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ABsTRACT: The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments col-
lected 107.7 fb™" in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes
the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure,
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of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a
high luminosity hadron collider.
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1 Introduction

The Precision Proton Spectrometer (PPS) detector system has been installed and integrated into the
CMS experiment [1] during Run 2 of the LHC with 13 TeV proton-proton collisions. It is a joint
project of the CMS and TOTEM [2] Collaborations and measures protons scattered at very small
angles at high instantaneous luminosity [3]. The scattered protons that remain inside the beam
pipe, displaced from the central beam orbit, can be measured by detectors placed inside movable
beam pipe insertions, called Roman pots (RP), which approach the beam within a few mm. The
PPS detectors have collected data corresponding to an integrated luminosity of 107.7 ! during
the LHC Run 2, which occurred between 2016 and 2018.

The physics motivation behind PPS is the study of central exclusive production (CEP), i.e.
the process pp — p(*) + X + p(*) mediated by color-singlet exchanges (e.g. photons, Pomerons,
Z bosons), by detecting at least one of the outgoing protons. In CEP, one or both protons may
dissociate into a low-mass state (p*); dissociated protons do not produce a signal in PPS. The X
system is produced at central rapidities, and its kinematics can be fully reconstructed from the 4-
momenta of the protons, thereby giving access to standard model (SM), or beyond SM (BSM) final
states that are otherwise difficult to observe in the CMS central detectors because of the large pileup
(multiple interactions per bunch crossing) at high luminosities. CEP provides unique sensitivity to
SM processes in events with Pomeron and/or photon exchange, and BSM physics, e.g. via searches
for anomalous quartic gauge couplings, axion-like particles, and new resonances [4—8].

This paper is organized as follows. The CMS detector and PPS are described in section 2.
The LHC optics and the concept of proton transport is presented in section 3, followed in sec-
tion 4 by a description of the data sets used. Sections 5 and 6 describe the detector alignment
procedure and the LHC optics calibration. Section 7 details the proton reconstruction with the PPS
detectors. Sections 8 and 9 document the study of LHC aperture limitations and the simulation
of the proton transport and PPS detectors, and section 10 describes the uncertainties affecting the
proton reconstruction. A validation of the reconstruction using a (semi)exclusive dimuon sample
is presented in section 11. The measurement of the proton reconstruction efficiency is discussed in
section 12. Section 13 describes a study of the performance of the proton vertex matching criteria
from time-of-arrival measurements. Finally, a summary is presented in section 14.

2 The CMS detector and PPS

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter,
providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
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Figure 1. Schematic layout of the beam line between the interaction point and the RP locations in LHC sector
56, corresponding to the negative z direction in the CMS coordinate system and the outgoing proton in the
clockwise beam direction. The accelerator magnets are indicated in grey and the collimator system elements
in green. The horizontal RPs, which constitute PPS, are marked in red. The vertical RPs are indicated in
dark grey; they are part of the TOTEM experiment. The vertical RPs are not used during high luminosity
data taking; nevertheless, they provide PPS with a reference measurement for the calibration and alignment
of the detectors.

tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron
calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend
the pseudorapidity coverage provided by the barrel and endcap detectors. Muons are measured in
gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid.

Events of interest are selected using a two-tiered trigger system. The first level (1), composed
of custom hardware processors, uses information from the calorimeters and muon detectors to select
events at a rate of around 100 kHz within a fixed latency of about 4 us [9]. The second level, known
as the high-level trigger (HLT), consists of a farm of processors running a version of the full event
reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz
before data storage [10].

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, is reported in ref. [1].

The PPS detectors. Figure 1 shows the layout of the RP system installed at around 200-220 m
from the CMS interaction point (LHC interaction point 5 (IP5)), along the beam line in the LHC
sector between the interaction points 5 and 6, referred to as sector 56. A symmetric set of detectors is
installed in LHC sector 45. Some RPs approach the beam vertically from the top and bottom, some
horizontally. During standard machine operation, scattered protons undergo a large displacement
in the horizontal direction and a small vertical displacement at the RP positions. The horizontal
RPs are hence used. The vertical RPs are used in special configurations of the machine and in low
luminosity proton-proton fills for the calibration and alignment of the detectors.

Each detector arm consists of two RPs instrumented with silicon tracking detectors that measure
the transverse displacement of the protons with respect to the beam, and one RP with timing detectors
to measure their time-of-flight. The tracking RP closer to the IP5 is referred to as “near”, the other
as “far”. Silicon strip sensors with a reduced insensitive region on the edge facing the beam were
initially used [11]. Each RP housed 10 silicon strip sensor planes, half at a +45° angle and half
at a —45° angle with respect to the bottom of the RP. These sensors could not sustain a large
radiation dose and could not identify multiple tracks in the same event. For this reason they have



Table 1. RP configurations in different years. The numbers represent the RP distances from the IP5, the
sensor technology is indicated in parentheses. The RP layout was always symmetric about the IPS. There
were always two tracking RPs per arm; the one closer to the IP5 is denoted as “near”, the other as “far”. In
2016, no timing RPs were used.

Year Near tracking RP  Far tracking RP Timing RP
2016  203.8 m (strips) 212.6 m (strips) —

2017  212.6 m (strips) 219.6 m (pixels) 215.7m
2018 212.6 m (pixels) 219.6 m (pixels) 215.7m

been gradually replaced by new 3D silicon pixel sensors: one RP (in each arm) during the 2017
data-taking run and all tracking RPs in 2018 were instrumented with 3D pixel sensors. Each such
RP hosts six 3D pixel sensor planes [3]. A summary of the RP configurations used in 2016-2018 is
provided in table 1.

The difference between the proton arrival times in the detectors on both sides of the IP5 is used
to reject background events with protons from pileup interactions, or beam-halo particles. Timing
detectors were operational in 2017 and 2018, with four detector planes hosted in a single RP. They
consisted of single- and double-sided single crystal chemical vapor deposition (scCVD) diamond
sensor planes [12]; during 2017 data taking one of the four planes consisted of ultra-fast silicon
sensors [13] instead of diamond ones.

3 LHC optics and proton transport

PPS is a proton spectrometer that uses the LHC accelerator magnets between the interaction point
(IP) and the RPs. Scattered protons are detected in the RPs after having traversed a segment of the
LHC lattice containing 29 main and corrector magnets [14].

Since the protons that reach the PPS detectors travel more than 200 m inside the vacuum pipe
of the LHC and very close to the LHC beams, we use the technique normally employed to model
beams inside an accelerator. The trajectory of the protons in the vicinity of the central orbit [15, 16]
can be described as follows. The proton kinematics d at a distance / from the IP (e.g. at the RPs) is
related to the proton kinematics at the IP, d*, via the transport equation:

d()=T(1,¢) - d". 3.1)

Superscript * in general is used in the following to denote the value of the given parameter at the
interaction point, z = 0. The proton kinematics is described by d = (x, 6, y, 0y, §)T, where (x,y)
and (60, Gy) indicate the transverse position and angles; & denotes the fractional momentum loss

€= (Prom — P)/ Proms> (3.2)

where p, ., and p are the nominal beam momentum and the scattered proton momentum, respec-
tively [17, 18].

In exclusive reactions the momentum losses of the two scattered protons, &, and &,, can be
used to assess the mass of the centrally produced state

my = Ecm Vflfl’ (33)
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Figure 2. Frequency distributions of 8" vs. crossing angle configurations as extracted from data. Left: year
2017. Right: year 2018.

and its rapidity

1. &
y==In=—, (3.4
2 &
where E_, stands for the proton-proton centre-of-mass energy (13 TeV in LHC Run 2).
The transport matrix is defined as:
Vx Lx myz myy Dx
dv, dL, dD,
@ M3 Mg Tqr
T(s,&) = m3 mzp v, L, Dy |, (3.5
dv, dL, dD

Y Y Yy
My My 3 @1 ~da

0o 0 0 0 1

where the most important quantity for the proton spectrometer is D , the horizontal dispersion; the
other matrix elements are the so-called optical functions (v, L, m; ; and their vertical counter-
parts) [19]. The definition of the relevant optical functions and their determination are described in
section 6. The optical functions depend on LHC parameters like the betatron function value 8" at
the IP5 and the crossing angle. Throughout this document, we refer to the half crossing angle, i.e.
half the angle between the beams at their crossing point.

Figure 2 shows the distributions of 8 vs. crossing angle for different data taking periods as
extracted from data certified for analysis. In 2017, most of the data were recorded at four discrete
values of the crossing angle: 150, 140, 130 and 120 urad. The highest value was used at the
beginning of the fills, then the crossing angle was reduced as the instantaneous luminosity dropped.
The value of B* was set to 0.4 m (0.3 m) in periods before (after) Technical Stop 2 (TS2). In 2018,
the crossing angle was changed continuously from 160 urad at the beginning of the fill down to
130 prad. At this point, 8 was changed in two discrete steps, from 0.3 to 0.27 and finally to 0.25 m.
In 2016 (not shown in the figure) 8* = 0.4 m was used together with the crossing angle values of
185 urad and 140 urad for the pre-T'S2 and post-TS2 periods, respectively.
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Figure 3. Illustration of a proton crossing both the vertical (blue) and the horizontal (green) RPs (overlapping
configuration).

4 Data sets

Two types of data are used for the calibration and alignment of the PPS detectors: data taken
in high-intensity LHC “physics” fills and data taken in special “alignment” fills. The low beam
intensity is an essential feature of the alignment fills, which provide additional data for alignment
and optics calibration. The various beam intensities are typically achieved by injecting various
numbers of bunches in the LHC, since the number of protons per bunch is typically the same, up to
1.2 x 10'"!". The RP distances from the LHC beams are typically expressed in multiples of “beam
sigmas”, the RMS values of the beam transverse profile. The values of the beam sigma are the same
for the alignment and physics fills: 03,.,,, ® 0.1 mm horizontally and oy, ® 0.4 mm vertically.

The physics fills are standard LHC fills. There are up to 2500 bunches per beam, yielding
an instantaneous luminosity of about 10**cm™2s™!". The average number of inelastic proton
interactions at the IP (pileup) is typically between 15 and 55. Only horizontal RPs are inserted in
these fills, to a distance of 15 07,

The alignment fills use the same LHC optics as the physics fills, but much lower beam
intensity—typically only two bunches are injected per each beam. This gives instantaneous lumi-
nosities of the order of 10°°cm™s™! and average pileup about 20. The primary purpose of these
fills is to establish the RP position with respect to the LHC collimators using a procedure analogous
to the LHC collimator alignment [20]. This is a precondition for systematic RP insertion close to
the high-intensity LHC beams. Because of the low intensity, the safety rules allow insertion of
both horizontal and vertical RPs very close to the beam: at 6.5 oy,,,,, horizontally and at 5 0y,
vertically. At these distances, the horizontal and vertical detectors overlap, as shown in figure 3,
which allows the relative alignment of the RPs in each arm. With the use of the vertical RPs, it
is possible to detect elastically scattered protons that are used for horizontal RP alignment with
respect to the beam. The alignment procedure is detailed in section 5. In the alignment fills the
very small separation of the horizontal RPs from the beam allows the recording of additional data
essential for optics calibration (cf. section 6). Typically there are two alignment fills per year of
LHC operation.

In Run 2, PPS was operated from 2016 to 2018. The PPS data sets are divided in data-taking
periods. The PPS performance is often sensitive to the LHC settings (optics, collimators, etc.),



Table 2. List of the PPS periods with distinct LHC and/or RP settings. The third column from left indicates
the time ranges where PPS recorded data. L;,, corresponds to the integrated luminosity recorded during runs
certified for use in physics analysis.

Year Period LHC fill number (date) range(s) L ( fb_l)
2016 pre-TS2 4974 (31 May) to 5052 (29 Jun), 5261 (29 Aug) to 5288 (9 Sep) 9.8
post-TS2 5393 (9 Oct) to 5451 (26 Oct) 5.0
2017  pre-TS2 5839 (16 Jun) to 6193 (12 Sep) 15.0
post-TS2 6239 (24 Sep) to 6371 (10 Nov) 22.2
2018 pre-TS1 6615 (26 Apr) to 6778 (12 Jun) 18.5
TS1-TS2 6854 (27 Jun) to 7145 (10 Sep) 26.8
post-TS2 7213 (24 Sep) to 7334 (24 Oct) 10.4
Total 107.7

which often vary with time; they are changed during LHC technical stops (TSs). For instance, the
LHC optics was modified during the second technical stop (TS2) in 2016 and 5* was changed after
TS2 in 2017. The technical stops are also opportunities for changing the position of the detectors
in the RPs. For example, in TS1 and TS2 in 2018, the tracking RPs were shifted vertically to
better distribute the radiation dose accumulated by the pixel sensors. The sensor inefficiency due to
radiation damage is discussed in section 12. Table 2 summarizes the PPS periods with significantly
different LHC/RP settings and the corresponding integrated luminosities [21-23].

S Alignment

The alignment of the RPs is a multi-level procedure including aligning the sensor planes within
each RP as well as aligning the RPs with respect to the LHC beam. This is one of the inputs for the
proton reconstruction (discussed in detail in section 7).

Although conceptually similar, the alignment of RPs is different from that of other CMS
subdetectors, because the RPs are moveable devices. At the beginning of each LHC fill they are
stored in a safe position away from the beam. Only when the LHC reaches stable conditions are they
moved close to the beam. Since the fill-to-fill beam position reproducibility has a limited accuracy,
it is desirable to determine the alignment parameters for every fill.

