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Abstract: Aqueous gels formulated using hydrophilic polymers (hydrogels) and those based on
stimuli-responsive polymers (in situ gelling or gel-forming systems) attract increasing interest in
the treatment of several eye diseases. Their chemical structure enables them to incorporate various
ophthalmic medications, achieving their optimal therapeutic doses and providing more clinically
relevant time courses (weeks or months as opposed to hours and days), which will inevitably reduce
dose frequency, thereby improving patient compliance and clinical outcomes. Due to its chronic
course, the treatment of glaucoma may benefit from applying gel technologies as drug-delivering
systems and as antifibrotic treatment during and after surgery. Therefore, our purpose is to review
current applications of ophthalmic gelling systems with particular emphasis on glaucoma.
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1. Introduction

A progressive loss of the visual field and eventually blindness characterize glaucoma,
an optic neuropathy caused by the destruction of ganglion cells [1]. Glaucoma is the
second most common cause of blindness worldwide, with a growing number of people
affected [2,3]. Glaucoma can dramatically compromise individuals’ habits and quality of
life (QoL), determining a progressive and irreversible visual impairment and, potentially,
blindness [4].

Intraocular pressure (IOP) reduction is currently the mainstay of glaucoma therapy,
and it may be obtained with drugs, laser, or surgical therapy [5–7]. The first-line treatment
is presently based on topical drug treatment.

Multiple observational studies and randomized clinical trials have confirmed that
antiglaucoma medications effectively lower IOP at various disease stages [7–11]. Beta-
blockers, topical carbonic anhydrase inhibitors, cholinergics, prostaglandins/prostamides,
alpha2-agonists, and Rho-kinase inhibitors are only a few medication families used alone
or in combination to treat glaucoma. Though medical therapy is a crucial asset for patients
and ophthalmologists, it can have significant drawbacks. For example, adverse effects
(ocular inflammation, itching, and visual disturbances) reduce adherence, thereby dimin-
ishing the therapeutic efficacy. In addition, it is challenging for patients and caregivers
to administer eye drops; administration is frequently suboptimal. For these reasons, the
adherence to glaucoma medical therapy is often poor, with an early interruption of the
treatment [12,13]. Moreover, topical treatments may harm conjunctival health, reducing
the surgery’s effectiveness [12,13].

Furthermore, the eyes have several metabolic, static, and dynamic barriers that increase
the difficulty of topical drug administration. The conjunctiva, sclera, and cornea are
the static obstructions that medications must get through to work pharmacologically on
the eye. These barriers are challenging because of their various characteristics (polarity,
hydrophilicity, surface charge, etc.).
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On the contrary, dynamic barriers are the rapid clearance of the drops from the eye
through nasolacrimal drainage and conjunctival vessels. Moreover, metabolic enzymes
of the ocular surface can deactivate drugs [14]. The sum of these mechanisms drastically
reduces the pharmaceuticals’ absorption due to the lower residence time on the ocular
surface. Reduced effectiveness of the treatment leads to frequent changes in the therapy
and, thus, to poorer patient compliance.

Conventional ophthalmic dosages, formulated as eye drops (solutions or suspensions),
or ointments, are preferable to distribute medications to the ocular surface and anterior
eye segment. Their comparatively low production costs, non-invasiveness, and ease of use
offer clear benefits. [15,16].

Their side effects and low bioavailability may reduce optimal drug concentration at
the target site (Figure 1). To avoid the failure of the medical treatment, several researchers
have developed various drug delivery systems to enhance the residence time on the ocular
surface [17–19]. One of the most frequently adopted strategies is medical gels [20].
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Another exciting field of gel application is to prevent scarring after filtering glaucoma surgery.
This review will focus on drug delivery and adjunctives in glaucoma surgery.

Polymers and Hydrogel in Ocular Drugs Delivery

Hydrogels are a network of biologic and synthetic hydrophilic polymers able to ab-
sorb aqueous fluids. The extensive array of customizability and the high hydrophilicity
render hydrogel the ideal compound for ophthalmic applications, ranging from vitreous
substitutes to drug delivery [21]. Several authors proposed hydrogel as a drug carrier,
incorporated with other polymers, to treat glaucoma. Among these molecules, synthetic
polymeric biomaterials are a group of compounds based on chemically-derived monomers
and represent one of the most reported options for delivering ocular pharmaceuticals [21].
To this class belong polyethylene oxides, polyvinyl alcohol (PVA), polyesters, polymethacry-
lates, polyolefins, and dendrimers [22].

On the contrary, biopolymers are based on naturally derived monomers and are char-
acterized by high biocompatibility and fast degradation [23]. The most frequently reported
biological polymers used for ocular drug delivery are chitosan, cellulose, hyaluronic acid,
carboxymethyl cellulose, and gelatin. Another promising field in ocular delivery systems
is micro- and nanotechnology, such as formulations of hydrogel combined with micro-
and nanoparticles, liposomes, and micelles [22]. This drug delivery strategy combines the
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hydrogel’s high water content with the small size (from 1 to 1000 nm) of these particles,
offering a more targeted delivery and a sustained release of the medications [23].

Among the medical gels, the most investigated are the gel-forming systems. Their
properties make them able to undergo phase transition after environmental stimulus fol-
lowing their application in the conjunctival cul-de-sac and thus, transform themselves into
a viscoelastic gel from the original liquid dosage [24] because of pH change, temperature
modulation, or ion triggers [25–30]. Because they do not need organic solvents or copoly-
merization catalysts to cause gel formation, in situ polymeric gelling systems have drawn
significant attention.

