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Introduction

The classical Calderón–Zygmund theory and the standard theory of Hardy and BMO
spaces [9, 18, 54] were introduced in (Rn,d,l ), where d is the Euclidean metric
and l denotes the Lebesgue measure. More generally, this theory was extended on
spaces of homogeneous type, namely metric measure spaces (X ,d,µ) where the
doubling condition is satisfied, i.e., there exists a constant C such that

µ
�
B2r(x)

�
C µ

�
Br(x)

�
8x 2 X , 8r > 0, (1)

where Br(x) denotes the ball centred at x of radius r. Such theory has been applied
to study boundedness properties of singular integral operators.

It is worth noticing that, in the setting of (possibly weighted) graphs with the
doubling property, new Hardy and BMO spaces associated with a discrete Lapla-
cian were introduced in [4, 5, 19]; various characterizations of such spaces and
applications to singular integrals were obtained.

Extensions of the theory of singular integrals and Hardy and BMO spaces have
been considered also on metric measure spaces not satisfying the doubling condition
(1) but fulfilling either some other measure growth assumption (see, e.g., [6, 42, 37,
44, 56–58, 60]) or a geometric condition (see [41]). In particular, many efforts have
been made in order to study nondoubling (both continuous and discrete) settings
on which various characterizations of the atomic Hardy space fail. See for example
[51, 52, 39, 37, 38, 58, 27, 40] for a contribution on a Lie group of exponential
growth and on locally doubling manifolds and [7] for some results in the context of
a distinguished graph and the combinatorial Laplacian.
In this thesis, we work on two different nondoubling settings:
1) a tree, i.e., a connected graph without cycles, endowed with a locally doubling
flow measure;
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2) a tree endowed with the counting measure.
Given a tree T with the usual discrete distance, denoted by d, we choose a root in its
boundary zg and consider the horocyclic foliation it induces on T . For each vertex
x 2 T , we define its predecessor p(x) as the unique neighbor vertex of x which is
closest (in a suitable sense) to the root zg, while s(x) denotes the set of the remaining
neighbors of x, called successors of x.
A flow on T is a positive function m satisfying the flow condition

m(x) = Â
y2s(x)

m(y), x 2 T. (2)

We underline that the counting measure is never a flow measure unless T = Z.
The canonical flow measure on T is the unique (up to normalization) flow measure
µ such that µ(x) = |s(x)|µ(y) for every x 2 T and y 2 s(x), where |s(x)| denotes the
cardinality of s(x).
Flows, which are common objects in Operation Research and Computer Science, turn
out to have interesting properties also from a Harmonic Analysis point of view. For
a more wide-ranging account of the importance of flows in Probability and Analysis
on trees, we refer the reader to [34]. It is important to point out that the metric
measure space (T,d,m) is an adverse setting to study this kind of problem. Indeed,
we prove that flow measures fail to satisfy the Cheeger isoperimetric property, and,
in most of the cases, do not satisfy the doubling condition, because they have at least
exponential growth.
Surprisingly, we show that flow measures satisfy a global version of Lp-Poincaré
inequality on trees, hence proving to be better behaved than the counting measure in
this context. To the best of our knowledge, there are no other examples in the litera-
ture of global Poincaré inequalities on metric measure spaces of exponential growth.
Our result might pave the way to the study of global Lp-Poincaré inequalities on
nondoubling metric spaces: as far as we know, weighted global Poincaré inequalities
have been considered on some nondoubling settings of polynomial growth (see, for
example, [21]).

In [27], [2] and [1] the authors developed a Calderón–Zygmund theory, and in-
troduced Hardy and BMO spaces on homogeneous trees endowed with the canonical
flow measure. In this thesis, we generalize their results in various directions. First of
all, we consider nonhomogeneous trees. Moreover, we consider all locally doubling
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flows. This assumption implies that the tree is of bounded degree. The definition
of the family of admissible sets, which is a key ingredient to develop all the theory
contained in the first part of the present work, is strongly inspired by the one given in
[27], but it is more general, even in their setting. Indeed, the shape of our sets is less
rigid and this allows us to obtain suitable decomposition and expansion algorithms
that were not available in the setting of [27]. The admissible sets are the support of
the atoms in terms of which the atomic Hardy space H1

at(m) is defined. We identify
the dual of such space with a space of bounded mean oscillating functions BMO and
we prove some interpolation results, involving H1

at(m) and BMO(m).

We recall that, in [6], the authors defined an atomic Hardy space adapted to
any metric measure space which satisfies some geometric assumption, namely the
local doubling property, the isoperimetric property, and the approximate midpoint
property. As we mentioned, their theory does not apply to the spaces we consider
because of the lack of the isoperimetric property.

Subsequently, we focus on a model case, i.e., a homogeneous tree Tq+1 of order
q+1, namely, a tree in which every vertex has exactly q+1 neighbours, endowed
with the canonical flow measure µ .
A systematic analysis on (Tq+1,d,µ) was initiated in [27], where the authors devel-
oped an ad hoc Calderón–Zygmund theory and studied the boundedness properties
of spectral multipliers and the Riesz transform associated with a suitable Laplacian
L , which we shall call the flow Laplacian, defined by

L = I �A, (3)

where A is the stochastic matrix given by A f (x) = 1
2pq Â

y:d(x,y)=1

µ(y)1/2

µ(x)1/2 f (y). It turns

out that L is self-adjoint on L2(µ) and

L =
1

1�b
µ�1/2(D�bI)µ1/2, (4)

where D is the combinatorial Laplacian on Tq+1 and b = (
pq� 1)2/(q+ 1). It is

well known (see for instance [13]) that b is the bottom of the spectrum of D on L2

endowed with the counting measure, from which it immediately follows that L has
no spectral gap on L2(µ).
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Let us denote by (Ht)t>0 the heat semigroup and by (Pt)t>0 the Poisson semi-
group associated with L , given respectively by Ht = e�tL and Pt = e�t

p
L , and

introduce the Riesz transform R formally defined by —L
�1/2, where — is the flow

gradient, defined on a function f : T ! C by

— f (x) = f (p(x))� f (x), x 2 T.

We prove that the Hardy spaces defined in terms of the heat semigroup, the Poisson
semigroup and the Riesz transform, which we denote by H1

H
(µ),H1

P
(µ) and H1

R
(µ)

respectively, are not equivalent to the atomic Hardy space H1
at(µ). More precisely, we

show that H1
at(µ) is continuously included in the maximal and the Riesz Hardy spaces

but there exists a function which belongs to H1
H
(µ)\H1

P
(µ)\H1

R
(µ)\H1

at(µ).
We also complete the study of the boundedness properties of the Riesz transform
R on (Tq+1,µ). By [27, Theorem 2.3], R is of weak type (1,1), bounded on
Lp(µ) for p 2 (1,2], and bounded from H1

at(µ) to L1(µ). The problem of the Lp

boundedness of R for p 2 (2,•) was left open in [27]. Because of the lack of
positive spectral gap, the abstract theory developed in [8] does not apply to this
context, so the problem of the Lp boundedness of R is particularly interesting. We
shall prove that R is bounded on Lp(µ) for every p 2 (2,•) and we show that it is
unbounded from L•(µ) to BMO(µ). The study of the first-order Riesz transform R

associated with the flow Laplacian L on the homogeneous tree Tq+1 can be thought
of as a discrete counterpart of the analysis of first-order Riesz transforms associated
with a distinguished Laplacian LG on the so-called ax+b-groups G, developed in
[24, 27, 36, 50, 51]. In the latter context the natural gradient —G is vector-valued, and
the operator RG = —G L

�1/2
G can be thought of as the vector of Riesz transforms,

whose components are the (first-order, scalar-valued) Riesz transforms on G; more
specifically, corresponding to whether the component under consideration is in the
direction of a or b in the ax+b-group, one speaks either of a vertical or a horizontal
Riesz transform on G. We point out that the discrete Riesz transform R = —L

�1/2

on Tq+1 studied in Chapter 4, despite being scalar-valued, should be thought of as
an analogue of the vector of Riesz transforms RG in the continuous setting, as the
flow gradient — is comparable (at least, as far as weak or strong type bounds are
concerned) with the “modulus of the (full) gradient” on Tq+1.

In the aforementioned works on ax+b-groups, the Lp-boundedness for p 2 (1,2]
of the full vector of Riesz transforms RG was established, together with weak type



Contents 5

(1,1) and H1 ! L1 endpoints, see [27, 50]. However, as far as we know, for p> 2 the
only currently available boundedness result concerns the horizontal Riesz transform
on the smallest ax+ b-group, for which Gaudry and Sjögren in [24] proved the
Lp-boundedness for all p 2 (2,•), as well as the weak type (1,1) boundedness of
the adjoint operator. In contrast, no analogous results for the vertical Riesz transform
appear to be available, and, a fortiori, the Lp-boundedness for p 2 (2,•) of the vector
of Riesz transforms RG appears to be so far an open problem.
Motivated by the lack of endpoint result for the adjoint Riesz transform R

⇤ on Tq+1,
and by the study of an analogue of the horizontal Riesz transforms in the continuous
setting of ax+b-groups (see [24], [23]), we also consider different Riesz transforms,
which we shall call horizontal Riesz transforms and denote by Re . They are defined
by means of a different notion of gradient, which we call horizontal gradient —e ,
namely

—e f (x) = Â
y2s(x)

e(y) f (y), x 2 Tq+1,

where e 2 L• has the cancellation property

Â
y2s(x)

e(y) = 0, x 2 Tq+1.

We shall show that the Lp-boundedness properties of the horizontal Riesz transform
for p 2 (1,•) can be deduced from the ones for R, but for the adjoint operator R

⇤
e

we are able to prove the weak type (1,1) boundedness.

In the second part of this thesis, we focus on trees endowed with the counting
measure and we investigate boundedness properties of Hardy–Littlewood maximal
operators.

We mention that some results on homogeneous trees endowed with the counting
measure, which is not a flow measure, have been obtained in the literature. More
precisely, Cowling, Meda, and Setti [14] and, independently, Naor and Tao [43]
studied the boundedness of the Hardy–Littlewood maximal function with respect to
the family of balls. More specifically, they proved that the centred Hardy–Littlewood



6 Contents

maximal operator M defined by

M f (x) = sup
r2N

1
|Br(x)| Â

y2Br(x)
| f (y)|, x 2 Tq+1

is of weak type (1,1) and bounded on Lp with respect to the counting measure for
every p 2 (1,•]. Here Br(x) is the ball centered at x 2 Tq+1 and |Br(x)| denotes its
cardinality. We study the modified centred Hardy–Littlewood maximal operator, i.e.,
for every g 2 (0,1] the operator M

g defined by

M
g f (x) = sup

r2N

1
|Br(x)|g Â

y2Br(x)
| f (y)|, x 2 Tq+1.

In [59], the author proves that M
1/2 is of restricted weak type (2,2) on Tq+1.

Using complex interpolation, we study the range of exponents (p,s) such that M
g

is either of strong or of weak type (p,s) on Tq+1. By showing counterexamples,
we also prove that the result in [59] is optimal in an appropriate sense. Then, we
focus on trees with (a,b)-bounded geometry, i.e., trees such that every vertex has
at least a+1 and at most b+1 neighbors, where 2  a  b are integers. By using
the fact that a tree T with (a,b)-bounded geometry can be naturally embedded into
a homogeneous tree Tb+1, we transfer part of our results for M

g on T . Finally,
we introduce the notion of quasi-isometry. Specifically, two graphs G and G0 are
quasi-isometric (in the sense of Kanai), if there exist a mapping j : G ! G0 and
constants 0 < K,b < •, 1  a < • such that

I) supx02G0 d0(j(G),x0) = K,

II) 1
a d(x,y)�b  d0(j(x),j(y)) ad(x,y)+b , x,y 2 G.

We discuss the robustness of our results by showing that if G and G0 are quasi-
isometric, we can deduce either strong or weak boundedness properties of the
Hardy–Littlewood maximal operator on G0 from either strong or weak boundedness
properties of the correspondent maximal operator on G.

The thesis is organized as follows. In Chapter 1 we focus on trees with root
at infinity T , we prove a number of geometric properties of locally doubling flow
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measures on T and we discuss a global Lp-Poincaré inequality for such measures.
Chapter 2 is devoted to the construction of a Calderón–Zygmund theory on a tree
with root at infinity endowed with a locally doubling flow measure. We prove some
classical results such as a Calderón–Zygmund decomposition of integrable functions,
the weak type (1,1) boundedness of a Hardy–Littlewood maximal functions, and
good interpolation properties of suitable Hardy and BMO spaces.
In Chapter 3 and 4 we focus on a model case: a homogeneous tree endowed with the
canonical flow measure. We show that various characterizations of the atomic Hardy
space fail and we prove the Lp boundedness of the Riesz transform for p 2 (2,•).
In the last chapter, several positive and negative boundedness results for the Hardy–
Littlewood maximal operators on trees T endowed with the counting measure are
discussed.

Along the thesis, C denotes a positive constant which may vary from line to
line. However, when the exact values are unimportant for us, we use the standard
notation f1(x). f2(x) to indicate that there exists a positive constant C, independent
from the variable x but possibly depending on some involved parameters, such that
f1(x)  C f2(x) for every x. When both f1(x) . f2(x) and f2(x) . f1(x) are valid,
we will write f1(x)⇡ f2(x).



Chapter 1

Trees and flow measures

In this chapter, we present some results obtained in collaboration with Levi, Tabacco
and Vallarino in [30] and [33]. We focus on trees with root at infinity T and
investigate a class of measures on T , namely, flow measures, which are a natural
family of nondoubling measures of at least exponential growth (see (1.4) for a precise
definition). We characterize the properties of being locally doubling, doubling, and
of exponential growth and we discuss the isoperimetric inequality in this setting.
Subsequently, we show that flow measures on trees satisfy a global version of the
Lp-Poincaré inequality.

1.1 Preliminaries and notation

An unoriented graph X is a vertex set V endowed with a symmetric relation ⇠. If
x ⇠ y we say there is an edge connecting x to y, which we identify with the one
connecting y to x. The set of (unoriented) edges is denoted by E. From now on, we
identify the graph X with its set of vertices V . Since X is a discrete set, every positive
function on X defines a measure. With some abuse of notation, given a function
n : X ! R+ we also denote by n the associated measure, given by

n(A) = Â
x2A

n(x), A ✓ X .

Obviously, the counting measure is associated to the constant function equal to 1.
For any subset A ⇢ X we denote by |A| the cardinality of A. We define the degree
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function as deg(x) = |{y 2 X : y ⇠ x}| for every x 2 X , and we set q(x) = deg(x)�1
for convenience of notation. We say that the graph is of bounded degree b+ 1 if
there exists a positive constant b such that supx2X deg(x) = b+1.
Consider a sequence of vertices {x j} such that x j ⇠ x j+1. A path of length n 2 N
connecting two vertices x and y is a sequence {x0,x1, . . . ,xn}⇢ X , with no repeated
vertices, such that x0 = x, xn = y, and xi ⇠ xi+1 for every i = 0, . . . ,n� 1. The
distance d(x,y) is defined as the minimum of the lengths of the paths connecting
x and y. If the path g = {x j}n

j=0 is finite, x0 and xn are called the endpoints of g .
The geodesic distance d(x,y) counts the minimum number of edges one has to cross
while moving from x to y along a path. Any path realizing such a distance for every
couple of vertices belonging to it is called a geodesic. We denote by G the family of
geodesics.
A graph is connected if every couple of vertices belongs to a path. A subset C of a
graph X is connected if C is connected as subgraph of X .
For every subset C of X , the diameter of C is diam(C) = sup{d(x,y) : x,y 2C}. Let
Sr(x0) = {x 2 X : d(x,x0) = r} and Br(x0) = {x 2 X : d(x,x0) r} be, respectively,
the sphere and the ball of radius r 2N centered at x0 2 X with respect to the geodesic
distance metric.
We say that n is a locally doubling measure if, for every r > 0, there exists a constant
Cr such that

n(B2r(x0))Crn(Br(x0)), x0 2 X . (1.1)

If there exists a universal constant C > 1 such that for every r > 0, the inequality
(1.1) holds with Cr =C, then the measure n is said (globally) doubling.
We denote by CX the space of all complex-valued functions on X . For any 1 
p < •, we denote by Lp(X ,n) the space of f 2 CX such that the norm k fkLp(X ,n) =⇣

Âx2X | f (x)|pn(x)
⌘1/p

is finite, and by L•(X ,n) the space of function such that
k fkL•(X ,n) = supx2X | f (x)|< •.

For every function f 2 CX we define the modulus of the gradient of f as the
function d f : X ! R defined by

d f (x) = Â
y⇠x

| f (x)� f (y)|, x 2 X .

We say that (X ,n) satisfies a local Lp-Poincaré inequality, p 2 [1,•], if for any
R > 0 there exists a positive constant Pp(R) such that for every function f 2 CX and
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every connected set C of diameter 0  2r  R it holds

k f � fCkLp(C,n)  Pp(R)rkd fkLp(C,n), (1.2)

where fC = 1
n(C) Âx2C f (x)n(x).

If the constant Pp(R) may be made independent of R, then we say that (X ,n)
satisfies a global Lp-Poincaré inequality. More precisely, (X ,n) satisfies a global
Lp-Poincaré inequality, p 2 [1,•], if there exists a positive constant Pp such that for
any function f 2 CX and any connected set C of diameter 2r it holds

k f � fCkLp(C,n)  Pprkd fkLp(C,n). (1.3)

Notice that when E is a ball, (1.2) and (1.3) are the standard local and global
Lp-Poincaré inequalities studied in the literature [10, 16, 48, 11, 47].

Connected graphs having no paths with repeated vertices are called trees. In
particular the relation ⇠ is never transitive on a tree. Also, it is clear that trees are
uniquely geodesic spaces: for every couple of vertices x,y in a tree, there exists a
unique path (which is necessarily a geodesic) having x and y as endpoints. Hence,
without risk of confusion, we denote by [x,y] such a geodesic.

1.2 Trees with root at infinity

Let T = (V,E) be a tree. We fix a distinguished point o 2 T which we call the
origin of the tree. We write G0 for the family of half infinite geodesics having an
endpoint in the origin, G0 = {g = {x j}•

j=0 2 G,x0 = o}. The boundary of the tree
∂T is classically identified with the set of labels corresponding to elements of G0,

∂T = {zg : g 2 G0}.

A point z 2V =V [∂T can be chosen to play the role of root of the tree. The role of
such a point is to induce a partial order relation on V , or more intuitively, to act as a
base point for a radial foliation of the tree. We say that x � y if and only if x 2 [z,y].
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We define the projection of x on the geodesic [o,z] as

Pz(x) = arg min
y2[o,z]

d(x,y),

and the level of x as
`(x) = d(o,Pz(x))�d(Pz(x),x).

Notice that x � y if and only if `(x)� `(y) = d(x,y). Observe that if x  o, then
`(x) = �d(x,o). In particular, if one chooses the root to coincide with the origin,
then the level of a point is just (minus) its distance from the origin, i.e., its radial
coordinate, and the tree can be interpreted as a model for the unit disc D. In
this chapter, however, we decide to fix the root as a point zg 2 ∂T , g being a
distinguished half infinite geodesic starting at the origin. With this choice, the
geometric interpretation of a level set in the unit disc is not so neat anymore. Instead,
it is helpful to switch to a half-plane model point of view; in analogy to the conformal
transformation of the unit disc onto the upper-half plane, mapping ∂D\{z} to R and
z to the point at infinity, we can interpret the tree rooted at zg as a conformal copy
of the one rooted at the origin, and its boundary as a representation of the Riemann
sphere. Following this point of view, hereinafter we will write W for {zg 2 G0\{zg}}
and interpret zg as a separate special point (the point at infinity). It is easily seen
that, with the upper-half plane model in mind, a level set plays the role of a line
parallel to the real axis, which in the disc model would be an horocycle tangent to
the boundary point zg, and the level of a point plays the role of the y�coordinate in
the parametrization of the tree.

We define some further notation that will be useful. Given a vertex x, the
predecessor of x is the unique vertex p(x) such that x ⇠ p(x) and `(p(x)) = `(x)+1,
while y is a successor of x if it belongs to the set s(x) = {y ⇠ x : `(y) = `(x)�1}.
Observe that |s(x)|= q(x). We define the confluent of x,y 2V to be the point

x^ y = argmax{`(u) : u 2 [x,y]}= argmin{`(u) : u � x,u � y}.

Observe that the level function can be written as `(x) = d(x^o,o)�d(x^o,x). The
tent rooted in x is the set Vx = {y 2 T : y  x} and we denote by Wx its boundary,
Wx = {z 2 W : z  x}= {z 2 W : z ^x = x}. The family {Wx}x2T can be used as a
base for the topology on W. Borel measures on the boundary can then be considered,
accordingly.
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Finally, we introduce the following convenient notation which will be widely
used throughout the chapter: whenever we fix a vertex x0, we denote by xk its k�th
predecessor, namely xk = pk(x0) for any integer k � 1. Clearly xk = xk(x0) depends
on x0, but since the basis point x0 will always be clear from the context we will
simply write xk.

1.2.1 Flow measures

From now on, T will always denote a tree rooted at zg 2 ∂T , endowed with the level
structure described above, and V the set of its vertices. We say that m is a flow if, for
every x 2 T , it holds

m(x) = Â
y2s(x)

m(y). (1.4)

Flow measures on T are special in the fact that they are in a 1-1 relation with Borel
measures on the boundary of the tree. More precisely, any flow measure m can be
extended to a measure on W through the correspondence

m(Wx) = m(x), (1.5)

and conversely, if m is a non-negative Borel measure on W, then the function m :
T ! R defined by (1.5) is a flow (by the additivity property of measures). We are
interested in the relation between flow measures and the doubling property.

Next technical lemma provides explicit expressions for the mass of spheres and
balls for a general flow measure and useful upper and lower bounds for the ratio
between measures of balls.

Lemma 1.2.1. Let m be a flow measure. Fix x0 2 T and, for k � 0, let xk = pk(x0).
For every r 2 N, the following hold:

(i) m(Sr(x0)) = m(xr�1)+m(xr);

(ii) m(Br(x0)) = 2
r�1

Â
j=0

m(x j)+m(xr);

(iii)
m(x2r)

(2r+1)m(xr)
 m(B2r(x0))

m(Br(x0))
 (4r+1)m(x2r)

m(xr)
.
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Proof. Define the l�level slice of the sphere Sr(x0) as Sl
r(x0) = Sr(x0)\ {x 2 T :

`(x) = l}, and set l(k) = `(x0)� r+2k. Then

Sr(x0) =
r[

k=0
Sl(k)

r (x0).

It is easily seen that

Sl(0)
r (x0) = {x 2 T : x  x0,`(x) = l(0)},

Sl(k)
r (x0) = {x 2 T : x  xk,`(x) = l(k)}\{x 2 T : x  xk�1}.

Observe that m(Sl(0)
r (x0)) =m(x0), Sl(r)

r (x0) = xr and, for 1 k  r�1, Sl(k)
r (x0) 6= /0

if and only if q(xk)� 2. If m is a flow measure, then

m(Sl(k)
r (x0)) = m(s(xk))�m(s(xk�1)) = m(xk)�m(xk�1), 1  k  r�1,

which equals zero if q(xk) = 1, as expected. The flow measure of the sphere, for
r � 1, is then given by

m(Sr(x0)) =
r

Â
k=0

m(Sl(k)
r (x0)) = m(x0)+m(xr)+

r�1

Â
k=1

⇥
m(xk)�m(xk�1)

⇤

= m(xr�1)+m(xr). (1.6)

We can now compute the flow measure of the ball Br(x0) using its foliation by means
of spheres:

m(Br(x0)) =
r

Â
j=0

m(S j(x0)) = m(x0)+
r

Â
j=1

[m(x j�1)+m(x j)] = 2
r�1

Â
j=0

m(x j)+m(xr).

(1.7)
Clearly m(Br(x0))� Âr

j=0 m(x j). Moreover,

m(x2r)

(2r+1)m(xr)


2r

Â
j=0

m(x j)

2
r�1

Â
j=0

m(x j)+m(xr)

 m(B2r(x0))

m(Br(x0))


2
2r�1

Â
j=0

m(x j)+m(x2r)

r

Â
j=0

m(x j)

 (4r+1)m(x2r)

m(xr)
,
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as required by (iii).

Next proposition gives a property which is equivalent to the locally doubling
condition.

Proposition 1.2.2. Let m be a flow measure. The following are equivalent.

(i) The measure m is locally doubling.

(ii) There exists a constant c > 1 such that

m(x) cm(y), x 2 T,y 2 s(x), (1.8)

m(x)� c
c�1

m(y), x 2 T with q(x)� 2,y 2 s(x). (1.9)

Proof. Assume that (1.8) holds. Then for any x0 2 T and r > 0, from Lemma 1.2.1
we have

m(B2r(x0))

m(Br(x0))
 (4r+1)cr =Cr.

Conversely, let m be a locally doubling flow. Then, for every x 2 T , y 2 s(x) and
z 2 s(y), again from (1.1) and Lemma 1.2.1,

C1 �
m(B2(z))
m(B1(z))

� m(x)
3m(y)

. (1.10)

If (1.8) did not hold, we could find two sequences of vertices {x j} and {y j}, with
y j 2 s(x j), such that limsup j m(x j)/m(y j) = +•, contradicting (1.10). Moreover,
such an inequality implies that q(x) c for all x 2 T . Indeed,

m(x) = Â
y2s(x)

m(y)� 1
c Â

y2s(x)
m(x) =

q(x)m(x)
c

.

Then, for x 2 T with q(x)� 2 we have

m(x) = m(y)+ Â
z2s(x)\{y}

m(z)� m(y)+
q(x)�1

c
m(x),

from which it follows that

m(x)� c
c�q(x)+1

m(y)� c
c�1

m(y).
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This completes the proof.

In the previous proof it was shown a fact which is itself important and we prefer
to state here as a corollary to enlighten it.

Corollary 1.2.3. If T admits a locally doubling flow measure, then

q(x) c, x 2 T,

with the same constant c as in (1.8).

Observe that the opposite is not true, i.e., not every flow on a tree of bounded
degree is locally doubling. In fact, it is clear that any measure m with a super
exponential growth along the geodesic g, so not satisfying (1.8), can be defined
outside g in such a way to be a flow.

Remark 1.2.4. Note that unless T = Z, namely the trivial tree where each vertex
has exactly two neighborhoods (a predecessor and a successor), in fact the constant
c in (1.8) must be greater or equal than 2, as a consequence of Corollary 1.2.3.

Remarkably, it turns out that trees with root at infinity do not admit doubling flow
measures, unless almost all of their vertices have only one successor. Let n : G ! N
be the function counting the number of vertices having at least two successors along
each geodesic,

n(g) = |{y 2 g : q(y)� 2}|.

Proposition 1.2.5. A locally doubling flow measure on T is doubling if and only if T
has bounded degree and

sup
g2G

n(g) = M < •. (1.11)

Proof. Let (1.11) hold, m be a locally doubling flow and c be the constant in (1.8).
Then for every x0 2 T,r � 2, it holds

m(B2r(x0))

m(Br(x0))
 (4r+1)m(x2r)

(r�1)m(xdr/2e)


(4r+1)cMm(xdr/2e)

(r�1)m(xdr/2e)
 9cM.

If r = 1, we easily get the uniform boundedness of m(B2(x0))
m(B1(x0))

by the definition of
locally doubling measure. Hence, m is doubling.
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Conversely, let m be a doubling flow, C the doubling constant and x,z 2 T with
z > x. Choose x0 < x such that r = d(x0,x) = 2d(x,z). Then,

C � m(B2r(x0))

m(Br(x0))
�

2Â2r�1
j=3r/2 m(x j)

(2r�1)m(x)
� rm(z)

(2r�1)m(x)
.

Hence, m(z)  3Cm(x). On the other hand, m is locally doubling, so by (1.9)
m(z) � kn([p(x),z])m(x). Then, n([p(x),z])  logk(3C). By the generality of x and z
the result follows.

Observe that it is enough to take the supremum in (1.11) over doubly infinite
geodesics having one of the endpoints in zg: in fact, if z ,h 2 ∂T \{zg}, then clearly
n([z ,h ]) n([z ,zg])+n([h ,zg]). We have the following characterization.

Theorem 1.2.6. A tree T rooted at infinity admits a doubling flow measure if and
only if it has bounded degree and (1.11) holds.

Proof. Clearly if T admits a doubling measure then it must have bounded degree by
Corollary 1.2.3 and satisfies (1.11) by Proposition 1.2.5. Conversely, let T be a tree
satisfying (1.11) and suppose that q(x)  c for every x 2 T . Then any measure m
satisfying m(p(x)) = q(p(x))m(x) at every vertex x is a locally doubling flow since
m(p(x)) cm(x). We conclude by Proposition 1.2.5.