The alignment procedure involves multiple steps. A special “alignment” calibration fill deter-
mines the absolute position of the RPs with respect to the beam (section 5.1). This calibration then
serves as a reference for the alignment of every “physics” fill with standard conditions (section 5.2).
Once the tracking RPs are aligned with respect to the beam, the timing RPs are aligned with respect
to the tracking RPs (section 5.3).

5.1 Alignment fill

An alignment fill is a special fill, which allows to obtain data essential for calibration, not available
in standard physics fills (more details are given in section 4).
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Figure 4. Left: relative alignment between vertical and horizontal RPs (April 2018). The plot shows
track impact points in a scoring plane perpendicular to the beam. The points in red represent tracks only
reconstructed from vertical RPs, in blue only from horizontal RPs and in green from both vertical and
horizontal RPs. The size and position of the RP sensors is schematically indicated by the black (vertical
strip RPs) and magenta (horizontal pixel RPs) contours. Right: determination of the beam position with
respect to the RPs (September 2016). Black: profile (mean x as a function of y) of elastic track impact points
observed in vertical RPs; green: fit and interpolation. Blue: horizontal profile of minimum bias tracks found
in the horizontal RP; red: fit and extrapolation. Magenta cross: the determined beam position. The error
bars represent statistical uncertainties.

The relative alignment among the sensor planes in all the RPs and among all the RPs in one
arm is determined by minimizing residuals between hits and fitted tracks [24]. This is an iterative
procedure, since a priori it is not possible to distinguish between misalignments and outliers
(unrelated hits due to noise, etc.). Therefore, the iteration starts with a large tolerance, O(100 um),
that allows for misalignments, and as it proceeds the tolerance is decreased to O(10 um) as outliers
are discarded. An illustration is shown in figure 4, left, emphasizing the essential role of the overlap
of the vertical and horizontal RPs. The typical uncertainty of the relative RP alignment is few
micrometres. By construction, the relative alignment is not sensitive to misalignment modes that
do not generate residuals, e.g. a global shift of the full RP system. These modes are addressed in
the next step.

The vertical RPs can detect protons from elastic scattering, i.e. a process with only two protons
in the final state, each having ¢ = 0 as a consequence of momentum conservation. Because the
two protons emerge from the same vertex in opposite directions, elastic events are relatively easy
to tag (cf. section 5.2.1 in ref. [25]). Because of the azimuthal symmetry of the elastic scattering
at the IP and the properties of the LHC optics, the elastic protons arrive at the RPs with impact
points in the transverse plane elliptically distributed around the beam. Although only the tails of the
elastic hit distributions are within the acceptance (protons with sufficiently large vertical scattering
angle, |9;|), the distributions can be used to extract the beam position with respect to the RPs.
This is illustrated in figure 4, right: the profile of the elastic hit distribution (black) is interpolated
between the top and bottom RP (green), which provides information on the horizontal alignment
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Figure 5. Illustration of yg — yy dependence on y (fill 7139, 2018, near RP in sector 56). The three plots
correspond to three x selections as indicated in the legends. Blue: profile histogram of the dependence, red:
linear fit to the central part. The error bars represent statistical uncertainties.

and potential rotations in the xy plane. This is combined with the information from a minimum
bias sample, in which most protons detected in the horizontal RPs are due to pileup. The profile
from the minimum bias sample (blue) is extrapolated linearly (red) to find the intersection (magenta
cross) with the green line. The intersection indicates the beam position with respect to the RPs,
with a typical uncertainty of about 10 yum.

5.2 Physics fills

For each high-luminosity LHC fill (“physics” fill), the horizontal RP alignment is obtained by
matching observations from the fill to those from the reference “alignment” fill, cf. section 5.1.
Various matching metrics have been used, and some of the first choices are discussed in ref. [26]).
Eventually the procedure converged to:

S(x) = slope of profile (yg — yn) VS. Yiests (5.1

where yy and yp stand for the vertical track positions in the near and far RP, respectively. Similarly,
Yiest Tefers to the vertical track position in the RP being aligned. The shape of the profile is illustrated
in figure 5, where the value of S corresponds to the slope of the red line. The x dependence of the
S function is generated by the LHC optics, cf. section 6: y is mostly given by the vertical effective
length, L, (§), and ¢ is largely correlated with x because of the large horizontal dispersion. The
optics has been verified to be stable in time and therefore S(x) is suitable for matching observations
between different fills. Furthermore, the function from eq. (5.1) is convenient because of its slope
character: vertical misalignments (shifts in y) cause no bias and unavailable parts of the phase space
(e.g. because of localized radiation damage) do not have any detrimental impact since the slope can
still be determined from the available part. The matching procedure is illustrated in figure 6, left:
the S(x) curve from the test fill (blue) is shifted left and right until the best match with the S(x)
curve from the reference fill (aligned with the method from section 5.1) is found. The shift between
the blue and red curves is then used as the alignment correction.

The relative alignment between the RPs within the same arm is then refined with a dedicated
method with a better sensitivity — good calibration of the relative alignment is essential for some of
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Figure 6. Left: illustration of the absolute horizontal alignment (fill 5424, 2016 post-TS2, far RP in sector
45). Black: data from the reference alignment fill, blue: data from a physics fill before the alignment and
red: data from the physics fill, aligned to match with the black reference. The error bars represent the bin
sizes (horizontally) and statistical uncertainties (vertically). Right: illustration of horizontal near-far relative
alignment (fill 7052, 2018 and sector 45). Red: mean value of xp — xy as function of xy. Blue: fit and
extrapolation to the horizontal beam position (vertical green line, e.g. from the left plot). The value of the
relative near-far alignment correction is indicated by the magenta dot. The error bars represent the bin sizes
(horizontally) and statistical uncertainties (vertically).

the proton reconstruction techniques. The relative near-far alignment method is based on comparing
horizontal track positions in the near and far RPs, x and xg, respectively. The procedure is illustrated
in figure 6, right: the profile xg — xy vs. xy (red) is extrapolated (blue dashed) to the value of xp,
corresponding to the beam position (green). The extrapolated value of xg — x5 (magenta dot) then
gives the relative-alignment correction. In general, the xp — xy difference can be generated either
by misalignments (independent of the horizontal position) or by the optics (roughly proportional
to horizontal displacement from the beam). The extrapolation to the beam position, where the
displacement from beam is =0, thus suppresses the optics contribution and keeps the misalignment
component only.

The vertical alignment is obtained by extrapolating (blue) the observed vertical profile (red) to
the horizontal beam position (green), as shown in figure 7 where the alignment correction is marked
with the magenta dot. The extrapolation to the beam position suppresses the optics contributions
and keeps the misalignment component only. The mode (most frequent value) of y, contrary to the
mean of y, is a local estimator not considering the tails of the y distribution, which can be truncated
because of the limited sensor size or other acceptance related effects. This vertical alignment
method is sufficiently sensitive to provide both absolute per-RP and relative near-far alignment.

Figure 8 shows a summary of per-fill alignment results for one alignment period. It also
illustrates one of the many systematic validations performed; compatible results are expected from
data sets obtained with different values of the crossing angle, 8”, or different central-detector triggers
(the vast majority of the protons reaching the RPs are due to pileup unrelated to the triggering event).

Figure 8 also confirms the expectation of fill independence of the alignment results. A fit of
the results is used to remove occasional outliers, improve fill-to-fill stability and increase the overall
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Figure 7. Illustration of the vertical alignment (fill 5424, 2016 post-TS2, far RP in sector 45). Red: mode
(most frequent value) of y as a function of x, Blue: fit and extrapolation to the horizontal beam position
(indicated by the vertical green line and extracted from figure 6, left). The value of the vertical alignment
correction is indicated by the magenta dot. The error bars represent the systematic uncertainties.

Table 3. Summary of per-fill alignment uncertainties.

Projection  Absolute Relative (near-far)

Horizontal 150 um 10 um
Vertical 100 um 10 um

accuracy of the alignment. In Run 2, there were two alignment periods where significant time
variation was observed for some RPs. A notable example is 2016 pre-TS2 (additional details are
discussed in section 3.5 of ref. [26]) where a package of sensors was initially wrongly inserted into
a RP and over time the package slowly drifted to its nominal position due to the spring included in
the RP assembly. Even in these cases, the variation was slow enough that fits could be applied to
suppress the excessive fill-to-fill fluctuations and thus improve the results.

The alignment uncertainties are presented in table 3. They are estimated from fill-to-fill result
fluctuations in cases where identical results are expected.

5.3 Timing RPs

The timing RPs consist of four sensor layers, called “planes”, perpendicular to the LHC beam. As
shown in figure 9, each plane is composed of four physical pieces of diamond substrate, called
“chips”. Each chip has a structure of readout electrodes in the form of thick vertical strips, called
“pads”. This structure constitutes the horizontal segmentation of the timing detector and, in general,
is different for each plane and chip.

The timing sensors are aligned with respect to the tracking RPs to associate local tracks using
timing and tracking RPs (cf. figure 28). Since the timing RPs have only horizontal segmentation,
only x alignment is performed. The alignment is performed individually for each plane and pad as
well as for each LHC fill.

~-10-
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Figure 9. Example of timing detector segmentation in one plane (plane 1 in 2018 configuration). The beam
is at x = 0mm. Chip boundaries are drawn as dashed black rectangles. Pads are visualized as thick vertical
strips, their colors indicate the chip relation.
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Figure 10. Illustration of the timing-RP alignment method (fill 7137, 2018, sector 56, plane 1 and pad 9).
The red histogram shows the difference between the horizontal track position in the timing sensor, Xy,
and the track interpolated from the tracking RPs, x,.,.,- The vertical blue dashed lines indicate the identified
pad boundaries, the green line the pad center.

As illustrated in figure 10, the alignment method is based on a histogram of horizontal residuals
between the hit position in the timing sensor and the track interpolated from the upstream and
downstream tracking RPs. The histogram of these residuals (red) reveals the “shape” of the pad,
the pad edges (dashed blue) as well as the pad centre (green). The alignment correction is given by
the offset of the green line from zero. Estimated correction uncertainty is 100 um, driven by the
uncertainties of the extracted pad edge positions.

A typical example of alignment corrections is shown in figure 11. As expected, we find
compatible results for the pads on the same physical chip, cf. figure 9. The average per-chip
correction is indicated by the short horizontal line. The result pattern can be explained by the
mechanical process of gluing the chips on the board — the chips cannot mechanically overlap,
only additional gaps can be introduced. This leads to a cumulative misalignment monotonically
increasing (in absolute value) with the chip number, as revealed by the results. Chip 3, the most
far from the beam, often gets an insufficient number of tracks (because of the LHC collimators,
cf. section 8) and the correction from chip 2 is used in this case.

— 12—
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Figure 11. An example of alignment corrections in a single timing RP sensor plane (fill 7137, 2018, plane
1). Two different markers are used: the dots represent per-channel measurements, while the short horizontal
lines represent per-chip averages. The same color is used for channels/pads placed on the same diamond
chip, following the scheme in figure 9. For chip 3 (most far from the beam) sometimes the track statistics

is insufficient for alignment determination. In such cases the magenta thick dot is missing. The error

bars represent a combination of statistical and systematic uncertainties reflecting the sharpness of the pad
boundaries shown in figure 10. Left: sector 45, right: sector 56.

6 Optics model and calibration

6.1 Introduction

In Run 2, the LHC optics settings and conditions were modified every year. The key concepts and
the tools to constrain the main optical functions using collision data for 2016 have been described
in refs. [17, 18]. During physics runs, the luminosity of the LHC beams decreases naturally due to
bunch intensity decay. Luminosity can be regained for the experiments by adjusting the crossing
angle and betatron amplitude to increase the so-called luminosity geometry factor. To achieve this
goal in 2017 the levelling of the crossing angle and of the betatron amplitude 8* was introduced.
In 2018 the levelling of both parameters became continuous [27].

The modelling of this varying optics and its calibration required a generalization of the well-
established 2016 methods; the higher number of events permitted, and also required, a more careful
dispersion calibration. The vertical position of the beams crossing point, y*, also changed with
respect to 2016. In the last two years of Run 2, the optics had a sizable vertical dispersion D,
which is an important optical function for the reconstruction. An optics uncertainty model based
on collision data is also presented. The optics calibration methods of Run 2 are briefly discussed
from the viewpoint of the HL-LHC in ref. [5].

6.1.1 Proton transport at the LHC

The transport matrix and the optical functions have already been introduced in section 3. In the
following, the meaning of the transport matrix elements is explained, with emphasis on the connec-
tion between the 8 amplitude and the optical functions used in the reconstruction. Specifically, the
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horizontal and vertical magnifications

Vx,y = \/ﬂx,y/ﬁ* COS A,ux’y, (6.1)
L= /ﬁx,yﬁ* sinApty 6.2)

are functions of the betatron amplitudes B, ,,, their value B" at IP5 and the relative phase advance

and the effective lengths

RP dl

1P Bx,y '

Aﬂx,y = (6.3)
The beam size can be calculated from the beam emittance ¢ of the LHC and from the betatron
amplitude

o(x) =4/, = 13 um, 6.4)

using a representative S, = 0.3m value, where & is computed from the normalised emittance
eny = (B y1)e = 3.75 um rad. Here 5; = v/c; v is the velocity of the beam particles, ¢ is the
speed of light and y; = (1 - ﬂf)_% is the Lorentz factor. The subscript “L” is used in 5; and y; to
avoid confusion. The Liouville theorem dictates that

ro(x) o) =ne, (6.5)

where o (x”) is the beam divergence, i.e. the angular spreading, of the LHC beams; the symbol x’

stands for dx/dl [16]. Therefore, from eq. (6.5) it follows that o (x") = ,8;18 ~ 40 purad for the
representative 8. = 0.3 m value, which gives the limit on the resolution of the scattering angle H;J
of PPS [14].