2. Drug Delivery

The use of topical medications represents the primary approach to treating glau-
coma. Several therapeutic classes, α-2 agonists, β-blockers, carbonic anhydrase inhibitors,
prostaglandin analogous, and cholinergic agents, were developed in the form of eye drops
for IOP regulation [31].

A correct administration of eye drops and proper therapy can prevent an IOP elevation
and, thus, the progression of the glaucoma-induced damages.

Despite that, as stated above, self-administration of topical therapy can be challenging
for an elderly population. Moreover, ophthalmic solutions are often related to local side
effects such as ocular burning and stinging [32–35]. These conditions may lead to poorer
therapy compliance and, thus, can cause a worse treatment outcome [36,37]. Therefore,
improving patient adherence and compliance while facilitating the use of glaucoma drugs
is a top public health priority [38,39].

Furthermore, drugs’ efficacy may be decreased due to their rapid clearance (low
residence time), which results in a lower bioavailability [17,40]. For these reasons, a proper
delivery system may help improve medications’ effectiveness, safety, and duration.

Then, several electronic devices, transdermal and ocular inserts, and mechanical drug
delivery systems were developed [41].

2.1. Contact Lens

Due to their location near the cornea, contact lenses (CL) have some unique advantages
for delivering drugs [42]. First of all, the limitation opposed by the CL to the tear film
action results in a drug residence time of more than 30 min [43,44] compared to 5 min only
for eye drops alone [45]. The enhanced residence time leads to significant increases in
bioavailability, possibly as large as 50% [46].

Notably, hydrogels are the main constituents of CL; thus, their high-water content and
favorable properties render them highly compatible with human tissues [47–49]. Indeed,
even if the water content of the lens reaches 99%, the oxygen permeability will not exceed
the theoretical value of about 40 DK/t, which affects the user’s comfort during a prolonged
period [50].

For these reasons, CL can be used to treat ocular diseases such as glaucoma [51] due to
their ability to extend the release of a preloaded drug to several days or even months [52].

These drugs can be loaded into lenses by soaking [53,54], molecular imprinting [55],
microemulsion, or through nanoparticles [56,57].

Current methods can produce lenses of suitable thickness, water content, and optical
properties [58,59]. Moreover, it was shown that the application time did not affect ocular
tissues, and no ocular adverse effects were observed in any case [60].

Furthermore, therapeutic CL can reduce drug doses and thus side effects [61] and can
be particularly beneficial for applications in elderly patients having trouble adhering to
repeated dosage regimens [62,63]. CL can be made of hydroxyethyl methacrylate (HEMA),
Methacrylic acid (MAA) [55], poly(vinyl alcohol) (PVA) [64], and N-vinyl-2-pyrrolidone
(NVP), Poly(2-hydroxyethyl methacrylate) (pHEMA) [65]. Moreover, some authors, such
as Gulsen et al. [66–68] and Kapoor et al. [69,70], have proposed CL incorporated with
nanoparticles, such as liposomes, micelles, and microemulsions [71–79]. Jung et al. focused
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on soaking commercial lenses in a solution of timolol-Propoxylated Glyceryl Triacylate
(PGT) nanoparticles or timolol- Ethylene Glycol Dimethacrylate (EGDMA) nanoparticles.
Drug release studies in a diffusion cell showed an extended release for about 2–4 weeks [80].

Maulvi et al., in 2016, formulated a nanoparticle-loaded ring implant placed between
partially polymerized hydrogel contact lenses to provide an extended release of Timolol
Maleate (TM) at therapeutic rates without affecting the optical or physical properties of CL.
In vivo studies showed a tear fluid release for more than 192 h [81] (Figure 2).
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Subsequently, Maulvi et al., in 2021, proposed to use graphene oxide (GO) loaded
into silicone hydrogel CL through a polymerization process to improve the Bimatoprost
release. GO improved the swelling properties of the lenses, the transmittance, and the
bioavailability [82].

Ciolino et al. created Latanoprost-eluting contact lenses by encapsulating latanoprost-
PLGA (poly[lactic-co-glycolic acid]) between two layers of pHEMA hydrogel by ultraviolet
light polymerization. In vitro and in vivo studies reported an extended release of up to one
month [83].

Sekar et al. showed the ability of the vitamin-E-integrated polymeric hydrogel to
prolong prostaglandins (Bimatoprost) release for more than ten days [84], while increasing
stability and limiting diffusion during storage [85,86]. Indeed, vitamin-E incorporation into
the hydrogel matrix has been reported to form nano-sized barriers shaped as ellipsoids,
retarding drug diffusion through the polymer matrix [84].

Nicolson et al. found out that hydrogel lenses based on hydrophilic monomers such
as 2- HEMA and NVP did not succeed in absorbing the minimum oxygen requirement for
eyes under closed eyelid conditions [87].

Silicone hydrogel CL offers advantages over other types of lenses in drug delivery because
of their oxygen transmissibility and their potential for hydrophobic drug delivery [88].

Nguyen-Phuong-Dung et al. showed that higher content of hydrophilic polymers
increased water uptake ability and improved hydrophilicity of silicone hydrogel lenses.
However, the oxygen permeability is linked with the quantity of polydimethylsiloxane
(PDMS): the permeability decreases with the decrease of PDMS content. In addition,
these silicone hydrogel lenses exhibited relatively good optical transparency, anti-protein
deposition and appeared non-cytotoxic [89].
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Chen et al. and Jones et al. explained that PDMS exhibits a lower water uptake
ability, poor wettability, and high lipid adsorption despite having unique high oxygen
transmissibility and superior resistance to tearing for contact lens application [87,90].

