagated from cell to cell produces signaling waves of
different shapes and sizes. These ERK activity waves coordinate different self-organization processes at the tissue level. Examples are epithelial ho-

meostasis, wound repair, and fish-scale regeneration. (¢) A mechanochemical feedback loop allows the ERK wave to propagate during wound repair.
ERK activity leads to activation of myosin contraction that, in turn, leads to stretching of the adjacent cells, causing ERK activation.

Abbreviations: EGF = epidermal growth factor; ERK = extracellular signal-regulated kinase; RAF = rapidly accelerated fibrosarcoma; NGF = nerve growth

factor; MAPK = mitogen-activated protein kinase.

[6,9]. Similar behavior is observed in other in vitro and
m vivo systems [10—12]. Here, the system is excitable,
and the EGF concentration encodes the ERK pulse
frequency, which in turn controls the efficiency of cell-
cycle entry [6]. In epithelial cells, the repertoire of
pulsatile ERK dynamics is even greater, when cells are
stimulated with GFs that bind to different ErbB re-
ceptors [13]. Here, the heterogeneity of ERK dynamics
complicates the identification of the temporal patterns
associated with each specific stimulation. However, a
data-driven machine-learning approach can extract
prototypical patterns in the single-cell ERK dynamics
timeseries to provide better intuition about GFs speci-
ficity [13]. Another type of ERK dynamics consists in
periodic oscillations [7,8,14—16]. A comprehensive

review that describes how single-cell ERK dynamics
patterns emerge can be found here [17].

This rich set of ERK dynamics patterns emerge through
the wiring of the MAPK network with feedback struc-
tures (Figure 1a). The RAF-MEK-ERK cascade struc-
ture converts graded GF input concentrations into
switch-like, all-or-nothing ERK responses [18].
Furthermore, negative- and positive-feedback loops
from ERK to RAF lead to oscillatory behavior [19], and
EGF-dependent transient or NGF-dependent sustained
ERK dynamics in PC12 cells [2,4]. Competition of FGF
binding to its main receptor (FGFR) and coreceptor
(heparan sulfate proteoglycan), when coupled to an
MAPK network with weak negative feedback, converts
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different FGF concentrations into sustained ERK ac-
tivity of different amplitudes in PC12 cells. Thus, EGE
NGE and FGF can each lead to distinct ERK dynamics
by wiring the MAPK network in different ways. A
powerful approach to dissect these different circuitries
is to dynamically perturb the MAPK network by appli-
cation of growth factor pulses using microfluidics and to
record resulting ERK dynamics [4,5]. This approach
probes the network at relevant timescales revealing
possible feed-forward network circuitries modulating
negative- and positive-feedback loops in the PC12 cell
system [4]. This was also instrumental to understand
how receptor interactions in the FGFR system can
produce amplitude-modulated sustained ERK activity
in response to different FGF concentrations [5].
Importantly, dynamic application of GF inputs can lead
to synthetic ERK dynamics that reprogram fate inde-
pendently of GF identity [4,5].

This approach was pushed further by building a genetic
circuit comprised of an optogenetic FGFR coupled to a
spectrally compatible ERK biosensor [8]. This circuit
can probe how light-evoked dynamic RTK inputs are
interpreted into ERK dynamics at scale, allowing the
authors to perform a RNAI screen against 50 nodes of
the MAPK network. Surprisingly, knockdown of most of
the nodes does not lead to altered ERK dynamics,
suggesting that the MAPK network is robust against
perturbations. This robustness emerges at least in part
from two simultaneously functioning negative-feedback
loops: the classic ERK-RAF feedback loop, and a feed-
back loop from the ERK substrate p90RSK to SOS
(Figure 1a). Inhibition of the latter breaks network
robustness and sensitizes the MAPK network to addi-
tional drugs. This exemplifies how studying signaling
networks dynamics can provide nonintuitive insights
about their properties and provide opportunities for
directly targeting their robustness. Together, these
works illustrate how the tripartite MAPK network, when
coupled with different RTK-dependent feedback
structures, can elicit a rich set of ERK dynamics. The
latter are then subsequently decoded into transcrip-
tional programs that actuate the fate decisions. We refer
to a recent review that describes this process [20].