As already mentioned, in 2017, the necessity to improve the lifetime of the beams led to the
change or “levelling” of both the betatron amplitude, 8", at IP5 in discrete steps and the horizontal
crossing angle. In 2018 both parameters were modified continuously (cf. table 4). For comparison
at IP1 (ATLAS) the crossing angle bump was in the vertical plane during Run 2 to avoid long
range beam-beam interactions [28]. The levelling is based on the so-called Achromatic Telescopic
Squeezing (ATS) optics [27]; one of its features is that the optical functions eq. (6.1) and eq. (6.2)
remain constant despite the change in 8”. Therefore, the 5* levelling is a transparent operation from
the viewpoint of the reconstruction. The horizontal dispersion D, determines the proton trajectory
in the horizontal plane and depends on the crossing angle levelling at IP5; therefore D | is calibrated
separately for each reference crossing angle.

The transport equation eq. (3.1) can be explicitly written at the RPs in the form

x:xO+Dx"f+Lx(§)'9;kc+vx(‘f)'X*a

) . (6.6)
y:y0+Dy'§+Ly(§)'6y+vy(§)'y >

that describes the connection between the proton kinematics at the IP5 and at the RPs, where x,
and y, are the horizontal and vertical beam position, respectively. The horizontal dispersion D, is
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Table 4. Summary of main beam parameter values, crossing angle and 8", during the Run 2 period per
year. In 2017 the values changed in discrete steps, whereas in 2018 there was a continuous change within
the interval.

Year Half horizontal crossing angle (urad) B (m)

2016 140,185 04
2017 120,130,140,150 0.3,0.4
2018 [130, 160] [0.25,0.4]

a function of &, therefore it is useful to define a function that provides the horizontal position of a
proton with momentum loss ¢ directly

x4(§) = D (£) - &, (6.7)

and one can define similarly y,(¢) [2, 29].

The coupling terms m;; in the transport matrix eq. (3.5) connect the horizontal and vertical
scattering planes. At the LHC, like for most accelerators, these terms are set to zero nominally
mys, . ..,Mmy, = 0 for collision optics. They receive perturbative-level corrections because of skew
quadrupole corrector magnets. The effect of the coupling on the reconstruction of the proton
kinematics was negligible for all years.

The optics calibration assumes the beam-based alignment of the detectors, after which the
beams appear at x, = y, = 0, cf. eq. (6.6) [26]. The horizontal position of the protons, x(¢), is a
nonlinear function of &, which can be approximated for low & values

X% D)y & (6.8)

where the resolution in x is limited by the spreading because of the scattering angle term L - 6,
and by the contribution of the vertex x*, cf. eq. (6.6).

6.2 Calibration of the LHC optics

The horizontal dispersion D, is the most important optics quantity, because it allows one to convert
the x-coordinate measurements at the RPs into the fractional proton momentum loss &. The
determination of D from the measured proton tracks is briefly reviewed in the next section (cf.
also ref. [17]). The 2017 and 2018 optics calibration procedure goes a step further and also exploits
(semi)-exclusive uu production; the exclusivity of the process plays a key role in the calibration, as
illustrated in section 11.

In the last step of the calibration procedure, the vertical dispersion D is determined from
minimum bias RP data. The calibration of the dispersion functions is followed by the calibration
of the remaining optical functions in the transport matrix eq. (3.5), namely the horizontal, L, (&),
and vertical, L, (£), effective lengths, and the corresponding magnification functions; other optical
functions are less relevant for the proton reconstruction.

The above optics calibration steps rely on the nominal transport model, which is taken from
LHC databases. The transport matrix is defined by the machine settings M, which are obtained
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Figure 12. The (x,y) distribution of simulated proton tracks in the near RP in sector 56 using MAD-X.
It illustrates the “pinch” or focal point at x = xp where the vertical effective length vanishes: L, (&) = 0,
given the relation y ~ L, (&g) - 0;. The simulation takes into account that the small vertical dispersion moves
particles upward according to Ay = D, & with increasing x, and &.

from several data sources. The proper version of the LHC magnet lattice description, known
as “sequence”, is used each year. The nominal magnet strength file for a given beam optics
is always updated using measured data: the currents of the magnets power converters Ip- are
first retrieved using TIMBER [30], an application to extract data from heterogeneous databases
containing information about the whole LHC infrastructure. The currents Ip- are converted to
magnet strengths with the LHC software architecture (LSA) [31], which uses the conversion curves
from the field description for the LHC (FIDEL) [32].

6.2.1 The Ly = (0 method

This procedure uses the minimum bias data recorded during the special low-luminosity runs men-
tioned in section 5.1. The method has been applied for each year within Run 2; for 2017 and 2018, a
separate calibration was carried out for each crossing angle. The procedure assumes the calibration
of the vertical effective length L., for low-£ values, below ¢ ~ 4%, using the elastic candidate events
measured in the vertical RPs; this additional step is reported in detail in refs. [17, 33].

The LHC optics are calculated with the methodical accelerator design (MAD-X) program, a
general purpose beam optics and lattice software [29]. The vertical effective length Ly (§) is a
function of the proton momentum loss &, and can be calculated with MAD-X at each RP location
with good accuracy. The calibration is based on the observation that L, (§) is positive at § = 0,
monotonically decreases with increasing ¢ reaching large negative L, values and it vanishes at about
& = 4%. According to eq. (6.6) at this &g value every proton is transported to the same vertical
coordinate y = O regardless of the vertical scattering angle 0; (the vertex contribution is neglected).
At the same time these protons appear at the horizontal location xgz = D, - £&g. Consequently, the
(x, y) distribution of the protons has to exhibit a “pinch”, or focal point, at this horizontal location
X, cf. figure 12.

— 16—



CMS - TOTEM a, =120 prad 2017 (13 Tev) EVents

g 0.6 « Contour points o'
é Contour min-|y|
> 041 e X; crossing ,
B i Contour fit 10
02 L e EBE Min-y points fit
o TR ... Profile mean-
] s oo e S g
02F ak e —:
4B 10
-0.4 -
-06 S s
2 25 3 35 4 45
X (mm)

Figure 13. The (x, y) distribution of the proton impact points in the near RP detector in sector 45 for 2017
using minimum bias data, along with parabolic fits of the contours around the “pinch”. The minima of the
parabolas are fitted with a straight line. The intersection of the two lines is marked with a red dot, and
indicates the estimated focal point coordinate xi. To make the contour curves and extrapolation symmetric,
the mean of the histogram was aligned to 0 to remove the y offset created by the vertical dispersion Ay = D &.
The vertical error bar on the contour minima, blue points, represents the statistical uncertainty of the fit.

The LHC optics transport is the same for all protons, thus the focal point can be observed and
measured with the horizontal RP detectors using large statistics minimum bias data, cf. figure 13.
The figure shows the (x, y) distribution of the proton impact points in the RP detectors for 2017 for
a representative half crossing angle @;, = 120 urad. The plot shows the parabolic fit of the contour
curves around the “pinch” point. The minima of the parabolic curves are fitted with a linear function
and the fits are extrapolated. The intersection of the linear fits is marked with a red dot, and indicates
the estimate of the focal point position x. The fit of the contour lines and the extrapolation are used
in order to estimate the bias coming from the scattering angle 6 . and extrapolate to the point where
the bias vanishes. The measurement is repeated with the distribution obtained after a selection on
the scattering angle 6, to reduce the horizontal spreading around the focal point; in this case the
parabolic fits are not needed.

The dispersion is estimated as

D@ =5 (69)

The measured D, values are used to calibrate the LHC optics model, as described in the next
sections. The uncertainty of the L, = 0 method includes the uncertainty of the contour fits,
their minimum and their linear extrapolation; the systematic uncertainty due to remaining bias is
estimated with a Monte Carlo simulation.

6.2.2 Calibration using the (semi)-exclusive pu process

In 2016 PPS collected its first (semi)-exclusive dilepton sample [34], pp — p(*)f + fp(*), where
a pair of leptons (£ = e, p) is reconstructed in the central CMS apparatus, one of the protons is
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Table 5. Measured horizontal dispersion values D, in the near RP at low & between 2% and 4% (the exact
&p value depends on the detector and the year). The resulting D, value is the weighted average of the L, = 0
and (semi)-exclusive pu results. The quoted 8% uncertainty in D, applies to the x; function as well.

Year Half crossing angle (urad) Sector 45 (cm)  Sector 56 (cm)

2016 185 -97+04 -6.7+0.4
2017 120 -10.4+0.8 -7.9+0.6
2018 120 -11.3+0.9 -8.7+0.7

detected in PPS, and the second proton either remains intact or is excited and then dissociates into
a low-mass state, indicated by the symbol p(*) , and escapes undetected. Section 11 focuses on the
uu measurement, whereas the implications on the optics calibration are presented here.

The (semi)-exclusivity implies a high-purity data set: in these events, the central pu system
carries the momentum lost by the two forward protons. Therefore, the difference of the fractional
momentum loss reconstructed from PPS and from the central CMS detectors can be determined;
the correction to D, is computed such that this difference vanishes. The improved calibration
result for D, remains within the uncertainty of the L, = 0 method and the final D, result is the
weighted average of the two measurements. The uncertainty of D , is the combined uncertainty of
the L, = 0 and the (semi)-exclusive uu methods. The evolution of the dispersion D, (¢) (or x,(£)
cf. eq. (6.7)) with & can be also validated using the pu results. The D results are shown in table 5
with a conservative 8% uncertainty in D , which applies to x4 as well.

The dispersion asymmetry between the two arms was observed in 2016 and persisted in 2017
and 2018 as well; it is attributed to crossing angle asymmetry and quadrupole magnet misalignment
within their nominal tolerance.

6.2.3 Optics matching

The purpose of the optics fitting (or “matching”) is the calibration of the LHC optics model using
the measured dispersion values and other measured constraints. The calibration procedure consists
of a Xz minimization with MINUIT, where the initial optics model of the fit is taken from the LHC
databases, as mentioned in section 6.2 [35].

The first step is to constrain the quadrupole field model using the elastic candidates from the
alignment fills, described in ref. [17]. In the second step the measured dispersion values from
table 5 are used as inputs to the )(2 function, with additional constraints reflecting the LHC optics
uncertainties:

2_ .2 2
X = Xdesign * Xmeasured- (6 10)
The following measurements from both LHC beams contribute to szneasured:

* the readings of three beam position monitors (BPMs) (at / = 22m, 58 m, 199 m), with an

uncertainty o ~ 0.43 mm;

x,absolute

* the beam position at RP 210, near, vertical, with an uncertainty o, = 0.5 mm;

* the two measured dispersion values D, (1 per arm) with their measured uncertainty, cf.
table 5.
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Figure 14. The momentum loss of the protons & as a function of x in the near RP of sector 45. The dispersion
function is ¢ dependent itself and the figure shows directly the nonlinear x(&) = D(¢) - ¢ function. The £(x)
function depends on the crossing angle as well; the figure shows the dependence for three reference angles,
so the function can be interpolated to arbitrary intermediate angles.

To match, or fit, the dispersion values and the LHC optics model, the relevant LHC machine
parameters are varied during the minimization. The matching procedure exploits the fact that a
quadrupole magnet misaligned by a ox offset gives a correction to the dipole field, whereas the
quadrupole fields remain unchanged. The following machine parameters have to be matched for the
two LHC beams separately to obtain the orbit model for the proton reconstruction:

* horizontal (half) crossing angle a;,;
* quadrupole positions (o, = 0.5 mm, 6 parameters);
* kicker strength (o, = 3%, 3 parameters).

With this procedure a good confidence level was achieved for the lattice model of the two LHC
beams. The matched MAD-X optics model is used to extend the measured dispersion values from
table 5 to higher & values. An example of the fitted result is shown in figure 14.1

The optics model MAD-X shows that the different interpretations of the dispersion asymmetry
between sector 45 and 56 (crossing angle rotation, quadrupole misalignment, etc.) lead to negligible
differences in the systematic uncertainty, for example in the evolution of D with £.

6.2.4 Calibration of the vertical dispersion D,

In 2016 the vertical dispersion D, was close to zero, whereas in 2017 and 2018 the optics changed
and a vertical dispersion D, ~ —1 cm was applied. Despite its small value, the vertical dispersion
has a strong effect on the & dependence of the vertical reconstruction of 9; and y” because of the
nonlinearity of the other optical functions.

IThis matching procedure has been reviewed by the beam department (BE) experts of the LHC.
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Figure 15. The vertical scattering angle 9; as a function of ¢ after calibration of the vertical dispersion D,
for sector 45 and fill 6923. The mean of the scattering angle distribution is consistent with 0. The distribution
is also affected by the vertical acceptance limitations starting from about & ~ 5% because of the vertical
acceptance limits of the detector cf. Figure 3.