One advantage of the hydrophobic drug released from CL is that it could more
readily diffuse through corneal cells’ tight lipid junctions and cell membranes due to its
hydrophobic character.

Furthermore, different studies have found that drugs with hydrophobic character
(ex. Latanoprost) can be loaded quickly (in 4 min) into Hydrogel contact lenses using
non-aqueous solvents [91].

One of the most critical problems of drug delivery through CL remains the difficulty of
incorporating more than one drug. A high degree of cross-link hydrogel is needed in this case,
but this process might alter physical properties or oxygen permeability [92–95] (Table 1).

Table 1. Studies on contact lens hydrogel.

Author Year Drug Group Polymer Name Manufacturing IOP
Decrease Duration

Maulvi F.A. [82] 2021 Bimatoprost Prostaglandin Graphene oxide
Bimatoprost

before
polymerization

/

Garcia Fernandez
M.J. [93] 2013 Ethoxzolamide CAI

Poly-HEMA and
poly-HEMA-co-

APMA

Dry disk
immersed into / 10 days

Jung H. J. [80] 2012 Timolol B-blockers Propoxylated
glyceryl triacylate

Adding particles
to the

polymerization
mixture

/ <=5 days

Maulvi F.A. [81] 2016 Timolol B-blockers Ethyl cellulose
nanoparticle-laden ring

TM loaded ring
in hydrogel
contact lens

Decrease by
6.3 ± 1.92

mmHg after
three hours

8 days
(in vivo)

Mohammadi S. [94] 2014 Latanoprost Prostaglandin Balaficon
A/Senofilcon A

Incubation in
drug solution >24 h

Peng C. C. [95] 2012 Timolol B-blockers

NIGHT&DAY
silicone hydrogel

contact lenses
With/without vit. E

Soaked Decreased
by 5 /

Ciolino J.B. [55] 2016 Latanoprost Prostaglandin
Methafilicon+

methacrylic acid
(Hydrogel)

Photopolym-
erization

Low dose:
decreased > 6.

High dose
decreased> 10

/

Sekar P. [84] 2019
Bimatoprost

and
Latanoprost

Prostaglandin
Vit E added to

ACUVUE OASIS
and ACUVUE

TRUE EYE
Soaked / >10 days

Yan F. [59] 2020 Bimatoprost Prostaglandin HEMA (hydroxyl
ethylmethacrylate)

Imprinting vs.
soaked / Imprinted

36–60 h

Xu J. [64] 2010 Puerarin

Chinese
medicine

ability to block
b-receptors

pHEMA-NVP-MA Soaked / 350 min

2.2. Hydrogel as an Ocular Drug Delivery System for Glaucoma Treatment

As stated above, the essential properties of hydrogels are their ability to absorb water
due to their hydrophilicity and excellent biocompatibility, making them ideal for drug
delivery applications [96]. Several authors proposed hydrogel as a drug carrier incorporated
with other polymers such as chitosan, cellulose derivatives, gelatin, PVA, or poly lactic-
co-glycolic acid for the treatment of glaucoma [96–99]. Other polymer-based hydrogels
evaluated for ophthalmic administration are stimulus-responsive gel [100–104]. These
delivery strategies have been investigated for several ophthalmic drugs commonly used
in the treatment of glaucoma, such as TM, brimonidine tartrate (BT), pilocarpine, and
latanoprost, or combinations with each other [105–108] (Table 2).
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2.2.1. Pilocarpine

Pilocarpine is a muscarinic acetylcholine M3 agonist, causing miosis and increasing
aqueous humor outflow [109]. In 2007, Natu et al. developed, as drug carriers, hydrogels
loaded with pilocarpine hydrochloride by soaking in an aqueous solution containing the
drug [110]. In vitro evaluation showed a percentage of released drugs that varied between
29.2% and 99.2% in 8 h [110]. Subsequently, Chou et al. developed pilocarpine-loaded
antioxidant-functionalized biodegradable thermogels for intracameral administration of
antiglaucoma medications [107]. The antioxidant function is due to the chemical grafting
of antioxidant gallic acid onto biodegradable gelatin [107]. In vivo study on a rabbit model
showed a mean IOP reduction of 5 mmHg for 28 days [107].

Lai and co-workers proposed a new biodegradable in situ gelling delivery system for
the intracameral administration of the pilocarpine [111]. The preparation of the copoly-
meric carriers was achieved from gelatin-g-poly(N-isopropyl-acrylamide). All prepared
copolymeric carriers exhibit a relevant intraocular pressure-lowering and an excellent
miotic effect [111]. Afterward, Nguyen and colleagues prepared injectable biodegrad-
able thermogels coloaded with pilocarpine and ascorbic acid [112]. The synthesized gel
obtained the double effect of lowering elevated IOP and reducing stromal collagen degra-
dation in inflammation-induced glaucoma. In vitro results indicated a sustained release for
80 days [112]. In 2020, Luo et al. reported a new biodegradable and injectable thermogel,
coloaded with pilocarpine and RGFP966 to exert antioxidant activities and sustained drug
delivery for treating glaucomatous nerve damage [113]. RGFP966 is an inhibitor of histone
deacetylases and, consequently, plays a critical role in regulating retinal ganglion cell atro-
phy and is becoming a primary target for treating neurodegeneration [113]. Their results
indicate a long-active release function of both drugs [113].

