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Cells belonging to living organisms are composed of different levels of organization and
through the intersection of these levels the cells give rise to a variety of cellular phenotypes.
The levels of organization comprise different molecules and compounds starting from the
DNA, i.e. genome level, the epigenetic modification, i.e. the epigenome level, to the RNA,
i.e. transcriptome level, until the proteins, i.e. proteome level. The genome level is defined as
the complete set of DNA of an organism, including all of its genes. Each genome contains all
the information to build and maintain the organism (Lodish et al., 2000). The genome level is
supported by the epigenome that comprises all the chemical compounds added to the genome
as a way to regulate the activity (expression) of all the genes. The actors of the epigenome
are not part of the DNA sequence, but are on or attached to the DNA. Mechanisms of epige-
netic activity include DNA methylation, DNA-protein interactions, chromatin accessibility,
histone modifications and more. Epigenetic modifications persist as cells divide and in some
cases can be inherited through the generations (Lodish et al., 2000).
The transcriptome is defined as the complete set of transcripts in a cell, and their quantity, for
a specific developmental stage or physiological condition (Li, Lim, and Ling, 2019). Since
the transcriptome includes all messenger RNA (mRNA) in the cell, it reflects the genes that
are being actively expressed at any given time in an entire organism or in a specific cell type.
However, the transcriptome also includes other RNAs that do not fall into this category for
their non-coding nature.
Finally, the proteome is the entire set of proteins that can be expressed by a genome, cell, tis-
sue, or organism at a certain time. The proteome is many-fold larger than the genome since a
single gene (composed of many exons) can generate hundreds of different protein molecules
by alternative splicing and post-translational modifications (Garrels, 2001). Thus, the whole
biological architecture makes the cell a complex system and hard to analyse in its entirety.
However, in the era of deep sequencing techniques (i.e. Next Generation Sequencing (NGS))
significant advancements in elucidating the organization of cells have been achieved. In par-
ticular, the latest research are now increasingly focused to investigate in deep and precise way
the nature and behaviour of the different cell types. Indeed, sensitive and accurate sequenc-
ing methods permit to analyse each level of organization and derive signatures (e.g. DNA,
RNA, epigenetic and proteome signatures). Then, these signatures can be used to classify
groups of cells both in physiological and pathological contexts as cancer. The signature of
a cell or group of cells can be defined from all the different levels of organization. A DNA
signature can be produced consequently to a genetic event occurring in the DNA that finally
differentiate the cell (or group of cells) from all the others in the organism. An example of
DNA signature in physiological context can be the recombination events occurring in the two
helices generating a DNA signature. Indeed, DNA can be subject to homologous recombina-
tion events that result in the assortment of DNA pieces between chromosome pairs, without
altering the arrangement of genes within the genome (Lodish et al., 2000). Other types of re-
combinations have specific roles in controlling gene expression in specific cell types or they
may play an evolutionary role by contributing to genetic diversity. One example in human
body of recombination event leading to signature specificity is the site-specific rearrange-
ment that occurs during the development of the immune system, which recognizes foreign
substances and provides protection against infectious agents. During the early stages of T
and B lymphocytes maturation (i.e. part of the immune system actors), rearrangements in the
V(D)J gene segments occur as a mechanism of genetic recombination in developing lympho-
cytes. The process results in a diverse repertoire of antibodies/immunoglobulins (Igs), B-cell
receptors (BCRs) and T cell receptors (TCRs) belonging to B cells and T cells, respectively.
However, gene rearrangements events characterizing lymphocytes can be also a signature of
malignant conditions as Leukemia and Lymphoma (Dongen et al., 2015; Kotrova et al., 2015;
Campana, 2010). Consequently to this event, the numerous immune repertoire of lympho-
cytes gives rise to unique fingerprint-like signatures that are different in healthy lymphocytes
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cells (polyclonal), but constant in Leukemia and Lymphoma cells population (monoclonal).
These populations retain the gene rearrangements as characteristic of a dominant tumour
population (Beccuti et al., 2017a). In this context, DNA-based NGS approaches exploit the
rearranged DNA signature of lymphocytes to identify and monitor the tumor population dur-
ing treatment of patients (Beccuti et al., 2017a).
Beyond the genome, the discovery of the epigenome level shades the light on new regulatory
mechanisms inside the cells and also on the putative association of epigenetic modifications
and diseases. Indeed, in the original sense of the definition, epigenetics referred to all molec-
ular pathways modulating the expression of a genotype into a particular phenotype. Even
though epigenetic changes are regular and natural occurrences, they can also be influenced
by several factors including age, environment, lifestyle, and disease state (Dupont, Armant,
and Brenner, 2009). An example of epigenetic signature can be found during the biological
event of gametogenesis, that is the process of division and differentiation of diploid or hap-
loid precursor cells to form mature haploid gametes. In this process, genes undergo to the
event of genomic imprinting that is an epigenetic event causing maternal and paternal alleles
to be differentially expressed. These imprinted genes are epigenetically modified and main-
tain the established epigenetic signatures after fertilization, causing parental-specific gene
expression (Moreno-Romero et al., 2019). Epigenetic modifications also play a significant
role in determining the fate of stem cells and directing the differentiation into multiple lin-
eages (Di Tizio et al., 2018). Among these, DNA methylation and histone modifications
produce a unique signature that contribute to lineage-specific differentiation (Di Tizio et al.,
2018). However, several studies (Urdinguio, Sanchez-Mut, and Esteller, 2009; Zhu et al.,
2019) also focused their attention on the effect of mutations in epigenetic genes (e.g. encod-
ing histone modifying enzymes or components of DNA methylation machinery) that seems
to be associated with rare neurological conditions. The result of these alterations leads to a
wide-scale disruption in epigenetic patterns across the genome, creating a distinct and clear
epi-signature. Concerning transcriptome, it is possible to define a RNA signature as the set
of expressed genes indicative of the presence of a given cell or population. The signature
contains a uniquely characteristic pattern of gene expression that occurs as a result of physi-
ologic or altered biological process (Itadani, Mizuarai, and Kotani, 2008).
Even before sequencing era, RNA signatures discovery was a powerful method to investigate
both physiological and pathological condition of the cells in biological and medical research.
For example, several studies used microarrays technique to generate gene signatures associ-
ated with precise transcriptomic characteristics of normal cells (Merienne et al., 2019; Chen
et al., 2018) as well as cancer cells (Liu et al., 2008; Ng et al., 2014). The study of Liu
et al., 2008 regards a novel approach based on microarray to derive gene expression signa-
tures for cancer prognosis in the context of known biological pathways. In detail, the authors
integrated gene expression profiling data and well-known pathway information to develop
pathway specific gene expression signatures for breast cancer prognosis.
Finally, regarding the proteome level, several studies (Ricci et al., 2019; Pimienta et al., 2019;
Ferreira et al., 2015) show how the presence both quantitative and qualitative of a specific set
of proteins can be used as a signature indicative of pathological events as sepsis, renal cystis
, diabetes (Ricci et al., 2019; Pimienta et al., 2019) or healthy tissue (Ferreira et al., 2015).

Nowadays thanks to more sensitive and accurate NGS techniques, the number of avail-
able signatures is increased allowing to obtain exhaustive coverage of the existing biological
and pathological processes as cancer disease (Cantini et al., 2017). However, the results and
the interpretation of new gene signatures is far from be fully exploited due to the poor consen-
sus gene signatures describing molecular mechanisms and lack of computational approaches
for signature analysis (Liu et al., 2008).

This thesis project is mainly based on the development of bioinformatics techniques to
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discover signatures belonging to different cell types exploring both physiological and disease
context, starting from NGS data. The project is divided in three main branches that converge
on the characterisation of the immune system, essential for living organisms. The first branch
is focused on the characterisation of a DNA signature from lymphocytes involved in a malig-
nant condition (i.e. Lymphoma disease); the second branch is focused on the identification of
RNA signatures in differentiating immune cells, analyzed with single-cell RNA sequencing
technique (scRNA-seq). The third part of the thesis is focused on the exploitation of math-
ematical models to find a disease trend signature in patients affected by Multiple Sclerosis
(MS).

The first part of the thesis is focused on the characterisation of a DNA signature in B-cell
Lymphoma tumour.

Background Thanks to the advent of NGS technologies, genome studies revealed exten-
sive intratumour heterogeneity as essential determinant of tumour progression, diagnosis and
treatment. High levels of tumour heterogeneity affect several cancer types and may contribute
to the treatment failure, by initiating phenotypic diversity and enabling more aggressive and
drug resistant clones (Greaves and Maley, 2012). Among liquid cancers, B-cell Lymphomas
are a group of blood cancers highly heterogeneous and following the clonal evolution model
(Nowell, 1976). The most common molecular marker of clonality in this type of tumour is
the Immunoglobulin Heavy Chain (IGH) gene rearrangement, occurring in the B-cells lin-
eage (Velden et al., 2007). In particular, the patient-specific IGH rearrangement of the major
B-cell tumour clone (i.e. first clone detected as tumoral at diagnosis) can be considered as
the signature of the patient disease and it is extensively used to monitor a clinic parameter,
the Minimal Residual Disease (MRD) during and after treatment. MRD represents the small
number of tumour cells from the bone marrow that persist in the patient during or after a
treatment (Ferrero et al., 2011; Velden et al., 2007; Dongen et al., 2015).

State-of-art method The gold-standard technique used for MRD detection in Lymphoma
is Real-Time Quantitative Polymerase Chain Reaction (RQ-PCR) that stratifies patients in
prognostic groups based on relapse risk. However, some limitations currently hamper a
widespread RQ-PCR-MRD use for decision-making. The main disadvantage regards the
lack of one specific marker and consequently a multi-target approach is necessary for identi-
fying the cancer clonal landscape of Lymphoma patients.
Since its recently introduction, NGS technology showed the ability to overpass some limi-
tations of the standard laboratory technique in MRD monitoring in terms of sensitivity and
specificity. More importantly, NGS approach allows a full repertoire analysis thought multi-
clones detection at diagnosis and it gives the opportunity to monitor the clones during several
follow-up samples (Ferrero et al., 2011; Kotrova et al., 2017; Ladetto et al., 2014). However,
this issue is strictly associated with an appropriate computational analysis of the complex
data obtained by NGS.

Aim of the work To solve this issue, we developed an innovative and easy-to-use bioinfor-
matics suite, called HashClone, that simultaneously provides clonality assessment and MRD
monitoring over time in patients affected by Lymphoma, starting from NGS data (Beccuti
et al., 2017a; Romano et al., 2018). HashClone is based on a parallel implementation of four
C++ applications for the data processing based on the analysis of all set of sample reads si-
multaneously and returns the corresponding set of tumour clones aligned with respect to the
IGH rearrangement sequences, associated with their frequency in all input samples. Hash-
Clone is also provided of a graphic interface that allows the inspection of the tumour clones
and their associated features in all the samples under study. Finally, HashClone is integrated
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in a Docker container, a platform that allows to easily install and run the application packaged
with all its dependencies and libraries.

Results The performances of HashClone were tested in the context of a particular rare type
of Lymphoma, Mantle Cell Lymphoma (MCL), with the aims to detect the major B-cell tu-
mour clone and monitor it over time during clinical follow ups. We performed a clonality
analysis with HashClone algorithm starting from NGS data of a cohort composed of 28 pa-
tients affected by MCL enrolled in Fondazione Italiana Linfomi (FIL). The clonality analysis
performed by HashClone was aimed to investigate differences among patients in terms of
MRD clones and follow their trend during the entire therapy protocol. Moreover, the sensi-
bility, sensitivity and flexibility performances of HashClone to identify clones with respect to
the gold-standard technique RQ-PCR, were analyzed. HashClone overpassed the limitations
of RQ-PCR technique, revealing its potential application in the clinic to establish clonal evo-
lution of Lymphoma patients. To assess the accuracy of HashClone in the identification of
the major B-cell clone and MRD monitoring, we compared its performance with respect to
the results obtained by the state-of-the-art tool, ViDJil. Also in this case the performance of
HashClone outperformed the ViDJil results.

The second part of the thesis is focused on the characterisation of RNA signatures in
differentiating immune cells analyzed by single-cell RNA sequencing technique (scRNA-
seq).

Background In the last century, the advent of scRNA-seq technology allows the researchers
to analyze in deepest way the transcriptome of indivual cells. scRNA-seq is a powerful ex-
perimental technique ables to examine the sequence information from single cells with op-
timized NGS technologies, highlighting cell subpopulations specific signatures. Single cell
analysis is particularly crucial to understand the functional differences existing among cells
within a tissue. Indeed, individual cells of the same phenotype are commonly viewed as
identical functional units of a tissue. However, single cells sequencing results suggest the
presence of a complex organisation of heterogeneous cell states, producing together system-
level functionality (Buettner et al., 2015).

State-of-art single-cell sequencing experiments result in a big amount of data that need
to be analyzed in order to correctly cluster together cells belonging to the same type. Thus,
from the advent of scRNA-seq a large variety of algorithms and tools for data analysis were
developed: Seurat (Butler et al., 2018), SINCERA (Guo et al., 2015), Scanpy (Wolf, Angerer,
and Theis, 2018). However, few of them provide an entire computational workflow equipped
with all the necessary steps for single cell data and achieve at the same time functional (i.e.
information about data and the utilized tools are saved in terms of meta-data) and computa-
tional reproducibility (i.e. real image of the computation environment used to generate the
data is stored) through a user-friendly environment.

Aim of the work In this context, we propose a two-goals work:
(i) development of a new computational pipeline, named rCASC: reproducible Classifica-
tion Analysis of Single Cell Sequencing data (Alessandri et al., 2019). (ii) development of
rMLSC: reproducible Machine Learning Analysis of Single Cell Sequencing data, a com-
putational module based on a machine learning approach to improve the interpretation of
the results derived from rCASC data analysis, recovering a robust set of gene signatures for
each cluster. rCASC is a modular scRNA-seq analysis workflow providing data analysis
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tools from counts generation to cells subpopulation identification and exploiting docker con-
tainerisation to achieve computational reproducibility in the data analysis. The steps include:
quality control, mapping, quantification, normalization, clustering and identification of Dif-
ferentially Expressed Genes (DEGs). In particular, rCASC provides pre-processing tools to
remove low quality cells and/or specific bias (e.g. cell cycle). Subpopulations discovery can
be achieved using different clustering techniques based on different distance metrics. Quality
of clusters is then estimated through a new metric namely Cell Stability Score (CSS), which
describes the stability of a cell in a cluster as consequence of a perturbation induced by re-
moving a random set of cells from the overall cells population (Alessandri et al., 2019). After
rCASC analysis, rMLSC module is applied to the results with the goal to recover a clusters-
specific gene-signature. The method includes several steps: pre-processing of rCASC results
to create an appropriate input for machine learning tool; processing of the data using Ran-
dom Forest classification algorithm (implemented in Weka tool (Witten et al., 2016)); post-
processing analysis of the results with estimation of entropy measure and generation of the
sets of clusters-specific gene-signature and visualisation.

Results rCASC and rMLSC were used to analyze a single-cell dataset from Pace et al.,
2018 composed of about 10.000 immune cells. Data were firstly analyzed with rCASC for
clusters derivation. Then, rMLSC was applied on these results using Random Forest classifi-
cation algorithms and retrieving a set of genes signatures.
The results of our analysis allowed more suitable characterisation of the cell clusters, im-
proved data interpretation and extend the information described in Pace et al., 2018, suggest-
ing the presence of further enriched subsets of cells.

The third part of the thesis is focused on the characterisation of Multiple Sclerosis (MS)
exploiting mathematical models to find a disease trend signature (Pernice et al., 2019b).

Background MS is an immune-mediated inflammatory disease of the central nervous sys-
tem, characterized by alternate episodes of symptom exacerbation (relapses) with periods of
disease stability (remission). Several treatments were proposed to contrast the MS progres-
sion with Daclizumab therapy, exhibiting promising results. However, its efficacy is often
accompanied by serious side effects. Therefore, Daclizumab has been withdrawn from the
market worldwide (Trapp and Nave, 2008). More studies are needed to understand these
effects as well as to explain why women affected by MS seem to improve when they become
pregnant and during the pregnancy period.

Aim of the work To improve the understanding of pathological disease as Multiple Scle-
rosis, we proposed in Pernice et al., 2019b a new methodology based on Coloured Petri Nets
and sensitivity analysis for modelling and analyzing complex biological systems, showing
that it reproduces the disease dynamics and the expected behaviours of MS.

Results To show the effectiveness of such methodology, a model of MS has been con-
structed and studied. Two different scenarios of MS were thus considered. In the former
scenario the effect of the DAC administration is investigated, while in the latter MS was
studied in pregnant women due to the association of pregnancy with fewer relapses in RRMS
and reduced activity of the disease. Our results are in line with what comes from biological
knowledge and clinical observations. The results of the simulations give us the opportunity
to identify the key parameters involving in the modulation of the effect of the DAC therapy
(Pernice et al., 2019b). In this work we provide a promising application of a computational
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framework based on Coloured Petri Nets and sensitivity analysis to perform in silico ex-
periments helping to improve the understanding of the MS disease, possibly giving some
indications that may ameliorate the clinical management.

In conclusion, in this thesis project we deal with the development of several bioinfor-
matics algorithms and tools that allow to identify signatures at different levels of biological
organisation. In the first part, we focused our attention on DNA signature developing a
tool, HashClone, able to analyze the complex tumour clonal pattern of Lymphoma patients
starting from the derivation of VDJ gene signatures from tumour lymphocytes. We applied
HashClone clonality analysis on 28 patients affected by MCL and proved that our tool im-
prove and surpass the state-of-art tool and the standard technique. In the second part, we
proposed a new pipeline for scRNA-seq data analysis composed of rCASC and rMLSC to
retrieve clusters-specific gene-signatures and improve data interpretation. We tested rCASC
and rMLSC on single cell dataset from Pace et al., 2018 characterized by differentiating im-
mune cells. Finally, in the last part of the thesis, a new methodology based on mathematical
models was used to model the complex biological scenario of MS disease in two different
conditions: patients treated with DAC therapy and pregnant women affected by MS. We
showed how MS shows a particular disease trend under the effect of the DAC therapy and
how the simulation of pregnancy in MS patients mimics the resetting of the immune system.
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Chapter 1

Signatures in biological systems

1.1 Background

The levels of organisation existing in the cells (i.e. the genome, epigenome, transcriptome
and proteome) intersect among them and give rise to a variety of cellular phenotypes, even
though the cells of one living organism are composed of nearly identical genotypes. All
together, this biological architecture make the cell a complex system hard to analyze in its
entirety. However, it is possible to derive from all these levels of organisation a signature
whose elements and characteristics can help in classifying groups of cells, both in phys-
iological and pathological context. In the era of deep sequencing techniques, i.e. Next
Generation Sequencing (NGS), significant advancements in elucidating the architecture and
the organisation of cells through signatures discovery have been achieved and the latest
research are now increasingly focused to investigate in deep and precise way how these sig-
natures are composed and linked to the different nature and behaviour of cell types. Thanks to
sensitive and accurate NGS techniques, the number of available signatures from the genome,
the epigenome and more is increased, allowing to obtain exhaustive coverage of the exist-
ing biological and pathological processes as hematopoiesis or cancer (Cantini et al., 2017).
However, the results and the interpretation of signatures, especially in cancer, is far from be
fully exploited due to the poor consensus gene signatures describing molecular mechanisms
and lack of computational approaches for signatures analysis (Cantini et al., 2017). In the
next sections, an overview of the signatures in biological systems and the methodologies to
retrieve them will be enhanced.

1.2 Genome signature

A DNA signature can be produced consequently to a modification event of the DNA that fi-
nally differentiate a cell, group of cells or an organism from all the others. Thus, it is possible
to derive a DNA signature both at organisms and cells level. Regarding humans,the genome
is full of DNA signatures thanks to the fact that the DNA is not identical among individu-
als and the genetic difference is estimated around 0.1%, on average (Hartman, Garvik, and
Hartwell, 2001). This means that about one base pair out of every 1,000 will be different
between any two individuals (Hartman, Garvik, and Hartwell, 2001). Causes of differences
between individuals include independent assortment, the exchange of genes (crossing over
and recombination) during reproduction (through meiosis) and various mutational events.
The most common genetic differences in the human genome are single base-pair differences
called single-nucleotide polymorphisms (SNPs). SNPs occur, on average, about every 1,000
bases when two different haploid genomes are compared (Hartman, Garvik, and Hartwell,
2001). Other types of polymorphisms (e.g. differences in copy number, insertions, deletions,
duplications, and rearrangements) also occur, but much less frequently. Almost all human ge-
netic variations have no adaptive significance. Some variations (e.g. a neutral mutation) alter
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the amino acid sequence of the resulting protein but produce no detectable change in its func-
tion. Other variations (e.g. a silent mutation) do not even change the amino acid sequence
(Hartman, Garvik, and Hartwell, 2001). All together, the totality of the genetic differences
of an individual can be considered as a unique signature individual-specific. Regarding sig-
natures at the cell level, DNA often undergoes to recombinational events of the two helices.
Indeed, DNA can be subject to homologous recombination events that result in the reassort-
ment of genes between chromosome pairs without altering the arrangement of genes within
the genome (Lodish et al., 2000). In contrast, other types of recombination have a specific
role in controlling gene expression in specific cell types while others may play an evolution-
ary role by contributing to genetic diversity. One example in human body of recombinational
event leading to signature specificity is the site-specific rearrangement that occur during the
development of the immune system, which recognises foreign substances and provides pro-
tection against infectious agents. During the early stages of T and B lymphocytes maturation
(i.e. part of the immune system actors), a rearrangement in the V(D)J gene segments occurs
as a mechanism of genetic recombination in developing lymphocytes. The process results
in a diverse repertoire of antibodies/immunoglobulins (Igs), B-cell receptors (BCRs) and T
cell receptors (TCRs) found on B cells and T cells, respectively. However, the gene re-
arrangement event characterising lymphocytes is not unique to physiological condition but
also of malignant condition as Leukemia and Lymphoma (Dongen et al., 2015; Kotrova et al.,
2015; Campana, 2010). The immune repertoire of lymphocytes obtained gives rise to unique
fingerprint-like signature sequences that are different in each healthy lymphocytes cell (poly-
clonal), but constant in Leukemia and Lymphoma cells population (monoclonal). Thus, these
rearrangements are characteristic of a dominant tumour population (Beccuti et al., 2017a). In
this context, DNA-based sequencing approaches exploit the rearranged DNA signatures to
monitor the tumour population during the patients treatment (Beccuti et al., 2017a).
Another example of DNA signature in pathological context can be found in all the diseases
with complete penetrance. In genetics, penetrance refers to the proportion of people with
a particular genetic change (such as a mutation in a specific gene) who exhibit signs and
symptoms of a genetic disorder (Shawky, 2014). A complete penetrance indicates that indi-
viduals carrying the disease-causing mutation have clinical symptoms of the disease. Thus,
in the complete penetrance case, geneticists assume that the mutation in a specific gene is the
leading cause of the disease and can be considered as a signature of the disease event (e.g.
Huntington corea, retinoblastoma, familial adenomatous polyposis and multiple endocrine
neoplasia) (Shawky, 2014; Karp, 2009).

1.3 Epigenome signature

The epigenome comprises all the chemical compounds added to the genome, without alter-
ations in the DNA sequence, as a way to regulate the activity (expression) of all the genes
(Karp, 2009). The actors of this level of organisation are not part of the DNA sequence,
but are on or attached to DNA. Mechanisms of epigenetic activity include DNA methyla-
tion, DNA-protein interactions, histone modifications and more. DNA methylation process
is associated with important processes as genomic imprinting, X-chromosome inactivation,
suppression of repetitive elements, and regulation of cell specific gene expression. DNA-
protein interaction is a mechanism of the cell to control various essential cellular processes
(e.g. replication, transcription, recombination, DNA repair). Histone modifications are mod-
ification of histone proteins (i.e. proteins that package and order the DNA into structural
units called nucleosomes) which includes methylation, phosphorylation, acetylation, ubiq-
uitylation, and sumoylation. Epigenetic modifications remain as cells divide and in some
cases can be inherited through the generations. (Lodish et al., 2000). Beyond the genome,
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the discovery of the epigenome level led to the identification of new regulatory mechanisms
inside the cells and also to the putative association of epigenetic modifications and diseases.
Indeed, in the original sense of the definition, epigenetics referred to all molecular pathways
modulating the expression of a genotype into a particular phenotype. Even though epigenetic
change is a regular and natural occurrence, it can also be influenced by several factors includ-
ing age, environment, lifestyle, and disease state (Dupont, Armant, and Brenner, 2009). An
example of epigenetic signature can be found during the biological event of gametogenesis
(i.e. process of cell division and differentiation of diploid or haploid precursor cells to form
mature haploid gametes). In this process, genes undergo to the event of genomic imprinting
that is an epigenetic event causing maternal and paternal alleles to be differentially expressed.
These imprinted genes are epigenetically modified and maintain the established epigenetic
signatures after fertilisation, causing parental-specific gene expression (Moreno-Romero et
al., 2019).
Epigenetic modifications also play a significant role in determining the fate of stem cells
and directing the differentiation into multiple lineages (Di Tizio et al., 2018). In particu-
lar DNA methylation and histone modifications have a unique signature that contribute to
lineage-specific differentiation (Di Tizio et al., 2018). However, several studies (Urdinguio,
Sanchez-Mut, and Esteller, 2009; Zhu et al., 2019) also focused their attention on the effect
of mutations in epigenetic genes (e.g. encoding histone modifying enzymes or components
of DNA methylation machinery) that seems to be associated with rare neurological condi-
tions. The result of these alterations leads to a wide-scale disruption in epigenetic patterns
across the genome, creating a distinct and clear epi-signature.

1.4 Transcriptome signature

The product of gene expression is the transcriptome that is the complete set of transcripts
in a cell, and their quantity, for a specific developmental stage or physiological condition
(Li, Lim, and Ling, 2019). The primary division of transcripts is between coding RNA and
non-coding RNA. Coding RNA transcripts (mRNA) reflect the genes that are being actively
expressed at any given time in an entire organism or in specific cell types. The expression of
different genes allows cells to differentiate and perform different functions. The non-coding
part of the transcriptome is composed of RNA molecules that are not translated into a pro-
tein (e.g. microRNA, ribosomal RNA (rRNA), transfer RNA (tRNA)) (Brown, 2002). It is
possible to define a RNA signature as the set of expressed genes indicative of the presence
of a given cell, population or phenotype. The signature contains a uniquely characteristic
pattern of gene expression that occurs as a result of physiologic/altered biological process or
pathogenic medical condition (Itadani, Mizuarai, and Kotani, 2008). RNA signatures can be
identified also with non-coding RNAs as microRNA or tRNA whose presence is indicative
of on-going biological processes.
The phenotypes that may theoretically be defined by a gene expression signature, range from
those that could predict the survival or prognosis of an individual with a disease (i.e. prog-
nostic)(Oldenhuis et al., 2008), those that are used to differentiate between different subtypes
of a disease (diagnostic), to those that predict activation of a particular pathway (predictive).
In general, a prognostic RNA signature is likely to describe the outcome of a biological pro-
cess or disease (Oldenhuis et al., 2008). Indeed, the classification of a biological phenotype
or medical condition based on a specific RNA signature or multiple signatures can be a use-
ful prognostic biomarker for the associated phenotype or condition. Several studies have
been conducted focusing on prognostic RNA signatures identification to improving the di-
agnostic methods and the therapeutic courses. For example, Liu et al., 2007 generated a
186-gene RNA signature, which was evaluated for its association with overall survival and
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metastasis-free survival in patients with breast cancer. Moreover the signature was used to
stratify patients with high-risk early breast cancer into prognostic categories (good or poor)
(Liu et al., 2007). For the same type of tumour, also Kwan et al., 2018 identifies a 17-genes
cancer-related transcripts signature of circulating tumour cell as a measurement to inform
therapy in breast cancer. However, prognostic signatures were also found in hepatocellular
carcinoma (Hoshida et al., 2013), leukaemia (Verhaak et al., 2005) and are continually being
developed for other types of cancers and disorders as well (Oldenhuis et al., 2008).
A diagnostic gene signature can be considered a signature that distinguishes phenotypically
similar medical conditions with several thresholds of severity (Nguyen, Welty, and Cooper-
berg, 2015). In Wouters et al., 2009 the authors analyzed a recurrent mutation of CEBPA
gene in acute myeloid leukemia and found that, even though most AMLs exhibit two muta-
tions of the gene, also cases with single mutation can occur. Thus, CEBPA gene with double
and single mutation give rise to two gene expression profiles. AML patients with double
mutation were associated with a favourable outcome with respect to patients with single mu-
tation (Wouters et al., 2009).
Finally, a predictive gene signature can predict the effect of treatment in patients that exhibit
a particular disease phenotype (Oldenhuis et al., 2008). Predictive gene signatures can be
employed in the personalized therapeutic intervention through identification of novel thera-
peutic targets as well as the most qualified subjects that will receive optimal benefit from the
specific treatment (Pujol et al., 2015). In Grob et al., 2017, the authors evaluated RNA signa-
ture profiling as a way to predict survival in the metastatic cutaneous melanoma. Forty-eight
patients were enrolled and tested as positive or negative for previously identified RNA signa-
ture associated with the clinical outcome (32 patients positives, 15 negatives). Median overall
survival was 11.4 months for patients positive to the RNA signature and 5.3 months for pa-
tients negative to the RNA signature. Thus, this study evaluates RNA signature profiling as
predictive signature of survival (Grob et al., 2017).

1.5 Technologies for genes signature discovery

In the era of deep sequencing techniques, significant advancements in elucidating the ar-
chitecture and the organisation of cells have been achieved and the latest research are now
increasingly focused to investigate in deep and precise way nature and behaviour of the dif-
ferent cell types. Indeed, sensitive and accurate sequencing methods allow the researchers
to analyze each level of organisation and derive signatures (e.g. DNA, RNA, epigenetic sig-
natures) that can be used to classify groups of cells both in physiological and pathological
contexts as cancer.

Sequencing and its manifest disciplines, known as genomics, transcriptomics and more,
is the most tip technique in signature discovery field. Sequencing is the result of a combi-
nation of molecular biology with nucleotide chemistry born in the early 1970s with the pub-
lication of the first method for DNA sequencing by Dr. Frederick Sanger (Sanger, Nicklen,
and Coulson, 1977; Mardis, 2013). Sanger methods has paved the way for Next Genera-
tion Sequencing (NGS) techniques that could be applied to genome sequencing for DNA
signature, transcriptome profiling (RNA-Seq) for RNA signature, DNA-protein interactions
(ChIP-sequencing) and more in general epigenetic modifications (ELISA, ChIP-on-chip,
ChIP qPCR) for the epigenomic signature.

The critical difference between Sanger sequencing and NGS is the sequencing volume.
While the Sanger method only sequences a single DNA fragment at time, NGS techniques
can analyze millions of fragments in a massive parallel way. Nowadays, NGS methods permit
to sequence every type of molecule in the cells as DNA, RNA as well as proteins. Nowadays,
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thanks to these more sensitive and accurate NGS techniques, the number of available signa-
tures, relative to the several level of cell organisation (i.e. genome, transcriptome, ecc), is
increased allowing to obtain exhaustive coverage of the existing biological and pathological
processes as cancer disease (Cantini et al., 2017). Since this thesis is focused on DNA and
RNA signatures, in the next section a brief explanation regarding NGS methods for DNA and
RNA sequencing is presented.

DNA sequencing Depending from the fragment length, high-throughput sequencing can
require to pre-process DNA before sequencing. For longer targets such as chromosomes,
common approaches consist of cutting (with restriction enzymes) or shearing (with mechani-
cal forces) large DNA fragments into shorter fragments. Then, a library of fragments carrying
synthetic DNAs adapters added covalently to each fragment, is constructed. These adapters
are sequences specific to each platform that can be used to amplify the library fragments
during specific steps of the process (Figure 1.1 A). For example, in the Illumina/Solexa li-
brary protocol, the library fragments are amplified in situ on a solid surface, either a bead
or a flat glass microfluidic channel with adapter sequences complementary to those on the
library fragments. Amplification is required to provide sufficient signal from each of the
DNA sequencing reaction steps that determine the sequencing data for that library fragment
(Figure 1.1 B). The scale and throughput of NGS are often referred to as massively paral-
lel, which is an appropriate descriptor for the process that follows fragment amplification
and yield sequencing data (Mardis, 2013) (Figure 1.1 C). After sequencing, ad-hoc compu-
tational pipelines are exploited for data analysis (Figure 1.1 D)
The approaches at the bases of DNA sequencing for signatures discovery are: Whole-Genome
Sequencing (WGS), Whole-Exome Sequencing (WES) and Targeted Sequencing Panels.
Whole-Genome sequencing determines the order of the nucleotides in the entire genome,
while Whole-Exome Sequencing is an alternative approach to sequence only the exome (i.e.
exons, or coding regions, of the genes which are then transcribed and translated). Exomes
compose only about 2% of the whole genome and can be sequenced at a much greater depth
(number of times a given nucleotide is sequenced) for lower cost. The last method exploits
targeted or hot-spot sequencing panel with a selection of specific genes that are known to
harbor mutations and contribute to pathogenesis of disease (Karp, 2009). All together, these
types of sequencing allow the researchers to look for DNA signatures as genetic variations
and aberrations (e.g. single nucleotide variants, deletions, insertions and copy number vari-
ants) in the whole genome or in a gene-specific manner.

RNA sequencing RNA sequencing reveals the presence and quantity of RNA in a pool
of cells, analyzing the continuous changes in the transcriptome of the cells. Specifically,
it allows to look at alternative spliced transcripts, post-transcriptional modifications, gene
fusions, mutations, SNPs and changes in gene expression (Ozsolak and Milos, 2011). In
addition to mRNA transcripts, RNA sequencing can look at the identification of small RNA,
such as miRNA, tRNA, and ribosomal profiling. Thus, beyond quantifying gene expression,
the data generated by RNA sequencing facilitate the discovery of novel transcripts, identifi-
cation of alternatively spliced genes and detection of allele-specific expression (Kukurba and
Montgomery, 2015). Unfortunately, conventional RNA-Seq studies do not capture the tran-
scriptomic composition of individual cells. Indeed, considerable evidence indicates that sin-
gle cells are heterogeneous, and the cell-to-cell variability in gene expression is ubiquitous,
even within phenotypically homogeneous cell population (Huang, 2009). The transcriptome
of a single cell is highly dynamic, reflecting its functionality and responses to changing stim-
uli. Furthermore, genes that show mutually exclusive expression in individual cells may be
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FIGURE 1.1: Next-Generation Sequencing Chemistry Overview for Il-
lumina/Solexa platform. The workflow includes four steps: (A) library
preparation, (B) cluster generation,(C) sequencing, and (D) alignment and

data analysis.(Figure from Illumina website)

actually observed as genes showing co-expression in expression analyses of bulk cell popu-
lations (Kukurba and Montgomery, 2015). In this context, further improvements were made
with the introduction of single cell RNA sequencing (scRNA-seq). Indeed, scRNA-seq tech-
nique allows the researchers to analyze in deepest way the transcriptome of indivual cells,
providing a higher resolution of cellular differences. This can uncover the existence of rare
cell types within a cell population that may never have been seen before (Kukurba and Mont-
gomery, 2015). In 1990, Iscove and colleagues (Brady, Barbara, and Iscove, 1990) followed
by James Eberwine et al. (Eberwine et al., 1992) in 1992, revealed an entire transcriptome at
single-cell level using exponential amplification by PCR and linear amplification by in vitro
transcription, respectively. However, only in 2009 thanks to the work of Tang et al., 2009,
it was published the first description of single-cell transcriptome analysis based on an NGS
platform describing the characterisation of cells from early developmental stages. All these
studies brought to an explosion of interest in obtaining high-resolution views of single-cell
heterogeneous content on a global scale.
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scRNA-seq technique impose the single-cell isolation as first step to obtain transcrip-
tome information from an individual cell. Several methods are available for this task and
they differentiate for the collection and isolation technique of the cells (Hwang, Lee, and
Bang, 2018). Limiting dilution method (Figure 1.2,a) is a commonly used technique in which
pipettes are used to isolate individual cells by dilution. The micromanipulation (Figure 1.2,b)
is a method used to retrieve cells from early embryos or uncultivated microorganisms, and
microscope-guided capillary pipettes have been utilised to extract single cells from a sus-
pension. The most commonly used strategy is the flow-activated cell sorting (FACS, Figure
1.2,c) for isolating many purified single cells that express a very low level of surface markers
and enables sorting of distinct populations. Alternatively, negative selection is possible for
unstained populations. The potential limitations of these techniques include the requirement
for large starting volumes and the need for monoclonal antibodies to target proteins of inter-
est. Another method is the laser capture microdissection (Figure 1.2,d) where a laser system
aided by a computer system is used to isolate cells from solid samples. Finally, microfluidic
technology (Figure 1.2,e) for single-cell isolation allows low sample consumption and low
analysis cost together with a precise fluid control and a substantially reduced risk of exter-
nal contamination. Notably, the rapid expansion of microfluidic technology in recent years
has transformed the research capabilities of both basic scientists and clinicians (Goldman
et al., 2019). Applications of this technology include long-term analysis of single bacte-
rial cells in a microfluidic bioreactor and the quantification of single-cell gene expression
profiles in a highly parallel manner (Goldman et al., 2019). Another promising method in
microfluidic technology for single-cell isolation is microdroplet-based microfluidics, which
comprises aqueous droplets monodispersion in a continuous oil phase (Goldman et al., 2019).
The lower volume required by this system enables the manipulation and screening of thou-
sands to millions of cells at a reduced cost. Consequently, this high-throughput processing
method enables analysis of rare cell types in a sufficiently heterogeneous biological space
(Goldman et al., 2019). Finally, a system to isolate and enumerate rare circulating tumour
cells (CTCs) in patient blood samples (Figure 1.2,f). Following the isolation of single cells,
libraries are typically generated via cell lysis, reverse transcription into first-strand cDNA
using uniquely barcoded beads, second-strand synthesis, and cDNA amplification (Goldman
et al., 2019).Thus, thanks to barcoded beads, scRNA-seq has the ability to resolve noise in
bulk-NGS through the additional ability to trace generated reads back to their cell of origin.