Definition 1.2.7. We say that m has at least exponential growth if, for one (and
therefore all) x0 2 T , there exist r0 = r0(x0) 2N, b = b (x0)> 0 and a = a(x0)> 0
such that m(Br(x0))� bear for all r > r0.

Proposition 1.2.8. Let m be a locally doubling flow. Then m has at least exponential
growth if and only if for one (and therefore all) x0 2 T there exist r0 = r0(x0) 2 N
and a = a(x0)> 0 such that n([x1,xr])� ar for all r > r0.

Proof. For the sufficient condition, by (1.9) we have that for any x0 2 T and r � r0

m(Br(x0))� m(xr)� m(x0)kn([x1,xr]) � m(x0)kar � bear.

Conversely, assume that m has at least exponential growth. Then for some a,b ,r0

and all r > r0 we have

bear  m(Br(x0)) (2r+1)cn([x1,xr])m(x0),
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where c is the constant in (1.8). Then we get

cn([x1,xr])/r � ea
⇣ b
(2r+1)m(x0)

⌘1/r
�! ea > 1 as r ! •.

The assumption that there exists an x0 2 T such that liminf
r!•

n([x1,xr])/r = 0 would
then lead to a contradiction.

Definition 1.2.9. We say that a measure m satisfies the isoperimetric inequality on T
if there exists a constant Ciso > 0 such that for every bounded A ⇢ T

m(∂A)�Cisom(A),

where the boundary of A is defined as ∂A = {x 2 A : 9 y 2 Ac such that y ⇠ x}.

We observe that the isoperimetric inequality does not hold for flow measures on
T .

Proposition 1.2.10. A flow measure does not satisfy the isoperimetric inequality.

Proof. Let m be a flow measure. Given a ball B = Br(x0), r > 0 and x0 2 T , set
B� = B\{x 2 T : x  x0}. It is clear that

m(∂B�)

m(B�)
=

2m(x0)

(r+1)m(x0)
=

2
r+1

! 0, as r !+•.

1.2.2 Poincaré inequality for flow measures on trees

Let T be a tree with root at infinity such that deg(x)� 2 for every x 2 T . We denote
by F the family of flow measures on T . We define the flow gradient acting on
functions f 2 CT as

— f (x) = f (p(x))� f (x), x 2 T.

Observe that for any f 2 CT and x 2 T, |— f (x)| d f (x).

We now prove a global Lp-Poincaré inequality on connected sets for trees en-
dowed with flow measures. What is remarkable here, is that the tree is not required
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to have bounded degree. As far as we know, there are no examples in literature of
global Poincaré inequalities in the setting of a metric measure space of exponential
growth.

Theorem 1.2.11. Let C ⇢ T be a connected set with diam(C) = 2r, p 2 [1,•] and f
any function on T . Then, for every m 2 F, (T,m) satisfies the Lp-Poincaré inequality
(1.3) with Pp = 4, i.e.,

k f � fCkLp(C,m)  4rkd fkLp(C,m).

Proof. Let C ⇢ T be a finite connected set with diam(C) = 2r. It is easy to see that

sup
x2C

|{z 2C : z � x}| 2r. (1.12)

Denote by xC the vertex with maximum level in C. Then, we have that

| f (x)� fC| Â
y2C

✓
Â

xC�z�x
|— f (z)|+ Â

xC�z�y
|— f (z)|

◆
m(y)
m(C)

 2k— fkL•(C,m) sup
x2C

|{z 2C : z � x}

 4rk— fkL•(C,m).

Passing to the supremum and using the fact that |— f |  d f , we get the desired
inequality when p = •.

Assume now p 2 [1,•). By applying Jensen’s inequality, we get that

Â
x2C

| f (x)� fC|pm(x) = Â
x2C

���� Â
y2C

( f (x)� f (y))
m(y)
m(C)

����
p
m(x)

 Â
x2C

Â
y2C

| f (x)� f (y)|p m(y)
m(C)

m(x)

 Â
x2C

Â
y2C

✓
Â

xC�z�x
|— f (z)|+ Â

xC�z�y
|— f (z)|

◆p m(y)
m(C)

m(x).
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Then, since (a+b)p  2p�1(ap+bp) for any a,b � 0, by Hölder’s inequality, (1.12)
and Fubini’s Theorem we obtain

Â
x2C

Â
y2C

✓
Â

xC�z�x
|— f (z)|+ Â

xC�z�y
|— f (z)|

◆p m(y)
m(C)

m(x)

 2p(2r)p/p0 Â
x2C

Â
xC�z�x

|— f (z)|pm(x)

= 2p(2r)p/p0 Â
z2C

|— f (z)|p Â
C3xz

m(x)

 2p(2r)p/p0+1 Â
z2C

|— f (z)|pm(z).

In the last line we have used that, for a flow measure, ÂC3xz m(x) m(z)diam(C).
Since |— f | d f , the above inequalities imply the desired result.



Chapter 2

Calderón–Zygmund theory for flow
measures on trees

In this chapter, we collect the main results of [30], where we develop a Calderón–
Zygmund theory on the setting of a tree rooted at infinity endowed with locally
doubling flow measures. The classical Calderón–Zygmund theory heavily relies
on the fact that metric balls enjoy the doubling property with respect to the given
measure. As shown in the previous chapter, flow measures on the tree tested on balls
are typically nondoubling. For this reason, inspired by the seminal work [27], we
substitute balls with a different family of sets which turn out to be doubling in an
appropriate sense, and can be used as base sets for building up a Calderón–Zygmund
theory in this context. In particular, we obtain a Calderón–Zygmund decomposition
for integrable function and we define BMO and Hardy spaces, proving a number
of desired results extending the corresponding theory as known in more classical
settings. Finally, we show that such spaces satisfy good interpolation properties,
both with respect to the real and the complex interpolation methods, so that they can
be used for endpoint boundedness results for integral operators.

2.1 Calderón–Zygmund theory

Assumptions. In this chapter, we will assume that T is a tree rooted at zg 2 ∂T , V is
its set of vertices, and
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(1) m : T ! R+ is a locally doubling flow measure;

(2) c is the constant in (1.8) and in particular q(x) c for every x 2 T .

By Corollary 1.2.3 (2) is a consequence of (1), but we explicitly state it here to recall
once and for all the notation of the constant c.

2.1.1 Admissible trapezoids

As proved in Theorem 1.2.6, flow measures are in general nondoubling. Inspired
by [27], we introduce a family of sets that we call admissible trapezoids. For
h00 > h0 2 N\{0}, we define the trapezoid rooted at x0 2 T of parameters h0,h00 as

R = Rh00
h0 (x0) = {x 2 T : x  x0, `(x0)�h00 < `(x) `(x0)�h0}.

Observe that if m is a flow measure, then

m(R) = m(x0)(h00 �h0).

For such reason, we call the quantity h(R) = h00 �h0 the height of the trapezoid.

Singletons are also considered to be trapezoids. Given a number b � 12, we say
that a trapezoid R is admissible (with respect to b ) if either R = {x0} or R = Rh00

h0 (x0),
with 2  h00/h0  b , for some x0 2 T . We fix b once for all and we denote by
F = F (b ) the corresponding family of admissible trapezoids. This specific lower
bound on b is needed to guarantee enough room to perform the expansion algorithm
described below.

2.1.2 Decomposition and expansion algorithms

We now describe procedures to define decompositions and expansions of admissi-
ble trapezoids. Let R = Rh00

h0 (x0) 2 F , and set g = h00/h0. We have the following
decomposition algorithm:

• if R = {x0}, we are done;
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• if h0 = 1 and h00 = 2, cut R in the disjoint union of its vertices: they are at most
c, sons of x;

• if h0 = 1 and h00 = 3 or g � 4, cut R horizontally producing

Ru = R2h0
h0 (x0), Rd = Rh00

2h0(x0);

• else, cut R vertically producing

Ry = Rh00�1
h0�1 (y), y 2 s(x0).

It is easy to see that in any case the sub-trapezoids produced as above are admissible.
Let F (R,1) be the output of the algorithm, which is a family of at most c trapezoids
forming a partition of R, and for k � 1 let F (R,k+1) be the family of trapezoids
produced by applying the decomposition algorithm to each element of F (R,k).
Observe that the algorithm can be iterated until one reaches the trivial partition of
the given trapezoid R, which is the one constituted of singletons only.

Conversely, if we want to produce the “father” of the given admissible trapezoid
R, we proceed via the following expansion algorithm:

• if R = {x0}, we expand it to R0 = s(p(x0));

• if h0 = 1 and h00 = 2, we expand R to R0 = R3
1(p(x0));

• if g � 3, we expand R horizontally to R0 = Rh00+1
h0+1 (p(x0));

• else, we can decide whether to expand R down vertically to R0 = R2h00
h0 (x0) or

up vertically to R0 = Rh00
bh0/2c(x0).

Observe that no vertical expansion is performed as far as h0 = 1, so that also the
up-vertical expansion is always properly defined. It is easy to check that any of the
above expansion steps produces a new admissible trapezoid R0 which contains R.
The following property can be considered as a substitute for the doubling property in
the proposed contest.

Proposition 2.1.1. Let R 2 F , R0 be its expansion and Q 2 F (R,1). Then,

1
eC

m(R0) m(R) eCm(Q),
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where eC = max{2c,b �1,3}.

Proof. Let R = Rh00
h0 (x0) be an admissible trapezoid, Q 2 F (R,1) and R0 the expan-

sion of R. The following estimates hold:

m(R)

8
>>>>><

>>>>>:

m(Q), if R = {x0}

(b �1)m(Q) if Q = Ru

3m(Q)/2, if Q = Rd

cm(Q), otherwise,

m(R0)

8
>>>>><

>>>>>:

cm(R), if R = {x0} or g � 3

2cm(R), if h0 = 1,h00 = 2

3m(R), if R0 is down vertical expansion of R

5m(R)/2 if R0 is up vertical expansion of R.

2.1.3 Hardy–Littlewood maximal function

In this section we prove the Lp boundedness for p 2 (1,•] and the weak type (1,1)
boundedness of the Hardy–Littlewood maximal function associated to the family F .
Given a function f 2 CT , its maximal function M f at a vertex x is defined by

M f (x) = sup
R3x

1
m(R) Â

y2R
| f (y)| m(y),

where the supremum is taken over all R 2 F such that x 2 R.
Given R = Rh00

h0 (x) 2 F we define its envelope as

R̃ = Rdbh00e
d h0

b e
(x).

Then, given a R 2 F with root x 2 T , we have that

m(R̃) =
✓
dbh00e�dh0

b
e
◆

m(x),
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and if h0  b then

dbh00e�dh0

b
e  bh00+1�1 = bh00.

If h0 > b then,

dbh00e�dh0

b
e  bh00+1� h0

b
 bh00.

Summing up and using that m(R) = m(x)(h00 �h0)� m(x)h00/2, because R is admis-
sible, we have that

m(R̃) 2bm(R), (2.1)

We point out that (2.1) replaces the usual doubling condition for metric balls. In
order to prove the boundedness of the Hardy–Littlewood maximal function we need
the following technical lemma.

Lemma 2.1.2. Let R1,R2 2 F with roots x1,x2 respectively, such that R1 \R2 6= /0
and m(x1)� m(x2). Then

R2 ⇢ R̃1.

Proof. If R1 and R2 are singletons, then they coincide. If R2 = {x2}, then R1\R2 6= /0
implies x2 2 R1 ⇢ R̃1. If R1 = {x1}, then R1 \R2 6= /0 implies x1 2 R2, but, since
m(x1)� m(x2), it follows x1 = x2.

Consider now the case when R1 = Rh001
h01
(x1),R2 = Rh002

h02
(x2) are both not singletons.

Define `i = `(xi). Since R1 \R2 6= /0, there exists x 2 R1 \R2; hence `(xi)� `(x). It
is easy to see that the existence of x implies that x2 lies below x1 and in particular
`2  `1. Moreover, `i �h00i +1  `(x) ` j �h0j, with i, j = 1,2. Thus

8
<

:
`1 � `2 � h01 �h002 +1,

`1 � `2  h001 �h02 �1.
(2.2)

Let x be a vertex in R2. By definition we have h02  `2 � `(x) h002 �1. By (2.2)

`1 � `(x) = `1 � `2 + `2 � `(x)< b (h001 �
h002
b

+1)+h002 �1 < bh001  dbh001e.
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Again, by (2.2),

`1 � `(x) = `1 � `2 + `2 � `(x)>
1
b
(h01 �bh02 +1)+h02 >

h01
b
,

hence, we deduce `1 � `(x)� dh01
b e. In conclusion, x 2 R̃1.

We remark that

kM fkL•(m)  k fkL•(m), f 2 L•(m). (2.3)

We can now state the main result of this section.

Theorem 2.1.3. The following hold.

(i) For all f 2 L1(m) and l > 0

m({x 2 T : M f (x)> l}) 2b
l

k fkL1(m);

(ii) for every p2 (1,•), M is bounded on Lp(m) with constant at most 2
✓

2b p
p�1

◆1/p
.

Proof. Property (ii) follows by (i) and (2.3) by the Marcinkiewicz interpolation
Theorem. For proving (i), by means of Lemma 2.1.2, we can follow closely the
proof of [27, Th. 3.1].
Let l > 0, f 2 L1(m) and set

Wl = {x 2 T : M f (x)> l}, S0 =

⇢
R 2 F :

1
m(R) Â

y2R
| f (y)| m(y)> l

�
.

For all R 2 S0, letting xR be the root of R, we have

m(xR) m(R)<
1
l
k fkL1(m).

S0 is countable hence we can introduce an order on it. We say that R � Q if
m(xR)� m(xQ). Let R1 be the maximal trapezoid in S0 with respect to � (it exists
because of the previous estimate) which appears first in the order. Define S1 = {R 2
S0 : R\R1 = /0}.
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Let R2 be the maximal admissible trapezoid in S1 which appears first in the ordering.
So we can define inductively the sequences

Si+1 = {R 2 Si : R\R j = /0, j  i},

and Ri+1 2 Si+1 is the maximal trapezoid with respect to � which appears first in
the ordering. We claim that

8R 2 S0 9Ri : R\Ri 6= /0, m(xRi)� m(xR). (2.4)

By Lemma 2.1.2, (2.4) in particular implies that R ⇢ R̃i. Now we prove the claim: it
suffices to show that there exists j 2 N such that R 2 S j \S j+1. By contradiction, if
such a j does not exist, then 9 k such that Sk contains infinite admissible trapezoids
{Tl}l such that Tl \Ti = /0 if i 6= j, m(xTl) = max{m(xR) : R 2 Sk}, Tl \R = /0. Now
we set

Rk = T1, ...,Rk+i = Ti+1, . . . ,

then

+•

Â
i=k

m(xRi)
+•

Â
i=k

m(Ri)
•

Â
i=k

1
l Â

y2Ri

| f (y)| m(y)
k fkL1(m)

l
,

and the left hand side is infinite. Thus the claim is proved. Define E = [iR̃i and
notice that Ec ⇢ Wc

l . Indeed if x 2 Ec and R 2 F contains x then R /2 S0. We
conclude that for x 2 Ec

M f (x) = sup
R3x,R/2S0

1
m(R) Â

y2R
| f (y)| m(y) l ,

hence x /2 Wl . In conclusion

m(Wl ) m(E) Â
i

m(R̃i) 2b Â
i

m(Ri) 2b 1
l
k fkL1(m),

as required.
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2.1.4 Calderón–Zygmund decomposition

The aim of this subsection is to introduce a Calderón–Zygmund decomposition in our
setting. We first prove the existence of a partition of T consisting of big admissible
trapezoids, in the sense that, if we fix any s > 0, each set of such a partition has
measure larger than s .

Lemma 2.1.4. For all s > 0 there exists a partition P ⇢ F of T , such that

m(R)> s , R 2 P.

Proof. For all n 2 Z let xn denote the vertex in g such that `(xn) = n. We consider
two cases, either {m(xn)}n2Z diverges as n ! +• or {m(xn)}n2Z is bounded. If
m(xn)!+•, then there exists n 2 N such that m(xn)> sc for all n � n where c is
as in (1.8). For any y 2 T set Ry

l = R2l

2l�1(y) for all l 2 N. We define P as

P = {Ry
l : l 2 N, y 2 {xn�1}[ (s(xn)\g), n � n}[{s(x j) : j � n}.

This concludes the proof when {m(xn)}n2Z diverges.

Now assume that {m(xn)}n2Z is bounded. By (1.9), there are finitely many
indices n 2 N such that q(xn)� 2. Let xl denote the vertex in g with maximum level
such that q(xl) � 2. By the definition of flow we have that m(xn) = m(xl) if n � l.
First, notice that there exists p 2 N such that 2p�1m(xl) > s , thus we can cover
the upper part of the tree with trapezoids Uk = R2p

2p�1(xl+2p�1k) where k � 1 and
m(Uk) = 2p�1m(xl)> s for all k. Subsequently, we cover the lower part of the tree
with trapezoids L j = R2 j+1

2 j (xl+2p�1) with j � p. Observe that m(L j) = 2 jm(xl) �
2pm(xl)> s . We conclude by defining

P = {Uk}k�1
[
{L j} j�p.

Next lemma provides a quite general procedure to determine a family of stopping
sets for a given testing condition on the size of the L1 mean of a function. Several
results in the thesis will rely on such a scheme as a basic step.

Lemma 2.1.5. Let f 2CT , a > 0 and R2F be such that 1
m(R) Ây2R | f (y)| m(y)<a .

Then, there exists a family G of disjoint admissible trapezoids contained in R such
that for each E 2 G the following hold:
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(i)
1

m(E) Â
y2E

| f (y)| m(y)� a;

(ii)
1

m(E) Â
y2E

| f (y)| m(y)< eCa;

(iii) if x 2 R\
S

E2G E, then | f (x)|< a .

Proof. We apply the decomposition algorithm to R: if Q 2 F (R,1) is such that
1

m(Q) Ây2Q | f (y)| m(y) � a then we stop and declare Q 2 G , otherwise, if Q is
divisible (i.e., it is not a singleton) we split it up applying again the decomposition
algorithm. We iterate the above reasoning until R is partitioned in some stopping
sets E such that 1

m(E) Ây2E | f (y)| m(y) � a (some of which may be singletons)
and some singletons x at which | f (x)| = 1

m(x) Ây2{x} | f (y)| m(y) < a . Let G be
the family of the stopping sets. Then (i) and (iii) hold by construction. To prove
(ii): for each E 2 G there exists k � 1 such that E 2 F (R,k). Let E 0 be the
unique set in F (R,k� 1) such that E 2 F (E 0,1). Then E ⇢ E 0, m(E 0)  eCm(E),
where eC is the constant in Proposition 2.1.1, and, since E 0 is not a stopping set,

1
m(E 0) Ây2E 0 | f (y)| m(y)< a . Hence

1
m(E) Â

y2E
| f (y)| m(y)

eC
m(E 0) Â

y2E 0
| f (y)| m(y)< eCa.

Now we state the main result of this section, namely the Calderón–Zygmund
decomposition of integrable functions.

Theorem 2.1.6 (Calderón–Zygmund decomposition). For every f 2 L1(m) and
a > 0, there exist a family {Ei} of disjoint admissible trapezoids and functions g, bi

such that f = g+Âi bi and

(i) |g| eCa;

(ii) bi = 0 on (Ei)c;

(iii) kbikL1(m)  2eCam(Ei) and Ây2Ei bi(y) m(y) = 0;

(iv) Â
i

m(Ei)
k fkL1(m)

a
.



2.2 BMO and Hardy spaces 29

Proof. Let P ⇢ F be a partition of T such that for all R 2 P we have m(R) >
k fkL1(m)

a . Then, for every R 2 P , it holds 1
m(R) Ây2R | f (y)| m(y) < a , and we can

apply Lemma 2.1.5. Let G (R) be the family of stopping sets generated by R and let
{Ei} be a listing of the sets belonging to G (R) for some R 2 F . We define now

g(x) =

8
><

>:

1
m(Ei)

Â
y2Ei

f (y) m(y) if x 2
S

i Ei,

f (x) else,

bi(x) =
✓

f (x)� 1
m(Ei)

Â
y2Ei

f (y) m(y)
◆

cEi(x).

By Lemma 2.1.5, |g(x)| eCa. Every bi is supported in Ei and Ây2Ei bi(y) m(y) = 0.
Moreover,

kbikL1(m)  2 Â
y2Ei

| f (y)| m(y) 2eCam(Ei),

and

Â
i

m(Ei)
1
a Â

i
Â

y2Ei

| f (y)| m(y)
k fkL1(m)

a
,

as required.

2.2 BMO and Hardy spaces

This section is devoted to the definition and the study of properties of BMO and
Hardy spaces in our setting.

2.2.1 BMO spaces

We introduce the space of bounded mean oscillation functions. In the following, for
every f 2 CT and R 2 F , we denote by fR the integral average of f on R, i.e.,

fR =
1

m(R) Â
y2R

f (y) m(y).
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Definition 2.2.1. Given q 2 [1,•) we define BMOq(m) as the space of all functions
f 2 CT such that

k fkBMOq = sup
R2F

✓
1

m(R) Â
y2R

| f (y)� fR|q m(y)
◆1/q

< •,

quotiented over constant functions. It can be easily shown that (BMOq(m),k ·kBMOq)

is a Banach space.

As an immediate consequence of Hölder’s inequality we have that for every
q 2 [1,•)

k fkBMO1  k fkBMOq , (2.5)

thus BMOq(m)⇢ BMO1(m). To prove the reverse inclusion we shall first show that
the following John-Nirenberg inequality holds in our setting.

Theorem 2.2.2 (John-Nirenberg inequality). There exist constants h ,A > 0 such
that, for all f 2 BMO1(m):

(i) sup
R2F

1
m(R) Â

y2R
exp

✓
h

k fkBMO1

| f (y)� fR|
◆

m(y) A;

(ii) m({x 2 R : | f (x)� fR|> tk fkBMO1}) Ae�htm(R), t > 0 and R 2 F .

Proof. Suppose that f 2 CT is not constant, otherwise the result is trivial. Let
R0 2 F . If R0 = {x0}, then fR0 = f (x0) and

1
m(R0)

Â
y2R0

exp
✓

h
k fkBMO1

| f (y)� fR0 |
◆

m(y) = 1,

thus it is sufficient to choose A � 1.
If R0 6= {x0}, we have

1
m(R0)

Â
y2R0

| f (y)� fR0 | m(y)< 2k fkBMO1 .

Applying Lemma 2.1.5 to the function f � fR0 with a = 2k fkBMO1 , we get a
family G of disjoint stopping sets contained in R0 satisfying properties (i), (ii) and
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(iii) in the lemma. In particular by (i) it follows that

m
� [

E2G

E
�
= Â

E2G

m(E)<
1

2k fkBMO1
Â

E2G

Â
y2E

| f (y)� fR0 | m(y)

 1
2k fkBMO1

Â
y2R0

| f (y)� fR0 | m(y) m(R0)

2
.

(2.6)

For each stopping set E 2 G we have

| fE � fR0 | | fE � fE 0 |+ | fE 0 � fR0 |

 1
m(E) Â

y2E
| f (y)� fE 0 | m(y)+

1
m(E 0) Â

y2E 0
| f (y)� fR0 | m(y)


eC

m(E 0) Â
y2E 0

| f (y)� fE 0 | m(y)+2eCk fkBMO1  3eCk fkBMO1 .

(2.7)

Now, we first suppose that f 2 L•(m), and for t > 0 we define

F(t) = sup
R2F

1
m(R) Â

y2R
exp

✓
t

k fkBMO1

| f (y)� fR|
◆

m(y).

Then | f � fR| 2k fkL•(m), from which it follows that

F(t) exp
✓2tk fkL•(m)

k fkBMO1

◆
<+•, 8t > 0.

Thus

1
m(R0)

Â
y2R0

exp
✓

t
k fkBMO1

| f (y)� fR0 |
◆

m(y) 1
m(R0)

Â
y2R0\[E2G

exp(2t) m(y)

+
1

m(R0)
Â

E2G

Â
y2E

exp
✓

t
k fkBMO1

| f (y)� fE |
◆

exp
✓

t
k fkBMO1

| fE � fR0 |
◆

m(y).

(2.8)
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Using (2.7) we dominate the last expression in (2.8) with

exp(2t)+
1

m(R0)
Â

E2G

Â
y2E

exp
✓

3eCt
◆

exp
✓

t
k fkBMO1

| f (y)� fE |
◆

m(y)

 exp(2t)+ exp
✓

3eCt
◆

1
m(R0)

Â
E2G

m(E)F(t)

 exp(2t)+ exp
✓

3eCt
◆

F(t)
2

,

where the last inequality is verified by (2.6). We conclude that, for sufficiently small

t, F(t) 2e2t

2� e(3eC)t
, hence there exist h ,A > 0 such that F(h) A. This concludes

the proof when f is a bounded function.
For the general case, let f 2 BMO1(m) and for all k 2 N and x 2 T define

fk(x) =

8
><

>:

f (x) | f (x)| k,
f (x)
| f (x)|k | f (x)|> k.

It is readily seen that fk 2 L•(m), fk ! f pointwise on T and ( fk)R ! fR. Moreover,
there exists a positive constant c0 such that k fkkBMO1  c0k fkBMO1 . Since BMO1(m)

is a vector space, in order to prove the last assertion it suffices to consider real-valued
functions. Then, the desired result follows by noticing that

fk = min(max( f ,�k),k), k 2 N.

and by the fact that the functions h1 :=min( f ,g),h2 :=max( f ,g) belong to BMO1(m)

for every f ,g 2 BMO1(m), see [25, Theorem 7.1.2. (vii)].
Next, we have that

1
m(R) Â

y2R
exp

✓
h

c0k fkBMO1

| fk(y)� ( fk)R|
◆

m(y)

 1
m(R) Â

y2R
exp

✓
h

k fkkBMO1

| fk(y)� ( fk)R|
◆

m(y)C.
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Passing to the limit, we deduce (i) by the dominated convergence theorem. In order
to prove (ii), notice that

m({x 2 R : | f (x)� fR|> tk fkBMO1})

= m({x 2 R : exp
✓

h
k fkBMO1

| f (x)� fR|
◆
> eht})

 e�ht Â
y2R

exp
✓

h
k fkBMO1

| f (y)� fR|
◆

m(y) Ae�htm(R),

where the last inequality follows by (i).

A remarkable consequence of Theorem 2.2.2 is the equivalence of the BMOq(m)

spaces, q 2 [1,•).

Corollary 2.2.3. For all q 2 (1,•) there exists a constant Bq depending only on q
such that

k fkBMOq  Bqk fkBMO1 , f 2 BMO1(m).

Proof.

1
m(R) Â

y2R
| f (y)� fR|q m(y) =

q
m(R)

Z •

0
aq�1m({x 2 R : | f � fR|(x)> a}) da

 q
Z •

0
aq�1Ae�ha/k fkBMO1 da

 qA
✓
k fkBMO1

h

◆q
G(q).

We conclude by choosing Bq = (qAG(q))1/q/h .

As a consequence of Corollary 2.2.3 and (2.5), BMOq(m) = BMO1(m) for every
q 2 (1,•). Henceforward, let BMO(m) denote the space BMO1(m).

2.2.2 Hardy spaces

In this subsection we introduce atomic Hardy spaces.

Definition 2.2.4. A function a is a (1, p)-atom for p 2 (1,•] if the following hold
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(i) a is supported in a set R 2 F ;

(ii) kakLp(m)  m(R)1/p�1;

(iii) Ây2R a(y) m(y) = 0.

Definition 2.2.5. Given p 2 (1,•], the Hardy space H1,p(m) is the space of all
the function g 2 L1(m) such that g = Â j l ja j where a j are (1, p) atoms and l j are
complex numbers such that Â j |l j| < +•. We denote by kgkH1,p the infimum of
Â j |l j| over all the possible decompositions g = Â j l ja j with a j (1, p)-atoms.

We also introduce the subspace

H1,p
fin (m) =

⇢
g 2 H1,p(m) : g =

N

Â
j=1

l ja j, N 2 N
�
.

The next result yields the equivalence of the H1,p(m) spaces when p 2 (1,•]. It
is readily seen that H1,•(m) ⇢ H1,p(m). For the converse, we use a variant of the
Calderón–Zygmund decomposition, as follows.

Proposition 2.2.6. For any p 2 (1,•) there exists Ap > 0 such that the following
estimate holds

k fkH1,•  Apk fkH1,p , f 2 H1,p(m).

Hence H1,p(m) = H1,•(m) and the norms k ·kH1,• and k ·kH1,p are equivalent.

