
Computer Vision and Image Understanding 238 (2024) 103882

F
p
M
M
a

b

A

C

M
4
4
6
6

K
D
F
P
P

1

h
a
i
r
2
i
t
r
m
o
a
o

h
R
A
1
(

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier.com/locate/cviu

edER: Federated Learning through Experience Replay and
rivacy-preserving data synthesis
atteo Pennisi a,∗,1, Federica Proietto Salanitri a,1, Giovanni Bellitto a, Bruno Casella b,
arco Aldinucci b, Simone Palazzo a, Concetto Spampinato a

Department of Electrical, Electronics and Computer Engineering, University of Catania, 95125, Italy
Department of Computer Science, University of Turin, Turin, 10149, Italy

R T I C L E I N F O

ommunicated by Nikos Komodakis

SC:
1A05
1A10
5D05
5D17

eywords:
ecentralized learning
ederated learning
rivacy in machine learning
attern recognition and classification

A B S T R A C T

In the medical field, multi-center collaborations are often sought to yield more generalizable findings by
leveraging the heterogeneity of patient and clinical data. However, recent privacy regulations hinder the
possibility to share data, and consequently, to come up with machine learning-based solutions that support
diagnosis and prognosis. Federated learning (FL) aims at sidestepping this limitation by bringing AI-based
solutions to data owners and only sharing local AI models, or parts thereof, that need then to be aggregated.
However, most of the existing federated learning solutions are still at their infancy and show several
shortcomings, from the lack of a reliable and effective aggregation scheme able to retain the knowledge learned
locally to weak privacy preservation as real data may be reconstructed from model updates. Furthermore, the
majority of these approaches, especially those dealing with medical data, relies on a centralized distributed
learning strategy that poses robustness, scalability and trust issues. In this paper we present a federated learning
strategy, FedER, that, exploiting experience replay and generative adversarial concepts, effectively integrates
features from local nodes, providing models able to generalize across multiple datasets while maintaining
privacy. FedER is tested on two tasks — tuberculosis and melanoma classification — using multiple datasets
in order to simulate realistic non-i.i.d. medical data scenarios. Results show that our approach achieves
performance comparable to standard (non-federated) learning and significantly outperforms state-of-the-art
federated methods. Remarkably, we also observe that FedER enables any node model to be used as a global
federation model. Indeed, the experience replay strategy with privacy-preserving synthetic data allows all node
models to converge to reach the same optimum without the need of a single shared model. Code is available
at https://github.com/perceivelab/FedER.
. Introduction

Recent advances of deep learning in the medical imaging domain
ave shown that, while data-driven approaches represent a powerful
nd promising tool for supporting physicians’ decisions, the availabil-
ty of large-scale datasets plays a key role in the effectiveness and
eliability of the resulting models (Irvin et al., 2019; Wang et al.,
017; Cohen et al., 2020). However, the curation of large medical
maging datasets is a complex task: data collection at single insti-
utions is relatively slow and the integration of historical data may
equire significant efforts to deal with different data formats, storage
odalities and acquisition devices; moreover, medical institutions are

ften reluctant to share their own data, due to privacy concerns. As
consequence, this affects the quality, reliability and generalizability