Single Cell RNA sequencing applications One of the potential and most used applications
of scRNA-seq technology is certainly the new cell type identification. Indeed, the possibil-
ity to look to the differences in gene expression between individual cells could bring to the
identification of rare populations that cannot be detected with bulk methods. For example,
good advancements have been done in hematopoiesis allowing to deconvolute many diverse
immune cell populations in healthy and diseased states through scRNA-seq (Ranzoni, Strz-
elecka, and Cvejic, 2019)(Yamamoto et al., 2013; Naik et al., 2013; Sanjuan-Pla et al., 2013).
All together these studies allowed the discovery of new immune cell types and revealed that
haematopoiesis is a continuous rather than a stepwise process, thus challenging the classi-
cal haematopoietic lineage tree model. Another successful application of scRNA-seq is the
cell hierarchy reconstruction which enables the capture of different instantaneous time points
along an entire trajectory (Goldman et al., 2019; Shin et al., 2015). Hierarchy tracing is a
long-standing fundamental question in biology aimed at understanding in particular how a
single-cell embryo gives rise to various cells types that are organised into complex tissue and
organs (Goldman et al., 2019; Shin et al., 2015). In this context, another interesting potential
application of scRNA-seq includes the identification of genes involved in stem cell regulatory
networks, whose information is essential for understanding the basic biological processes un-
derlying human health and diseases. In cancer research field, scRNA-seq has revealed itself
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FIGURE 1.2: Single-cell isolation and library preparation. (a) The lim-
iting dilution method isolates individual cells, leveraging the statistical dis-
tribution of diluted cells. (b) Micromanipulation involves collecting single
cells using microscope-guided capillary pipettes. (c) FACS isolates highly
purified single cells by tagging cells with fluorescent marker proteins. (d)
Laser capture microdissection (LCM) utilises a laser system aided by a com-
puter system to isolate cells from solid samples. (e) Microfluidic technology
for single-cell isolation requires nanoliter-sized volumes. An example of in-
house microdroplet-based microfluidics (e.g., Drop-Seq). (f) The CellSearch
system enumerates CTCs from patient blood samples by using a magnet con-
jugated with CTC binding antibodies. (g) A schematic example of droplet-
based library generation. Libraries for scRNA-seq are typically generated
via cell lysis, reverse transcription into first-strand cDNA using uniquely
barcoded beads, second-strand synthesis, and cDNA amplification. (Figure

and caption from Hwang, Lee, and Bang, 2018)

also a good method to study intratumour heterogeneity (Goldman et al., 2019). Tumour het-
erogeneity is a common event that can occur both within and between tumours, and the hope
is that scRNA-seq can be applied to reveal unknown tumour features that cannot be discerned
from conventional bulk transcriptomic studies. For example, single-cell RNA sequencing
has revealed significant tumor heterogeneity in primary glioblastomas (Patel et al., 2014)
that inversely correlated with survival, indicating that intratumour heterogeneity should be
considered as an essential clinical factor (Henssen et al., 2017). Metastatic melanoma is also
transcriptionally heterogeneous, and this heterogeneity is associated with several biological
processes including cell cycle stage, location, and also chemotherapeutic resistance (Tirosh
et al., 2016). Thus, the ability to find and characterise outlier cells within a population has
potential implications for further understanding about drug resistance and relapse in cancer
treatment (Hwang, Lee, and Bang, 2018). Additionally, single-cell RNA sequencing could
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also be applied to reconstruct clonal and phylogenetic relationships between tumour cells
by modelling transcriptional kinetics (Goldman et al., 2019). Thus, further integration of
single-cell transcriptomics with other cancer omics data will expand the knowledge in cancer
research field.
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Chapter 2

Characterisation of DNA signatures:
identification of clonal IGH
rearrangements to quantify Minimal
Residual Disease in B-cell lymphoma
from deep sequencing data

2.1 Background

Cancers represent abnormal outgrowth of tumour cells that acquire cell growth, survival, and
metabolism selective advantages, allowing territorial expansion, proliferative self-renewal,
migration and invasion (Greaves and Maley, 2012). By now, cancers are considered complex
pathological processes due to the multiple and various characteristics evident in the same or
different tumour types. Thus, each cancer can be considered individually unique due to both
the variable time frames of evolution (~1–50 years) and to the physical structure, genotype
and phenotype shifting over time among patients (Greaves and Maley, 2012). However, a
large debate is still present in the research community regarding tumours growth. Actually,
researchers debate is focused among three theories (Adams and Strasser, 2008)(Figure 2.1
from Adams and Strasser, 2008):

• Cancer stem cell model (Bonnet and Dick, 1997)

• Clonal evolution model (Nowell, 1976)

• Clonal succession creating a dominant clone (Adams and Strasser, 2008)

The first theory of tumour growth is the Cancer Stem Cell (CSC) model. It is based on the
idea that tumours are hierarchically organised with CSCs lying at the apex (Bonnet and Dick,
1997; Kreso and Dick, 2014) (Figure 2.1 A, from Adams and Strasser, 2008). CSC are tu-
mourigenic cells biologically distinct from other subpopulations with two defining features:
their long-term ability to self-renew and their capacity to differentiate into progeny that is
non-tumourigenic but still contributes to the growth of the tumour (Kreso and Dick, 2014).
From literature it is known that both CSCs and normal tissue stem cells have a self-renewal
capacity but deregulation of this property is typical of CSCs. For many cancers, CSCs is
a distinct population that can be physically isolated from the other tumour cells and can be
shown to have clonal long-term repopulation (Kreso and Dick, 2014; Nguyen et al., 2012).
However, some cancer types seem to be homogeneous or possess a very shallow hierarchy,
and it has not been possible to distinguish CSCs from non-CSCs. Moreover, last researches
are considering the idea that certain cancer cells exhibit plasticity converting between a stem
and non-stem-cell state (Kreso and Dick, 2014). In general, CSCs model has been studied
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rearrangements to quantify Minimal Residual Disease in B-cell lymphoma from deep
sequencing data

and identified in several solid tumours, including Brain (Singh et al., 2003), Breast (Al-Hajj
et al., 2003) and Ovarian (Alvero et al., 2009).

The second theory is the clonal evolution model that was first proposed in 1976 by Peter
Nowell (Nowell, 1976). In this model, tumours arise from a single mutated cell, accumu-
lating additional mutations as it progresses. With successive cellular division and collecting
mutations, additional subpopulations rise, and each of these subpopulations has the ability
to divide and mutate further. This heterogeneity may give rise to subclones that possess an
evolutionary advantage within the tumour environment and override normal cells for space,
energy and nutrient requirements, becoming the dominant population over time (Nowell,
1976) (Figure 2.1 B, from Adams and Strasser, 2008). This feature appears to be in line
with an evolutionary process as those reported by Darwin about species evolution (Greaves
and Maley, 2012). As predicted by Nowell and thanks to the advent of NGS technologies,
the massive sequencing of genomes revealed that clones withing tumours contain cells that
harbor hundreds to thousands of genetic mutations, chromosomal alterations and epigenetic
aberrations (Sabaawy, 2013). The acquisition of mutations is random but the selection and
propagation of dominant neoplastic clones that ultimately lead to a malignant transforma-
tion may be independently sustained by multiple different combinations of driver mutations
during certain stages of tumour progression; while the remaining mutations are considered
neutral (Gerlinger et al., 2012). Finally, also the tumour microenvironment may contribute
to this branched tumour expansion due to the selective pressures that the subclones may be
exposed to (Greaves and Maley, 2012). Examples of tumours that follow clonal evolution
model are Leukemia and Lymphoma (Adams and Strasser, 2008; Ma et al., 2019; Jan et al.,
2012), on which this thesis is focused.

The last theory is the mixed model based on both theories assumptions. Indeed, many tu-
mours that initially follow the cancer stem cell paradigm could progress acquiring additional
mutations and finally follow the clonal evolution model (Adams and Strasser, 2008)(Figure
2.1 C, from Adams and Strasser, 2008). Such tumours might exhibit features of both mod-
els, such as a relatively high frequency of tumour-propagating cells, high mutation frequency
as well as a substantial proportion of cells non-tumourigenic that sustains tumour growth
(Adams and Strasser, 2008).

Regardless the type of mechanisms a tumour undergoes, the evolution from the founder
tumour cell to the final disease bring along also differences in the morphological and phe-
notypic profiles of the evolving tumour cells resulting in heterogeneity of cellular morphol-
ogy, gene expression, metabolism, motility, proliferation, and metastatic potential (Marusyk
and Polyak, 2010). Tumours originating from different tissues and cell types vary in ge-
nomic landscapes, prognosis and their response to therapies, probably due to genetic events
of transformation interacting with cell-intrinsic biological properties (Burrell et al., 2013).
However, considerable variations in terms of genomic aberrations, aggressiveness and drug
sensitivity are also observed among tumours that originate from the same tissue and cell type.
For these reasons, intertumour heterogeneity is defined as genetic and phenotypic variation
among tumours while intratumour heterogeneity is referred to variation within individual tu-
mours (Figure 2.2 from Felipe De Sousa et al., 2013) (Burrell et al., 2013).
Intertumour heterogeneity is based on several aspects of the tumours including morphologi-
cal differences of cells among different types and also in their development as well as genetic
heterogeneity (Marusyk and Polyak, 2010). A common source of intertumour heterogeneity
is genomic instability, a term used to indicate the increased mutation rate in tumour cells that
often arises when key regulatory pathways are disrupted in the cells (Burrell et al., 2013).
Examples include impaired DNA repair mechanisms, which can lead to increased replication
errors or defects in the mitosis, that allow gain or loss of entire chromosomes. Moreover, due
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FIGURE 2.1: Models for the nature of sustained tumour growth. (A) The
cancer stem cell (CSC) model focuses on the unique property of self-renewal
activity of the CSC (gold) and, hence, represents the only relevant target for
therapy. CSC can be isolated prospectively by surface markers (red). (B)
In the clonal evolution model, a substantial proportion of the tumour cells
(gold) can sustain its growth, and hence, therapy must attempt to eliminate
all the cells. (C) In the mixed model, whereas a tumour is originally driven
primarily by rare cells of one phenotype (CSC1), a mutation enhancing self-
renewal in a differentiated derivative creates a dominant subclone driven by
cells of a different phenotype (CSC2). In some human tumours (e.g., AML),
CSC1 but not CSC2 might be able to engraft mice. (Figure from Adams and

Strasser, 2008)

to epigenetic changes, tumour cells can also show heterogeneity between their expression
profiles with different mutational frequencies of oncogenes and tumour suppressors between
tumours of different tissues (Burrell et al., 2013).

FIGURE 2.2: Intra- and intertumour heterogeneity.
Intratumour heterogeneity revealed by multiple subclones existing in the
same tumour. Each of these is represented by a different subtype of lung
cancer resulting in intertumour heterogeneity. (Figure from Felipe De Sousa

et al., 2013)
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Another factor supporting intertumour heterogeneity is the mutational burden (i.e. to-
tal number of somatic/acquired mutations per coding area of a tumour genome) that can be
highly variable across tumour types (Lawrence et al., 2013). For example, Leukemias tend to
have the lowest number of mutations per tumour compared to adult solid tumours. Moreover
a further prove of intertumour heterogeneity regards the fact that the same driver mutations
can occur in different tumour types, suggesting that the same pathways can be active in dif-
ferent tumours (Alexandrov et al., 2013).
Tumour evolution is also associated with significant intratumour heterogeneity due to differ-
ences at genetic and epigenetic levels within tumour itself. All tumour cells contain shared
somatic mutations that reflect a clonal origin, but additional mutations are present in subpop-
ulations of cells that define tumour subclones (Klco et al., 2014). An extended analysis of
genetic and intratumour heterogeneity across and within tumour types was proposed by An-
dor et al., 2016 (Figure 2.3 from Andor et al., 2016). The authors used bioinformatics tools
to quantify intratumour heterogeneity from exome-sequencing data in The Cancer Genome
Atlas. The authors measured the number and size of genetically diverse clones (present at
a ≥ 10% frequency) in 1,165 primary tumour samples across 12 cancer types. On average,
four clones were estimated to coexist in a tumour at the time of biopsy or surgical resection.
Even for thyroid carcinoma, the least heterogeneous tumour type, two or more clones were
predicted to coexist in >50% of the samples. (Figure 2.3 from Andor et al., 2016). The most
important result of this analysis is that 86% of analyzed tumours had at least two clones,
so the genetic intratumour heterogeneity occurs in the vast majority of cancers represented
among the 12 types included in the study. Thus, subclonal genetic heterogeneity is a common
feature of many types of cancers.

The mechanism leading to heterogeneity in subclonal populations is a consequence of
inter-cellular genetic variation, followed by selective outgrowth of clones that have a pheno-
typic advantage within a given tumour micro-environmental resulting in extensive subclonal
diversity (Burrell et al., 2013). Moreover, genetically distinct subclonal populations of cells
that have distinctive mutational and phenotypic profiles, can also be territorially segregated.
It is not clear precisely how spatial separation of genetically distinct clones arises in primary
tumours but it is possible that separation reflects the presence of distinct micro-enviromental
niches in the primary tumour, such that the subclones occupying each niche evolve relatively
independently of one another(Burrell et al., 2013; Marusyk and Polyak, 2010).

2.2 Clonal evolution and heterogeneity in Lymphoma

Lymphoma is a cancer of the lymphatic system, which is part of immunity system. Lym-
phoma occurs when lymphocytes, a type of white blood cell (i.e. immune system), grow
and multiply uncontrollably with characteristic formation of solid tumours at lymph nodes
level (Marcus, Sweetenham, and Williams, 2013). Clonal evolution and intratumour hetero-
geneity have been documented in a range of Lymphoma types and the overall studies have
provided a novel perspective to understand the mechanisms behind Lymphoma evolution and
its implication in terms of treatment failure and relapse or recurrence (Burrell et al., 2013;
Adams and Strasser, 2008; Ma et al., 2019). Several types of intratumour heterogeneity have
been reported in Lymphoma patients. One of the most common examples is the evolution of
a low-grade lymphoma into a high-grade lymphoma in the same patient during the disease
course (i.e. lymphoma transformation). Secondly but less frequently, some patients can be
simultaneously diagnosed with a low-grade and a high-grade lymphoma at different anatom-
ical sites. Thirdly and least frequently, two different, usually clonally unrelated lymphoma
entities coincide within the same organ (i.e. composite lymphoma) (Schürch et al., 2018).
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FIGURE 2.3: Intratumour genetic heterogeneity in 12 tumour types (a,b)
Clone number distribution as predicted by two bioinformatics tools: EX-
PANDS(a) (Andor et al., 2013) and PyClone(b) (Roth et al., 2014) across
tumour types. (c,d) Violin plots of clone number distributions as predicted
by EXPANDS (c) and PyClone (d) within different tumour types. The exact
number of tumours of each type is indicated in brackets. (Figure from Andor

et al., 2016)

One of the most important questions in understanding clonal progression in lymphoma is to
determine the nature and number of different subclones within an individual cancer. More-
over, the co-existence of genetically distinct clones within a tumour can result in a network
of biological interactions among the distinct clones. Thus, the behaviour of Lymphoma com-
posed of distinct clones might be different from that of a monoclonal tumour (Marusyk and
Polyak, 2010).

Pathogenesis of Lymphoma To understand pathogenesis and the molecular mechanism
behind Lymphoma, it is first convenient to describe the physiological process of lymphocytes
maturation and how the alteration of this process leads to malignant lymphocytes character-
istic of Lymphoma.

A lymphocyte is one of the subtypes of white blood cell in a vertebrate’s immune system.
Lymphocytes include Natural Killer cells (which function in cell-mediated, cytotoxic innate
immunity), T cells (for cell-mediated, cytotoxic adaptive immunity) and B cells (for humoral,
antibody-driven adaptive immunity). The function of T cells and B cells is to recognise
specific non-self antigens, during a process known as antigen presentation. Once they have
identified an invader, the cells generate specific responses that are tailored to maximally
eliminate specific pathogens or pathogen-infected cells. During the early stages of T and B
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cell maturation, a recombination of genes coding for antibodies/immunoglobulins (Igs), B
cell receptors (BCR) and T cell receptors (TCR) occurs, resulting in the numerous immune
repertoire able to recognise invading pathogens (Figure 2.4). The recombination occurs in the
primary lymphoid organs (bone marrow for B cells and thymus for T cells) and it consists of
a random fashion rearranges of the variable (V), joining (J), and in some cases, diversity (D)
segments that constitute Igs and TCRs genes. The process ultimately results in novel amino
acid sequences in the antigen-binding regions of Igs and TCRs that allow for the recognition
of antigens from nearly all pathogens including bacteria, viruses, parasites (Figure 2.4).

Igs molecules are composed of heavy and light chains with both constant (C) and variable
(V) regions that are encoded by genes on three loci (Figure 2.4):

• Immunoglobulin heavy locus (IgH) on chromosome 14, containing gene segments for
the immunoglobulin heavy chain

• Immunoglobulin kappa locus (IgK) on chromosome 2, containing gene segments for
the immunoglobulin light chain

• Immunoglobulin lambda locus (IgL) on chromosome 22, containing gene segments for
the immunoglobulin light chain

Each heavy chain and light chain gene contains multiple copies of three different types of
gene segments for the variable regions of the antibody proteins.

In contrast, in 95% of T cells, TCRs are composed of alpha chain and beta chain. In
5% of T cells the TCR consists of gamma and delta chains (Figure 2.4). The T cell receptor
genes are similar to immunoglobulins genes because they both contain multiple V, D and J
gene segments in their beta chains (and V and J gene segments in their alpha chains).

FIGURE 2.4: TCR and BCR composition. Antigen specificity and im-
mune system diversity are generated by V(D)J recombination and somatic
hypermutation in a clonal manner. Antigen specificity is determined by two
co-expressed genes, the heavy and light chains of the B-cell receptor and
the alpha and beta chains of the T-cell receptor. Single-cell sequencing re-
veals the true clonality and diversity of the immune repertoire. (Figure from

10xGenomics website)
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To generate a receptor repertoire with sufficient diversity to recognise the high number of
potential antigens, the extracellular TCR and Igs contain a variety of complementary deter-
mining region 3 (CDR3) that is the main responsible for recognising processed antigen (Fig-
ure 2.5 from (Ralph and Matsen IV, 2016)). Like the most variable parts of the molecules,
CDRs are crucial to the diversity of antigen specificities generated by lymphocytes. The
CDR3 region is created by splicing together specific copies of three gene segments V, D and
J segments. At the junctions between V-D and D-J segments, a varying number of nucleotides
(N) are deleted and randomly inserted, creating a unique receptor. It is these unique inser-
tions and deletions that are responsible for the vast diversity found in the adaptive immune
repertoire. The total repertoire of Ig and TCR molecules is estimated to include nearly 1012
molecules, resulting from combinatory of V(D)J recombinations, somatic mutations, dele-
tions at junction sites and the addition of N-diversity regions between the rearranged genes.

The study of Igs and TCRs rearrangements are powerful markers able to identify the vari-
ation patterns of the clonal subpopulations in Lymphoma. Indeed, deletion as well as random
insertion of nucleotides between the joined gene segments (N-regions) creates an enormous
junctional diversity (Figure 2.5 from Ralph and Matsen IV, 2016). Therefore, the junction
regions of rearranged genes are unique ’fingerprint-like’ sequences that are different in each
healthy B-lymphoid cell (polyclonal), but constant in tumour population (monoclonal), that
retains the IGH rearrangement of the B cell giving rise to the tumour clone.

FIGURE 2.5: VDJ rearrangement. A V(D)J recombination in a lympho-
cyte derives from two (or three) germlines V, (D), and J genes that may have
been truncated or mutated. The N-diversity regions correspond to random
nucleotides inserted between the rearranged genes. (Figure from Ralph and

Matsen IV, 2016)

In principle, all tumour cells of a lymphoid malignancy have a common clonal origin
with identically rearranged Ig and/or TCR genes. Consequently, the junction regions of these
Ig/TCR gene rearrangements can be considered as ’DNA-fingerprints’ of the malignant cells,
which can be used as specific signature for their detection (Dongen et al., 2015). Indeed, the
rearrangements in junction regions of IGH and TCR genes are patient-specific and consid-
ered unique molecular signatures that differ in length and composition in each clone
and consequently in each patients (Velden et al., 2003). Specifically, due to the clonal
origin of the rearrangement, the analysis of Ig and TCR genes configuration can be used to
evaluate the persistence of malignant clones during the disease course. Monitoring requires
the analysis of both lymphoblasts and normal lymphocytes, and these cells are counted ac-
cording to their V(D)J recombinations (Beccuti et al., 2017a; Dongen et al., 2015).
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Mantle Cell Lymphoma Mantle Cell Lymphoma is a rare subtype of non-Hodgkin Lym-
phomas (NHL) in which the tumour cells originally come from the mantle zone of the lymph
node. It is estimated that MCL patients represent only about 6% (about 4,200 cases) of all
new cases of Lymphomas in the United States (Fu et al., 2017). MCL occurs more fre-
quently in older adults where the average age at diagnosis is the mid-60s. It is more often
diagnosed in males than in females and white men and women are at a higher risk than
black men and women for MCL diagnosis (Fu et al., 2017). Up to now in over 90% of the
cases MCL, tumour cells over-express cyclin D1 (BCL1 gene) due to a t(11:14) chromoso-
mal translocation in the DNA, leading to a clonal expansion of malignant B lymphocytes
(Zhang et al., 2011). The analysis of the chromosomal breakpoints suggests that this lesion
takes place very early during the B-cell ontogenesis as an error during the recombination
of the V(variable)-D(diversity)-J(joining) segments of the immunoglobulins gene. Indeed,
MCL cells were considered to be derived from naïve B-cell (e.g. pre-germinal B cells not
yet exposed to an antigen) which are characterised by a lack of somatic mutations within
genes coding for immunoglobulin V-segment heavy chain. These somatic mutations can be
detected in 15%-40% of MCLs (Zhang et al., 2011).

2.2.1 Minimal Residual Disease

Clinical markers for NHL patients prognosis are called prognostic factors and include age,
initial white blood cell count, cancer subtype, chromosome abnormalities and Minimal Resid-
ual Disease (MRD) (Dongen et al., 1998). The MRD is related to monitor the after treatment
tumour cells that can not be found in the bone marrow using standard technique (cytomor-
phologic and cytochemistry exams) but they can be still detected with more sensitive tests
(Brüggemann, Raff, and Kneba, 2012). During the last decade, a large number of stud-
ies (Schultze and Gribben, 1996; Szczepariski et al., 2001) have shown that detection of very
low numbers of malignant cells significantly correlates with clinical outcome in many haema-
tologic malignancies. MRD information is important for clinical decision-making especially
during the initial phase of therapy allowing significantly better stratification of patients into
risk groups as compared with classical risk groups based on other relevant clinical and bio-
logical characteristics (Velden et al., 2003; Dongen et al., 2015). This stratification is useful
not only to precisely assess early treatment response and detect relapse but also to identify
“low risk” patient and “high risk” patient that could benefit of a reduction or intensification
of therapy. Although qualitative MRD information can be highly significant, it only gives
limited information and does not allow precise analysis of tumour load kinetics. Therefore
(semi) quantitative methods were developed that enable accurate assessment of the number of
tumour cells at consecutive follow-up time points. Indeed, quantitative MRD data appeared
to be crucial for appropriate evaluation of treatment in NHL patients. (Velden et al., 2003).

For performing MRD analysis, it is necessary to identify ab initio a molecular marker that
will be followed during or after treatment: in general, for NHL, rearrangements of IGH or of
immunoglobulin light chains (kappa or lambda) can be used. Several studies show that clonal
IGH rearrangements detection and MRD monitoring based on these markers are powerful
early predictors of therapy response and outcome in B-mature lymphoid tumours (Dongen
et al., 2015; Kotrova et al., 2017). However, IGH rearrangement detection is currently part
of the routine clinical management of patients affected by Leukemias and currently under
validation in other mature lymphoid tumours, as MCL (Pott et al., 2010). In the detail of
NHLs, for T-cell lymphoma the molecular marker is the rearrangement of T-cell receptor;
for FL, the BCL2-IGH rearrangement; for MCL, the BCL1-IGH rearrangement; for hairy
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cell leukaemia, the B-RAF V600E mutation, and for Waldenstrom’s macroglobulinaemia the
MYD88 L265P mutation (Galimberti et al., 2019).

2.3 Methodologies to detect MRD

The different methods that are used to monitoring the MRD in NHL differ for their sensitivity
in discriminating the malignant nature and quantity of remaining blast cells in bone marrow
(Campana, 2010). As shown in Table 2.1, three different techniques can be actually used to
monitor MRD: Qualitative PCR, Real Time Quantitative Polimerase Chain Reaction (ASOq-
PCR), NGS.

TABLE 2.1: Sensitivity in current technique for MRD detection. (Data
from Galimberti et al., 2019)

Technique Sensitivity Target
Qualitative PCR 10-5 IGH,TCR,BCL1-IGH, BCL2-IGH

ASOq-PCR 10-4-10-5 IGH,TCR,BCL1-IGH,BCL2-IGH
NGS 10-4-10-5 IGH,TCR,Mutations

In the next paragraphs, all the methodologies will be explained with the application on
Mantle Cell Lymphoma.

Qualitative PCR Qualitative PCR was the pioneer molecular approach implemented for
NHLs in 1990. PCR approach is a method widely used in molecular biology to e exponen-
tially amplify specific DNA regions to generate thousands to millions of more copies of that
particular DNA segment. Thus, qualitative PCR can be performed using fluorescent primers
in order to run the PCR product on a DNA sequencer and reveal the molecular marker under
analysis. Qualitative PCR is able to detect up to one clonal cell among 100,000 analyzed
(1x10-5) (2.1, Galimberti et al., 2019). Molecular targets detectable by Qualitative PCR in
MCL are: IGH clonal rearrangements (detectable in more than 60% of patients), transloca-
tion of BCL1 or BCL2 genes and TCR marker.

Real Time Quantitative Polimerase Chain Reaction - ASOq-PCR The introduction in
molecular diagnosis of quantitative PCR technique, has amplified the knowledge about MRD
significance, due to the possibility to identify and quantify specific sequence of DNA and
complementary DNA (cDNA) , through the use of fluorescence probes. The fragmentation of
these probes during elongation phase of amplification reaction permits fluorescence emission
that is captured e quantified. This leads to an elevate reproducibility and specificity in results
(Kotrova et al., 2015).

For ASOq-PCR assays, IGH rearrangements are screened using single or multiplex PCR
approaches followed by Sanger sequencing allowing to obtain the complete IGH sequence
revealing the patient-specific and clone-specific insertions (N) among the V, D, J recombined
regions (Figure 2.5). Indeed, the rearrangement in junction region of IGH and TCR genes
are patient-specific and considered a unique molecular signatures that differ in length and
composition in each clone and consequently in each patient (Velden et al., 2003). The N
insertions are in particular required to set the Allele Specific Oligonucleotide primer for the
ASOq-PCR technique. (Galimberti et al., 2019). ASO primer is a typically oligonucleotide
of 15–21 nucleotide bases in length designed (and used) in a way that makes it specific for
only one version or allele of the DNA being tested. ASO can be used in different approaches:
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• ASO probe approach: the probe is positioned in the tumour-specific sequence, in par-
ticular the junction region of Ig/TCR gene rearrangements. The probe is used in combi-
nation with a forward and reverse primer, which are positioned in germline sequences
opposite of the tumour-specific sequence.

• ASO forward primer approach: forward primer positioned in the junction region in
combination with a germline reverse primer and a germline probe.

• ASO reverse primer approach: it is comparable to the ASO forward primer approach,
but with opposite location of the germline primer and probe relative to the tumour-
specific sequence (Velden et al., 2003).

If IGH/TCR gene rearrangements are chosen as MRD-PCR target, the ASO forward
primer approach (using a probe generally located in the J gene segments) has several ad-
vantages over the ASO reverse primer approach (using a probe generally located in the V
gene segments). Firstly, the number of J gene segments is lower than the number of V gene
segments, and consequently a lower number of probes need to be made. Secondly, the oc-
currence of somatic hypermutations in the V gene segment may result in less optimal primer
and probe annealing (Velden et al., 2003).

ASOq-PCR is actually defined as the gold standard approaches for MRD evaluation be-
cause of the reached sensitivity levels, detecting up to one clonal cell among 100,000 ana-
lyzed (1x10-5) (Table 2.1). Nevertheless, ASOq-PCR still has some potential technical and
biological pitfalls that affect its use in NHLs: for example, applicability of methods is limited
to patients with the presence of genetic rearrangements appropriate to reach a sufficient sensi-
bility. Moreover, ASOq-PCR requires a time- and labor-intensive process of patient-specific
ASO primer development. As a result, outside of centres where ASOq-PCR has been estab-
lished and validated, access to this method is limited. Moreover, for the IGH-positive cases,
the set of the standard curve necessary for MRD quantification could be affected by the entity
of tissue tumour infiltration at diagnosis, so making the quantification not always accurate.

Next Generation Sequencing techniques Next Generation Sequencing, also known as
high-throughput sequencing, is the term used to describe a number of different modern
sequencing technologies that permit to sequence DNA and RNA much more quickly and
cheaply than the previously used Sanger sequencing (the principal method of DNA sequenc-
ing since its invention in the 1970s). NGS applied to Lymphoma samples means that it is
possible to universally amplify IGH genes belonging to the tumour cells and identifies all
clonal gene rearrangements at diagnosis, allowing monitoring of disease progression and
clonal evolution during therapy (Faham et al., 2012). However, NGS does require the avail-
ability of a sufficient amount and quality of tumour tissue to establish the tumour clonotype.
The general protocol implies a first fragmentation of the genomic strand under analysis (e.g.
VDJ gene segments), and the identification of the bases in each fragment by emitted signals
when the fragments are ligated against a template strand. The strong point of NGS is the
possibility to perform millions of these reactions in parallel, resulting in very high speed and
throughput at a reduced cost (Xuan et al., 2013). Next generation methods of DNA sequenc-
ing have three general steps:

1. Library preparation: libraries are created using random fragmentation of DNA gene
segments, followed by ligation with custom linkers

2. Cluster amplification: the library is loaded in a flow cell and it is amplified using clonal
amplification methods and PCR
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3. Sequencing: during a sequencing reaction, sequenced base pairs or "reads" are gener-
ated with a length around 100-250 bp reads. First of all, longer fragments are ligated
to generic adaptors and annealed to a slide using the adaptors. PCR is carried out to
amplify each read, creating a spot with many copies of the same read. They are then
separated into single strands to be sequenced. The slide is flooded with nucleotides
and DNA polymerase. These nucleotides are fluorescently labelled, with the colour
corresponding to the base. They also have a terminator, so that only one base is added
at a time. In each read location, there will be a fluorescent signal indicating the base
that has been added. The process is repeated, adding one nucleotide at a time. The flow
cell is imaged and the emission from each cluster is recorded. This cycle is repeated
n times to create read longer n bases. All of the sequence reads will be of the same
length since the read length depends on the number of cycles carried out

4. Data analysis: The result obtained from NGS experiments is a collection of reads of the
same length representing the VDJ rearrangements of the tumour clones and also of the
normal immune repertoire of normal lymphocytes (i.e. VDJ rearrangements is a phys-
iological event), divided on the basis of the samples analyzed (e.g. timeline of samples
from diagnosis to several time points). For MRD monitoring purpose, data analysis of
the reads need to respect some rules. Recognition of clones has to be based: (i) on mis-
matches or indels in sequences rearrangements (especially in the junction region that
is reach of N nucleotides); (ii) on clustering similar clones taking into consideration
the sequences with very small differences that can be derived from different clones,
especially if these differences occur in N-diversity regions (Giraud et al., 2014); (iii)
on quantification of each clone. Moreover, one of the most frequent problem after the
sequencing is the presence of incomplete short reads that did not contain the whole
rearrangement. Several short reads had to be assembled to obtain longer reads cover-
ing the whole rearrangement, requiring that the reads were sufficiently redundant. All
these features can not be managed with standard reads mapping tools because prin-
cipally they cannot deal with reads containing recombinations, somatic mutations or
large insertions and therefore a large amount of data is lost.

ASOq-PCR vs NGS: advantages and disadvantages ASOq-PCR and NGS are both pow-
erful methods for MRD monitoring and IGH rearrangements detection. However, recently,
several studies have suggested that the IGH monitoring through deep sequencing techniques
can produce not only comparable results to ASOq-PCR methods, but also might overcome
the classical technique in terms of feasibility and sensitivity (Kotrova et al., 2015; Kotrova
et al., 2017; Beccuti et al., 2017a; Ladetto et al., 2014).

1. A property of ASOq-PCR for the amplification of clonal rearrangement of IGH and
TCR genes is an accurate quantification of MRD due to the fact that these rearrange-
ments are a unique molecular signature which can be detected with a sensitivity of
0.01% to 0.001%. However, applicability of methods is limited to patients with IGH/TCR
genetic rearrangements with junction regions appropriate to reach a sufficient sensibil-
ity (Kotrova et al., 2015). NGS can overcome this limitation since it has the potentiality
to reach a major sensibility (until 1x10-6) and it allows the detection of clones at lower
concentrations than is possible with conventional techniques in the study of V(D)J
repertoires.

2. ASOq-PCR amplification requires considerable expertise and a labor intensive target
identification that can be further complicated by the loss of same target because of
clonal evolution. Moreover, careful consideration must be given to the presence of mi-
nor clones, which might be undetected at diagnosis and can that become predominant
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during the course of the disease, with the potential of false-negative results. Targeting
two or more different rearrangements has been recommended to avert this problem,
but multiple sensitive probes are not identifiable in approximately 30% of cases (Cam-
pana, 2010). Instead, NGS allows multiclone follow-up and the detection of emerging
subclones at diagnostic concentrations far below that of the main clone identified at
diagnosis, as well as a full repertoire analysis (Faham et al., 2012).

3. ASOq-PCR requires the development of reagents and assay conditions for each indi-
vidual patient, which is laborious and time-consuming (Campana, 2010). NGS can
overcome this disadvantage of PCR-based methods like need of specific probes be-
cause the sequencing assay uses a set of universal primers and it can assess multiple
clonal rearrangements in every patient without the need of individualised procedures
and further increase sensitivity, specificity, accuracy and reproducibility.

Several studies have been performed to prove the strength of NGS approach with respect
to ASOq-PCR (Ladetto et al., 2014; Kotrova et al., 2015). Ladetto et al., 2014 analyzed
378 samples from 55 patients with ALL, MCL or multiple myeloma (MM) with ASOq-PCR
and NGS for clonotype identification, clonotype identity and comparability of MRD results
between the two methods (Figure 2.6 and 2.7 from Ladetto et al., 2014). Figure 2.6 shows
a comparison of the feasibility of the two approaches (ASOq-PCR versus NGS). All 15-
ALL cases were evaluable by PCR and NGS. Among the 30 MCL cases, 22 patients were
evaluable by PCR and 26 cases could be effectively monitored by NGS, including four in
which ASOq-PCR failed. Instead for MM both PCR and NGS evaluated the same number of
samples; however two of MM cases that were not evaluable by ASOq-PCR due to sequencing
failure, then could be evaluated by NGS. Overall 70% of samples could be evaluated using
both methods and were employed for the following concordance analysis. The concordance
analysis demonstrated a significant level of concordance (R=0,791) between the ASOq-PCR
and NGS methods for MRD quantification indeed 79.6% of cases were classified as fully
concordance and 20.4% were scored as discordant (Ladetto et al., 2014)(Figure 2.7).

FIGURE 2.6: Rates of success of ASOq-PCR and NGS among ALL,
MCL and MM by patient. All 15-ALL patients were evaluable by PCR
and NGS (5th column). Among the 30 MCL cases, 22 patients were evalu-
able by PCR (3th column) and 26 cases could be effectively monitored by
NGS (4th column), including four in which ASOq-PCR failed. Instead for
MM both PCR and NGS evaluated the same number of samples (3th and 4th

column). (Figure from Ladetto et al., 2014)

Also Kotrova et al., 2015 prove NGS strength in MRD detection sequencing 210 samples
from 76 ALL-patients treated by Berlin-Frankfurt-Munster-based protocol and investigated
the changes in the treatment stratification (Kotrova et al., 2015). The results showed that
NGS provided a precise prediction of relapse and NGS risk group assignment was optimal.
Moreover, it has the potential to achieve a higher level of sensitivity (0.0001%) respect to
ASOq-PCR (0.001%) (Kotrova et al., 2015). In the context of Lymphomas, studies from
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FIGURE 2.7: Correlation analysis of ASOq-PCR and NGS results. The
regression curve showed a significant concordance (P<0.001, R=0,791).
Concordant cases are shown with a blue icon; arrows indicate cases in which
clonal evolution was documented. The majority of the discordance could be
attributed to minor quantitation differences related to low input cells (Figure

from Ladetto et al., 2014).

(Ladetto et al., 2014; Herrera et al., 2016) have demonstrated that NGS can identify a suit-
able immunoglobulin clone for subsequent MRD assessment in 83% to 94% of patients with
Diffuse Large B-cell Lymphoma (DLBCL) and 85% to 100% of patients with MCL (Ladetto
et al., 2014; Herrera et al., 2016).

2.4 Aim

In Mantle Cell Lymphoma the analysis of B cell clonality is used to monitor the Minimal
Residual Disease (MRD) response to long-lasting remission and improve patients outcome.
ASOq-PCR based method is a useful predictive technique for MRD detection in Lymphoma,
stratifying patients in prognostic groups based on relapse risk. This is crucial for an adapted
therapy, offering intensive treatment only to patients with suboptimal response. NGS meth-
ods are powerful tools for MRD monitoring and IGH rearrangements detection and can ex-
ceed some limitations of ASOq-PCR method thanks to NGS high sensitivity, specificity, ac-
curacy and reproducibility (Beccuti et al., 2017a). More importantly, NGS approach allows
multi-clone follow-up and the detection of emerging subclones at diagnostic concentrations
far below that of the main clones identified at diagnosis, as well as full repertoire analysis.
However, the huge data obtained from NGS must be analyzed with appropriate bioinfor-
matics algorithms able to manage complex data. Indeed, considering the total repertoire
of samples collected for each patient (e.g. diagnosis and follow-up samples) and analysed
through NGS, an average of 300.000 reads per sample is present and each obtained read could
possibly contain a putative clone. Therefore, a combinatorial research of all possible clones
contained in each read is necessary, considering all the recombinations of known VDJ gene
segments. Moreover, to identify the most significant tumour clones during the evolution of
MCL, the combinatorial research has to be applied for diagnosis sample and for all patient
samples collected during time. Thus, it is a long-time work and it is necessary to develop
efficient algorithms in term of accuracy, execution time and space complexity. The role of
this part of the thesis is to present an innovative bioinformatics pipeline for NGS-MRD
analysis that can be applied to MRD detection and tumour clones identification without
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the supporting ASOq-PCR technique. This pipeline includes an easy-to-use and reliable
bioinformatics tool, HashClone that provides a clonality assessment and the MRD detection
over time (Beccuti et al., 2017a; Romano et al., 2018). HashClone is based on a parallel
implementation of four C++ applications for the data processing based on the analysis of
all set of sample reads simultaneously. HashClone returns the corresponding set of tumour
clones aligned with respect to V-GENE, J-GENE, and D- GENE sequences and associated
with their frequency in all input samples. Moreover, the fifth application of the tool is ded-
icated to data visualisation with a graphic user interface that allows the inspection of the
tumour clones and their associated features in all the samples under study. HashClone is
based on an ad-hoc C++ hash table class implementation to optimise the trade-off between
the memory utilisation and the execution time. Finally, HashClone is integrated in a Docker
container, a platform that allows to easily install and run the application packaged with all its
dependencies and libraries.