Table 6. Final measured vertical dispersion values D, in the near RP per year. The uncertainty is derived

conservatively from the measured (D,,/D ) ratio.

y

Year Sector 45 (cm) Sector 56 (cm)
2016 0+ 0.02 (stat) 0+ 0.02 (stat)
2017 —-1.36 £ 0.02 (stat) + 0.1 (syst) —1.99 +0.02 (stat) + 0.16 (syst)
2018 —1.36 +0.02 (stat) + 0.1 (syst) —1.87 £0.02 (stat) = 0.15 (syst)

The vertical dispersion D, is estimated from the (D, /D) ratio measured on the (x, y) plane;
the value is refined by perturbing it so as to match the measured 9; and y* values as well.

The measured vertical dispersion values are summarized in table 6. The values are small
enough that the crossing angle dependence can be neglected. The vertical dispersion values D, are
validated with minimum bias data, cf. section 7 and also figure 15.

6.3 Optics description and uncertainty model

The LHC optics model, calculated with MAD-X, can be described in several efficient ways for
the event reconstruction and physics analysis [29]. In the year 2016, the description of the proton
transport used orthonormal polynomials to fit the (x, y) coordinates of the protons at the RPs as a
function of their input kinematics [36].

Experience with the data and optics modelling showed that the parametrization, or factorization,
of eq. (6.6) is sufficient to describe the proton transport between IP5 and the RPs; therefore, since
2016 an expansion using only 1-dimensional ¢ dependent optical functions is applied.

As discussed earlier, in 2017 the levelling of the beam crossing angle was introduced. This is
straightforward to take into account using the optical function concept with an additional extrapo-
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Figure 16. The horizontal and vertical effective lengths L, and L, transport the scattering angle of the
proton at IP5 6, and Q*y to the position (x,y) at the RPs. The figure shows the ¢ dependence of the two
functions. The horizontal effective length L, (£) decreases faster than the vertical function L both of them
cross zero at low &, below & = 5%. The grey dashed lines show the effective lengths for the TOTEM RPs
used for calibration.

lation function among reference crossing angles, as shown in eq. (6.11) and figure 14:

120 - a,,

T30 126 1F140@) = x120(6)] ©.11)

x(@p, &) =x10(&) +

The linear function is motivated by MAD-X and is compatible with the dispersion measurements
within uncertainties. The other optical functions remain constant during the levelling of the crossing
angle and, due to the telescopic concept of the ATS optics, they also remain constant during the
levelling of 5*. The relevance of the ATS telescopic squeezing from the viewpoint of uncertainty
model is discussed in section 6.3.1.

6.3.1 Optics uncertainty model

The uncertainties of the horizontal and vertical dispersions D, and D, and of the function x4(&)
have already been discussed in sections 6.2 and 6.2.4 (cf. also table 5). The uncertainties of the
remaining relevant optical functions are illustrated in the following.

The levelling of the crossing angle and 8*, mentioned earlier, is based on the ATS optics, which
has been conceived to cope with requirements expected for HL-LHC [27]. The most important
feature of the ATS optics, from the viewpoint of the forward spectrometers, is that the magnetic
fields around the IP are kept stable during the levelling process. The §* at these IPs is changed by
varying the magnetic fields at IP2 and IP8 [27]. This stability significantly reduces the uncertainty
in the optics model and transport matrix for PPS. It also contributes to the alignment stability, which
uses the distribution of L, /[dL, /dl], cf. eq. (5.1) and eq. (6.6).
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Figure 17. Fit of o(Ax) as a function of x for the near RP in sector 45. The fit is used to estimate the
uncertainty of the optical function dL,./d/. The vertical error bars represent the statistical uncertainties.

Despite its stability, the LHC [37] is subject to additional imperfections AM, which alter the
transport matrix by AT

T, M)>T (I; M+AM) =T (I; M)+ AT. (6.12)

The principles of the optics uncertainty model are described in ref. [17]. A more complex approach
is however needed in view of the explicit & dependence of the optical functions.

The transport of protons in the vicinity of the central orbit, or any other reference orbit
with a certain &, is mainly determined by the quadrupole fields of the alternating focusing and
defocusing magnet (FODO) system of the LHC, whereas the position of the central orbit itself
is determined by the distribution of the dipole fields; this includes the dipole fields created by
misaligned quadrupole magnets.

A typical example is the assessment of the uncertainty of the optical function dL,/dl. The
estimation starts with the uncertainty model at low &; the magnet strengths in MAD-X are perturbed
within their nominal uncertainty and the model is refined using the optics constraints from elastic
candidates. In the next step the ratio of the optical function is estimated between the low- and
high-¢ part using collision data, cf. figure 17. The estimation is based on the relation Ax(x;) =
dL,/d/ |x:x1 - 6, and exploits the fact that the scattering angle distribution of the proton is almost
independent of £, so that R(x;,x,) = o (Ax(x,))/o (Ax(x;)) ~ dL, /dl}x:xz /dL, /dl|x:xl .

After careful evaluation for this particular function the optics model and the data agree within
~10%, cf. figure 17. The R(x,, x,) resultis translated to R(&,, &,) using the dispersion and, together
with the low-¢ uncertainty, determines the uncertainty at all £. A similar procedure leads to the
uncertainty of L, (¢£). The LHC optics give strict correlations between the magnifications v,
vy and L,, L. Therefore, the uncertainty estimation of the effective lengths indirectly provides
uncertainties on the magnifications as well.
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Figure 18. Left: the distribution of the horizontal effective length L, (&) values as a consequence of
perturbations of the magnetic strength. Right: the correlations of the functions; the red and blue dashed curves
represent the two extreme L, (£)-curves of the Monte Carlo. The upper and lower envelopes demonstrate
that the points of the curve move together at different &.

Table 7. The correlation matrix for L, between different & values for the detector RP56-220-fr vertical.

€] =3%  |¢] =10%
3% 1.0 0.996
10% | 0.996 1.0

6.3.2 Covariances of optical functions

To fully estimate the £ dependence of the uncertainty of the optical functions, the calculation of the
covariance matrix between different & values for each function is needed. The magnetic strength k
and other relevant beam parameters are perturbed within their nominal uncertainty and the optical
functions are calculated for each parameter set. The values of the obtained optical functions L, and
the envelope function thus obtained are shown in figure 18. The covariance and correlation matrix
for the optical function L, at the fractional proton momentum loss & = 3% and & = 10% are shown
in table 7.

The correlation matrix, shown in table 7, indicates a close to 100% correlation between the low-
and high-¢ regions, which is included in the uncertainty model, cf. also figure 18. This means that
the variations of the magnetic strength and other beam parameters act in the same way at different
& values and the uncertainty can be described with one parameter. The covariance and correlation
matrices are available for all optical functions.

The optics uncertainty model includes the close to 100% correlation. This means that the
optical function perturbation do can be determined at a given reference & value and can then be
scaled with the factor given in figure 19 to obtain the perturbation at a different ¢ value. The optics
uncertainty model is included in the PPS proton simulation described in section 9.

6.3.3 Inversion of the proton transport equations

The transport equations eq. (6.6) are linear in & and in the horizontal scattering angle 6’ with
coefficient functions like L, (¢), which are nonlinear. The beam size o (x) from eq. (6.4) multiplied
by the magnification factor |v | = 4 gives o (x) v, = 60 um in the horizontal plane, a contribution
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Figure 19. Left: ¢ dependent uncertainty function of the horizontal effective length L, (¢). Right: &
dependent uncertainty function of the derivative of the horizontal effective length dL, (¢)/d!.

that is negligible when compared with the other two terms. Therefore, eq. (6.6) can be inverted to
yield:

L X

x,far *

L

&= (6.13)

-L X 1 dD
near x,near ~ ““far s ( 0 X f) i
D X

x,far Dx,far : Lx,near ’ Qx de/dl dl

where the optical functions, like L ,.,.(£), are functions of £. The variable ¢ appears on both
sides of the first nonlinear equation, whose solution can be found with any iterative method. These
formulae are equivalent to those developed and used previously by the TOTEM Collaboration [25].
Equation (6.13) indicates the optical functions whose calibration is most relevant for the reconstruc-

x,near

tion. The formulae for the vertical reconstruction read:

L, Voo — L Y 1 dv
y* — y,far near y,near far ’ 9; _ (9y _ _yy*) ’ (6.14)
Vy near * Ly,far ~Vy far Ly,near dLy/dl di

where y' = y — D, ¢£. The nonlinear eq. (6.14) shows that an otherwise constant offset in D, or in
the vertical alignment would lead to a nonlinear distortion of the reconstructed angle.

6.3.4 Summary

In summary, the LHC optics settings and conditions changed every year in Run 2. In this section
the main concepts and the data-driven tools to constrain the optical functions for 2016, 2017 and
2018 have been presented. The main challenges of Run 2 are the levelling of the instantaneous
luminosity by changing the crossing angle and B8, which requires the careful calibration of the
horizontal dispersion D, and also its change with the crossing angle. The vertical dispersion D,
became sizable in 2017 and 2018, and its calibration has been discussed. An optics uncertainty
model based on collision data has been also presented, which includes the covariance matrix of
transport elements.

7 Proton reconstruction

The proton reconstruction consists in back-propagating the protons from the RPs (where they are
measured) to the IP (where the kinematics is determined). The propagation follows the LHC optics
discussed in section 6. The input to the propagation consists of the proton tracks detected by the
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RPs and aligned with respect to the LHC beam (cf. section 5). Since the proton tracks at the RPs
are linear (no magnetic field), they can be described by four independent parameters (slopes and
intercepts along x and y). The five proton kinematic variables include: the transverse position
of the proton at z = 0, x™ and y", the horizontal and vertical scattering angles, 67, and 9;, and
the fractional momentum loss, £&. Compared to the four parameters measurable by the RPs, the
reconstruction problem is underconstrained and a variable must be fixed with external information.
Two complementary reconstruction strategies are exploited: “single-RP” and “multi-RP”.

The single-RP reconstruction is a simple approach that uses information from single RPs only.
Because of the reduced input information, only & and 0; can be estimated:

E=xi'(), 6= 7.1)

where the value of ¢ reconstructed from the former equation is inserted into the latter. These
equations reflect only the leading terms from the optics decomposition in eq. (6.6). Neglecting the
subleading, but still relevant, terms (e.g. the one proportional to 6) implies a degraded resolution.
On the other hand, a notable advantage of this approach is its applicability even when the proton
track is not available in the other RP of the arm. Furthermore, this approach has a different (slightly
smaller) dependence on the systematic variations with respect to the multi-RP method, cf. figure 38.
In this sense the single-RP reconstruction is a very useful check of the calibration. The variables
x*, y" and €, cannot be reconstructed with this approach and they are set to zero. For the vertex
coordinates this is a reasonable approximation when low 8" optics is used (as detailed below).

The multi-RP reconstruction exploits the full potential of the spectrometer: it searches for
proton kinematics that best match the observations from all RPs and all projections by minimizing
the following function:

d —(T'd")
)(2 _ Z Z q—iq , (7.2)
i: RPs g: x,y 0-61

where i runs over all the tracking RPs in the arm and g over the two transverse projections. This
expression follows the notation of eq. (3.1): the vector d d represents the (measured) proton position
at the ith RP, the vector d* denotes the proton kinematics at the IP and the matrix T' stands for the
proton transport between the IP and the ith RP. The quantity 0'; denotes the position measurement
uncertainty at the i-th RP in projection g. This general formulation allows for using any optics
model, 7', and any number of tracking RPs (greater than 1). A similar approach proved useful already
when applied by the TOTEM Collaboration to high 8* optics [36]. Since PPS aims primarily at low
B" optics, further optimizations are possible. Low 3" optics is characterized by narrow distributions
of the interaction vertices in the transverse plane, o (x") ~ o (y*) = O(10 um). Consequently,
the vertex terms in the optics decomposition of eq. (6.6) give only a small contribution and can
be neglected in the reconstruction without any significant loss of accuracy (cf. figure 36, right).
This, in turn, can resolve the under-determination of the reconstruction discussed earlier. Since
there are only 4 measurements available (2 projections times 2 RPs), only 4 proton parameters out
of five (x*, y*, 67, 0;, &) can be determined. Therefore, by default, x* is fixed to 0, which is a
reasonable approximation given the LHC optics used by PPS (low 87) and the very small x* RMS
in these conditions. In this case, the number of degrees of freedom for the fitisndf =4 -4 =0
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and therefore the fit effectively performs a numerical solution of a set of 4 nonlinear equations. It is
equally justified to fix also y* = 0, which results in an alternative fitting model with one less fitted
parameter (since & is reconstructed from horizontal coordinates) and thus with ndf =4 -3 = 1.
This option has been tried for validation purposes and yields results compatible with those obtained
with the default choice.

The general expression in eq. (7.2) can be decomposed into a set of simpler equations for
the conditions relevant to PPS. The minimum of )(2 from eq. (7.2) is described by eqs. (6.13)
and (6.14) when the following conditions are met: (i) if two tracking RPs are used per arm (Run 2
configuration); (ii) if the proton transport can be approximated by the terms explicitly mentioned
in eq. (6.6) (a good approximation for 2017 and 2018); (iii) only x* is assumed to be zero (the case
with ndf = 0). Each of these equations gives an explicit expression to determine one of the proton
kinematic variables. Only the first equation is nonlinear (¢ on both sides of the equation), whereas
the others are linear (¢ is taken from the solution to the first equation). Beyond the usefulness
for optics studies as discussed in section 6, this decomposition can speed up the reconstruction
software implementation: there is a single nonlinear equation with a single variable that can be
solved in different well established ways, e.g. Newton’s method. Using this optimisation gives
results compatible with the full minimisation according to eq. (7.2).