Proof. It suffices to prove that there exists a constant Ap depending only on p2 (1,•)

such that, for every (1, p)-atom a, one has

kakH1,•  Ap. (2.9)

Let a be a (1, p)-atom. We have that supp(a) ⇢ Q 2 F , kakLp(m)  m(Q)1/p�1,

Ây2Q a(y) m(y) = 0. We define b = m(Q)a; we claim that 8n 2 N, we can write

b =
n�1

Â
l=0

eC1/pa l+1 Â
jl2Nl

m(R jl)a jl + Â
jn2Nn

f jn ,

where a > 0 is a constant to be chosen later, eC is as in Proposition 2.1.1 and

(i) a jl is a (1,•)-atom supported in R jl ,
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(ii) supp f jn ⇢ R jn , Ây2R jn
f jn(y) m(y) = 0,

(iii)
✓

1
m(R jn)

Ây2R jn
| f jn |p m(y)

◆1/p
 2eC1/pan,

(iv) Â jn k f jnk
p
Lp(m)  2pnkbkp

Lp(m),

(v) | f jn(x)| b(x)+ eC1/pan2n�1,

(vi) Â jn m(R jn) 2p(n�1)a�npkbkp
Lp(m).

Assume the claim holds. Then

k Â
jn2Nn

f jnkL1(m)  Âm(R jn)
1/p0k f jnkLp(m)  2Âm(R jn)

1/p0m(R jn)
1/p eC1/pan

 2eC1/pan2p(n�1)a�npkbkp
Lp(m)  2eC1/p2�p(a�p2p)nm(Q),

the last quantity tends to zero as n ! +• if a > 2
p

p�1 . The previous computation
shows that

b =
•

Â
l=0

eC1/pa l+1 Â
jl2Nl

m(R jl)a jl

where the series converges in L1(m). By properties (vi) we have

•

Â
l=0

eC1/pa l+1 Â
jl2Nl

m(R jl)
•

Â
l=0

eC1/pa l+12p(l�1)a�l pm(Q) = Apm(Q),

if a > 2p/(p�1) and we conclude that kakH1,•  Ap.

We now prove the claim by induction. Fix n = 1 and notice that

1
m(Q) Â

y2Q
|b(y)|p m(y) =

1
m(Q)

m(Q)p Â
y2Q

|a(y)|p m(y) 1 < a p.

Apply Lemma 2.1.5 to the function |b|p with the constant a p, call {Ri}i the family
of stopping sets and set E = [iRi. Define

b = g+Â
i

fi, fi =


b� 1

m(Ri)
Â

y2Ri

b(y) m(y)
�

cRi .
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By definition of Ri, |g|< a on Ec, and by Hölder’s inequality and Lemma 2.1.5, we
have

����
1

m(Ri)
Â

y2Ri

b(y) m(y)
����< eC1/pa, (2.10)

which yields

k fikLp(m) <

✓
Â

y2Ri

|b(y)|p m(y)
◆1/p

+ eC1/pam(Ri)
1/p < 2eC1/pam(Ri)

1/p.

Moreover, by (2.10)

|g(x)| eC1/pa if x 2 Ri,

thus a0 =(eC1/pam(Q))�1g is a (1,•)-atom. We can write b= g+Âi fi = eC1/pam(Q)a0+

Âi fi, obviously supp fi ⇢ Ri, Ây2T fi(y)m(y) = 0 and k fikLp(m)  2eC1/pam(Ri)1/p.
By definition of stopping set and fi we have

Â
i

m(Ri)
kbkp

Lp(m)

a p , k fikLp(m)  2kbkLp(Ri),

hence

Â
i
k fikp

Lp(m)  2pkbkp
Lp(m),

and the claim is verified.
We now assume that the claim holds for n 2 N. Then, for all jn 2 Nn,

1
m(R jn)

Â
y2R jn

| f jn(y)|p m(y) 2p eCanp < a(n+1)p,

if we choose a > 2eC1/p. We apply Lemma 2.1.5 to each R jn producing stopping sets
R jni, i 2 N, such that

a(n+1)p  1
m(R jni)

Â
y2R jni

| f jn(y)|p m(y)< eCa(n+1)p.



2.2 BMO and Hardy spaces 37

We define

f jni =


f jn �

1
m(R jni)

Â
y2R jni

f jn(y) m(y)
�

cR jni , g jn = f jn � Â
i2N

f jni.

Then, arguing as above, a jn = (eC1/pa(n+1)pm(R jn))
�1g jn is a (1,•)-atom, f jni is

supported in R jni and has zero integral,

✓
1

m(R jni)
Â

y2R jni

| f jn(y)|p m(y)
◆1/p

 eC1/pan+1 < 2eC1/pan+1,

and

| f jni(x)| | f jn(x)|+ eC1/pan+1  |b(x)|+ eC1/pan2n�1 + eC1/pan+1

 |b(x)|+ eC1/pan+12n.

We deduce that

Â
jni
k f jnikp

Lp(m)  Â
jn

2pk f jnk
p
Lp(m)  2p(n+1)kbkp

Lp(m),

Â
jni

m(R jni)
1

a(n+1)p Â
jn

Â
i

Â
y2R jni

| f jn(y)|p m(y) 1
a(n+1)p Â

jn
k f jnk

p
Lp(m)

 1
a(n+1)p 2pnkbkp

Lp(m)

and this concludes the proof.

In the sequel we write H1(m) in place of H1,•(m) and H1
fin(m) in place of

H1,•
fin (m).

Remark 2.2.7. We now show that the Hardy space H1(m) does not depend on the
choice of b .
Fix 12  b < b 0 and set F = F (b ), F

0 = F (b 0). We denote by H1
b (m) and

H1
b 0(m) the corresponding Hardy spaces with atoms supported in sets in F and

F
0 respectively. It is clear that H1

b (m) ⇢ H1
b 0(m). For the reverse inclusion, we

prove that any (1,•)-atom in H1
b 0(m) can be decomposed as the sum of multiples of

(1,•)-atoms in H1
b (m) in such a way that the norm is uniformly bounded.

First assume b 0  2b . Consider a (1,•)-atom a 2 H1
b 0(m) supported in a set R =
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Rh00
h0 (x) 2 F

0 \F .

By applying the decomposition algorithm to R we obtain R1 = R2h0
h0 (x) and R2 =

Rh00
2h0(x). Now we call T0 = R4h0

2h0(x), T1 = R4h0
h0 (x), T2 = R2. Obviously R1,R2,T0,T1 2

F . We define

ji = acRi �
✓

1
m(T0)

Â
y2T

a(y)cRi(y) m(y)
◆

cT0 , i = 1,2.

We have that Ây2T ji(y) m(y) = 0 for i = 1,2 and j1 +j2 = a as consequence of
the vanishing integral of a. Moreover,

kjikL•(m)  2kakL•(m) 
2

m(R)
 2

m(Ti)
,

for i = 1,2. Observe that ji is supported in Ri[T0 = Ti because 4h0 < h00. Thus ji/2
is a (1,•)-atom supported in Ti 2 F and H1

b 0(m)⇢ H1
b (m).

Suppose now that 2n�1b  b 0  2nb for some n > 1. We observe that H1
b 0(m) =

H1
b 0/2(m) = H1

b 0/4(m) · · ·= H1
b 0/2n(m). Thus H1

b 0(m) = H1
b (m).

2.2.3 Duality between H1(m) and BMO(m)

We now establish the duality between H1(m) and BMO(m). We first need a lemma
which provides a covering of T made by an increasing family of admissible trape-
zoids.

Lemma 2.2.8. There exists a family {R j} j ⇢ F such that R j ⇢ R j+1 and [ jR j = T .

Proof. Let R0 = {x0}, and define R j to be the output of the expansion algorithm
applied to R j�1 for j � 1. For vertical expansions, choose at random whether to
expand up or down for the first occurring one (which is the one producing R4 out of
R3) and then always alternate them (for example, if we decide to extend R3 down, the
next vertical expansion will be up). Observe that a vertical expansion always needs
to be followed by a vertical one. The opposite is not true, but still horizontal and
vertical expansions will definitely alternate since, for any given Rh00

h0 (x0)2F , it holds
h00+k
h0+k < 3 for k large enough. It is then clear that R j ⇢ R j+1 and [ j�0R j = T .
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Theorem 2.2.9. (i) Suppose f 2 BMO(m). Then the linear functional ` given by

`(g) = Â
y2T

f (y)g(y) m(y), g 2 H1
fin(m),

has a unique bounded extension to H1(m) and there exists C > 0 such that

k`k(H1)0 Ck fkBMO.

(ii) Conversely, every continuous linear functional ` on H1(m) can be realized as
above, with f 2 BMO(m), and there exists C > 0 such that

k fkBMO Ck`k(H1)0 .

Proof. For the proof of (i) we can closely follow [18, 25] for the Euclidean setting.

We prove (ii). For every R2F we denote by L2
R the space of all square summable

functions supported in R with norm L2 and by L2
R,0 its closed subspace of function

with integral zero. Note that g 2 L2
R,0 implies that g is a multiple of a (1,2)-atom

and that kgkH1  A2m(R)1/2kgkL2 . Thus, if ` is a given functional on H1(m) then
` extends to a linear functional on L2

R,0 with norm at most A2m(R)1/2k`k(H1)0 by
Proposition 2.2.6.

Since the dual of L2
R,0 is the quotient of L2

R modulo constant functions, by the
Riesz theorem, there exists a unique FR in L2

R module constant functions such that

`(g) = Â
y2R

FR(y)g(y) m(y), g 2 L2
R,0, and kFRkL2(R)  A2m(R)1/2k`k(H1)0 .

Observe that if R ⇢ R0 then FR �FR0
is constant on R. Let R j as in Lemma 2.2.8 for

j = 0,1,2, .... Define f 2 CT by setting

f (x) = FR j(x)� 1
m(R1)

Â
y2R1

FR j(y) m(y)

whenever x 2 R j. It is easy to verify that the definition of f in unambiguous and
f 2 BMO(m).
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2.3 Interpolation and integral operators

We will prove here some interpolation results involving Hardy and BMO spaces. The
real interpolation results will be essentially a consequence of the Calderón–Zygmund
decomposition that we constructed in Section 2.1.4. To obtain complex interpolation
results we will need to study the sharp maximal function associated with admissible
trapezoids.

2.3.1 Real interpolation

In this subsection we study the real interpolation of H1(m), BMO(m) and the Lp(m)

spaces. We refer the reader to [29] for an overview of the real interpolation results
which hold in the classical setting. Our aim is to prove similar results in our context.
Note that a maximal characterization for H1(m) is not available, so that we cannot
follow the classical proofs but we shall only exploit the atomic definition of H1(m).
We also notice that the proofs of the our results follow closely those of [58, Section
5].

We first recall some notation of the real interpolation of normed spaces, focusing
on the K-method. For the details see [3].

Given two compatible normed spaces A0 and A1, for any t > 0 and for any
a 2 A0 +A1 we define

K(t,a;A0,A1) = inf{ka0kA0 + tka1kA1 : a = a0 +a1, ai 2 Ai} .

Take q 2 [1,•] and q 2 (0,1). The real interpolation space
⇥
A0,A1

⇤
q ,q is defined as

the set of the elements a 2 A0 +A1 such that

kakq ,q =

8
<

:

⇣R •
0
⇥
t�q K(t,a;A0,A1)

⇤q dt
t

⌘1/q
if 1  q < • ,

kt�q K(t,a;A0,A1)kL• if q = • ,

is finite.

We shall first estimate the K functional of Lp-functions with respect to the couple
of spaces (H1(m),Lp1(m)), 1 < p1  •.
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Lemma 2.3.1. Suppose that 1 < p < p1  • and let q 2 (0,1) be such that 1
p =

1�q + q
p1

. Let f be in Lp(m). The following hold:

(i) there exist positive constants D1,D2 such that, for every l > 0, there exists a
decomposition f = gl +bl in Lp1(m)+H1(m) such that

(i1) kglkL•(m)  eC1/p l and, if p1 < •, kglkp1
Lp1(m)  D1 l p1�p k fkp

Lp(m);

(i2) kblkH1  D2 l 1�p k fkp
Lp(m) ;

(ii) there exists a constant Kp > 0 such that

(ii1) for any t > 0, K(t, f ;H1(m),Lp1(m)) Kp tq k fkLp(m);

(ii2) f 2 [H1(m),Lp1(m)]q ,• and k fkq ,•  Kp k fkLp(m).

Proof. Let f be in Lp(m). We first prove (i). Given a positive l , let {Ri}i ⇢ F

be the collection of admissible trapezoids associated with the Calderón–Zygmund
decomposition of | f |p corresponding to the value l p. We write

f = gl +bl = gl +Â
i

bl
i = gl +Â

i
( f � fRi)cRi .

We then have

kglk•  eC1/p l , 1
m(Ri)

Â
y2Ri

| f (y)|pm(y) eCl p and | fRi | eC1/pl .

If p1 < •, then

kglkp1
p1
 Â

y2(
S

Ri)c
| f (y)|p1m(y)+Â

i
Â

y2Ri

| fRi(y)|p1m(y)

 Â
y2(

S
Ri)c

| f (y)|p1�p| f (y)|pm(y)+ eCp1/pl p1 Â
Ri

m(Ri) D1l p1�pk fkp
Lp(m) .

Thus (i1) holds. Concerning (i2), for any i, bl
i is supported in Ri, has vanishing

integral and
kbl

i kLp(m) . m(Ri)
1/pl . lm(Ri)m(Ri)

�1+1/p .
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This shows that bl
i 2 H1,p(m) and kbl

i kH1 . l m(Ri). Since bl = Âi bl
i , bl is in

H1(m) and

kblkH1 . l Â
i

m(Ri) D2 l
k fkp

Lp(m)

l p ,

as required.

We now prove (ii). Fix t > 0. For any positive l , let f = gl + bl be the
decomposition of f in Lp1(m)+H1(m) given by (i). Thus

K(t, f ;H1(m),Lp1(m)) inf
l>0

�
kblkH1 + t kglkp1

�

. inf
l>0

�
l 1�p k fkp

Lp(m) + t l 1�p/p1k fkp/p1
Lp(m)

�
.

Arguing as in [58, p. 292] it follows that there exists a positive constant Kp such that

K(t, f ;H1(m),Lp1(m)) Kp k fkLp(m) tq ,

proving (ii1). This implies that

kt�q K(t, f ;H1(m),Lp1(m))k•  Kp k fkLp(m),

so that f 2 [H1(m),Lp1(m)]q ,• and k fkq ,•  Kpk fkLp(m), as required in (ii2).

We deduce from Lemma 2.3.1 the following result.

Theorem 2.3.2. The following hold:

(i) Let 1 < p < p1  • and q 2 (0,1) be such that 1
p = 1�q + q

p1
. Then

⇥
H1(m),Lp1(m)

⇤
q ,p = Lp(m) .

(ii) Let 1  q1 < q < • and 1
q = 1�q

q1
, with q 2 (0,1). Then

⇥
Lq1(m),BMO(m)

⇤
q ,q = Lq(m) .

(iii) Let 1 < q < • and 1
q = 1�q , with q 2 (0,1). Then

⇥
H1(m),BMO(m)

⇤
q ,q = Lq(m) .
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Proof. As mentioned, we follow the proofs contained in [58]. Since H1(m)⇢ L1(m),

we get that
[H1(m),Lp1(m)]q ,p ⇢ [L1(m),Lp1(m)]q ,p = Lp(m),

(see [3, Th. 5.2.1]). To prove the converse inclusion, pick r,s,q0,q1 such that
1 < r < p < s < p1, 1

r = 1�q0 +
q0
p1

and 1
s = 1�q1 +

q1
p1
. By Lemma 2.3.1,

Lr(m)⇢ [H1(m),Lp1(m)]q0,•, Ls(m)⇢ [H1(m),Lp1(m)]q1,•.

Pick h 2 (0,1) such that 1
p = 1�h

r + h
s . By [3, Th. 5.2.1.]

Lp(m) = [Lr(m),Ls(m)]h ,p ⇢ [[H1(m),Lp1(m)]q0,•, [H
1(m),Lp1(m)]q1,•]h ,p.

It is readily seen that q = (1�h)q0 +hq1, so that by [3, Th. 3.5.3.]

[[H1(m),Lp1(m)]q0,•, [H
1(m),Lp1(m)]q1,•]h ,p = [H1(m),Lp1(m)]h ,p,

and (i) is now proved.
Suppose now that 1 < q1 < q < • and 1

q = 1�q
q1

, with q 2 (0,1). We denote by p1

and p the conjugate exponents of q1 and q respectively. By (i)

[H1(m),Lp1(m)]1�q ,p = Lp(m).

Since for any p1 2 (1,•), H1(m)\Lp1(m) is dense in H1(m) and in Lp1(m), we
invoke the duality theorem [3, Th. 3.7.1.] and conclude that

Lq(m) = Lp0(m) = [H1(m),Lp1(m)]01�q ,p = [(H1(m))0,(Lp1(m))0]1�q ,p0

= [BMO,Lq1(m)]1�q ,q,

and by [3, Th. 3.4.1.] it follows (ii).
We now claim that for any 1 < q < • and 1

q = 1�y with y 2 (0,1), the following
holds

[L1(m),BMO(m)]y,q = Lq(m).

Indeed, choose r 2 (1,q). By [3, Th. 5.2.1.] and (ii)

[L1(m),Lq(m)]f ,r = Lr(m), [Lr(m),BMO(m)]q ,q = Lq(m),
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where 1
r = 1�f + f

q and 1
q = 1�q

r . Since L1 \BMO(m)⇢ Lr(m)\Lq(m), we can
apply [62, Th. 1] to conclude that

[L1(m),BMO(m)]h ,q = Lq(m),

with y = q
1�f+fq . It is easily seen that 1

q = 1�y and this proves our claim. Next,
observe that since H1(m)⇢ L1(m), we have that

[H1(m),L•(m)]y,q ⇢ [L1(m),BMO(m)]y,q = Lq(m),

where y,q are chosen as above. On the other hand, since L•(m)⇢ BMO(m),

Lq(m) = [H1(m),L•(m)]y,q ⇢ [H1(m),BMO(m)]y,q,

and this concludes the proof.

2.3.2 Sharp maximal function

The sharp maximal function of a function f 2 CT is defined by

M# f (x) = sup
R3x

1
m(R) Â

y2R
| f (y)� fR|m(y), x 2 T,

where the supremum is taken over all R 2 F such that x 2 R. The sharp maximal
function is a useful tool to capture the local behaviour of the mean oscillation of a
function. Obviously, we have kM# fkL•(m) = k fkBMO1 and M# f  2M f pointwise.
By the boundedness of the Hardy–Littlewood maximal function, we easily conclude
that, for all p 2 (1,•],

kM# fkLp(m)  Mpk fkLp(m), f 2 Lp(m), (2.11)

for some Mp depending only on p.

Now we prove the existence of a dyadic family of partitions of the set of vertices
of the tree consisting of admissible trapezoids, by which we will obtain the converse
inequality to (2.11). We remark that, in a certain sense, such a family is the analogue
of the classical family of Euclidean dyadic cubes. Indeed, we shall prove that they
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share similar properties of set inclusion and of measure comparability. The strategy
to obtain the dyadic sets is based on the decomposition and expansion algorithms.

Theorem 2.3.3. There exists a family {D j} j2Z of partitions of T consisting of
admissible trapezoids such that

(i) R ⇢ R0 or R\R0 = /0 whenever R 2 D j,R0 2 Dk, k > j.

(ii) For any j 2 Z and R 2 D j, there exists a unique R0 2 D j+1 such that R ⇢ R0

and m(R0) eCm(R).

(iii) For every j 2 Z, R 2 D j can be written as the disjoint union of at most c
elements of D j�1, where c is the constant in (1.8).

(iv) For all x 2 T there exists k = k(x) 2 Z such that x 2 D j for all j  k.

Proof. Let {R j} be the family of trapezoids described in Lemma 2.2.8. For each
j � 0, R j can be used as a base set to produce a partition of T . Let h0( j),h00( j) be
the parameters defining R j. Given a trapezoid R, we write B(R) for the brothers
of R, the family of trapezoids of parameters h0( j),h00( j) and root at the same level
as x j, the root of R j. A partition of the strip of vertices {x 2 T : `(x j)� h00( j) <
`(x) `(x j)�h0( j)} is naturally given by B(R j). Let L be the set of indices such
that R` is obtained by vertical expansion of R`�1 when ` 2 L . It is easily seen that
R` \R`�1 is still an admissible trapezoid, and, consequently, so are all its brothers.
For j 2 N we set D j to be the collection of all trapezoids R belonging to B(R j)

or to B(R` \R`�1) for some ` > j. Then it is clear that D j defines a partition of
T . For j < 0, we define D j to be the family of trapezoids obtained by applying
one step of the decomposition algorithm to each trapezoid R 2 D j�1. Then the
family of partitions {D j} j2Z satisfies all the desired properties: (i) and (ii) follow
from the rules defining the expansion algorithm, (iii) and (iv) from the ones of the
decomposition algorithm and Corollary 1.2.3.

We set D = [ j2ZD j and we define the maximal dyadic function of f 2 CT as

MD f (x) = sup
R3x

1
m(R) Â

y2R
| f (y)| m(y), x 2 T,
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where the supremum is taken over all R 2 D such that x 2 R. We remark that
MD f  M f pointwise on T , thus MD is of weak-type (1,1). In this section we shall
prove that the functions M f , M# f , MD f and f are comparable in the Lp norm.

In the proof of next theorem we follow a standard argument, see for example [25,
Th. 7.4.4.] for the correspondent result in the Euclidean setting.

Theorem 2.3.4. For all g > 0, l > 0 and f 2 CT , it holds

m({x 2 T : MD f (x)> 2l ,M# f (x)< gl})C0gm({x 2 T : MD f (x)> l}),

where C0 = 2b eC.

Proof. We can assume that Wl = {x 2 T : MD f (x)> l} has finite measure. Hence
for all x 2 Wl , there exists Rx 2 D that is maximal with respect to set inclusion, such
that x 2 Rx and

1
m(Rx)

Â
y2Rx

| f (y)| m(y)> l ,

for otherwise Wl would have infinite measure.
Notice that if y 2 Rx, then Rx = Ry because maximal trapezoids are disjoint. Hence
it is sufficient to show that for a given Rx

m({y 2 Rx : MD f (y)> 2l ,M# f (y)< gl})C0gm(Rx). (2.12)

Fix x and y 2 Rx such that MD f (y)> 2l , then the supremum

sup
R3y

1
m(R) Â

y2R
| f (y)| m(y)

is taken over all the dyadic trapezoids R which contain Rx or are contained in Rx. If
Q strictly contains Rx, then by the maximality of Rx, we get

1
m(Q) Â

y2Q
| f (y)| m(y) l .

Thus

MD f (x) = MD( f cRx)(x).
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Let R0
x be the dyadic set of minimal scale such that Rx ( R0

x. It follows

MD

✓
( f � fR0

x
)cRx)

◆
(x)> MD( f cRx)(x)� | fR0

x
|> 2l �l = l .

We conclude that

m({y 2 Rx : MD f (y)> 2l}) m({y 2 Rx : MD

✓
( f � fR0

x
)cRx)

◆
(y)> l}).

(2.13)

We know that MD is of weak type (1,1), thus we control the last expression in (2.13)
with

2b
l Â

y2Rx

| f (y)� fR0
x
| m(y) 2eCb

l
m(Rx)

m(R0
x)

Â
y2R0

x

| f (y)� fR0
x
| m(y)

 2eCb
l

m(Rx)M# f (xx), (2.14)

where xx 2 Rx. We can assume that for some xx 2 Rx it holds

M# f (xx) gl ,

otherwise there is nothing to prove. This, together with (2.12), (2.13) and (2.14)
conclude the proof.

Now we prove an inequality involving the Lp norm of a function, the dyadic and
the sharp maximal functions.

Theorem 2.3.5. Let 1  p0 < +•. Then, for all p such that p0  p < +•, there
exists a constant Np such that, for all f with MD f 2 Lp0(m), we have

(i) kMD fkLp(m)  NpkM# fkLp(m);

(ii) k fkLp(m)  NpkM# fkLp(m).

Proof. To prove (i) it is possible to repeat step by step [25, Th. 7.4.5.], so we omit the
details. Inequality (ii) follows from (i) and the pointwise estimate | f | MD f .
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2.3.3 Complex interpolation

We study the complex interpolation of H1(m), BMO(m) and the Lp(m) spaces,
1 < p < •.

Given two compatible normed spaces A0 and A1, for any q 2 (0,1) we denote
by

�
A0,A1

�
[q ] the complex interpolation space obtained via Calderón’s complex

interpolation method (see [3] for the details). More precisely, we denote by S the strip
{z 2 C : ¬z 2 (0,1)} and denote by S its closure. We consider the class F(A0,A1)

of all functions F : S ! A0 +A1 such that the map z 7! hF(z),`i is continuous and
bounded in S and analytic in S for every ` in the dual of A0 +A1, F(it) is bounded
on A0 and F(1+ it) is bounded on A1 for every t 2 R. We endow F(A0,A1) with the
norm

kFkF = sup{max(kF(it)kA0 ,kF(1+ it)kA1) : t 2 R} .

The space
�
A0,A1

�
[q ] consists of all f 2 A0 + A1 such that f = F(q) for some

F 2 F(A0,A1) endowed with the norm

k fk[q ] = inf{kFkF : F 2 F(A0,A1),F(q) = f}.

Theorem 2.3.6. Suppose that q 2 (0,1), 1 < q1 < q < •, 1 < p < p1 < •, 1
q = 1�q

q1

and 1
p = 1�q + q

p1
. Then the following hold:

(i)
�
Lq1(m),BMO(m)

�
[q ] = Lq(m);

(ii)
�
H1(m),Lp1(m)

�
[q ] = Lp(m).

Proof. We first prove (i). The inclusion Lq(m)⇢
�
Lq1(m),BMO(m)

�
[q ] follows from

the fact that L•(m) is continuously included in BMO(m) and Lq(m)=
�
Lq1(m),L•(m)

�
[q ].

To prove the reverse inclusion we consider any function f : T !F which associates
to every vertex x 2 T an admissible trapezoid R which contains x and any function
h : T ⇥T ! C such that |h(x,y)| = 1 for every (x,y) 2 T ⇥T . Define the linear
operator Sf ,h which on every function f 2 CT is defined as follows

Sf ,h f (x) =
1

m(f(x)) Â
y2f(x)

[ f (y)� ff(x)]h(x,y)m(y), x 2 T .

Clearly,
|Sf ,h f | M] f , and sup

f ,h
|Sf ,h f |= M] f .
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Given f 2
�
Lq1(m),BMO(m)

�
[q ] there exists F 2 F(Lq1(m),BMO(m)) such that

F(q) = f . For every t 2 R we have

kSf ,hF(it)kLq1(m)  kM](F(it))kLq1(m) . kMF(it)kLq1(m) . kF(it)kLq1(m) ,

where M is the Hardy–Littlewood maximal function associated with F which is
bounded on Lq1(m). We also have that for every t 2 R

kSf ,hF(1+ it)kL•(m)  kM](F(1+ it))kL•(m)  kF(1+ it)kBMO .

It follows that Sf ,hF 2 F(Lq1(m),BMO(m)) and kSf ,hFkF . kFkF. Hence

kSf ,hF(q)kLq(m) . kF(q)k(Lq1(m),BMO(m))[q ] = k fk(Lq1(m),BMO(m))[q ] .

By taking the supremum over all f and h and applying Theorem 2.3.5 we get

k fkLq(m) . kM] fkLq(m) . k fk(Lq1(m),BMO(m))[q ] .

This proves the inclusion
�
Lq1(m),BMO(m)

�
[q ] ⇢ Lp(m) and concludes the proof

of (i). The proof of (ii) follows by the duality between H1(m) and BMO(m) and [3,
Cor. 4.5.2].

Theorem 2.3.7. Suppose that q 2 (0,1), 1
q = 1�q . Then the following hold:

(i)
�
L1(m),BMO(m)

�
[q ] = Lq(m);

(ii)
�
H1(m),L•(m)

�
[q ] = Lq(m);

(iii)
�
H1(m),BMO(m)

�
[q ] = Lq(m).

Proof. Take r 2 (1,q) and f 2 (0,1) such that 1
r = 1�f + f

q . Then
�
L1(m),Lq(m)

�
[f ] =

Lr(m). Moreover, by Theorem 2.3.6,

�
Lr(m),BMO(m)

�
[g] = Lq(m)

if 1
q = 1�g

r . Since L1(m)\BMO(m) contains the space of compactly supported
functions, it is dense in Lr(m) and Lq(m). Then, by the reiteration theorem [62, Th.
2], we deduce that

�
L1(m),BMO(m)

�
[q ] = Lq(m).
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Take r 2 (1,q) and f 2 (0,1) such that 1
r = 1�f + f

q . Then by Theorem 2.3.6,�
H1(m),Lq(m)

�
[f ] = Lr(m). Moreover,

�
Lr(m),L•(m)

�
[g] = Lq(m). The space of

compactly supported functions with vanishing integral is contained in H1(m)\L•(m)

and is dense in Lr(m) and Lq(m). Then by the reiteration theorem [62, Th. 2], we
deduce that

�
H1(m),L•(m)

�
[q ] = Lq(m). Property (iii) follows from (i) and (ii) and

the fact that H1(m)⇢ L1(m) and L•(m)⇢ BMO(m).