In this thesis we demonstrated that HashClone has best performance to investigate clono-
types and clone abundance in Lymphoma samples respect to the standard technique (ASOq-
PCR). We applied HashClone in the context of a particular rare type of Lymphoma, Mantle
Cell Lymphoma, with the aims to detect the major B-cell tumour clone and monitor it over
time during clinical follow ups. We performed an entire clonality analysis with NGS tech-
nology in the experimental procedure and HashClone algorithm for data analysis.

We performed three types of experiments:

• Study 1: Simulated datasets to test HashClone performances

• Study 2: Clonality analysis of cohort 1 (i.e. 5 MCL patients)

• Study 3: Clonality analysis of cohort 2 (i.e. 23 MCL patients)

In Study 2 and 3, patients were investigated for IGH detection and MRD monitoring using a
new designed amplicon-based NGS approach and HashClone analysis. Both studies involved
patients enrolled in a phase III multicenter, randomized trial with Lenalidomide drug main-
tenance after induction regimen containing Rituximab followed by high dose chemotherapy
in adult patients with advanced MCL (Fondazione Italiana Linfomi).
Through Study 2, we tested the ability of HashClone to identify clones with the best perfor-
mance in sensibility, sensitivity and flexibility to manage different kinds of samples. More-
over, we showed that HashClone can overpass limitation of the current technique, ASOq-
PCR and the state-of-art tool, Vidjil (Beccuti et al., 2017a; Romano et al., 2018). Moreover,
through Study 3, we used HashClone to perform a clonality analysis of 23 patients without
ASOq-PCR counterpart and showed differences among patients in terms of characteristic
MRD clones and their trend during the entire therapy protocol.
HashClone pipeline has a big application potentiality not only with Lymphoma but also with
a multitude of cancer types since it can be putative apply to all kinds of samples in order to es-
tablish the clonal evolution. This part of the thesis was conducted at Department of Computer
Science, University of Torino, in collaboration with the Division of Hematology, Department
of Molecular Biotechnologies and Health Sciences, University of Torino, and Euroclonality
division of ESLHO (European Scientific foundation for Laboratory HematoOncology).

2.5 State-of-art of the computational methodologies for
MRD monitoring

NGS MRD approach might provide a full repertoire analysis through multi-clones detection
at diagnosis, and it gives the opportunity to monitor all the neoplastic clones at several follow
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ups. However, this issue requires suitable computational algorithm. Actually, the large vol-
ume of data, collected thanks to the advent of deep sequencing technologies, raises multiple
challenges in data storage and data analysis, to efficiently finding the best match between a
rearranged sequence and the V, D and J germlines. In literature, there are several tools as
JoinSolver (Souto-Carneiro et al., 2004), HighV-QUEST (Giudicelli, Chaume, and Lefranc,
2004), iHMMune-align (Gaëta et al., 2007), SoDA2 (Munshaw and Kepler, 2010) , VDJSeq-
Solver (Paciello et al., 2015), ARRest/Interrogate (Bystry et al., 2016) and ViDJil (Giraud et
al., 2014) currently implemented for marker screening and detection of IGH rearrangements
on a set of reads obtained from deep sequencing experiment of a single sample. All of them
try to assign a specific V, D and J alleles to a unique sequence, extracted in laboratory via
high-throughput sequencing experiments (Giraud et al., 2014).

• JOINSOLVER (Souto-Carneiro et al., 2004) is a web-based software program de-
veloped for human immunoglobulin V(D)J recombination analysis created by the Na-
tional Institutes of Health, National Institute of Arthritis and Musculosketelal and Skin
Diseases and the Center for Information Technology. JOINSOLVER was developed
to analyze the complementarity-determining region 3 (CDR3) of the immunoglobulin
genes in human B cells which includes the IGHD gene and its junction with the IGHV
and IGHJ genes. The length of the D segment in CDR3 is extremely short (3-5 nu-
cleotides) making the identification of this segment very difficult. JOINSOLVER uses
a consecutive matching approach to assign the D segments and to limit the portion of
the sequences that must be analyzed to identify V - J regions. JOINSOLVER interro-
gates the input sequence to find the beginning of the CDR3 region that is characterised
by conserved motif in most of the human V germline genes. When, the V segment is
defined, JOINSOLVER screens the sequence in order to identify the limits of the J seg-
ment. Once the CDR3 region is identified, V, J, and D assignment is done comparing
the sequences stored in IMGT reference database (Giudicelli, Chaume, and Lefranc,
2005).

• IMGT HighV-QUEST (Giudicelli, Chaume, and Lefranc, 2004) is a web portal sup-
ported by the international ImMunoGeneTics information system (IMGT) consortium
for the analysis of rearranged nucleotide sequences of the antigen receptors (immunoglob-
ulins or antibodies and T cell receptors) obtained from deep sequencing data. IMGT
HighV-QUEST is the high-throughput version of IMGT V-QUEST, it is able to ana-
lyze 500.000 nucleotide sequences per run. IMGT HighV-QUEST allows (i) the iden-
tification of the closest V, D and J genes and alleles (ii) the IMGT/JunctionAnalysis
(iii) the description of mutations, and (iv) the characterisation of IMGT clonotypes.
The IMGT HighV-QUEST standard output includes a summary file which contains
the V(D)J annotation, the score of the alignment, the V(D)J identity percentage and
the identity nuclotides for each sequence. Moreover, the aminoacid sequences, the
junction frame and potential insertions/deletions in the V(D)J region are reported. In
addition to the summary file, IMGT HighV-QUEST reports more detailed files with
the complete analysis of nucleotide sequences, aminoacids sequences, junction regions
and possible nucleotide mutations.

• iHMMune-align (Gaëta et al., 2007) is an alignment program that uses a Hidden
Markov Model (HMM) to model the processes involved in human IGH gene rear-
rangement and maturation. iHMMune-align was developed by the School of Biotech-
nology and Biomolecular Sciences, School of Computer Science and Engineering,
The University of New South Wales (Sydney, Australia). First of all, iHMMune-align
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identify the IGHV gene with a local alignment step of the sequence with the human
IGHV germline repertoire stored in IMGT. The pre-alignment of IGHV gene allows
iHMMune-align to calibrate the emission probabilities of the HMM through the esti-
mation of somatic mutation amount over the sequence. Initially, the HMM is developed
on rearranged sequences without mutations. The emission probabilities in the match
states are re-computed to model the process of somatic mutation. This probability is
adjusted to take into account the position of the putative mutations, the local sequence
context and the effect of antigen selection. The HMM is finally aligned with the re-
arranged, mutated sequence, using the Viterbi algorithm. The program outputs the
alignment corresponding to the optimal path along the HMM and reports the germline
genes.

• SoDA2 (Somatic Diversification Analysis 2) (Munshaw and Kepler, 2010) is a tool
based on a HMM that compute the posterior probabilities of candidate VDJ rear-
rangements of Ig genes and find those with the highest values among them. SoDA2
was developed by the Center for Computational Immunology, Computational Biology
and Bioinformatics Program and the Department of Biostatistics and Bioinformatics
(Durham,USA). SoDA2 aligns the target sequence with a consensus-like sequence of
the V families to determine if the input sequence is a heavy, kappa or lambda chain.
Then a pre-alignment step of V and J gene is performed in order to submit to the HMM
all V and J segments with highest likelihood alignments. The HMM is used to compute
the emission probability in 10 states (see Munshaw and Kepler, 2010 for more details
about the states). Then, the total probability of a proposed rearrangement is calculated
using the forward and backward algorithms. The gene segments leading to the highest
posterior probabilities are selected to identify the path with the highest posterior prob-
ability for each possible rearrangement through posterior Viterbi algorithm approach.
The final output is composed of the top rearrangement candidate (highest posterior
probability) and also rearrangements associated with high posterior probabilities in or-
der to have a complete picture of the input sequences.

• VDJSeq-Solver (Paciello et al., 2015) is a tool for the identification of clonal lympho-
cyte populations from paired-end RNA Sequencing reads. The tool was developed by
the Department of Control and Computer Engineering, Politecnico di Torino (Torino,
Italy). The tool detects the main clone characterising the tissue of interest by recogniz-
ing the most abundant V(D)J rearrangement in the sample. VDJSeq-Solver implement
a unique pipeline composed of several existing tools: TopHat, Bowtie, BEDTools,
BLAST alignment and Shrimp. VDJSeq-Solver performs a first alignment of the reads
to the reference genome using both Bowtie and Tophat. The output of Bowtie contains
the reads not mapped on the genome (VDJ unmapped); the output from Tophat con-
tains all reads mapped on the reference genome that become the input of BEDTools
to extract all reads mapped on the V,D,J gene segments (VDJ mapped). Then, VDJ
mapped and VDJ unmapped reads are aligned against V and J gene segments using
Blast in order to identify a VJ recombination (VDJ encompassing reads). Finally D
gene segments are identified using Shrimp tool. The output of VDJSeq-Solver repre-
sents the list of all identified clones.

• ARRest/Interrogate (Bystry et al., 2016) is a web-based interactive application for
Ig and TCR (T cell receptor) immunoprofiling. ARRest/Interrogate was developed
by CEITEC – Central European Institute of Technology, Masaryk University (Brno,
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Czech Republic). The application includes four functions: input processing, data se-
lection and filtering, comparative calculation and data visualisation. The first function
deals with V,D and J gene annotation through IMGT. Genes and alleles are combined
with the amino acid sequence of the junction regions to construct IMGT-like clono-
types. Data selection and filtering allow the user to select groups of samples depending
on several features. The third function (i.e. comparative calculation) can calculate and
visualise differences among samples comparing the features (single feature or entire
feature type) on the basis of their abundance across the samples. The visualisation
function allows to visualise the results using several type of graph as bubble charts,
heatmaps, bar graph, PCA scatterplots or statistical plots.

• Vidjil (Giraud et al., 2014) is an open-source platform for the analysis of high-throughput
sequencing data from lymphocytes, developed by the Bonsai bioinformatics team and
its collaborators. Vidjil processes NGS sequencing data in order to extract V(D)J junc-
tions and gather them into clones for quantification. To quantify the clonotype abun-
dances starting from a set of reads, the method proceeds through a first ultrafast pre-
diction of short string-sequence, overlapping the third complementarity-determining
region (CDR3) in order to contain the junction region and part of the V region and J
region of each rearrangement. Each clonotype abundance is then estimated using the
number or reads containing the same string-sequence. Finally it is selected one rep-
resentative sequence per clone. Vidjil is implemented in C++ open-source program
(Giraud et al., 2014).

2.6 HashClone pipeline

HashClone pipeline was published in 2017 on BMC Bioinformatics (Beccuti et al., 2017a).
The HashClone strategy is organised on three steps (Figure 2.8). The significant k-

mer identification (Step 1) and the Generation of read signatures (Step 2) implement an
alignment-free prediction method that identifies a set of putative tumour clones from pa-
tient’s samples; while in characterisation and evaluation of the cancer clones (Step 3) the
IGHV, IGHJ and IGHD identification is obtained via the alignment of rearrangements with
respect to the IMGT reference database (Giudicelli, Chaume, and Lefranc, 2005). A detailed
description of these three steps is now reported.

HashClone - Description of the strategy

Significant k-mer identification (Step 1) In this step the entire set of reads for each of
the n patient’s samples is scanned and a set of sub-strings of length k, namely k-mers, is
generated using a sliding window approach. For instance given the read ATCCCGTC the
following k-mers with k = 3 are generated: ATC, TCC, CCC, CCG, CGT and GTC.

Formally, given an alphabet L = {A, C, T, G} where the letters correspond with DNA-
bases we define ρ, namely read, as a string over L of arbitrary length m, and A∗k as the set
of strings of length k constructed from L. Then, Aρ

k = {αk
1, αk+1

2 , . . . , αm
m−k+1} is the set of

strings of length k generated from ρ using sliding window approach s.t. α
k+p−1
p is the sub-

string of ρ starting at position p, spanning k characters and ending at k + p− 1. We define
the function:

C : A∗k → Nn (2.1)
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FIGURE 2.8: HashClone pipeline. The first step regards the significant k-
mer identification considering all samples to be analyzed and generating the
set of k-mers; the second step is focused on the generation of read signatures
leading to the identification of the set of putative clones from patient’s sam-
ples; the third step is dedicated to the characterisation and evaluation of the

cancer clones.

s.t. for each k-mer returns a vector listing the total number of times this k-mer appears in
any patient’s sample (i.e. k-mer frequencies for patient’s samples). Thus, C(α)[i] = h with
1 ≤ i ≤ n, iff k-mer α is present in h reads of the sample i.

Then, a k-mer α is defined as significant iff ∃1 ≤ i, j ≤ n such that:
|log10(C(α)[i])− log10(C(α)[j])| ≥ τ, i f C(α)[i] 6= 0∧ C(α)[j] 6= 0

log10(C(α)[j]) ≥ τ, i f C(α)[i] = 0∧ C(α)[j] 6= 0
log10(C(α)[i]) ≥ τ, i f C(α)[i] 6= 0∧ C(α)[j] = 0

(2.2)

where τ is a user-defined parameter. The choice of an appropriated τ value can impact on
the capability of HashClone to identify clones. A detailed analysis about this aspect and the
set of τ value used in the Pilot1 and Pilot2 experiments are reported in the Supplementary
Material (6.1).
Moreover, we introduce the following function:

CH : A∗k → {TRUE,FALSE} (2.3)

that takes as input a k-mer α and returns TRUE iff α is a significant k-mer otherwise FALSE.
For instance, assuming n = 3, τ = 1, and C(ATC) = 〈1000, 2000, 25000〉 then CH(ATC)
returns TRUE because |log10(C(ATC)[1])− log10(C(ATC)[3])| ≥ 1.

Thus, CH function is used to derive the set of significant k-mers Ψ = {ψ1, . . . , ψt}.

Generation of read signatures (Step 2) This step takes as input the set Ψ of all the signif-
icant k-mers, and it generates the read signatures. Given a patient’s sample i, for each read
ρ all its k-mers are analyzed to derive the corresponding read signature. A k-mer α ∈ Aρ

k
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is selected iff α ∈ Ψ, then all the selected k-mers are combined to generate a read signature
according to their positions in ρ.

For instance, considering the read ATCCCGTC and assuming CCC, CCG, CGT the
only significant k-mers in the read the corresponding signature is CCGT. Defined Γi =
{γ1, . . . , γe} the set of read signatures obtained for the sample i, the function:

CS : Γi → N (2.4)

returns the total number of reads of sample i in which the signature γ appears (i.e. signature
frequency in patient’s sample i).

When the entire set of reads of sample i is scanned, the set of generated signatures Γi is
processed to identify those similar (with respect to a fixed number of mismatches, insertions
and deletions) using a Smith-Waterman algorithm. Practically in this correction step two
signatures γ, γ′ ∈ Γi are considered similar if their alignment score computed by Smith-
Waterman algorithm is greater than a specified threshold T. Hence, the signature γ with
lower frequency is removed from the set of signatures and its frequency is added to the
frequency of the other signature γ′, i.e. CS(γ′) = CS(γ) + CS(γ′)

Characterisation and evaluation of the cancer clones (Step 3) This step takes as input
the sets of signatures Γ1, . . . , Γn generated from each patient’s sample in the Step 2. We
define the set of putative cancer clones ∆ (initially empty), and the function:

CC : ∆→ Nn (2.5)

that for each clone δ returns a vector listing the total number of times this clone appears in
any patient’s sample.

∆ is incrementally updated processing the signatures into each set Γi (starting from Γ1
to Γn). For each signature γ ∈ Γi a similar putative cancer clone is searched in ∆. The
similarity between a clone and a signature is evaluated using the same strategy proposed for
the correction step. If a similar clone is not found then a new one identified by the signature
sequence γ is inserted in ∆ and its associated frequencies are defined as follows: let γ be a
signature in Γi and δ the corresponding new clone then ∀1 ≤ j ≤ n ∧ j 6= i ⇒ CC(δ)[j] =
0, while for j = i ⇒ CC(δ)[j] = CS(γ). Instead, if a similar clone is found then its
frequencies are updated as follows: let γ be a signature in Γi and the δ the corresponding
similar clone then CC(δ)[i] = CC(δ)[i] + CS(γ).

Finally, the putative cancer clones in ∆ are verified exploiting biological knowledge.
Indeed, all the identified putative clones are analyzed and evaluated using IMGT reference
database (http://www.imgt.org/download/GENE-DB/, Giudicelli, Chaume, and
Lefranc, 2005). For each clone, its best alignments with respect to V-GENE, J-GENE, and D-
GENE are reported and ranked according to a similarity measure (i.e. matched bases divided
matched and unmatched bases).

2.6.1 HashClone - Implementation details

HashClone strategy described above, has been implemented thanks to tool suite specifically
developed for this purpose. This tool suite, called HashClone, is composed of four C++
applications for data processing and one HTML5+Javascript application for the data visual-
isation. Moreover, VisualHashClone Java-GUI has been also developed to simplify the data
visualisation phase (Figure 2.8).

http://www.imgt.org/download/GENE-DB/
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Data processing applications are:

• Phase 1: HashCheckerFreq takes as input reads of a patient’s sample and returns the
corresponding set of k-mers associated with their frequency in the input reads. The k-
mers and their frequency are stored in RAM as an associative array achieved through
a C++ hash table class specifically implemented to optimize the trade-off between
the memory utilization and the execution time. Observe that this class implements
a separate chaining as collision resolution policy to deal with the case of different
k-mers having a similar hash value.

• Phase 2: CompCheckerKmer takes as input all the k-mers derived by all the patient’s
samples and their frequencies, and it analyses the k-mer frequencies in each patient’s
sample to derive the set Ψ of significant k-mers (as defined in Eq.2.2). This is achieved
by exploiting an associative array, implemented through a red-black tree data structure.
Hence, in this associative array the array keys are the k-mer sequences and the array
values the k-mer frequencies. In this application, a red-black tree data structure was
used (instead of hash table) because we are going to investigate the possibility of imple-
menting an efficient correction step (up to m mismatches) based on the characteristic
of this data structure.

• Phase 3: HashCheckerSignature takes as input the significant k-mers and the set of
reads of ith sample and returns the set of read signatures for this sample (i.e. Γi) with
their frequencies. The k-mers are stored using the implemented hash table class, while
the generated signatures are stored using red-black tree. A correction step identifying
similar signatures (with respect to mismatches, insertions and deletions) is performed
exploiting the implementation of the Smith-Waterman algorithm provided by SIMD
Smith-Waterman C++ library (Zhao et al., 2013). In our implementation the T thresh-
old previously introduced (in the Step 2, Generation of the read signature) to discrimi-
nate between similar reads is automatically derived as follows:

IF max(sizeγ1 , sizeγ2) ∗ 0.7 > min(sizeγ1 , sizeγ2)
THEN RETURN (max(sizeγ1 , sizeγ2) ∗M)
ELSE RETURN ((M ∗ 4/5−MM ∗ 2/50− IN ∗ 2/10) ∗max(sizeγ1 , sizeγ2) )

where sizeγ1 and sizeγ2 are the lengths of the two input signatures γ1, γ2, and M, MM
and IN are the match, mismatch and insertion/deletion scores defined in the Smith-
Waterman algorithm. Moreover, in our experiment we set M and MM score values
equal to 2, and IN score value equals to 3. Observe that if the length of the smaller read
is less than 70% of the length of the other then the reads γ1, γ2 are always considered
different.

• Phase 4: CompCheckerRead takes as input the sets of signatures for each patient’s
sample (i.e. Γ1, . . . , Γn), and it derives the set of putative cancer clone ∆. Similar
signatures among the samples are identified using the Smith-Waterman algorithm pro-
vided by SIMD Smith-Waterman C++ library. Then each identified putative tumour
clone is analyzed to identify its best alignment with respect to V-GENE, J-GENE, and
D-GENE. This task is performed thanks to a specifically developed aligner which uses
a modified version of Smith-Waterman algorithm to find the best alignment of such
clones with respect to the IMGT reference database. Since the experimental design
(2, Experimental materials and Methods) can include the amplification of IGH, IGK,
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IGL or TCR (alpha,beta,gamma,delta), CompCheckerRead uses for the alignment the
appropriate reference database on the basis of the users choice.

• Phase 5: VisualHashClone GUI

VisualHashClone graphic user interface allows the inspection of the tumour clones
and their associated features in all the samples under study. The GUI is organised in
four panels (Figure 2.9): the first panel contains 3D grid-plot orientated on three axes
where each dot represents a clone. This panel allows an interactive analysis of all fea-
tures of the clone: selecting a dot on the plot, the GUI highlights all the features (gene
names, homology values, frequency and sequence) of the specific clone in all panels.
The second panel contains a data-grid where the first column reports the clone identity
in terms of V, J and D gene names with their associated homology values; The third
panel contains a trend-plot that describes the clones frequencies and their trend in the
samples; the third panel allows to visualise the DNA sequence for each clone. The
sequence is characterised by three different colours to easily identify the V,J and D
nucleotides. The fourth panel allows to visualise the DNA sequence for each clone.
The sequence is characterised by three different colours to easily identify the V,J and
D nucleotides. The user can easily manipulate and query the data presented in the
data-grid. For instance all the clones can be ordered with respect to each column or set
of columns, and they can be filtered according to their frequencies or the occurrence of
a specific sub-sequence. The obtained graph can be also exported as a png file. Since
physicians are interested for medical purpose to particularly follow the clone with the
highest frequency at diagnosis (i.e. Major clone), another feature of VisualHashClone
allows to highlight with a different colour (violet) the Major clone both in the first and
in all the other panels. Thus, physicians are helped in the visualisation and tracking of
the clone.
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FIGURE 2.9: VisualHashClone graphic user interface. The first panel on
the top-left contains 3D grid-plot orientated on three axes where each dot
represents a clone. The second panel on the top-right contain a data-grid
where the first column reports the clone identity in terms of V, J and D gene
names with their associated homology values. The third panel on bottom-
right allows to visualise the trend-plot that describes the clones frequencies
and their trend in the samples. The fourth panel on bottom allows to visualise

the DNA sequence for each clone.

FIGURE 2.10: HashClone graphic user interface. First panel, 3D visuali-
sation for each V, D and J segments. In violet the major clone is highlighted.
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Figure 2.8 shows how the above described C++ applications are combined in a workflow
to implement HashClone strategy for B-cells clonality assessment and MRD monitoring from
collected samples of a single patient. Practically, HashCheckerFreq is executed on each
patient’s sample at a time to derive the k-mers and their associated frequencies. The collected
set of k-mers generated by all the patient’s samples are the input of CompCheckerKmer,
which computes the set of significant k-mers. Then, HashCheckerSignature is run on each
patient’s sample to obtain the set of read signatures from the set of significant k-mers. Then,
CompCheckerRead is executed to derive the putative clones from the read signatures obtained
by all patient’s samples. Finally, the VisualHashClone GUI is used for the visualisation of
the results.

Parallel implementation of HashClone HashClone is composed by four C++ applications
combined to implement B-cells clonality assessment in patient’s samples. In Romano et al.,
2018, we provided a parallel implementation of two out of five applications of HashClone
suite. The parallelization of the first, HashCheckerFreq, and the third, HashCheckerSignature
application allows to analyze more efficiently the samples from the same patient in parallel.

In the first phase of the pipeline, the application HashCheckerFreq is called on each pa-
tient’s sample at time to derive the k-mers and their associated frequencies. Since each run is
called separately on each patient’s sample then this task is independent and can be performed
in parallel (Figure 2.11). The parallelization of this phase allows us to derive the k-mers and
their frequencies simultaneously from all the samples under analysis. Since the extrapolation
of the k-mers proceed in parallel among all the samples, the next phase (implemented by
CompCheckerKmer) can start only when all the samples are processed.

Then, the collected set of k-mers generated by all the patient’s samples are the input of
CompCheckerKmer, which computes the set of significant k-mers in the second phase.

Afterwards, in the third phase, HashCheckerSignature takes as input the set of significant
k-mers and the set of the sample reads to obtain the set of read signatures from the set of
significant k-mers. During the third phase, this application runs separately on each patient’s
sample and for this reason, as in the first phase, it was parallelized to speed up the analysis of
the set of read signatures from the set of significant k-mers (Figure 2.11). Also in this case,
the next phase (implemented by CompCheckerRead) can start only when all the samples are
processed.

Finally, in the fourth phase CompCheckerRead is executed on the sets of signatures ob-
tained for each patient’s sample to derive the putative tumour clones and evaluate them using
the Smith-Waterman algorithm provided by SIMD Smith-Waterman C++ library (Zhao et al.,
2013).

Spike-in research module All analysis that use NGS technique platform for comparing
changes between two or more conditions often require the use of methods that allow the re-
searchers to consider the differences in DNA or RNA quantity in the samples under study.
For this reason, lab procedures involve the use of spike-in control sequences which are known
in sequences and quantity and used to calibrate measurements. A spike-in control has to be
added in an amount proportional to the number of cells for subsequent normalization of the
data, in order to allow accurate interpretations of whether there are increases or decreases in
signal at each region of the genome between samples. Since IG and MRD monitoring lab pro-
cedures imply the use of spike-in sequences, CompCheckerRead application of HashClone
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FIGURE 2.11: HashClone parallelized version. Phases with dots rect-
angles are parallelized (i.e. First phase: HashCheckerFreq; Third phase:

HashCheckerSignature). Phases with lines rectangles are in series.

algorithm was improved with a spike-in research function. If the user employed spike-in
sequences during the experimental protocol, he can easily upload as additional HashClone
input, a file in FASTA format containing the list of the spike-in sequences that are supposed
to be found in the samples (Figure 2.12).

Thus, CompCheckerRead application of HashClone algorithm exploits the Smith-Waterman
algorithm (Zhao et al., 2013) to check the presence of the spike-in among the clones se-
quences. In detail, spike-in sequences similar among the samples are identified through a
modified version of the Smith-Waterman algorithm to find the best alignment of such spike-in
sequences with respect to the clone sequences. If a clone is identified as a spike-in sequence
(i.e. the minimum alignemnt score is equal to 40 bases), CompCheckerRead memorises this
information and reporting the name, the sequence and the frequency in each sample of the
spike-in in the output file.

FIGURE 2.12: Example of file in FASTA format. Example of file in
FASTA format containing three sequences. For each sequence, the header

is identified by ">" symbol, the second line represents the sequence.

Strategy for clonality analysis, major B-cell clone detection, Minimal Residual Disease
monitoring. HashClone output displays the entire list of the identified B-cell clones asso-
ciated with the frequency value, the IGH rearrangement (in terms of VDJ genes and alleles),
and homology identity values. Among all the reported B-cell clones, it is necessary to define
the predominant clones that should be followed for MRD purpose (i.e. major clone). For this
reason, we designed a filtered strategy composed of three phases.
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In the Filter-A we selected a set of predominant clones based on the frequency values ob-
served in the diagnostic samples. As reported by Faham and colleagues in Faham et al., 2012
any clonotype associated with low frequency (< 5%) value was prudentially not considered
representative of the disease.
In the Filter-B we considered the identity values associated with each B-cell clones: only the
clones associated with more than 80% of homology in each IGHV, IGHD, and IGHJ genes
are considered.
Finally, for the major clone identification (i.e. Major clone selection phase) we refer to crite-
ria reported by Faham et al., 2012 and Ladetto et al., 2014. In detail, a clone can be declared
as major in NGS sequencing analysis if at least one segment of V,D and J genes is above
80% of homology and if its composing number of reads represents at least ±5% of the to-
tal number of reads composing the entire patients clonotypes. Thus, we consider the clones
that passed firstly Filter-A then Filter-B and we check the presence of a clone respecting the
above criteria. If none of these clones is suitable, thus we check the clonotypes of passed only
Filter-A. If no major clone is founded inspecting both the filters, thus we declare the patient
as polyclonal (i.e. few clones with low frequency percentage and no major clone identified).
To make the MRD quantifications comparable between the two techniques, we set up a pro-
portion between the total reads number of the major MCL clone at diagnosis (HashClone)
and the ASOq-PCR value as shown in equation 2.6 where SMRD is the MRD value of the
sample (e.g. FD1/FA1) to calculate, Sreads is the number of reads derived from HashClone
of that sample, DIAqPCR is the qPCR value at Diagnosis of the patient and DIAreads is the
number of reads from HashClone of Diagnosis sample.

SMRD = (Sreads ∗ DIAASO−qPCR)/DIAreads (2.6)

Docker Container We included HashClone in the Docker container that is an open plat-
form for developing, shipping, and running applications. Docker provides the ability to pack-
age and run an application in a loosely isolated environment called a container. A Docker
container is a lightweight, stand-alone, executable package of a piece of software that in-
cludes everything needed to run a specific software: code, runtime, system tools, system
libraries, settings. The container runs completely isolated from the host environment. The
advantage of using Docker images is that the whole environment is fixed, the images are
available in the Docker repository, and the identity of the images is the only element needed
to reproduce the results.

The execution of the Docker images, implementing HashClone, is done by Docker4seq
(Beccuti et al., 2017b), a R package which contains a collection of functions to execute
NGS computing demanding applications and provides the connection between users and
docker containers. The Docker is available at https://www.docker.com/. Then,
HashClone can be run using the R enviroment, by installing previously devtools package and
Docker4seq. HashClone command line run with Docker platform requires group, data.folder,
k-mer, hash_size, collision_list_size, threshold, type and input.files parameters.

• group: setted as "docker";

• data.folder: is the folder where the output will be saved;

• k-mer: is the size of k-mers encoded in the hash table. This must be a value between 1
and 32;

https://www.docker.com/
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• hash_size: is a (prime) number indicating the size of the hash table. Increasing this
value reduces the execution time but increases the memory utilization. Ideally, this
value should be close to the number of different k-mers stored in the hash table;

• collision_list_size: is the maximum number of different k-mers that the tool might
need to store in the hash table. This parameter is required to optimize the memory
utilization;

• threshold (tau): this value is the threshold used to select significant k-mers. We suggest
to set tau equal to 1;

• types : a character string indicating which type of immunoglobulin (IGH, IGK, IGL) or
T cell receptor chain (alpha,beta,gamma,delta) were amplified during the experimental
procedure.

• spike-in : a character string indicating the path of the spike-in file in FASTA format
otherwise set this parameter as ’null’

• input.files: the list of input patient files (FASTQ format).
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2.7 Application of HashClone to MCL patients to determine
Minimal Residual Disease and major clone detection

We applied HashClone in the context of Mantle Cell Lymphoma, with the aims to detect the
major clone and monitor it over time during clinical follow ups. We performed an entire clon-
ality analysis with NGS technology in the experimental procedure and HashClone algorithm
for data analysis.

We performed three types of studies:

1. Study 1: Simulated datasets to test HashClone performances

2. Study 2: Clonality analysis of cohort 1 (i.e. 5 MCL patients)

3. Study 3: Clonality analysis of cohort 2 (i.e. 23 MCL patients)

In the first study, we used three simulated dataset to test the efficiency and the computational
performance of HashClone. In the second and third studies, a total of 28 MCL patients
were investigated for IGH detection and MRD monitoring using a new designed amplicon-
based NGS approach and HashClone analysis. Both studies involved patients enrolled in
Fondazione Italiana Linfomi in a phase III multicenter, randomized trial with maintenance
using Lenalidomide drug, after induction regimen containing Rituximab, followed by high
dose chemotherapy.

2.7.1 Study 1: Simulated dasasets to test HashClone performance

In the first study, we used three simulated datasets (Jackson et al., 2010) to test HashClone
performance in execution time. The first, StandfordS_22 dataset, was taken from Jackson
et al., 2010 paper and was used to test the performance of HashClone in terms of the IGHV,
IGHD and IGHJ assignments. While, the second and third were synthetic in-house dataset
created from the random concatenation of real patients samples and were used to compare
the performance of the parallelized version of HashClone (Figure 2.11) versus the original
one (Figure 2.8).

Performance on IGH alignment using StandfordS_22 dataset We tested the perfor-
mance of the IGH alignment implemented in HashClone using the Stanford_S22 dataset.
In the paper of Jackson et al., 2010 the authors evaluated the performance of seven algo-
rithms handling the thousands of VDJ rearrangements in Stanford_S22 dataset to identify
the IGHV, IGHD and IGHJ assignments and compare these back to the known genes from
the inferred genotype for the subject. The thousands of VDJ rearrangements in this dataset
allow the individual genotype at the IGH variable gene loci to be inferred.

We modified the Stanford_S22 dataset in order to test the performance of HashClone in
terms of the IGHV, IGHD and IGHJ assignments. HashClone identifies 111 clones out of
500 having the percentage of alignment major than 90% for IGHV, IGHJ and IGHD. In the
following are reported the data grouped by gene:

IGHV gene and allele correct: 99
IGHV gene correct but different allelic variant: 12
IGHV different gene not in the genotype: 0

IGHJ gene and allele correct: 107
IGHJ gene correct but a different allelic variant: 4
IGHJ different gene not in the genotype: 0
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IGHD gene and allele correct: 105
IGHD gene correct but a different allelic variant: 4
IGHD different gene not in the genotype: 2

Figure 2.13 shown the update version of Table 1 of the Jackson et al paper that reports the
percentage of alignments from the Stanford_S22 dataset that were made, by various utilities,
to IGHV, IGHD and IGHJ genes and allelic variants absent from the S22 genotype

Utility  IGHV (%)a  IGHD (%)a  IGHJ (%)a  Total (%)b 

iHMMune-align  3.21 (0.21)  2.21 (1.27)  1.95 (0.0)  7.11 

IMGT/VQ+JA  4.90 (0.22)  5.09 (2.81)  1.55 (0.0)  10.87 

IgBLAST  3.84 (0.75)  3.96 (2.16)  0.85 (0.0)  8.39 

Ab-origin  4.06 (0.22)  7.94 (5.53)  2.53 (0.0)  13.74 

JOINSOLVER  6.17 (0.86)  6.93 (4.92)  1.24 (0.0)  7.89 

SoDA  2.68 (0.29)  6.82 (6.63)  1.50 (0.0)  10.37 

VDJSolver  6.87 (0.48)  1.96 (0.79)  0.71 (0.0)  9.09 

HashClone 0 (10.8) 1.8 (5.4) 0 (3.6) 0

FIGURE 2.13: Performance of the algorithms in IGH detection. aErrors
involving an incorrect gene, rather than an incorrect allelic variant, are shown
in brackets. b Percentage of sequences that include an incorrect gene or allele

for either the V, D or J.
.

The overall error for HashClone is equal to 1.8% that is the lowest value compared to the
overall error percentages reported by Jackson, ranging between 7.1% (using iHMMune-align
algorithm) and 13.7% (using Ab-origin algorithm).

Performance on in-house simulated datasets We created two datasets, Dataset 1 and 2,
starting from the concatenation of diagnosis and follow up samples of four MCL patients1.
Each MCL patient was composed of one diagnosis and one follow up sample. Diagnosis of
Dataset1 was generated from the concatenation of the four MCL diagnostic samples; the fol-
low up time point (FU1) derived from the concatenation of the four FUs samples. Dataset2
contained one diagnosis (DIA) and three follow ups time points (FU1,FU2,FU3). To im-
prove the complexity of the samples and the total number of reads to analyze through the two
pipelines, we created the Dataset2 concatenating the samples of Dataset1. The diagnosis of
Dataset2 was composed through the concatenation of the diagnostic time point of Dataset1
two times (i.e. 21.746.096 reads ∗2 = 43.492.192). The follow ups (FU1,FU2,FU3) derived
from the two- three- and four-time concatenation of follow up sample of Dataset1, respec-
tively (e.g. 22.456.848 reads of Dataset1-FU1 ∗4 = 89.827.392). Table 2.2 reports the
number of reads contained in each sample of Dataset1 and Dataset2 (Romano et al., 2018).

Execution time comparison: HashClone parallelized version vs HashClone original ver-
sion

We performed the analysis with HashClone parallelized (Figure 2.11) and HashClone
original version (Figure 2.8) of Dataset1 and Dataset2 and we retained the execution time
in both versions. Since this analysis is performed only to analyze HashClone parallelized

1These patients were not part of the Study 2 and 3 but belong to previous experiment
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TABLE 2.2: Number of reads for Dataset1 and Dataset2

Number of reads

Dataset1 Dataset2

Diagnosis 21,746,096 43,492,192

FU1 22,456,848 44,913,696

FU2 / 67,370,544

FU3 / 89,827,392

Average 22,101,472 61,400,956

execution time and it is based on a random concatenation of the sequences of the MCL
patients we did not consider and report clonality assessment.

For Dataset1, HashClone parallelized and HashClone performed a 2-samples analysis
(one diagnosis and one follow up), instead for Dataset2 a 4-samples analysis (one diagnosis
and three follow ups samples). HashClone parallelized and HashClone were executed on a
server with 2 12-core AMD Opteron 6176 SE (48 Hyper-Threads) 2.3GHz, with 12 MiB L3
cache and 512 GiB of main memory, running Linux x86_64. For Dataset1 and Dataset2 two
and four computational cores were used, respectively.

We investigated the time necessary to the first phase (Figure 2.8 and 2.11, red boxes),
implemented by HashCheckerFreq to create the hash table for each sample, and the third
phase (Figure 2.8 and 2.11, blue boxes), implemented by HashCheckerSignature to find the
overlapping between the significant k-mers lists and the sample reads, in HashClone paral-
lelized and HashClone. We reported the maximum time for the version parallelized and the
sum of the samples times for the original version. Indeed, since HashClone parallelized first
phase proceeds in parallel, its total time corresponds to the needed time to create the hash
table among all the samples. Instead, for the first version it is given by the sum of the times
of each sample (e.g. four samples = four times), because in this version the analysis is done
one by one.