During Run 2, PPS was operated with two tracking RPs per arm (denoted “near” and “far”,
referring to their position with respect to the IP). The input to eq. (7.2) therefore consists of one near
and one far RP track, selected such that their combination is consistent with belonging to a proton
originating from the IP. The selection is achieved by considering all near-far track combinations
and retaining only those fulfilling the so called “near-far association” constraints. This selection has
a double aim: first, to suppress background, and second, to disentangle multiple forward protons
present in the event. The association constraints reflect the expected proton kinematics at the IP
(e.g. the RMS of the scattering angles) and the patterns imposed by the LHC optics. For instance,
forward protons arrive at the RP detectors at small angles with respect to the LHC beam and
therefore Ax and Ay are expected to be small, of the order of 0.1 mm (A refers to the near-far
difference of the track position). Beyond these, selection criteria based on A¢ and AH; are also
used, based on the single-RP reconstruction of eq. (7.1). The constraints have been tuned using
both simulation and data, with the aim of optimizing efficiency and purity. The inefficiency (further
discussed in section 12) can arise either because of overly strict constraints discarding real protons,
or overly loose constraints not able to distinguish between two (or multiple) protons in the event.
The optimisation of the near-far association constraints is performed for each year. In 2016 and
2017, some of the RPs were equipped with Si strip sensors that reconstruct no more than one track
per event. In this case, the association constraints can only suppress background and can thus be
relatively loose: typically only the A¢ criterion with a threshold of about 0.01 is applied. In 2018,
all tracking RPs were equipped with Si pixel sensors capable of reconstructing multiple tracks.
Disentangling individual protons becomes necessary and tighter constraints are needed: typically
A¢ (with a threshold of about 0.008), Ax and Ay criteria are applied.

The quality of the multi-RP reconstruction can be estimated by propagating the reconstructed
protons to the RPs and comparing the positions of the measured and the propagated track impact
points; the typical difference is smaller than 1 um (thus at least an order of magnitude better than
the spatial resolution of the RPs).
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Figure 20. Comparison of ¢ reconstructed with the single-RP method from the near and far RP in each arm,
presented as a function of & (fill 5849, 2017). The color code represents per-bin event counts. Left: sector
45, right: sector 56.

Figure 20 compares the results of the single-RP reconstruction of £ from the near and far RPs.
The difference between the left and right plot follows mostly from the optics difference between
sectors 45 and 56. The observed part of the phase space (reflected by the discontinuities in the
plots) is limited by the distances of the RPs from the beam at low &, ;;; (Where “multi” stands
for reconstructed with the multi-RP method). The LHC aperture limitations (at high &_ ;. details
given in section 8) and the A¢ association cut (e.g. vertical constraints at about £0.006 in the left
plot). Beyond these acceptance limitations, the difference is distributed symmetrically about O
and is independent of the reconstructed ¢ (multi-RP), as expected if the alignment and the optics
calibration are correct. An example of the mean difference for multiple fills is presented in figure 21.
The mean value is stable in time, as expected. The systematic shift between the blue and red markers
(different values of crossing angle) can be attributed to a residual miscalibration and represents a
measure of the systematic uncertainty of the reconstruction.

Figure 22 shows a comparison of ¢ reconstructed with the single-RP and the multi-RP meth-
ods. Within resolution, they are expected to give the same results. As expected, the single-RP
reconstruction has a rather low resolution. Apart from acceptance limitations (cf. section 8), the
single-multi difference is symmetrically distributed about 0 and has a mean independent of &, again
as expected if the alignment and the optics calibration are correct. A summary of the mean single-
multi ¢ difference for several fills is shown in figure 23. The mean value is stable with time and close
to zero (within the estimated uncertainties, figure 40). There is a small residual dependence on the
crossing angle (colors), which is caused by residual miscalibration and represents a contribution to
the systematic uncertainties.

Figure 24 shows an example distribution of the horizontal scattering angle, 67, vs. & as
reconstructed with the multi-RP method. The 6, distribution is expected to be symmetric about
zero. Apart from acceptance limitations (cutoffs at the white-blue boundaries) we observe a result
compatible with this expectation. Specifically, the mean value of #, does not depend on & — a
requirement for well calibrated conditions. Figure 25 compares mean 6, from many fills. The
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Figure 21. Mean near-far ¢ difference from single-RP reconstruction (in a safe region far from acceptance
limitations) as a function of fill number (2017, sector 56). The different colors represent data taken with
different values of the crossing angle. The error bars represent the systematic uncertainty estimated as a
difference of means evaluated at two different values of &, -
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Figure 22. Comparison of ¢ reconstructed with the single-RP and multi-RP methods, presented as a function
of & (LHC fill 5849, 2017, single-RP reconstruction from the near RPs). The color code represents per-bin
event counts. Left: sector 45, right: sector 56.

mean value is stable over time and close to zero (within approximately +10 urad). The small
residual dependence on the crossing angle (colors) is again taken as a systematic uncertainty of the

reconstruction.

Figure 26 shows an example distribution of the vertical scattering angle, 9;, vs. & as recon-
structed with the multi-RP method. The 0; distribution is expected to be symmetric about zero.
Except the low-¢ region in the left plot (sector 45), which is affected by radiation damage (cf. sec-
tion 12), we find this symmetry well maintained. A collection of 0; mean values extracted from
several fills is presented in figure 27. The mean is stable over time and close to zero (within
+10 urad). A single value of the crossing angle was used in the pre-TS2 period in 2016, and a
different one in post-T'S2 one.
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Figure 23. Mean single-RP vs. multi-RP ¢ difference (in a safe region far from acceptance limitations) as
a function of fill number (2017, sector 56, single-RP reconstruction from the near RP). The different colors
represent data taken with different values of the crossing angle. The error bars represent the systematic
uncertainty estimated as a difference of means evaluated at two different values of & ;-
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Figure 24. Histogram of 6, vs. & as reconstructed with the multi-RP method (fill 5849, 2017). The color
code represents per-bin event counts. Left: sector 45, right: sector 56.

The reconstructed proton objects provided for physics analyses combine:

* proton kinematics at the IP: deduced from tracking RP measurements (as discussed above)
and

* proton timing information: determined from timing RPs.

The timing information can be used to match PPS protons with a vertex in the central detector and
thus for background suppression, cf. section 13.

Tracks from the tracking and timing RPs are matched using Ax, the difference between the x
coordinate measured in the timing RP and that interpolated from the tracking RPs, cf. figure 28.
The shape of the histograms effectively reveals the “shape” of the timing pad, somewhat smeared
by the limited resolution of the tracking in the RPs. The tracking and timing tracks are matched
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Figure 25. Mean value of 6}, (in a safe region far from acceptance limitations) as a function of fill number
(2017, sector 56). The markers in several colors represent data taken with different values of the crossing
angle. The error bars represent the systematic uncertainty estimated as a difference of means evaluated at
two different values of &, ;-
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Figure 26. Histogram of 9; vs. & as reconstructed with the multi-RP method (fill 5276, 2016). The color
code represents per-bin event counts. Left: sector 45, right: sector 56.

if the ratio Ax/o (Ax) is between —1.5 and +2.0. This ratio range was determined empirically to
provide good efficiency and purity.

Figure 29 shows the multiplicity distributions of protons reconstructed per arm and per event.
As expected, the probability decreases with increasing multiplicity. There are almost no events with
five or more reconstructed protons.

Figure 30 shows the raw ¢ distributions as extracted from data with no selection based on
reconstructed-proton observables. Since most of the protons detected in the RPs are due to pileup,
they are not related to the triggering event in the central CMS, and the corresponding data set has
essentially no bias due to the trigger. No corrections (acceptance, efficiency, unfolding or so) were
applied to these distributions. The shape of the distributions is largely influenced by the acceptance,
cf. red curves in figure 35. The differences between the left and right plots mostly follow from the
difference in the optics between the sectors 45 and 56.
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Figure 27. Mean value of 9; (in a safe region far from acceptance limitations) as a function of fill number
(2016, sector 45). The markers in different colors represent data taken with different values of the crossing
angle. The error bars represent the systematic uncertainty estimated as a difference of means evaluated at
two different values of & 1.
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Figure 28. Association of local tracks from tracking and timing RPs (fill 7039, 2018). Ax refers to horizontal
distance between the tracks from tracking and timing RPs, o-(Ax) stands for the corresponding uncertainty.
The vertical red lines delimit the tolerance window.

8 Aperture constraints

Forward protons traveling from the IP to RPs may be intercepted by various LHC aperture limitations
(collimators, beam screens, etc.), which result in detection inefficiency. These effects may be studied
either by analyzing the aperture constraints of all LHC elements between the IP and the RPs or
empirically by searching for discontinuities in the reconstructed distributions of the proton kinematic
variables. This section presents a simple study with the latter approach, performed on zero-bias
data (no trigger requirement) with limited statistics.

The study is based on the distributions of the reconstructed scattering angles vs. &, cf. figure 24
and 26. In both projections the data are limited in the low- and high-¢ region. The limitations
at low & mostly come from the distance of the RP from the beam. This effect can be modelled
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Figure 29. Multiplicity of reconstructed protons per arm and per event (2018 data). The histograms are
normalised to unit area. Different colors correspond to different fills as indicated in the legend. Left: sector
45, right: sector 56.
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Figure 30. £ distributions as extracted from reconstructed protons with no corrections (acceptance, efficiency,
etc.), 2018 data. The histograms are normalised to unit area. Different colors correspond to different fills as
indicated in the legend. Left: sector 45, right: sector 56.

by considering the distance and the shape of the sensors, as done in section 9. The limitations at
high ¢ are especially sharp in the x projection, indicating that the edge arises because of horizontal
constraints — a consequence of the large horizontal dispersion. The slope of the constraint in the
6, vs. £ plane is given by the interplay of the horizontal dispersion and the effective length optical
functions at the limiting LHC element.

Figure 31 shows a typical high-£ pattern in the &, vs. £ distribution that features a discontinuity
(green markers), which is qualitatively similar for all fills in Run 2. The discontinuity is extracted
by slicing the color-coded 2D histogram at constant ¢, and, for each slice, finding the & position
of the discontinuity (each green marker corresponds to one slice). In the left plot (sector 45), the
results form a two-segment line indicating possibly the presence of two relevant aperture-limiting
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Figure 31. Distribution of 0; vs. & reconstructed with the multi-RP method (fill 6617, 2018), zoomed at high
&. The color code represents per-bin event counts. The green markers show the identified aperture cutoff,
the red line the fit according to eq. (8.1). The green error bars vertically represent the bin size, horizontally
a combination of statistical and systematic uncertainties. Left: sector 45, right: sector 56.

entities. The red line represents a two-segment line fit:
0. =6y+a(&-&), a=agforé < & ora, for & > &, (8.1)

In the right plot (sector 56), this simple parametrisation is compatible with the green points within
the estimated uncertainty.

Figure 31 shows a significant asymmetry between sectors 45 and 56. This follows from the
asymmetry of the optics; since in sector 45 the horizontal dispersion is larger, the aperture limitation
is reached at smaller & values.

The fit according to eq. (8.1) has been performed independently on data from different fills,
different crossing angle and 8" values — in order to assess a possible dependence on these param-
eters. An example of such a study is shown in figure 32. Within uncertainties, we observe almost
no fill dependence (time stability) and a linear dependence on the crossing angle, which is expected
from the optics dependence, cf. eq. (6.11). Equivalent conclusions have been reached for other
data-taking periods in Run 2.

9 Proton simulation

This section describes a fast simulation of forward protons in PPS. By design, it does not simulate
details (interaction of protons with matter) but focuses on higher-level observables where the
reproduction of features of the data is important. In particular, the simulation accounts for the
following effects:

* beam smearing at the IP: vertex smearing and angular smearing (i.e. beam divergence);

 proton propagation from the IP to the center of each RP according to the LHC optics,
cf. section 6;

* simulation of the LHC aperture limitations according to the model from section 8;
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Figure 32. Summary of aperture-limitation parameters extracted from several LHC fills (different colors,
2018) and several crossing angle values (horizontal axis), for sector 45. The error bars represent a combination
of statistical and systematic uncertainties.

 proton propagation between sensors in each RP: linear propagation because of the lack of
magnetic field in the RP region;

* sensor efficiencies (optional): using efficiency maps extracted from data, cf. section 12;

» geometrical acceptance: check if the simulated protons pass through the sensitive area of
each sensor;

* digitisation: a software “hit” object is created at the nearest strip/pixel — an effective pitch
is used to reproduce the spatial RP resolution extracted from data;

* for timing sensors, simulation of proton arrival time (with timing resolution extracted from
data, cf. section 13).

The hit objects created in the simulation are then processed with the standard PPS reconstruction
software.