2.3.4 Integral operators

We show that integral operators bounded on L2(m) whose kernels satisfy a suitable
Hörmander’s condition involving admissible trapezoids have good boundedness
properties on Lp(m) and satisfy endpoint estimates.

Theorem 2.3.8. Let K be a linear operator on CT which is bounded on L2(m) and
admits an integral kernel K.

(i) Assume that K satisfies the condition

sup
R2F

sup
y,z2R

Â
x2(R⇤)c

|K(x,y)�K(x,z)| m(x)<+•, (2.15)

where, for any R = Rh00
h0 (x) 2 F , we define R⇤ = {x 2 T : d(x,R)< h0}. Then

K extends to a bounded operator from H1(m) to L1(m) and on Lp(m), for
1 < p < 2.

(ii) If K satisfies the condition

sup
R2F

sup
y,z2R

Â
x2(R⇤)c

|K(y,x)�K(z,x)| m(x)<+•, (2.16)

where R⇤ is defined as in (i), then K extends to a bounded operator from
L•(m) to BMO(m) and on Lq(m), for 2 < q <+•.

Proof. We first observe that given R = Rh00
h0 (x) 2 F , we have m(R⇤) = (h00+ h0 �

1)m(x)  3m(R). Thus we can follow verbatim [1, Th. 3] and conclude that, if K
satisfies (2.15), then K is bounded from H1(m) to L1(m). By Theorem 2.3.2, it
follows that K is bounded on Lp(m), for 1 < p < 2. Suppose that K satisfies (2.16).
Then the kernel K⇤ of the adjoint operator K

⇤ satisfies (2.15). By (i), K
⇤ extends
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to a bounded operator from H1(m) to L1(m) and on Lp(m), for 1 < p < 2. By duality
it follows that K extends to a bounded operator from L•(m) to BMO(m) and on
Lq(m), for 2 < q <+•.

Remark 2.3.9. Theorem 2.3.8 applies to suitable spectral multipliers and to the first
order Riesz transform associated with a distinguished Laplacian on the homogeneous
tree endowed with the canonical flow (see [27, Th. 2.3] and [1]).



Chapter 3

Various characterizations of the
Hardy space on the homogeneous tree
with the canonical flow

In this chapter we collect results from [49]. We consider a model case, namely, a
homogeneous tree endowed with its canonical flow measure µ and the associated
probabilistic Laplacian L which is self-adjoint with respect to µ . We prove that
the maximal characterization in terms of the heat and the Poisson semigroup of L

and the Riesz transform characterization of the atomic Hardy space introduced in
Chapter 2 fail.

3.1 The homogeneous tree endowed with the canoni-
cal flow

Let T = Tq+1 be a homogeneous tree such that q(x) = q for every x 2 T with root at
infinity zg 2 ∂T . We endow T with the measure µ defined by

µ(A) = Â
x2A

q`(x),
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where A ⇢ T. We recall that µ is a flow measure in the sense that

µ(x) = q`(x) = qq`(x)�1 = Â
y2s(x)

µ(y), x 2 T.

The measure µ was studied by Hebisch and Steger in [27] and it represents the
canonical flow measure on T, since it equally distributes the mass of a vertex among
its sons.
We shall introduce a Laplacian L self-adjoint on L2(µ) that can be thought of as the
natural Laplacian in this setting. Let D denote the combinatorial Laplacian, namely
the operator defined on every f 2 CT by

D f (x) =
1

q+1 Â
y⇠x

( f (x)� f (y)), x 2 T. (3.1)

Observe that D = I �P, where P is defined by

P f (x) = Â
y⇠x

P(x,y) f (y) =
1

q+1 Â
y⇠x

f (y), f 2 CT . (3.2)

The Laplacian D is bounded on Lp with respect to the counting measure for any
p 2 [1,•]. Moreover, the L2 spectrum of D is [b,2�b], where b =

(
pq�1)2

q+1 (see [13]).
We refer to [20] for more information about D and the spherical analysis on T .

Consider the operator A : CT ! CT defined on f 2 CT by

A f (x) =
1
2

✓
1
q Â

y2s(x)
f (y)+ f (p(x))

◆
, x 2 T. (3.3)

Observe that we can associate to A a probabilistic transition matrix, in the sense that

A f (x) = Â
y2T

A(x,y) f (y) and Â
y2T

A(x,y) = 1, x 2 T, (3.4)

where A(x,y) =

8
>>><

>>>:

1
2q y 2 s(x),
1
2 y = p(x),

0 otherwise.
One should compare the definition of A with (3.2).
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We define the operator

L = I �A. (3.5)

By (3.4), it is clear that L is a Laplacian from the probabilistic viewpoint (for more
information about random walks and Laplacians on graphs we refer to [61]). It is
also easy to see that L is self-adjoint on L2(µ). Indeed, it suffices to show that A is
self-adjoint on L2(µ). Given f 2 L2(µ), we have that A f (x) = Ây2T A(x,y) f (y) =
Ây2T A(x,y)q�`(y) f (y)µ(y). Now, Ã(x,y) := A(x,y)q�`(y) is symmetric. Indeed, if

y = p(x), Ã(x, p(x)) = q�`(x)�1

2 and Ã(p(x),x) = q�`(x)

2q . Thus the integral kernel of A
with respect the measure µ is symmetric and it follows that A is self-adjoint.
It is worth noticing that

L =
1

1�b
µ�1/2�D�bI

�
µ1/2. (3.6)

Indeed, for every f 2 CT , one has

A f (x) =
1

2pq Â
y⇠x

µ(y)1/2

µ(x)1/2 f (y) =
µ(x)�1/2

1�b
P(µ1/2 f )(x).

Thus,

L = I � µ�1/2

1�b
Pµ�1/2 =

µ�1/2

1�b

✓
µ1/2I(1�b)�Pµ1/2

◆
=

µ�1/2

1�b
(D�bI)µ1/2,

as desired.

Using the fact that the pointwise multiplication by µ1/2 is a surjective isometry
between L2 with respect to the counting measure and L2(µ) and the pointwise multi-
plication by µ�1/2 is its inverse, the previous identity implies that L2(µ)-spectrum
of L is [0,2].

We define the heat semigroup (Ht)t>0 and the Poisson semigroup (Pt)t>0

associated with L , given respectively by Ht = e�tL and Pt = e�t
p

L . It is natural
to investigate whether the Hardy spaces defined in terms of the heat semigroup and
the Poisson semigroup are equivalent to the atomic Hardy space H1

at(µ) defined in
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Chapter 2 or the equivalent Hardy space defined in [1].
In order to avoid ambiguity, throughout this chapter we shall denote by H1

at(µ) the
atomic H1-space introduced in Chapter 2. We will exploit several times the following
result proved in the previous chapter (see Theorem 2.2.9), namely,

���� Â
x2T

f (x)a(x)µ(x)
����. k fkBMOkakH1

at
, (3.7)

for every f 2 BMO(µ), a 2 H1
at(µ).

We define the heat maximal operator and the Poisson maximal operator as

Mh f = sup
t>0

|Ht f |, (3.8)

MP f = sup
t>0

|Pt f |, (3.9)

respectively. The aim of the first part of this chapter is to establish that the spaces

H1
H
(µ) = { f 2 L1(µ) : Mh f 2 L1(µ)}, k fkH1

H

= k fkL1(µ) +kMh fkL1(µ),

H1
P
(µ) = { f 2 L1(µ) : MP f 2 L1(µ)}, k fkH1

P

= k fkL1(µ) +kMP fkL1(µ),

do not coincide with the atomic Hardy spaces H1
at(µ).

3.1.1 Heat kernel of L

We denote by Ht(·, ·) the integral kernel of Ht with respect to µ , i.e., for f 2 CT

Ht f (x) = Â
y2T

Ht(x,y) f (y)µ(y), x 2 T.

By (3.6) we can explicitly write Ht in terms of the heat kernel associated to D on
T , which we shall denote by ht . By the Spectral Theorem

Ht(x,y) = e
bt

1�b q(�`(y)�`(x))/2h t
1�b

(x,y), t > 0,x,y 2 T. (3.10)
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Notice that, since A, which is defined in (3.3), is a transition matrix

Â
y2T

Ht(x,y)µ(y) = 1, t 2 R+, x 2 T ; (3.11)

moreover, since ht(x,y) = ht(y,x) we deduce that

Ht(x,y) = Ht(y,x), t > 0,x,y 2 T.

In the following, we denote by hZt the heat kernel associated to the combinatorial
Laplacian on Z and, with a slight abuse of notation, we denote by hZt ( j) the function
hZt ( j,0).
In the next proposition, we collect some results proved by Cowling, Meda, and Setti
(see [13, Lemma 2.4., Prop. 2.5]) which provide an explicit expression and a sharp
approximation of ht that will be useful in the sequel.

Proposition 3.1.1 ([13]). The following hold for all t > 0, x 2 T and j 2 N :

i) ht(x,y) =
2e�bt

(1�b)t
q�d(x,y)/2

•

Â
k=0

q�k(d(x,y)+2k+1)hZt(1�b)(d(x,y)+2k+1),

ii) hZt ( j)⇡ e�t+
p

j2+t2

(1+ j2 + t2)1/4

✓
t

j+
p

j2 + t2

◆ j
,

iii) hZt ( j)�hZt ( j+2) =
2( j+1)

t
hZt ( j+1).

Using i) and (3.10), we easily get

Ht(x,y) = q�`(x)/2�`(y)/2ebt/(1�b)ht/(1�b)(x,y) = Q(x,y)Jt(x,y),

where

Q(x,y) = q[�`(x)/2�`(y)�d(x,y)]/2 (3.12)

and

Jt(x,y) =
2
t

•

Â
k=0

q�k(d(x,y)+2k+1)hZt (d(x,y)+1). (3.13)
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Then, by means of i), we obtain the following estimate for Ht

Ht(x,y)⇡
Q(x,y)

t
(d(x,y)+1)hZt (d(x,y)+1). (3.14)

We now introduce some notation. For every n 2 N we define the function
sn : R+ ! R by

sn(t) = (n+1)
e�te

p
(n+1)2+t2

✓
t

n+1+
p

(n+1)2+t2

◆n+1

t(1+(n+1)2 + t2)1/4 , t > 0. (3.15)

Observe that by (3.14) and Proposition 3.1.1 ii)

Ht(x,y)⇡ Q(x,y)sd(x,y)(t). (3.16)

Let j : R+ ! R be the function defined by

j(t) =�t +
p

1+ t2 + log t � log(1+
p

1+ t2), t > 0. (3.17)

We have that

sn(t(n+1)) =
e(n+1)j(t)

t(1+(n+1)2 + t2(n+1)2)1/4 .

It is easy to verify that j is negative, increasing and

j(t) 1
2t

� log
✓

1+
1
t

◆
, t > 0. (3.18)

Moreover,
� 1

2t
� 1

2t2 �
1

8t3 < j(s)<� 1
2t

+
1

2t2 , 8t > 0. (3.19)

We now state a technical lemma involving the function sn defined in (3.15).

Lemma 3.1.2. The following hold:

i) supt>0 sn(t). 1
(n+1)2 .

ii) supt>0
n
t sn(t). 1

(n+1)3 .
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Proof. We distinguish three different cases, namely, we estimate the supremum of
the above functions when t � (n+1)2, n+1  t < (n+1)2 and 0 < t < n+1.
Case 1. Observe that

sup
t�(n+1)2

sn(t) = sup
t>n+1

sn(t(n+1)) = sup
t>n+1

e(n+1)j(t)

t[1+(n+1)2(1+ t2)]1/4 .

Since j is negative on R+ it follows

sup
t�(n+1)2

sn(t)
1

(n+1)2 and sup
t�(n+1)2

n
t

sn(t)
1

(n+1)3 .

Case 2. When t 2 [n+1,(n+1)2) we can write t = (n+1)a with a 2 [1,n+1) and

sup
n+1t<(n+1)2

sn(t) = sup
1a<n+1

e(n+1)j(a)

a[1+(n+1)2(1+a2)]1/4 .

By using (3.18) and the fact that (1+1/a)a � 2 for all a � 1, we get

e(n+1)j(a)

a[1+(n+1)2(1+a2)]1/4 

✓
e1/2

(1+1/a)a

◆(n+1)/a

a3/2(n+1)1/2 

✓
e1/2

2

◆(n+1)/a

a3/2(n+1)1/2 .

Next, we use that
✓

e1/2

2

◆(n+1)/a
. a3

(n+1)3 to obtain

sup
1a<n+1

e(n+1)j(a)

a[1+(n+1)2(1+a2)]1/4 . sup
1a<n+1

a3/2

(n+1)7/2  1
(n+1)2

and

sup
1a<n+1

n
(n+1)a

e(n+1)j(a)

a[1+(n+1)2(1+a2)]1/4 . sup
1a<n+1

a1/2

(n+1)7/2  1
(n+1)3 .



3.1 The homogeneous tree endowed with the canonical flow 59

Case 3. In this last case t 2 (0,n+1) thus we can write t = (n+1)a with a 2 (0,1).
By using the fact that j is increasing and negative, we get

sn(a(n+1)) =
e(n+1)j(a)

a[1+(n+1)2(1+a2)]1/4  enj(a) ej(a)

a

. enj(1) . 1
(n+1)2 ,

where we have used that ej(a)

a . 1 when a 2 (0,1). If n = 0, then ii) follows trivially.
Assume n � 1 and by repeating the same argument

n
(n+1)a

sn(a(n+1)). e(n�1)j(a) e2j(a)

a2 . 1
(n+1)3 .

This concludes the proof.

Combining the above lemma with (3.16), we obtain that

sup
t>0

Ht(x,y).
Q(x,y)

(d(x,y)+1)2 , x,y 2 T, (3.20)

and

sup
t>0

d(x,y)
t

Ht(x,y).
Q(x,y)

(d(x,y)+1)3 , x,y 2 T. (3.21)

In the next results we obtain some pointwise and integral estimates concerning the
gradient of the heat kernel.

Lemma 3.1.3. Assume y 6 x where x,y 2 T . Then,

i) |Ht(x,y)�Ht(p(x),y)|. max
⇢

d(x,y)Ht(x, p(y))
t

,
Ht(x,y)

d(x,y)+1

�
,

ii) sup
t>0

|Ht(x,y)�Ht(p(x),y)|. Q(x,y)
(d(x,y)+1)3 .

Proof. Fix t > 0 and x,y 2 T such that y 6 x and set j = d(x,y), so that d(p(x),y) =
j�1. Observe that Q(x,y) = Q(p(x),y), and

Jt(x,y)�Jt(p(x),y) =
2
t

•

Â
k=0

q�k
⇣
( j+2k+1)hZt ( j+2k+1)�( j+2k)hZt ( j+2k)

⌘
.
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Exploiting the fact that hZt (·) is decreasing in N and using ii) in Proposition 3.1.1,
for each integer j we have

hZt ( j+2k+1)� ( j+2k+1)hZt ( j+2k+1)� ( j+2k)hZt ( j+2k)

� ( j+2k)
⇣

hZt ( j+2k+1)�hZt ( j+2k�1)
⌘
=�2( j+2k)2

t
hZt ( j+2k).

Hence, by the the above calculation and (3.14), on the one hand we get

Ht(x,y)�Ht(p(x),y)&�Q(x,y)
j2

t2 hZt ( j)⇡� j
t

Ht(p(x),y),

and on the other hand

Ht(x,y)�Ht(p(x),y). 2
t

Q(x,y)hZt ( j+1)⇡ Ht(x,y)
j+1

.

This completes the proof of i).

Combining i) with (3.21), we obtain ii).

In the next lemma we prove two important estimates that we shall apply in the
next subsections.

Lemma 3.1.4. The following estimates hold:

i)
Z •

1
t�1/2 Ht(x,y)

(d(x,y)+1)
dt . Q(x,y)

(d(x,y)+1)2 , x,y 2 T,

ii)
Z •

1
t�1/2|Ht(x,y)�Ht(p(x),y)| dt . Q(x,y)

(d(x,y)+1)2 , y 6 x.

Proof. Fix x,y 2 T and let j = d(x,y). By the approximate identity (3.14), Proposi-
tion 3.1.1 iii) and the change of variable t = ( j+1)s, we get

Z •

( j+1)2
t�1/2Jt(x,y) dt .

Z •

j+1

1
s2 e( j+1)j(s) ds 

Z •

j+1

1
s2 ds =

1
j+1

,
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where we have used that j  0. For the remaining part of the integral, we have

Z ( j+1)2

1
t�1/2Jt(x,y) dt .

Z j+1

1/( j+1)

e( j+1)j(s)

s2 ds

=
Z p

j+1

1/( j+1)

e( j+1)j(s)

s2 ds+
Z j+1

p
j+1

e( j+1)j(s)

s2 ds

 e( j+1)j(
p

j+1)
Z p

j+1

1/( j+1)

1
s2 ds+

Z j+1

p
j+1

e�
j+1
2s

s2 ds,

where in the last line we have used (3.19). Another application of (3.19) and a direct
computation show

e( j+1)j(
p

j+1)
Z p

j+1

1/( j+1)

1
s2 ds+

Z j+1

p
j+1

e�
j+1
2s

s2 ds

 e�
p

j+1/2( j+1)+2
e�1/2 � e�

p
j+1
2

j+1
. 1

j+1
.

Gluing all together we have

Z •

1
t�1/2Jt(x,y) dt . 1

d(x,y)+1
,

and multiplying both members by Q(x,y)
d(x,y)+1 we obtain i).

Next, fix x,y 2 T such that y 6 x and set again j = d(x,y), so that d(p(x),y) = j�1.
By Lemma 3.1.3 i), it suffices to show that the desired bound holds for both the
integrals Z •

1

1
j+1

t�1/2Ht(x,y)dt,
Z •

1

j
t
t�1/2Ht(p(x),y)dt.

The estimate concerning the first integral follows by i). Since j/t  1/ j exactly
when t � j2, it is then enough to prove the bound for the integral

I =
Z j2

1

j
t
t�1/2Ht(p(x),y)dt +

Z •

j2

1
j
t�1/2Ht(p(x),y)dt := I1 + I2.

Again by Lemma i), we conclude that

I2 .
Q(x,y)

(d(x,y)+1)2 .
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Now, if y = p(x), then j = 1 and I1 = 0, and we are done. Suppose hereinafter that
j � 2. By (3.14) and iii) in Proposition 3.1.1, we have

t�1/2Jt(p(x),y)⇡ je�t+
p

j2+t2

t3/2(1+ j2 + t2)1/4

✓
t

j+
p

j2 + t2

◆ j

 j
t2 exp

⇣
� t +

p
j2 + t2 + j log t � j log( j+

p
j2 + t2)

⌘

=
1
js2 e jj(s),

where s = t/ j and j is the function defined in (3.17). By the above calculation and
the change of variables t = js, we get

I1 . Q(x,y)
Z j2

1

1
ts2 e jj(s)dt = Q(x,y)

Z j

1/ j

1
s3 e jj(s)ds.

By the monotonicity of j , (3.19), and the fact that lim j!• e�
p

j/2 j4 = 0, we obtain

Z p
j

1/ j

1
s3 e jj(s)ds  e jj(

p
j)
Z p

j

1/ j

1
s3 ds = e jj(

p
j) j3 �1

2 j
. e�

p
j/2 j2 . 1

j2 .

To complete the proof we observe that for s �
p

j, we have j(s)  �1/(2s) +
1/(2s

p
j)�1/2s+1/ j, from which follows

Z j

p
j

1
s3 e jj(s)ds .

Z j

p
j

1
s3 e� j/2sds =

6e�1/2 �2e�
p

j(
p

j+2)
j2 . 1

j2 .

We conclude this subsection with a technical lemma that provides an algorithm
that we need to integrate a certain class of functions.

Lemma 3.1.5. Let fx,n be the function in CT defined by

fx,n(y) =
q�(`(x)+d(x,y))/2

(d(x,y)+n)2 , y 2 T,

for some fixed x 2 T and n 2 N\{0}. Then, for any m 2 N\{0}

Â
y2Sm(x)

q`(y)/2 fx,n(y) =
1

(m+n)2

✓
2+(m�1)

q�1
q

◆
.
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Proof. We introduce the family of sets {E j
m}m

j=1,Fm defined by

E j
m = Sm(x)\{y : `(y) = `(x)+2 j�m}
= Sm(x)\{y  p j(x),y 6 p j�1(x)}, j = 1, ...,m,

Fm = Sm(x)\{y : `(y) = `(x)�m}= Sm(x)\{y : y  x}.

Clearly
⇢
{E j

m}m
j=1,Fm

�
is a partition of Sm(x). Moreover, |E j

m|= (q�1)qm� j�1 if

j < m, |Em
m |= 1 and |Fm|= qm. Thus,

Â
y2Sm(x)

q`(y)/2 fx,n(y) =
m

Â
j=1

Â
y2E j

m

q(`(x)+2 j�m)/2 fx,n(y)+ Â
y2Fm

q(`(x)�m)/2 fx,n(y)

=
1

(m+n)2

✓m�1

Â
j=1

q�1
q

+2
◆
.

Remark 3.1.6. The above proof illustrates the algorithm on which the computation
of most of the sums throughout this chapter relies. Unfortunately, although the
functions we will integrate are usually of the form fx,n, the domain of integration
might not coincide with the whole sphere Sm(x). Thus, in each specific case, we will
adapt the above idea to the particular geometry of the domain.

3.2 The spaces H1
H
(µ),H1

P
(µ) and H1

at(µ)

The following theorem states that, although the inclusions H1
at(µ)⇢H1

H
(µ),H1

at(µ)⇢
H1

P
(µ) are valid, the maximal characterizations of the atomic Hardy space fail in

our setting.

Theorem 3.2.1. i) There exists a positive constant C such that

kMh fkL1(µ) Ck fkH1
at
, f 2 H1

at(µ);

ii) there exists a positive constant C such that

kMP fkL1(µ) Ck fkH1
at
, f 2 H1

at(µ);
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iii) there exists a function g 2 H1
H
(µ)\H1

P
(µ) which does not belong to H1

at(µ).

In order to prove Theorem 3.2.1 i), we shall prove that the L1-norm of the action
of the heat maximal operator Mh on atoms is uniformly bounded and deduce that
H1

at(µ)⇢ H1
H
(µ). By using the well-known subordination formula for the Poisson

semigroup, a standard argument shows that H1
h (µ)⇢ H1

P
(µ). Thus, Theorem 3.2.1

ii) will follow immediately by Theorem 3.2.1 i).
We preliminarily need to show that Mh is of weak type (1,1). It is worth recalling
that the weak type (1,1) boundedness of the heat maximal operator associated to the
combinatorial Laplacian D is a well-known fact proved by Pagliacci and Picardello
in [45].
Before establishing the abovementioned properties, we define the local maximal heat
operator by

Mloc f (x) = sup
0<t<1

|Ht f (x)|, f 2 CT ,x 2 T .

Proposition 3.2.2. The operator Mloc is bounded on L1(µ).

Proof. Let f 2 CT . By (3.16)

kMloc fkL1(µ)  Â
y2T

| f (y)| Â
x2T

sup
0<t<1

Ht(x,y)µ(x)µ(y)

. Â
y2T

| f (y)|µ(y) Â
x2T

sup
0<t<1

Q(x,y)sd(x,y)(t)µ(x).

It is easy to see that the term inside the second sum can be dominated as follows

Q(x,y)sd(x,y)(t)µ(x). q
�d(x,y)�`(y)+`(x)

2

✓
et

d(x,y)+1

◆d(x,y)

 q
�d(x,y)�`(y)+`(x)

2

✓
e

d(x,y)+1

◆d(x,y)
, 0 < t < 1.

Recalling that `(x)� `(y) d(x,y), it suffices to notice that

Â
x2T

Q(x,y) sup
0<t<1

sd(x,y)(t)µ(x). Â
x2T

✓
e

d(x,y)+1

◆d(x,y)
=

•

Â
d=0

✓
qe

d +1

◆d
<+•.
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Proposition 3.2.3. The operator Mh is of weak type (1,1) and bounded on Lp(µ)
for all p 2 (1,•].

Proof. It suffices to prove the weak type (1,1) boundedness of Mh and then use
interpolation.
Pick f 2 L1(µ) and assume without loss of generality f � 0. Then, for every t > 0
we have

1
2t

Z 2t

0
Hz f (x) dz � 1

2t

Z 2t

t
Hz f (x) dz =

1
2t Â

y2T
f (y)

Z 2t

t
Hz(x,y) dzµ(y)

& 1
2t Â

y2T
f (y)

Z 2t

t
Q(x,y)sd(z) dzµ(y),

where d = d(x,y). Recall that sd(z) = (d +1) e(d+1)j(z/(d+1))

z[1+(d+1)2+z2]1/4 where j is defined in
(3.17), and

R+ 3 z 7! e(d+1)j(z/(d+1)) is increasing,

R+ 3 z 7! 1
z[1+(d +1)2 + z2]1/4 is decreasing,

thus

1
2t

Z 2t

0
Hz f (x) dz & Â

y2T
f (y)Q(x,y)

(d +1)e(d+1)j(t/(d+1))

2t[1+(d +1)2 +(2t)2]1/4 µ(y)

& Â
y2T

f (y)Ht(x,y)µ(y) = Ht f (x), (3.22)

where in the last line we have used (3.16). Observe that, by (3.11), (Ht)t is a strongly
measurable semigroup which satisfies the contraction property, namely, if f 2 L1(µ)

kHt fkL1(µ)  Â
x2T

Â
y2T

| f (y)|Ht(x,y)µ(y)µ(x) = Â
y2T

| f (y)| Â
x2T

Ht(x,y) µ(x) µ(y)

= k fkL1(µ).

Thus, by the Hopf-Dunford-Schwartz Theorem (see [17]), the ergodic operator
associated to the heat semigroup is of weak type (1,1). We conclude passing to the
supremum in (3.22).
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Proposition 3.2.4. There exists a positive constant C > 0 such that kMhakL1(µ) C
for any (1,•)-atom a.

Proof. Let a be a (1,•)-atom. If F 3R=Rh00
h0 (yR) is the support of a, then we define

its enlargement R⇤ = {x 2 T : d(x,R)  h0}. By the Cauchy-Schwarz inequality
and the L2(µ)-boundedness of Mh

kMhakL1(R⇤)  kMhakL2(µ)µ(R⇤)1/2 C0kMhkL2(µ)!L2(µ)

✓
µ(R⇤)

µ(R)

◆1/2
C,

where we have used the fact that µ(R⇤)⇡ µ(R), see Chapter 2.
We now split (R⇤)c in two regions, namely,

G1 = {x 2 (R⇤)c : x  yR},
G2 = (R⇤)c \G1 = {x : x 6 yR}.

We start with

Â
x2G1

Mha(x)µ(x). Â
x2G1

sup
t>0

Â
y2R

Q(x,y)sd(x,y)(t)|a(y)|µ(y)µ(x).

By exploiting (3.20) and the size condition of the atom, we get

Â
x2G1

Mha(x)µ(x). Â
x2G1

Â
y2R

q�`(x)/2+`(y)/2�d(x,y)/2

(d(x,y)+1)2
1

µ(R)
µ(x).

If x 2 G1, then

1
µ(R) Â

y2R

q�`(x)/2+`(y)/2�d(x,y)/2

(d(x,y)+1)2

=
`(yR)�h0

Â
l=`(yR)�h00+1

1
µ(R) Â

y2R\{`(y)=l}

q�`(x)/2+`(y)/2�d(x,y)/2

(d(x,y)+1)2 .

We briefly explain how to compute the above sum. Fix x 2 G1 and an integer
l 2 [`(yR)�h00+1,`(yR)�h0]. Then, there exist
• one vertex yl � x in R at level `(yl) = l. In this case d(x,yl) = `(yl)� `(x);
• q�1 vertices which lie at the same level as yl which belong to Ul,1 = {y : `(y) =
`(yl),y  p(yl),y 6= yl)}. In this case, for any y 2Ul,1, d(y,x) = d(yl,x)+2;
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• (q�1)q vertices which lie at the same level as yl which belong to Ul,2 = {y : `(y) =
`(yl),y  p2(yl),y 6 p(yl)}. In this case, for any y 2Ul,2, d(y,x) = d(yl,x)+4;
...
• (q � 1)qd(yl ,yR)�1 vertices which lie at the same level as yl which belong to
Ul,d(yl ,yR) = {y : `(y) = `(yl),y  yR,y 6 pd(yl ,yR)�1(yl)}. In this case, for any
y 2Ul,d(yl ,yR), d(y,x) = d(yl,x)+2d(yl,yR).
We can rewrite the previous sum as

Â
y2R\{`(y)=l}

q�`(x)/2+`(y)/2�d(x,y)/2

(d(x,y)+1)2

= 1 · 1
(d(x,yl)+1)2 +

d(yl ,yR)

Â
j=1

(q�1)q j�1 · q(d(yl ,x)�d(yl ,x)�2 j)/2

(d(x,yl)+2 j+1)2

= 1 · 1
(d(x,yl)+1)2 +

d(yl ,yR)

Â
j=1

(q�1)q�1 · 1
(d(x,yl)+2 j+1)2

. h00+h0

(d(x,yR)�h00)2 ,

since d(x,yl) = d(x,yR)� d(yl,yR) � d(x,yR)� h00. Summing up over the h00 � h0

level which intersects R, we get

1
µ(R) Â

y2R

q�`(x)/2+`(y)/2�d(x,y)/2

(d(x,y)+1)2 . h00 �h0

q`(yR)(h00 �h0)
· h00+h0

(d(x,yR)�h00)2

. h0

q`(yR)(d(x,yR)�h00)2 .