2.2.2. Timolol Maleate

TM is a small hydrophilic molecule (432 Da) regarded as the “gold standard” treatment
for glaucoma [114,115]. Indeed, the intraocular pressure (IOP)-lowering potential of this
β-receptor antagonist has been reported to be between 20 and 25% of the initial values [116].
Incorporating viscosifying agents can avoid some limitations of topical administration, such
as extensive drug loss due to the turnover of lacrimal drainage. Several authors proposed
hydrogel-based formulation for TM application [117]. In 2011 Zhang et al. investigated a
novel TM liposomal-hydrogel to improve drug permeability and extend residence time in
the precorneal region [118]. In an in vivo study on 12 rabbits, it lowered IOP for six h before
rising to its initial value [118]. Later, in 2012 Holden et al. proposed a polyamidoamine
dendrimer hydrogel linked with polyethylene glycol (PEG)-acrylate chains for BT and
TM delivery [119]. This dendrimer hydrogel increased the solubility of brimonidine and
sustained the in vitro release of both drugs over 56–72 h [119].

Yang et al. developed a hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid)
nanoparticle platform to efficiently deliver BT and TM to the eye and gradually release
the drug [103]. IOP was tested in albino rabbits; its maximum decrease was 29.5% less
than the initial values, and its duration was four days. Subsequently, Kulkarni et al. [120]
proposed a controlled-release ocular film of TM using a natural hydrogel derived from
the seeds of Tamarindus indica. In three rabbits, they obtained a controlled drug release
for 24 h in vivo. A self-assembling elastin-like hydrogel was experimented by Fernańdez-
Colino and co-workers. In vivo testing revealed a hypotensive effect lasting more than an
eighth [114]. In 2017 Karavasili et al. tested self-assembling peptides Ac-(RADA)4-CONH2
and Ac-(IEIK)3I-CONH2, which form hydrogels in physiological conditions, as carriers
for ocular delivery of TM [121]. Ac-(RADA)-CONH was demonstrated to significantly
enhance the bioavailability of TM, achieving effective IOP reduction for up to 24 h [121].

Dubey and colleagues prepared a stimuli-sensitive hydrogel with Carbopol (poly(acrylic
acid)) [122]. TM and BT were used in this formulation, propyl methylcellulose as a viscosity
enhancer, and ethylenediaminetetraacetic acid (EDTA) as a chelating agent. This delivery
system achieved a 100% cumulative release of the drugs in 8 h and a higher IOP reduction
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efficiency in the in vivo studies [122]. In the same way, the use of carbopol was reported by
Singh et al. along with hydroxyethyl cellulose for TM delivery [123]. The in vitro results
showed a continuous release of the drug over eight hours and a gradual decrease of IOP if
compared to marketed eye drops [123]. Subsequently, El-Feky et al. developed an oxidized
sucrose crosslinker used in the formulation of chitosan-gelatin hydrogel for the sustained
release of TM to control ocular hypertension [108]. They obtained a hypotensive effect that
lasted more than eight hours [108].

Pakzad et al. synthesized a chitosan with Glycidyltrimethylammonium chloride (GT-
MAC) to prepare N-(2-hydroxy-3-trimethylammonium) propyl chitosan chloride (HTCC) [124].
HTCC increased mucoadhesive capacity, solubility in water, and antibacterial properties
at physiological pH. A hydrogel was prepared with HTCC and glycerolphosphate. The
studies showed an extended-release of TM for up to 80 h [124]. An in situ gel forming
self-assembling peptide, ac-(RADA)4-CONH2, was evaluated as a carrier for the ocular co-
delivery of TM and BT by Taka et al. [105]. A complete release of both drugs was obtained
within eight hours. A 5.4-fold and 2.8-fold higher corneal permeability was achieved for
BT and TM, respectively [105]. Patel et al. synthesized a combined pH and ion-sensitive
in situ hydrogel using Carbopol and gellan gum, which compared with TM’s marketed
eye drop formulation [104]. Furthermore, they evaluated the efficacy of benzododece-
nium bromide as a preservative and a corneal permeability enhancer [104]. The novel
formulations reported better corneal permeability and fewer side effects than the marketed
formulation [104].

In 2021, Wang et al. tested the delivery efficacy of BT and TM loaded into dendrimer
gel particles of various sizes: nano-in-nano dendrimer hydrogel particles of 200 nm (nDHP)
and two micronized DHPs—µDHP3 (3 µm), and µDHP10 of (9 µm) [125]. They evaluated
nDHP superiority in cytocompatibility, corneal permeability, degradability, and drug
release kinetics. Indeed, µDHP10 and µDHP3 induced a cytotoxicity 2.8-fold higher than
nDHP, while they had a faster degradation time. Moreover, nDHP enabled 4.1 µg of
BT to permeate through the cornea, while µDHP10 and µDHP3 were able to permeate,
respectively, 2.4 µg and 3.5 µg. Finally, nDHP showed a longer release time [125]. The mean
IOP lowering after treatment was 18.68 ± 1.35 mmHg [125]. Another research proposed
a new multilayered drug delivery hydrogel inspired by a lollipop structure. The final
polymer was a multilayered sodium alginate-chitosan hydrogel ball decorated by zinc
oxide-modified biochar, encapsulating TM and levofloxacin inside the different layers. The
results showed that in vitro release of TM can be sustained for longer than two weeks [126].