The simulation can take into account realistic distributions of parameters of importance: 3*,
crossing angle, optics, RP positions, apertures, resolution and efficiencies. The values of the
crossing angle and 8" are randomly sampled from the 2D histograms extracted from the data,
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Figure 33. Comparison of hit distributions from simulation (red) and LHC data (fill 6738, no explicit
event/track selection, black), for the 2018 pre-TS1 configuration and the near RP in sector 56. The black
error bars represent statistical uncertainties. Left: distribution of horizontal track positions, right: distribution
of vertical track positions (y range limited to the area around the upper sensor edge).

cf. figure 2. The variations in RP positions reflect the movements performed during the LHC
operation: e.g. vertical RP movements in the technical stops of 2018 to distribute the radiation
damage. For consistency between simulation and data, the simulation conditions are randomly
switched with the frequency extracted from data (following integrated luminosities).

The simulation can be used with any source of simulated forward protons. By default, the
simulation uses a particle gun, which generates protons with a uniform ¢ distribution and Gaussian
6’ and 0; distributions with zero mean and RMS of 60 urad. These settings simulate minimum
bias protons.

The beam divergence, oy, used in the simulation was extracted from data using three com-
plementary methods. First, the beam divergence can be estimated from the beam emittance, e,
measured by the LHC: o4 = \/T,B* . The second estimate is obtained from the beam spot size, o7,
measured by the CMS central detector: oy = oy, V2/8". The factor of V2 stems from converting
the beam spot size (product of two beams) to the single-beam width, cf. eq. (6.4). The third method
is the most direct, but can only be applied to data from the special “alignment” fills where a sample
of elastically scattered protons can be selected. In the final state of elastic scattering there are two
protons, ideally with exactly opposite directions. Since the direction fluctuations are predominantly
caused by the beam divergence, the size of the latter is determined from the RMS of scattering
angle differences between the two elastic protons. All the methods agree on a beam divergence of
about 30 prad.

Multiple validations were performed to check whether the simulation reproduces observations;
an example is shown in figure 33. In the left plot, the simulation describes well the cutoff at low
x (because of the sensor edge) and the smooth cutoff at large x (because of the LHC aperture
limitations). In the right plot, the simulation describes well the cutoff at large y (because of the
sensor edge).

An example of the timing simulation is shown in figure 34. Here, a realistic timing resolution
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Figure 34. Simulated correlation between vertex position along the beam, z*, and the proton timing difference
observed in LHC sectors 56 and 45 (2018 pre-TS1 configuration). The color code represents per-bin event
counts. Reconstruction resolution of z* is not included in this plot. The red dashed line indicates the ideal
correlation.

is used for the reconstructed protons (vertical axis), but perfect vertex z (horizontal) reconstruction
is assumed.

Figure 35 shows the effect of the LHC aperture limitations (discussed in section 8) on PPS
acceptance, which is estimated with the proton simulation. The differences between the left and
right plots stem primarily from the differences in the optics in the LHC sectors 45 and 56. The
differences between the colors (representing different years) are related to the sensor types used in
different years. In 2016, very wide Si strip sensors were used, thus limiting potential loss of protons
because of the vertical displacement from the beam. Consequently, the green curve presents a
plateau close to full acceptance at the central € range. In 2018, vertically narrower Si pixel sensors
were used, thus unable to detect protons with sizable vertical displacement from the beam. The
proton loss rate increases with £ due to the optics: in particular due to the nonzero value of D,
(cf. section 6.2.4) and L, increasing (in absolute value) with & (cf. figure 16). In 2017, a hybrid
configuration with strip (pixel) sensors in the near (far) RP was used (cf. table 1) and consequently
the acceptance shape is in between the two extremes. The acceptance in sector 56 (right plot) is
more sensitive to the reduced size of the pixel sensors because of the larger (absolute) value of L,
in this sector.

10 Uncertainties

Since the simulation described in section 9 reproduces the data well (cf. e.g. figure 33), it can be used
to validate the performance of the proton reconstruction presented in section 7. The performance
will be characterized in terms of the three quantities below.

* “Bias” = mean of reconstruction - truth. This may occur because of effects neglected by
the reconstruction formula; a notable example is the single-RP reconstruction of &, eq. (7.1),
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which is unable to correct for the effect of the horizontal scattering angle 6’,. The “bias” may
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be nonzero even with a perfect knowledge of the conditions (alignment, optics, etc.).

* “Resolution” = RMS of reconstruction - truth. This may occur because of random event-
to-event fluctuations, e.g. from finite sensor resolution or imperfect separation of kinematics
variables in the reconstruction. A notable example of the imperfect separation could be
the single-RP reconstruction of &; since this reconstruction is biased by a term proportional
to 0., the event-to-event fluctuations in the scattering angle effectively lead to a degraded &
resolution. The “resolution” may be nonzero even with a perfect knowledge of the conditions.

» “Systematics” = effect of biased conditions. The “systematics” may be nonzero even if “bias”

and/or “resolution” vanish.

The considered sources of conditions bias include:

* alignment: following the uncertainties from table 3, variations of the horizontal and vertical
alignment were studied separately. Furthermore, symmetric (same sign in near and far RP)

and anti-symmetric (opposite sign in the two RPs) shifts have been studied.

* Optics: uncertainties of the horizontal effective length, L, (cf. figure 19, left), its derivative

dL, /ds (cf. figure 19, right) and the horizontal dispersion.

The results presented here were obtained with the fast simulation described in section 9 and its
default settings, which reproduce well the zero bias data. Specifically, the 6 distribution is given
by a convolving of two Gaussian functions, one representing the physics scattering (with an RMS
of 60 urad) and one representing the beam divergence (with an RMS of 30 urad).

The MC-based results from the fast simulation are compared with semianalytic calculations.
These provide a validation (good agreement is found) and a detailed insight in the mechanisms

producing certain trends in results, as discussed later.
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Figure 36. Example of resolution studies for & (2018 pre-TS1, sector 56). On the vertical axes, A¢ refers to
the difference between the reconstructed and simulated £. On the horizontal axes, & denotes the simulated
value. The different colors refer to different smearing effects considered. Black: only vertical vertex
smearing, red: in addition also horizontal vertex smearing, blue: in addition also beam divergence, green
(the most complete scenario): in addition also detector spatial resolution. The error bars represent statistical
uncertainties. Note that some curves are superimposed. Left: single-RP, right: multi-RP reconstruction.

Below, we show results for the period 2018 pre-TS1 and for the detector arm in sector 56.
These are typical since the results for other periods and the other arm are qualitatively similar.
We systematically show separately the results for single- and multi-RP reconstruction since rather
different characteristics are expected. For brevity we focus on the results of & reconstruction. Some
results for the reconstructed four-momentum transfer squared, ¢, are shown at the end of this section.

Figure 36 shows an example of the resolution studies. For single-RP reconstruction (left plot),
the resolution is dominated by the neglected angular term (L, (¢) 87) in the proton propagation. The
RMS grows with ¢ because the horizontal effective length, L, (&), grows (in absolute value) with &
(cf. figure 16). At very high &, the width of the 8, distribution within detector acceptance is reduced
by the LHC collimators (cf. section 8). Therefore, fluctuations in reconstruction are reduced, which
however leads to a bias (quantified in figure 37). For the multi-RP reconstruction (right plot), the
only sizable contribution to the resolution comes from the detector spatial resolution. This explicitly
justifies the statement that neglecting the horizontal vertex, x”, in the reconstruction has a negligible
effect, cf. section 7.

Figure 37 shows an illustration of the bias studies. The single-RP reconstruction (left plot) is
significantly biased close to the acceptance edges (very low and very high &). At these edges the
accepted 6, range becomes strongly asymmetric and since the 6 term is neglected in single-RP
reconstruction, the bias appears. The bias is negligible for multi-RP reconstruction (right plot).

Figure 38 shows an example of the biased-conditions studies. The individual curves show
the systematic error in the reconstruction of & caused by various conditions biases applied at the
1 o level (cf. the list above). For both single-RP (left plot) and multi-RP (right plot), the leading
contribution (magenta) stems from the uncertainty in the horizontal dispersion. The change of
behavior at large £ is due to the LHC aperture limitations, which modify/restrict the distribution of
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Figure 37. Example of bias studies for & (2018 pre-TS1, sector 56). The different colors refer to different
smearing effects considered (see caption of figure 36). The error bars represent statistical uncertainties. Left:
single-RP, right: multi-RP reconstruction.

protons within the RP acceptance. The single-RP reconstruction (left plot) has very low sensitivity
to certain scenarios, e.g. the blue and cyan one. The multi-RP reconstruction (right plot) is more
sensitive to systematic errors, especially at very high &.

Since the contributions shown in figure 38 are statistically independent, they can be combined
in quadrature to obtain the total uncertainty, as shown in figure 39. Up to & ~ 0.15, the uncertainties
of the single-RP (red) and the multi-RP (blue) reconstruction are very similar.

A summary of all the studies presented in this section is provided in figure 40. The comparison
of the single-RP (left plot) to the multi-RP reconstruction (right plot) shows that the former has
significantly larger bias, significantly worse resolution, and almost comparable systematics; it
is better only in the high-¢ region. This plot justifies the general preference for the multi-RP
reconstruction.

Besides £, PPS can also estimate the four-momentum transfer squared, ¢, of protons reaching
the RP detectors. Formally, this quantity is defined as (P" — P)z, where the four momenta P and P’
are those before and after the collision, respectively. It can be related to other kinematic variables:

2

, I RVOSEXN
t=t0(§)_4pnom(1_é‘:)51n T s
(10.1)

tO(f) =2 m2 +p§0m(1 _6) - \/(le +pﬁ0m)(m2 +pﬁ0m(1 _5)2) .

Since ¢ depends strongly on the scattering angles, it only makes sense to estimate it with the multi-
RP reconstruction (with the single-RP approach 6 is not available at all and for 6’; only a crude
estimate is made). Typical examples of ¢ reconstruction bias and resolution are shown in figure 41.
The smearing effect with the largest impact is the beam divergence (cf. the difference between the
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Figure 38. Example of systematic studies for £ (2018 pre-TS1, sector 56). Each curve corresponds to a
perturbation at 1 o level. The red and blue curves represent alignment variations: in the former both the near
and far RP are shifted in the same direction, in the latter opposite directions are considered. The remaining
scenarios cover perturbations of the optical functions. The error bars represent statistical uncertainties. Left:
single-RP, right: multi-RP reconstruction.
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Figure 39. Example of combined systematic uncertainties of proton & (2018 pre-TS1, sector 56). The
results for the single-RP and multi-RP reconstructions are shown in red and blue, respectively. The error
bars represent statistical uncertainties. Left: absolute, right: relative uncertainty.

red and blue curves), followed by the spatial resolution of the sensors (cf. the difference between
the blue and green curves).

As shown in figure 41, left, there is a nonzero bias in ¢ reconstruction, mostly due to the
beam divergence. Formally, the beam divergence causes a smearing in scattering angles: Hi’y —
* * . . E3 . . . .
O,y + A6, ,, where the standard deviation of A¢, ,, is given by the beam divergence, 07,4. Inserting
this into eq. (10.1) one can obtain the beam-divergence effect on |¢| — the difference in |f| with and
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Figure 40. Comparison of bias, resolution and systematics characteristics (2018 pre-TS1, sector 56). For
the bias and resolution curves, all considered smearing effects are included. The systematics curves represent
the combination of all contributions. The error bars represent statistical uncertainties.
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Figure 41. Example of resolution bias (left) and resolution (right) studies for four-momentum transfer
squared, 7, with multi-RP reconstruction (2018 pre-TS1, sector 56). On the vertical axes, A|t| refers to the
difference between the reconstructed and simulated value of |¢f|. On the horizontal axes, |¢| denotes the
simulated value. The different colors refer to different smearing effects considered. Black: only vertical
vertex smearing, red: in addition also horizontal vertex smearing, blue: in addition also beam divergence,
green (the most complete scenario): in addition also detector spatial resolution. In the right plot, the dashed
magenta curve represents the simplified analytic model from eq. (10.3). The error bars represent statistical
uncertainties.
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Figure 42. Diagrams for yy — p*u” production with intact protons. Left: fully exclusive production, with
both protons remaining intact. Right: Single proton dissociation, with one of the two protons remaining
intact. In the right plot, the three lines labelled p* indicate that the proton does not remain intact, but
dissociates into an undetected low-mass system.

without beam divergence in the approximation of small scattering angles:
Alt] ~ paom(1 = €) |265A6% + 2656} + AGL” + A6, . (10.2)

Since Aei,y are expected to fluctuate symmetrically about zero, the first two terms in the square
brackets yield a strongly suppressed contribution to the mean value of Al¢|. Conversely, the last two
terms are always positive and therefore give rise to the reconstruction bias: Alt| ~ 2p2, (1 —-&)o.
For ¢ = 0, this simple model gives mean Alz| = 0.08 GeV?, thus well comparable with results in the
figure. The nonflat shape reported in the figure is due to the limited acceptance of the RP detectors
and the near-far association constraints (cf. section 7) applied in the proton reconstruction.

Figure 41, right, shows the |#| resolution, which deteriorates with increasing |z|. This is
expected from eq. (10.2), particularly from the first two terms in the square brackets where the
beam divergence fluctuations are scaled with the scattering angles. Neglecting the other terms in
the square brackets, one can derive the functional dependence of the |¢| resolution

RMS of Alt| = 2p,om V1 — & VIt] ooy (10.3)

which is consistent with the plot.

11 Validation with dimuon sample

As a final check of the proton reconstruction, the calibrations and reconstruction algorithms de-
scribed in the previous sections are applied to a control sample of Yy — p' ™ events with at least
one intact proton (figure 42), using the 2017 and 2018 data.
As described in refs. [34, 38], the value of ¢ in signal events can be inferred from the muon
pair via the expression:
1

Eutun) = % pr(nhe

with the 7 solutions corresponding to the case where the protons are moving in the +z direction,

. _
H1D 4 pr (e, (11.1)

respectively.