We conclude that

Â
x2G1

1
q`(yR)

h0

(d(x,yR)�h00)2 µ(x) = Â
x2G1

q`(yR)�d(x,yR)

q`(yR)

h0

(d(x,yR)�h00)2

 Â
j�h0

h0

j2 . 1.

Now we shall integrate on G2. In this case we need to use the cancellation
condition of the atom.

It is worth noticing that the function R 3 y 7! Ht(x,y) with x 2 G2 fixed, is
radial (namely, it depends only on d(x,y) or equivalently, in this particular case,
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it depends only on `(y)). Let yL denote a vertex of maximum level in R. We
have d(x,yL) = d(x,yR)+h0 for any x 2 G2. Given a vertex y 2 R, let y denote the
predecessor of y of maximum level in R. An easy application of Lemma 3.1.3 and the
fact that `(p j(y))+d(x, p j(y)) = `(yR)+d(x,yR) for every 1  j  d(y,y), x 2 G2

and y 2 R, yield

sup
t>0

|Ht(x,y)�Ht(x,yL)|
d(y,y)

Â
j=0

sup
t>0

|Ht(x, p j(y))�Ht(x, p j+1(y))|

.
d(y,y)

Â
j=0

q�(`(x)+`(p j(y))+d(x,p j(y)))/2

(d(x, p j(y))+1)3


d(y,y)

Â
j=0

q�(`(x)+`(p j(y))+d(x,p j(y)))/2

(d(x,yR)+h0)3

 (h00 �h0)q�(`(x)+`(yR)+d(x,yR))/2

(d(x,yR)+h0)3 , (3.23)

where in the second line we have used Lemma 3.1.3 ii) and p0(y) = y. By the
cancellation and the size condition of the atom and (3.23)

sup
t>0

���� Â
y2R

Ht(x,y)a(y)µ(y)
����= sup

t>0

���� Â
y2R

(Ht(x,y)�Ht(x,yL))a(y)µ(y)
����

 Â
y2R

sup
t>0

|Ht(x,y)�Ht(x,yL)| µ(y)
µ(R)

. (h00 �h0)q�(`(x)+`(yR)+d(x,yR))/2

(d(x,yR)+h0)3 .

It follows that

kMhakL1(G2) = Â
x2G2

q`(x) sup
t>0

����� Â
y2R

Ht(x,y)a(y)µ(y)
����

= Â
x2G2

q`(x) sup
t>0

����� Â
y2R

✓
Ht(x,y)�Ht(x,yL)

◆
a(y)µ(y)

����

. Â
x2G2

q`(x)/2�`(yR)/2�d(x,yR)/2 (h00 �h0)
(d(x,yR)+h0)3 .
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We can integrate over the intersection of the spheres Sm(yR) and G2 for m � 1.
Arguing as in Lemma 3.1.5 we get

Â
x2G2\Sm(yR)

q`(x) sup
t>0

����� Â
y2R

Ht(x,y)a(y)µ(y)
����

. (h00 �h0)q�`(yR)/2�m/2

(m+h0)3


(q�1)

m�1

Â
j=1

✓
qm�( j+1)q(`(yR)+2 j�m)/2

◆
+q(m+`(yR))/2

�

. (h00 �h0)m
(m+h0)3  (h00 �h0)

(m+h0)2 .

Summing up over m � 1, we obtain

•

Â
m=1

Â
x2G2\Sm(yR)

q`(x) sup
t>0

����� Â
y2R

Ht(x,y)a(y)µ(y)
����.

•

Â
m=1

(h00 �h0)
(m+h0)2 . 1.

This concludes the proof.

Using the weak type (1,1) boundedness of Mh, it is easy to prove that the
uniform boundedness of kMhakL1(µ) where a ranges over (1,•)-atoms, implies the
boundedness of Mh from H1

at(µ) to L1(µ). Indeed, the following can be proved by
a standard argument.

Lemma 3.2.5. Let K : H1
at(µ)! L1(µ) be a positive sublinear operator, i.e., K f �

0, K (a f ) = |a|K f and

K ( f +g)(x) K f (x)+K g(x), x 2 T,

where a 2C, f ,g 2 H1
at(µ). Suppose that there exists a positive constant C such that

kK akL1(µ) C,

for all (1,•)-atoms a. If K is of weak type (1,1), then

kK fkL1(µ) . k fkH1
at
, f 2 H1

at(µ).

Theorem 3.2.1 i) now follows combining Proposition 3.2.4 with Lemma 3.2.5.
We now prove Theorem 3.2.1 ii). The kernel Pt(·, ·) of the Poisson semigroup (Pt)t
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is given by the following well-known subordination formula

Pt(·, ·) = t
Z •

0
(4pz)�1/2e�t2/(4z)Hz(·, ·)

dz
z
.

We recall that the Poisson maximal operator MP is defined by (3.9). By a change
of variables and an application of Fubini-Tonelli’s Theorem, it is easily seen that
MP f  Mh f for any f 2 CT , thus H1

H
(µ) ⇢ H1

P
(µ) and Theorem 3.2.1 ii) is

proved.

Next, we focus on Theorem 3.2.1 iii). We introduce a sequence of functions
{gn}n and we provide estimates of their norms in H1

at(µ) and H1
H
(µ). In particular,

we shall obtain that k ·kH1
H

and k ·kH1
at

are not equivalent norms. By means of the
abovementioned estimates, we construct a function g which belongs to H1

H
(µ) but

which does not belong to H1
at(µ). Exploiting the inclusion H1

H
(µ) ⇢ H1

P
(µ), we

will obtain also that g 2 H1
P
(µ).

We introduce an enumeration on the set of vertices of level 0 as follows. For all
n � 2 if `(x) = 0, x  pn(o) and x 6 pn�1(o) we assign to x a unique label xi with
i 2 [qn�1,qn�1]. If x  p(o), then we define x0 = o and the remaining q�1 vertices
xi with i = 1, ...,q�1.
Define

gn(x) = dxn(x)�do(x), n � 2. (3.24)

Since gn is supported in {xn}[{o} and has zero average for every n � 2, it follows
that gn 2 H1

at(µ). In order to estimate kgnkH1
at

from below, we shall construct a
function f 2 BMO(µ) and apply (3.7). Consider the function f 2 CT defined as
follows

f (x) =

8
<

:
n logq if x  pn(o), x 6 pn�1(o), and n � 2,

logq if x  p1(o).
(3.25)

Proposition 3.2.6. The function f defined by (3.25) belongs to BMO(µ).

Proof. It is easy to see that f is constant on every admissible trapezoid with root not
in [p2(o),zg). Hence, to prove that f 2 BMO(µ) we have to control the average of
f on an admissible trapezoid R with root in [p2(o),zg). We claim that it suffices to
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prove the uniform boundedness of

1
µ(R) Â

x2R
| f (x)�CR|µ(x),

where CR is a suitable constant depending only on R. Indeed, for any y 2 R

| f (y)� fR| | f (y)�CR|+ |CR � fR| | f (y)�CR|+
1

µ(R) Â
x2R

| f (x)�CR| µ(x),

and it follows

1
µ(R) Â

y2R
| f (y)� fR|µ(y)

2
µ(R) Â

y2R
| f (y)�CR|µ(y),

and the last inequality proves the claim.
Next, we distinguish two cases.
Case 1. Let R = Rh00

h0 (p(n)(o)) with n � h00. We shall estimate from above

1
µ(R) Â

x2R
| f (x)�n logq|µ(x).

Using the definition of f , it is convenient to compute the above sum on each level.
Indeed, fix a positive integer l 2 [n�h00+1,n�h0]. Then,

1
µ(R) Â

x2R\`(x)=l
| f (x)�n logq|µ(x)

=
ql

µ(R)

✓
(q�1)

n

Â
j=l+1

q j�1�l| j logq�n logq|
◆
+1 · |l logq�n logq|

�


n�1

Â
j=l

ql

µ(R)
q j�l(n� j) logq

=
n�1

Â
j=l

q j�n (n� j)
(h00 �h0)

logq


•

Â
m=1

q�m m
h00 �h0

logq.
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We get an estimate independent of l. Summing over the h00 �h0 levels which intersect
R, we conclude that

1
µ(R) Â

x2R
| f (x)�n logq|µ(x) =

n�h0

Â
l=n�h00+1

1
µ(R) Â

x2R\`(x)=l
| f (x)�n logq|µ(x)

 (h00 �h0)
•

Â
m=1

q�m m
(h00 �h0)

logq

. 1.

Case 2. Let R = Rh00
h0 (pn(o)) with 2  n < h00. We can follow the previous argument

except for the levels l  0. Thus, if 0 � l 2 [n�h00+1,n�h0] is a fixed level,

1
µ(R) Â

x2R\`(x)=l
| f �n logq|µ(x)

=
ql

µ(R)

✓
(q�1)

n

Â
j=2

q j�1�l| j logq�n logq|
◆
+q1�l| logq�n logq|

�


n�1

Â
j=1

ql

µ(R)
q j�l(n� j) logq,

and we conclude as above.

This proves that f 2 BMO(µ).

Remark 3.2.7. If we take n such that qm�1  n  qm �1 for m � 2, then it is easily
seen that d(xn,o) = |xn|= 2m  2logn

logq +2 . logn, while f (xn) = m logq � logn.
We also underline that xn ^o = p|xn|/2(o) = p|xn|/2(xn) for all n � 2.

Since gn is a multiple of a (1,•)�atom, by (3.7) we get

k fkBMOkgnkH1
at
&
���� Â

x2T
f (x)gn(x)µ(x)

����= | f (xn)� f (o)|& logn,

which implies that

logn . kgnkH1
at
. (3.26)
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Moreover, it is clear that kgnkL1(µ) ⇡ 1. Combining the previous inequalities with
the following proposition we conclude that the norms on H1

H
(µ) and H1

at(µ) are not
equivalent.

Proposition 3.2.8. Let {gn}n be the sequence defined in (3.24). Then, the following
holds:

kMhgnkL1(µ) . log logn, n � 2.

Proof. We split the proof into three steps.
Step 1.
Define B = B(o, |xn|). Our goal is to show that

Â
x2B

Mhdx j(x)µ(x). log logn

for j = 0 and j = n.

Notice that for all x 2 T , by (3.20)

Mhdx j(x)µ(x) = µ(x)sup
t>0

Ht(x,x j).
Q(x,x j)µ(x)
(d(x,x j)+1)2 . (3.27)

By (3.27)

Â
x2B

Mhdo(x)µ(x). Â
x2B

q`(x)/2 q�|x|/2

(|x|+1)2 .

We write B = [|xn|
m=0Sm(o) and apply Lemma 3.1.5 to obtain

Â
x2B

Mhdo(x)µ(x).
|xn|

Â
m=0

1
m+1

. log |xn|. log logn, (3.28)

where we refer to Remark 3.2.7 for the last estimate.
It remains to prove the same inequality which involves Mhdxn . Again by (3.27)

Â
x2B

Mhdxn(x)µ(x) = Â
x2B

µ(x)sup
t>0

|Ht(x,xn)|. Â
x2B

Q(x,xn)µ(x)
(d(x,xn)+1)2 .
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Denote by B⇤ the ball B(xn,2|xn|). Clearly, B ⇢ B⇤. Hence

Â
x2B

Mhdxn(x)µ(x). Â
x2B⇤

q`(x)/2q�d(x,xn)/2

(d(x,xn)+1)2 .

Exactly as in (3.28) we get

Â
x2B

Mhdxn(x)µ(x).
2|xn|

Â
m=0

1
m+1

. log2|xn|. log logn. (3.29)

This is the desired conclusion.

Step 2.
We divide the complement of B(o, |xn|) in two regions.

G1 = {x 2 B(o, |xn|)c : x  p|xn|(o)},
G2 = {x 2 B(o, |xn|)c : x 62 G1}.

We claim that

Â
x2G1

Mhdo(x)µ(x). 1. (3.30)

The claim follows by a direct computation. Indeed, we estimate the above sum
on Sm(o)\G1 for every m > |xn| as follows

Â
x2Sm(o)\G1

Mhdo(x)µ(x). Â
x2Sm(o)\G1

q`(x)/2�d(x,o)/2

(d(x,o)+1)2

=
q�m/2

m2


(q�1)

|xn|

Â
j=1

✓
qm�( j+1)q(2 j�m)/2

◆
+qm/2

�
. |xn|

m2 (3.31)

where we have compute the above sum adapting Lemma 3.1.5. We conclude by
observing that

Â
x2G1

Mhdo(x)µ(x) =
•

Â
m=|xn|+1

Â
x2Sm(o)\G1

q`(x)Mhdo(x).
•

Â
m=|xn|+1

|xn|
m2 . 1,
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and (3.30) is proved.
We now claim that

Â
x2G1

Mhdxn(x)µ(x). log logn. (3.32)

To establish this, in order to exploit the symmetries of Mhdxn , it is convenient to
integrate on a larger set than G1. Define G⇤

1 = {y 2 T : y 6 p|xn|/2(o)} and observe
that if x 2 G1\G⇤

1 then d(xn,x) = d(o,x), (because xn^o = p|xn|/2(xn) = p|xn|/2(o)),
thus Mhdxn(x) = Mhdo(x). Obviously G1 \ (G⇤

1)
c ⇢ (G⇤

1)
c = {y 2 : y  p|xn|/2(o)}.

It suffices to check that

Â
x2(G⇤

1)
c
Mhdxn(x)µ(x). log logn.

It is convenient to think of the above sum as the sum over the disjoint sets {Sm(xn)\
(G⇤

1)
c}m�0. Fix m � 0 and by applying (3.20) we obtain

Â
x2Sm(xn)\(G⇤

1)
c
Mhdxn(x)µ(x). Â

x2Sm(xn)\(G⇤
1)

c
q`(x)/2 q�d(x,xn)/2

(d(x,xn)+1)2 .

Assume m > |xn|/2. In the same fashion as we computed in Lemma 3.1.5, we obtain

Â
x2Sm(xn)\(G⇤

1)
c
Mhdxn(x)µ(x)

. q�m/2

m2


(q�1)

|xn|/2

Â
j=1

✓
qm�( j+1)q(2 j�m)/2

◆
+qm/2

�

. |xn|/2
m2 .

If m < |xn|/2, the same computation still works with a slight modification,

Â
x2Sm(xn)\(G⇤

1)
c
Mhdxn(x)µ(x)

. q�m/2

m2


qm/2 +(q�1)

m�1

Â
j=1

✓
qm�( j+1)q(2 j�m)/2

◆
+qm/2

�
. 1

m
,
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where the first term inside the square brackets is the contribution due to pm(xn) 2
(G⇤

1)
c. Summing up over the positive integers, we conclude

•

Â
m=1

Â
x2Sm(xn)\(G⇤

1)
c
Mhdxn(x)µ(x).

|xn|/2�1

Â
m=1

1
m
+

•

Â
m=|xn|/2

|xn|/2
m2

. log(|xn|)+1 . log logn,

which proves (3.32).

Step 3.
Notice that, if x 6 xn ^o = p|xn|/2(o), then d(xn,x) = d(x,o). This is true because,
for such a vertex x

d(x,o) = d(x,xn ^o)+d(xn ^o,o) = d(x,xn ^o)+d(xn ^o,xn) = d(x,xn).

Observe that this together with (3.10) imply

Â
x2G2

Mh(dxn �do)(x)µ(x)

=
1

1�b Â
x2G2

q`(x)/2 sup
t>0

ebt/(1�b)|q�`(xn)/2ht/(1�b)(x,xn)�q�`(o)/2ht/(1�b)(x,o)|

(3.33)

= 0,

since q`(xn) = q`(o) = 1 and ht/(1�b)(x,y) = ht/(1�b)(d(x,y)).
In conclusion, (3.28), (3.29), (3.30), (3.32) and (3.33) yield

kMhgnkL1(µ) . log logn.

It follows that

lim
n!•

kgnkH1
H

kgnkH1
at

= 0,
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and in particular, k ·kH1
H

, k ·kH1
at

are not equivalent.
We are now ready to prove Theorem 3.2.1 iii).

Proof of Theorem 3.2.1 iii). Define the function g on the set of vertices at level 0
as g(o) = c0, g(x) = 0 if x  p1(o) \ {o} and g(xn) =

1
n(logn)3/2 for every n � q.

Then we extend g by setting g = 0 outside the level zero. Choose c0 such that
Âx2T g(x)µ(x) = 0. Clearly,

kgkL1(µ) = |c0|+
•

Â
n=q

1
n(logn)3/2 <+•.

We now show that kMhgkL1(µ) is finite. Indeed, we observe that

g =
•

Â
k=q

ckgk,

where {gk}k is defined in (3.24) and ck is the value of g at xk. Then, by using
Proposition 3.2.8

kMhgkL1(µ) .
•

Â
k=q

ck log logk . Â
k

log logk
k(logk)3/2 <+•.

This implies that g 2 H1
H
(µ).

We now prove that g 62 H1
at(µ). Indeed, suppose the contrary by contradiction. Then

it would be

Â
x2T

g(x) f (x)µ(x)<+•, (3.34)

where f is the BMO function defined in (3.25). But using the estimate f (xn)� logn
(see Remark 3.2.7), (3.34) would imply

•

Â
n=q

1
n(logn)1/2 <+•,

which is clearly false. Then g 62 H1
at(µ).
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3.3 The spaces H1
R
(µ) and H1

at(µ)

We introduce the Riesz Hardy space H1
R
(µ) defined by

H1
R
(µ) = { f 2 L1(µ) : R f 2 L1(µ)}, (3.35)

which we endow with the natural norm k fkH1
R

= k fkL1(µ) +kR fkL1(µ).

We define the discrete Riesz transform R = —L
�1/2, which corresponds to the

integral operator with integral kernel with respect to µ

R(x,y) =
Z •

0
t�1/2(Ht(p(x),y)�Ht(x,y)) dt.

The following theorem establishes that the Riesz characterization of the atomic
Hardy space fails.

Theorem 3.3.1. i) There exists a positive constant C such that

kR fkL1(µ) Ck fkH1
at
, f 2 H1

at(µ);

ii) there exists a function g 2 H1
R
(µ) which does not belong to H1

at(µ).

We point out that the function g in the above statement coincides with the function
which appears in the statement of Theorem 3.2.1 iii).

Before we prove Theorem 3.3.1, we remark that it is a well-known fact that R

maps H1
at(µ) to L1(µ), indeed, it is an easy consequence of the discrete version of

Hörmander’s condition for singular operators (see [1, Th. 3] or [27]). Thus, the
inclusion H1

at(µ)⇢ H1
R
(µ) is trivial.

We shall show that such inequality is strict; to do so, we need the following result.

Proposition 3.3.2. The following holds

kRgnkL1(µ) . log logn, n � 2,

where {gn}n is the sequence defined in (3.24).
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Proof. We write

R(x,y) =
Z 1

0
t�1/2(Ht(x,y)�Ht(p(x),y)) dt +

Z •

1
t�1/2(Ht(x,y)�Ht(p(x),y)) dt

= R(0)(x,y)+R(•)(x,y)

and consequently R = R
(0) +R

(•). It follows from Proposition 3.2.2 that R
(0) is

bounded on L1(µ), hence kR(0)gnkL1(µ) . 1. We now consider kR(•)gnkL1(µ). We
recall that

kR(•)gnkL1(µ) = Â
x2T

���� Â
y2T

Z •

1
t�1/2(Ht(x,y)�Ht(p(x),y)) dtgn(y)µ(y)

����µ(x)

= Â
x2T

����
Z •

1
t�1/2(Ht(x,xn)�Ht(x,o)+Ht(p(x),o)�Ht(p(x),xn)) dt

����µ(x).

Arguing as in Step 3 of Proposition 3.2.8, we get that, if x 6 xn^o, the first difference
inside the integral in the last line vanishes. The same happens for the second
difference if p(x) 6 xn ^o. Since

{x 2 T : x 6 xn ^o}⇢ {x 2 T : p(x) 6 xn ^o},

we can estimate the previous sum as follows

kR(•)gnkL1(µ)  Â
x2En

Z •

1

|Ht(x,xn)�Ht(p(x),xn)|
t1/2 dt µ(x)

+ Â
x2En

Z •

1

|Ht(x,o)�Ht(p(x),o))|
t1/2 dt µ(x) = I1 + I2,

where En = {x 2 T : x  xn ^o}. Observe that En = G1 [G2 = S1 [S2, where

G1 = {x 2 En : xn 6 x},
G2 = {x 2 En : xn  x},
S1 = {x 2 En : o 6 x},
S2 = {x 2 En : o  x}.
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We start studying I1. Exploiting the symmetry of the problem, the same computations
are valid for I2. It can be useful to split the sum which defines I1 as

I1 =
2

Â
i=1

Â
x2Gi

Z •

1

|Ht(x,xn)�Ht(p(x),xn))|
t1/2 dt µ(x) = I1

1 + I2
1 .

By Lemma 3.1.4 ii),

I1
1 . Â

x2G1

Q(x,xn)

(d(x,xn)+1)2 µ(x).

Since xn^o = p|xn|/2(xn), we can think of the sum on G1 as the sum on the sequence
of disjoint sets {G j

1}
|xn|/2
j=0 , where G j

1 is defined by

G j
1 =

8
<

:
{x  xn} if j = 0,

{x  p j(xn) and x 6 p j�1(xn)} if 1  j  |xn|/2,

with p0(xn) = xn. Observe that, for any j = 1, ..., |xn|/2, x 2 G j
1 implies that

d(x,xn) = 2 j� `(x),

where we have used that `(p j(xn)) = j. Then, for any 1  j  |xn|/2

Â
x2G j

1

q`(x)/2�d(x,xn)/2

(d(x,xn)+1)2 
j

Â
l=�•

ql� j 1
(2 j� l)2 (q�1)q j�l�1  2

j
,

where (q� 1)q j�l�1 corresponds to the cardinality of vertices in G j
1 at the level l.

The sum over G0
1 contributes to the sum as a constant independent of n. Summing up

I1
1 .

|xn|/2

Â
j=1

1
j
. log logn.

It remains to estimate I2
1 . By Lemma 3.1.4 i) and the fact that if x 2 G2, then

`(x) = d(x,xn) and

Q(x,xn) = qQ(p(x),xn) = q�d(x,xn),
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we get

I2
1  Â

x2G2

Z •

1
t�1/2 max{Ht(x,xn),Ht(p(x),xn)} dt µ(x)

. Â
x2G2

q�d(x,xn)

d(x,xn)+1
µ(x) =

|xn|/2

Â
d=1

1
d
. log logn.

Similar computations can be repeated to estimate I2 if we replace Gi by Si. In
conclusion

kRgnkL1(µ) . log logn,

as required.

We conclude the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1 ii). Let g be the function constructed in the proof of Theo-
rem 3.2.1 iii). Then,

kRgkL1(µ) .
•

Â
k=q

ckkRgkkL1(µ) .
•

Â
k=q

log logk
k(logk)3/2 <+•.

Hence g 2 H1
R
(µ) but g 62 H1

at(µ).



Chapter 4

Riesz transform on the homogeneous
tree with the canonical flow measure

This chapter is based on a joint work with Levi, Martini, Tabacco and Vallarino
[31]. We prove the Lp-boundedness, for p 2 (1,•), of the first order Riesz transform
associated to the flow Laplacian on a homogeneous tree with the canonical flow
measure. This result was previously proved to hold for p 2 (1,2] by Hebisch and
Steger [27], but their strategy does not extend to p > 2 as we make clear by proving
a negative endpoint result for p = • for such operator.

We also consider a class of “horizontal Riesz transforms” corresponding to
differentiation along horocycles, which inherit all the boundedness properties of the
Riesz transform associated to the flow Laplacian, but for which we are also able to
prove a weak type (1,1) bound for the adjoint operators, in the spirit of a work by
Gaudry and Sjögren in the continuous setting [24].

4.1 Preliminaries

In this section we collect all the notation and the preliminary results that will
be used to study the boundedness of Riesz transforms on the homogeneous tree
T = Tq+1 endowed with the canonical flow measure µ . We denote by D and L the
combinatorial and the flow laplacian, respectively. See (3.1), (3.5) for their precise
definitions.
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Notice that we can write L = I� 1
2(S+S⇤), where S,S⇤ : CT !CT are defined

by

S f (x) = f
�

p(x)
�

x 2 T, and S⇤ f (x) =
1
q Â

y2s(x)
f (y) x 2 T.

It is easy to see that S⇤ is the adjoint of S. Such operators will often appear in the
sequel and we shall summarize some of their properties in the following proposition.

Proposition 4.1.1. The following hold:

(i) S⇤S = I.

(ii) For every p 2 [1,•] the operator S is an isometric embedding of Lp(µ) into
itself.

(iii) For every p 2 [1,•] the operator S⇤ is bounded on Lp(µ) with norm 1 and it
is bounded on L1,•(µ) with norm at most q.

Proof. Given f 2 CT and x 2 T , we have that

S⇤S f (x) =
1
q Â

y2s(x)
S f (y) =

1
q Â

y2s(x)
f
�

p(y)
�
= f (x),

which proves (i).

When p = • the boundedness of S on L•(µ) follows immediately. Consider
now p 2 [1,•) and f 2 CT . Then

kS fkp
Lp(µ) = Â

x2T
| f
�

p(x)
�
|pq`(x) = Â

x2T
| f
�

p(x)
�
|pq`(p(x))�1 = k fkp

Lp(µ),

proving (ii). The first part of (iii) follows by (ii) and duality.

Given l > 0 and f in CT we have that

{x 2 T : |S⇤ f (x)|> l}=
⇢

x 2 T :
���� Â

y2s(x)
f (y)

����> ql
�
⇢ {x 2 T : max

y2s(x)
| f (y)|> l}

=
q[

j=1
{x : | f (s j(x))|> l},
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where s j(x), j = 1, ..,q, is a enumeration of s(x). It follows that

µ({|S⇤ f |> l})
q

Â
j=1

µ{| f � s j|> l} qµ{| f |> l} q
k fkL1,•(µ)

l
,

because

µ{| f � s j|> l}= Â
x2T

q`(x)c{| f (s j(x))|>l} = q Â
x2T

q`(s j(x))c{| f (s j(x))|>l}.

Hence S⇤ is bounded on L1,•(µ) with norm at most q.

4.1.1 Transference from W⇥Z to T

Let W = ∂T \ {zg} where zg is the root at infinity that was fixed once and for all
at the beginning. We endow W with the measure n such that, for every finitely
supported function f

Â
x2T

f (x)µ(x) =
Z

W
Â
n2Z

f (wn) dn(w), (4.1)

where wn is the only vertex in (w,zg) such that `(wn) = n. Set Wx = {w 2 W : x 2
(w,zg)}. It is readily seen that n(Wx) = µ(x) = q`(x) (see [59, Formula (3.5)] and
[14, Formula (3.1)]).

We denote by # the counting measure. We define

F : CT ! CW⇥Z, F f (w,n) = f (wn) w 2 W,n 2 Z. (4.2)

Proposition 4.1.2. The following hold:

(i) For every finitely supported f in CT

Â
x2T

f (x)µ(x) =
Z

W⇥Z
F f d(n ⇥#).

(ii) F is an isometric embedding from Lp(µ) to Lp(n ⇥#) for every p 2 [1,•].
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(iii) The map F⇤ is given by

F⇤g(x) =
1

n(Wx)

Z

Wx
g(w,`(x)) dn(w), x 2 T,

and maps Lp(n ⇥ #) to Lp(µ) with norm equal to 1 for every p 2 [1,•].
Moreover F⇤F = I.

(iv) The map FF⇤ is not bounded on L1,•(n ⇥#).

Proof. Property (i) follows by (4.1). Property (ii) holds because |F f |p = F| f |p for
every p 2 [1,•). For every f in CT and g in CW⇥Z

Z

W⇥Z
(F f )g d(n ⇥#) =

Z

W
Â
n

f (wn)g(w,n) dw

= Â
n2Z

Â
x:`(x)=n

f (x)
Z

Wx
g(w,x) dn(w)

= Â
x2T

f (x)
1

n(Wx)

Z

Wx
g(w,`(x)) dn(w)µ(x).