2.2.3. Brimonidine Tartrate

Brimonidine tartrate exerts its effects in the eye due to its high a2- adrenoceptor affinity,
which is considered a standard reference compound for the treatment of glaucoma [127].
As stated above, several papers reported hydrogel-based delivery strategies evaluated for
the combination of BT and TM [99,105,119,122,126]. In 2017 Fedorchak et al. proposed an
innovative drug delivery system composed of a thermo-responsive hydrogel carrier and BT-
loaded poly(lactic-co-glycolic) acid microspheres [128]. Their results suggest in vivo efficacy
for over 28 days from a single drop instillation [128]. Another paper reported a mildly
cross-linked dendrimer hydrogel synthesized through the addition of a polyamidoamine
(PAMAM) dendrimer and polyethylene glycol diacrylate (PEG-DA) [129], resulting in a
48 h drug release and an enhanced corneal permeation [129]. Subsequently, Wang et al.
developed a branched polyrotaxane hydrogel made of 4-arm polyethylene glycol (4-PEG)
and a-cyclodextrin (a-CD) [130]. BT was loaded on the resulting a-CD/4-PEG hydrogel,
which underwent a reversible gel-sol transition in response to shear stress change [130].
A controlled release of 24 h was obtained. In 2019 Bellotti and co-workers reported a
pNIPAAm-based thermoresponsive hydrogel for BT delivery [131]. They manipulated
gelation kinetics by modifying the poly(ethylene glycol) content, thus obtaining a suitable
viscosity for administration as an eye drop and resisting various climatic conditions without
being eliminated [131].
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2.2.4. Latanoprost

Latanoprost is an ester prodrug analog of prostaglandin and is the first-line treatment
in patients suffering from glaucoma because it reduces IOP by increasing uveoscleral
outflow [132]. However, its daily administration is correlated with local side effects such as
conjunctival hyperemia and dry eye syndrome [97]. Several polymers have been developed
as drug carriers to prolong Latanoprost permanence on the ocular surface and minimize
the possibility of therapy adherence failure.

In 2014, Cheng and co-workers proposed an injectable thermosensitive chitosan/gelatin/
glycerol phosphate (C/G/GP) hydrogel as a sustained-release system of latanoprost for
glaucoma treatment [98]. In vivo evaluation, performed on ten albino rabbits, showed a
decrease of IOP of 9.2% within eight days and then a permanence within normal limits
for the next 31 days [98]. Hsiao et al. prepared a chitosan-based thermogel to improve
glaucoma therapy [106]. In vivo examination, conducted with subconjunctival injections in
six rabbits, revealed excellent biocompatibility and a lowering of IOP for 40 days [106].

In the same way, Cheng et al. formulated a thermosensitive chitosan/gelatin for the
sustained release of latanoprost as a topical eye drop to control ocular hypertension [133].
In vivo results of a rabbit model confirmed IOP was significantly decreased within seven
days [133]. In 2019, another thermosensitive hydrogel containing latanoprost and curcumin-
loaded nanoparticles was developed [97]. Indeed, curcumin possesses antioxidant and anti-
inflammation properties and reduces oxidative stress on trabecular meshwork [97]. In vitro
drug release evaluation revealed that both latanoprost and curcumin-loaded nanoparticles
maintained a sustained release for seven days [97].

2.2.5. Other Drugs

Epinephrine was applied in glaucoma treatment to reduce intraocular pressure by de-
creasing aqueous formation and increasing the outflow facility [134]. Hsiue et al. developed
two preparations of ophthalmic drops for controlled release based on the thermosensitivity
of poly-N-isopropyl acrylamide (PNIPAAm) [135]. The first formulation contained a linear
chain of PNIPAAm, and the second had a mixture of linear PNIPAAm and cross-linked
PNIPAAm nanoparticles. After in vivo examination of the rabbits, the authors reported
that the formulation containing a linear PNIPAAm and nanoparticles maintained a more
prolonged IOP decrease (32 h) but showed a weaker effect. In contrast, the linear PNIPAAm,
had a shorter duration but a more substantial IOP decrease (−7.2 mmHg) [135]. In the same
way, Prasannan and colleagues structured a thermosensitive PNIPAAm-based hydrogel
loaded with epinephrine [136].

Atenolol is a β1 adrenoceptor blocker for the treatment of glaucoma. A niosomal
hydrogel containing atenolol was proposed by Abuhashim et al. in 2014 [137]. Their formu-
lation was an eye drop solution that showed promising results after in vivo examination as
it significantly decreased the IOP and showed a prolonged effect up to 8 h [137].

Table 2. Studies on drug delivery hydrogel.

Author Year Drug Group Polymer Name IOP Decrease
(Mean Value) Duration Administration

Bellotti et al. [131] 2019 Brimonidine
tartrate

α2 agonist pNIPAAm hydrogels (PEG) / Eye drop

Fedorchak et al. [128] 2017 Brimonidine
tartrate α2 agonist

Poly(lactic-co-glycolic) acid
microspheres microspheres

incorporated into the
pNIPAAM gel

/ 28 days Eye drop

Wang et al. [129] 2017 Brimonidine
tartrate α2 agonist

Linked dendrimer hydrogel
via addition of

polyamidoamine
(PAMAM) dendrimer G5
and polyethylene glycol

diacrylate (PEG)

/ 48 h AC filling
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Table 2. Cont.