f models trained on local datasets, which unavoidably suffer from
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bias and overfitting issues, reducing the ability to address future data
distribution shifts (Zech et al., 2018). In order to overcome the lack
of large-scale datasets, methodological solutions can be adopted: in
particular, federated learning (Yang et al., 2019) encompasses a family
of strategies for distributed training over multiple nodes, each with
its own private dataset, which typically communicate with a central
node by sending local model updates, used to train the main model.
In this scenario, no data is explicitly shared between nodes, thus ad-
dressing the required privacy issues. However, this family of techniques
generally performs well when dataset distributions are approximately
i.i.d. and local gradients/models contribute to learning shared features:
unfortunately, in practice this hypothesis rarely holds, due to differ-
ences in the acquisition and in the clinical nature of data collected
by multiple institutions. Moreover, the presence of a central node,
besides representing a single point of failure, requires that all nodes
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trust it to correctly and fairly treat updates from all sources: indeed,
privacy issues arise when transferring local updates to the ‘‘semi-
honest’’ central node (Evans et al., 2018), which might attempt to
reconstruct original inputs from gradients or parameter variations (Zhu
et al., 2019; Geiping et al., 2020; Zhao et al., 2020). To address the
above limitations, we present FedER, a federated learning approach
that, leveraging experience replay from continual learning (Ratcliff,
1990; Robins, 1995; Rolnick et al., 2019; Buzzega et al., 2020) and
generative models (Goodfellow et al., 2014; Mirza and Osindero, 2014;
Karras et al., 2020a), proposes a principled way for training local
models that approximately converge to the same decisions, without the
need of a shared model architecture and of central coordination. FedER
lso enforces privacy preservation through the transmission of synthetic
ata generated in a way to obfuscate real data patterns.

Specifically, FedER’s learning strategy envisages multiple nodes that
nitially train their local models and a GAN on their own datasets. The
AN will be used in order to generate a privacy-preserving synthesized
ersion of the dataset (buffer). Once local training is completed in a
ode, its model and the ‘‘buffer’’ of generated synthetic data are sent
o a random node of the network. The receiving node then adapts
he incoming model using its own data and the received buffer data,
n order to limit model’s forgetting. Data privacy is ensured through

privacy-preserving generative adversarial network (GAN) that em-
loys a specific loss designed to maximize the distance from real
ata, while keeping a high level of realism and — as importantly —
linically-consistent features, in order to allow models to be trained
ffectively.

FedER is tested on two tasks, simulating a non-i.i.d. medical sce-
ario: (1) classification of tuberculosis from X-ray data, using Mont-
omery County and Shenzhen Hospital datasets (Candemir et al., 2013;
aeger et al., 2014, 2013), and (2) melanoma classification using skin
mages of the ISIC 2019 dataset (Combalia et al., 2019; Tschandl et al.,
018; Codella et al., 2018). The experimental setting is specifically
esigned to emulate a realistic medical non-i.i.d. scenario, where each
ode in the federation uses its own dataset. This is in stark contrast
ith common procedures where non-i.i.d. distributions are simulated
y splitting a single source dataset. Results show how our approach is
ble to reach performance similar to using centralized training on all
eal data together in a single node, while outperforming current state-
f-the-art methods, such as FedAvg (McMahan et al., 2017), FedProx (Li
t al., 2020) and FedBN (Li et al., 2021). Privacy-preserving capabili-
ies are measured quantitatively by evaluating LPIPS distance (Zhang
t al., 2018) between real images and samples generated, respectively,
hrough latent space optimization on a standard GAN and by the
roposed approach. Qualitatively, we also show several examples of
enerated images with corresponding closest match in the real dataset,
emonstrating significant differences that prevent tracing back to the
riginal real distribution.

In summary, the overall contributions of the proposed work are the
ollowing:

• We propose a decentralized federated learning strategy, based on
continual learning principles, designed for medical imaging data,
which outperforms server-based federated learning approaches
and yields performance similar to standard (non-federated) train-
ing settings. Furthermore, experience replay allows local node
models to converge to the same decisions, thus making the whole
approach behave similarly to server-based aggregation models.

• We propose a GAN-based privacy-preserving mechanism that sup-
ports synthetic data sharing through a GAN-based technique de-
signed to minimize patient information leak. This is different from
most privacy-preserving techniques based on differential privacy,
which degrades performance due to added noise.

• Most approaches for model aggregation in federated learning em-
ploy gradient/parameter averaging. These solutions completely

neglect any similarity or dissimilarity between merged features,

2

possibly resulting in interference that harm convergence. FedER,
instead, takes feature semantics into account when merging mod-
els: if a node receives a model that extracts useful features for the
local dataset, these can be readily employed and re-used, without
the risk of randomly averaging them with other less important
features. FedER, thus, surpasses the common and straightforward
weight/gradient averaging paradigm, replacing it with a prin-
cipled way for knowledge transfer, which relaxes two of the
constraints of the leading federated learning approaches: the
presence of a central node and model homogeneity.