ERK activity waves as a dynamic signaling
motif in cell collectives

Recently, a new dimension in MAPK signaling has
emerged by the observation of waves of ERK pulses in
epithelial cells. This collective behavior was first noticed
by iz vivo imaging of the mouse-ear epithelium, in which
ERK waves occurred spontaneously or in response to
wounds [21]. The dynamic ERK-wave signaling motif
was then observed in a wide variety of in vitro cellular
systems (Figure 1b). In the wound healing of epithelial
Mardin-Darby canine kidney cells, collective ERK waves
originate from the wound edge and propagate toward the
interior. These waves spatiotemporally control myosin

activity pulses that coordinate collective motility
[22—24]. ERK waves can also be triggered by apoptotic
cells in a variety of epithelial cells [25] or in the fly pupal
notum [26] (Figure 1b). Here, ERK waves locally induce
a transient survival fate in the cells neighboring the
apoptotic lesion, ensuring that these cells remain alive
until the lesion has been repaired. This mechanism
scales to the intensity of the environmental insults that
induce apoptosis and ultimately contributes to epithelial
homeostasis by maintaining epithelial barrier function.
Apoptosis-triggered waves also regulate enterocyte dif-
ferentiation during tissue patterning in human colon
monolayers [27]. Similar ERK waves can also provide the
forces for extrusion of oncogenic cells from an epithelium
[28]. ERK waves spatially control lumen formation in
developing mammary acini [29]. Here, ERK waves
dynamically position two spatial domains of high and low
ERK pulse frequencies that respectively control survival
(high ERK pulse frequency at the acinus periphery) and
apoptosis leading to lumen formation (low ERK pulse
frequency in the inner part of the acinus). In mature
acini, apoptosis-triggered ERK  waves then
mediate homeostasis.

ERK waves are also prevalent in i vivo systems. During
fish-scale regeneration, ERK waves can last multiple
days and involve hundreds of cells [30] (Figure 1b). In
Drosophila, ERK waves control invagination of the
tracheal placode [31]. In the mouse, ERK waves regu-
late collective motility-controlling cochlear duct devel-
opment [32]. In Planaria, a biochemical approach
suggests the existence of ultrafast ERK waves that
propagate along longitudinal muscles in response to
wounding [33].

The reports mentioned earlier, which have emerged in
the last 8 years, suggest that ERK waves are a ubiquitous
dynamic signaling motif prevalent throughout animal
life. Surprisingly, ERK waves can function at a wide
variety of time and length scales. ERK waves in the fly
pupal notum only extend one row from the apoptotic
lesion [26]. In marked contrast, ERK waves propagate
for about 2 days during fish-scale regeneration [30].
Propagation speed also shows a wide range of values,
from 10 pm/h in the regenerating scale in zebrafish [30]
to 1 mm/h ultrafast ERK waves that propagate in lon-
gitudinal muscles during wound response in Planaria
[33]. These differences reflect different mechanisms of
propagation that will be discussed in the following.

The processes potentially controlled by ERK waves can
considerably vary in their time scales as well. ERK waves
can control cytoskeletal dynamics that feed in the
regulation of collective motility on timescale of minutes
[23]. In contrast, fate decisions regulated by ERK dy-
namics range from timescales of few tens of minutes,
such as during Drosophila development [34], to multi-
ple hours, such as in the regulation of survival and cell-
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cycle progression in adult mammalian cells [6,25]. We
propose that ERK waves allow coordination of collective
motility with proliferation and survival fates at different
temporal scales, which might be advantageous during,
for example, wound healing. Such coordination of mul-
tiple functions has been observed in developing mam-
mary acini, in which the transition from high to low ERK
pulse frequencies allows a shift from rapid motility and
proliferation to slower motility and quiescence [29].