Author Year Drug Group Polymer Name IOP Decrease
(Mean Value) Duration Administration

Wang et al. [130] 2018 Brimonidine
tartrate α2 agonist

(a-CD/4-PEG hydrogels)
hydrogel made of 4-arm

polyethylene
glycol (4-PEG) and

a-cyclodextrin (a-CD)

/ 24 h /

Dubey et al. [122] 2014
Timolol
maleate-

brimonidine
tartrate

β-blockers-
α2 agonist

Stimuli-sensitive hydrogel
with Carbopol

(poly(acrylic acid)

14 mmHg
(mean IOP

after
treatment)

8 h Eye drop

Holden et al. [119] 2012
Brimonidine-

timolol
maleate

α2 agonist-
β-blockers

Polyamidoamine
dendrimer hydrogel

linked with
polyethylene glycol

(PEG)-acrylate chains

/ 6–72 h /

Taka et al. [105] 2020
Timolol
maleate-

brimonidine
tartrate

β-blockers-
α2 agonist

Self-assembling peptide
ac-(RADA)4-CONH2 / 8 h /

Wang et al. [125] 2021
Brimonidine
tartrate-and

timolol
maleate

α2 agonist
β-blockers

Nano-in-nano dendrimer
hydrogel particles −200

nm (nDHP)

18.68 ± 1.35
mmHg (mean

IOP after
treatment)

/ Eye suspension

Yang et al. [99] 2013
Brimonidine-

timolol
maleate

α2 agonist-
β-blockers

Hybrid dendrimer
hydrogel/poly(lactic-co-

glycolic acid)
nanoparticle platform

29.5% 4 days /

Cheng et al. [133] 2016 Latanoprost Prostaglandin Thermosensitive
chitosan/gelatin / 7 days Eye drop

Cheng et al. [97] 2019 Latanoprost Prostaglandin

Thermosensitive hydrogel
containing latanoprost and

curcumin-loaded
nanoparticles

/ 7 days Eye drop

Cheng et al. [98] 2014 Latanoprost Prostaglandin

Thermosensitive
chitosan/gelatin/glycerol

phosphate (C/G/GP)
hydrogel

2.4 mmHg
(9.2%) 31 days Subconjunctival

injection

Hsiao et al. [106] 2014 Latanoprost Prostaglandin
Amphiphilic

chitosan-based
thermogelling

10 mmHg 39 days Subconjunctival
injection

Abu Hashim et al.
[137] 2014 0.5% atenolol

β1 adreno-
ceptor
blocker

Niosomal Hydrogel
containing atenolol / 8 h Eye drop

Hsiue et al. [135] 2002 epinephrine Catecholamine
Thermosensitive poly-N-

isopropylacrylamide
(PNIPAAm)

8.9 mmHg
(maximum) 24 h Eye drop

Prasannan et al. [136] 2014 epinephrine Catecholamine PAAc-g-PNIPAAm
(PNIPAAm) / / Eye drop

Chou et al. [107] 2017 pilocarpine Cholinergic

Pilocarpine-loaded gallic
acid (GA)-grafted
gelatin-g-poly(N-

isopropylacrylamide)
(GN)

5 mm Hg 28 days /

Lai et al. [111] 2013 pilocarpine Cholinergic Carboxyl- terminated
PNIPAAm / 12 h /

Luo et al. [113] 2020
pilocarpine

and
RGFP966

Cholinergic

4-hydroxy-3,5-
dimethoxybenzoic acid

(p-DMB)-modified
chitosan-g-poly(N-

isopropylacrylamide)

/ 70 days /

Natu et al. [110] 2007
Pilocarpine
hydrochlo-

ride
Cholinergic

Linking reaction of gelatin
in N,N-

(3dimethylaminopropyl)-
N′-ethyl carbodiimide and

N-hydroxy succinimide

/ 8 h /
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Table 2. Cont.

Author Year Drug Group Polymer Name IOP Decrease
(Mean Value) Duration Administration

Nguyen et al. [112] 2019
Pilocarpine

and ascorbic
acid

Cholinergic

PAMAM dendrimers
bearing amine surface

groups (-NH2)
linked with gelatin

hydrogel and
poly(N-isopropyl

acrylamide)

/ 84 days /

El-Feky et al. [108] 2018 Timolol
Maleate β-blockers

Chitosan-gelatin hydrogel
linked with

oxidized sucrose
/ 8 h Eye drop

Esteban-Pérez et al.
[117] 2020 Timolol

maleate β-blockers

Gelatin nanoparticles in a
hydroxypropyl
methylcellulose
viscous solution

4.33 ± 0.30 8 h Eye drop

Fernandez-Colino
et al. [114] 2017 Timolol

maleate β-blockers

Self-assembling
elastin-like (EL)

and silk-elastin-like
hydrogels

/ 8 h Eye drop

Karavasili et al. [121] 2017 Timolol
maleate β-blockers

Self-assembling peptides
Ac-(RADA)4-CONH2

and Ac-(IEIK)3I-CONH2
/ 24 h Eye drop

Kulkarni et al. [120] 2016 Timolol
maleate β-blockers Natural hydrogel from

Tamarindus indica / 24 h Eye drop

Pakzad et al. [124] 2020 Timolol
maleate β-blockers

N-(2-hydroxy-3-
trimethylammonium)

propyl chitosan
chloride glycerophosphate

(HTCC/GP)

/ 1 week /

Wang et al. [126] 2021
Timolol

maleate (TM)
and

levofloxacin
β-blockers

Multilayered sodium
alginate-chitosan (SA-CS)

hydrogel ball (HB)
decorated by zinc

oxide-modified biochar
(ZnO-BC)

(‘lollipop inspired’)

/ 2 weeks /

Zhang et al. [118] 2011 Timolol
maleate β-blockers Liposomal-hydrogel / 6 h Eye drop

3. Hydrogel Formulation after Glaucoma Surgery
3.1. Anti-Scarring Hydrogel

Glaucoma filtration surgery is currently the most effective treatment for glaucoma
unresponsive to medical therapy. Filtering surgery lowers IOP by forming a fistula between
the anterior chamber and the subconjunctival space, favoring the drainage of aqueous
humor in a filtering bleb. However, traditional trabeculectomy and filtering MIGS fail
in a significant percentage of patients, up to 30–50%, mainly because of fibrosis in the
subconjunctival filtering bleb [138,139].