Since F⇤ is the adjoint of an isometry, it has norm one. The fact that F⇤F =

I follows by using that F is an isometry on L2(µ). To prove (iv), let us define
F(w,n) = cWo⇥{0}(w,n)Fo(w), where Wo = {w 2 W : o 2 (w,zg)} and Fo is the
function defined on Wo by

Fo = Â
n0

q�ncWwn\Wwn�1
,

where w is a fixed element in Wo and wn is the vertex in (w,zg) of level n. It is easy
to see that

kFokL1(n) = Â
n0

q�nn(Wwn \Wwn�1)⇡ Â
n0

q�nqn =+•,

and for every l > 0

{(w,n) : |F(w,n)|> l}= {w : |Fo(w)|> l}⇥{0}⇢[n<logq(1/l )(Wwn \Wwn�1)⇥{0},

so that
n ⇥#({(w,n) : |F(w,n)|> l}). 1

l
,
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and F 2 L1,•(n ⇥#). Now it is easy to see that for every w 2 Wo

FF⇤F(w,0) = F⇤F(o) =
1

n(Wo)

Z

Wo
Fodn =+• ,

which implies that FF⇤F does not belong to L1,•(n ⇥#). This proves (iv).

We now define

s : CW⇥Z ! CW⇥Z, sg(w,n) = g(w,n+1) w 2 W,n 2 Z, (4.3)

and for every n 2 Z we set

S̃n =

8
<

:
Sn if n > 0,

(S⇤)�n if n < 0.
(4.4)

The maps F, s and S are related as the following diagram shows

CW⇥Z CW⇥Z

CT CT ,

s

S

F F

and satisfy the following properties.

Proposition 4.1.3. The following hold:

(i) sF = FS and S = F⇤sF;

(ii) S⇤ = F⇤s⇤F = F⇤s�1F;

(iii) eSn = F⇤snF, n 2 Z.

Proof. Clearly

sF f (w,n) = F f (w,n+1) = f (wn+1) = f (p(wn)) = S f (wn) = FS f (w,n),
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for all f 2 CT , w 2 W and n 2 Z. Since F⇤F = I and s⇤ = s�1, this proves part (i)
and (ii). Iteration of this identity also gives

snF = FSn

for all n 2 N. Applying F⇤ to both sides of this identity and using again the fact
that F⇤F = I one has

F⇤snF = Sn,

which proves part (iii) in the case n 2 N. To complete the proof of part (iii), it is
enough to take adjoints in the latter identity, and use the fact that (sn)⇤ = s�n, as
sn is a unitary automorphism of L2(n ⇥#).

We denote by Cvp(Z) the space of all Lp-convolutors of Z, i.e., the convolution
kernels of the `p(Z)-bounded translation-invariant operators.

Proposition 4.1.4. Given a function h defined on Z consider the operator defined on
every g in CW⇥Z by

Thg(w,n) = Â
j2Z\{0}

h( j)g(w,n� j) = gw ⇤Z h,

where gw(n) := g(w,n), i.e., Th = idW ⌦ (· ⇤Z h), and let H = F⇤ThF on CT . If
j 7! j ⇤Z h is of weak type (1,1) (or bounded on `p(#) for some p 2 [1,•)), then Th

is of weak type (1,1) (or bounded on Lp(W⇥#)).

If j 7! j ⇤Z h is bounded on `p(#) for some p 2 (1,•) with norm khkCvp(Z), then
H maps Lp(µ) to itself for every p 2 (1,•) with norm at most khkCvp(Z).

Proof. If we assume j 7! j ⇤Z h is weak type (1,1) then

#{|gw ⇤Z h|> l} c
kgwk`1(#)

l
, 8w 2 W,



88 Riesz transform on the homogeneous tree with the canonical flow measure

and we get that

(n ⇥#){(w,n) : |(gw ⇤Z h)(n)|> l}=
Z

W
#{|gw ⇤Z h|> l} dn(w)

 c
l

Z

W
kgwk`p1#) dn(w)

=
c
l
kgkL1(n⇥#),

i.e., Th is weak type (1,1) on W⇥Z endowed with the measure n⇥#. In a similar way,
as Th = idW ⌦ (·⇤Z h), we have that kThkLp(n⇥#)  khkCvp(Z). Thus, by composition,
we can certainly deduce that H maps Lp(µ) to itself for every p 2 (1,•) with norm
at most khkCvp(Z).

Remark 4.1.5. Notice that in the above transference result we are not able to prove
that if the convolution operator with h is of weak type (1,1) on Z, then the operator
H is of weak type (1,1) on T . Indeed, H is bounded from L1(µ) to L1,•(µ) if
and only if FF⇤ThFF⇤ is bounded from L1(n ⇥#) to L1,•(n ⇥#). By Proposition
4.1.4 we know that Th is of weak type (1,1) and we know that FF⇤ is bounded on
L1(n ⇥#), hence ThFF⇤ is bounded from L1(n ⇥#) to L1,•(n ⇥#). Unfortunately,
the operator FF⇤ is not bounded on L1,•(n ⇥#) (see Proposition 4.1.2 (iv)).

4.1.2 The Riesz transform

The definition of Riesz transform depends on a notion of gradient on graphs, which
is not unambiguous in the literature. Many authors, including Hebisch and Steger in
[27], define the modulus of the gradient of a function f as the vertex function

d f (x) = Â
y⇠x

| f (x)� f (y)|,

and consequently the Riesz transform as the operator dL
�1/2.

We recall that the flow gradient is defined by

— f (x) = (S� I) f (x) = f
�

p(x)
�
� f (x), x 2 T.
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Note that, by Proposition 4.1.1 (ii),

—⇤— = (I �S⇤)(I �S) = 2L ,

thus the flow gradient — is naturally associated with the flow Laplacian L since
it allows one to write the latter in “divergence form”. We then define the Riesz
transform on (T,µ) as the operator

R f (x) = —L
�1/2 f (x) = L

�1/2 f (p(x)
�
�L

�1/2 f (x), x 2 T,

where the fractional power of the Laplacian is defined by means of the Spectral
Theorem as usual. We claim that, for every p � 1,

kd fkp
Lp(µ) ⇡ k— fkp

Lp(µ),

and
kd fkL1,•(µ) ⇡ k— fkL1,•(µ).

It follows from the claim that the boundedness properties of R are equivalent to
those of the operator dL

�1/2 studied in [27].

To prove the claim for the Lp norms, recall that µ(x) = qµ(y) if y 2 s(x), so that

k— fkp
Lp(µ)  kd fkp

Lp(µ) . Â
x2T

Â
y⇠x

| f (x)� f (y)|pµ(x)

= Â
x2T

✓
| f (x)� f (p(x)

�
|pµ(x)+q Â

y2s(x)
| f (x)� f (y)|pµ(y)

◆

= (q+1)k— fkp
Lp(µ).

Finally, on the one hand it is clear that k— fkL1,•(µ)  kd fkL1,•(µ). On the other hand,
for any l > 0,

{x : |d f (x)|> l}✓
⇢

x : |— f (x)|> l
q+1

�
[
⇢

x : 9 y2 s(x), | f (x)� f (y)|> l
q+1

�
,

from which it follows that

l µ({x : |d f (x)|> l}) (q+1)2k— fkL1,•(µ),



90 Riesz transform on the homogeneous tree with the canonical flow measure

which proves the claim.

In the next proposition we collect some well-known results concerning R.

Proposition 4.1.6. The following hold:

i) R is bounded from H1
at(µ) to L1(µ);

ii) R is bounded from L1(µ) to L1,•(µ);

iii) R is bounded on Lp(µ) for every p 2 (1,2].

Proof. In [1] is proved that R satisfies the Hörmander integral condition in Theorem
2.3.8, while ii) is proved in [27] and iii) easily follows by interpolation.

4.1.3 Preliminaries on Z and heat kernel

Let DZ denote the standard Laplacian on Z, namely,

DZF(n) = F(n)� F(n+1)+F(n�1)
2

n 2 Z,

for every F in CZ. Observe that DZ = I �
✓

t1+t�1
2

◆
, where tkF(n) = F(n� k) is

the translation by k 2 Z. We introduce the standard (step-1) gradient —Z = I � t�1

and the associated Riesz transform on Z, formally defined as —ZD�1/2
Z , which is the

operator with convolution kernel kZ = 1p
p
R •

0 t�1/2—ZhZt dt, where hZt denotes the
convolution kernel of e�tDZ (see Chapter 3). It is well known that hZt is radial and
decreasing in j 2 N.

Observe that since —⇤
Z = I � t1 and D�1/2

Z commutes with translations we have
that

(—ZD�1/2
Z )⇤ = D�1/2

Z (I � t1) = (I � t1)D
�1/2
Z =�t1—ZD�1/2

Z . (4.5)

It follows that the self-adjoint operator

—ZD�1/2
Z +D�1/2

Z —⇤
Z = 2D1/2

Z
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is a bounded operator on `p(Z) for every p 2 [1,•], while the anti-self-adjoint
operator

RZ := —ZD�1/2
Z �D�1/2

Z —⇤
Z = (t1 � t�1)D

�1/2
Z ,

is of weak type (1,1) and bounded on `p(Z) for every p 2 (1,•). Indeed, let
e—Z = t1 � t�1 denote the symmetric step-2 gradient. It follows that RZ = e—ZD�1/2

Z
is the operator with convolution kernel

k̃Z(n)=
1p
p

Z •

0
[hZt (n�1)�hZt (n+1)]

dt
t1/2 = kZ(n)+kZ(n�1)= kZ(n)�kZ(�n),

where in the last equality we have used (4.5). Notice that k̃Z is an odd function.
From, e.g., [26, pp. 695-696], we know that kZ satisfies Calderón–Zygmund type
estimates

|kZ(n)|. (1+ |n|)�1, |—ZkZ(n)|. (1+ |n|)�2, (4.6)

which implies in turn same kind of estimates for k̃Z

|k̃Z(n)|. (1+ |n|)�1, |—Zk̃Z(n)|. (1+ |n|)�2. (4.7)

Together with the `2(Z) boundedness, this implies (see [26, Th. 8.1.]) that —ZD�1/2
Z ,

D�1/2—⇤
Z and —ZD�1/2

Z �D�1/2
Z —⇤

Z are of weak type (1,1) and bounded on `p(Z) for
every p 2 (1,•) and on the Hardy space H1(Z).

Let ht = e�tD and Ht = e�tL be the heat semigroups of the combinatorial Lapla-
cian D and of the flow Laplacian L on T , respectively. We shall use the same
symbols to denote the associated heat kernels on the respective measure spaces on
which the generators are self-adjoint and bounded, i.e.,

ht f (x) = Â
y2T

ht(x,y) f (y), Ht f (x) = Â
y2T

Ht(x,y) f (y)µ(y).

Observe that, when q = 1, Ht = ht =: hZt . We shall always assume q � 2, but we
will make an extensive instrumental use of the heat kernel on Z.

By means of identity Proposition 3.1.1 i), ii) and (3.10), we can express the heat
kernel as



92 Riesz transform on the homogeneous tree with the canonical flow measure

Ht(x,y) = q�`(x)/2Ut(d(x,y))q�`(y)/2, (4.8)

where
Ut(n) =

•

Â
k=0

q(�n+2k)/2e—ZhZt (n+2k+1).

We recall that

Ht(x,y)⇡ q�`(x)/2q�d(x,y)/2q�`(y)/2(d(x,y)+1)hZt (d(x,y)+1)). (4.9)

Since L
�1/2 = 1p

p
R •

0 e�tL dt
t1/2 , we obtain that, the integral kernel of L

�1/2 is

K
L �1/2(x,y) = q�`(x)/2G(d(x,y))q�`(y)/2, where

G(n) =
1p
p

Z •

0
Ut(n)

dt
t1/2 =

•

Â
k=0

q�(n+2k)/2k̃Z(n+2k+1). (4.10)

4.2 Boundedness results for R

4.2.1 Lp-boundedness of the Riesz transform R

Let K be an integral operator on T with kernel K(x,y) = q�`(x)/2G(d(x,y))q�`(y)/2,
where G is a real valued function. Let S denote the composition —K . Then, since
K is self-adjoint, the skew-symmetric part of S is equal to

S �S
⇤ = —K �K —⇤ = SK �K S⇤.

More explicitly, for every function f on T ,

SK f (x) = Â
y2T

q(`(y)�`(p(x)))/2G(d(p(x),y)) f (y)

= Â
y2T

q(`(y)�`(x))/2�1/2G(d(p(x),y)) f (y),
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and

K S⇤ f (x) = Â
y2T

q(`(y)�`(x))/2�1G(d(x,y)) Â
z2s(y)

f (z)

= Â
z2T

q(`(p(z))�`(x))/2�1G(d(x, p(z))) f (z)

= Â
y2T

q(`(y)�`(x))/2�1/2G(d(x, p(y))) f (y),

thus

(S �S
⇤) f (x) = Â

y2T
q(`(y)�`(x))/2�1/2[G(d(p(x),y)�G(d(x, p(y)))] f (y),

and clearly G(d(p(x),y)�G(d(x, p(y))) vanishes if x 6< y or y 6< x. So, again, we
can restrict the sum to the set {y 2 T : y < x or x < y}. For every n 2 N, we set
sn(x) = {y  x : d(x,y) = n}. We get

(S �S
⇤) f (x) = Â

n>0
q(n�1)/2[G(n�1)�G(n+1)] f (pn(x))

+ Â
n>0

q�(n+1)/2[G(n+1)�G(n�1)] Â
y2sn(x)

f (y)

= Â
n>0

q(n�1)/2[G(n�1)�G(n+1)](Sn � (S⇤)n) f (x),

namely,

S �S
⇤ = Â

n�0
q(n�1)/2[G(n)�G(n+2)](Sn+1 � (S⇤)n+1) =: Â

n2Z\{0}
h(n)S̃n,

(4.11)

where h(n) = sgn(n)q(|n|�1)/2[G(|n|�1)�G(|n|+1)] and S̃n is defined in (4.4).

We are now ready to prove our main result.

Theorem 4.2.1. The Riesz transform R is bounded on Lp(µ) for p 2 (1,•).

Proof. By Proposition 4.1.6, R is bounded on Lp(µ) for p 2 (1,2]. Applying
the above argument to K = L

�1/2, we have that its integral kernel is K(x,y) =
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q�`(x)/2G(d(x,y))q�`(y)/2, with G as in (4.10). Arguing as above, we deduce that

R�R
⇤ = —L

�1/2 �L
�1/2—⇤ = Â

n2Z
k̃Z(n)S̃n.

By Proposition 4.1.3 (iii), we can write R �R
⇤ as F⇤ThF with h = �k̃Z (we are

using the fact that k̃Z is odd). Since by (4.7) k̃Z is in Cvp(Z) for every p 2 (1,•), by
Proposition 4.1.4, we deduce that R�R

⇤ is bounded on Lp(µ) for every p 2 (1,•).
Hence R

⇤ is bounded on Lp(µ) for p 2 (1,2], which implies that R is bounded on
Lp(µ) also for p 2 (2,•), as required.

Remark 4.2.2. Notice that we are not able to prove a weak type (1,1) result for the
operator R

⇤, which remains an open problem. Proposition 4.1.4 can be thought of as
a transference result for Lp bounds from the group Z to the weighted tree (T,µ). It
is not clear to us whether an analogous transference result holds for weak type (1,1)
bounds: due to the obstruction discussed in Remark 4.1.5, the proof given above for
strong type bounds does not appear to extend to the weak type case too.

4.2.2 Endpoint negative result for R

In this subsection we show that R does not map L•(µ) in BMO(µ).

Proposition 4.2.3. The Riesz transform R does not map L•(µ) to BMO(µ).

Proof. By Theorem (2.2.9), it is enough to exhibit a function f 2 L•(µ) and a (1,•)-
atom a such that the dual pairing hR f ,ai is not bounded. Consider the admissible
trapezoid R2

1(o) = s(o), with µ(s(o)) = 1. Pick x1,x2 2 R such that x1 6= x2 and
define the (1,•)�atom a = dx1 �dx2 . Let f = c{xx1}. Then,

hR f ,ai= R f (x1)µ(x1)�R f (x2)µ(x2)

= Â
yx1

µ(y)
q

Z •

0
t�1/2�Ht(x1,y)�Ht(x2,y)

�
dt,

where we used that µ(x1) = µ(x2) = 1/q and the cancellation induced from the
fact that p(x1) = p(x2). Next, observe that whenever y  x1, d(y,x1) = |y|� 1,
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d(y,x2) = |y|+1 and `(y) =�|y|. Then, for any y  x1,

Ht(x1,y)�Ht(x2,y) = q1/2[Ut(|y|�1)�Ut(|y|+1)]q�`(y)/2

= q(1�`(y))/2
⇣ •

Â
k=0

q�|y|/2�k+1/2—̃ZhZt (|y|+2k)�
•

Â
k=0

q�|y|/2�k�1/2—̃ZhZt (|y|+2k+2)
⌘

= q
2
t
|y|hZt (|y|)⇡ Ht(x1,y),

where we used Proposition 3.1.1 ii) and (4.9). By Proposition 3.1.1 iii),

t�1/2Ht(x1,y)⇡
|y|

t3/2(1+ |y|2 + t2)1/4 e|y|j(t/|y|),

where

j(s) =�s+
p

1+ s2 + logs� log(1+
p

1+ s2) 8s > 0.

By the change of variables t/|y|= s, since j is increasing we get

Z •

0
t�1/2�Ht(x1,y)�Ht(x2,y)

�
dt ⇡

Z •

0

|y|
t3/2(1+ |y|2 + t2)1/4 e|y|j(t/|y|) dt

&
Z •

|y|2
|y|
t2 e|y|j(t/|y|) dt =

Z •

|y|

1
s2 e|y|j(s) ds � e|y|j(|y|)

|y| & 1
|y| ,

where we used the fact that for |y|� 1, |y|j(|y|)��1/2�1/2|y|�1/8|y|2 ��9/8.

It follows that

hR f ,ai& Â
yx1

µ(y)
|y| =

1
q

•

Â
k=0

1
k+1

=+•.

Remark 4.2.4. By Proposition 4.2.3, we deduce that the kernel R does not satisfy the
dual Hörmander’s condition (2.16). Indeed, otherwise, Theorem 2.3.8 would imply
the L•(µ)�BMO(µ) boundedness of R. Notice that this phenomenon is in sharp
contrast with the well known endpoint results for the Euclidean Riesz transform of
the first order, and it shows why it was not possible to use condition (2.16) to study
the boundedness of R for p 2 (2,•).

By Proposition 4.2.3 we deduce that R
⇤ is not bounded from H1(µ) to L1(µ).

This, together with Remark 4.2.2, shows that no endpoint for p = 1 and R
⇤ is
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available. This partially motivate the introduction in the following section of another
natural Riesz transform associated with the flow Laplacian on (T,µ) for which we
are able to study the Lp-boundedness, but also endpoint results both for the operator
and its adjoint.

4.3 Horizontal Riesz transforms

Let e 2 CT be such that S⇤e = 0. For every function f in CT we define the e-
horizontal gradient —e f as

—e f (x) = S⇤(e f )(x) =
1
q Â

y2s(x)
e(y) f (y) x 2 T.

We summarize some properties of the e-horizontal gradient in the following proposi-
tion.

Proposition 4.3.1. The following hold:

(i) —⇤
e f = eS f ;

(ii) —e =�—e—;

(iii) k—⇤
ekLp(µ)!Lp(µ) = kekL•;

(iv) Im(—⇤
e)? Im(S);

(v) for every f ,g 2 CT

hSn—⇤
e f ,Sm—⇤

egi= dnmh—⇤
e f ,—⇤

egi, n,m 2 N. (4.12)

Proof. (i) is a direct computation. For any function f in CT , since S⇤e = 0,

—e f (x) =
1
q Â

y2s(x)
e(y)( f (y)� f (x)) =�—e— f (x).

(iii) follows from the fact that |—⇤
eg| kekL• |Sg| pointwise. For every function f

on T ,

—eS f = S⇤(eS f ) = 0,



4.3 Horizontal Riesz transforms 97

hence (iv) follows.

The orthogonality relation (v) is a consequence of (iv) and the fact that S is an
isometric embedding on L2(µ).

From the above proposition, we obtain a L2-boundedness result for a class of
operators.

Proposition 4.3.2. Let P be the linear operator on L2(µ) defined by

P f =
•

Â
n=0

F(n)Sn—⇤
e f (4.13)

for every f 2 L2(µ). Assume F 2 `2(N) and e 2 L•(µ). Then, P is bounded on
L2(µ).

Proof. Let f be a function on L2(µ). By (4.12),

kP fk2
L2(µ) = Â

n�0
|F(n)|2k—⇤

e fk2
L2(µ) = kFk2

`2k—⇤
e fk2

L2(µ),

hence

kP fkL2(µ)  kFk`2kekL•(µ)k fkL2(µ).

Theorem 4.3.3. Let P be as in (4.13) with F 2 `1,•(N). Then,

µ({|P f |> l}) kFk`1,•(N)(1+2kekL•(µ))
k fkL1(µ)

l
. (4.14)

Proof. Let l > 0 and f 2 L1(µ). Decompose f = fn+ f̃n where fn = f c{|F(n) f |>l}.
Then,

µ({|P f |> l}) µ
✓⇢���� Â

n�0
|F(n)|Sn—⇤

e fn

����> 0
�◆

+µ
✓⇢����Â

n
F(n)Sn—⇤

e f̃n

����> l
�◆

.
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Now, { fn 6= 0}= {|F(n) f |> l} and

{Sn—⇤
e fn 6= 0}= p�n{—⇤

e fn 6= 0}= p�n{eS fn 6= 0}
⇢ p�n�1{ fn 6= 0}= p�n�1{|F(n) f |> l},

whence

µ
✓⇢���� Â

n�0
F(n)Sn—⇤

e fn

����> 0
�◆

 Â
n�0

µ({Sn—⇤
e fn 6= 0})

 Â
n�0

µ({|F(n) f |> l}, (4.15)

where in the last inequality we have used that, since µ is a flow measure,

µ(p�k(E)) = µ(E)

for any E ⇢ T and k 2 N. Hence, by Fubini’s Theorem,

µ({|F(n) f |> l}= Â
x2T

µ(x)|{n : |F(n) f (x)|> l}|
kFk`1,•(N)

l Â
x2T

µ(x)| f (x)|

=
kFk`1,•(N)

l
k fkL1(µ).

For the remaining part, Chebyshev’s inequality and (4.12) imply

µ
✓⇢���� Â

n�0
F(n)Sn—⇤

e f̃n

����> l
�◆

 1
l 2kÂ

n
F(n)Sn—⇤

e f̃nk2
L2(µ)

=
1

l 2 Â
n,m

F(n)F(m)hSn—⇤
e f̃n,Sm—⇤

e f̃mi=
1

l 2 Â
n
|F(n)|2k—⇤

e f̃nk2
L2(µ).

We observe that

—⇤
e f̃n = eS f̃n = eS f c{|F(n)S f |l},
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hence |—⇤
e f̃n| kekL•(µ)|S f |c{|F(n)S f |l}. Thus,

k—⇤
e f̃nk2

L2(µ) = Â
x2T

µ(x)|—⇤
e f̃n(x)|2

 kekL•(µ) Â
x :S f (x) 6=0

µ(x)|S f (x)|2c{|F(n)S f (x)|l},

which implies

Â
n
|F(n)|2k—⇤

e f̃nk2
L2(µ)  kekL•(µ) Â

x :S f (x) 6=0
µ(x)|S f (x)|2 Â

{n:|F(n)S f (x)|l}
|F(n)|2

 2kFk`1,•(N)kekL•(N)l Â
x2T

µ(x)|S f (x)|

= 2kFk`1,•(N)kekL•(µ)lkS fkL1(µ),

where the last inequality follows by

Â
n�0

|F(n)|2c{|F(n)l} =
Z •

0
|{n : |F(n)|2c{|F(n)l} > a}| da


Z l 2

0
|{n : |F(n)|> a1/2}| da  kFk`1,•(N)

Z l 2

0
a�1/2 da

= 2lkFk`1,•(N),

as desired. In conclusion,

µ
✓⇢���� Â

n�0
F(n)Sn—⇤

e f̃n

����> l
�◆

 2kFk`1,•(N)kekL•(µ)
k fkL1(µ)

l
,

and the proof of (4.14) is completed.

We define the e-horizontal Riesz transform by Re = —eL
�1/2. By Proposition

4.3.1 (ii) —eL
�1/2 = �—e—L

�1/2 and, since —e is bounded on Lp(µ) for every
p 2 [1,•] with norm kekL•(µ), any Lp-boundedness property for —L

�1/2 transfers
to —eL

�1/2. In particular, this implies that Re is bounded on Lp(µ) for every
p 2 (1,•).

Thus, since R is of weak type (1,1), by Proposition 4.1.1 (ii) Re is also of weak
type (1,1).
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Following the same proof and similar computation of Proposition 4.2.3 one can
show that Re is not bounded from L• to BMO(µ).

It follows that the adjoint operator R
⇤
e is bounded on Lp(µ) for every p 2 (1,•)

and it is not bounded from H1(µ) to L1(µ). We shall now obtain a weak type (1,1)
result for R

⇤
e , which can be considered as the discrete counterpart of a result of

Gaudry and Sjögren, see [24, Th. 3].

Let K be an integral operator on T with kernel with respect to µ of the form
K(x,y) = q�`(x)/2G(d(x,y))q�`(y)/2. Now,

K —⇤
e f (x) = Â

y2T
q�`(x)/2G(d(x,y))q`(y)/2e(y) f (p(y))

= Â
y:p(y)>x

q�`(x)/2G(d(x,y))q`(y)/2e(y) f (p(y))

+ Â
y:p(y) 6>x

q�`(x)/2G(d(x,y))q`(y)/2e(y) f (p(y)). (4.16)

The second sum in (4.16) is equal to zero because S⇤e = 0 and d(x,y) = d(x,z)
whenever p(y) = p(z) 6> x.
It follows that

K —⇤
e f (x) = Â

y2T
Â

z:p(z)=p(y)
c{z�x}q�`(x)/2G(d(x,y))q`(y)/2e(y) f (p(y))

= Â
z:z�x

q�`(x)/2


Â
y:p(y)=p(z)

G(d(x,y))e(y)
�

q`(z)/” f (p(z))

= Â
z:z�x

q�`(x)/2


e(z)G(d(x,z))�G(d(x,z)+2) Â
y2s(p(z)),y6=z

e(y)
�

q`(z) f (p(z))

= Â
z:z�x

q�`(x)/2[G(d(x,z))�G(d(x,z)+2)]q`(z)/2e(z) f (p(z))

=
•

Â
n=0

qn/2[G(n)�G(n+2)]—⇤
e f (pn(x)).

In other words, K —⇤
e = Â•

n=0 qn/2[G(n)�G(n+2)]Sn—⇤
e . In the case when K =

L
�1/2 we have that G is given by formula (4.10), so that

R
⇤
e = L

�1/2—⇤
e = Â

n�0
k̃Z(n+1)Sn—⇤

e . (4.17)
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Corollary 4.3.4. The operator R
⇤
e is of weak type (1,1).

Proof. It follows by formula (4.17) and Theorem 4.3.3, using the fact that by (4.7),
k̃Z belongs to `1,•(N).



Chapter 5

Hardy–Littlewood maximal operators
on trees with the counting measure

This chapter is based on a joint work with Levi, Meda and Vallarino [32]. We
study the range of exponents (p,q) for which the centred Hardy-Littlewood maximal
function and its modified version are bounded either of strong or of weak type on
homogeneous trees endowed with the counting measure. As a by-product, we deduce
boundedness results for the centred Hardy-Littlewood maximal functions and its
modifed versions on infinite trees which satisfy suitable geometric conditions and we
discuss the optimality of our results. Finally, we study the robustness of boundedness
results for the centred Hardy-Littlewood maximal function on graphs with respect to
quasi-isometries.

5.1 Notation

Let T be a locally finite tree. We endow T with the counting measure and for every
subset E of T we denote by |E| its cardinality. For every p 2 [1,•) we denote by
Lp(T ) the space of functions f 2 CT such that k fkp

Lp(T ) = Âx2T | f (x)|p < • and by
L•(T ) the space of functions f 2CT such that k fkL•(T ) = supx2T | f (x)|< •. Given
p 2 [1,•) and s 2 [1,•), we recall that the Lorentz spaces Lp,s(T ) and Lp,•(T ) are
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defined by

Lp,s(T ) =
n

f 2CT : k fkLp,s(T ) =

✓
p
Z +•

0
l s|{x2 T : | f (x)|> l}|

s
p

dl
l

◆1/s
<•

o
,

and

Lp,•(T ) = { f 2 CT : k fkLp,•(T ) = sup
l>0

l |{x 2 T : | f (x)|> l}|1/p < •}.

For every positive g the centred modified maximal function M
g with parameter

g applied to a function f 2 CT is defined by

M
g f (x) = sup

r2N

1
|Br(x)|g Â

y2Br(x)
| f (y)|, x 2 T.