The offline event selection in the central detectors is identical to that of ref. [34]. Two oppositely
charged muons are required with pr > 50 GeV that pass standard tight identification criteria. In
order to exclude the region dominated by resonant Z — p*u~ production, an invariant mass

_42



requirement of m(u ™) > 110GeV is also imposed. Finally, in order to enhance the (semi)
exclusive production processes, selections are applied to the track multiplicity at the dimuon vertex,
and to the acoplanarity (a = 1 — |A¢(u"u™)|/x) of the muons. The track multiplicity selection
is applied by fitting the two muons to a common vertex, and requiring that no additional charged
tracks are present within 0.5 mm of the vertex position. Back-to-back muons, characteristic of the
signal process, are selected by requiring a < 0.009.

The protons reconstructed with the single-RP and multi-RP algorithms in these events are then
examined, to look for correlations with the muons. In each event, the two solutions, corresponding
to the two arms of the spectrometer, are considered separately. In the 2018 data it is possible to
reconstruct more than one proton per arm; for this study, in order to limit the combinatorial back-
grounds, we require no more than one proton is reconstructed in the arm of interest. Backgrounds
are expected to arise from real dimuon production (from Drell-Yan or yy — p'u” events with
double proton dissociation), in combination with unrelated protons from other collisions in the
same bunch crossing (“pileup”).

In ref. [34], this procedure was applied to the 2016 data, in both the "™ and e*e™ final states.
Although the smaller integrated luminosity did not allow detailed studies, a combined > 5 o excess
of correlated events was observed using the single-RP algorithm, compatible with the predicted
signal. With the 2017 and 2018 data, approximately 10 times more single-RP w1~ events are
available, permitting more refined studies with this sample.

Figure 43 shows the resulting two-dimensional scatter plots from the 2017 and 2018 data,
separately for the two arms and the two years. The shaded bands indicate the approximate region
thatis kinematically inaccessible for signal events, since the protons would be outside the acceptance.
These regions can be populated by background events where a dimuon event is combined with an
unrelated proton from a pileup interaction. In the remaining area of the plots, a clear clustering of
events around the diagonal, where a fully correlated signal would be expected, is visible for both
arms and years. The samples extend to ¢ ~ 0.12; no significant deviation from the diagonal is
observed in this region. The difference between the two proton reconstruction algorithms can be
seen from the plots. The multi-RP algorithm gives a narrower distribution around the diagonal and
fewer off-diagonal background events, whereas the single-RP algorithm extends the coverage to
lower & values.

In order to compare more quantitatively the data with simulation, a one-dimensional projection
onto the variable 1 — &(p)/&(u" 1) is performed, combining both arms and years, for events with
£(WT1T) > 0.04. The expected shape of the residual background is obtained from a sideband
region with the acoplanarity (0.009 < a < 0.1) and extra track multiplicity (5 < N < 10). The
expected signal shape is obtained from a simulated sample of yy — w" ™ events with both protons
intact. A full simulation of the central CMS detectors is performed, and the direct simulation
described earlier is used for the protons. For the simulation, a mixture of LHC crossing angles and
PPS configurations reflecting the integrated luminosity of each data taking condition is used. The
background shape is normalised to the data in the range |1 — &(p)/é(u*n™)| > 0.5. The signal
simulation is then normalised to the difference between the data and the background in the range
|1 —&(p)/E(WTu7)| < 0.5.

The resulting projections are shown in figure 44, with the data first compared with the sum of the
signal and background components, and then to the signal shape after subtracting the background, in
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Figure 43. Distribution of £(p) vs. &(u"n”) for the z > 0 (LHC sector 45) and z < 0 (LHC sector 56)
directions in the CMS coordinate system. The two styles of points represent the data collected during 2017
and 2018. The shaded bands represent the region incompatible with the PPS acceptance for signal events;
events in this region are expected to arise from random combinations of muon pairs with protons from pileup
interactions. The upper plots show the results of the single-RP reconstruction algorithm, and the lower plots
show the multi-RP results. The dotted line illustrates the case of a perfect correlation, where signal events
are expected.

a narrower range. In the background-subtracted plot, the systematic uncertainties in & are indicated
by light shaded bands on the simulation, corresponding to the cases where the reconstructed ¢ is
shifted up or down by the systematic uncertainty. The width of the signal peak in the data is well
reproduced by the simulation (~ 4.8%, including a subleading contribution of ~ 1.8% from the
muon resolution, estimated from simulation), indicating that the £ resolution is well described. The
peak position is slightly shifted (by ~ 4%), but well within the error bands, indicating that any
residual effect is compatible with the known systematics.

In summary, the PPS multi-RP reconstruction was used to study yy — p*pu™ events with at
least one final-state proton, in the kinematic range m(u ™) > 110GeV and ¢ > 0.04. A good
correlation between &(u ™) and the & of the protons is observed in the data up to & ~ 0.12;
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Figure 44. One-dimensional projections of the correlation between &(p) and & (u* ™), for the full 2017+2018
data sample and both arms combined, using the multi-RP algorithm. A minimum requirement of £(u* ™) >
0.04 is applied. The left plot shows the data compared with the background shape (solid histogram) estimated
from sideband regions, and the signal shape obtained from simulation (open histogram). The right plot shows
the data and signal shape in a narrower region, after subtracting the background component from the data.
In the right plot the dark bands represent the statistical uncertainty due to the number of simulated events,
whereas the two light shaded bands represent the effect of shifting the distribution up or down by the
systematic uncertainty of the proton & reconstruction. The vertical bars on the data points represent statistical
uncertainties.

the mean and width of the signal distribution are reproduced by the simulation, within the known
systematic uncertainty. This indicates that the optics, alignment, and related systematics of the
proton ¢ reconstruction are well understood for the data collected during 2017 and 2018, in addition
to the previously studied 2016 data [34].

12 PPS tracking efficiency

The efficiency of the PPS tracking detector needs to be closely monitored, as radiation-induced
effects can degrade the performance during the LHC operation.

Multiple factors need to be taken into account: the efficiency of the detectors, the reconstruction
algorithm efficiency, and the probability that the proton interacts with the material between the two
tracking stations, and cannot be detected.

PPS used multiple detector technologies during data-taking, and the definition of the efficiency
changes accordingly.

In 2016, with only the strip detectors used, allowing only one proton track to be reconstructed
in each station, the reconstruction algorithm efficiency is close to 100%, since loose association
constraints can be used (see section 7). The dominant role is played by detector effects, such
as radiation damage and multi-tracking inefficiency. A more detailed description is given in
section 12.1.

In 2017 and 2018, the pixel detectors could resolve multiple tracks in the same station, and a
different approach for the efficiency estimation is used. The reconstruction efficiency for multi-RP
protons was split into two independent multiplicative factors: the efficiency of the “near” detector
and the so-called multi-RP efficiency. The former takes into account only the detector-related
effects for the near RP, whereas the latter accounts for detector-related efficiency in the far RP,
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Figure 45. Strip multiple track efficiency component versus pileup in the sector 45 near RP. The color code
represents per-bin counts. Left: data-taking period between the first and the second 2016 Technical Stops.
Right: data-taking period between the second and the third 2017 Technical Stops.

the reconstruction algorithm efficiency, and the proton propagation. The first factor is derived as
described in sections 12.1 and 12.2, and the second is discussed in section 12.3.

Efficiency corrections are computed for each RP and data-taking period separately.

12.1 Silicon strip detector efficiency

Two main sources of inefficiency affect the PPS strip detectors: radiation damage and the presence
of multiple tracks in the same event. These effects were studied separately and are described with
two efficiency factors.

If more than one particle produces a signal in the strip detectors, track candidates that do not
correspond to a real particle, so-called ghost tracks, will be found. Because of this, strip detectors
can only be used in events where one track is present [39].

In minimum-bias samples, events with one or more protons in the strip detectors are selected.
This is done by requiring either at least one track pattern in both strip orientations, or a number
of detector hits greater than the maximum allowed by the pattern recognition algorithm, which is
tuned to accept a single proton track with some tolerance for detector noise. The selected events
are used to compute the efficiency factor, which is the ratio between the number of reconstructed
tracks and the number of selected events. This efficiency factor is inversely related to the pileup,
and ranges between 40 and 80%. Consistent results are observed in both 2016 and 2017, and across
different sectors, and illustrated in figure 45.

The second factor takes into account time-dependent effects produced by radiation, and it has
been studied with a tag-and-probe method [40]. In order to probe the efficiency of the strip detectors
in one station, minimume-bias events with one reconstructed track in the other RP (tag) of the same
arm, passing loose quality criteria, are selected. Events with more than one recognized track pattern
in the strip detector being probed are excluded, together with events with multiple tracks in the tag
RP, in case of pixel detectors. A matching window of |A¢| < 0.01 is defined, where A¢ represents
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the difference between the single-RP ¢ measurement associated with the track in the tag RP, and
the measurement in the RP being probed, if a track is detected.

The efficiency correction factor is defined as the ratio between the number of events in which
a strips track satisfies this matching criterion, and the total number of events selected. Statistical
uncertainties are negligible, and two sources of systematic uncertainty were evaluated. A 1%
uncertainty is associated to the choice of the minimum-bias sample used for the estimation; an
uncertainty of the same size is associated to the variation of the quality criteria applied to the
tagging track. A larger (10%) conservative systematic uncertainty is applied to 2016 efficiency
factors because a different method is used. Efficiencies are derived by comparing & distributions
in data with respect to the ones observed in the alignment fill, when the detectors had not suffered
any radiation damage yet. The uncertainty is estimated by comparing with results obtained with
the tag-and-probe method.

Figure 46 shows the results as a function of the x-y coordinates of the track measured in the
tagging RP, for the region covered by the detector acceptance and below the collimator aperture
limits. The area damaged by radiation is clearly visible and its size and inefficiency grows with
the integrated luminosity. However, efficiency measurements show average values higher than
95% in the rest of the detector area. Similar results are observed in the 2016 data, although the
lower collected integrated luminosity reduced the radiation effects. Data-taking periods in which
strips detectors were not inserted or operational are excluded from the presented results. They
mainly affect the last period of 2017 (lower right plot of figure 46), where they account for ~10%
efficiency loss.

In 2016, the near-far RPs correlation between inefficiency factors due to multiple tracks in
strip detectors has been measured between 50% and 80%. The complete tracking inefficiency can
therefore be computed as the product of the following factors: the multiple-track inefficiencies
(taking into account their correlation), the radiation damage inefficiency for both the near and far
stations, and the proton interaction probability. The latter has been measured by the TOTEM
experiment to be approximately 2% (see section 7.5.1 in ref. [36]).

12.2 Pixel detector efficiency

The main contribution to the pixel detector inefficiency comes from radiation effects. The method
used to derive the efficiency is described in detail in ref. [41] and is based on the measurement of
the efficiency of each detector plane during data taking. A minimum bias sample collected at the
beginning of the detector operation is used to model the track distribution; the track efficiency is
quantified as the probability of having at least three efficient detector planes out of six.

The results are represented as a function of the x-y coordinates on a scoring plane perpendicular
to the beam, as in figure 47. Statistical uncertainties are estimated to be negligible using Monte
Carlo simulations, and a 1% systematic uncertainty linked to the minimum bias sample choice
is assigned.

In 2017 and 2018 the efficiency x-y maps exhibit a small damaged region where the sensors
are most irradiated, as shown in figure 48. This inefficiency is actually due to the radiation damage
of the electronics and not of the sensor itself. This region expands progressively with integrated
luminosity. Outside the damaged region, the efficiency reaches a plateau higher than 98%. During
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Figure 46. Strip detector tracking efficiency component (in color code) related to radiation effects, computed
with data collected in 2017, over different consecutive data-taking periods. The figure shows the results for
the sector 56 near station in 2017, as a function of the x-y coordinates of the track measured in the tagging far
station, for different periods. Each period is defined as an interval in integrated luminosity computed since
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Figure 47. Pixel detector efficiency map, computed on the first data collected in 2017 for sector 45 (left) and
56 (right), and shown as a function of the x-y coordinates. The color code represents the efficiency value.
The slightly lower efficiency on the bottom-right corner of the sector 45 far station is due to suboptimal
detector configuration.
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Figure 48. Evolution of the pixel detector package efficiency (in color code) in the detector region closest
to the beam for the sector 45 far station, computed with data collected in 2018. During each TS, detectors in
both sectors were vertically shifted by 0.5 mm downwards. From left to right: efficiency computed after the
detector collected L;,,, =, 21.0, 50.3, 57.8 o', respectively. Each efficiency map is produced using a small
data sample of ~ 0.5 bl

each technical stop the RPs were shifted vertically by 0.5 mm, so as to spread the radiation damage
over a wider region, and thus mitigate its effects.

Another effect can cause inefficiency in pixel detectors. If one of the protons coming from the
interaction point interacts upstream of the near RPs, it can generate a shower of secondary particles.
If the number of tracks exceeds the reconstruction capabilities of the pixels in the near RPs, a shower
may cause the detectors to become inefficient.