The reparative process, especially in the first two weeks after surgery, involves the
release of a great variety of proinflammatory cytokines and glycoproteins of the extracellular
matrix. The latter stimulates the migration and proliferation of fibroblasts in the Tenon’s
capsule and the subconjunctival space leading to the formation of a scar [140].

For this reason, glaucoma filtration surgery involves using antifibrotic drugs applied
intraoperatively for a variable time (generally between 2 and 5 min). The most used
drugs are mitomycin C (MMC) and 5-fluorouracil (5-FU), but cyclosporine A or antibodies
against vascular endothelial growth factor (VEGF) such as Bevacizumab are also used.
However, MMC and 5-FU, in particular, have a non-specific mechanism of action for
which, in addition to inhibiting fibroblastic proliferation, they also induce cell death in the
surrounding tissues giving rise to potential complications (postoperative hypotonia, bleb
leaks, epithelial and endothelial corneal toxicity, thinning up to the rupture of the bleb with
the consequent risk of endophthalmitis) [141–144]. Furthermore, a single application of
these drugs may not be sufficient to limit the fibrotic and connective tissue reaction that
develops even in the long term after the surgery [145].
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Therefore, in recent years delivery systems have been studied to allow a controlled
and prolonged release of drugs over time to limit the formation of postoperative scar, keep
the IOP low, and guarantee the persistence of the filtering bleb while reducing toxicity. As
stated above, nanoparticles-based hydrogels and stimuli-responsive hydrogels, for their
natural properties, are the best candidates to play the role of drug carrier [146,147]. Their
simplicity of synthesis has the advantage of precisely controlling the concentration of the
incorporated drug, which is mixed in the initial aqueous solution, and of not denaturing
peptides or bioactive proteins within them [148,149]. The porous structure of hydrogels
allows them to transport many therapeutic molecules, both hydrophilic and hydrophobic,
such as proteins, DNA, and RNA.

The hydrogels are degraded slowly, in a variable way, between two and three weeks.
This characteristic makes them ideal for transporting and releasing anti-scarring drugs
that can act with a stable and effective concentration precisely in the critical period of scar
tissues [150].

Table 3 lists the primary studies on using anti-scarring hydrogels in glaucoma filtration surgery.
Some studies focus on the intrinsic hydrogel antifibrotic activity. In the works of Liang

et al. [151] and Martin et al. [152], these biomaterials, if applied to the intervention site,
form covalent bonds with the sclera and significantly reduce scar formation. Hydrogels
minimize inflammation and hinder fibroblasts’ adhesion to scleral tissue, as confirmed by
the reduction of connective tissue growth factor (CTGF), a peptide promoting the formation
of fibrosis and scarring in ocular tissues [153]. Chen et al. [154] investigated in vitro
hydrogels containing different concentrations of the arginine-glycine-aspartic acid (RGD)
sequence (0.25; 0.5 and 1%). This sequence induces competition with proinflammatory
proteins of the extracellular membrane for binding to integrins, cellular receptors that
promote migration, and the proliferation of fibroblasts without cytotoxicity. The authors
could demonstrate that 1% wt Fmoc-FFGGRGD self-assembly peptide hydrogel could
inhibit the expression of β1-integrin, FAK, and Akt in Tenon’s capsule fibroblasts, which
play an essential role in fibrogenesis and scar formation.

The majority of authors used hydrogels as a drug delivery system: they are im-
planted and provide for a localized and prolonged release of the drug they contain.
Nagata et al. [155], Xi et al. [156], and Kojima et al. [157] studied MMC-loaded hydro-
gels. They demonstrated that hydrogel causes a prolonged and controlled release of MMC,
reducing its toxicity while simultaneously reducing the formation of fibrosis and ensuring
a prolonged persistence of the bleb. Yang et al. [158], Peng et al. [159], and Han et al. [150]
used hydrogels to release Bevacizumab, a synthetic monoclonal antibody directed against
VEGF. This drug, widely used in proliferative diabetic retinopathy, age-related macular
degeneration, and neovascular glaucoma, limits the formation of fibrosis and scar after
glaucoma filtration surgery and reduces IOP. VEGF is a crucial molecule in the wound heal-
ing process: it is not only an essential promoter of angiogenesis but also a direct mediator
of the migration and proliferation of fibroblasts and inflammatory cells [160].

Other authors investigated the release of less commonly used drugs in glaucoma
filtration surgery to reduce toxicity. Kojima et al. [161] studied the use of a chymase
inhibitor. Chymase is a protease in the granules of mast cells that induces the accumulation
of neutrophils, eosinophils, and other inflammatory cells and promotes cell growth of
fibroblasts through the up-regulation of transforming growth factor (TGF-β) [162,163].
Using the chymase inhibitors could prevent scar formation and cause fewer complications
than the current antimetabolites. Maeda et al. [164] directly associated a TGF-β antibody
with the hydrogel. TGF-β is the main factor stimulating the conjunctival scar following
trabeculectomy [165]. Sun et al. [166] used Cyclosporine A, while Qiao et al. [167,168] used
heparin, an anticoagulant that also can limit the proliferation of fibroblasts. Chun et al. [169]
used the hydrogel as a vector of small interfering RNA (siRNA). This promising therapy
acts through an epigenetic silencing strategy, deactivating the genes that code for proteins
promoting fibrosis and scar formation.
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Table 3. Studies on anti-scarring hydrogels in glaucoma filtration surgery.