In Dataset1, the first phase was performed by HashClone parallelized in 10 minutes
(37,5% time less) with respect to 16 minutes of HashClone. Moreover, the third phase re-
quested 28 minutes for HashClone parallelized (46% time less) respect to 52 minutes of
HashClone (Table 2.3).
In Dataset2,HashClone parallelized performed the first phase in 34 minutes (60% time less)
and the third phase in 186 minutes (57% time less). Instead, HashClone required 86 minutes
and 435 minutes for the first and third phase,respectively (Table 2.3).
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TABLE 2.3: Execution time of the first and third phase by HashClone
parallelized and HashClone original

Execution Times
HashClone parallelized HashClone original
Dataset1 Dataset2 Dataset1 Dataset2

First phase 10 min 34 min 16 min 86 min
Second phase 70min 107min 51min 105min

Third phase 28 min 186 min 52 min 435 min
Fourth phase 62min 727min 62min 732min

Table 2.4 reports the total execution times for both datasets of the complete HashClone
parallelized and HashClone analysis. In Dataset1, HashClone parallelized was 5% more
efficient than HashClone. This is probably influenced by the low numbers and the small
differences between the input reads of the two samples (average per sample: 22,101,472
reads;HashClone parallelized: 2 hours 50 minutes ; HashClone: 3 hours). In Dataset2,
we performed a 4-samples run and we increased the number of reads (average per sample:
61,400,956 reads). In this case HashClone parallelized was more effiecient in terms of ex-
ecution time of 23% (HashClone parallelized: 17 hours; HashClone: 22 hours) (Romano
et al., 2018).

TABLE 2.4: Total execution time comparison: HashClone parallelized vs
HashClone original

Total execution time

HashClone parallelized HashClone original

Dataset1 2h 50min 3h

Dataset2 17h 22h

The maximum theoretical speedup (S) can be evaluated with Amdahl’s law (Amdahl,
1967) that means:

S(s) =
1

(1− p) + p
s

(2.7)

where s is the theoretical maximum earnings using 4 processors; p is the proportion of
execution time of the part that can be parallelized.
Considering Dataset2, p is equal to 0.38 and s is equal to 4, then S results in 1.40. This is due
to the second and fourth phases that are still sequential and their execution times prevail on
the parallelized phases. Despite the maximum earnings is small in terms of scalability, it is
still good for the absolute execution times of HashClone parallelized (Romano et al., 2018).

In the first dataset (Dataset1),HashClone parallelized performed slightly better (5% time
less) than HashClone original version (2 hours 50 minutes vs 3 hours), probably due to the
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small differences between the two samples. Indeed, in Dataset2 we increased the complexity
of the data and HashClone parallelized was more efficient of 23% in terms of execution time
since it performed the analysis in 17 hours respect to HashClone, which finished in 22 hours
(Romano et al., 2018).

2.7.2 Study 2: Clonality analysis of cohort 1

Patients data collection Five MCL patients (PatA-E) were investigated for IGH detection
and MRD monitoring using a new designed amplicon-based NGS approach. Two Pilot stud-
ies, namely Pilot1 and Pilot2 were performed, details about the sample are summarized in
Figure 2.14. Patients were enrolled in MCL0208 protocol of FIL that consists of a phase III
multicenter, open-label, randomized, controlled study to determine the efficacy and safety
of Lenalidomide drug as maintenance therapy (i.e. Maintenance 1 and 2) in patients with
MCL in complete or partial remission after first line intensified and high-dose chemotherapy
additioned with Rituximab (i.e. Induction phase) and followed by ASCT (i.e. Consolidation
therapy)(Figure 2.14). In Pilot1 the five diagnostic samples and two (for PatD) and three (for
PatA, B, C, and E) artificial dilution samples were analyzed. These samples were prepared
diluting the diagnostic material in a pooled DNA derived from healthy subjects (“buffycoat”);
the same buffycoat was included in the experiment, as polyclonal control. The 19 libraries
were prepared using 500 ng of gDNA and sequenced using Illumina V2 kit chemistry 500
cycles PE on MiSeq platform as described in Supplementary Material (6.1). The average
number of reads in each sample is equal to 481,289 (range: from 328,950 to 1,042,206
reads). The buffycoat sample contains 301,772 reads and the negative control (water) con-
tains 466,348 reads. The quality check of the runs was performed using FastQC software
(Patel and Jain, 2012) among the features considered the base quality (average value equals
to 36) and the N content passed the check.

Pilot2 was composed of three diagnostic samples and three (PatA) or four (PatB and
E) real FU samples. The first follow ups (FU1) were collected after three months, during
the induction therapy (i.e. first treatment given for MCL); the second follow up (FU2) after
four months from induction therapy when patients underwent to consolidation therapy (e.g.
radiation therapy or stem cell transplant)(i.e. Pat A and B) or post Autologous Stem Cell
Transplantation (i.e. ASCT, Pat E). The third followup (FU3) were collected Post ASCT for
patient A and at Maintenance 1 (i.e. Pat B and E). Finally, last follow up (FU4) was collected
after 6 months from maintenance 1 only for patients B and E. To test the efficiency of our
wet lab procedures, 14 libraries were prepared reducing the gDNA input to 100 ng each.
The average number of reads is equal to 316,789 (range: from 6,554 to 1,509,538 reads),
while the buffycoat sample contains 478 reads and the negative sample (HELA cell line not
carrying IGH rearrangements) contains 788 reads. As performed in Pilot1, we checked the
quality of the data by FastQC software, but both base sequence quality (average value equals
to 20) and N content features failed the check. For the whole experimental methodology
refers to the Additional Figure 6.6, Supplementary Materials (6).
Five and three runs of HashClone were executed, one for each patient of Pilot1 and Pilot2,
respectively. Each run simultaneously analyzed the diagnostic sample and all artificial or
clinical follow ups. In the next paragraphs, clonotypes identification, major B-cell clone
selection and MRD monitoring will be reported for Pilot1 and Pilot2.

Clonality The set of B-cell clones obtained by HashClone on both the Pilot1 and Pilot2
are processed following the Filtering strategy presented in section 2.6.1. In the diagnostic
samples of the five patients of Pilot1, HashClone identified an average value of 1547 clono-
types (min 870, PatD; max 2149, PatC). The application of the Filter-A selected on average
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(500ng)

(100ng)

FIGURE 2.14: Timeline of Study 2.A Dilution gradient for samples of Pi-
lot1. The five diagnostic samples (DIA) and two (for PatD) and three (for
PatA, B, C, and E) artificial dilution samples (FU1-FU3) were analyzed. B
The time line for patients of Pilot2 where three diagnostic samples (DIA)
and three (PatA) or four (PatB and E) real follow-up (FU1-FU4) samples

were analyzed
.

38 clones. Indeed, the threshold of 5% reported by Faham et al., 2012 and collegues corre-
sponds in our experiments to 100 reads. Thus only the clones associated with a frequency
value major than 100 in the diagnostic sample were considered. From the Filter-A, on av-
erage 22 B-cell clones were retained in the analysis after the Filter-B. The average number
of reads supporting these selected clonotypes is 100,929. The Major clone selection phase
is not related to the two previous filters as explained in section 2.6.1. Indeed, for all the 5
patients a major clone is still selected and overcame the criteria of at least one gene segment
homology >80% and the composing percentage of reads > ±5% of the total (Table 2.5).
In Pilot2 HashClone identifies an average value of 96 clonotypes (min 77, PatE; max 278,
PatB). The Filter-A filters out around 18% of the clonotypes: on average 18 clones were
passed to the Filter-B. On average 6 clones passed the Filter-B, the average number of reads
supporting the selected clonotype is 141,570 (Table 2.5). Major clone selection phase se-
lected one clone for each patient (following the rule presented in section 2.6.1). Indeed, PatA
presented one major clone with 97% of homology for V segment and frequency of 99.414
reads (92% out of 107.825 total reads), while PatB showed V and D homology of 93% and
80%, respectively and 169.175 reads (73% out of 231.281 total reads) . Finally, PatE showed
99% of V homology and 85.027 reads (99% out of 85.603 total reads) in the major clone
(Additional Figure 6.2).

Major B-cell clone detection In Pilot1 each of the five diagnostic samples clearly dis-
played one major clone with an average frequency of 93% (min 82%, PatB; max 98% PatA);
while the other identified B-cell rearrangements showed an average frequency value equals
to 7% (min 2% PatA; max 18% PatB), see Figure 2.15 and Additional Figure 6.2 in Supple-
mentary Materials (6). In Pilot2 the predominant clone is easily identified since its average
frequency is 88% (min 73%, PatB; max 99% PatE) (Figure 2.16) while the other B-cell
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TABLE 2.5: Clonotypes identified with HashClone analysis and IMGT
validation. For each patient, the total number of identified clonotypes (third
column) is reported and the average value across all patients. For each of
these set, clonotypes with a frequency greater than 100 were selected and
passed the Filter-A (fourth column). Then from the Filter-A, clonotypes
with a VDJ homology greater than 80% were selected and passed the Filter-
B (fifth column). Finally, the last column reports the number of major clone

identified for each patient following the rules described in 2.6.1.

Filter-A Filter-B Major clone

Study Patient Clonotype Clonotype with Clonotype with VDJ selection
(only diagnosis samples) identified frequency > 100 homology > 80%

A 1616 12 7
B 1703 59 33
C 2149 72 44
D 870 10 5
E 1398 35 21

Pi
lo

t1

Average value 1547 38 22 1
A 96 18 6
B 278 72 11
E 77 5 0Pi

lo
t2

Average value 150 32 6 1

clones showed an average frequency value of 12%. See Additional Figure 6.2 in Supple-
mentary Materials (6) for more details. For each patient the predominant clone identified
by HashClone was compared with the IGH monoclonal rearrangement identified by Sanger
sequencing, in terms of IGHV, IGHD and IGHJ nucleotide homology, using BLASTn al-
gorithm http://blast.ncbi.nlm.nih.gov. Four out of five diagnostic samples of
Pilot1 (PatA, C, D and E) showed exactly the same IGH rearrangement, in terms of IGH gene
annotation and 100% nucleotide homology with respect to the Sanger sequence. Also Patient
B showed the same rearrangement excepted for three nucleotide mismatches. On the other
hand, a lower nucleotide homology (ranging from 44% to 66%) was noticed in Pilot2, due to
the high number of unknown base calls (N) introduced by sequencing in the variable regions.
Nevertheless, HashClone was still be able to assign the correct IGHV and IGHJ annotations,
perfectly comparable with the Sanger results. These results are reported in Table 2.6.

http://blast.ncbi.nlm.nih.gov
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TABLE 2.6: HashClone and Sanger
Sequence comparison. This table
reports the comparison in terms of
IGHV, IGHD, and IGHJ nucleotide
homology between the predominant
clone identified by HashClone and the
IGH monoclonal rearrangement iden-
tified by Sanger sequencing for each
patient. Last column reports the ho-
mology between the two sequences as
difference in nucleotide content and
percentage. Red nucleotides in the
sequences are those who differ be-
tween two sequences. N: unknown

base calls.
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FIGURE 2.15: Clonality analysis in MCL patients of Pilot1. Pie plots
showing the distribution of the frequency percentage associated with the B-
cell clones passed the filter strategy in the five diagnostic samples of Pilot1.
Into each pie plots it is reported the frequency percentages associated with
the major clone. The histogram reports the number of B-cell clones passed

the filter strategy in each patient.

FIGURE 2.16: Clonality analysis in MCL patients of Pilot2. Pie plots
show the distribution of the frequency percentage associated with the B-cell

clones passed the filter strategy in the three diagnostic samples of Pilot2.

Minimal residual disease monitoring To monitor the MRD, HashClone tracks the clono-
types evolutions analyzing simultaneously the data from the diagnostic and the serial dilu-
tions (Pilot1) or FU samples (Pilot2). Therefore, we compared the HashClone performance
with the standardized results of the classical ASO q-PCR.

To make the MRD quantifications comparable between the two approaches, we set up
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a proportion between the total reads number of the major MCL clone at diagnosis (Hash-
Clone) and the ASO q-PCR value. In details, patients A, C, D, and E had a high tumour
infiltration (ASO q-PCR value of 1E+00 according to EuroMRD guidelines) (Velden et al.,
2007); while patient B started from an ASO q-PCR value of 1E− 01, according to a lower
tumour infiltration. These data are confirmed by a 2.5% CD5+/CD19+ MCL cells rate by
flow cytometry.

HashClone was able to perfectly extract the MRD trend kinetics in the dilution/FU sam-
ples of the five MCL patients in both Pilot studies. Figure 2.17 reports the trends of PatB
and Pat E (Pilot1) and PatA and PatE (Pilot2). Overall, the correlation analysis showed a
high concordance between ASO q-PCR and the NGS technology (R2=0.86), see Figure 4
Panel A. Indeed 30 out of 33 points are concordant: in Pilot1 HashClone overestimates the
frequency value in one case point; in Pilot2 ASO q-PCR overestimates the frequency value
in two cases.

FIGURE 2.17: MRD trend comparison. MRD trend obtained from ASO
q-PCR (blue line) and HashClone (red line) of Patient B and E of Pilot1 and

patient A and E of Pilot2.

Comparison of Hashclone accuracy with respect to the state-of-art algorithm: ViDJil
We compared the accuracy of HashClone with respect to ViDJil algorithm. At the best of our
knowledge, ViDJil is the only tool currently able to analyze the high-throughput sequencing
data from lymphocytes, to extract IGHV, IGHD, and IGHJ junctions and to gather them into
clones for quantification. ViDJil quantifies the clonotype abundances through a first ultra-
fast prediction of putative rearrangements by a seed-based heuristic analysis and it outputs
a window overlapping the CDR3 with the IMGT reference database. The putative clone se-
quence identified is further processed to obtain its full IGHV, IGHD, and IGHJ segmentation.
Moreover, ViDJil can carry out the MRD analysis thanks to a web multi-sample application
able to track selected clones in the diagnostic samples through different runs on different FU
samples.

The strategy used to analyze the ViDJil results is composed of two phases: the Phase-A
is the same implemented for HashClone, in the Phase-B since ViDJil associates the clones
with the VDJ genes and alleles without reporting the homology values, we consider only the
clones associated with one IGH rearrangement.
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The set of B-cell clones obtained by ViDJil on both the Pilot1 and Pilot2 and those
filtered by Phase-A and Phase-B are reported inAdditional Figure 6.3 in Supplementary Ma-
terials (6). More details about the number of reads associated with each clone are reported
in Additional Figure 6.4 in Supplementary Materials (6). In Pilot1 ViDJil is able to detect
the major B-cell clone in all patients, the CDR3 regions detected in patients A, C, D and E
have 100% homology with respect to the Sanger sequence, while patient B has an homology
value equal to 93%, as reveled by HashClone. In Pilot2 the elevated number of N base calls
masking the CDR3 regions did not allow ViDJil to correctly annotate the IGHV, IGHD, and
IGHJ in any patient, so that the nucleotide homology value dropped to 0 with respect to the
Sanger sequence, see Additional Figure 6.5 in Supplementary Materials (6). In contrast, as
described above, the HashClone performance was not hampered by the number of N base
calls in the Pilot2.

We also compared the MRD quantification of all samples of both Pilot1 and Pilot2 be-
tween ViDJil and the ASO q-PCR data. Figure 2.18 reports the correlation analysis of all
samples between HashClone and the ASO q-PCR data (Panel A) and between ViDJil and
the ASO q-PCR data (Panel B). It is worthwhile to note that the concordance between Hash-
Clone and ASO q-PCR is higher than the concordance between ViDJil and ASO q-PCR, 86%
versus 80% respectively.

FIGURE 2.18: Correlation analysis. Scatter plot of the correlation analysis
between HashClone and the ASO q-PCR data (Panel A) and between ViDJil
and the ASO q-PCR data (Panel B). In Panel A, three discordances (red dots)
are detected, one of them is quantifiable only by HashClone. While in Panel
B there are four samples quantifiable only by ASO q-PCR. NEG, Negative;

PNQ, Positive Not Quantifiable.
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Discussion HashClone is an easy-to-use and reliable bioinformatics suite that provides B-
cells clonality assessment and IGH-based MRD monitoring over time. To test its perfor-
mances we analyzed two NGS experiments targeting the IGH rearrangements in samples
obtained from 5 patients affected by MCL. The comparison was done on two MCL pilot
studies generated using either 500 ng (Pilot1) or 100 ng (Pilot2) of gDNA as input in library
preparation.

The two experimental protocols considered reflect different clinical/biological situations.
Pilot1 reproduces in the NGS setting the optimal requirements of a classical IGH screening
experiment and a dilution curve. On the other hand Pilot2 investigates the effects of a de-
crease in DNA quantity, mimicking a real-life situation that typically occurs in the routine of
haematological laboratories. The restricted DNA availability can be due to the low cellularity
of the biological samples (i.e low disease infiltration or material lack) or to specific sample
conditions (i.e DNA extracted from formalin fixed paraffin embedded-FFPE- samples, or
cell-free DNA from serum, plasma, or urine).

Our NGS experiments showed that, even though the mean number of reads obtained from
the two studies was similar (481,298 Pilot1 and 316,789 Pilot2), the base sequence quality
was poorer in the Pilot2. This is reported by the base N content (FastQC check failed for
the Pilot2) and the base sequence quality (mean value of 36 in Pilot1 compared to a mean
value of 20 in Pilot2). The limited quality of the Pilot2 data is reflected on a lower number
of detected clones that passed the filtering phases (i.e. Phase A, B and C, Table 2.5) and in a
very low homology level of the CDR3 regions with respect to the Sanger sequence (average
value of 99% in Pilot1 with respect to an average value of 58% in Pilot2, p-value=0.02,
computed by Student’s t-test) (Table 2.6).

To assess the accuracy of HashClone to identify the major B-cell clone and to monitor the
MRD we compared its performance with respect to the results obtained by state-of-art tool,
ViDJil (Giraud et al., 2014). HashClone and ViDJil correctly identified the major clones in
Pilot1. However, in Pilot2 the elevate number of N base calls masked the IGHD region and
reduced the nucleotide homology, leading to a decrease in the efficiency of ViDJil. In con-
trast, HashClone was able to identify the major clone in all the diagnostic samples. More-
over, in MRD monitoring the performance of HashClone outperformed the ViDJil results
(concordance percentage: 86% HashClone, 80% ViDJil) in the comparison with respect to
the gold-standard technique, ASO q-PCR data.
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2.7.3 Study 3: Clonality analysis of cohort 2

Patients data collection In this third study, 23 MCL patients (i.e. cohort 2) were inves-
tigated for IGH detection and MRD monitoring using the amplicon-based NGS approach
outlined in the Additional Figure 6.6 in Supplementary Materials (6). Patients of cohort 2
were enrolled in the same protocol of cohort 1 (i.e. MCL0208 protocol of FIL) but with a
longer period of maintenance therapy. FD1/FA1 samples were taken during the induction
therapy, after three months from diagnosis (DIA), FD2/FA2 samples after four months from
induction therapy while FD3/FA3 samples post ASCT (i.e. autologous stem cell transplanta-
tion). Maintenance samples (i.e. from MD1/MA1 to MD6/MA6) were taken every 6 months
in the observation period (Figure 2.19). For cohort 2, a total of 68 samples were available
divided among diagnosis, follow up and maintenance samples (Table 2.7). The diagnosis
accounts for 23 samples, FD1/FA1 accounts for 12 samples, FD2/FA2 for three samples,
FD3/FA3 for 8 samples, MD1/MA1 and MD2/MA2 for four samples each, two samples for
MD3/MA3, MD4/MA4 for four samples and finally one MA5 and MA6 samples. Patient 49
is the one with almost the timeline complete while 23,74,267, 205 and 264 patients displayed
only the diagnosis samples.On average three samples for patient were available (Table 2.7).

FIGURE 2.19: Time line of cohort 2 composed of 23 MCL patients.

Patients were divided on the basis of the type of markers showed at diagnosis in three
categories (see Table 2.1). The first is composed of 17 patients with a positive marker for IGH
and negative for BCL1, the second of four patients with IGH negative marker and positive
for BCL1 while the third of two patients with both IGH and BCL1 markers negative.

• Patients IGH+/BCL1- (n=17 patients): 17 patients showed at diagnosis IGH positive
marker and negative for BCL1. 13 patients out of 17 were analyzed with both NGS
and ASOq-PCR followed by Sanger sequencing for clonality assessment and MRD
monitoring (pat 1,10,19,22,74,90,140,155,175,182,237,251,267,284). For the remain-
ing four patients, NGS, qualitative PCR and Sanger technique were performed, due to
lack of materials or failure of primers during the ASOq-PCR experimental procedure
(pat 23,255,262 and 267).

• Patients IGH-/BCL1+ (n=4 patients): Patients were negative for IGH rearrangement
and positive for BCL1 markers (IGH-/BCL1+). NGS sequencing and qualitative PCR
data were reported since no ASOq-PCR and Sanger sequencing primers for BCL1 were
available (i.e. pat 49,61,111,179).

• Patients IGH-/BCL1- (n=2 patients): Patients with both IGH and BCL1 markers nega-
tive (IGH-/BCL1-). Since any of the two markers can be detected, only NGS sequenc-
ing and qualitative PCR data were available (pat 205,264).
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All the libraries were prepared using 500ng of gDNA and 100ng for FA/FD and MA/MD
samples, from peripheral blood (D) or bone marrow (A) and sequenced as described in Sup-
plementary 6.1 using primer for FR1 region from EuroClonality NGS (Brüggemann et al.,
2019). The average number of reads at diagnosis is equal to 1.129.804 (range: from 414.350
to 2.610.814 reads), while follow up samples have an average number of reads equal to
809.872 (range: from 414.350 to 2.610.814 reads). The quality check of the runs was per-
formed using FastQC software (Patel and Jain, 2012) among the features considered the base
quality (average value equals to 36) and the N content passed the check. As for Study 1,
buffycoat sample and negative control (water) were used (Buffycoat: 834.768 reads, water:
180.308).
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TABLE 2.7: Patients samples details of the Study 3.
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Clonality analysis We performed a clonality analysis of the three patients categories with
HashClone performing 23 total runs, including diagnosis sample, available follow up (i.e.
FA/FD and MA/MD) samples and buffycoat/negative control for each of the patient. Then,
the filtering strategy explained in section 2.6.1 was applied using two filters (Filter A and Fil-
ter B) for the selection of clonotypes and the Major Clone selection for major B-cell clones
identification. For the first category (n=17 patients IGH+/BCL1-), HashClone identified in
the diagnostic samples an average value of 157 clonotypes (min 17, Pat 74; max 454, Pat
155). The application of the Filter-A selected on average 60 clones of which on average 10
B-cell clones were retained in the analysis after the Filter-B. One major clone was identi-
fied for 12 out of 17 patients (pat 1,10,19,22,90,140,155,175, 237,255,262,284) while the
clones of the remaining five patients did not pass the limits imposed by the Major Clone
selection phase of section 2.6.1. The second category was composed of four patients positive
for BCL1 marker and not for IGH. HashClone identified an average value of 296 clonotypes
(min 91, Pat 61; max 446, Pat 49). The Filter-A filtered around 34 clonotypes and on average
6 clones passed the Phase-B. In the Major clone selection phase, three patients displayed a
major clone that passed the limits (pat 49,61,179), while clones of patient 111 did not. In
the last category composed of patients negative for both markers (IGH-/BCL1-), HashClone
identified an average value of 136 clonotypes of which 77 clonotypes passed the Filter-A and
four clones from Filter-B. Only patient 205 displayed a major clone while patient 264 did
not. Details about the results in both the Pilot studies are reported in Table 2.8.

Major B-cell clone detection The major B-cell clones of all patients were identified using
the filtering strategy presented in 2.6.1 and reported their presence in Table 2.5. For 12 out
of 17 patients belonging to IGH+/BCL1- category HashClone identified one major clone in
the diagnostic sample. Patients 1 and 237 displayed one major clone with a frequency of
100% while patients 10,19,90,140 near 98% (Figure 2.22). The homology percentage be-
tween HashClone and Sanger sequencing are reported in Table 2.9. In the remaining patients
22,155,175,255,262,284 the frequency of the major clone is included between a minimum
value of 77.2% and max 96.1% ( Figure 2.22 and Table 2.9). However, for patient 22 the
major clone identified with NGS ( 2.22) was not the same of that identified with Sanger se-
quencing. The clone identified by Sanger technique belongs to the repertoire identified by
HashClone (Figure 2.22 and Table 2.9) and represents the second biggest clone. The sup-
porting number of reads for major clone identified by HashClone is 13.174 (81.8%) while
for sanger clone is 1.353 (8.4%). The presence of this minor clone identified by Sanger
can be explained as an artificial clone created from the merge of the forward and reverse
primers whose pairing dephase the sequencing lecture of the real major clone sequence or
subject to worker-behaviour. However, the bigger sensibility and the use of universal primer
of NGS technique (10-4-10-5) allowed to detect both the major and artificial clone. Patient
262 presents one major clone with 96.1% of frequency and several other minor clones (Fig-
ure 2.22). This patient represents one case of discordance among NGS and PCR technique
since the major clone of NGS is not the same clone identified by Sanger sequencing (Table
2.9). However, this major clone identified by NGS technique display a frequency of 30% on
the total reads (i.e. 1.159.703 reads), thus it overcame the limit imposed by Faham et al.,
2012 of 5% out of the total number of reads. Moreover, we didn’t find the clone derived
from Sanger technique in HashClone results and this is probably due to an artefact of Sanger
technique that was amplified during PCR in fewer copies. For five patients out of 17 (pat
23,74,182,251,267), HashClone did not find a major clone since from the repertoire of Ta-
ble 2.5 no clones passed the ±5% limit imposed by Faham et al., 2012 in the Major Clone
selection phase, identifying these patients as polyclonal (i.e. few clones with low frequency
percentage and no major clone identified). In detail, for patient 23 standard technique was
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TABLE 2.8: Clonotypes identified with HashClone analysis and IMGT
validation. For each patient, the total number of identified clonotypes (third
column) is reported and the average value across all patients. For each of
these set, clonotypes with a frequency greater than 100 were selected and
passed the Filter-A (fourth column). Then from the Filter-A, clonotypes
with a VDJ homology greater than 80% were selected and passed the Filter-
B (fifth column). Last column represents the number of major clones found

in the Major Clone selection phase.

Filter-A Filter-B Major Clone

Markers Patient Clonotype Clonotype with Clonotype with VDJ selection
(only diagnosis samples) identified frequency > 100 homology > 80%

1 264 112 1
10 153 39 4
19 101 53 4
22 113 54 4
23 161 91 2 x
74 17 14 1 x
90 141 61 4
140 215 46 3
155 454 204 95
175 110 21 4
182 49 7 1 x
237 164 40 1
251 111 52 3 x
255 191 21 3
262 193 102 28
267 115 58 3 x
284 109 46 4

IG
H
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C
L1

-

Average value 157 60 10 1
49 446 23 4
61 91 20 2
111 271 50 16 x
179 377 43 1
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H
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L1
+

Average value 296 34 6 1
205 168 87 3
264 103 66 4 x
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H
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C

L1
-

Average value 136 77 4 1

concordant with NGS since no result about a putative major clone was retrieved. However,
for patient 74,182,251 and 267, standard technique identified four putative major clones (i.e.
one for each patient). Thanks to the high sensitivity of NGS technique, the clones identified
by the standard technique were actually revealed as artificial derived probably from forward
and reverse primers self-annealing problems. The second category was composed of four
patients BLC1 marker positive and IGH negative (IGH-/BCL1+) (i.e. pat 49, 61, 111, 179).
Major clones of patients 49,61 and 179 were identified by HashClone (Figure 2.20). The
three major clones overcame the Major clone selection phase and displayed a frequency of
98.3%, 99.7% and 100% respectively. Only qualitative PCR was performed for these patients
due to the lack of IGH markers. However, the highest NGS sensibility allowed to find major
clones whose presence improve cases with single markers, changing the initial classification
(IGH-/BCL1+) to double markers (IGH+/BCL1+) patients (Figure 2.20). Patient 111, in-
stead, showed 16 minor clones and no major one with highest frequency. HashClone result
was consistent with standard technique which also gave a negative outcome, concluding that
patient 111 is polyclonal (Figure 2.20). Last category was composed of two patients both
IGH-/BCL1- (Figure 2.21). Patient 205 displayed at diagnosis one major clone with 97.1%
of frequency and two other clones with frequency less than 2% (Figure 2.21). However,
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standard technique and Sanger sequencing did not amplified any major clone and also qual-
itative PCR was negative. Thus, this is another case of discordance of the two techniques,
where highest NGS sensibility allowed to find a putative major clone that helped to find a real
marker associated with these patients, where the qualitative PCR did not succeed, changing
the initial classification of the patient from no marker to IGH positive. Finally, patient 264 is
composed of four clones with frequencies of 55.5%, 19.7%, 16.8% and 8.1%, respectively.
HashClone did not find a predominant major clone and also standard technique gave negative
results. Thus, we can conclude that patient 264 had a polyclonal background at the diagnosis
sample and probably the disease is carried out by another marker rather then IGH or BCL1.
(Figure 2.21).

FIGURE 2.20: Major B-cell clone detection in IGH-/BCL1+ patients. Pie
plots show the distribution of the frequency percentage associated with the
B-cell clones passed the filter strategy in the four diagnostic samples of IGH-

/BCL1+ patients. Note: patient 111 is polyclonal.

FIGURE 2.21: Major B-cell clone detection in IGH-/BCL1- patients.Pie
plots show the distribution of the frequency percentage associated with the
B-cell clones passed the filter strategy in the two diagnostic samples of IGH-

/BCL1- patients. Note: patient 264 is polyclonal.
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FIGURE 2.22: Major B-cell clone detection in IGH+/BCL1- patients
Pie plots show the distribution of the frequency percentage associated with
the B-cell clones passed the filter strategy in the 12 diagnostic samples of

IGH+/BCL1- patients.
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TABLE 2.9:
HashClone
and Sanger
Sequence com-
parison for
cohort 2. This
table reports the
comparison in
terms of IGHV,
IGHD, and
IGHJ nucleotide
homology
between the
predominant
clone identified
by HashClone
and the IGH
monoclonal
rearrangement
identified by
Sanger sequenc-
ing for each

patient.
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MRD monitoring HashClone performances were compared to the standardized results of
the classical ASOq-PCR in terms of MRD monitoring. As reported in the introduction of the
cohort 2, only for 13 patients (belonging to the first category IGH+/BCL1-) out of 23, ASOq-
PCR was perfomed and we were able to retrieve MRD values at Diagnosis. Unfortunately,
for the last 13 patients, one MRD value at one follow up of three patients was not available,
reducing the final set to 10 patients. While for IGH-/BCL1+ and IGH-/BCL1- negative pa-
tients ASOq-PCR values were not available. To make the MRD quantifications comparable
between the two techniques, we set up a proportion between the total reads number of the
major MCL clone at diagnosis (HashClone) and the ASOq-PCR value as shown in section
2.6.1.

The 10 patients (pat 1,10,19,22,90,140,155,175,237,284) had various tumour infiltration
ranging from a minimum of 6.4 (pat 155) to 82 (pat 175). The ASO q-PCR value of patients
1,10,155,175,237 are 1.00E+00 according to EuroMRD guidelines (Velden et al., 2007),
while patients 19,22,90,140,284 started from lower ASO q-PCR value with a minimum of
2.22E-03 (pat 19) to 0.6 (pat 90). Figure 2.23 reports the trends of the patients in the samples
timeline available. For each patient of this category, 7 samples composed of one diagnosis,
one follow up and one maintenance sample (i.e. pat 1,10,19,175), two follow up samples
(i.e. pat 140,155) or two maintenance sample (i.e. pat 22). Then, the samples timeline of
two patients was composed of one diagnosis and one follow up sample (i.e. pat 90 and 284).
Finally, only patient 237 was composed of a timeline with 5 samples with complete follow
up series and one maintenance. In Figure 2.23 are reported the MRD trend of these patients
detected by HashClone and standard technique (HashClone: red; ASOq-PCR: blue). Hash-
Clone (Figure 2.23 ; red) was able to perfectly extract the MRD trend kinetics in the follow
up and maintenance samples of this category as well as ASOq-PCR (Figure 2.23 ; blue). In
Figure 2.24 is present correlation analysis between the two techniques using Pearson corre-
lation, showing that there is a good concordance of all the 36 points (NGS and ASOq-PCR;
Pearson correlation = 1).

Discussion The purpose of Study 3 was to analyze a cohort of 23 patients affected by MCL,
enrolled in Fondazione Italiana Linfomi and following a protocol therapy of four years from
diagnosis. Patients were divided in three categories on the basis of the type of markers
showed at diagnosis: IGH+/BCL1- (first category), IGH-/BCL1+ (second category), IGH-
/BCL1- (third category). We performed clonality analysis to investigate the number of valid
clonotypes (i.e. according to the filtering strategy of section 2.6.1), identification of the ma-
jor clone characterising each patient (i.e. clone with the highest frequency at diagnosis and
followed by phisicians for clinical purpose) and MRD monitoring to track trend kinetics of
the disease during the samples timeline (i.e. on average three samples for patient were avail-
able)(Table 2.10). The first category contained 17 patients with 165 different clonotypes. 12
out of 17 patients displayed one major clone (i.e. one for patient) and of these, 10 showed
100% of homology in terms of VDJ gene segment with Sanger sequencing clone. While,
two patients displayed a major clone different from Sanger sequencing due to experimental
technical reasons. Finally, MRD monitoring was performed showing that the disease trend
kinetics was concordant in these 10 patients between standard technique and HashClone tool
(Table 2.10). For the second category (IGH-/BCL1), four patients were analyzed retrieving
23 total different clonotypes. Three out of four displayed one major clone passing the crite-
ria of Major clone identification phase. However, Sanger sequencing and ASO-qPCR values
were not available for these patients due to different marker positivity (BCL1+), thus the com-
parison can not be reported (Table 2.10). Last category (IGH-/BCL1-) was composed of two
patients affected by MCL but with both negative markers. We identified 7 different clono-
types among these patients and one out of two displayed a valid major clone while the other
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HashClone
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FIGURE 2.23: MRD monitoring for IGH+/BCL1- patients. MRD
trend obtained from ASO q-PCR (blue line) and HashClone (red line) of

IGH+/BCL1- Patient.

one was confirmed as polyclonal. Also in this case, Sanger sequencing and ASO-qPCR val-
ues were not available and the comparison was not reported (Table 2.10). Overall, HashClone
was able to perform the entire clonality analysis and MRD monitoring in all patients. More-
over for 6 patients, the results of HashClone overcame those of gold-standard technique due



2.7. Application of HashClone to MCL patients to determine
Minimal Residual Disease and major clone detection

59

Pearson Correlation :  1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ASOqPCR

H
as

hC
lo

ne

FIGURE 2.24: Correlation analysis of HashClone and ASOq-PCR tech-
nique. Scatter plot of the correlation analysis between HashClone and the
ASO q-PCR data. No discordances (red dots) are detected between the two

methods.

to an improved technical sensibility allowing to distinguish real major clones (i.e. patients
22 and 205) or polyclonal background in the tree categories (i.e. patients 23,74,182,251,267
IGH+/BCL1-, patient 111 IGH-/BCL1+ and patient 264 IGH-/BCL1-) with respect to puta-
tive technical artefacts.

TABLE 2.10: Summary of results obtained from cohort 2.
(*according to the filtering strategy of section 2.6.1)

Category Number
of patients

Number
of valid* clonotypes

Number
of Major Clones

Comparison with
Sanger sequencing

MRD
monitoring

IGH+/BCL1+ 17 165 12 10/12 10
IGH-/BCL1+ 4 23 3 na na
IGH-/BCL1- 2 7 1 na na

Total 23 195 16 10/12 10
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Chapter 3

Development of a new computational
approach to identify cluster-specific
RNA signatures from single cell RNA
sequencing data

3.1 Background

Cells are the basic building blocks of organisms and each cell is unique. Thus, the idea of
heterogenous cellular systems has been well-documented, both theoretically (Elsasser, 1984)
and experimentally (Altschuler and Wu, 2010). Heterogeneity arises at many different levels
and for a number of different reasons, in order to improve survival and functionality.

The use of scRNA-sequencing to define the cellular heterogeneity is key, as transcrip-
tomics captures fine details that other methods may have missed. scRNA-sequencing tech-
nologies are now increasingly focused on the characterization of individual cells to uncover
new and potentially unexpected biological discoveries with respect to traditional profiling
bulk populations methods. Indeed, scRNA-seq methods can reveal complex and rare cell
populations, uncover regulatory relationships between genes, and track the trajectories of
distinct cell lineages in development (Hwang, Lee, and Bang, 2018).

3.2 Computational workflow and challenges to analyze scRNA-
seq data

Single-cell RNA sequencing is essential for investigating cellular heterogeneity and high-
lighting cell subpopulation-specific signatures. Experimental methods for scRNA-seq are
now increasingly accessible to many laboratories and computational pipelines for handling
raw data files are increasing day by day.

scRNA-seq data analysis requires several steps to go from count generation to the cell
subpopulation identification and they account for (Figure 3.1):

1. Phase 1: pre-processing (i.e. quality control of the reads, normalization, identification
of confounding factors)

2. Phase 2: clustering methods (e.g. k-means, hierarchical clustering, density-based clus-
tering)

3. Phase 3: bio-identification of the clusters (e.g. enrichment analysis)

In the Phase 1 of pre-processing, once reads are obtained from well-designed scRNA-seq
experiments, quality control (QC) is performed for inspecting quality distributions across en-
tire reads. Low-quality bases (usually at the 3’ end) and adapter sequences can be removed
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at this pre-processing step. Read alignment is the next step of scRNA-seq analysis, and the
tools available for this procedure include the Burrows-Wheeler Aligner BWA (Li and Durbin,
2009) and STAR (Dobin et al., 2013) ,as those used in the bulk RNA-seq analysis pipeline
(Hwang, Lee, and Bang, 2018). After alignment, reads are allocated to exonic, intronic, or
intergenic features using transcript annotation and only reads that map to exonic loci with
high mapping quality are considered for generation of the gene expression matrix. The ma-
trix is often composed of columns representing cells and rows representing genes. In this
context, a distinctive feature of scRNA-seq data is the presence of zero counts due to reasons
such as dropout (i.e. a transcript is expressed in a cell but is entirely undetected in its mRNA
profile) or transient gene expression. To account for this feature, data normalization is usu-
ally suggested to remove cell-specific bias, which can affect the determination of differential
gene expression (Hwang, Lee, and Bang, 2018). After normalization, the next step is to es-
timate confounding factors that can be due to technical or biological variations. Technical
variations include batch effect (i.e. systematic differences that are unrelated to any biologi-
cal variation and result from sample preparation conditions), cell-specific capture efficiency,
transcripts amplification bias and dropout. Biological variation instead include stochastic
gene expression and cell cycle effect. The correction of confounding factors as amplifica-
tion can be performed using for example spike-in sequences to calibrate the experiment or
batch effects can be avoid repeating the analysis of multiple cells from a condition. More in
general, statistical models that incorporate random noise can be used to manage known and
unknown variables (Hwang, Lee, and Bang, 2018). Behind the confounding factors prob-
lem, another challenge regards the optimal statistical approach that permit to simultaneously
compare the expression of thousands of genes of the dataset. In general, the total number
of genes measured in a dataset is referred to as the dimensionality (Andrews and Hemberg,
2018). When comparing cells in a high dimensional gene expression space, distances be-
tween cells become more homogenous, making it difficult to distinguish differences between
populations from variability within a population. There are two main approaches, firstly, data
can be projected into a lower dimensional space (i.e. dimensionality reduction) in order to
optimally preserve some characteristics of the original data. Some approaches comprise Prin-
cipal Component Analysis (PCA) and T-distributed stochastic neighbor embedding (tSNE).
Secondly, it is also possible to remove uninformative genes (i.e. feature selection) to reduce
the number of dimensions used in the analysis to facilitates visualization and reduce noise
and speed up calculations (Andrews and Hemberg, 2018).