When g = 1, this reduces to the standard centred Hardy–Littlewood maximal operator,
which we simply denote by M .
We recall a useful result which we shall exploit several times throughout this chapter.

Lemma 5.1.1. Let S be an operator of restricted weak type (p,q) for some p,q 2
[1,•). Then, S is of strong type (t,s) for every 1  t < p and q < s  •.

Proof. It suffices to recall that for any t1, t2 2 [1,•) and s 2 [1,•], the continuous
inclusion Lt1,s(T ) ,! Lt2,s(T ) holds if t1  t2. By interpolation we get the desired
result.

5.2 Boundedness of H–L maximal operators on the
homogeneous tree

Let Tq+1 denote the homogeneous tree, i.e., the tree such that q(x) = q for every x
in Tq+1 and assume q � 2. Observe that |Br(x)| ⇡ qr for any x 2 Tq+1 and r 2 N.
We fix a reference point o 2 Tq+1 which we call origin. We state some boundedness
properties of the modified maximal operators M

g in this particular case.

Proposition 5.2.1. Let g 2 (0,1]. The maximal operator M
g is bounded from

L
1
g ,1(Tq+1) to L

1
g ,•(Tq+1) if and only if g � 1

2 .
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Proof. The case when g = 1 was proved in [14, 43]. The case when g = 1/2 is
proved in [59, Theorem 5.1]. We now study the case when g is any number in
(1/2,1). For every r 2 N let Fr denote the function |Br(o)|�g cBr(o). For every
nonnegative function f on Tq+1, every r 2 N and x in Tq+1

1
|Br(x)|g Â

y2Br(x)
f (y) =

1
|Br(o)|g

r

Â
n=0

Â
d(x,y)=n

f (y)

=
•

Â
n=0

Fr(n) Â
d(x,y)=n

f (y) =: f ⇤Fr(x),

where the convolution is defined in [12, Formula (2.5)]. Hence,

M
g f (x). f ⇤F(x), x 2 Tq+1,

where F(x) = q�g|x|. It is easy to check that F 2 L1/g,•(Tq+1). Indeed, for every
l > 0, the condition F(x)> l is equivalent to |x|< logq

1
l 1/g , thus

|{x 2 Tq+1 : |F(x)|> l}|. qlogq
1

l1/g ⇡ 1
l 1/g .

By [12, Theorem 1] we deduce that

kM g fk
L

1
g ,•(Tq+1)

. k fk
L

1
g ,1(Tq+1)

kFk
L

1
g ,•(Tq+1)

. k fk
L

1
g ,1(Tq+1)

.

Fix g 2 (0, 1
2) and let fc be the radial function defined by

fc(x) = q�c|x|, x 2 Tq+1,

where c > 0. It is known that (see for example [46] or [12, Lemma A3])

fc 2 L1/g,1(Tq+1) if and only if Â
n2N

q�ncqng <+•,

namely if and only if g < c. We choose c := g + e for some positive e such that
g < 1

2 � e .
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Observe that

M
g fc(y)⇡ sup

R�0

1
qRg Â

x2BR(y)
q�|x|(g+e) � q�|y|g Â

x2S|y|(y) : |x|=2|y|
q�|x|(g+e)

= q�|y|gq|y|q�2|y|(g+e) = q|y|(1�3g�2e),

by choosing R = |y|. We now prove that M
g fc 62 L1/g,•(Tq+1). Indeed, if 1�3g �

2e � 0, then there is nothing to prove. Otherwise,

sup
t>0

t1/g |{y 2 Tq+1 : q|y|(1�3g�2e) > t}|& sup
0<t<1

t1/gqlogq t1/(1�3g�2e)

= sup
0<t<1

t1/g+1/(1�3g�2e) = +•,

since g < 1
2 � e and 1�3g �2e < 0 impy 1/g +1/(1�3g �2e)< 0.

Hence M
g fc 62 L1/g,•(Tq+1).

The previous proposition provides a complete picture about the restricted weak
type (1

g ,
1
g ) boundedness of M

g on Tq+1.
The next result will be useful in order to describe the region on which the modified
maximal operator is strongly bounded.

Lemma 5.2.2. Fix g 2 (0,1]. Then, M
g is bounded from Lp(Tq+1) to L•(Tq+1)

if and only if p  1
1�g . Moreover, M

g is unbounded from L1(Tq+1) to Ls(Tq+1) if
s  1

g .

Remark 5.2.3. It will be clear later on that M
g : L1(Tq+1)! Ls(Tq+1) if and only

if s > 1
g . This will follow by Corollary 5.2.5 and Theorem 5.2.7.

Proof. The proof relies on a straightforward computation. Indeed, set p = 1
1�g

and pick f 2 Lp(Tq+1). Observe that for every x 2 Tq+1 and r 2 N, by Hölder’s
inequality with exponents p = 1

1�g and p0 = 1
g , we obtain

1
|Br(x)|g Â

y2Br(x)
| f (y)| k fkLp(Tq+1), x 2 Tq+1.

Passing to the supremum, we get that M
g f (x)  k fkLp(Tq+1) for every x 2 Tq+1,

hence M
g is bounded from Lp(Tq+1) to L•(Tq+1). By invoking the inclusions on

the Lp(Tq+1) spaces, it follows that M
g is bounded from Ls(Tq+1) to L•(Tq+1) for
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every s  p.
Fix now s > p = 1

1�g and consider the sequence of functions defined by fR = cBR(o),
R 2 N. It is easy to see that k fRkLs(Tq+1) = |BR(o)|1/s. Moreover,

M
g fR(o) = sup

r2N

1
|Br(o)|g Â

y2Br(o)\BR(o)
1 � |BR(o)|1�g .

Thus

kM g fRkL•(Tq+1)

k fRkLs(Tq+1)
� |BR(o)|1/p�1/s ! •, as R ! •. (5.1)

Hence M
g is unbounded from Ls(Tq+1) to L•(Tq+1).

Next, fix s  1
g . It is clear that

M
gdo(x) =

1
|B|x|(x)|g

, x 2 Tq+1,

which implies that

kM gdoks
Ls(Tq+1)

= Â
x2Tq+1

1
|B|x|(x)|sg ⇡

•

Â
n=0

qn(1�sg) = +•.

This concludes the proof.

We are now interested in the Lt(Tq+1)! Ls(Tq+1) boundedness of the modified
maximal operator when (t,s) 2 [1,•]⇥ [1,•]. In order to perform this analysis, it is
convenient to distinguish four cases, namely, g = 1, g 2 (1/2,1), g 2 (0,1/2) and
g = 1/2.

5.2.1 Case g = 1

If g = 1, then, the weak type (1,1) and strong type (•,•) boundedness imply strong
type (t,s) boundedness for every (1,1) 6= (t,s) 2 [1,•]⇥ [1,•] such that s � t by
using interpolation and Lemma 5.1.1. Conversely, if t > s, M is unbounded from
Lt(Tq+1) to Ls(Tq+1) since the identity is not bounded on the same spaces and
| f | M f pointwise.
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1/2 1

1/2

1

1/t

1/s

Figure 5.1 Points (1/t,1/s) lying in the colored region (except for the point (1,1)) are those
for which M maps continuously Lt(Tq+1) to Ls(Tq+1)

5.2.2 Case g 2 (1/2,1)

Now assume g 2 (1
2 ,1). We prove a boundedness result based on complex interpola-

tion.

Theorem 5.2.4. Let g 2 (1/2,1) and set p = 1
1�g . Then, M

g is bounded from
Lp, p

2 (Tq+1) to Lp,•(Tq+1).

Proof. Fix two functions f : Tq+1 ! (0,•) and Y : Tq+1 ! {z 2 C : |z|= 1}. For
g 2 C, consider the operator M

g
f ,Y, defined on f 2 CT by

M
g
f ,Y f (x) :=

1
|Bf(x)|g

Â
y2Bf(x)(x)

f (y)Y(y), x 2 Tq+1.

It is easy to see that

sup
f ,Y

|M g
f ,Y f (x)|= M

Reg f (x), x 2 Tq+1, (5.2)

where the supremum is taken over all functions f : Tq+1 ! (0,•) and Y : Tq+1 !
{z 2 C : |z| = 1}. By [59, Th. 5.1.], M

1/2 : L2,1(Tq+1)! L2,•(Tq+1), whence so
does M

g
f ,Y for Reg = 1

2 . Trivially, M
1 = M : L•(Tq+1)! L•(Tq+1), whence so

does M
g
f ,Y for Reg = 1. Set A0 = L2,1(Tq+1), A1 = L•(Tq+1), B0 = L2,•(Tq+1) and

B1 = L•(Tq+1). Observe that A := A0 \A1 = A0. We also set B+ = L1(Tq+1). We
aim to apply Cwikel and Janson’s result [15, Th. 2.] to the family of linear operators
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{M g
f ,Y : 1

2  Reg  1}. To do so, define

Tz := M
(z+1)/2
f ,Y , z 2 S,

where S = {w 2 C : 0 < Re w < 1}. We must look at

hb+,Tzai= Â
x2Tq+1

b+(x)
|Bf(x)|(z+1)/2 Â

y2Bf(x)(x)
a(y)Y(y), b+ 2 B+,8a 2 A.

The function z 7! hb+,Tzai is bounded on S. Indeed,

|hb+,Tzai| Â
x2Tq+1

|b+(x)|M 1/2a(x)

 kM 1/2kL2,1(Tq+1)!L2,•(Tq+1)kb+kL2,1(Tq+1)kakL2,1(Tq+1)

 ckM 1/2kL2,1(Tq+1)!L2,•(Tq+1)kb+kL1(Tq+1)kakL2,1(Tq+1
, a 2 A,

and the last inequality follows by recalling that L1(Tq+1) ,! L2,1(Tq+1).

Furthermore, z 7! hb+,Tzai is holomorphic in S, as a straightforward application of
Morera’s Theorem shows. Moreover,

lim
s!0+

hb+,Ts+itai= hb+,Titai, t 2 R

and

lim
s!1�

hb+,Ts+itai= hb+,T1+itai, t 2 R.

Thus, z 7! hb+,Tzai belongs to H•(S) := { f 2 L•(S) : f 2 H(S), lims! j f (s+ it) =
f ( j+ it), a.e. t 2 R, j = 0,1}. Observe also that

kTitakB0  kM 1/2akL2,•(Tq+1)  kM 1/2kL2,1(Tq+1)!L2,•(Tq+1)kakL2,1(Tq+1), t 2 R.

Similarly,

kT1+itakB1  kM akL•(Tq+1)  kakL•(Tq+1), t 2 R.
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Therefore, for every q 2 (0,1),

Tq : [L2,1(Tq+1),L•(Tq+1)]q ! [L2,•(Tq+1),L•(Tq+1)]
q .

By [3, Th. 4.2.1.(a)] [L2,1(Tq+1),L•(Tq+1)]q = [L•(Tq+1),L2,1(Tq+1)]1�q which
in turn is equal to Lpq ,rq (Tq+1), where 1

pq
= 1�q

2 and 1
rq

= 1�q , see [35, Eq. (8),
p.3]. Notice that rq = pq

2 . Next, by [35, Remark 2]

[L2,•(Tq+1),L•(Tq+1)]
q = [L•(Tq+1),L2,•(Tq+1)]

1�q

= L
2

1�q ,•(Tq+1)

= Lpq ,•(Tq+1).

We conclude that for every q 2 (0,1)

Tq : Lpq ,
pq
2 (Tq+1)! Lpq ,•(Tq+1), (5.3)

and the boundedness constant of Tq does not depend on f and Y. Recall that

Tq = M

q+1
2

f ,Y . We may rephrase (5.3) in terms of the parameter g . We have that

M
g
f ,Y : L

1
1�g ,

1
2(1�g) (Tq+1)! L

1
1�g ,•(Tq+1). (5.4)

Now set p = 1
1�g and take f 2 Lp, p

2 (Tq+1). For every e > 0, by (5.2), we may find
f and Y such that kM g

f ,Y fkLp,•(Tq+1) � kM g fkLp,•(Tq+1)� e. By (5.4), there exists
a constant C, which does not depend on f and Y, such that

kM g
f ,Y fkLp,•(Tq+1) Ck fk

Lp, p
2 (Tq+1)

.

By letting e ! 0+, we get

kM g fkLp,•(Tq+1) Ck fk
Lp, p

2 (Tq+1)
. (5.5)

This is the desired result.

The combination of the above result with Proposition 5.2.1 yields by interpolation
the following corollary.

Corollary 5.2.5. For every g 2 (1
2 ,1) and p2 (1

g ,
1

1�g ), M
g : Lp(Tq+1)! Lp(Tq+1).
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1� g 1/2 g 1

1� g

1/2

g

1

1/t

1/s

Figure 5.2 Points (1/t,1/s) lying in the colored region (excepted the dashed segments)
are such that M

g maps continuously Lt(Tq+1) to Ls(Tq+1), under the assumption that
g 2 (1/2,1). Outside the colored region no strong (t,s) boundedness is possible because of
Proposition 5.2.2, Lemma 5.1.1 and the fact that the identity is not bounded on points above
the diagonal.

Gluing the above results all together and recalling that M g f is pointwise bounded
from below by | f | for any f 2 CT , we obtain that
• M

g is bounded from Lt(Tq+1)! Ls(Tq+1) when 1� g < 1
t < g and 0  1

s  t or
g  1

t  1 and 0  1
s < g;

• M
g is unbounded on the segment t 2 [1, 1

g ], s = 1
g by Lemma 5.2.2;

•M
g is bounded from Lt, st

t+s (Tq+1) to Ls,•(Tq+1) when 1
t = 1�g and 0< 1

s < 1�g ;
• M

g is of restricted weak type (t,1/g) for every t 2 [1, 1
g ] by using the inclusions

of Lorenz spaces on Tq+1.
As the previous results suggest, the points (t,s) which lie on the diagonal such
that 1

s = 1
t = 1� g or 1

s = 1
t = g represent very special cases in the study of the

boundedness of M
g . One may ask whether a strong type ( 1

1�g ,
1

1�g ) boundedness
result holds for M

g . The next result shows that the answer is negative.

Proposition 5.2.6. Fix g 2 (1
2 ,1) and p = 1

1�g . Then, M
g is unbounded from

Lp,r(Tq+1) to Lp,s(Tq+1) for every r 2 [1,•] and s 2 [1,•).

Proof. For every R 2 N set BR = BR(o) and fR = cBR . It is clear that

k fRkLp,r(Tq+1) ⇡ qR/p, r 2 [1,•].
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For any x 2 BR,

M
g fR(x)&

1
q(R�|x|)g Â

y2B(R�|x|)(x)\BR

1 & fR(x)q(R�|x|)(1�g)

= fR(x)q(R�|x|)/p.

Fix s 2 [1,•) and, since x 7! fR(x)q(R�|x|)/p is radial, by a result of Pytlik (see
[46, 12])

kM g fRkLp,s(Tq+1) � k fRq(R�|·|)/pkLp,s(Tq+1)

⇡
✓ •

Â
n=0

f s
R(n)q

s(R�n)/pqns/p
◆1/s

⇡ R1/sqR/p,

so that

kM g fRkLp,s(Tq+1)

k fRkLp,r(Tq+1)
! • as R ! •.

This concludes the proof.

5.2.3 Case g 2 (0,1/2)

It remains to investigate the behaviour of the modified maximal operator with
parameter g 2 (0,1/2). In that case, by Lemma 5.2.2 we deduce that M

g is never
bounded from Lp(Tq+1) to itself. Indeed, by the aforementioned lemma, M

g is
unbounded from Lp(Tq+1) to L•(Tq+1) for every p < 1

1�g and from L1(Tq+1) to
Ls(Tq+1) for every s � 1

g . Because of the Lp-inclusions in the discrete setting, if M
g

were of strong type (p, p) it would imply either a strong (p,•) and a strong (1, p)
boundedness. Since in this case g < 1� g , at least one of the latter is false.
In order to obtain a positive result in this setting, we shall adapt Theorem 5.2.4 using
now the endpoint g = 0 in the complex interpolation argument.

Theorem 5.2.7. Let g 2 (0,1/2) and set p = 1
1�g and p0 = 1

g . Then, M
g is bounded

from Lp,1(Tq+1) to Lp0,•(Tq+1).
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Proof. Let f ,Y and M
g
f ,Y be as in Theorem 5.2.4. Set A0 = L1(Tq+1), A1 =

L2,1(Tq+1), B0 = L•(Tq+1) and B1 = L2,•(Tq+1). Observe that A := A0 \A1 = A0.
We also set B+ = L1(Tq+1). We apply again Cwikel and Janson’s result [15] to the
family of linear operators {M g

f ,Y : 0  Reg  1
2}. Let

Tz := M
z/2
f ,Y, z 2 S,

where S = {w 2 C : 0 < Re w < 1}. It is easy to see that kM 0 fkL•(Tq+1) 
k fkL1(Tq+1) for every f 2 L1(Tq+1). This and Veca’s result [59] imply that

kTzkL1(Tq+1)!L•(Tq+1)  1, Rez = 0,

kTzkL2,1(Tq+1)!L2,•(Tq+1)  kM 1/2kL2,1(Tq+1)!L2,•(Tq+1), Rez = 1.

We have again that for every b+ 2 B+ and a 2 A, the mapping z 7! hb+,Tzai belongs
to H•(S) := { f 2 L•(S) : f 2 H(S), lims! j f (s+ it) = f ( j + it), a.e. t 2 R, j =
0,1}. We conclude that for every q 2 (0,1)

Tq : [L1(Tq+1),L2,1(Tq+1)]q ! [L•(Tq+1),L2,•(Tq+1)]
q = [L2,•(Tq+1),L•(Tq+1)]

1�q ,

where [L1(Tq+1),L2,1(Tq+1)]q = Lpq ,1(Tq+1) with 1
pq

= 1�q + q
2 and

[L2,•(Tq+1),L•(Tq+1)]1�q = Lrq ,•(Tq+1), with 1
rq

= q
2 = 1

p0q
. Summing up,

Tq : Lpq ,1(Tq+1)! Lp0q ,1(Tq+1),

with a constant which does not depend on f and Y. Now we rephrase the result in
terms of g 2 (0,1/2), and we get that T2g : Lp,1(Tq+1)! Lp0,1(Tq+1) where p = 1

1�g .
Arguing as in Theorem 5.2.4 we conclude that

M
g : L

1
1�g ,1(Tq+1)! L

1
g ,1(Tq+1),

as desired.

Now, by combining the previous result with Lemma 5.1.1, it immediately follows
that for any g 2 (0,1/2) the following hold:
• M

g is of strong type (t,s) if 1� g < 1
t  1 and 0  1

s < g;

• M
g is unbounded from Lt(Tq+1) to L

1
g (Tq+1) for any t � 1 by Lemma 5.2.2 and
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M
g of restricted weak type (t, 1

g ) if 1  1
t  1� g;

• M
g is bounded from Lt,q(Tq+1) to Ls,•(Tq+1) if 1

t = 1 � g , 0 < 1
s < 1

t 0 and
1
q = g

s
1
t 0 +

1
t .

See Figure 5.3 for a complete picture.

g 1/2 1� g 1

g

1/2

1� g

1

1/t

1/s

Figure 5.3 Points (1/t,1/s) lying in colored region (excepted the dashed segments) are such
that M

g maps continuously Lt(Tq+1) to Ls(Tq+1), under the assumption that g 2 (0,1/2).
Outside the colored region no strong boundedness is possible because of Lemma 5.2.2 and
Lemma 5.1.1.

5.2.4 Case g = 1/2

The restricted weak type (2,2) boundedness of M
1/2 was studied by Veca in [59].

Observe that if g = 1
2 and thus g = 1� g , the teal region the diagram in Figure 5.2

degenerates in a rectangle with vertices (1/2,1/2),(1,1/2), (1/2,0) and (1,0).
We conclude this section by showing that Veca’s result [59] is optimal. This rep-
resents a discrete counterpart of a Ionescu’s [28] result obtained in the setting of
non-compact symmetric spaces.

Theorem 5.2.8. For every s> 1, M 1/2 is unbounded from L2,s(Tq+1) to L2,•(Tq+1).

Proof. Fix s > 1 and 1
s < b < 1. Define g 2 CTq+1 by

g(x) =
q�|x|/2

(1+ |x|)b , x 2 Tq+1.
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Since g is radial, kgkL2,s(Tq+1) ⇡
✓

Â•
n=0

1
(1+n)b s

◆1/s
, thus g belongs to L2,s(Tq+1).

Observe that for any x 2 Tq+1

M
1/2g(x)⇡ sup

R2N

1
qR/2 Â

y2BR(x)
g(y)

� 1
q|x|/2 Â

y2S|x|(x)

q�|y|/2

(1+ |y|)b

⇡ 1
q|x|/2

|x|

Â
j=0

q�2(|x|� j)/2q|x|� j

(1+2(|x|� j))b

=
1

q|x|/2

|x|

Â
j=0

1
(1+2(|x|� j))b

⇡ q�|x|/2(1+ |x|)1�b =: k(x).

Since k is radial and b < 1,

kkkL2,•(Tq+1) ⇡ kk(·)q(·)/2kL•(N) = +•.

Hence M
1/2 does not map L2,s(Tq+1) in L2,s(Tq+1).

More in general, one may ask whether a similar strategy can be exploited in
order to prove that boundedness results for M

g discussed in Theorem 5.2.4 and
Theorem 5.2.7 are optimal. In the next proposition we show that radial functions
cannot provide counterexamples.

Proposition 5.2.9. Fix g 2 (0,1) and set p = 1
1�g . Let Lp,s(Tq+1)# denote the space

of radial functions in Lp,s(Tq+1). The following hold:

i) if g > 1
2 , then M

g is bounded from Lp,s(Tq+1)# to Lp,•(Tq+1) for every s 2
[1,•];

ii) if g < 1
2 , then M

g is bounded from Lp,s(Tq+1)# to Lp0,•(Tq+1) for every
s 2 [1,•].
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Proof. Let f be a nonnegative radial function. The proof is based on the following
formula which can be obtained by a straightforward computation

1
qRg Â

y2SR(x)
f (y)⇡

8
><

>:

q�R/p0 ÂR
j=0 f (|x|+R�2 j)qR� j if R  |x|;

q�R/p0
✓

Â|x|
j=0 f (|x|+R�2 j)qR� j + f (R� |x|)qR�|x|

◆
otherwise.

(5.6)

Assume now f 2 Lp,s(Tq+1)# for some s � 1. It follows that n 7! g(n) := f (n)qn/p

belongs to Ls(N) and kgkLs(N) ⇡ k fkLp,s(Tq+1). Now we rewrite (5.6) in terms of g

1
qRg Â

y2SR(x)
f (y)⇡

8
<

:
q�|x|/p Â|x|

j=0 g(|x|+R�2 j)q j(2/p�1) if R  |x|;

q�|x|/p Â|x|
j=0 g(|x|+R�2 j)q j(2/p�1) +g(R� |x|)q�|x|/p0 otherwise.

(5.7)

If g > 1
2 i.e., p > 2, then, by applying Hölder’s inequality in (5.7), we get

1
qRg Â

y2SR(x)
f (y). q�|x|/pkgkLs(N),

which in turn implies M
g f (x). q�|x|/pkgkLs(N). Then, kM g fkLp,•(Tq+1). kgkLs(N)⇡

k fkLp,s(Tq+1), that is i).
If g < 1

2 , then, by applying Hölder’s inequality in (5.7), we get

1
qRg Â

y2SR(x)
f (y). q�|x|/p0kgkLs(N).

Arguing exactly as above, we conclude that kM g fkLp,•(Tq+1) . k fkLp0,s(Tq+1)
and ii)

is proved.
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5.3 Boundedness of H–L maximal operators on non-
homogeneous trees

In this section we study the boundedness of the Hardy–Litllewood maximal operator
on a nonhomogeneous tree T .

We start this section by an example of a tree on which the Hardy–Littlewood
maximal operator M is unbounded on Lp(T ) for every p 2 [1,•) and is not of weak
type (1,1).

Example 5.3.1. Let T be a tree with origin o and root at infinity zg 2 ∂T . Let
x j denote the vertex of the tree at level j on the ray zg and assume q(x j) = j for
j � 1, and that q(x) = 2 for any other node in the tree (see Figure 1). By testing the
maximal function on Dirac deltas centered at the vertices x j, we obtain that for every
j � 1

M dx j(x) = sup
r2N

1
|Br(x)| Â

y2Br(x)
dx j(y) =

1
|Bd(x,x j)(x)|

, x 2 T.

In particular, if j � 2 and x 6= x j�1 is a successor of x j, then M dx j(x) = 1/4. Then,
for every p 2 [1,•)

kM dx jkp
p � Â

x2s(x j),x 6=x j�1

|M dx j(x)|p =
j�1
4p �! •, as j ! •.

We also notice that
���
n

x : M dx j(x)>
1
8

o���� |{x 2 s(x j),x 6= x j�1}|= j�1 �! •, as j ! •.

This shows that M is not of weak type (1,1) and unbounded on Lp(T ) for every
p 2 [1,•).
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o

zg

level 4

level 3

level 2

level 1

level 0

level -1

Figure 5.4 The pattern continues at infinity: blue nodes have two successors and each yellow
node a number of successors which equals its level.

Notice that in the previous example the number of neighbors of a vertex is not
uniformly bounded.

5.3.1 Boundedness results

Example 5.3.1 suggests that we will need to require some condition on the geometry
of the tree, in particular some control on the number q(x), in order to get some
boundedness result for the Hardy–Littlewood maximal operator.

Definition 5.3.2. Given two integers such that 2  a  b, we say that a tree T has
(a,b)-bounded geometry if a  q(x) b for every x in T .

Let T be a tree with (a,b)-bounded geometry. Then, there exists an injective
map Jb : T ! Tb+1 such that whenever x ⇠ y in T , Jb(x)⇠ Jb(y) in Tb+1.

The following lemma shows how to embed a tree with (a,b)-bounded geometry in a
homogeneous tree Tb+1 and associate to functions in CT functions in CTb+1 .

Lemma 5.3.3. If f 2 Lp,1(T ) for some p > 1, then the function fb defined by

fb(x) =

8
<

:
f (J �1

b (x)) if x 2 Jb(T ),

0 otherwise,
(5.8)
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is such that k fbkLb,1(Tq+1)
= k fkLp,1(T ).

Proof. By definition

k fbkLp,1(Tq+1) = p
Z •

0
|{x 2 Tb+1 : | fb(x)|> l}|1/p dl

= p
Z •

0
|{x 2 Jb(T ) : | fb(x)|> l}|1/p dl

= p
Z •

0
|{x 2 T : | f (x)|> l}|1/p dl = k fkLp,1(T ),

as required.

We can state a positive result for the restricted weak type boundedness of the
maximal operator on a tree with (a,b)-bounded geometry.

Theorem 5.3.4. Let T be a tree with (a,b)-bounded geometry with 2  a  b < a2.
Then M is bounded from L

1
a ,1(T ) to L

1
a ,•(T ) and on Lp(T ) for every p 2 ( 1

a ,•],
where a = loga/ logb.

Proof. Let f be a nonnegative function in L
1
a ,1(T ) and define the function fb as in

Lemma 5.3.3. Since k fk
L

1
a ,1(T )

= k fbkL
1
a ,1(Tb+1)

and |Br(x)|� ar ⇡ |Bb
r (Jb(x))|a

where Bb
r (Jb(x)) denotes the ball in Tb+1 with center Jb(x) and radius r, we have

that
M f (x). 1

|Bb
r (x)|a

Â
y2Bb

r (x)
| fb(y)|. M

a
b fb(Jb(x)), x 2 T,

where M
a
b is the modified maximal operator with parameter a on Tb+1. By Propo-

sition 5.2.1 we deduce that

kM fk
L

1
a ,•(T )

. kM a
b fbkL

1
a ,•(Tb+1)

. k fbkL
1
a ,1(Tb+1)

= k fk
L

1
a ,1(T )

,

as required. The boundedness of M on Lp(T ) for p2 ( 1
a ,•] follows by interpolation

between the estimate above and the obvious boundedness of M on L•(T ).

Theorem 5.3.5. Let T be a tree with (a,b)-bounded geometry with 2  a  b and
a = loga/ logb. If g 2 ( 1

2a ,
1
a ], then M

g is bounded from L
1

ag ,1(T ) to L
1

ag ,•(T ) and

from L
1

1�ag ,
1

2(1�ag) (T ) to L
1

1�ag ,•(T ).
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Proof. Let Jb : T ! Tb+1 be the map introduced above. Given a nonnegative
function f in L

1
ag ,1(T ), we define fb on Tb+1 as in (5.8). Since |Br(x)|g � arg ⇡

|Bb
r (x)|ag we have that

M
g f (x). 1

|Bb
r (x)|ag Â

y2Bb
r (x)

| fb(y)|. M
ag
b fb(Jb(x)), x 2 T,

where M
ag
b is the modified maximal operator with parameter ag on Tb+1. By

Proposition 5.2.1 we deduce that

kM g fk
L

1
ag ,•(T )

. kM ag
b fbk

L
1

ag ,•(Tb+1)

. k fbk
L

1
ag ,1(Tb+1)

= k fk
L

1
ag ,1(T )

,

as required. Similarly, by Theorem 5.2.4 we deduce that

kM g fk
L

1
1�ag ,•(T )

. kM ag
b fbk

L
1

ag ,•(Tb+1)

. k fbk
L

1
1�ag ,

1
2(1�ag) (Tb+1)

= k fk
L

1
1�ag ,

1
2(1�ag) (T )

,

which concludes the proof.