Author In vitro/Vivo Hydrogel Function Drug Delivered Activation Mode Administration
Site

Blake et al.
J Glaucoma,
2006 [145]

in vitro P(HEMA) Drug delivery
system Mitomycin C / /

Liang et al.
Biomed Mater.,

2010 [151]
in vivo

Peptide hydrogel
with RGD
sequence

Keeping tissues
apart,

inflammatory
inhibition

/ / Filtering bleb

Yang et al.
Acta Pharmacol
Sin., 2010 [158]

in vitro and vivo CMCS Drug delivery
system

5-fluorouracil,
bevacizumab / Filtering bleb

Kojima et al.
Invest

Ophthalmol Vis
Sci., 2011 [161]

in vivo Gelatin-hydrogel Drug delivery
system

Chymase
inhibitor / Filtering bleb

Xi et al.
PLoS One.,
2014 [156]

in vitro and vivo PTMC15-F127-
PTMC15

Drug delivery
system Mitomycin C Body temperature Filtering bleb

Peng et al.
Med Hypothesis

Discov Innov
Ophthalmol.,

2014 [159]

in vivo PECE Drug delivery
system Bevacizumab Body temperature Anterior chamber

Han et al.
J Mater Sci Mater
Med., 2015 [150]

in vitro and vivo PECE Drug delivery
system Bevacizumab Body temperature Anterior chamber

Kojima et al.
Invest

Ophthalmol Vis
Sci., 2015 [157]

in vivo Gelatin-hydrogel Drug delivery
system Mitomycin C / Filtering bleb

Sun et al.
J Mater Chem B.,

2017 [166]
in vitro and vivo PLGA-PEG-

PLGA
Drug delivery

system Cyclosporine A Body temperature Filtering bleb

Qiao et al.
J Mater Sci Mater
Med., 2017 [167]

in vivo HECTS Drug delivery
system Heparin UV irradiation Under scleral flap

Maeda et al.
Int J Mol Sci.,

2017 [164]
in vivo Gelatin-hydrogel Drug delivery

system TGF-β antibody / Filtering bleb

Martin et al.
Macromol Rapid

Commun.,
2020 [152]

in vitro DMAA + AOAQ Fibroblast cells
repellent / UV irradiation /

Chen et al.
J Biomed Mater

Res B Appl
Biomater.,
2021 [154]

in vitro
Peptide hydrogel

with RGD
sequence

Peptide
competition on

protein
binding site

/ / /

Chun et al.
Sci Rep.,

2021 [169]
in vitro and vivo Gelatin-tyramine Drug

delivery system siRNA Charge tunability Filtering bleb

Another area of investigation is the administration site of the hydrogel. Most studies
involve a subconjunctival injection in correspondence with the filtering bleb, and other au-
thors suggest applying the hydrogel under the scleral flap created during the surgery [170].
A further strategy is the anterior chamber implant, as proposed by Peng et al. [159] and
Han et al. [150]. The intracameral injection allows a controlled and stable release of the
drug in the anterior chamber and, at the same time, in the filtering bleb through the
drainage of aqueous humor determined by the surgery, without further manipulation of
the conjunctiva [171].

All the studies reported favorable data regarding the reduction of fibrosis and scar
formation and low toxicity. Hydrogels could therefore represent an excellent potential to
increase the long-term success of these interventions.



Gels 2022, 8, 510 13 of 20

3.2. Management of Others Post or Intraoperative Complications

One of the most frequent complications in the early postoperative period after glau-
coma surgery is the leakage from the conjunctival limbal incision or the filtration blebs [172].
This leakage can lead to severe complications such as hypotony, choroidal effusion, supra-
choroidal hemorrhages, loss of the anterior chamber, endophthalmitis, and bleb fail-
ure [173,174]. The leakage occurrence as a short-term complication after glaucoma surgery
is becoming more frequent because of the increased application of mitomycin-C to delay
wound healing [175]. Nagata et al. proposed a PEG-Based Synthetic Hydrogel as a sealant
after glaucoma surgery to inhibit bleb leaking [155]. On a rabbit model, they observed
fewer lymphocytic infiltrations without inflammatory effects or conjunctival toxicity [155].

Calladine et al. proposed an intraoperative implant of methacrylic hydrogel, applicable
during deep sclerectomy, to maintain the intrascleral space essential for proper filtration
after this surgery [176]. Their polymer showed good intrascleral biocompatibility, while no
case of hypotony was reported [176].

4. Conclusions

The global cost of sight loss is estimated to be over US$3 trillion annually. Glaucoma
is the second-leading cause of irreversible visual loss and is mainly treated with eye drops.
Although the drug delivery formulations represent a promising alternative to conventional
treatment, there are still limitations related to the performances of these ocular delivery
systems. Poor adherence and/or persistence with topically applied eye drops mainly results
from the need for multiple daily applications to obtain its intended therapeutic effect. New
3D-printed hydrogels, ophthalmic gels, medical devices, and nanogels designed to deliver
ophthalmic gels have the potential to mitigate glaucoma-related comorbidities. Although
numerous studies have demonstrated the great potential of hydrogel-based treatments,
future research should continue to investigate their use in vivo and conduct clinical trials
to advance the clinical application of this technology.

Furthermore, modifications of traditional surgery and the introduction of new devices
to shunt aqueous humor subconjunctivally significantly reduced the early postoperative
complications related to hypotony but are still facing a significant failure rate due to fibrosis
of the bleb. The development of longer-releasing antifibrotic agents that tackle the different
phases of the scarring process would allow for a longer-term efficacy of surgery and may
potentially allow an earlier surgical approach with better control of IOP throughout the day.
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