This inefficiency factor has been quantified by studying the number of hits measured in pixel
detectors. The track reconstruction algorithm is tuned to reconstruct a maximum of ten track
candidates, in order to save computation time and storage. When this threshold is exceeded, no
track is reconstructed. Shower events are thus identified as events with no tracks where the number
of detected hits is significantly higher than that expected from detector noise.

The fraction of events identified as showers scales linearly with pileup, and is highly correlated,
as expected, between the near and far detectors in the same sector. A conservative inefficiency upper
limit of 1.5(1.7)% for sector 45 (56) was measured with a 0.1% systematic uncertainty, which
accounts for the dependence on pileup.

12.3 Multi-RP efficiency factor

The multi-RP efficiency factor is evaluated in the same way in 2017 and 2018, and includes the
efficiency of the detectors installed in the far RPs, the efficiency of the multi-RP reconstruction
algorithm, and the probability that a proton propagates from the near RPs to the far without
interacting. These multiple components are evaluated together using a tag-and-probe method. For
each data-taking period, minimum-bias samples are selected for this purpose. Each single-RP
proton reconstructed with the near RPs is used as tag, provided that its track angle measured with
that tracking station is lower than 20 mrad. This selection excludes very inclined background tracks
that do not originate from the interaction point.

The efficiency is evaluated as the ratio between the number of times in which a multi-RP proton
is reconstructed using the single-RP tag proton, and the number of tag protons. The systematic
uncertainties related to the sample choice for the efficiency estimation are ~1%. Asymmetric
statistical uncertainties are evaluated with the Clopper—Pearson frequentist approach [42].

_49 _



2017 (13 TeV) 2017 (13 TeV)

E o E s CMS-TOTEM
E E E F g 09
> 4= > 4= o8
2 2F .
£ £ 07
oF o
£ £ 06
oF Py
£ £ 05
- A
£ £ 04
Pl iy
£ £ 03
e = 02
-10 -10— o1
_12F -12F ! ! L | L 0
0 0 5 10 15 20 25
X (mm)
2018 (13 TeV)
€ T oF
£ 6 £ 6 CMs_ 0
> 4 > 4 "

! |
A N O N

TTT T[T [T [T [ TIT[TIT[TIT[TTT]T

|
)

-10!

-12]

Figure 49. Multi-RP efficiency factor as a function of the x-y coordinates that includes the efficiency of the
detectors installed in the far RPs, the efficiency of the multi-RP reconstruction algorithm, and the probability
that a proton propagates from the near RPs to the far ones without interacting. The color code represents
the efficiency value. Top: multi-RP efficiency in sector 45 (left) and 56 (right) at the beginning of the 2017
data-taking. Bottom: multi-RP efficiency in sector 45 (left) and 56 (right) at the beginning of the 2018
data-taking.

The efficiency is plotted in figure 49 as a function of the x-y coordinates of the near RP scoring
plane. The overlap between the acceptances of the RPs in the same sector, combined with the
collimator aperture limits, defines the shape of the efficiency map.

This efficiency has generally a plateau value higher than 90% in 2017, and slightly lower in
2018. These high values reflect the good performance of the detectors and of the reconstruction
algorithm. Lower performance can be observed in the most irradiated region because of radiation
damage and multiple tracks. The latter takes place when more than one track in the far RPs satisfies
the association requirements with the near RPs track. Under these circumstances the multi-RP
reconstruction cannot choose among the far RP tracks, and fails, causing inefficiency.

Consistent results are observed in 2017 and 2018 when restricting the analysis to events with a
single track in the near RP. A small loss in the 2018 multi-RP reconstruction algorithm performance
is observed when including events with multiple tracks in the near station, because of the higher
multiple-match probability, as mentioned above.

Figure 50 shows the fraction of reconstructed multi-RP protons predicted by the fast simulation,
which includes both efficiency and acceptance effects. The difference in the shape of the plots for
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Figure 50. Fraction of reconstructed multi-RP protons, as a function of &, ,;, for a proton sample produced
with the PPS direct simulation. Acceptance and efficiency effects are taken into account. The left and right
plots show results for sector 45 and 56, respectively. The efficiency systematic uncertainties, computed by
combining in quadrature the systematic uncertainties estimated for each efficiency factor, are 10, 2.7, and
2.1% for 2016, 2017, and 2018, respectively.

the three years is mainly due to the different acceptances (cf. figure 35). The higher value of the
fraction in 2018 reflects the presence of the pixel detectors (as opposed to the strip ones) in both
RP stations.

The difference between the 2016 and 2017 performance is caused by multiple factors: the
average pileup in 2017 was significantly higher than in 2016, producing a higher strip multi-
tracking inefficiency (figure 45). The integrated luminosity accumulated in 2016 was about one
fourth that in 2017, resulting in less severe radiation damage. Furthermore, the sector 45 near RP
was not available for a significant portion of 2017 (=24% of the whole data-taking), thus effectively
lowering the overall efficiency, since downtime is included as an inefficiency component.

13 Timing

In order to study the performance of the proton vertex matching provided by the PPS timing
detectors, a special data set collected with low instantaneous luminosity is used, where the mean
number of inelastic interactions per bunch crossing was p ~ 1. In this data set, a sample of events
is studied with exactly one reconstructed vertex built from a maximum of 10 tracks in the central
CMS tracker and exactly one multi-RP proton in each arm of the PPS detectors. This provides a
control sample enriched in central diffraction (or double-Pomeron exchange) [43] events.

In signal events, the z position of the vertex as determined with the central CMS tracker and
the time-of-flight difference between the two protons (Atppg) are linearly correlated with a slope
of ¢/2 (where c is the speed of light). In practice, even in low-pileup data, there is a nonzero
probability of combining unrelated pileup protons with the central vertex. Since the pileup protons
are uncorrelated with the central vertex, this background may be modeled using event-mixing
techniques, where either one or both protons are chosen from different events than those of the
central vertex.
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Figure 51. Correlation between the z vertex position measured in the central CMS tracker, and the time
difference of the protons measured in the PPS detectors. Left: low-pileup data with protons on both arms.
Right: mixed background sample, with both protons chosen from a different event than that of the central
vertex. The red dashed line indicates the ideal slope of c¢/2, which would be expected with zero background.
The blue points with error bars show the profile of the data, with the mean and RMS of the time difference
in each bin of the position z.

where

The correlation is quantified using a one-dimensional projection of Zppg iiming — Zvertex:

Zpps, timing = Alpps 5> aNd Zyerey is the position measured by the central tracker. To estimate the
resolution for the signal events, a fit is performed to the sum of signal plus background, using two
Gaussian shapes. For the signal component, the mean and width of the Gaussian are left as free
parameters. The resolution of z,.. in the central tracker is estimated to be 50-150 um for the
selection applied here [44], and thus can be neglected.

To test the sensitivity to the background shape, three different approaches are tried. First, the
background mean and width are treated as free parameters in the fit. Second, the mean and width
are constrained from a fit to an event mixing sample, where both protons are chosen from different
events than that of the central vertex. Third, the mean and width are constrained from a fit to an
event-mixing sample, where one proton is chosen from the same event as the central vertex, and the
second proton is chosen from a different event.

The correlation between the vertex position and the proton time difference is shown in figure 51.
The sample is further subdivided into a “high-resolution” selection, with <100 ps timing resolution
predicted on both arms (corresponding to the case with timing measurements on all 4 planes of
each arm), and a “high-efficiency” selection, with no requirement on the predicted timing resolution
of each arm. The spatial resolutions obtained from the fits (Figure 52) for the two categories are
1.87+0.21 (1.87—1.93) cmand 2.77+0.17 (2.45 —2.86) cm, where the first value and uncertainty
correspond to the central value and statistical uncertainty obtained using a Gaussian background
shape with free parameters, and the numbers in brackets represent the range of central values
obtained under the three different background approaches. The complete list of values obtained is
shown in table 8.
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Figure 52. Vertex resolution obtained from the difference of proton arrival times, using data collected during
low-pileup runs. Left: resolution for two-arm multi-RP events, using the subset of events with a predicted
resolution <100 ps for both arms. Right: resolution for two-arm events using all events with exactly one
multi-RP proton in each arm. The fitted signal (red dashed line) and background (blue dashed line) are shown
separately, with the means and widths of both components treated as free parameters. The bars on the data
points indicate the statistical uncertainties.

Table 8. Vertex position resolutions obtained from the proton times measured in the PPS timing detectors,
using different selection criteria and background shape assumptions. The sample of events in the high
resolution and high efficiency categories is always the same, therefore the statistical uncertainties are highly
correlated.

Selection Background Resolution + stat. [cm]
High resolution  Free 1.87 £ 0.21
High resolution  Both arms mixed 1.93+0.18
High resolution ~ One arm mixed 1.92 +0.18
High efficiency  Free 2.77+0.17
High efficiency  Both arms mixed 2.86 +0.10
High efficiency = One arm mixed 2.45+0.13

The resolutions obtained are consistent with the quadrature sum of single-arm timing reso-
Iutions, estimated independently [45]. This indicates that the overall vertex matching resolution
is dominated by the single-arm detector and electronics performance, without large contributions
correlated between the two arms. In the high resolution category, a time resolution below 100 ps per
arm is confirmed, with the full PPS timing system in LHC collisions. The results further indicate
that the single-arm resolutions may be used to predict the overall resolution in high-pileup data,
where the two-arm technique described here cannot be used.
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14 Summary

The procedures developed to reconstruct the proton tracks from the signals detected in the CMS-
TOTEM Precision Proton Spectrometer have been described. The performance of the reconstruction
is studied with data from the LHC Run 2 of proton-proton collisions at 13 TeV energy, corresponding
to an integrated luminosity of 107.7 o'

A multi-step alignment of the detectors is performed. Alignment with respect to the LHC
collimators is followed by relative alignment of the sensor planes within a Roman Pot (RP) and
among all RPs. Then, global alignment is performed with respect to the LHC beam with elastic
events collected in low luminosity runs, and is extrapolated to the RP’s positions in the high
luminosity fills. Finally, the timing detectors are aligned with respect to the tracking detectors.
The alignment uncertainties are 150 um and 100 um in the horizontal and vertical projections,
respectively. The precision of the relative alignment between near and far RPs is better than 10 ym.

A precise modelling of the LHC optics is a necessary precondition for the reconstruction. The
track horizontal and vertical positions at the RPs can be obtained from the proton kinematics at the
interaction point via the optical functions. The horizontal dispersion, D , is calibrated using the
L,= 0 constraint from the data and a sample of (semi)exclusive dimuon events. The horizontal
dispersion carries information on the dependence of the optics model on the horizontal crossing
angle. The parameters of the optics model (half crossing angle, quadrupole positions and magnet
strengths) are determined from a fit to the beam position obtained from the beam position monitors
and RPs, and the measured horizontal dispersion. The vertical dispersion is estimated from the
vertical vertex position and the vertical scattering angle. The effective length and its derivative with
respect to the position along the beam are calibrated at & = 0 using elastic events, where £ is the
relative momentum loss of a forward proton.

An approximate determination of £ and of the vertical scattering angle can be performed with the
information of a single RP. A more accurate and complete determination of the proton kinematics is
obtained by combining the information from both tracking RPs in each arm. The two reconstruction
methods are referred to as single- and multi-RP. The single-RP reconstruction has significantly lower
resolution especially because of the neglected term proportional to the horizontal scattering angle.
A large bias at small and large £ is hence observed given the asymmetric acceptance in the horizontal
scattering angle. The multi-RP reconstruction has a much better resolution, negligible bias and
comparable systematic uncertainties at small and intermediate £. At large &, the effect of the
systematic uncertainty in the optics calibration is larger for the multi-RP reconstruction.

A fast simulation of the proton propagation along the beam line and of the PPS detectors has
been developed. It includes realistic beam parameters and beam smearing effects; the calibrated
optics model; the LHC aperture limitations; the simulation of the detector planes and sensor
geometry, acceptance and spatial resolution; and a realistic simulation of the proton arrival time.

A sample of (semi)exclusive dimuon events has been analyzed in order to validate the proton
reconstruction. A good correlation between the measured proton ¢ values and those inferred from
the dimuon system is observed. The data are well described by the simulation. As expected, the
multi-RP reconstruction shows a better resolution than the single-RP method.

The proton reconstruction efficiency has been measured for the different data taking periods.
It depends on different multiplicative factors describing the sensor efficiency, the reconstruction
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algorithm efficiency, and the effect of interactions along the proton path. The silicon pixel detector
efficiency is caused by the radiation damage. The silicon strip detector efficiency loss is caused
by radiation damage and in addition by multiple tracks in the same event. The effect of radiation
damage is studied as a function of the integrated luminosity and is significant in the region closest
to the detector edge facing the beam. The efficiency of the multi-RP reconstruction is smaller than
that for the single-RP reconstruction, because of the sensor efficiency of the extra RP, and the effect
of multiple, ambiguous proton combinations between tracks from the near and far detectors.

The correlation between the difference in arrival time of protons in the two detector arms and
the z vertex position has been studied using low pileup data. The width of the z position residuals is
consistent with the single-arm timing resolutions. For part of the data taking period they are better
than 100 ps, corresponding to ~2 cm.

The performance of the Precision Proton Spectrometer in Run 2 has proven the feasibility of
continuously operating a near-beam proton spectrometer at a high luminosity hadron collider. PPS
has had no impact on the operation of LHC in terms of background, heating, or impedance. The
success of PPS has been made possible by two independent collaborations, CMS and TOTEM,
joining forces to pursue a common physics interest.
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