The Phase 2, characterization of the numerous cells in the dataset, is a really delicate
task. The problem has been widely studied in the machine learning literature, and there are
several well-established strategies that have been adapted for scRNASeq data.

• K-means is a commonly used clustering algorithm for single-cell analysis and it con-
sists in the iteratively assignation of cells to the nearest cluster centre (or centroid),
and then recomputes the cluster centroids. However, k- means requires the number of
clusters to be predetermined and uses stochastic starting locations for each cluster, thus
requiring it to be run multiple times to check robustness to these parameters.

• Hierarchical clustering is another popular general-purpose clustering method com-
monly used to identify cell-populations. The most common assumption assume round
equally-sized clusters like k-means and it has the advantage of being able to determine
relationships between clusters of different granularities since the result can be visu-
alized as a dendrogram. This dendrogram is then cut at different heights to generate
different numbers of clusters.
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• Density-based clustering identifies clusters as contiguous regions with a high density
of cells. Unlike hierarchical clustering or k-means, density-based clustering assumes
that all clusters are equally dense (i.e. cell populations are equally homogenous).

Thus, a key decision for clustering methods is how many groups to identify. Coarse clus-
terings identify a small number of very distinct clusters which are more likely to correspond
to cell-types; whereas fine clustering identifies a large number of less distinct clusters which
may correspond to different cell-states. Most clustering algorithms require either the number
of clusters (k) or parameters relating with the density of the cluster to be defined a priori by
the user (Andrews and Hemberg, 2018). However, choosing an appropriate k is difficult since
there is no generally accepted method to do so and the identity of any of the cells assayed
a priori is quite unrealistic. Finally, basing the choose of k on reliable marker genes can be
misleading since they are only available for a few well-characterized cell-types.

Last phase (i.e. Phase 3) of scRNA-seq data analysis regards the interpretation of groups
identified by the clustering algorithm that is not trivial. The biological interpretation of the
final results (i.e. association to the cell types) often requests other times and external tools
(e.g. functional enrichment analysis using external annotations). Although novel cell pop-
ulations can be readily identified using external methods, these findings must be validated
using external data or experiments to ensure they are not technical artefacts. Indeed, due to
the heuristic nature of clustering algorithms, they will always find some partitioning and even
when clusters are a result of biological effects, rather than noise, those effects may not repre-
sent differences in cell-type. Today, there are no accepted standards for the criteria required
to label a cell population as a novel cell type. Defining cell-types based on transcriptional
differences is difficult since transient differences in cell-state (e.g. cell-cycle stage) can have
a larger effect on the global transcriptome than cell-type (Andrews and Hemberg, 2018).

Finally, even though several computational pipelines are now present that include all the
cited phases, only few of them provide analysis flexibility while also achieving functional
(i.e. information about the data and the tools used are saved as metadata) and computational
reproducibility (i.e. a real image of the computational environment used to generate the data
is stored) through a user-friendly environment.

FIGURE 3.1: Typical workflow of scRNA-seq data analysis. The three
phases represent the typical steps to follow for a scRNA-seq data analysis
(i.e. Pre-processing, Clustering, Biological identification of the clusters ob-

tained
.
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3.3 State-of-art pipelines for scRNA-seq data analysis

At the best of our knowledge, four are the workflows available for a complete single-cell
analysis: (i) simpleSingleCell, Bioconductor workflow package (Lun, McCarthy, and Mari-
oni, 2016); (ii) Granatum, web-based single-cell RNA-seq analysis suite (Zhu et al., 2017);
(iii) SCell, graphical workflow for single-cell analysis (Diaz et al., 2016); and (iv) R toolkit
Seurat (Butler et al., 2018).

• simpleSingleCell (Lun, McCarthy, and Marioni, 2016) is a computational workflow
for basic analysis of scRNA-seq data, using software packages from the open-source
Bioconductor project (release 3.4) (Huber et al., 2015). Starting from a count matrix,
this workflow contains the steps required for quality control to remove problematic
cells; normalization of cell-specific biases, with and without spike-ins; cell cycle phase
classification from gene expression data; data exploration to identify putative subpopu-
lations; and finally, HVG and marker gene identification to prioritize interesting genes.

• Granatum (Zhu et al., 2017) is a web-based scRNA-Seq analysis pipeline. Granatum
has a comprehensive list of modules, including plate merging and batch-effect removal,
outlier-sample removal, gene-expression normalization, imputation, gene filtering, cell
clustering, differential gene expression analysis, pathway/ontology enrichment analy-
sis, protein network interaction visualization, and pseudo-time cell series construction.

• SCell (Diaz et al., 2016) is an integrated software tool for quality filtering, normaliza-
tion, feature selection, iterative dimensionality reduction, clustering and the estimation
of gene-expression gradients from large ensembles of single-cell RNA-seq datasets.
Moreover, SCell can regress/interpolate gene expression on PCA space, visualize ex-
pression gradients, and estimate expression kinetics along minimum spanning trees
and minimum weight paths.

• Seurat (Butler et al., 2018) is an R package designed for quality control, analysis, and
exploration of single-cell RNA-seq data. Seurat aims to enable users to identify and
interpret sources of heterogeneity from single-cell transcriptomic measurements, and
to integrate diverse types of single-cell data.

3.4 Aim

The single-cell sequencing results (Butler et al., 2018; Alessandri et al., 2019) suggest the
presence of a complex organization of heterogeneous cell states that produce a system-level
functionalities. A mandatory element of scRNA-seq is the availability of dedicated bioin-
formatics workflows that allow exhaustive analysis of data. The analysis has to re-
trieve the corresponding cellular organization and differentiation in cellular types. For
this purpose, many related algorithms and tools have been developed, but few computa-
tional workflows provide complete analysis from raw data to biological cluster identification.
Moreover, few of these pipelines provide flexibility while also achieving functional (i.e. in-
formation about the data and the tools used are saved as metadata) and computational repro-
ducibility (i.e. a real image of the computational environment used to generate the data is
stored) through a user-friendly environment. Beyond the computational challenges, there is
also a biological interpretation challenge related to the post-processing phases of the analysis.
Indeed, the majority of the pipelines rely on external tools to improve the biological interpre-
tation of the clusters obtained, using enrichment, pathway analysis of the genes or functional
association network. In this context we propose rCASC, a pipeline for reproducible classifi-
cation analysis of single-cell sequencing data (Alessandri et al., 2019). rCASC is a modular
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workflow providing an integrated analysis environment (from count generation to cell sub-
population identification) exploiting Docker containerization to achieve both functional and
computational reproducibility in data analysis. The main advantages of rCASC pipeline are
the many pre-processing tools to remove low-quality cells and/or specific bias (e.g. cell cy-
cle), the different clustering techniques based on different distance metrics and a new metric
(Cell Stability Score) for the evaluation of clusters quality. In the context of biological in-
terpretation challenge, we also provide rMLSC (reproducible Machine Learning analysis for
single-cell sequencing data), a new module based on machine learning approach to identify
cluster-specific gene signatures from rCASC results. At the best of our knowledge, this type
of approach has never been applied to single cell data with the purpose of improving cluster
interpretation. rMLSC strategy exploits the classification algorithm based on Random Forest
decision tree to analyze the clusters obtained from rCASC.
rMLSC identifies for each cluster a subset of genes whose disposition in the decision trees is
a reflection of the differences among the clusters. This approach is organized in five phases
and tasks that converge to the derivation of a set of gene signatures for all the clusters. The
entire strategy of single cell data analysis is reported in Figure 3.2.

FIGURE 3.2: Computational workflow for single cell data analysis. The
workflow is composed of rCASC pipeline where blue boxes indicate pre-
processing tools, red boxes define clustering tools and green boxes indicates
gene signature tools, and rMLSC where yellow box indicates the machine

learning implementation.

3.5 Computational strategy to analyze scRNA-seq data

In this section, rCASC computational workflow (paragraph 3.5.1) and rMLSC (paragraph
3.5.3) are explained. rCASC pipeline was published in 2019 (Alessandri et al., 2019) while
rMLSC is part of a new implementation and the manuscript is in preparation.

3.5.1 rCASC computational pipeline

The key elements of the rCASC workflow are shown in Figure 3.3 and the main functionali-
ties are summarized in the following sections.
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FIGURE 3.3: rCASC workflow. Blue boxes indicate pre-processing tools.
Red boxes define clustering tools. Green boxes indicates gene signature

tools.

Count table generation In rCASC, the generation of the count table start from fastq files
generated with inDrop or 10X Genomics platforms , or with a count matrices as directed in-
put (Figure 3.3). The inDrop and 10X Genomics methods involve co-encapsulation of cells
along with a reverse transcription (RT) mix and hydrogel particles carrying primers that can
be released upon UV excitation (Zhang et al., 2011). The barcoding strategy for both meth-
ods uses initial universal sequence for PCR/sequencing, cell barcode and a unique molecular
identifier (UMI) sequence with a poly-dT sequence to capture mRNAs (Zhang et al., 2011).
However, the primer on the inDrop beads also has a photo-cleavable moiety and a T7 pro-
moter. The cell capture efficiency can reach markedly higher levels in both approaches with
~80% bead occupancy for and a cell capture rate of ~50% (Zhang et al., 2011). After encap-
sulation, the entire beads from 10X are dissolved to release all of the primers into the solution
phase to boost the efficiency of mRNA capture. inDrop instead mobilizes the primers by UV-
irradiation-induced cleavage. Then, the RT reaction is carried out inside the droplets (Zhang
et al., 2011) with inDrop employing CEL-seq method (Hashimshony et al., 2012), whereas
10X following a template-switching protocol (Macosko et al., 2015), similar to the popular
Smart-seq chemistry (Ramsköld et al., 2012). The transcription step in inDrop extends the
library preparation time beyond 24 hour while 10X Genomics can be completed within a
day. In rCASC, data derived from inDrop platform are reformatted by indropIndex function
and allows the generation of the transcript index required to convert fastq in counts. Finally,
the indropCounts function converts reads in unique molecular identifier (UMI) counts. Data
derive from 10X Genomics platforms, the function cellrangerCount converts fastq to UMI
matrix using any of the genome indexes with the cellrangerIndexing function.

Count table exploration and manipulation rCASC provides various data inspection and
preprocessing tools (Figure 3.3, Dark grey boxes with white character). First of all, the
genesUmi function generates a plot where the number of detected genes is plotted for each
cell with respect to the number of UMI. Moreover, mitoRiboUmi function calculates the
percentage of mitochondrial/ribosomal genes with respect to the total number of detected
genes in each cell and plots the percentage of mitochondrial genes with respect to percentage
of ribosomal genes. mitoRiboUmi allows researchers to identify cells with low information
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content (i.e. those cells with few detectable genes)(e.g. <100 genes/cell), little ribosomal
content, and high content of mitochondrial genes, which indicate cell stress.

Then, the function scannobyGtf uses ENSEMBL gtf and the R package refGenome to
associate gene symbol with the ENSEMBL gene ID and remove from the dataset mitochon-
drial/ribosomal genes and stressed cells, detected by mitoRiboUmi function.

The function lorenzFilter embeds the Lorenz statistics developed by Diaz et al., 2016, a
cell quality statistic correlated with cell live-dead staining. Specifically, the outlier filtering
for single-cell RNA-seq experiments designed by Diaz et al., 2016 estimates which genes
are expressed at background levels in each sample; then samples with significantly high
background levels are discarded (Diaz et al., 2016).

We implemented the functions checkCountDepth/scnorm to detect the presence of sample-
specific count–depth relationship (Bacher et al., 2017) (i.e. the relationship existing between
transcript-specific expression and sequencing depth) and to adjust the count table for it.
Specifically, checkCountDepth initially executes a quantile regression, thus estimating the
dependence of transcript expression on sequencing depth for every gene. Then, genes with
similar dependence are aggregated. Scnorm function, after executing checkCountDepth, per-
forms a new quantile regression to estimate scale factors within each group of genes. Then,
sequencing depth adjustment is done within each group using the estimated scale factors.
Furthermore, we added two other functions recatPrediction and ccRemove which are based
on Liu et al., 2017 and Barron and Li, 2016 respectively. The function recatPrediction orga-
nizes the single-cell data to reconstruct cell cycle pseudo time-series and is used to understand
whether a cell cycle effect is present. The ccRemove function embeds their scLVM (single-
cell latent variable model) algorithm, which uses a sophisticated Bayesian latent variable
model to reconstruct hidden factors in the expression profile of the cell cycle genes. This
algorithm is able to remove cell cycle effect from real single-cell RNA-seq datasets.

Clustering For the identification of cell subpopulations we implemented four approaches:
Seurat (Butler et al., 2018), SIMLR (Wang et al., 2017), Griph (Serra et al., 2019), and
Scanpy (Wolf, Angerer, and Theis, 2018) (Figure 3.3, Dark grey boxes with black character).

• Seurat (Butler et al., 2018) is a toolbox for single-cell RNA-seq data analysis. We
implemented in rCASC one of the clustering procedures present in the Seurat toolbox.
The function seuratPCAEval has to be run before executing the clustering program to
identify the metafeatures (i.e. the subset of PCA components describing the relevant
source of cell heterogeneity) to be used for clustering. The seuratBootstrap function
implements data reduction and clustering. Specifically, cells undergo global scaling
normalization (i.e. LogNormalize method) and scaling factor 10,000. Subsequently, a
linear dimensional reduction is done using the range of principal components defined
with seuratPCAEval. Then, clustering is performed using the cell PCA scores. The
Seurat clustering procedure, embedded in seuratBootstrap, is based on the Louvain
modularity optimization algorithm.

• SIMLR (Wang et al., 2017) implements a k-mean clustering, where the number of
clusters (i.e. k) is taken as input. SIMLR requires as input raw counts that are log10
transformed. SIMLR is capable of learning an appropriate cell-to-cell similarity metric
from the input single-cell data and can exploit it for the clustering task. In the learning
phase SIMLR identifies a distance metric that better fits the structure of the data by
combining multiple Gaussian kernels (Wang et al., 2017). Thus, the tool can deal
with the large noise and dropout effects (i.e. a transcript is expressed in a cell but is
entirely undetected in its mRNA profile) of single-cell data, which could not easily fit
with specific statistical assumptions made by standard dimension reduction algorithms
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(Wang et al., 2017). The function simlrBootstrap controls the clustering procedure
and the function nClusterEvaluationSIMLR is exploited to estimate the (sub)optimal
number "k" of clusters.

• Griph clustering (Serra et al., 2019) is closer to agglomerative clustering methods be-
cause every node is initially assigned to its own community and communities are sub-
sequently built by iterative merging.

• Scanpy (Wolf, Angerer, and Theis, 2018) uses for clustering also Louvain algorithm
that detects communities as groups of cells that have more links between them than
expected from the number of links the cells have in total. The optimized modularity
function includes a resolution parameter, which allows the user to determine the scale
of the cluster partition.

Cell Stability Score We developed, for Seurat, SIMLR, griph, and scanpy, a procedure to
measure the cluster quality on the basis of data structure. The rationale of our approach is
that cells belonging to a specific cluster should be little affected by changes in the size of
the dataset (e.g. removal of 10% of the total number of cells used for clustering). Thus, we
developed a metric called Cell Stability Score (CSS), which describes the persistence of a
cell in a specific cluster upon jackknife resampling and therefore offers a peculiar way of
describing cluster stability (Figure 3.4).

In detail, a set of cells to be organized in clusters (Figure 3.4 A) is analyzed with one
of the clustering methods, applying a user defined k number of clusters (Figure 3.4 B). A
user defined percentage of cells is removed from the original data set and these cells are
clustered again (Figure 3.4 C). The clusters obtained in each bootstrap step are compared
with the clusters generated on the full dataset using Jaccard index (Figure 3.4 D,E). If the
Jaccard index is greater of a user defined threshold, e.g. 0.8, the cluster is called confirmed
in the bootstrap step (Figure 3.4 F). Then to each cell, belonging to the confirmed cluster,
cell stability score value is increased of 1 unit (Figure 3.4 G). At the end of the bootstrap
procedure, cells are labeled with different symbols describing their cell stability score in a
specific cluster. See Supplementary 6.3.1 for further details.

FIGURE 3.4: Cell Stability Score (CSS). Figure from Alessandri et al.,
2019

.
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Selection of clusters specific-genes To select the most important features of each cluster
we implemented the anovaLike function with the edgeR ANOVA-like method for single cells
(Robinson, McCarthy, and Smyth, 2010) and in the functions seuratPrior and genesPrioriti-
zation/ genesSelection, respectively, the Seurat and SIMLR gene prioritization methods. The
hfc function allows visualization of the genes prioritized with the above methods as a heat
map and provides plots of prioritized genes in each single cell (Figure 3.3) (Alessandri et al.,
2019).

3.5.2 rCASC scalability, reproducibility and comparison with state-of-art pipelines

rCASC computing time for one analysis depends on multiple parameters: (i) the number of
permutations performed in parallel, (ii) the number of cells under analysis, (iii) the clustering
tool in use, and (iv) the hardware used for the analysis. Concerning the amount of RAM
required for each permutation run in parallel, for up to 5,000 cells the maximum amount of
RAM required is about 4 GB; from 10,000 to 100,000 cells, the maximum RAM required
is about 20 GB. Independently by the clustering approach and the size of the dataset, it is
suggested running ≥ 100 permutations to correctly estimate CSS (Alessandri et al., 2019).
All the computational tools in rCASC are embedded in Docker images stored in a public
repository on the Docker hub. Parameters are delivered to Docker containers via a set of R
functions, part of the rCASC R github package. To simplify the use of the rCASC package
for users without scripting experience, R functions can be controlled by a dedicated GUI,
integrated in the 4SeqGUI tool (Beccuti et al., 2017b), which is also available as a github
package (Figure 3.5).
The overall characteristics of rCASC were compared with the four other workflows for
single-cell analysis (Figure 3.6 ): simpleSingleCell (Lun, McCarthy, and Marioni, 2016),Grana-
tum (Zhu et al., 2017), SCell (Diaz et al., 2016) and R toolkit Seurat (Butler et al., 2018).
The comparison was based on the following elements:

• supported single-cell platforms

• types of tools provided by the workflow

• type of reproducibility granted by the workflow

• tool flexibility

rCASC is the only workflow providing support at the fastq level because all the other
packages require as input the processed count table. Cell quality control and outlier identifi-
cation is available in all the workflows but Granatum. Association of ENSEMBL gene IDs to
gene symbols is only provided by rCASC. All the workflows provide gene-filtering tools but
simpleSingleCell. All packages provide normalization procedures to be applied to raw count
data. However, rCASC is the only tool providing both Seurat specific normalization (Butler
et al., 2018) and count-depth specific normalization (Bacher et al., 2017). The workflows
implement different data reduction and clustering methods. rCASC integrates four cluster-
ing tools (i.e. Seurat (Butler et al., 2018), SIMLR (Wang et al., 2017), griph (Serra et al.,
2019), and scanpy (Wolf, Angerer, and Theis, 2018), which differ in the metrics driving the
clustering analysis. In rCASC, we have implemented a cell stability score, which uses the
Jaccard index to estimate the stability of each cell in each cluster. The CSS provides an en-
hanced description of each cluster because it allows the identification of a subset of cells,
in any cluster, that are particularly sensitive to perturbation of the overall dataset structure
(i.e. cell bootstrapping). Specifically, we have implemented the clusterboot function from
the fpc R package (Hennig, 2013), which allows the evaluation of cluster stability using a
personalized clustering function. To the best of our knowledge, rCASC is the only workflow
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performing clustering in the presence of data perturbation (i.e. removal of a subset of cells),
and measuring cluster quality using the CSS and silhouette score (SS), a cluster quality met-
ric measuring the consistency within clusters of data. Gene feature selection approaches are
implemented in a different way in the five workflows. Granatum is the only one providing
biological inference. Granatum and Seurat implement various statistical methods to detect
cluster-specific gene signatures. rCASC embeds an ANOVA-like statistics derived from the
EdgeR Bioconductor package (Robinson, McCarthy, and Smyth, 2010) and Seurat/SIMLR
gene prioritization procedures. Visualization of gene signatures by heat map, with cells col-
ored on the basis of gene expression, is only provided by rCASC. Considering reproducibil-
ity, only rCASC provides both computational and functional reproducibility. Finally, rCASC
is the only one providing both a command line interface and GUI.

FIGURE 3.5: rCASC graphical interface within 4seqGUI.
.
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FIGURE 3.6: Comparison of analysis features available in rCASC vs
other single-cell analysis workflows (simpleSingleCell, Granatum, Scell,

Seurat). Y = yes; - = not present.
.
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3.5.3 rMLSC

The purpose of rMLSC workflow is to exploit machine learning approaches to mainly im-
prove the biological interpretation of the clusters obtained by rCASC analysis, deriving a
set of gene signatures for each cluster. This task is performed by a classification algorithms
(e.g. Random Forest or Decision Tree) through the comparison of all the genes in the dataset
and their expression values, generating decision trees for each cluster. Then, exploration and
filtering of the trees through several methods allows the identification of a subset of genes
whose disposition in the decision trees is a reflection of a difference among the clusters. The
biological characterization of these signatures, both individually and compared among the
clusters, help the user for a deeper understanding of dataset composition as cellular types,
putative hierarchical lineage of the cells or differences in cells behaviour upon different con-
ditions.

The analysis of scRNA data based on the application of classification learning methods
is organized in five phases to identify s set of gene signatures for all the clusters (Figure 3.7).
In detail:

1. Phase 1: Pre-processing of input data

2. Phase 2: Machine learning classification analysis

3. Phase 3: Analysis of classification results

4. Phase 4: Exploration of the set of decision trees for each cluster

5. Phase 5: Derivation of gene signatures set

FIGURE 3.7: Machine learning workflow
.
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Phase 1: Pre-processing of input data

The machine learning analysis of scRNA data starts with a pre-processing R script able
to convert the output of rCASC pipeline in a proper input for classification algorithms. Gene
expression matrix, derived from a scRNA-seq experiment and sequenced with platforms as
10X Genomics or inDrop protocol, are often composed as spreadsheet format with columns
representing cells and rows representing genes. Each cell of the spreadsheet contains the
value associated with the expression of one gene in one cell.
We developed the R function, FromCountMatrixtoARFF (1), that takes as input two out-
puts of rCASC pipeline: the scRNA gene expression count matrix (a) and the association
cell-cluster file (b) (i.e. a tab-separated file with two columns indicating the cell barcode
identification and the associated cluster retrieved from rCASC analysis), the number of clus-
ters obtained (c), the percentage of instances in training (d) and test (e) and the number of
runs to perform in the classification analysis (h).

Algorithm 1 Creation of Training and Test files

1: procedure FROMCOUNTMATRIXTOARFF(a, b, c, d, e, h)
2: INPUT:
3: a = scRNA count matrix
4: b = Association cell-cluster file
5: c = Number of clusters
6: d = Percentage of instances in training
7: e = Percentage of instances in test
8: h = Number of runs
9: OUTPUT:

10: Training = {Trainingi}i=1,h
11: Test = { Testi}i=1,h
12: end procedure

FromCountMatrixtoARFF is able to convert the matrix in h training and test datasets (in
ARFF format) for each cluster (i.e. c), usable directly for the classification analysis.
FromCountMatrixtoARFF function randomly splits the matrix in two datasets that contain
respectively the d% (i.e. training set; default 70%) and e% (i.e. test set; default 30%) of
the cells (i.e. instances). The final ARFF files for training and test set are composed of an
upper list of all attributes genes and a bottom list where each cell is represented by a row
indicating the relative gene expression values separated by commas with last column indicat-
ing the belonging cluster (i.e. for training set) or a question mark (i.e. for test set). Since the
goal of the analysis is to find a signature able to differentiate one cluster against the others,
the last column of training set files will contain the label of the cluster to investigate in that
analysis (e.g. Clusteri=1) versus the others indicated as generic Clusterx, where x meanings
one cluster at time or the merge of other interested clusters.

For example, supposing to have a count matrix with 1000 cells clustered from rCASC in
three clusters distributed as following: Clusteri=1 200 cells, Clusteri=2 100 cells, Clusteri=3
700 cells, and want to perform the classification analysis 600 times for each cluster. Thus
starting from Clusteri=1, FromCountMatrixtoARFF function will create:

• Trainingh = 600 training inputs containing 650 cells (i.e. 70% of cells of clusterx where
x is equal to the merge of clusteri=2 and clusteri=3 cells) and 140 cells of clusteri=1
randomly choose every time. All the training input can display for each cell two labels:
clusteri=1 or clusterx.
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• Testh = 600 test inputs containing 240 cells (i.e. 30% of the total clusterx) and 60 cells
of clusteri=1, randomly choose. All the test input display a question mark in place of
cluster labels.

Phase 2: Machine learning classification analysis

In the second phase, WekaCaller bash script was developed to exploit Weka classification
algorithms (i.e. choose by the user) (Witten et al., 2016) on the generated set of ARFF
training and test input (2). WekaCaller calls in iterative way a classification algorithm using
standard Weka command line on each Trainingh and Trainingh files h times. The Weka
parameters setting are the main explained in the previous section "Classification analysis
through Weka tool". WekaCaller creates for each h run a folder that will contain: (i) summary
output of the classification with the relative decision tree of the specific h run as Figure 6.8,
(ii) a prediction file for test set with detailed results of classification for each instance (i.e.
correct/incorrect classification for each cell on the test set).

Algorithm 2 Classification analysis

1: procedure WEKACALLER(c, h, Training, Test)
2: INPUT:
3: c = Number of clusters
4: h = Number of runs
5: Training = { Trainingi}i=1,h
6: Test = { Testi}i=1,h
7: OUTPUT:
8: { summary }i=1,h
9: { prediction }i=1,h

10: end procedure

Resuming the previous example, WekaCaller will perform the analysis for h runs firstly
for Clusteri=1, then for Clusteri=2 and finally for Clusteri=3. As previously explained, starting
from Clusteri=1 classification, the model will be firstly trained with the training input (i.e.
known label cell-cluster) and then used to classify the cells in test input (i.e. unknown label
cell-cluster). Thus, each prediction file of Clusteri=1 will contain the classification of each
cell of test dataset that can return Clusteri=1 or Clusterx. Moreover, if h runs are performed
for each cluster, a total of h ∗ c trees and classification will be returned.

Phase 3: Analysis of classification results

To retrieve and summarize the results of the classification we developed ClassifierInvesti-
gator bash script.

For the task 1, ClassifierInvestigator takes as input the set of { prediction }i=1,h files
with the complete results of the classification for each clusteri and (i) count the percentage
of correct classifications; (ii) calculate the accuracy of the classifier as the total percentage of
cells of one cluster correctly classified among all the h runs (3).

Resuming the previous example, supposing to have 1000 total cells divided in three clus-
ters (e.g. 200 cells of Clusteri=1, 100 cells of Clusteri=2, 700 cells of Cluster i=1. The test set
input contains 300 cells (i.e. 60 cells for Cluster and 240 for Cluster 2 plus Cluster 3) and
for each cluster prediction = h files were generated. Starting with Clusteri=1, ClassifierIn-
vestigator takes as input all the prediction files and calculate singularly, for each of these,



3.5. Computational strategy to analyze scRNA-seq data 75

Algorithm 3 Analysis of the classification results

1: procedure CLASSIFIERINVESTIGATOR(c, prediction)
2: INPUT:
3: c = Number of clusters
4: { prediction }i=1,h
5: OUTPUT:
6: count= { counti}i=1,h
7: estimate = { estimatek}k=1,c
8: end procedure

the correct classification percentage.

Phase 4: Exploration of the set of decision trees for each cluster

For this phase purpose, we developed TreesExplorer tool (i.e. Phyton tool) able to parse
and explore all the trees generated from the classification algorithms.

Algorithm 4 Exploration of decision trees

1: procedure TREESEXPLORER(c, summary)
2: INPUT:
3: c = Number of clusters
4: { summary }i=1,h
5: OUTPUT:
6: {Level − gene }k=1,c
7: {Entropy }k=1,c
8: end procedure

In detail, Trees Explorer takes as input, for each cluster the folders containing all the
summary outputs generated from 2 (i.e. Figure 6.8), extracts and parses all the decision trees
returning {Level − gene }k=1,c file, for each cluster, with the list of genes and levels of trees
where they are present. Moreover, {Entropy }k=1,c files for each cluster are also reported
and contain the entropy values for each level of the trees. Entropy as it relates to information
theory, is a measure of the amount of the information being processed. A decision tree is
built top-down from a root node and involves partitioning the data into subsets that contain
instances belonging to the same class. Decision tree algorithms use an impurity measure,
such as entropy or Gini index to calculate the homogeneity of a dataset. For example, if the
dataset is completely homogeneous the entropy is zero otherwise if it is equally divided it
has entropy near to one. Trees Explorer is able to calculate the entropy measure for each tree
generated in the analysis.

Considering one tree, the entropy is calculated firstly for each node n of the tree (i.e.
starting from the root) with 3.1 equation where the entropy of the node is multiplied for the
number of positive example that fall into that node.

Hn = −pn ∗ log2(pn)− (1− pn) ∗ log2(1− pn) (3.1)

Then, when the entropies of all the nodes are calculated, the 3.2 is exploited to derive the
entropy of each level (l) as a weighted average of the entropy of nodes (n) at level l.
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Hl =

∑
n∈Nl

Hn ∗ |n|

∑
n∈Nl

|n| (3.2)

Phase 5: Derivation of gene signatures set

In the last phase, the set of gene signatures is derived.

Algorithm 5 Derivation of gene signatures

1: procedure SIGNATUREDISCOVER(Level − gene, Entropy, c)
2: INPUT:
3: {Level − gene }k=1,c
4: {Entropy }k=1,c
5: c = number of clusters
6: OPERATIONS:
7: Filter1 = threshold on entropy measure
8: Filter2 = threshold on the number of cells
9: OUTPUT:

10: {Level − gene− f iltered }k=1,c
11: end procedure

SignatureDiscover processes the {Level − gene }k=1,c files of the clusters, derived from
TreeExplorer (i.e. CSV file containing for each row, the gene and the level in which the gene
is found (i.e. from the root to the leaf nodes)) appling two different filters. The first filter
(Filter1) takes into account the {Entropy }k=1,c file where median of weighted entropy on
each level of the trees are reported. SignatureDiscover filters out all the levels whose entropy
value is under a median entropy threshold (i.e. Entropy threshold).

Then, SignatureDiscover calculates the percentage of cells expressing the genes in the
cluster under analysis, presented in Level − gene files. For this estimate, we considered a
gene as expressed in a cell if it has at least 3 UMIs assigned (Alessandri et al., 2019). Then,
the tool applies the Filter2 on the Level − gene files that is to retain only genes expressed
above a percentage threshold of cells. After filtering, the set of gene signatures derived are
compared among the clusters. In particular, in this task, the number of unique and putative
overlapping genes are researched and reported in a table format. Finally, we visualize the
resulted gene signatures on the basis of gene expression data exploiting the heatmap visual-
ization method in ggplots R package.
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3.6 Results

3.6.1 Analysis of single cell data using rCASC and rMLSC

rCASC/rMLSC were used to analyze the single-cell dataset from Pace et al., 2018. The
authors explored the role of histone methyltransferase Suv39h1 in murine CD8+ T cells ac-
tivated after Listeria monocytogenes infection. CD8+ T cells are T lymphocytes (a type of
white blood cell) that play a role in immune system when normal cells are infected (particu-
larly with viruses), damaged or when the presence of cancer cells is revealed. In geneal, after
the antigen recognition, naïve CD8+ T lymphocytes establish specific heritable transcription
programs that define progression to long-lasting memory cells or to short-lived effector cells.
Since it remains unclear how chromatin dynamics contributes to the control of gene expres-
sion programs, the authors explored the role of gene silencing by the histone methyltrans-
ferase Suv39h1. In murine CD8+ T cells activated after an infection, Suv39h1-dependent
trimethylation of histone H3 lysine 9 controls the expression of a set of stem cell-related
memory genes. When Suv39h1 is silenced in murine CD8+ T effector cells, a defect in si-
lencing of stem/memory genes is revealed. As a result, Suv39h1-defective CD8+ T cells
show sustained survival and increased long-term memory reprogramming capacity. Thus,
Suv39h1 plays a critical role in marking chromatin to silence stem/memory genes during
CD8+ T effector terminal differentiation. The single-cell sequencing dataset presented in
this paper is composed as described in Table 3.1. 11.918 cells were derived from WT and
KO-Suv39h1 mice distributed as following: for naive cells, they sequenced 2426 and 2372
cells from wild-type and Suv39h1-KO mice, respectively. Then, they processed two technical
replicates for both wild-type and Suv39h1-KO infected mice (approximately 3161 and 2293
cells, respectively) to retrieve WT CD8+ T cells and KO Suv39h1-defective CD8+ T cells,
respectively. Finally, an additional biological replicate (from different mice, 1005 wild-type
and 661 Suv39h1-defective CD8+ T cells) was used. The authors performed the experiment
firstly isolating immune cells by FACS 7 days after a Listeria monocytogenes infection and
then using Chromium single-cell RNA-seq kit for sequencing. Briefly, the initial step taking
place into the Chromium System consisted in performing an emulsion where individual cells
were isolated into droplets together with gel beads coated with unique primers bearing 10X
cell barcodes, UMI (unique molecular identifiers) and poly(dT) sequences. For a second
time, reverse transcription reactions were engaged to generate barcoded full-length cDNA
followed by the disruption of emulsions using the recovery agent and cDNA clean up. Global
Amplification of bulk cDNA was achieved using Applied Biosystems kit. From each cDNA
preparation, indexed libraries were constructed following these five steps: (1) fragmentation,
end repair and A-tailing; (2) size selection with SPRI select beads; (3) adaptor ligation; (4)
post-ligation cleanup with SPRI select beads; (5) sample index PCR and final cleanup with
SPRI select beads. Library quantification and quality assessment were achieved by Qubit
fluorometric assay (Invitrogen) and Bioanalyzer Agilent 2100 System using a High Sensi-
tivity DNA chip. At the end, indexed libraries were tested for quality, equimolarly pooled
and sequenced on an Illumina HiSeq2500 using paired-end 26x98 bp as sequencing mode,
using a full Rapid flow cell, with a coverage around 75M reads per sample. Approximately
500-1,000 cells were obtained corresponding to 86,000 reads/cell. Each pool of cells was
tested for library quality and concentration. CellRanger pipeline (10X Genomics company)
was used for demultiplexing of sequencing output and single cell count table generation.
For data analysis, they used Seurat pipeline (Butler et al., 2018) and retrieved four clus-
ters (Figure 3.8). The clusters were biologically identified using differential gene expression
analysis provided by Seurat in Naive cells, Memory precursors, Cycling cells and Effector
cells both for WT and KO mice. The scRNA-seq analysis revealed the alternative expression
of the memory precursors with stem cell–like properties and effector signatures in the two
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cell types, respectively, and the concomitant low or high expression of these two signatures
in the cycling cells. These results suggest that cycling cells may represent bipotent differ-
entiation intermediates expressing both effector and stem/memory potential. Furthermore,
the commitment to effector differentiation paths appears to be acquired by the silencing of
stem/memory genes (Figure 3.9 from Pace et al., 2018). Thus, the stem cell/memory gene
expression program is under the control of Suv39h1 by imposing the H3K9me3 modification
on chromatin at the corresponding loci. However, the identification of the four cell types
through single cell analysis performed by the authors is actually driven by a set of 24 im-
munological genes that are known in literature as involved in the commitment process of the
immune cells. Thus, any other gene, even not strictly related to immune functions, is inves-
tigated as putative contributor to the classification in the four cell types. Thus, to perform
an unbiased and more exhaustive identification of the dataset, we performed the entire single
cell analysis in two steps. The first step (Step 1) is performed with rCASC and is focused
on the identification of cell clusters and DEGs with a particular attention to the assessment
of cells and clusters stability. Then in the second step (Step 2) we investigate a new classi-
fication approach, rMLSC, based on machine learning techniques to identify clusters-gene
signatures, retrieved from the total set of genes available from the experiment of Pace et al.,
2018. The final goal is to improve the biological interpretation of the clusters picking new
putative hide information from the whole dataset.

FIGURE 3.8: Heatmaps of 24 genes identified by the authors as repre-
sentative of the four clusters. For each subset category (Naive, Memory
Precursor, Effector and Cycling cells) a signature of 6 genes is identified
as representative. Columns represent cells; rows represent genes; Litt. (i.e.
wildtype mice); Suv39h1 KO (i.e. knockout mice). (Figure from Pace et al.,

2018)

3.6.2 Step 1: Clusters derivation of Pace et al., 2018 dataset by rCASC

The entire dataset of Pace et al., 2018 was analyzed with rCASC starting from the function
cellrangerCount using Mus musculus genome assembly GRCm38 (mm10) genome as refer-
ence to generate the count table. With the pre-processing tools of rCASC, we have performed
the following steps: inspecting the dataset with genesUmi and mitoRibouMI functions to plot
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FIGURE 3.9: Working model depicting the pivotal role of Suv39h1 dur-
ing CD8 + T cell lineage differentiation and commitment. After prim-
ing, cycling CD8+ T lymphocytes reprogram both self-renewing and effector
gene expression profiles. Cycling cells may represent bipotent intermediates,
which would then repress either the effector or stem cell/memory programs
while they differentiate to memory precursors or effectors, respectively. The
silencing of the stem cell/memory gene expression program is under the con-
trol of Suv39h1 by imposing the H3K9me3 modification on chromatin at the

corresponding loci. (Figure from Pace et al., 2018)

TABLE 3.1: Distribution of cells in each subset category from scRNA-seq
experiment of Pace et al., 2018.