Mechanisms of ERK wave formation

Most of the observed ERK waves are trigger waves that
emerge through mechanochemical feedback, rather
than sensing a gradient of GFs. On the one hand, the
MAPK network exhibits high sensitivity to mechanical
stimuli, such as stretch, shear stress, substrate stiffness,
or protrusive activity [35,36]. Conversely, ERK also
controls cell mechanics by regulating myosin contraction
through phosphorylation of myosin light chain [37].
ERK waves in epithelial wound healing [23], apoptosis-
mediated homeostasis [25], acinar morphogenesis [29],
and extrusion of oncogenic cells [28] all seem to involve
a conserved mechanochemical feedback loop. Here,
ERK-mediated activation of myosin contractility in one
cell activates matrix metalloproteinases (MMPs) that
leads to cleavage of pro-EGF ligands, then activation of
epidermal growth factor receptor (EGFR) and produc-
tion of a new ERK pulse in the adjacent cell. ERK-
mediated activation of myosin contractility in this cell
will then stretch the next cell, leading to a repetitive
relay system, producing the ERK wave [24] (Figure 1c¢).
Additional mechanosensing mechanisms feeding into
the ERK wave are reviewed here [38]. Different
epithelial cell systems display waves of different mag-
nitudes, most likely reflecting different strengths of the
mechanical linkage between cells [25]. This phenome-
non can be captured in a mathematical model in which
different biochemical and mechanical parameter spaces
explain how ERK waves of different sizes can emerge
[39]. Knockout of individual EGFR ligands only leads to
subtle ERK wave defects, suggesting that ERK waves
are propagated through an EGFR ligand mixture [40].
Further adding to the complexity of this system, the
hepatocyte growth factor (HGF)—receptor
MET—wires the MAPK network to produce sustained
ERK activity and lamellipodial extension in wound-edge
leader cells [41]. Note that crosstalk of mechano-
chemical feedback loops with the MAPK network does
not only necessarily produce ERK waves but can also
link curvature sensing to control mechanical forces
leading to repetitive patterning during lung branching
morphogenesis [42].

The long-lasting ERK waves involved in fish-scale
regeneration take advantage of a different excitable
system in which the negative feedback is provided by
ERK-dependent expression of negative regulators such

as dual specificity phosphatases (DUSPs), explaining
their slower kinetics [30]. Key new insights from these
findings are that ERK waves can operate at a variety of
time and length scales, which results both from
different MAPK-network feedback structures, and
emergent properties of collective behavior. In epithelial
ERK waves, the finding of reciprocal coupling of the
MMPs/pro-EGF/EGFR/MAPK  system with ERK-
dependent mechanical feedback blurs the classic idea
of causal hierarchy in which the EGFR is the master
regulator of the system, often depicted as feed-forward
signaling network. The findings that different EGFR
ligands and HGF fine tune different spatial processes in
the epithelial cell collectives provide new insight about
the function of these GFs that was not available using
classic biochemical methods.

Consequence of oncogenic mutations on
single-cell and collective ERK dynamics

The prevalence of oncogenic mutations or aberrant
expression of components of the MAPK network or
pathways that crosstalk with it begs the question on how
dysregulation impacts on single-cell or collective ERK
dynamics. With respect to single-cell responses, over-
expression of EGFR [28] or ErbB2 [8] receptors aug-
ments ERK pulse frequency in MCF10A cells
(Figure 2a). This results from an increased RTK input
on the MAPK network with intact feedback loops. The
same effect is observed in response to activation of
pathways that crosstalk with the MAPK pathway, such as
aberrant Wnt activation [43], or a PIK3CA H1047R
mutation that activates PI3K/Akt signaling [29]
(Figure 2a). In both cases, this involves EGFR activa-
tion, explaining the increase in ERK pulse frequency. In
marked contrast, mutations within the core of the
MAPK network lead distinct ERK dynamics by rewiring
feedback loops. BRAF V600E leads to sustained ERK
dynamics due to insensitivity of mutated BRAF to the
ERK-RAF negative-feedback loop [28] (Figure 2a). In
contrast, KRAS G12V [44] leads to wider, noisy ERK
activity pulses most likely because mutated KRAS
strongly activates the RAF—MEK—ERK tripartite
structure with an intact negative-feedback loop from
ERK to RAF (Figure 2a).