From the restricted weak-type boundedness of M
g we can deduce some off-

diagonal strong-type estimates. Before, we provide a generalization of Lemma 5.2.2
on a general tree with bounded geometry.

Lemma 5.3.6. Let T be a tree with (a,b)-bounded geometry with 2  a  b. Fix
g 2 (0,1) and set a = loga/ logb. Then, M

g is bounded from Lp(T ) to L•(T ) if
and only if p  1

1�g . Moreover, M
g is unbounded from L1(T ) to Ls(T ) if s  1

ag .

Proof. The first assertion can be proved as in Lemma 5.2.2. Next, fix s  1
ag . Then,

M
gdo(x)�

1
|B|x|(x)|g

& 1
bg|x| , x 2 T.
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Since b�s|x|g � b�|x|a = a�|x|, it is clear that x 7! b�|x|g does not belong to Ls(T ).
Hence, M

g does not map L1(T ) in Ls(T ).

We now focus on the case ag � 1/2.

Corollary 5.3.7. Let T be a tree of (a,b)-bounded geometry, a = loga/ logb, and
g � 1/2a . Then, M

g is bounded from Lt(T ) to Ls(T ) for (1/t,1/s) in the interior
of the convex hull of the points (1� g,0),(1�ag,1�ag),(ag,ag) and (1,ag),
and it is not bounded from Lt(T ) to Ls(T ) for 1/t < 1� g , for 1/s � g/a and for
1/s > 1/t (see Figure 5.5).

Proof. The positive results follow by Theorem 5.3.5, Lemma 5.3.6 and by interpola-
tion. The negative results directly follow by Lemma 5.3.6 combined with Lemma
5.1.1, the fact that M

g f � | f | pointwise on Lp(T ) and by the fact that the identity is
not of strong type (t,s) if 1

t <
1
s .

1� g 1/2 ag 1

1�ag

1/2

ag

g/a
1

1/t

1/s

Figure 5.5 Points (1/t,1/s) lying in teal region are those for which M
g maps continuously

Lt(T ) to Ls(T ), and points lying in the magenta region are those it does not, under the
assumption that T has (a,b)-bounded geometry and ag � 1/2. Observe that for a = 1 there
is no white space, and for g = 1 and any a the bottom left white space dissapears.

In the last result of this section we study the case ga < 1
2 .
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Theorem 5.3.8. Let T be a tree with (a,b)-bounded geometry with 2  a  b and
a = loga/ logb. If g < 1

2a then M
g is bounded from L

1
1�ag ,1(T ) to L

1
ag ,•(T ).

Proof. By repeating the argument contained in the proof of Theorem 5.3.5, we get

M
g f (x). M

ag
b fb(Jb(x)), x 2 T,

where Jb and fb are as in Theorem 5.3.5. By invoking Theorem 5.2.7, we obtain
the desired conclusion.

Consequently, if g < 1
2a , by interpolation with Lemma 5.3.6 and a direct applica-

tion of Lemma 5.1.1, we get that M
g is of strong type (t,s) for every (1

t ,
1
s ) in the

interior of the convex hull of (1� g), (1�ag,ag), (1,ag) and (1,1), see Figure
5.6.

ag 1� g 1�ag 1

ag

1� g

1�ag
g/a

1

1/t

1/s

Figure 5.6 Points (1/t,1/s) lying in teal region are those for which M
g maps continuously

Lt(T ) to Ls(T ), and points lying in the magenta region are those it does not, under the
assumption that T has (a,b)-bounded geometry and ag < 1/2. In this picture, g = 0.5 and
a = 0.65. Observe that for a = 1 there is no white space.
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5.3.2 Optimality

We now show that, on trees of (a,b)-bounded geometry with b < a2, the range
of exponents which describes the boundedness of the maximal operator M

g in
Theorems 5.3.4 and 5.3.5 is optimal. This will be clear from the following example,
which is the discrete counterpart of [55].

Example 5.3.9. Let 2  b < a2 and T be a tree with (a,b)-bounded geometry and
root zg at infinity defined as follows. For n 2 Z define hn as {x 2 T : `(x) = n} (see
Subsection 1.2 for the definition of the level of a vertex) and suppose that

q(x) =

8
<

:
a if x 2 hn, n  0,

b if x 2 hn, n � 1,

see Figure 5.7 for a picture of T .

o

zg

h4

level 3

level 2

level 1

level 0

level -1

Figure 5.7 Blue and orange nodes have, respectively, 2 and 3 successors each. All the nodes
with nonpositive level are blue, and all the remaining ones are orange.

The maximal operator M
g is unbounded from Lp,1(T ) to Lp,•(T ) for every

p 2 [1, 1
ag

�
. Indeed, assume by contradiction that M

g is bounded from Lp,1(T )
to Lp,•(T ) for some p < 1

ag . Let R be a positive integer and choose a vertex ỹ in
hR. Since b < a2, it is easy to verify that that for any y 2 BR(ỹ)\h0, |BR(y)|. aR.
Moreover, |BR(ỹ)\h0| = bR. We also notice that for any y 2 BR(ỹ)\h0, we have
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that M
gdỹ(y) = 1

|BR(y)|g . Thus for every positive even integer R

bR =
��BR(ỹ)\h0

��
����

⇢
x 2 T : M

gdỹ(x)>
1

2|BR(y)|g

�����

. kdỹkp
Lp,1(T )2

paRpg . aRpg .

Since pg < 1
a , this is a contradiction.

5.4 Weak type (1,1) boundedness of M

In this section we prove that, under an additional assumption on the growth of the
measure of balls on a tree T with (a,b)-bounded geometry and b < a2, the maximal
operator M is bounded from L1(T ) to L1,•(T ). More precisely, we will prove the
following result.

Theorem 5.4.1. Let T be a tree of (a,b)-bounded geometry with 2  a  b < a2 and
such that

|Br(x)|⇡ |Br(y)|, for every x,y 2 T,r 2 N. (5.9)

Then, M is of weak type (1,1) on T .

In order to prove the above theorem some intermediate steps are required. We
start with a preliminary lemma which is a well known fact (see for example [22, Ch.
2.]).

Lemma 5.4.2. Let f : N! R be a positive quasimorphism, i.e., f > 0 and there
exists c1,c2 > 0 such that

c1 f (m) f (n) f (m+n) c2 f (m) f (n), n,m 2 N. (5.10)

Then, f (n)⇡ ean for some real number a .

Proof. Define h = log f . We have that

logc1  h(m+n)�h(m)�h(n) logc2, n,m 2 N,
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namely, h(m+ n)� h(m)� h(n) = O(1). In particular, h(kn)� kh(n) = O(k) for
every k,n 2 N. Thus

h(kn)
kn

� h(n)
n

= O(1/n), k,n 2 N. (5.11)

Moreover, {h(n)/n}n is a Cauchy sequence. Indeed,
����
h(n)

n
� h(m)

m

����=
����
h(mn)

mn
+O

✓
1
n

◆
� h(m)

m

���� O
✓

1
m
+

1
n

◆
.

Thus, there exists a 2 R such that

h(n)
n

! a, as n ! •.

In particular, taking the limit as k ! • in (5.11), we obtain h(n)/n = a +O
�
1/n

�
,

i.e., h(n) = O(1)+an. By composition with the exponential function we obtain that

f (n) = eanO(1),

as required.

The next lemma is a quite straightforward generalization of [43, Lemma 5.1].
We provide a detailed proof for the reader’s convenience.

Lemma 5.4.3. Let T be a tree with (a,b)-bounded geometry with 2  a  b. Assume
that there exist three positive constants c,c1,c2 such that , for every x 2 T,r 2 N,

c1cr  |Sr(x)| c2cr. (5.12)

Then, for any A,B ⇢ T such that |A|, |B|<+•,

Â
x2B

|A\Sr(x)| 2c2|A|1/2|B|1/2cr/2.

Proof. Define A j := A\ S j(o),B j = B\ S j(o). Assume |x| = j and |y| = i. Then,
if r = d(x,y), it follows that r = i� j + 2m with m = d(y,x^ y)  j  r, where
x^ y := argmax{|z| : z 2 [o,x]\ [o,y]}. We can easily prove that if |x|= j

|{y 2 Sr(x) : |y|= i}| |Sr�m(x^ y)| c2cr�m,
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and if |y|= i

|{x 2 S(y,r) : |x|= j}| |Sm(x^ y)| c2cm.

It follows that

Â
x2B

|A\Sr(x)|.
r

Â
m=0

Â
i, j2N,i= j+r�2m

min{|B j|cr�m, |Ai|cm}.

We define d j := |A j|
c j ,e j := |B j|

c j for all j � 0. We have

min{|B j|cr�m, |Ai|cm}= min{cr�m+ je j,cm+idi}= c(i+ j+r)/2 min{di,e j}

and we obtain

Â
x2B

|A\Sr(x)| cr/2
•

Â
i, j=0

c(i+ j)/2 min{ei,d j}.

We conclude following [43, pag. 759-760].

Proof of Theorem 5.4.1. Condition (5.9) is equivalent to the existence of a function
f : N! R such that |Bn(x)|⇡ f (n), for every x 2 T,r 2 N. Observe that

f (m+n). |Bm+n(o)|. Â
x2Sn(o)

|Bm(x)|. Â
x2Sn(o)

f (m). f (n) f (m). (5.13)

Now we fix a point o 2 T and, for x 2 T,r 2 N, we define the triangle Tr(x) as the
set of points of y 2 Br(x) such that x 2 [o,y]. We also denote by p j(x) the point in
[o,x] at distance j from x where j  |x|.

Assume without loss of generality n � m. If x 2 Sr(o) we have,

|Br(x)|.
r

Â
j=0

|Tr� j(p j(x))|.
r

Â
j=0

|Tr+ j(p j(x))|a�2 j, r 2 N,

where we are using the fact that |Tr� j(p j(x))|a2 j . |Tr+ j(p j(x))|; this follows by
the isoperimetric property (see [7, Cor. 2.4.]) and the fact that q(x) � a for every
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x 2 T . Moreover,

f (n) f (m). Â
x2Sn(o)

f (m). Â
x2Sn(o)

|Bm(x)|.
m

Â
j=0

a�2 j Â
x2S(o,n)

|Tm+ j(p j(x))|

.
m

Â
j=0

a�2 j Â
y2S(o,n� j)

|{z : p j(z) = y}||Tm+ j(y)|

.
m

Â
j=0

a�2 j Â
y2S(o,n� j)

b j|Tm+ j(y)|

. |Bn+m(o)|
m

Â
j=0

a�2 jb j . f (n+m). (5.14)

Hence, by (5.13) and (5.14), f (m+n)⇡ f (m) f (n). It follows from Lemma 5.4.2
that f (n) ⇡ ean for some nonnegative real number a . In particular, Lemma 5.4.3
applies and gives

ET (r) := sup
A,B⇢T

|A|,|B|<•

1
|A||B|

✓
Â
x2B

|A\Sr(x)|
|Sr(x)|

◆2
. 1

cr . (5.15)

By (5.15) and by [53, Theorem 4.1.], we obtain that

kM kL1(T )!L1,•(T ) . sup
n2N

2n/2 Â
r2N,cr�2n�1/c2

ET (r)c
1/2
2 cr/2

. sup
n2N

2n/2 Â
r2N,cr�2n�1/c2

c�r/2

. sup
n2N

2n/2 1
2n/2 = 1.

5.5 Quasi-isometries

Let G,G0 be two simple (i.e., undirected graphs without self-loops and multi-edges)
connected graphs. Given a map y from G to G0 and a set A ⇢ G, we shall denote by
y(A) the image under y of A.
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Definition 5.5.1. We say that the map j : G ! G0 is a quasi-isometry if there exist
0 < K,b <+• and 1  a <+• such that

I) supx02G0 d0(j(G),x0) = K,

II) 1
a d(x,y)�b  d0(j(x),j(y)) ad(x,y)+b x,y 2 G.

Without loss of generality we will assume b 2 N in the sequel.
We denote by q and q0 the functions which assign to a vertex its degree minus one on
G and G0 and by M and M

0 the Hardy–Littlewood maximal operators on G and G0,
defined by

M f (x) = sup
r2N

1
|Br(x)| Â

y2Br(x)
| f (y)|, f 2 CG, x 2 G,

M
0 f (x0) = sup

r2N

1
|B0

r(x0)|
Â

y02B0
r(x0)

| f (y0)|, f 2 CG0
, x0 2 G0.

Throughout this section we shall assume the following:
• j : G ! G0 is a quasi-isometry for some 0 < K,b < • and 1  a < •;
• there exist two positive constants 2  Q0,Q < • such that

i) supx2G0 q0(x) = Q0;

ii) supx2G q(x) = Q.

For any x 2 G and x0 2 G0, we shall denote by Br(x),Sr(x) and B0
r(x0),S0r(x0) the balls

and the spheres with radius r 2 N and center x and x0 respectively. We now show
that i) and ii) imply some useful bounds concerning the measure of a ball.

Lemma 5.5.2. For every x 2 G,x0 2 G0,r 2 N the following hold

|Br(x)| 3Qr, |B0
r(x

0)| 3(Q0)r. (5.16)

Moreover, for every n 2 N

|Br+n(x)| 2Qn|Br(x)|, |B0
r+n(x

0)| 2(Q0)n|B0
r(x

0)|. (5.17)
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Proof. We prove the results concerning Br(x); the estimates involving B0
r(x) follow

by using the same argument. Observe that,

|Br(x)|=
r

Â
j=0

|S j(x)| (Q+1)
r

Â
j=1

Q j�1 =
Q+1
Q�1

(Qr �1) 3Qr,

since Q � 2. This prove the first assertion in (5.16). For every n 2 N

|Br+n(x)|=
r+n

Â
j=0

|S j(x)|= |Br(x)|+
r+n

Â
j=r+1

|S j(x)|

 |Br(x)|+ |Sr(x)|
n

Â
j=1

Q j  |Br(x)|(1+
n

Â
j=1

Q j)

 |Br(x)|
Q

Q�1
(Qn �Q�1) 2Qn|Br(x)|,

which proves the first assertion in (5.17).

Finally, we provide a useful lemma that we shall invoke several times.

Lemma 5.5.3. Let y be any map from G to G0. Then, for every A ⇢ G and every
nonnegative f 2 CG0

Â
y2y(A)

|y�1({y})\A| f (y) = Â
x2A

f (y(x)). (5.18)

Proof. Fix A ⇢ G. For every y 2 y(A) set Ay = y�1({y})\ A. It is clear that
{Ay}y2y(A) is a partition of A. Thus,

Â
x2A

f (y(x)) = Â
y2y(A)

Â
x2Ay

f (y(x)) = Â
y2y(A)

|Ay| f (y),

as required.

We point out that (5.18) is of particular interest when A = G.

We now focus on quasi-isometries and on boundedness properties of the Hardy–
Littlewood maximal function on quasi-isometric graphs. We shall distinguish two
different cases, namely, a = 1 and a > 1.
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5.5.1 Case 1: a = 1

In this subsection we fix two graphs satisfying i) and ii) and assume j : G ! G0

to be a quasi-isometry with a = 1. Observe that a quasi-isometry is not in general
injective. In the following lemma we estimate the cardinality of the preimage of a
point in j(G).

Lemma 5.5.4. The following hold:

|j�1({j(x)})| 3Qb , x 2 G, (5.19)

|j(A)|� |A|
3Qb , A ⇢ G. (5.20)

Proof. Fix x 2 G and assume j(x) = j(y) for some y 2 G. Then, d(x,y)� b 
d0(j(x),j(y)) = 0, implies y 2 Bb (x). By Lemma 5.5.2, this yields (5.19). Now, by
Lemma 5.5.3 and (5.19), we easily get that

|j(A)|= Â
y2j(A)

1 = Â
a2A

1
|j�1({j(a)})\A| �

1
3Qb Â

a2A
1 =

|A|
3Qb ,

as required.

By applying II) the following inclusions hold for all x 2 G

j�1(B0
r(j(x)))⇢ Br+b (x)⇢ j�1(B0

r+2b (j(x))),

and

B0
r(j(x))\j(G)⇢ j(Br+b (x))⇢ B0

r+2b (j(x))\j(G). (5.21)

Definition 5.5.5. Fix R > 0 and define for every f 2 CG0
and x0 2 G0

M
0
R f (x0) = sup

r�R

1
|B0

r(x0)|
Â

y02B0
r(x0)

| f (y0)|,

T
0

R f (x0) = Â
y02B0

R(x0)
| f (y0)|.
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Clearly, M
0
R f  M

0 f . Moreover, for every R 2 N, T
0

R is bounded on Lp(G0) for
every p � 1. Indeed, by Hölder’s inequality, there exists a constant CR,p such that

Â
x02G0

|T 0
R f (x0)|p CR,pk fkp

Lp(G0).

We also remark that

sup
rR

1
|B0

r(x0)|
Â

y02Br(x0)
| f (y0)| T

0
R f (x0), f 2 CG0

, x0 2 G0,

which in turn implies

M
0 f (x0) M

0
R f (x0)+T

0
R f (x0), x0 2 G0. (5.22)

Definition 5.5.6. For any x0 2 G0 we define the set

P(x0) =

8
<

:
{y0 2 j(G) : d0(x0,y0) = minz02j(G) d0(x0,z0)} if x0 62 j(G),

{x0} if x0 2 j(G).

By Lemma 5.5.2, |P(x0)| 3(Q0)K for all x0 2 G0. Conversely, observe that a vertex
y0 2 G0 belongs to at most 3(Q0)K sets P(z0) for some z0 2 G0. We define a function
Y : G0 ! j(G) which assigns to a vertex x0 2 G0 a vertex Y(x0) 2 P(x0). Then, for
every y0 2 j(G),

|Y�1({y0})|= |{x0 2 G0 | Y(x0) = y0} |{x0 2 G0 | y0 2 P(x0)}| 3(Q0)K. (5.23)

Given a nonnegative function g 2 Lp(G0), we can construct a new function g̃ 2
Lp(G0) which is supported on j(G) and whose Lp(G0)-norm is related to kgkLp(G).
We explain this procedure in the next technical lemma.

Lemma 5.5.7. Given a nonnegative function g 2 Lp(G0), define the function g̃ on G0

by

g̃(x0) =

8
<

:
0 if x0 62 j(G),

Ây02B0
K(x0)

g(y0) if x0 2 j(G).
(5.24)

Then, kg̃kLp(G0) . kgkLp(G0).
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Proof. By Hölder’s inequality

kg̃kp
Lp(G0) = Â

x02j(G)

✓
Â

y02B0
K(x0)

g(y0)
◆p

 Â
x02j(G)

|B0
K(x

0)|p/p0 Â
y02B0

K(x0)
g(y0)p

 3p/p0(Q0)K p/p0 Â
x02j(G)

Â
y02B0

K(x0)
g(y0)p

 3p/p0(Q0)K p/p0 Â
y02G0

g(y0)p|B0
K(y

0)|

 31+p/p0(Q0)K(1+p/p0)kgkp
Lp(G0), (5.25)

as required.

The next theorem is the main result of this subsection.

Theorem 5.5.8. Let p 2 [1,•). The following hold:

1) if M is bounded on Lp(G), then M
0 is bounded on Lp(G0);

2) if M is of weak type (p, p), then M
0 is of weak type (p, p).

Proof. Pick a nonnegative function f 2 Lp(G0). By (5.22),

|M 0 f (x0)|p Cp(|M 0
b f (x0)|p + |T 0

b f (x0)|p), x0 2 G0.

Recalling that T
0

b is bounded on Lp(G0), to prove 1) it suffices to show that M
0
b is

bounded on Lp(G0). We claim that, for every x0 2 G0, the following holds

M
0
b f (x0) = sup

r�b

1
|B0

r(x0)|
Â

z02B0
r(x0)

f (z0) sup
r�b

1
|B0

r(x0)|
Â

z02B0
r+K(x0)\j(G)

f̃ (z0), (5.26)

where f̃ is defined in Lemma 5.5.7. Indeed, since every z0 2 B0
r(x0) is such that

z0 2 B0
K(Y(z0)) and Y(z0) 2 B0

r+K(x
0)\j(G), we have that

[

y02Br+K(x0)\j(G)

B0
K(y

0)� B0
r(x

0).
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It follows that

Â
z02B0

r(x0)
f (z0) Â

z02Br+K(x0)\j(G)
Â

y02B0
K(z0)

f (y0),

that implies (5.26).
Next, by Lemma 5.5.2 and the fact that B0

r(Y(x0))⇢ B0
r+K(x

0)⇢ Br+2K(Y(x0)),

sup
r�b

1
|B0

r(x0)|
Â

z02B0
r+K(x0)\j(G)

f̃ (z0) sup
r�b

2(Q0)K

|B0
r+K(x0)\j(G)| Â

z02B0
r+K(x0)\j(G)

f̃ (z0)

 sup
r�b

2(Q0)K

|B0
r(Y(x0))\j(G)| Â

z02B0
r+2K(Y(x0))\j(G)

f̃ (z0),

and by invoking (5.21) and Lemma 5.5.4, for any x 2 j�1({Y(x0)})

sup
r�b

2(Q0)K

|B0
r(Y(x0))\j(G)| Â

z02B0
r+2K(Y(x0))\j(G)

f̃ (z0)

 sup
r�b

2(Q0)K

|j(Br�b (x))| Â
z02j(Br+2K+b (x))

f̃ (z0)

 sup
r�b

6(Q0)KQb

|Br�b (x)| Â
z2Br+2K+b (x)

f̃ �j(z)

= sup
r�b

6(Q0)KQb |Br+2K+b (x)|
|Br�b (x)|

1
|Br+2K+b (x)| Â

z2Br+2K+b (x)
f̃ �j(z)

 12(Q0)KQ2K+2b
M ( f̃ �j)(x),

and in the last estimate we have used Lemma 5.5.2. Summing up, we have proved
that, for every x0 2 G0

M
0
b f (x0). M ( f̃ �j)(x), x 2 j�1({Y(x0)}). (5.27)

Let h : G0 ! G be a function such that h(x0) 2 j�1({Y(x0)}). By (5.27), it follows
that

kM 0
b fkLp(G0) . kM ( f̃ �j)�hkLp(G0).
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Suppose that M is bounded on Lp(G). By Lemma 5.5.3

kM ( f̃ �j)�hkp
Lp(G0) = Â

x02G0
[M ( f̃ �j)(h(x0))]p

 sup
x2G

|h�1({x})| Â
x2G

[M ( f̃ �j)(x)]p

. sup
x2G

|h�1({x})|k f̃ �jkp
Lp(G). (5.28)

Now, given any g 2 Lp(G0), another application of Lemma 5.5.3 yields

kg�jkp
Lp(G) = Â

x2G
|g�j(x)|p  3Qb Â

y02j(G)

|g(y0)|p  3Qbkgkp
Lp(G0). (5.29)

Moreover, for any x 2 G

|h�1({x})|= |{x0 2 G0 : h(x0) = x}| |{x0 2 G : j(x) = Y(x0)}|
= |Y�1(j(x))|. 1. (5.30)

Combining (5.28) with (5.29) and (5.30) we get 1).

Now assume that M is of weak type (p, p). To prove 2), observe that by

Â
x02G0

c{Mb f (x0)>l}  Â
x02G0

c{M ( f�j)(h(x0))>cl}

 sup
x2G

|h�1({x})| Â
x2G

c{M ( f�j)(x)>cl}. (5.31)

Thus, by (5.30) and (5.29) again, since M is of weak type (p, p), (5.31) implies that

���
n

x0 : M
0
b f (x0)> l

o���.
���
n

x : M ( f �j)(x)> cl
o���.

k fkp
Lp(G0)

l p .

This is the desired conclusion.

5.5.2 Case 2: a > 1

In this subsection we fix two graphs satisfying i) and ii) and assume j : G ! G0 to
be a quasi-isometry with 1 < a < +•. In addition, we assume that there exists a
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number S > 1 such that

|Br(x)|� Sr, x 2 G,r 2 N. (5.32)

Observe that (5.32) is always verified when G is a tree with (a,b)-bounded geometry
with S = a.

By applying II) the following inclusions hold for all x 2 G

j�1(B0
r
a
(j(x))⇢ Br+ab (x)⇢ j�1(B0

ar+(a2+1)b (j(x)),

and it follows that

B0
r
a
(j(x))\j(G)⇢ j(Br+ab (x))⇢ B0

ar+(a2+1)b (j(x))\j(G). (5.33)

We have the following generalization of Lemma 5.5.4.

Lemma 5.5.9. The following hold:

|j�1({j(x)})| 3Qba , x 2 G, (5.34)

|j(A)|� Q�ba

3
|A|, A ⇢ G. (5.35)

Proof. The proof follows verbatim the one contained in Lemma 5.5.4, so we omit
the details.

For any d > 0, we define M
0d as the operator acting on f 2 CG0

by

M
0d f (x0) =

1
|B0

r(x0)|d
Â

y02B0
r(x0)

| f (y0)|, x0 2 G0.

The aim of this subsection is to obtain a counterpart of Theorem 5.5.8 for a > 1. As
the next lemma suggests, we shall involve modified maximal operators.

Lemma 5.5.10. For any d � a2 logQ
logS , we have that

|Ba(r+b )(x)|. |B r�b
a
(x)|d , x 2 G,r 2 N.
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Proof. The proof is based on a straightforward computation. Indeed, by Lemma
5.5.2 and (5.32), for any x 2 G and r 2 N

|Ba(r+b )(x)|
|B r�b

a
(x)|d

. Qa(r+b )

Sd (r�b )/a .
✓

Qa

Sd/a

◆r
. 1,

using that d � a2 logQ/ logS.

The following is the main theorem of this subsection.

Theorem 5.5.11. Let p 2 [1,•) and d � a2 logQ0

logS . The following hold:

1) if M is bounded on Lp(G), then M
0d is bounded on Lp(G0);

2) if M is of weak type (p, p), then M
0d is of weak type (p, p).

Proof. The proof is a straightforward generalization of Theorem 5.5.8. Fix a non-
negative f 2 Lp(G0). As in the proof of Theorem 5.5.8, it suffices to study

M
0d
b f (x0) = sup

r�b

1
|B0

r(x0)|d
Â

z02B0
r(x0)

| f (z0)|. (5.36)

Next, by repeating the same argument contained in Theorem 5.5.8 and using
(5.33) instead of (5.21), for any x 2 j�1({Y(x0)})

M
0d
b f (x) sup

r�b

2(Q0)K

|j(B 1
a (r�b )(x))|d

Â
z02j(Ba(r+2K+b )(x))

f̃ (z0),
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where f̃ is defined in Lemma 5.5.7. An application of Lemma 5.5.9 yields

sup
r�b

2(Q0)K

|j(B 1
a (r�b )(x))|d

Â
z02j(Ba(r+2K+b )(x))

f̃ (z0)

 sup
r�b

2(Q0)K3d Qdab

|B 1
a (r�b )(x)|d

Â
z2Ba(r+2K+b )(x)

f̃ �j(z)

⇡ sup
r�b

|Ba(r+2K+b )(x)|
|B 1

a (r�b )(x)|d
1

|Ba(r+2K+b )(x)|
Â

z2Ba(r+2K+b )(x)
f̃ �j(z)

. sup
r�b

|Ba(r+b )(x)|
|B 1

a (r�b )(x)|d
M ( f̃ �j)(x)

. M ( f̃ �j)(x),

where in the last inequality we have used Lemma 5.5.10.
Summing up, we have proved that, for any x0 2 G0 and x 2 j�1({Y(x0)})

M
0d
b f (x0). M ( f̃ �j)(x). (5.37)

Now, given any g 2 Lp(G0), an application of Lemma 5.5.3 yields

kg�jkp
Lp(G) = Â

x2G
|g�j(x)|p  3Qab Â

y02j(G)

|g(y0)|p  3Qabkgkp
Lp(G0). (5.38)

Thus, assuming that M is bounded on Lp(G), we can repeat verbatim the argument
contained in Theorem 5.5.8 to conclude that

kM 0d
b fkLp(G0) . kM ( f̃ �j)kLp(G) . k fkLp(G0),

as desired.
Next, we assume that M is of weak type (p, p). By (5.37) and a straightforward
adaption of (5.31), there exists a constant c > 0 such that

���
n

x0 : M
0d
b f (x0)> l

o���.
���
n

x : M ( f �j)(x)> cl
o���.

k fkp
Lp(G0)

l p .

This yields the required conclusion.
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