Type of cell WT mice KO mice Technical Replicate Biological Replicate
WT Naive (N) 2426 - - -

KO Naive
Suv39h1-defective (Nd) - 2372 - -
WT CD8+ T cells (NA) - - 3161 1005

KO CD8+ T cells
Suv39h1-defective (NdA) - - 2293 661

the number of detected genes with respect to the number of UMI and to calculates the per-
centage of mitochondrial and ribosomal genes (Figure 3.10 and 3.11). WT naive (N) and KO
naive (Nd) showed similar number of called genes (around 150-200 genes) with respect to
the total number of UMIs/reads mapped on each cell in log10 format, while WT CD8+ T
cells (NA) and KO Suv39h1-defective CD8+ T cells (NdA) showed higher number of called
genes Figure 3.10. In Figure 3.11 the percentage of mitochondrial genes with respect to
the percentage of ribosomal genes is plotted. WT naive (N) and KO naive (Nd) black and
green cells were probably low informative cells composed of few genes and mainly riboso-
mal/mitochondrial. While WT CD8+ T cells (NA) and KO Suv39h1-defective CD8+ T cells
(NdA) are also composed of cells with genes number included among 250 and 1000 (i.e. yel-
low and red cells). Moreover, we annotated the counts table and removing the ribosomal and
mitochondrial genes with scannobyGtf function, selecting from the total genes (i.e. 27.785)
the most variant 10K genes for the analysis. Thus, to summarize we removed all the cells
with:

• more than 20% of mitochondrial genes

• less than 20% of ribosomal genes

• less than 100 called genes

From the 11.918 cells dataset, after filtering the following number of cells were present:

• WT naive (N): 2010

• KO naive (Nd): 1890

• WT CD8+ T cells (NA): 422

• KO Suv39h1-defective CD8+ T cells (NdA): 1636
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FIGURE 3.10: Number of detected genes plotted for each cell with re-
spect to the total number of UMI/reads in that cell.

FIGURE 3.11: Percentage of mitochondrial protein genes plotted with
respect to percentage of ribosomal protein genes. Cells are colored on

the basis of total number detected genes.

From the 11.918 cells dataset, 400 cells for the four conditions were randomly selected
to obtain a final dataset of 1600 cells. The choice of 400 number was dictate to uniform the
entire dataset to the group with the minimum number of cells (i.e. WT CD8+ T cells (NA)).
Moreover, for these cells we select the 10K most variant genes for the analysis and retained
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the top 5000 expressed out of top variant genes.

For the clustering phase, we used nClusterEvaluationSIMLR function to detect a range
of k number of clusters to be used for data partitioning (5-7 clusters). k=5 was the most
represented data organization ( Additional Figure 6.9). The range of k clusters detected using
nClusterEvaluationSIMLR was then investigated with SIMLR. SIMLR was run for each k
of the k-range defined with griph tool and we also evaluated the cell stability in each cluster
with simlrBootstrap. 160 bootstraps were performed in which 10% of the cells was randomly
removed from the initial data set. To understand how subgroups were organized in the various
clusters and if there was any cluster showing asimmetry between WT CD8+ T cells (NA)
and KO Suv39h1-defective CD8+ T cells (NdA), we investigated the cells composition of
the different 5-7 partitions (Table 3.2, 3.3 and 3.4). Both in five clusters composition and in
6 clusters composition, there was a cluster where NA (WT) and NdA (KO) were in the same
proportion (cluster 2 in 3.2, cluster 1 in 3.3). However, there was also one cluster in which
NdA (KO) were more than NA (WT) (cluster 4 in 3.2, cluster 2 in 3.3) and one in which
there was the opposite of the latter (cluster 5 in 3.2, cluster 4 in 3.3). The composition in 7
clusters showed totally different situation with naive cells (N and Nd) spread in three clusters
with similar proportion

TABLE 3.2: Distribution of cells in the 5 clusters

Cluster N cells (WT) Nd cells (KO) NA (WT) NdA (KO) Total
C1 249 218 2 0 469
C2 0 0 182 141 323
C3 150 182 7 0 339
C4 0 0 96 173 269
C5 1 0 113 86 200

TABLE 3.3: Distribution of cells in the 6 clusters

Cluster N cells (WT) Nd cells (KO) NA (WT) NdA (KO) Total
C1 0 0 188 143 331
C2 0 0 96 172 268
C3 20 12 9 0 41
C4 1 0 107 84 192
C5 246 240 0 1 486
C6 133 148 0 0 281

TABLE 3.4: Distribution of cells in the 7 clusters

Cluster N cells (WT) Nd cells (KO) NA (WT) NdA (KO) Total
C1 0 0 83 132 215
C2 0 0 120 120 240
C3 1 0 93 65 159
C4 20 6 17 13 56
C5 133 149 0 0 282
C6 246 245 0 0 491
C7 0 0 87 70 157

CSS violin plot (Figure 3.12) shows that the mean stability for k=5 (CSS ~0.83) is slightly
higher than the others ks with CSS ~0.81 and ~0.82, respectively. Thus, Clusters k=6 and
k=7 did not represent the most stable organizations in terms of CSS. Moreover, even if their
CSS were near k=5, in any case they were not the most frequent organizations observed in
nClusterEvaluationSIMLR analysis (Additional Figure 6.9 in Supplementary Material 6).

Since the best CSS is observed in k=5, we explored these clusters. Referring to the Table
3.2, all the clusters are quite homogeneous with cluster 1 composed of Naive cells equally
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FIGURE 3.12: Cell stability score detected by simlrBootstrap. The mean
stability for k=5 (CSS 0.83) is higher than k=6 and k=7 with CSS 0.81 and

0.82, respectively.

distributed among WT and KO (53% and 46% respectively); clusters 2,4 and 5 are composed
of WT and KO CD8+ T cells (56% and 44% for cluster 2, 36% and 64% for cluster 4, 56%
and 43% for cluster 5 respectively). However, cluster 3 is mixed containing 44% Naive WT
and 54% KO but also 2% CD8+ T cells WT (NA).
In Figure 3.13 clusters 1, 2, 4 and 5 show a quite good stability, since cells stay in these
clusters between 75 to 100% of the bootstraps. While, cluster 3 is characterized by a lower
CSS (50-75%) and it is possible that this cluster contains cells localized at the boundaries of
clusters 1 (Figure 3.13). Figure 3.14 reports in a different graphical way the stability of the
single cells, coloured on the basis of their Stability Score and on cellular labels type. Finally,
the plot of Figure 3.15, shows the genes detectable in each cell in function of the total number
of reads/cell. In this plot cells are colored with the same color of their belonging cluster.

This plot is useful to observe if the clustering is biased by the number of genes called in
each cluster. In this specific example, only the violet cluster is characterized by a number of
detected genes larger of those detectable in the other clusters. To detect the genes playing
the major role in clusters formation, we used anovaLike function (adjusted p-value < 0.05;
logFC threshold: 0.5) and we identified a total of 583 differentially expressed genes. As
reported in Table 3.2, cluster 1 and 3 were mainly composed of cells already labeled from
sequencing as Naive WT (N) and KO (Nd) and a total of 225 DEGs for the two clusters were
identified. Then, the analysis of DEGs was focused on the remaining clusters (cluster 2,4
and 5) classified overall as WT CD8+ T cells (NA) and KO Suv39h1-defective CD8+ T cells
(NdA). In detail, we compared cluster 2 and cluster 4, cluster 2 and cluster 5, cluster 4 and
cluster 5 and select differentially expressed genes (DEGs) for each comparison.

As reported in Figure 3.16, cluster 2 vs cluster 4 showed two DEGs (Gpx4, Cks1b), where
Cks1b is unique and has function in cell cycle (Figure 3.16, blue circle). Gpx4 is in common
among the three comparison and is also known as glutathione peroxidase 4, which catalyze
the reduction of hydrogen peroxide, organic hydroperoxides and lipid hydroperoxides, and
thereby protect cells against oxidative damage. Cluster 5 vs cluster 2 showed in total 255
DEGs with 31 genes unique (Figure 3.16, red circle). Enrichment analysis of the 255 DEGS
revelead that these genes are involved in DNA metabolic process, DNA replication, G1/S
transition of mitotic cell cycle, DNA-dependent DNA replication and nucleotide-excision
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FIGURE 3.13: CSS of the 5 clusters obtained with SIMLR. N: WT naive;
Nd: KO naive; NA: WT CD8+ T cells; NdA: KO Suv39h1-defective CD8+
T cells. Clusters 1, 2, 4 and 5 show a quite good stability (75 to 100% of the

bootstraps). While, cluster 3 is characterized by a lower CSS (50-75%).

FIGURE 3.14: Cells are colored on the basis of their Stability Score (left)
and cellular types (right).

repair (Figure 3.17).
Finally, the comparison among cluster 4 and cluster 5 identified 326 DEGs of which one,

Gpx4, in common with all and 223 in common with cluster 5 vs 4 and 102 unique genes
(Figure 3.16, green circle and Figure 3.18). Also for this comparison, enrichment analysis
revealed genes implicated in DNA processing and cell cycle.

Finally, we compared the differential expression for cluster 5 vs 2 and cluster 5 vs 4.
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FIGURE 3.15: Genes versus UMI counts. The plot shows the genes de-
tectable in each cell in function of the total number of reads/cell. The cells

are colored on the basis of their belonging cluster.

FIGURE 3.16: Comparison of DEGs among cluster 2,4 and 5. Blue circle:
comparison of cluster 2 vs 4. Red circle: comparison of cluster 5 vs 2. Green
circle: comparison cluster 5 vs 4. Intersections among circles indicate the

DEGs shared among the comparison.

As reported in Figure 3.19, cluster 2 and 4 are very similar since the two clusters linearly
correlate with their differential expression with respect to cluster 5.

3.6.3 Step 2: Gene signatures identification of Pace et al. dataset by rMLSC

The results of rCASC pipeline (i.e. association cells-clusters) were used as input for the
machine learning analysis based on classification algorithms (Witten et al., 2016).
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FIGURE 3.17: Enrichment analysis of the 255 DEGs in comparison clus-
ter 5 vs cluster 2

FIGURE 3.18: Enrichment analysis of the 326 DEGs in comparison clus-
ter 5 vs cluster 4

FIGURE 3.19: Comparison of the differential expression for cluster 5
vs cluster 2 and cluster 5 vs cluster 4. Cluster 2 and 4 are very similar
since the two clusters linearly correlate with their differential expression with

respect to cluster 5.

For the Phase 1 (i.e. input data pre-processing phase) we used FromCountMatrixtoARFF
function to generate the ARFF files divided in Training and Test, with 70% and 30% of
the cells randomly chosen, respectively. In Table 3.5 are reported the composition in terms
of number of cells of the two input files (Training and Test). For cluster 1, Training was
composed of 328 cells of cluster 1 and 792 cells of cluster x (i.e. merge of all the other
clusters), representing 70% of instances, respectively. While the Test was composed of 141
and 339 cells belonging to cluster 1 and cluster x, respectively. The final number of cells was
1120 and 480 cells for Training file and Test, respectively. Respecting the same criteria, we
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generated 600 Training and 600 Test files for the other clusters (i.e. cluster 2,3,4,5). The final
number of cells was 1050 and 450 cells for Training file and Test of cluster 2, 1120 and 480
cells for Training file and Test of cluster 3, 4 and 5, respectively.

TABLE 3.5: Composition of Training and Test files

Cluster Composition Training (70%) Test (30%)

C1
C1: 469 328 141

CX=C2+C3+C4+C5: 1131 792 339
Total 1120 480

C2
C2: 323 226 97

CX=C1+C3+C4+C5: 1177 824 353
Total 1050 450

C3
C3: 339 237 102

CX=C1+C2+C4+C5: 1261 883 378
Total 1120 480

C4
C4: 269 188 81

CX=C1+C2+C3+C5: 1331 932 399
Total 1120 480

C5
C5: 200 140 60

CX=C1+C2+C3+C4: 1400 980 420
Total 1120 480

For the Phase 2 (i.e. machine learning classification analysis) we used WekaCaller to
perform the classification analysis using Random Forest algorithm performing 600 iterations
for each cluster and using default parameters.
After the classification analysis we explored the results in the Phase 3 through ClassifierIn-
vestigator tool that is able to summarize the results of the classification for all the clusters.

TABLE 3.6: Classification performance of Random Forest on dataset of
Pace et al., 2018

Cluster Number of cells in the cluster Number of cells in Test set Average Accuracy
C1 469 141 71%
C2 323 97 74%
C3 339 102 64%
C4 269 81 75%
C5 200 60 89%

The overall performance of the classifier was good in all the clusters (Table 3.6). The
maximum percentage of correct classification (89%) was obtained for cluster 5 with 32.040
out of 36.000 cells correctly classified in all the 600 runs. In cluster 4 36.450 out of 48.600
cells (75%), in cluster 2 43.068 out of 58.200 cells (74%) and in cluster 1 60.066 out of
84.600 (71%) were correctly classified. The lower performance of classification regards the
cluster 3 with 39.168 out of 61.200 (64%) correctly classified. Remarkable, cluster 3 was the
only cluster with a CSS ranging from 50% and 75% (Figure 3.13).

For the Phase 4, TreesExplorer tool was used to extract and parse the trees generated
from phase 2. In Figure 3.20 is reported the plots of entropy calculated by TreesExplorer in
the 600 trees of each of the 5 clusters. In all the clusters the entropy decreases as the number
of levels increases due to the continuous splitting of the dataset in partitions such that each
partition contains the highest number of cells belonging to the same cluster. Considering all
the plots in Figure 3.20, the first levels contain the genes whose expression values allow us to
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partition the highest number of cells in the same cluster. Then, the coloured traces reach an
elbow point where entropy is near the minimum value meaning that in these levels the further
splitting of partitions is due to genes whose information to cell-cluster classification is lower.

In Table 3.7 is reported, for each cluster, the total number of levels available and the total
number of unique genes retrieved from the performed 600 runs. Despite the number of levels
among cluster 1 and 3 is quite near (i.e. 40 and 31 levels, see also Figure 3.20), cluster 2,
4 and 5 show instead a decrease in the number of levels, 25, 29 and 14 respectively (Table
3.7 and Figure 3.20. Concerning the number of genes, cluster 1 to 4 display on average 3187
unique genes. Cluster 5 in particular shows the smallest number of levels (i.e. 14) and unique
genes (i.e. 1881).
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FIGURE 3.20: Entropy plots for all the clusters. Trees of the cluster are
represented by 600 traces coloured with different colours. x axis represents
the depth (i.e. levels) reached by each tree and y axis represent the weighted

entropy.

TABLE 3.7: Number of levels and genes retrieved from the 600 trees in
each cluster

Cluster Number of levels Number of genes
C1 40 3484
C2 25 3049
C3 31 3092
C4 29 3126
C5 14 1881

Last phase of the rMLSC workflow is dedicated to find the final set of gene signatures. To
find signatures most informative as possible, we used SignatureDiscover function to select
the Entropy threshold that allow us to choose how many levels of the trees (and the conse-
quent number of genes) retain in the further analysis. Thus, we plotted the median of the
entropy values for each level in each cluster (Figure 3.21). To adapt the chose of the Entropy
threshold to all the clusters, we set Entropy threshold equal to 0.1 weighted entropy (Filter
1), since this is the maximum entropy value beyond which considering more gene levels re-
sults in any further useful information to derive the gene signatures. The number of genes
and levels retained after Entropy threshold is reported in Table 3.8, Filter 1. The maximum
decrease regarding levels affected cluster 1 (i.e. from 40 to 16 levels), while regarding genes,
456 genes were filtered out from cluster 5. The minimum number of genes filtered out is
242 genes of cluster 4, while only 11 levels of cluster 5 were removed (Table 3.8, Filter 1).
Overall for all clusters, the number of levels is decreased less than half, while the number of
genes is decreased on average of 300 genes (Table 3.8, Filter 1).

SignatureDiscover also calculates, for each gene present in the levels of the trees of
clusters, the percentage of cells expressing that gene in the cluster under analysis. This allow
the user to understand the proportion of genes retrieved from the levels of the tree that are
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FIGURE 3.21: Boxplots for clusters 1,2,3,4 and 5. x axis represents the
depth (i.e. levels) reached by each tree and y axis represent the weighted

entropy. Each boxplot refers to the entropy of the single level.

actually expressed in the cells of the clusters ranging from 0 to 100%. In this case, we
considered only the genes expressed in at least 70% of cells of the belonging cluster in order
to obtain informative signatures (Filter 2). Applying this filter allow a further skimming of
the genes in the signatures with a consistent reduction. As it is shown in Table 3.8, with the
second filter we reduced further the number of genes to the final signatures composed of 15
genes for cluster 1, 71 for cluster 2, 9 for cluster 3, 41 for cluster 4 and 151 for cluster 5.
Table 3.9 shows the gene names of the signatures associated with each cluster.

TABLE 3.8: Number of levels and genes after the EntropyCutting (Filter
1) and gene presence in the clusters (Filter 2)

Original number Filter 1 Filter 2
Cluster Levels Genes Levels Genes Genes

C1 40 3484 16 3187 15
C2 25 3049 9 2767 71
C3 31 3092 12 2755 9
C4 29 3126 11 2884 41
C5 14 1881 3 1425 151
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TABLE 3.9: Gene signatures for all the clusters
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Exploration of gene signatures The machine learning approach (i.e. rMLSC) allowed
us to derive for each cluster a set of genes that together should better characterize the cells
grouped in one cluster. We user Enrichr web tool (Kuleshov et al., 2016) to perform an
enrichment analysis of the gene signatures characterizing each set for molecular function
(Figure 3.22).As showed in Table 3.9, cluster 1 and 3 are both composed of cells previously
labeled as Naive cells. Thus, as expected, they show the same genes in the signatures even if
with different numerousness (cluster 1: 15 genes, cluster 3: 9 genes). Genes of the signature
are enriched for metabolism activity that mainly involve NADH dehydrogenase activity (mt-
Nd4, mt-Nd1) and for cytoskeleton activity with actin involvement (Tmsb4x, Tmsb10, Actb).
However, the majority of genes are enriched for RNA and protein kinase binding (Eef1a1,
Tmsb4x, Rack1, Fau, Eef2,Tpt1, Actb) (Figure 3.22). The genes of cluster 2 signatures (71
genes) are enriched for immune function related to T cell receptor binding and CD4 receptor
binding (Lck, Cd3g). However, also genes involved in cytoskeleton activity are present as
actin filament and monomer binding (Actr3, Arpc2, Arpc1b, Tmsb4x, Cfl1, Abracl, Lsp1,
Fxyd5, Coro1a) and tropomyosin binding (Pycard, S100a6) and genes of apoptotic process
(Pycard, Rack1). Signature of cluster 4 contains 41 genes enriched for actin monomer bind-
ing (Arpc2, Arpc1b, Tmsb4x, Cfl1, Lsp1, Coro1a, Tmsb10 ), calcium signaling and (insitol
trisphosphate kinase activity, Calm1) and phospholipid metabolism (phospholipase activator,
lipase activator, GDP activity). Finally, genes of the cluster 5 signature (151 genes) are en-
riched, as cluster 2, for function in T cell receptor binding (Lck, Cd3g, Cd3e), functions in
chain elongation during polypeptide synthesis at the ribosome (Eif5a,Eef1a1, Eef1b2,Eef1g).
As for cluster 1 and 3, genes of cluster 5 signature are also involved in NADH deidrogenase
activity (mt-Nd4, Ndufb7, Ndufa4, mt-Nd2, mt-Nd1). Overall,the enrichment analysis re-
vealed that signatures are enriched mainly for basic cells activity spanning from cytoskeleton
to metabolism. However, cluster 2 and 5 genes also shared function related to immune sys-
tem, in particular to T cell receptor activity.

Cluster 4 Cluster 5 

Cluster 2 Cluster 1
Cluster 3 

FIGURE 3.22: Enrichment analysis of gene signatures for molecular
function.

To better explore the gene signatures and discover how many genes were unique or shared
among the clusters, we generate an upset plot shown in Figure 3.23. Each column corre-
sponds to a set, and each row corresponds to one cluster. Cells are either empty (light-gray),
indicating that this set is not part of that intersection, or filled, showing that the set is partici-
pating in the intersection.
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FIGURE 3.23: Upset plot of the 5 gene signatures. At the top of each bar
is reported the number of genes unique/shared of the clusters. In the Bottom
left corner it is reported the size of signature. Black dots indicate the cluster

among which genes are shared.

The first row in the figure corresponds to cluster 3 that shared 8 genes (Actb,B2m, Eef1a1,
Fau, mt-Cytb, mt-Nd1, Tmsb4x, Tpt1) with all the clusters (Figure 3.23 and Table 3.10).
Gene enrichment analysis and literature research of this set of genes revealed association
with cellular metabolism and regulation of cells cytoskeleton,functions that are conserved in
all the cell types. Cluster 3 shared also one gene, Tmsb10, with cluster 1,4 and 5 that plays
an important role in the organization of the cytoskeleton (Figure 3.23 and Table 3.10). Clus-
ter 1 shares 5 genes (Cd52,Cd8b1,Eef2,H2-D1,Rack1) with cluster 2, 4 and 5 (Figure 3.23
and Table 3.10). Cd8b1 and H2-D1 are genes involved in the mechanism of T cell recep-
tor interaction with antigen-bearing MHC Class I and antigen processing and presentation
mechanism (i.e. typical functions of Naive T cells that are considered mature but , unlike
activated or memory T cells, have not encountered its cognate antigen within the periph-
ery). While Cd52, Eef2 and Rack1 are genes coding for proteins related to synthesis and
post-translational modification of proteins. Cluster 1 shared also one mytochondrial gene,
mt-Nd4, with cluster 2 and 5. Cluster 2 had two unique genes, Shisa5 and Ms4a6b (Figure
3.23 and Table 3.10). The first plays a role in p53/TP53-dependent apoptosis, while the sec-
ond may be involved in signal transduction as a component of a multimeric receptor complex.
Moreover, cluster 2 shares 27 genes with clusters 4 and 5 and other 28 genes only with cluster
5 (Figure 3.23 and Table 3.10). The set of 27 genes is enriched for Prostaglandin Synthe-
sis and Regulation (S100A6 S100A10 genes), Macrophage markers (RAC2 gene), Microglia
Pathogen Phagocytosis Pathway (ARPC1B, RAC2 genes), EBV signaling (Ccl5 gene), Fc
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gamma R-mediated phagocytosis (ARPC2, ARPC1B, CFL1, RAC2 genes), Chemokine sig-
naling pathway (CCL5 and RAC2 genes) and G13 Signaling Pathway (i.e. G13 regulates
actin cytoskeletal remodeling)(ARHGDIB,CFL1,CALM1 genes). The first mechanisms are
functions related to active immune cells whose function is immuno-surveillance and defense
against pathogens while the latter is more related to cell migration functions. Finally, cluster
2 shared 28 genes only with cluster 5 (Figure 3.23 and Table 3.10). Looking more inside
this set revealed gene functions related to IL-3 Signaling Pathway (CDC42 and LCK genes),
Oxidative Stress (CYBA gene), Inflammatory Response Pathway (LCK gene), p38 MAPK
Signaling Pathway (CDC42 gene), Microglia Pathogen Phagocytosis Pathway (CYBA gene)
but also Necroptosis (PYCARD, FTL1, FTH1, SLC25A5, PPIA genes), Salmonella infection
(CDC42,PYCARD,PFN1 genes), Ferroptosis (FTL1, FTH1 genes), T cell receptor signaling
pathway (CDC42, LCK, CD3G genes) and Leukocyte transendothelial migration (CDC42,
CYBA, MYL12A genes). Finally cluster 5 shows 81 unique genes in the signature that are
related to T-cell Apoptosis (PTPRC,CD3E,LAT genes), Granzyme A mediated Apoptosis
(GZMA,HMGB2 genes), Initiation of TCR Activation (PTPRC,CD3E genes) and Antigen
Processing and Presentation (PSMB8 gene)(Figure 3.23 and Table 3.10).

We then plotted the expression values of gene signatures on the basis of the results ob-
tained by the upset plot. Figure 3.24 shows the heatmap in which columns represent cells
grouped on the belonging cluster (cluster 1: red, cluster 2: yellow, cluster 3: green, cluster 4:
blue, cluster 5 violet) while rows contain genes grouped in 8 blocks (i.e. see Figure 3.23 and
Table 3.10) with different color-label.

The first block in green water is composed of the 81 genes unique of cluster 5. Then, the
second pink block is composed of the 28 genes shared between cluster 2 and 5. The third
in blue contains 27 genes shared among cluster 4,2 and 5. Then, the 8 genes shared among
all clusters have orange label. Yellow block is composed of 5 genes shared among cluster
1,4,2 and 5. Then the two genes unique of cluster two have light Blue label. Finally, green
label belongs to one gene shared among cluster 1,3,4 and 5 and red label to one gene shared
among cluster 1,2 and 5.

Starting from the first gene, mt-Nd4 (i.e. bottom of the Heatmap, in red, contained in
the signature of cluster 1,2 and 5) shows high expression level in all the cells of clusters 5
and lower expression in cells of cluster 1 and 2. Tmsb10 gene (green block, shared among
all cluster except for cluster 2) expression is opposite inside the cells of cluster 1,3,4 and 5.
Indeed, cluster 1 show about 60% of cells with lowest and about 40% with the highest expres-
sion. The same proportion is present also in the other clusters. Further analysis showed that
the cells with high expression of Tmsb10 are KO cells for Suv39h1 reflecting the possibility
that the function of this gene (i.e. organization of the cytoskeleton) is request when Suv39h1
is silenced. Ms4a6b and Shisa5 (ligh blue block) are genes present uniquely in cluster 2
signature and they show in it the highest expression with respect to other clusters. Yellow
block is composed of 5 genes (Cd52,Cd8b1,Eef2,H2-D1,Rack1) with heterogeneous expres-
sion among clusters with highest levels in cells of cluster 4 and 5 cells with respect to 1 and 3.
Orange block is composed of 8 genes shared among the 5 clusters (Actb,B2m, Eef1a1, Fau,
mt-Cytb, mt-Nd1, Tmsb4x, Tpt1). mt-Cytb, mt-Nd1, Tpt1, and Eef1a1 are overexpressed
in cluster 1,2 and 5 while cluster 3 and 4 show lowest expression. Particularly for cluster 3,
KO cells show higher expression with respect to WT cells. This is probably due to a ma-
jor involvement of these genes in absence of Suv39h1 gene. For the remaining four genes
(Actb,B2m, Fau and Tmsb4x) the situation is opposite. Indeed, cluster 1 and 3 show lower
expression while cluster 2, 4 and 5 highest. However, also in this case, KO cells of cluster
1 and 3 show high expression of Fau gene with respect to WT cells. Blue and violet blocks
contain the 27 and 28 genes shared among cluster 2,4,5 and cluster 2 and 5, respectively and
showing similar behaviour. Indeed, genes of the two blocks are overexpressed in cluster 2, 4
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FIGURE 3.24: Heatmap of gene signatures based on Upset plot. Rows
representing genes organized as Upset plot results. Green water: 81 genes
unique of cluster 5. Pink: 28 genes shared between cluster 2 and 5. Blue:
27 genes shared among cluster 4,2 and 5. Orange: 8 genes shared among all
clusters. Yellow: 5 genes shared among cluster 1,4,2 and 5. Light Blue: Two
genes unique of cluster two. Green: one gene shared among cluster 3,1,4
and 5. Red: one gene shared among cluster 1,2 and 5. Columns represent
clusters: Cluster 1-red; Cluster 2-yellow; Cluster 3-green; Cluster 4-blue;

Cluster 5: violet.

and 5 while lower expression is detected in cluster 1 and 3. However, Uba52 gene belonging
to 27 genes (blue block) also shows a higher expression in KO cells of in cluster 1 and 3 with
respect to WT. In the pink block composed of 28 genes common in cluster 2 and 5, Ccl5
gene has a particular role in differentiating the cluster for its expression. This gene is is one
of several chemokine genes clustered on the q-arm of chromosome 17. Chemokines form a
superfamily of secreted proteins involved in immunoregulatory and inflammatory processes.
Cluster 1 and 3 cells as well as cluster 5 cells (both WT and KO) show lowest expression of
Ccl5 gene while cluster 2 and 4 show overexpression. Finally, 81 genes with green water la-
bel color are unique of cluster 5 and this is particularly reflected in their highest expression in
these cells. On the opposite part, cluster 1 and 3 show overall lower expression while cluster
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2 and 4 are more similar to cluster 5. Despite some differences in the expression of single
genes among WT and KO cells of the same cluster, the overall expression behaviour of the 8
gene blocks (81, 28,27,8,5,2,1,1) is concordant with the previous analysis where we showed
that cells of cluster 2,4 and 5 are mature immune cell types while cluster 1 and 3 gene signa-
tures displayed functions more related to naive immune cells. Indeed, cluster 1 (red) and 3
(green) show overall a lower expression of all the sets of genes, followed by cluster 4 (blue),
cluster 2 (yellow) and finally cluster 5 (violet).

To summarize and understand how the gene signatures are associated with the final cel-
lular types, we also performed an enrichment analysis using Enrichr of the set of gene sig-
natures (see Table 3.9). The results are shown in Figure 3.25. Cluster 1 and 3 contains the
same genes in the signature however the first has 6 genes more. Cluster 2, 4 and 5 have the
most robust set of gene signatures. Enrichr analysis showed that genes of the cluster 1 and 3
(i.e. Eef1A1, Cd52, mt-ND4, Tmsb4X, Rack1, Fau, B2m, Tmsb10, Actb, Tpt1 and mt-Nd1
genes) are particularly enriched for blood dendritic cells (i.e. antigen-presenting cells that ini-
tiate and direct adaptive immune responses), CD34+ cell (i.e. Hematopoietic stem cells with
CD34 marker on the surface) and T lymphocytes (See also Supplementary Materials, Figure
6.10 and 6.12). Cluster 2 gene signatures is enriched for CD4+ thymocyte (i.e. Arpc2, Lck,
Cd3g, Itm2b genes ), CD8+ T lymphocytes (i.e. Ms4a6b, Ms4a6b, Ms4a4b genes) and mast
cells (i.e. H3f3b, Rac2, Laptm5, Gzmb, Fxyd5 genes) (See also Supplementary Materials,
Figure 6.11). Cluster 4 genes are enriched for CD8+ T lymphocytes (i.e. CD8B1, MS4A4B
genes) that are cytotoxic T cells recognising peptides presented by MHC Class I molecules
and kill infected or malignant cells (See also Supplementary Materials, Figure 6.13). Finally,
cluster 5 genes are enriched as cluster 2 for CD4+ thymocyte (i.e. ARPC2, Lck, Gimap4,
CD3G, CD3E, Itm2b genes), B-cells positive for GL7 activation antigen (i.e. Btf3, Cox8A,
Ddx5, H3f3b, Ostf1, Cox5B, Cox7C ) and NK cells (i.e. Ndufb7, Atp5J, Atp5H, Atp5F1,
Cox5B, Cox6C, Cox5A, Atp5J2, Cox6B1) cells of the innate immune system that respond
quickly to a wide variety of pathological challenges (See also Supplementary Materials, Fig-
ure 6.14). From the last analysis we can conclude that each signature contains genes strictly
related to immune phenotype. Indeed, cluster 1 and 3 contain cells mainly developing from
stem cells originating in the bulk tissue (i.e. bone marrow) and differentiating in central
lymphoid tissues in an antigen-independent manner. Thus, cluster 1 and 3 cells are the
most probable precursors of cells contained in cluster 2,4 and 5. Indeed for the successive
antigen-dependent differentiation, cells undergo do positive/negative selection and migrate
into peripheral lymphoid tissues (i.e. lymph nodes, spleen, and mucosa-associated lymphoid
tissues) at sites where these cells can react with antigen and differentiate in lymphocytes T
CD4+ or CD8+ (cluster 2,4,5).

FIGURE 3.25: Enrichment analysis of gene signatures for cellular type.
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3.7 Discussion

Chapter 3 of this thesis was dedicated to develop a computational workflow able to improve
the biological characterisation and the analysis of data derived from single cell RNA se-
quencing. The workflow proposed is divided in two main steps. The first step is performed
by rCASC. The second by rMLSC. rCASC is a reproducible pipeline for scRNA-seq data
analysis, composed of several phases. rCASC allows to select clusters of cells exploiting
different clustering algorithm. rMLSC is a post-processing workflow that analyze rCASC
results in five phases, exploiting random forest approach, to derive sets of gene signatures for
each cluster who contribute is to improve the biological explanation of the clusters. rCASC
and rMLSC were tested on a single cell dataset presented in Pace et al., 2018 paper, com-
posed of immune cells derived from WT and KO for Suv29h1 mice. The analysis of rCASC
derived five clusters with stability score (CSS) ranging from 75% and 100% for more than a
half clusters. Then, rMLSC workflow was applied on rCASC results and we derived five sets
of gene signatures using random forest algorithm to build a cell-cluster classification model,
obtaining good average accuracy. We performed several enrichment analyses to explore the
genes from the molecular function and cell type point of view. We also investigated the num-
ber of genes unique and shared among the clusters highlighting which of these had the major
contribution in inter-cluster division as well as intra-cluster separation among WT and KO
cells. The final analysis of the five gene signatures supports the idea of an immune cell time-
line with cells belonging to cluster 1 and 3 as earlier precursors of more differentiated cells
belonging to cluster 2,4 and 5. Clusters 1 and 3 are more probably partially differentiated
cells of the bone marrow due to the presence of genes in the signature typical of precursors of
blood dendritic and CD34+ cell. Clusters 2 and 5 show genes typical of CD4+ immune cell
branch and NK cells while cluster 4 contains genes more CD8+ oriented. Thus, these findings
support the idea that cluster 2 is composed by cells belonging to CD4 Helper Lymphocytes
with the role of releasing cytokines and help in suppress or regulate immune responses. The
cells of cluster 4 are more related to CD8+ (cytotoxic) T cells functions (effector) that are
crucial for immune defence against intra-cellular pathogens, including viruses and bacteria,
and for tumour surveillance, while cluster 5 contains a mixture of CD4+ thymocyte and NK
cells. Pace et al., 2018 identified four specific immune cell types (i.e. Naive, Memory, Ef-
fector and Cycling cells) through a the state-of-art single cell pipeline, Seurat (Butler et al.,
2018). However, the identification of the four clusters by the authors was actually strongly
driven by the use of a set of 24 immunological genes that are known in literature as involved
in the commitment process of the immune cells (Figure 3.9). Thus, the construction and
the biological interpretation of the clusters, in this case, did not consider all other genes of
the cells. Indeed, the majority of the pipelines for single cell data analysis have as ultimate
step the derivation of Differentially Expressed Genes (DEGs), that are often few explana-
tory of the biological meanings and underestimate the real complexity of scRNA-seq data.
Our workflow has allowed a greater biological comprehension of the cells contained in the
dataset going further the ultimate derivation of DEGs of classical analysis pipelines. Finally,
the combination of the two approaches, rCASC and rMLSC, allows to correlate the obtained
results with the current biological evidences.
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TABLE 3.10: Comparison of gene signatures: Gene shared and unique
of the clusters
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Chapter 4

Characterization of a trend signature
for Multiple Sclerosis

4.1 Background

Multiple Sclerosis (MS) is a chronic and potentially highly disabling disease with consider-
able social impacts and economic consequences. In Europe it is the leading cause of non-
traumatic disabilities in young adults, since more than 700,000 EU people suffer from MS
(Dutta and Trapp, 2011).

Multiple sclerosis is an inflammatory autoimmune disease in which the patient’s immune
system reacts against itself by damaging CNS nerve cells - i.e. compromising the ability of
the neurons to send electrical signals - resulting in a progression of physical handicap until
complete paralysis within 25 years in more than 30% of patients (Trapp and Nave, 2008).

In literature four courses of MS are identified: Relapsing-Remitting MS (RRMS), Sec-
ondary Progressive MS (SPMS), Primary Progressive MS (PPMS), and Progressive Relaps-
ing MS (PRMS). Among them the RRMS is the most common course since it is diagnosed
in about 85% of MS cases. It is characterized by episodes of neurological dysfunction (i.e.
relapses) followed by a complete or partial recovery (i.e. remissions). Unfortunately, within
25 years RRMS usually changes to SPMS (in about 90% of cases) increasing the severity of
the disease. (Dutta and Trapp, 2011)

Despite the etiology of MS is unknown, researchers agree that also environmental fac-
tors can act as triggers of MS, leading to the inflammatory process in the Central Nervous
System (CNS). In particular, viruses may play a role in MS pathogenesis acting as such en-
vironmental triggers. Some studies linked MS with Epstein Barr Virus (EBV) infection due
to the presence of higher titers of EBV antibodies in MS patients compared to age-matched
controls (Virtanen, 2012).

Besides environmental factors, physiological factors also impact on the outcome of the
MS disease. In particular, pregnancy represents a period of immune tolerance for patients
that has important consequences on the relapse rate (Yamout and Alroughani, 2018). Indeed,
pregnancy condition seems to have beneficial effects on women patients which have been
associated with fewer relapses in RRMS. This process has been related with an increase in
a particular type of immune cells, the Regulatory T lymphocytes cells (Treg), which confers
fetal tolerance and thus shows a protective effect of pregnancy to patients (McCombe, 2018).

In the last two decades the advances in the understanding of the immune pathogenesis
of MS and the advent of Monoclonal Antibodies (mAb) allowed researchers to define novel
treatments against this disease. In particular mAb are powerful new tools to modify the course
of MS based on a molecular targeted approach. Indeed, they are potentially able to break the
immune cascade of events that brings to the autoimmune reaction causing the myelin loss.
Therefore, these treatments that include several mAbs such as Natalizumab, Rituximab, and
Alemtuzumab, constitute nowadays the most effective first and second line treatments in the
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therapy of MS (Clerico et al., 2017; Salzer et al., 2016; Guarnera, Bramanti, and Mazzon,
2017).