Aberrant oncogenic signaling can also feed into emer-
gent properties regulating collective ERK dynamics.
Recently, Gagliardi et al. developed ARCOS, a compu-
tational tool for automatic recognition of collective
signaling events, allowing for quantification of ERK
waves in response to KRAS G12V and PIK3CA H1047R
mutations. Beyond the cell autonomous effects
described earlier, both mutations increased the size and
frequency of ERK waves in MCF10A cells [44] and do
not necessarily require initiation by apoptotic cells
(Figure 2b). In the case of the KRAS G12V mutation,
longer-lasting ERK pulses might lead to increased
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Oncogenic mutations alter single-cell ERK dynamics and collective ERK waves.

(a) Different oncogenic alterations affect the pulsatile ERK dynamics of mammary epithelial cells. Mutations at the receptor level (EGFR or ErbB2
amplification) or those that feed to EGFR input (PIK3CA H1047R or Wnt) result in increased ERK pulse frequency. BRAF V600E bypasses the ERK-RAF
negative-feedback loop, causing sustained ERK dynamics. KRAS G12V corrupts the dynamics of the pathway but keeps a pulsatile behavior, thanks to
the intact ERK-RAF negative-feedback loop. (b) Oncogenes can also alter emergence of collective ERK activity patterns. While in WT mammary
epithelium ERK waves are typically triggered by apoptosis, we observed the emergence of apoptosis-independent waves in the presence of KRAS G12V
and PIK3CA H1047R mutations. We speculate that KRAS G12V induces more ERK waves via reinforced mechanochemical feedback loop. On the
contrary, the PIK3CA H1047R mutation determines increased release of EGFR ligands, which makes the system more prone to form ERK waves.
Abbreviations: ERK = extracellular signal-regulated kinase; EGFR = epidermal growth factor receptor; WT = wild type.

myosin contractility, augmenting the MMPs/EGF-
ligands/EGFR/ERK mechanochemical feedback loop.
In the case of PIK3CA H1047R cells, increased
expression of the EGFR-ligand amphiregulin [45] po-
tentiates the excitability of the EGFR receptor. Thus, at
least, part of the aberrant ERK output results from an
emergent property that depends on cell interactions in
the epithelial collective (Figure 2b).

Having access to a system-level view of the different
scales at which MAPK signaling functions informs about
potential nontrivial “weak” nodes that can be pharma-
cologically targeted to best switch-off oncogenic
signaling for each respective mutation. This is not
accessible using the classical population-average
biochemical experimental paradigm. In the case of an
ErbB2 driven system, coinhibition of an ERK-RSK2-
SOS feedback that leads to loss of network robustness

drastically reduces residual single-cell signaling than
when RAE MEK, or ERK nodes are targeted individually
[8]. In the case of the PIK3CA H1047R mutation that
“hacks” EGFR signaling to increase the size of the col-
lective ERK waves, inhibition of EGFR or MMPs might
be synergistic with PI3K inhibition. Targeting MAPK
network properties or emergent properties feeding into
collective behavior might therefore realize the potential
of personalized cancer medicine using combinatorial
targeted therapy.

Conclusions and future perspectives

Studying ERK dynamics with single-cell resolution has
clearly augmented our understanding of how the MAPK
network is wired to produce different ERK outputs that
control a wide variety of fates, as well as how emergent
properties allow single cells to coordinate different fates
that occur at different timescales in a tissue (e.g.
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motility versus proliferation and survival). We anticipate
that evolving technologies to measure and manipulate
the MAPK network at relevant time and length scales in
cells, organoids, and tissues will allow us to further
characterize the rich set of dynamic behaviors we have
observed so far. Having access to this knowledge will
allow us to target new nontrivial properties of the MAPK
network to realize the potential of personalized
medicine in cancer and other pathologies such
as Rasopathies.
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