Moreover, when the first and second line treatments provide an inadequate response in
patients, daclizumab (DAC) treatment (Wynn et al., 2010) represented the only third line
treatment to be used as a valid alternative. Differently from the other mAbs, DAC is a hu-
manized monoclonal IgG1 antibody tailored against InterLeukin-2 Receptor (IL2R), thus
able to break the autoimmune reaction by suppressing the immune cells expansion.

The basic mechanism of MS is, however, not fully understood yet and, despite its promis-
ing results, in 2018 DAC was withdrawn from the EU marketing authorization process due
to the observation of twelve cases of patients who developed, after the beginning of the
treatment, serious immune-mediated adverse reactions at the level of the CNS, including en-
cephalitis and meningoencephalitis. More studies are needed to understand these effects as
well as to explain why women affected by MS seem to improve when they become pregnant
and during the pregnancy period. To improve our understanding of these process, we extend
the RRMS models presented in Pernice et al., 2018; Pennisi et al., 2013; Beccuti et al., 2018
proposing a new computational methodology to analyse the RRMS behaviour. Hence, we
firstly describe how the Extended Stochastic Symmetric Net (ESSN) formalism can be effi-
ciently used to derive a graphical and parametric description of the system under study. Then,
we show how the system of Ordinary Differential Equations (ODEs), that can be automat-
ically derived from an ESSN model, reproduces the disease dynamics and how uncertainty
and sensitivity analysis can be used to make more robust the results provided by the model.
Finally we tested the proposed methodology constructing a model which allows to represent
two different scenarios where the effect of the daclizumab administration is investigated and
the RRMS in pregnant women is considered.

4.2 Methods

In this section we provide an intuitive introduction to the formalism used to model and an-
alyze our case study. The Petri Nets formalism is firstly introduced, then a specific type of
high-level extension, called Stochastic Symmetric Net (SSN) (Chiola et al., 1993), is de-
scribed. After, the technique used to derive the qualitative properties of systems modelled
with this formalism is discussed showing how these results can be computed efficiently us-
ing a fluid approximation. Then a new extension of the SSN formalism, called ESSN, is
introduced to deal easily with more complex biological laws different by Mass Action one.
Finally, in the last part of this section we describe how the model sensitivity analysis can be
carried out using a sampling-based method.

Petri Nets and Stochastic Symmetric Net

Petri Nets (PNs) Marsan et al., 1995 and their extensions are well-known computational
and mathematical formalisms which provide a graphical intuitive and formal description of
the important features of the system under study. They allow the use of different analysis
techniques to derive the qualitative and quantitative properties of a system.

PNs are bipartite directed graphs with two types of nodes, namely places and transitions.
Places, correspond to state variables of the system and are graphically represented as circles.
For instance, in Figure 4.1 an example PN model is presented, where it is described i) the
Effector T cells (Teff) attack to the myelin sheaths due to the structure similarity of the
viral protein with myelin proteins, and ii) the Oligodentrocytes cells (ODC) recovery of the
lost myelin when the damage is not irreversible. Indeed, these events play a central role in
RRMS progression, and more details will be given in Sec. Model description. Here the Teff
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and ODC nodes are model places representing the Effector T cells and the Oligodentrocytes
cells, respectively.

Teff

TeffKillsODC

ODC: Mye 

TeffDeath

Remyelinization

FIGURE 4.1: Example of SSN. Example of SSN representing the Effector
T cells ( place on the top named as Teff) which damage the Oligodentrocytes
cells (place on the bottom named as ODC), and their partially recovery of
the lost myelin when the damage is not excessive. This is a sub net of the

SSN represented in Figure 4.2.

Differently, transitions correspond to the events that can induce a state change and are
graphically represented as boxes. Referring again to Figure 4.1, transitions are TeffDeath,
Remyelinization and TeffKillsODC which simulate the Teff death, the ODC recovery, and the
damages of the Teff over the ODC cells, respectively.

The arcs connecting places to transitions (and vice-versa) express the relation between
states and event occurrences. Places can contain tokens, drawn as black dots. The state of a
PN, called marking, is defined by the number of tokens in each place of the model.

The system evolution derives from the firing of enabled transitions, where a transition
is enabled if and only if each input place contains a number of tokens greater or equal than
a given threshold defined by the cardinality (multiplicity) of the corresponding input arc.
Thus, the firing of an enabled transition removes a fixed number of tokens from its input
places and adds a fixed number of tokens into its output places, according to the cardinality
of its input/output arcs.

Among the PN generalisations proposed in literature, SSNs Chiola et al., 1993 extend
PNs providing a more compact and readable representation of the system, thanks to the pos-
sibility of using tokens belonging to different classes and thus graphically represented in the
models as dots of different colors.

In SSNs each place p has an associated color domain (a data type) denoted cd(p) and each
token in a given place has an associated value defined by cd(p). Color domains are defined
by the Cartesian product of elementary types called color classes C = {C1, . . . , Cn}, so that
cd(p) = Ce1

1 × Ce2
2 × . . .× Cen

n where ei is the number of times Ci appears in cd(p). Color
classes are finite and disjoint sets. They can be ordered (in this case a successor function is
defined on the class, inducing a circular order among the elements in the class), and can be
partitioned into (static) subclasses (e.g Ci,j is the ith static subclass of the jth color class).

In the example model represented in Figure 4.1 the ODC color domain is defined by one
color class, the myelination levels of ODC cells, named Mye. This is divided into 5 static
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subclasses (i.e. Lmin, L1, L2, L3 and Lmax) so that myelination level ranges from an irre-
versible damage (Lmin, no myelination) to no damages (Lmax, full myelination). Similarly, a
color domain is associated with transitions and is defined as a set of typed variables, where
the variables are those appearing in the functions labeling the transition arcs and their types
are the color classes. For instance, the color domain of transition Remyelinization, repre-
senting the recovery of a ODC cell, is Mye and the variable characterizing its input arc is
l ∈ Mye.

An instance of a given transition t is an assignment of the transition variables to a specific
color of proper type. Hence, we use the notation 〈t, c〉 to denote an instance, where c is the
assignment, also called binding. Moreover, a guard can be used to define restrictions on the
allowed instances of a transition. A guard is a logical expression defined on the color domain
of the transition, and its terms, called basic predicates, allow (i) to compare colors assigned
to variables of the same type (x = y, x 6= y); (ii) to test whether a color element belongs to
a given static subclass (x ∈ Ci,j); (iii) to compare the static sub-classes of the colors assigned
to two variables (d(x) = d(y), d(x) 6= d(y)).

The marking of an SSN is defined by the number of colored tokens in each place. For
instance, a possible marking of the place DAC in Figure 4.1, is 500〈Lmax〉 corresponding to
500 ODC cells with a full myelination.

Each arc connecting a place p to a transition t, namely an input arc of t, is labeled with
an expression defined by the function I[p, t] : cd(t)→ Bag[cd(p)], where Bag[A] is the set
of multisets built on set A, and if b ∈ Bag[A] ∧ a ∈ A, b[a] denotes the multiplicity of a
in the multiset b. Similarly, each arc connecting a transition t to a place p, namely an output
arc of t, is denoted by the function O[p, t] : cd(t) → Bag[cd(p)]. Thus, the evaluation of
I[p, t] (resp. O[p, t]), given a legal binding of t, provides the multiset of colored tokens that
will be withdrawn from (input arc) or will be added to (output arc) the place connected to
that arc by the firing of such transition instance. Moreover, we denote with •t the set of input
places of the transition t and with t• the set of output places of t, i.e. •t := {p ∈ P| ∃ c ∈
cd(p) s.t. I[p, t](c′)[c] > 0} and t• := {p ∈ P| ∃ c ∈ cd(p) s.t. O[p, t](c′)[c] > 0}. In
details, a transition instance 〈t, c〉 is enabled and can fire in an marking m, iff: (1) its guard
evaluated on c is true; (2) for each place p we have that I[p, t](c) ≤ m(p), where ≤ is
the comparison operator among multisets. We use the notation E(t, m) to denote the set of
all instances of t enabled in marking m. The firing of the enabled transition instance 〈t, c〉
in m produces a new marking m′ such that, for each place p, we have m′(p) = m(p) +
O[p, t](c)− I[p, t](c).
In the SSNs, the firing time of an enabled transition instance 〈t, c〉 is sampled from a negative
exponential distribution whose rate is given by the function ω, i.e.

ω(t, c) =
{

ri condi(c) i = 1, . . . , n,
rn+1 otherwise,

where condi are boolean and mutually exclusive expressions comprising standard predicates
on the transition color instance. In this manner, the firing rate ri of a transition instance can
depend only on the static sub-classes of the objects assigned to the transition parameters and
on the comparison of variables of the same type. Thus, these stochastic firing delays, sam-
pled from a negative exponential distribution, permit to automatically derived the stochastic
process, i.e. a Continuous Time Markov Chain (CTMC), that describes the dynamics of the
SSN model. Specifically, the CTMC states are isomorphic to SSN markings and the state
changes correspond to the marking changes in the model.
Hereafter we recall the formal definition of SSN.
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Definition 1 (Stochastic Symmetric Net). An SSN is a nine-tuple:

NSSN = 〈P, T, C, I, O, cd, Θ, ω, m0〉

where

• P and T are two disjoint finite non empty sets (representing places and transitions
respectively).

• C = {C1, . . . , Cn} is the finite set of basic color classes.

• cd :
⊗n

i=1
⊗ei

j Cj
i is a function defining the color domain of each place and transition

(where ei ∈N is the number of occurrences of the class Ci); for places it is expressed
as Cartesian product of basic color classes, for transitions it is expressed as a list of
variables with their types. Observe that a place may contain undistinguished tokens
only or a transition may have no parameters, in this case their domain is neutral.

• I, O[p, t] : cd(t) → Bag[cd(p)] are the pre- and post- matrices, whose elements are
in the form of the arc functions defined above.

• Θ is the vector of guards and maps each element of T into a standard predicate (Θ(t)
may be the constant true, which is also a standard predicate).

• ω(t, c) is the function returning the rate of transition t assuming the firing of the in-
stance 〈t, c〉.

• m0 : P → Bag[cd(p)] is the initial marking, mapping each place p on a multiset on
cd(p).

Assuming that all the transitions of the SSN are characterized by a Mass Action law, the
intensity (also calles the transition speed) of 〈t, c〉 in marking m is defined as follows:

ϕ(m, t, c) = ω(t, c) ∏
〈p,c′〉| p∈•t ∧ c′∈cd(p)

m[p][c′]I[p,t](c)[c′] (4.1)

where m[p][c′] denotes the marking of place p for color c′.
In the literature, different techniques are proposed to solve (or analyse) the CTMC un-

derlying an SSN; in particular, in case of very complex models, the so-called deterministic
approach Kurtz, 1978 can be efficiently exploited. According to this, in Beccuti et al., 2015
we described how to derive a deterministic process, represented through a system of ODEs,
which well approximates the stochastic behavior of an SSN model. In particular for each
place p and possible color tuple c ∈ cd(p) we have the following ODE:

dxp,c(ν)

dν
= ∑

〈t′,c′〉∈E(t′,x(ν)) ∧ t′∈T
ϕ(x(ν), t′, c′)(L[p, t′](c′)[c]) (4.2)

where xp,c(ν) is the average number of tokens of color c in the place p at time ν, L[p, t′](c′)[c] =
O[p, t′](c′)[c]− I[p, t′](c′)[c], T is the set of transitions of the SSN, and E(t, x(ν)) the set
of the enabled instances of t in x(ν), i.e. the vector of the average number of tokens at time
ν for each place and possible color tuple. In this case eq. 4.1 becomes

ϕ(x(ν), t, c) = ω(t, c)∏
〈pj,c′〉| p∈•t ∧ c′∈cd(pj)

xpj,c′(ν)
I[pj,t](c′)[c]. (4.3)
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Extended Stochastic Symmetric Net

It is important to highlight that the reactions velocity can be defined by more complex laws
than Mass Action (MA), for instance Michaelis Menten and Hill kinetics. In Pernice et al.,
2019a the Extended Stochastic Petri Nets (ESPNs) formalism was presented to extend SPN
with general functions which make easier to model reactions with more complex biological
laws. Similarly here we propose a new formalism, called Extended Stochastic Symmetric
Net (ESSN), which extends the SSN exploiting the same ideas discussed in the proposal of
the ESPN formalism Pernice et al., 2019a.

In details, the set of transitions T is split in two subsets Tma and Tg. The former subset
contains all transitions which fire with a rate following a MA law. The latter includes instead
all the transitions whose random firing times have rates that are defined as general real func-
tions. Hence, we will refer to the transitions belonging to Tma as standard transitions and as
general transitions those in Tg. For instance, considering the Figure 4.1 again, the general
transition is graphically represented as black box and is that simulating the myelin damage,
i.e. TeffKillODC. In details, the function of the general transition is given in the Additional
File 1.

Definition 2 (Extended Stochastic Symmetric Net). An ESSN is a ten-tuple:

NESSN = 〈P, T, C, I, O, cd, Θ, ω, Ω, m0〉

where

• P, C, I, O, cd, Θ, m0 are defined as in SSN (see definition 1).

• T is the set of transitions and is defined as T = Tma ∪ Tg, with Tma ∩ Tg = ∅. Where
Tma = {t∗i }1≤i≤nTma

is the set of the nTma transitions whose speeds follow the MA law,
and Tg = {ti}1≤i≤nTg

is the set of the nTg transitions whose speeds are defined as
general functions.

• ω(t, c) is the rate of transition t ∈ Tma assuming the firing of the instance 〈t, c〉.

• Ω = { f〈t,c〉}t∈T∧c∈cd(t) is set grouping all the transition speeds ∀t ∈ T. In detail,
with t ∈ Tma then f〈t,c〉 = ϕ(·, t, c), where ϕ is defined in Eq. 4.1.

Similarly to what discussed in Sec. Petri Nets and Stochastic Symmetric Nets, let xp,c(ν) ∈
R+ be the continuous approximation of the number of tokens in place p and color c so that
the vector x(ν) ∈ RnP is the marking of the ESPN at time ν.
Let define x̂(ν) = x(ν)|•t as the subset of the marking x(ν) concerning only the input
places to the transition t. Given 〈t, c〉 at the time ν, with transition t ∈ T = Tma ∪ Tg ,
the firing of 〈t, c〉 will move tokens in state x〈p,c〉(ν) with speed F(x̂(ν), t, c, ν) defined as
follows:

F(x̂(ν), t, c, ν) :=

{
ϕ(x̂(ν), t, c), t ∈ Tma,
f〈t,c〉(x̂(ν), ν), t ∈ Tg,

(4.4)

f〈t,c〉 ∈ Ω(t, c)

where ϕ(x̂(ν), t, c) is defined as in Eq. 4.3. Observe that ϕ(x̂(ν), t, c) and f〈t,c〉(x̂(ν), ν) can
depend only on the marking of the input places of transition t at time ν.

Finally the ODE characterizing the p and color tuple c ∈ cd(p) is defined as:
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dxp,c(ν)

dν
= ∑
〈t′,c′〉∈E(t′,x(ν))

F(x̂(ν), t′, c′, ν)(L[p, t′](c′)[c])

= ∑
〈t′,c′〉∈E(t′,x(ν))
∧t′∈Tma

ϕ(x̂(ν), t′, c′)(L[p, t′](c′)[c])

+ ∑
〈t′,c′〉∈E(t′,x(ν))

∧t’∈Tg

f〈t′,c′〉(x̂(ν), ν)(L[p, t′](c′)[c]) (4.5)

where x̂(ν) = x(ν)|•t′ .

Sensitivity analysis

Sensitivity analysis is broadly used in computational modelling to study which parameters
affect mostly the variability of the outcomes produced by the model. Several approaches
are proposed in the literature to achieve this task, such as Pearson correlation coefficient
(CC) method (for linear relationships), Partial Rank Correlation Coefficient (PRCC) method
(for non-linear and monotonic relationships) or Fourier Amplitude Sensitivity Test (FAST)
method (for any non-linear relationships) Marino et al., 2008; Saltelli et al., 2005. In this
work we focus on a sampling-based method which combines Latin Hypercube Sampling
(LHS) McKay, Beckman, and Conover, 1979 with PRCC index. Practically LHS, a well-
known stratified sampling method, is adopted to generate samples of the model input vari-
ables. Then the model is run N times in a chosen interval: one for each generated input
variable sample combination. Finally PRCC between the generated input variables and the
obtained model outputs are evaluated on the same chosen interval. In this way PRCC anal-
ysis and corresponding significance tests (i.e significant p-value) are used to identify key
model parameters and to select time points which need an additional in-depth investigation.
Specifically, PRCC values close to 1 (-1) identify positive (negative) monotone relationships
between inputs and outputs; while the significance tests permit to discover those correlations
that are important, despite having relatively small PRCC values.

4.3 Model description

In this section we first describe how the healthy immune system achieves the immunosurveil-
lance. Then we focus on the pathogenesis correlated to MS, highlighting the roles of the
immune system cells, CNS cells, and EBV virus. Finally, we describe the structure of the
model dividing it into seven modules.

4.3.1 Healthy case

The immune system represents the entire compartment of cells leading the defense of the
human body against potentially damaging foreign molecules and pathogens with a highly
specific response to the encountered infectious agents. This specific response is conducted
by a stringent selection and maturation of the naive T lymphocytes in the lymphoid organs
(e.g. thymus), prior to exit in the periphery of the body as mature T lymphocytes cells. Con-
sequently to the pathogens entrance, the naive T lymphocytes become activated T lympho-
cytes by Antigens Presenting Cells (APCs) via the T Cell Receptor (TCR). The activated T
lymphocytes produce Interleukin-2 (IL2) an immunomodulating cytokine released for self-
stimulating in order to duplicate and propagate their actions, via the binding of IL2 to the
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receptor IL2R, located on the surface of the cells. Thanks to this bond, activated T lym-
phocytes undergo the clonal expansion process (i.e. lymphocytes multiplication). During
clonal expansion, a portion of the activated T lymphocytes are destined to become Effector
T lymphocytes cells (Teff) and others as Memory T lymphocytes cells (Tmem). Thanks to
the presence of Tmem cells, the responses to subsequent attacks from the same pathogen are
faster and greater than the first one. Since the response of Teff is reversed when no longer
needed, the Treg - response T lymphocytes - contributes to suppress the Teff cells activity.
(see Supplementary Figure 6.15). In addiction, IL2 brings to the activation of another fam-
ily of immune cells, named Natural Killer (NK) cells that act as host-rejection of infected
cells and, in same cases, against auto-reactive Teff populations, T lymphocytes recognizing
self-molecules as foreign (Handel, Irani, and Holländer, 2018).

4.3.2 Multiple Sclerosis

MS is an autoimmune disease in which the immune system removes the myelin sheath
from neuronal axons of the CNS preventing the efficient transmission of the nervous sig-
nals. RRMS is the predominant type of MS in which the disease alternates phases of active
neural inflammation and disease worsening (relapses) to remission phases in which there is
a complete or partial lack of the symptoms. The occurrences of the relapses periods range
from mild to severe, depending on the course and history of the disease. The occurrence and
severity of relapses are the only measures to estimate the efficacy of a drug treatment.

Several studies agree with the idea that the damage at CNS is probably due to auto-
reactive T lymphocytes which recognize the myelin as foreign. Indeed, during the relapse
phase, the continuous attack of T lymphocytes leads to a progressive decrease of the quantity
of myelin (Kock and Yong, 2013). It is worth to note that in some cases the Oligodentrocytes
cells (ODC) are able to partially recover the lost myelin if the damage is not excessive.

As already pointed out in the previous section, several T lymphocytes with different
roles take part in the general immunosurveillance (e.g. Teff, Treg, Tmem). An imbalance
in the T lymphocytes differentiation can lead to a strong or long-term response that goes
beyond its original purpose. In fact, in literature it has been hypothesized that homeostasis of
Treg and Teff cells may be crucial to prevent autoimmunity. Moreover, a breakdown of the
peripheral tolerance mechanisms of Treg (represented, for example, by a lower duplication
rate of Treg compared to Teff) can bring to the selection of self-reactive Teff cells leading
to damage in the CNS (Dendrou, Fugger, and Friese, 2015). The etiology of MS remains
elusive. Some studies linked MS with signs of Epstein Barr Virus (EBV) infection (Virtanen,
2012; Belbasis et al., 2015). A hypothesis is that the EBV first infection as well as the
reactivation of the latent infection can cause the activation of auto-reactive Teff lymphocytes
through a process called molecular mimicry. Molecular mimicry would cause the activation
of Teff lymphocytes that recognize an EBV virus protein. However, due to the structure
similarity between the viral protein and myelin proteins, these Teff could also be able to
attack myelin sheaths leading to a neural damage (Virtanen, 2012).

A very interesting case of study is the development and progression of MS in pregnant
women. The RRMS pregnant women have a lower relapse rate until the delivery (Vukusic
et al., 2004). Indeed, during the pregnancy period the number of Treg cells increase to
establish tolerance against fetal antigens. As a consequence, pregnancy represents a moment
of immune tolerance and well-being for the patients.

4.3.3 Relapsing-Remitting Multiple Sclerosis model

The cell and molecular interactions involved in the Relapsing-Remitting Multiple Sclero-
sis(RRMS) are described by the model showed in Figure 4.2. Our model consists of 10 places
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7) DAC

FromTimoREG
FromTimoEFF

EffectorMemoryResting_Treg Resting_Teff

TregActivation TeffActivation
MemActivation

Treg
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TregKillsTeff

Teff

TregDup

NKdup

Remyelinization

TeffDup_Sym

TeffKillsODC

TeffDeath
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5) IL2
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4) NK

DAC

DACinjDACDegradation

FIGURE 4.2: The RRMS model. The RRMS PN model is composed
by places (graphically represented by circles) corresponding to cells or
molecules, and by transitions (graphically represented by rectangles) cor-
responding to the interactions among the entities, injections or death of
molecules. The RRMS model is composed by seven modules: Treg, Teff,

EBV, NK, IL2, ODC and DAC.

and 22 transitions. For sake of clarity, the white transitions model mass-action functions,
while the black transitions model different kinetics described in details in the Additional File
1. All the constants and numerical values associated with the transitions are reported in the
Supplementary Tables 6.1 and 6.2. This model is organized in seven modules corresponding
to the biological entities characterizing RRMS: Treg, Teff, EBV, NK, IL2, ODC, and DAC.

1) Treg module. The Treg cells are characterized by two places: the Resting_Treg and
Treg. The transition FromTimoREG represents the arrival of new resting Treg cells from thy-
mus. Its rate is defined in order to keep constant the number of resting cells. The transition
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TregActivation represents the activation of the resting Treg depending on the Teff cell num-
ber and EBV concentration, while TregDeath represents the death of Treg. The transition
TregKillsTeff models the homeostatic regulation operated by Treg cells against self-reactive
Teff cells, and TregDup models the Treg duplication.

2) Teff module. The second module is characterized by three places: Resting_Te f f , Te f f ,
and EffectorMemory. The transitions FromTimoEFF, TeffActivation, and TeffDeath behave
similarly to those described in module 1, but they are referred to the Teff population.

The Teff proliferation takes place in two different manners called Symmetrical and
Asymmetrical processes. These two possibilities are captured in the model by assuming
that one happens with probability pdup

e f f and the other with probability pmem
e f f = 1 − pdup

e f f .

Given a replication speed named re f f
dup, the transition TeffDup_Sym generates two Teff cells

with the rate equals to re f f
dup ∗ pdup

e f f , for more details see Additional Material. Otherwise, the

transition TeffDup_Asym takes place with a speed resulting from the product re f f
dup ∗ pmem

e f f
replicating one Teff cell into one T Memory effector cell and one Teff cell. The transitions
TeffKillsEBV and TeffKillsODC encode the killing effect of Teff cells against EBV and ODC,
respectively. Finally, MemActivation models the rapid activation of the Effector Memory
depending on both the EBV and the Tmem concentrations.

The transitions TeffKillsEBV and TeffKillsODC encode the killing effect of Teff cells
against EBV and ODC, respectively. Finally, MemActivation models the rapid activation of
the Effector Memory depending on both the EBV and the Tmem concentrations.

3) EBV module. The third module describes the EBV behaviour. Transition EBVinj models
the infection. The TeffKillsEBV transition summarizes all steps from antigen processing and
presentation by EBV infected cells to Teff cells, to the activation of Teff cells.

4) NK module. In this modules the role of the NK cells is described. The transition NKen-
try models the arrival of new NK cells. The death of NK is then modeled by transition
NKDeath. Transitions NKKillsTeff and NKKillsTreg encode the killing of self-reactive Teff
and Treg cells respectively due to NK cells. Finally NKdup models the proliferation of the
NK cells led by the presence of IL2.

5) IL2 module. The fifth module is focused on the IL2 role. IL2 is involved in the Treg,
Te f f and NK proliferation. All these types of cells consume IL2 which is produced by the
transition TeffActivation.

6) ODC module. The sixth module encodes the ODC behaviour. The transition TeffKill-
sODC models the damage caused by Teff cells on ODC cells. When the myelination level
reaches the lowest value, an irreversible damage occurs and the remyelinization is no more
possible (i.e. the transition Remyelinization is permanently disabled by its guard).

To model this effect, we used the color class Mye encoding the myelination levels of
ODC. Mye is divided into five static subclasses ranging from Lmin (no myelination) to Lmax
(full myelination).

7) DAC module. In the last module the daclizumab behaviour is modeled through the
place DAC. The drug administration is modeled by transition DACinj, while the pharma-
cokinetic inhibiting the expansion of Treg and Teff decreases the velocity of transitions
TregDup,TeffDup_Sym and TeffDup_Asym. Finally, the its degradation is modeled by the



4.4. Results 109

transition DACDegradation.

4.4 Results

In this section we present the prototype computational framework developed to study the
RRMS. Then, we describe how our model was calibrated to mimic the real behaviours in
healthy and MS subjects. Finally we discuss also the results coming from two case studies
in which we investigated the effect of the daclizumab administration on MS patients and the
modification of the MS evolution due to the occurring of a pregnant condition.

Framework Architecture

The prototype framework specifically developed for this project consists of a few modules
which interact with GreatSPN (Babar et al., 2010), a software suite for modelling and an-
alyzing complex systems using the PN formalism and its extensions. The architecture of
this framework is depicted in Figure 4.3. The GreatSPN GUI is used to construct the ESSN
model. First the coloured portion of a model “NetName” (similar to that depicted in Figure
4.2) is drawn on the GUI interface, then the “Unfolding” module is called to transform the
coloured model in a basic Petri Nets representation where all the tokens are assumed to be
indistinguishable and the files “NetName.net” and “NetName.def” are produced. Moreover
the generic firing rate functions characteristic of the ESSN formalism must be specified in
a separate file called “name.rate”. Then the files “NetName.net” and “NetName.def” and
“NetName.rate” are used by the module “PN2ODE” to automatically derive the correspond-
ing system of ODEs producing a file “NetName.r” with a format suitable for being processed
by the “R” software. Finally the “R” environment is used for the solution of the set of ODEs,
for carrying out the sensitivity analysis with respect to model parameters, and for comput-
ing interesting results in terms of numerical values and diagrams. As the whole framework
is not yet completely integrated with GreatSPN, calling the “Unfolding” and “PN2ODE”
modules, as well as the interaction with the “R” software, must be done using command-
line directives. GreatSPN extended with this prototype framework can be downloaded at
https://github.com/greatspn. Instead, all the R files and the GreatSPN files of
the net are freely available at https://github.com/qBioTurin/ESSNandRRMS/
DeterministicModel.

4.4.1 Model calibration for healthy and MS individuals

The model calibration was addressed to select the input values (transition parameters, and
the concentrations of EBV and DAC) leading outputs of the model towards the values ob-
tained from observing the behaviour of the specific quantities both in healthy and MS affected
subjects. The calibration is performed using the LHS with PRCC index to identify which pa-
rameters have more impact on the model outcomes. Then, the identified parameters were
thoroughly investigated in the healthy and MS individuals.

From our model (without the DAC module, Figure 4.2) a system of 13 ODEs with nine
input parameters is derived. The values of these nine parameters were sampled by means of
LHS method. Hence, 5000 parameter combinations were generated using a uniform distribu-
tion whose ranges are showed in the third column of the Supplementary Table 6.1.

For all the simulations, we assumed as initial marking the following parameters consistent
with a space of 1mm3 of blood and 4mm3 of neural tissue: 500 ODC with level Lmax of
neuronal myelinization, 1687 resting Teff cells, 63 resting Treg cells, 375 NK cells and 1000
IL2 molecules, and zero cells in the other places (see Supplementary Table 6.3).

https://github.com/greatspn
https://github.com/qBioTurin/ESSNandRRMS/DeterministicModel
https://github.com/qBioTurin/ESSNandRRMS/DeterministicModel
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FIGURE 4.3: Framework structure. Outline of the prototype framework
combining GreatSPN suite with R. The components are shown by rectangles,
component invocations by solid arrows, models/data exchanges by dashed

arrows.

Moreover, we defined the disease occurrence when the Lmin level of neuronal myelin-
ization is reached for each ODC cell, representing an irreversible damage. Then, five virus
injections are simulated at regular times (every two months), introducing into the system
1000 EBV copies per injection. Finally, model solutions were calculated for each parameter
combination over one year interval, [0, 365] days.

Analyzing the 5000 trajectories generated, three scenarios have been identified: (i) the
occurrence of the MS, represented by a huge number of dead ODC cells; (ii) the complete
remission of the MS disease, characterized by a low number of dead ODC cells and with a
complete elimination of the EBV virus; (iii) the partial remission of the MS disease specified
by a partial elimination of the EBV virus. The Supplementary Figure 6.16 reports the EBV
and ODC dynamics generated considering different set of parameters.

On these trajectories the PRCC analysis was applied to identify key model parameters
affecting the system behaviour. The PRCCs values are calculated for each parameter over
the entire time period. Figure 4.4 shows the PRCC values for all the model parameters over
the time interval considered.

The rates associated with transitions TeffKillODC, TregKillTeff, TeffKillEBV and Recov-
ery result to be the crucial parameters affecting the ODC behaviour. Figure 4.5 reports a
scatter plot in which each point corresponds to a generated trajectory, its color represents the
percentage of irreversible ODC damaged at the final time point (i.e. a grey color corresponds
to a lowest percentage of damaged ODC and a red color to highest one). The simulations are
performed changing the rates of TeffKillEBV (in the x-axis), the TregfKillTeff (in the y-axis)
and TeffKillODC (in the z-axis). A few number of irreversible damaged ODC are obtained
increasing the TregfKillTeff rate and the decreasing the others two rates.

The key parameters identified were deeply studied exploiting the LHS method computing
500 new combinations varying only TeffKillEBV, TregfKillTeff and TeffKillODC. We defined
two sets of parameters (see Supplementary Table 6.5), one for the MS patients and one for
the healthy subjects, see Figure 4.6.

The MS patients are modelled by a set of parameters which maximizes the ODC damage
maintaining the Treg and Teff cell numbers consistent with those measured in the reality, see
red trajectories in Figure 4.6 a and b panels.

For the healthy cases, we selected the trajectory providing a Teff-Treg regulatory balance
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FIGURE 4.4: Sensitivity analysis. PRCCs over the whole time interval for
each model parameter is reported. Yellow area represents the zone of non-

significant PRCC values.

FIGURE 4.5: Parameters scatter plot. 3D scatter plot of the ODC irre-
versible damaged at the fixed time 365 versus theTeffKillODC, TregKillTeff,

TeffKillEBV parameters variation.

able to control the spread of the EBV virus and to minimize the irreversible damage to ODC
cells, even if the amount of EBV in each injection is substantially increased, see blue trajec-
tories in Figure 4.6, panels a and b. In particular, we performed 500 simulations varying the
amount of EBV injected in a range of [1000− 5000 particles/mm3]. From Figure 4.7 it
is possible to observe that, even for large quantities of EBV injected, the percentage of irre-
versibly damaged ODCs reaches 17% (Figure 4.7(a)). This value is very small if compared
with respect to the 77% of irreversibly damaged ODCs in the case of the disease occurrence.
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FIGURE 4.6: Parameters choice. A set of the 500 trajectories generated by
LHS of the EBV virus (a) and the ODC cells with an irreversible damage
(b) over the whole time interval varying the TeffKillODC, TregKillTeff, and

TeffKillEBV transition parameters.

Moreover, independently of the quantity of EBV injected, Teff are able to eliminate EBV
completely (Figure 4.7(d)), and the abundance of EBV does not drastically affect the number
of effectors or regulators in the system (Figure 4.7(b,c)).

DAC therapy

To investigate the effect of the DAC therapy in our RRMS model calibrated for MS patients,
we simulated the DAC administration at the 53rd day after the first EBV injection. Our
results are reported considering two important aspects in the modulation of a therapy: the
drug dose and the drug degradation time. The quantity of DAC administrated per injection
and the DAC cells deterioration were studied by means of LHS method. The values of these
two parameters are then sampled according to two uniform distributions whose ranges are
reported into the Supplementary Table 6.1.

From the LHS analysis we clearly observed that the drug degradation time has a greater
impact on the elimination of EBV virus than the amount of DAC administered, see the num-
ber of ODC irreversibly damaged in Supplementary Figure 6.17. Therefore, we decided to
focus our attention on the DACDegradation parameter variation. Knowing that the half-life
of DAC was detected around 22 days, we considered that a complete degradation of DAC
ranges between 30 and 90 days (Kim and Baker, 2016). The results of the simulations are
reported in Figure 4.8(a) in which it is possible to appreciate that a greater DAC permanence
has the effect of reducing the number of irreversibly damaged ODC cells with respect to the
case in which no therapy was considered (red line). Moreover, it is interesting to note that
the RRMS model with DAC injections highlights a decrease of the long term ability of the
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FIGURE 4.7: Effect of EBV quantities. Different injections of EBV (d) are
considered to check if the Teff-Treg (c-b) regulatory loop is able to control
the virus spreading minimizing the irreversible damages to the ODC cells

(a).

immune system to eliminate EBV Figure 4.8(b). Finally, in Supplementary Figure 6.18 is
reported the trend of the NK cells that increase with respect to the DAC degradation rate.
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FIGURE 4.8: Varying the DAC degradation rate. ODC and EBV trajecto-
ries colored depending on DAC degradation rate (expressed in months). The

red line represents the starting sample without drug administration.

Pregnancy

In this subsection we investigate the RRMS in pregnant women. As already pointed out be-
fore, pregnancy was associated with fewer relapses in RRMS and reduced activity of disease
in autoimmune encephalomyelitis (EAE). Beneficial effects of pregnancy are thought to be
related to pregnancy-associated changes in the maternal immune system. One of the obser-
vations is that Treg cells increase in number establishing the fetal tolerance and conferring a
temporary protection to women with RRMS (Sánchez-Ramón et al., 2005; Somerset et al.,
2004).
According to the literature, we modelled the pregnancy condition changing the proportion
between the activate Treg cells and the activate Teff cells decreasing the Teff activation rate
and increasing the Treg activation rate proportionally to the pregnancy phase (Somerset et al.,
2004). Three pregnancy phases, corresponding to the three trimesters, have been simulated.
When a new trimester begins, we increased the ratio of TregActivation rate to TeffActivation
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rate; while at delivery time both rates return to their initial values.
Thus we simulated 100 different scenarios with a increasing variation of parameters, ob-

taining different levels of protection from ODC damage. As expected, the model behaviour
shows a substantial reduction of the ODCs damage (see Figure 4.9).

Regarding the immune system cells, we observed that Treg cells increase during preg-
nancy and then suffer a sharp decline at the time of delivery. The same effect, but in the
opposite direction is showed on Teff cells. It is interesting to note that a rebound of Teff is
reported in the week following pregnancy, see Supplementary Figures 6.19.

FIGURE 4.9: Pregnant woman case: ODC. The ODCs irreversibly dam-
aged considering the pregnant woman case of study. 100 trajectories colored
depending on different variations of the TregActivation and TeffActivation
parameters. The red line represents the starting sample without pregnancy.
Furthermore each trimester another variation is applied to these parameters

in order to represent the increasing of the maternal immune system.

4.5 Discussion

Because of nowadays the computational modelling is widely recognized to succeed in help-
ing scientists in the study of the complex mechanisms of different diseases, the aim of this
part of the thesis is to present a new computational methodology and an associated model to
better elucidate the dynamics behind the RRMS. Indeed, RRMS represents a very challeng-
ing case study, due to the complexity of the disease which involves many different biological
agents, ranging from molecular to environmental factors.

We exploited the descriptive power of Extended Stochastic Symmetric Nets to provide a
graphical representation of the complex biological system in a compact and parametric way.
Moreover, we used LHS method with PRCC index to calibrate the model parameters. Hence,
we showed the ability of the model to reproduce the typical oscillatory behavior relating to
the onset of RRMS by supposing a breakdown of the cross-balance regulation mechanisms
at the peripheral level. Moreover, the simulation of DAC injections in the RRMS model can
help scientists to define the mechanisms of actions of this drug and to theorize the possible
causes of its observed side-effect on the patients. Instead, the experiments simulating RRMS
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in pregnant women can contribute to define the mechanisms at the basis of the variation of
the Treg and Teff cells.

A challenging issue in the definition of the RRMS model is the calibration of the transi-
tion parameters and EBV and DAC concentrations. The LHS with PRCC index identified
TeffKillODC, TregKillTeff, TeffKillEBV as the most critical parameters to the model out-
comes. This result agrees with our expectation since these parameters play a central role
in the disease progression. In the analysis of the EBV behaviour in a healthy subject, it is in-
teresting to note the effect of immune memory which increases the number of activated Teff
cells from the time of second injection(see Supplementary Figure 6.20). In particular, thanks
to the faster activation of the Tmem cells with respect to the Teff cells, from the second EBV
injection it is possible to observe a more rapid virus annihilation. Indeed, Tmem cells have
a faster activation (i.e. since they already have the memory of a previous contact with the
EBV) than Teff cells, leading to a more rapid virus annihilation during the relapses.

In the first set of our experiments we inspected the effect of the DAC therapy in our model
calibrated for reproducing the behaviors of RRMS patients. A greater amount of latent EBV
is present in the system with respect to the case in which no therapy was considered.

In the DAC therapy module there are two parameters form whom depend the elimination
of EBV virus: the DAC degradation time and the DAC concentration. Using the parameter
sensitivity analysis, we identified the drug degradation time as the crucial parameter, while
the DAC concentration has ho effect on the EBV treatment. Indeed, this slight effect of the
DAC concentration in the treatment of MS patients was recently described by Gold and co-
workers (Gold et al., 2013). In this paper the authors described a clinical trial involving 76
centers in which the MS patients have been treated by subcutaneous injections of DAC HYP
150 mg or 300 mg, or placebo, every 4 weeks for 52 weeks. The annualised relapse rate
was lower for patients given DAC HYP (150 mg or 300 mg) than for those that received the
placebo, However, no significance difference in terms of relapse between the different DAC
doses was reported. Finally, the DAC analysis revealed the secondary effects of the DAC
immunosuppressive therapy that can actually increase susceptibility to secondary infections.

The second set of experiments were devoted to study the effect of RRMS in pregnant
patients. The mechanisms at the basis of a partial MS remission during the pregnancy are not
fully understood yet, leading this case particularly interesting. During pregnancy, the ma-
ternal immunotolerance to the fetus induced Treg proliferation and reduced the relapse rate,
therefore our model predicts a reduction of ODC damage. Our results are in line with what
comes to us from biological knowledge and clinical observations since the resetting of the
immune system is what significantly influences the course of the disease during pregnancy
and also has been related with clinical manifestation of increased relapses associated with
the post-partum period. From our results it is possible to appreciate the difference between
the ODC cells irreversibly damages in the case of MS no pregnant patients and MS pregnant
patients (specially in the case of max variation of the Treg-Teff balance). This difference in-
creases from the first trimester to the time of delivery then returns to become not significant.
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Conclusions

All the cells composing an organism are surrounded by several levels of organisation (i.e.
genome, epigenome, transcriptome, proteome) whose intersection gives rise to a variety of
cellular phenotypes. The research of a signature in each level, whose elements can help in
classifying groups of cells both in physiological and pathological contexts, is one of the main
issues in biological and medical research. Deciphering the set of genes composing a signature
could be a powerful method to identify and characterise cell type behaviour in physiological
and pathological condition as cancer. The aim supporting this thesis project is to contribute
to the research of gene signatures in several contexts that involve immune system and the
great amount of cell types engaged. This objective was reached exploiting different deep
sequencing techniques and developing bioinformatics algorithms and tools able to decipher
the data obtained. In the first part, we focused our attention on DNA signature developing
HashClone tool able to analyze the complex tumour clonal pattern of Lymphoma patients
starting from the derivation of VDJ gene signatures from tumour lymphocytes. HashClone
is an easy-to-use and reliable bioinformatics suite that provides B-cells clonality assessment
and IGH-based MRD monitoring over time. The HashClone strategy to identify a set of
putative clones is based on an alignment-free prediction method that identifies the set of pu-
tative clones belonging to the repertoire of the patient under study. The advantage of using an
alignment-free prediction is twofold: (i) it may provide new rearrangements because no ref-
erence is used to select the putative clones (ii) it may be more robust to detect genome-scale
events as rearrangements, recombination, and duplications. Moreover, the alignment-free
prediction method provides an elevate accuracy, because the putative clones are identified
through an integrated analysis of all the patient’s samples collected over time. The candi-
date clones will be analysed to identify the germline origins of IGH rearrangements based on
alignment of the putative B-cell clones with respect to the IMGT reference database (Giudi-
celli, Chaume, and Lefranc, 2004). Notice that the current tool implementation allows the
users to exploit different datasets, leading to a broadly applications of HashClone to biologi-
cal projects dedicated to the clonality detection from NGS data. To test its performances, we
performed three studies:

1. Study 1: Simulated datasets to test HashClone performances

2. Study 2: Clonality analysis of cohort 1 (5 MCL patients)

3. Study 3: Clonality analysis of cohort 2 (23 MCL patients)

Our results showed that HashClone had good performance on simulated datasets (Study 1)
in terms of execution times and compared with other tools results (Section 2.7.1). In Study
2 and 3 we confirmed HashClone performances on real patients cohorts (Section 2.7.2 and
2.7.3) since it was able to detect the major B-cell clone in both studies that were confirmed
through the classical Sanger sequencing approach. Moreover, HashClone efficiently ana-
lyzed NGS data to monitor the MRD, providing highly comparable data with respect to the
standardized ASO q-PCR. We also compared HashClone performance in the Study 2 with the
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state-of-art tool, VIDJil (Giraud et al., 2014). Actually, Hashclone has two main distinct fea-
tures with respect to VIDJil, the first is the reference free strategy, that allows Hashclone not
to use biological knowledge until the last step in which it is necessary to assign to the puta-
tive clonotype the IGHV, IGHD and IGHJ composition. Secondly, Hashclone is specifically
designed for the MRD detection working simultaneously on all sets of samples belonging to
a patient. Instead, VIDJil is not specifically designed to simultaneously work on all samples.
VIDJil provides a set of additional tools able to merge the set of rearrangements obtained
from each sample generating the set of clones associated with the temporal trend.

In the second part of the thesis, we focused on RNA signature and we proposed a new
workflow composed of rCASC and rMLSC. The workflow was thought to be a method able
to retrieve clusters-specific gene-signature and improve biological data interpretation. The
first phase, rCASC is a modular workflow for reproducible single cell data analysis with new
features that could help researchers to define cell subpopulations and detect subpopulation
specific markers. rCASC is composed of many pre-processing tools to remove low-quality
cells and/or specific bias (e.g. cell cycle), different clustering techniques based on differ-
ent distance metrics and a new metric (Cell Stability Score) for the evaluation of clusters
quality. Moreover, rCASC uses Docker for ease of installation and to achieve a computation-
reproducible analysis and a Java GUI is also provided to welcome users without computa-
tional skills in R. The second phase, rMLSC, is a new approach based on machine learning
algorithms able to identify cluster-specific gene signatures starting from rCASC result. This
task is performed exploiting classification algorithms and generating decision trees for each
cluster. Then, the exploration and filtering of the trees through several in-house methods
allows the identification of subsets of genes for each cluster (the gene signatures) whose
disposition in the decision trees is a reflection of a difference among the clusters. The biolog-
ical characterisation of these signatures, both individually and compared among the clusters,
help the user for a deeper understanding of dataset composition as cellular types, putative
hierarchical lineage of the cells or differences in cells behaviour upon different conditions.
rCASC and rMLSC were tested on single cell dataset from Pace et al., 2018 characterized
by immune cells at different state of differentiation. Overall, our combined workflow was
able to identify the same results of the authors identifying four immune cellular types but
adding a further layer of information regarding the putative hierarchical link among the cells.
Moreover, the analysis performed by Pace et al., 2018 was actually strongly driven due to
the use of a set of 24 immunological genes, while our workflow has allowed a greater bio-
logical comprehension of the cells contained in the dataset using all the set of top expressed
genes as input of the classification algorithm and without any a priori biological knowledge.
Thus, rCASC and rMLSC actually go further the classical pipeline of analysis whose ulti-
mate goal is the derivation of DEGs that are often few explanatory of the biological meanings
and underestimating the real complexity of scRNA-seq data.

Finally, in the last part of the thesis, a new methodology based on mathematical models
was used to model complex biological scenario as Multiple Sclerosis (MS) disease. In detail,
we provide a promising application of a computational framework based on Coloured Petri
Nets and sensitivity analysis to perform in silico experiments helping to improve the under-
standing of the Relapse Remitting Multiple Sclerosis disease (RRMS), possibly giving some
indications that may ameliorate the clinical management. We tested our approach in two dif-
ferent conditions: (i) patients affected by MS and (ii) pregnant women affected by MS and
we inspected the effect of the daclizumab therapy in our model calibrated for reproducing
the behaviours of RRMS patients in both conditions. In the first part, we showed how our
approach was able to identify MS disease trend in patients under the effect of the DAC ther-
apy and we also revealed the secondary effects of the DAC immunosuppressive therapy that
can actually increase susceptibility to secondary infections, as reported in literature. In the
second part, we showed how the simulation in the pregnancy in MS patients mimicked the
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resetting of the immune system that significantly influences the course of the disease during
pregnancy and also has been related with clinical manifestation of increased relapses associ-
ated with the post-partum period.

In conclusion, as future works we plan, for the first part, to improve HashClone pipeline
with a further parallelization of the remaining phases, to make HashClone usable also for
detecting signature in other types of cancer as solid tumours adapting the several code phases.
For the second part, we will implement other classification algorithms in rMLSC or more in
general to test different machine learning methods to improve the accuracy in the prediction
of the RNA signature.
Finally, for the last part, we will expand the mathematical model of MS including different
cell populations of the immune system for a better integration between adaptive and innate
immunity. Moreover, we plan to insert new colour classes in the model to encode the spatial
coordinates of all entities in a cubic tissue portion. In the context of precision medicine, we
may also exploit the model to predict the patient-specific outcome when the DAC or other
therapies are administered with an initial model calibration with patient-specific clinical data.

5.1 Contributions

Chapter 1
HashClone suite:

• Implementation of parallelization algorithm

• Implementation of the spike-in function

• All the computational analysis

Chapter 2
rCASC and rMLSC:

• Implementation of cellrangerCount function in rCASC

• Implementation of rMLSC pipeline

• All the computational analysis

Chapter 3
RRMS model:

• Supervisor of the biological aspects implemented in the model

• Interpretation of the results
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Supplementary Materials

6.1 Supplementary Materials Chapter 2

Sample processing and genomic DNA extraction For Diagnostic and follow up samples
5 ml of bone marrow (BM) and/or 10 ml of peripheral blood (PB) were collected in Sodium
citrate or Lithium-heparine vacutainers. Cells recovery was performed using Ficoll den-
sity stratification and red blood cells lysis, obtaining mononuclear cells (MNCs) and total
white blood cells (Total WBCs) for PB and BM respectively. Firstly, for MNCs isolations
PB samples were diluted with NaCl 0,9% solution (ratio 1:2) and then stratified on Ficoll
layer (Sigma-Aldricht; Germany). After density separation, performed as recommended by
manufacturer’s instructions, MNCs were isolated and stored at -80°C in dried pellets until
genomic DNA (gDNA) extraction. WBCs were recovered from bone marrow (BM) mixed to
lysis buffer 1X [NH4Cl, KHCO3 and EDTA (pH7,3)] (Qiagen, Germany) (ratio 1:2). After
incubation at room temperature for 10 minutes, the samples were centrifuged twice at 1500
rpm for 15 and 10 minutes, respectively. Total WBCs were stored as dry pellets at -80°C
until gDNA extraction.
gDNA extraction was extracted from MNCs and total WBCs using DNAzol reagent (Thermo
Scientific). Briefly, MNCs and WBCs were lysed in 1 ml of DNAzol and then centrifuged.
gDNA precipitation and washes were performed with 100-70% ethanol solutions. After the
mixing of the sample by inversion, DNA should quickly become visible as a cloudy precipi-
tate, it was removed with a pipette and it was put into a new Eppendorf. Finally, gDNA was
eluted using NaOH 8 mM.
gDNA quantity (ng) and purity (OD ratio A260/A280 and A260/A230) were evaluated by
Nanodrop2000 Spectrophotometer (Thermo Scientific). Housekeeping gene control ampli-
fication (p53 exon 8) was performed on MNCs and total WBC samples in order to assess
gDNA integrity.

IGH rearrangements screening and MRD monitoring IGH rearrangements screening
and MRD study were performed using both an NGS approach and the gold standard tech-
niques, i.e. Sanger sequencing and ASO q-PCR.

Next generation sequencing approach The DNA libraries were prepared using 500 ng
and 100 ng of gDNA by two-steps PCR approach: in the first round, the IGH regions were
amplified using FR1 BIOMED II primers for Study 2 (Cohort 1 of 5 MCL patients)(Van Don-
gen et al., 2003) and primer for FR1 region from EuroClonality NGS for Study 3 (Cohort 2 of
23 MCL patients), modified with an universal Illumina adapter linker sequence (Brüggemann
et al., 2019). While in the second PCR round, Illumina specific indexes (Illumina; Sigma-
Aldrich) were incorporated to the first round PCR IGH amplicons [21]. After a Bioanalyzer
QC control (Agilent), the purified PCR products were serially dilute and pooled to a final
concentration of 9pM adding 10% PhiX. The sequencing run was carried out by Illumina
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V2 kit chemistry 500 cycles PE on MiSeq platform. A polyclonal sample, called buffycoat
DNA, and negative control (water or HELA cell line) were added to each run.

Sanger sequencing and ASO q-PCR approach Diagnostic gDNA was screened for IGH
rearrangements using consensus primers (Leader and Framework Regions (FR) 1 and 2).
Purified post PCR products were directly sequenced and analyzed using the IGH reference
database published in IMGT/V-QUEST tool (http://imgt.org) [23]. MRD monitoring was
conducted by ASO q-PCR on 500 ng of gDNA, using patient specific primers and consensus
probes designed on Complementarity-Determining Region 2 (CDR2) sequences, on CDR3
and FR3 IGH regions, respectively [24]. MRD results were interpreted according to the
ESLHO-Euro MRD guidelines [4].

How the τ choice affects HashClone performance As already highlighted in the Mate-
rial and Methods section, the choice of an appropriated τ can impact on the capability of
HashClone to identify clones; therefore here we report some considerations and suggestions
to help the user in this task. First of all, the information associated with the biological exper-
iment (e.g. the dilution factor in case of artificial experiments or an estimation of the residual
tumour cells) should be exploited by the user to find an appropriate initial τ value. Then, τ
value can be decreased to refine the HashClone solution. Indeed smaller τ values leads to a
higher number of significant k-mers resulting in more specific clone signatures. For instance,
in Pilot1 the initial τ value, as already stated, can be selected equal to 1 since for each MCL
patient, a 10-fold standard curve was prepared diluting diagnostic sample in gDNA pool from
five healthy donors. Then, smaller τ values can be chosen without severally influencing the
major clone characterization. Instead, values of τ greater than 1 do not make sense due to
the design of the experiments. An example is showed in Figure 6 in which the major clone
MRD trends obtained decreasing τ from 1 to 0.25 for Patient A are reported and compared
with ASO q-PCR result. As expected all these trends are similar and close to the ASO q-PCR
trend.

FIGURE 6.1: Assesment of τ value. The major clone trends obtained with
different τ values on the data of the Patient A of Pilot1.

6.2 Additional figures and tables Chapter 2
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Study Patient Number of 
clonotypes

Number of read associated with 
clonotype

A 7 Major clone: 72698/74542 (98%) 
Other clones: 1844/74542 (2%)

B 32 Major clone:46694/56964(82%) 
Others:10270/56964(18%)

C 44 Major clone:88674/97018 (91%) 
Others:8344/97018 (9%)

D 5 Major clone:104908/107808 (97%) 
Others:2900/107808 (3%)

E 21 Major clone:185456/192947 (96%) 
Others: 7491/192947 (4%)

Average 
value 22 Major clone: 93% 

Others: 7%

A 18 Major clone: 99414/107825 (92%) 
Others: 8411/107825 (8%)

B 72 Major clone: 169175/231281 (73%) 
Others: 62106/231281 (27%)

E 5 Major clone: 85027/85603 (99%) 
Others: 576/85603 (0,1%)

Average 
value 32 Major clone: 88% 

Others: 12%
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Figure S1  - Clonotypes quantification by Hashclone

FIGURE 6.2: Clonotype quantification by HashClone for Study 1. Hash-
clone identifies an average number of clones equals to 21 in Pilot1 and 32 in
Pilot2. In the last column of the table is reported for each major clone the
number of reads associates to it with respect to the total number of reads.

The same data are also reported for the other clones identified.



124 Chapter 6. Supplementary Materials

Phase A Phase B

Study Patient 
(only diagnosis samples)

Clonotype 
identified

Clonotype with 
frequency > 100

Clonotype associated with 
VDJ

A 159 49 30
B 171 51 31
C 163 51 43
D 129 50 42
E 165 52 38

Average value 157 51 37
A 138 43 34
B 196 72 50
E 108 45 39

Average value 114 53 41
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Figure S2  - Clonotypes quantification by ViDJil

FIGURE 6.3: Clonotype identification by ViDJil for Study 1. The clono-
types identified by ViDJil in Pilot1 and Pilot2 are reported in the third col-
umn. In the fourth column are reported the clones passed the Phase A while

in the fifth column there are the number of clones passed the Phase B.
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Study Patient Number of 
clonotype

Number of read associated with 
Clonotype

A 30 Major clone: 83974/86619 (97%) 
Other clones: 2645/86619 (3%)

B 31 Major clone: 58620/65302 (90%) 
Others: 6682/65302 (10%)

C 43 Major clone: 108386/121593 (98%) 
Others: 13207/121593 (2%)

D 42 Major clone: 180075/183559 (98%) 
Others: 3484/183559 (2%)

E 38 Major clone: 217524/217917(99%) 
Others: 393/217917 (1%)

Average 
value 37 Major clone: 96% 

Others:  4%

A 0 /

B 0 /

E 0 /
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Figure S3  - Clonotypes quantification by ViDJil
FIGURE 6.4: Clonotype quantification by ViDJil for Study 1. ViDJil
identifies an average number of clones equals to 37 in Pilot1 while in Pilot2 it
does not identified any clonotypes. In the last column of the table is reported
for each major clone the number of reads associates to it with respect to the
total number of reads. The same data are also reported for the other clones

identified.
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FIGURE 6.5: ViDJil and Sanger Sequence comparison for Study 1. Nu-
cleotide alignments between the complementary region 3 sequences (CDR3,
indicated in bold and underline) Sanger sequence and the sequence identified

by ViDJil.

Step 1: Sample processing and gDNA extraction
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6.3 Supplementary materials for Chapter 3.

6.3.1 Cell stability score implementation details

Stability score Algorithm Let be C the count matrix with N ×M dimension where N is
the gene number and M is cell number.

C =

 c11 c12 . . .
...

. . .
cN1 cNM


Then, we define Cp the matrix generated by pth permutation removing q random columns
from the original matrix C. Moreover considering the pth permutation we denote Lp the set of
all the removed cells in pth permutation with |Lp| = q and clp the vector with length M− q
encoding the relation between cells and clusters in p. Hence, clp

i identified the cluster in
which the ith cell is inserted in permutation p. Finally, we use the notation clC for indicating
the output of the clustering algorithm obtained by all the cells (i.e. matrix C).

The relation symmetric matrix Rp with dimension M×M is defined as follows:

Rp =

 rp
1,1 rp

1,2 . . .
...

. . .
rp

M,1 rp
M,M


where rp

i,j is:

rp
i,j =

{
1 i f clp

i = clp
j

0 otherwise
(6.1)

Similarly we defined RC the relation symmetric matrix obtained considering all cells and
RC−LP

as the relation symmetric matrix RC in which the columns and the rows associated
with cells in Lp are removed. Observe that the sum RC−LP

+ Rp will always gives as results
a matrix with 3 possible values: 0,1 or 2.

RC−Lp
[j, i] + Rp[j, i] =


1 i f cell i and cell j clustered together in RC−Lp

or in RP only;
2 i f cell i and cell j are always in the same cluster;
0 i f cell i and cell j are never in the same cluster.

Let δ(i, k) be the kronecker delta, a function of two variables that return 1 if the variables
are equal, and 0 otherwise:

δ(i, k) =
{

1 i f i = k
0 otherwise (6.2)

then we define the function length that counts the occurrence of a value k fixing the row j in
the matrix RC−LP

+ Rp.

length(j, p, k) =
M

∑
i=1

δ(RC−LP
[j, i] + Rp[j, i], k) (6.3)

We use the function length to count the occurrence of 1 or 2 in in the matrix RC−LP
+ Rp.
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Finally, we define the permutation score pscorej,p as:

pscorej,p =
length(j, p, 2)

length(j, p, 2) + length(j, p, 1)
(6.4)

where p is a permutation and j a cell. Then, this returns the percentage of cells initially
clustered with cell j that remain clustered with cell j in the permutation p.

Then, we define tscorej,s as follow:

tscorej,s =
1
P ∑

p∈P
1pscorej,p>=s (6.5)

where P is the total number of permutations and s is user-defined threshold. This metric
compute the probability that a cell j is always clustered with the same set of cells given that
pscorej,p >= s.

6.3.2 Example

Be cl =
{

1 2 2 1 2 1
}

Be L =
{

6 2 2 4
}

Be cl1 =
{

1 2 1 1 2
}

Be cl2 =
{

1 2 1 2 2
}

Be cl3 =
{

1 2 1 1 2
}

Be cl4 =
{

1 2 2 1 2
}

∀ p ∈ {1, 2, 3, 4}, Rp is calculated
for instance hereafter I reported R and R1

R =



1 0 0 1 0 1
0 1 1 0 1 0
0 1 1 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0
1 0 0 1 0 1



R1 =


1 0 1 1 0
0 1 0 0 1
1 0 1 1 0
1 0 1 1 0
0 1 0 0 1


∀ p Rp′ + Rp is calculated

for instance hereafter I reported Rp′ + R1

R′1 + R1 =


2 0 1 2 0
0 2 1 0 2
1 1 2 1 1
2 0 1 2 0
0 2 1 0 2


∀ p, pscore is evaluated with S = 0.6 for instance hereafter I reported pscore1
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pscore1 =


1
1
0
1
1


This means that in permutation 1 the third cell is unstable "jumping" from cluster number 1

to cluster number 2 in P. tscorem,s is evaluated then for each cell tscores =



0
0
0

0.25
0.25

0


In this Example number of permutation is 4, for statistical relevance, an higher number

of permutation is required.

6.3.3 Decision tree

A decision tree is a flowchart-like structure where an internal node represents feature (or at-
tribute), the branch represents a decision rule, and each leaf node represents the outcome of
the classification of the sample instances (Hunt, Marin, and Stone, 1966). The topmost node
in a decision tree is known as the root node. Decision tree learns to partition on the basis of
the attribute value in recursively manner (i.e. recursive partitioning). The paths from root to
leaf represent classification rules. The recursion is completed when the subset at a node all
has the same value of the target variable, or when splitting no longer adds value to the predic-
tions. The construction of decision tree classifier does not require any domain knowledge or
parameter setting, and therefore is appropriate for exploratory knowledge discovery (Hunt,
Marin, and Stone, 1966).

Random Forest Random forests (RF) algorithm was developed by (Breiman, 2001) and
it is a supervised classification learning algorithm. In general, supervised learning is the
machine learning task of learning a function that maps an input to an output based on example
input-output pairs (Russell and Norvig, 2016). RF are built by combining the predictions of
several decision trees, each of which is trained in isolation. While in standard trees, each
node is split using the best split among all variables, in a random forest, each node is split
using the best among a subset of predictors randomly chosen at that node. Indeed, during
the construction of the individual trees in the RF, randomization is applied when selecting
the best node to split on. Typically, this is equal to

√
M, where M is the number of features

(or attributes) in the data set (Fawagreh, Gaber, and Elyan, 2014). Each tree in the ensemble
acts as a base classifier to determine the class label of an unlabeled instance and finally the
predictions of the trees are combined through averaging. This is done via majority voting
where each classifier casts one vote for its predicted class label, then the class label with the
most votes is used to classify the instance (Fawagreh, Gaber, and Elyan, 2014).

Breiman, 2001 introduced additional randomness during the construction of decision
trees using the classification and regression trees (CART) technique. In this case, the subset
of features selected in each interior node is evaluated with the Gini index heuristics. The
feature with the highest Gini index is chosen as the split feature in that node Breiman et al.,
1984. The index is a function that is used to measure the impurity of data, that is, how uncer-
tain there is if an event will occur. In classification, this event would be the determination of
the class label. In its general form, it can be calculated as:
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Gini(t) = 1−∑ P(Ci|t)2 (6.6)

In order to perform a classification with RF algorithm, it is often suggested to divide
the initial dataset containing the instances in several subsamples called training and test
dataset. The training dataset is the subset of instances used to fit the optimal parameters
of the model. Statistically, it is suggested that training set is likely to have about 64% of
instances (Fawagreh, Gaber, and Elyan, 2014). Successively, the fitted model is used to
predict the responses for the observations in a second dataset called the test dataset that
usually contains the remaining 36% of the instances. This approach of training/test set allows
to compare different models in an unbiased way, by basing the comparisons in data that were
not use in any part of your training selection process.

6.3.4 Weka tool

Weka is a collection of machine learning algorithms for data mining tasks. It contains tools
for data preparation, classification, regression, clustering, association rules mining, and visu-
alization (Witten et al., 2016). Weka is open source software developed in JAVA and issued
under the GNU General Public License. Weka provides extensive support for the whole
process of experimental data mining, including preparing the input data, evaluating learn-
ing schemes statistically, and visualizing the input data and the result of learning. As well
as a wide variety of learning algorithms, it includes a wide range of preprocessing tools.
This diverse and comprehensive toolkit is accessed through a common graphic interface so
that its users can compare different methods and identify those that are most appropriate for
the problem at hand (Witten et al., 2016). Weka’s main user interface is the Explorer, but
essentially the same functionality can be accessed from the command line.

The Explorer interface features several panels providing access to the main components
of the workbench (Figure 6.7 from Witten et al., 2016):

• the Preprocess panel has facilities for importing data from a comma-separated values
(CSV) file or ARFF file and for preprocessing this data using a filtering algorithm.
These filters can be used to transform the data (e.g. turning numeric attributes into dis-
crete ones) and make it possible to delete instances and attributes according to specific
criteria.

• the Classify panel enables applying classification and regression algorithms to the re-
sulting dataset, to estimate the accuracy of the resulting predictive model, and to visual-
ize erroneous predictions, receiver operating characteristic (ROC) curves or the model
itself. Weka implements several classification algorithm as ADTree, DecisionStump,
J48, RandomForest, RandomTree, REPTree, SimpleCart and others.

• the Associate panel provides access to association rule learners that attempt to identify
all important interrelationships between attributes in the data.

• the Cluster panel gives access to the clustering techniques in Weka (e.g. the simple
k-means algorithm).

• the Select attributes panel provides algorithms for identifying the most predictive at-
tributes in a dataset.

• the Visualize panel shows a scatter plot matrix, where individual scatter plots can be
selected and enlarged, and analyzed further using various selection operators.
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FIGURE 6.7: WEKA’s main graphical user interface. Figure from Witten
et al., 2016.

Classification analysis through Weka tool The input data that can be analyzed with WEKA
can be presented as spreadsheet or ARFF format. When using training and test set, training
ARFF file contains a first list of all the attributes in the upper part of the file. While, in the
bottom of the file the attribute values separated by commas with last column indicating the
correct classification label are reported for the instances considered in the training set (around
64% of the total dataset). The test ARFF file contains again the list of all attributes in the
upper part and then the attribute values of the instances considered in the test set (around
36% of the total dataset) with last column replaced with question mark.

The classifiers in WEKA are divided into Bayesian classifiers, trees, rules, functions, lazy
classifiers and a final miscellaneous category. Several trees methods are available in WEKA
tool: Decision tree J48 (e.g. implementation of algorithm ID3 (Iterative Dichotomiser 3), de-
veloped by the WEKA project team), Random Forest, Random Tree, DecisionStump, REP-
Tree and more. Once choose the optimal trees classifier, several parameters can be selected:

• percentage of the training set size (default 100)

• number of iterations (default 100)

• number of execution slots (default 1 - i.e. no parallelism)

• number of attributes to randomly investigate (default 0)

• set minimum number of instances per leaf (default 1)

• set minimum numeric class variance proportion of train variance for split (default 1e-3)

• seed for random number generator (default 1)
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• the maximum depth of the tree, 0 for unlimited

• number of folds for backfitting (default 0)

• allow unclassified instances.

• break ties randomly when several attributes look equally good.

• the desired batch size for batch prediction (default 100).

Figure 6.8 shows the full output of a classification analysis using J48 decision tree. The
first part of the output is a summary of the dataset with a pruned decision tree in textual form.
In the tree structure, a colon introduces the class label that has been assigned to a particular
leaf, followed by the number of instances that reach that leaf, expressed as a decimal number
because of the way the algorithm uses fractional instances to handle missing values. If there
were incorrectly classified instances their number would appear means that two instances
reached that leaf, of which one is classified incorrectly. Beneath the tree structure the number
of leaves is printed; then the total number of nodes (Size of the tree). The next part of the
output gives estimates of the tree’s predictive performance reporting the number and the
percentage of correctly and incorrectly classified instances. As well as the classification
error, the evaluation module also outputs the Kappa statistic (i.e. metric that compares an
Observed Accuracy with an Expected Accuracy (random chance)), the mean absolute error,
and the root mean-squared error of the class probability estimates assigned by the tree. The
root mean-squared error is the square root of the average squared loss. The mean absolute
error is calculated in a similar way using the absolute instead of the squared difference. It also
outputs relative errors, which are based on the prior probabilities. Finally it is also reported
the per-class average of each statistic, weighted by the number of instances from each class.
The confusion matrix at the bottom is also reported for summarizing the performance of the
classification algorithm.

6.4 Additional figures and tables Chapter 3

Visualization of gene signatures for each cluster In all the heatmaps rows represent genes
of one signature and columns represent of the cells dataset (i.e. n=1600). The clustering
of the rows on the heatmaps is also shown as a dendrogram to highlight the hierarchical
relationship between genes. Cells in the columns are clustered together on the basis of their
belonging cluster (i.e. cluster 1 in red, cluster 2 in yellow, cluster 3 in green, cluster 4 in
blue and cluster 5 in violet). Color key is a z-score (i.e. score calculated subtracting the
mean and then divide by the standard deviation) with value from -3 to +3. Figure 6.10 shows
the expression value of the gene signature of cluster 1, that is composed of 15 genes in the
dataset. Red cells (i.e. cluster 1) show similar downregulation of genes in the upper part of
dendrogram while bottom genes determine intra-cluster differentiation among wt (i.e. cells
on the left) and ko (i.e. cells on the right)of cluster 1. On the opposite, cluster 2 (i.e. yellow)
shows this gene signature mostly upregulated while cluster 3 (i.e. green) displays mostly
downregulation. Gene signature expression in cluster 4 (i.e. blue) shows distinct behaviour
since the major part of the gene signature is not expressed except for some cells turning
towards a light downregulation. Finally cluster 5 display the most evident expression of the
signature since the majority of cells shows gene signature upregulation. It is worth to note
that there is only one gene, Tmsb10, that allow a precise intra-cluster differentiation among
wt and ko cells in all the clusters. Figure 6.11 shows the gene signature (i.e. 71 genes) of
cluster 2 (yellow) in the cell dataset. It is quite evident how cells of cluster 2 show a low
expression of the gene signature and no intra-cluster division is present. However, cluster
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FIGURE 6.8: Example of an output from the J4.8 decision tree learner

Histogram of clusters

nCluster

F
re

qu
en

cy

4.0 4.5 5.0 5.5 6.0

0
20

40
60

80
10

0

FIGURE 6.9: Clusters detected by nClusterEvaluationSIMLR

5 shows again the most evident expression of all the genes while cluster 1 and 3 have the
same behaviour and turn towards the downregulation. Cluster 4 instead shows no expression
of this gene signature. From the figure it is also visible that some blocks of genes show
light/strong difference in the expression inside each cluster. For example, cluster 1 in red
shows cells with a detectable expression for Cd3d, Cd3g, Uqcrh, Uba52 and Fau genes as
well as mitochondrial genes block in the bottom part of the figure. In the same way, cluster
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4 in blue shows the same mitochondrial genes block and few other genes that shift toward a
downregulation. Finally, Ccl5 gene is the only gene with no expression in cluster 5 (violet)
but detectable in cluster 4 (violet).

Figure 6.12 displays the gene signature (i.e. 9 genes) of cluster 3 (green). All these genes
are contained in the cluster 1 gene signature however it is possible to better appreciate the
differences of expression due to the lowest number of genes. As for Figure 6.10 cluster 3
shows a not detectable expression of the own gene signature. Again, Tmsb10 is the gene
that allows to obtain a strong intra-cluster expression difference among wt and ko in all the
clusters as well as Fau and Tpt1 (for cluster 1).

Figure 6.13 represents the gene signature of cluster 4 (violet) composed of 41 genes.
This gene signature shows a similar pattern as figure 6.11 since cluster 1 (red) and 3 (yellow)
have, for the upper genes, no detectable expression, cluster 4 (blue) shows a slight presence of
the signature followed by cluster 2 (yellow) and cluster 5 (violet). Again, in the signature are
present genes with strong expression differences among the clusters as Ccl5 and Tmsb10 with
the latter giving also intra-cluster differences. However, in the bottom part of the signature, 11
genes belonging to the mitochondrial blocks but also others as Eef1a1, Rack1, Eef2, Hspa8
and Naca give intra-cluster differences in particular in cluster 1 and 3.

Finally, figure 6.14 displays the signature of cluster 5 (violet) composed of 151 genes,
81 of these uniques of this signature. The expression pattern is repeated among the clusters,
however some differences are well visible. Genes confering intra-cluster division are Pabpc1,
Uba52, Fau, mytochondrial genes, Rack1, Eef1a1, Tpt1, Npm1, Eef1b2 and Ddx5 (in cluster
1), Tmsb10 (in all the clusters). A distinctive trait in this signature is the presence of 7
genes whose expression is not detectable in any cluster except for cluster 5 (violet) and it is
composed of Stmn1, Pclaf, Tubb5, H2afz, Ran and Ptma. Moreover, Ccl5 gene expression is
again heterogeneous with no expression in cluster 5, downregulation in cluster 1 and 3 and
strong upregulation in cluster 2 and 4.
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FIGURE 6.11: Heatmap of the 71 genes of cluster 2 signature. Columns
represent cells and rows genes. Cells are coloured on the basis of their be-

longing cluster (C1:red, C2:yellow ,C3:green, C4:blue, C5:violet )
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FIGURE 6.12: Heatmap of the 9 genes of cluster 3 signature. Columns
represent cells and rows genes. Cells are coloured on the basis of their be-

longing cluster (C1:red, C2:yellow ,C3:green, C4:blue, C5:violet )
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FIGURE 6.13: Heatmap of the 41 genes of cluster 4 signature. Columns
represent cells and rows genes. Cells are coloured on the basis of their be-

longing cluster (C1:red, C2:yellow ,C3:green, C4:blue, C5:violet )
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FIGURE 6.14: Heatmap of the 151 genes of cluster 5 signature. Columns
represent cells and rows genes. Cells are coloured on the basis of their be-

longing cluster (C1:red, C2:yellow ,C3:green, C4:blue, C5:violet )
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6.5 Supplementary Figure and Tables Chapter 4

FIGURE 6.15: T Lymphocytes activation. The naive T Lymphocytes are
activated through the bound of the TCR receptor with an Antigen Presenting
Cell (APC). Then, T Lymphocytes start to produce and release IL2 in the
environment. IL2 is simultaneously internalized by T Lymphocytes in order
to self-stimulate the duplication and differentiation in Effector T cells (Teff),

Memory T cells (Tmem) and Regulatory T cells (Treg).

FIGURE 6.16: EBV and ODC dynamics. A subset of the 5000 trajectories
generated by LHS of the EBV cells (a) and the ODC cells with an irreversible

damage (b) over the whole time interval

1DACinjected represents the quantity of DAC injected per time and with this formula we estimate automati-
cally the constant in order to have exp(−DACinjected/CDAC) = .1, i.e. the T-cells duplication rate is reduced
of the 90% when all the DAC particles are present.
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FIGURE 6.17: Varying the quantity of DAC injected and its degrada-
tion. Scatter plot of the ODC irreversibly damaged variable at the fixed time
365 depending on the DAC injected (x-axis) and the DAC death rates (y-
axis). The colour depends on the number of ODCs irreversibly damaged.
The number of ODC is strongly dependent by the DAC degradation: the de-
crease of the number of damaged ODC is more influenced by an increase of

the permanence time of DAC drug in the body.

FIGURE 6.18: Result of the variation of DAC degradation rate in NK
cells.NK trajectory colored depending on DAC degradation rate (expressed
in months). The red line represents the starting sample without drug admin-

istration.
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FIGURE 6.19: Pregnant woman case: Teff and Treg. The Teff a) and Treg
b) dynamics before, during and after the pregnancy. The red line represents

the starting sample without pregnancy.

FIGURE 6.20: Teffs considering an MS subject. The Teff dynamics con-
sidering an MS subject.
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TABLE 6.1: List of the model fixed and unknown parameters with their
corresponding values or (in the latter case) ranges on whose the Uniform

distribution is defined.

Transitions/events Parameters Range

Treg Death rTregD 1/24 h−1

Teff Death rTe f f D 1/24 h−1

NK Death rNKD 1/24 h−1

NK Dup rNKDup 1/24 h−1

Teff Activation rTe f f A [0.2, 0.6] h−1

Treg Activation rTregA [0.1, 0.3] h−1

Treg Dup rTregDup [0.045, 0.135] h−1

Teff Dup rTe f f Dup [0.25, 0.75] h−1

TeffKillODC rTeKodc [0.05, 0.15] h−1

TregKillTeff rTrKTe [1.5, 4.5] h−1

TeffKillEBV rTeKebv [0.075, 0.225] h−1

Recovery rrec [0.075, 0.225] h−1

NKKillTcell rNKkTc [0.05, 0.15] h−1

DACDeath rDacD [0.0004, 0.001] h−1

DACinjection rDacInj [5, 100] h−1

TABLE 6.2: List of the model constants.

Constant Value

qRestTreg 20

qRestTe f f 500

qNK 100

CEBV 1000

CMem 200

CDAC (DACinjected)/log(.1) 1

CIL2 200

CTcell 200

CTe f f 200

pdup
e f f 2/3

pmem
e f f 1/3
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TABLE 6.3: List of the cell numbers used in the model.

Cell Value Reference

TLymphocytes [3 ∗ 103cells/mm3] Al-Mawali et al., 2018; Warny et al., 2018

RestingTe f f [1687cells/mm3] Santagostino et al., 1999; Bisset et al., 2004; Choi et al., 2014

RestingTreg [63cells/mm3] Somerset et al., 2004

NK [375cells/mm3] Santagostino et al., 1999; Bisset et al., 2004; Choi et al., 2014

ODC [125cells/mm3] Segal, Schmitz, and Hof, 2009

EBVin f ection [50− 70days] Balfour Jr et al., 2005

TABLE 6.4: Parameters used for simulating the Healthy version (first row)
and Sick version (second row) of the disease.

Transition Teff Activation Treg Activation Treg Dup Teff Dup TeffKillODC TregKillTeff TeffKillEBV Recovery NKKillTcell

Healthy 0.4 0.2 0.09 0.5 0.1 3 0.15 0.1 0.1

Sick 0.4 0.2 0.09 0.5 0.15 1 0.1 0.1 0.1
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