. Related work

Federated Learning (FL) (McMahan et al., 2017) has recently
merged as a family of distributed learning strategies that allow nodes
o keep training data private, while supporting the creation of a shared
odel. In a typical FL setting, a central server sends a model to
set of client nodes; each node fine-tunes the model on its own

ata, then sends local model updates back to the server; the server
ggregates the updates by all nodes into the global model, which is
ent back to nodes iteratively until convergence. Given the constraints
xisting in the medical domain, especially in terms of data sharing, it
epresents an appropriate test-bench for federated learning methods (Li
t al., 2019; Roy et al., 2019; Dayan et al., 2021; Feki et al., 2021).
he most straightforward way to aggregate information from multiple
odes is through averaging local models of each client, as proposed
n FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020).
owever, statistical data heterogeneity is an issue as it may lead to
atastrophic forgetting (Kairouz et al., 2021; Goodfellow et al., 2013).
edCurv (Shoham et al., 2019) addresses this limitation by adding a
enalty term to the loss driving the local models to a shared optimum.
edMA (Wang et al., 2020) builds a shared global model in a layer-
ise manner by matching and averaging hidden elements with similar

eature extraction signatures. Our method differs from existing feature
ntegration approaches in that, instead of averaging model updates or
radients, which can be subject to input reconstruction attacks (Geiping
t al., 2020; Xie et al., 2018; Zhu et al., 2019), each node attempts
o learn features that perform well on its own dataset while retaining
nowledge from other nodes, in a more principled way than parameter
veraging. The strategy of fitting the global model to local data is also
ought by the recent federated personalized methods. FedBN (Li et al.,
021), for instance, keeps batch normalization layers private, while
ther model parameters are aggregated by the central node.

However, the presence of a central node that aggregates local
pdates simplifies the communication protocol when the number of
lients is very large (thousands or millions), but introduces several
ownsides: it represents a single point of failure; it can become a
ottleneck when the number of clients increases (Lian et al., 2017);
n general, it may not always be available or desirable in collaborative
earning scenarios (Kairouz et al., 2021). In this paper, we deal with
ecentralized federated learning, in which the central node is replaced
y peer-to-peer communication between clients: there is no longer a
lobal shared model as in standard FL, but the communication protocol
s designed so that all local models approximately converge to the same
olution. Decentralized learning is particularly suitable to application
n the medical domain, where the number of nodes (i.e., institutions)
s relatively low; however, research is still ongoing, and no effective
olutions have been established. In Lalitha et al. (2019), a Bayesian
pproach is proposed to learn a shared model over a graph of nodes, by
ggregating information from local data with the model of each node’s
ne-hop neighbors. A secure weight averaging algorithm is proposed
n Wink and Nochta (2021), where model parameters are not shared
etween nodes, but all converge to the same numerical values (with
he disadvantages associated to parameter averaging with non-i.i.d. data
istributions). Other approaches implement different communication
trategies based on parameter sharing (e.g., decentralized variants on
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Fig. 1. Overview of FedER learning strategy. Each node initially trains a privacy-preserving GAN, that is used to sample synthetic data from the local distribution, without retaining
features that may be used to identify patients. Then, each node iteratively receives the local model and a buffer of synthetic samples from a random node, and fine-tunes the
received model on its own private data, using the buffer to prevent forgetting of previously-learned features.
f

FedAvg (Sun et al., 2021; McMahan et al., 2017)). In general, many of
the existing solutions do not target, nor are they tested on, the medical
domains — most employ toy datasets, such as MNIST and CIFAR10.
Two works, similar in the decentralized learning spirit to ours, are
proposed in Roy et al. (2019) and Gao et al. (2022), where use cases
of decentralized and swarm learning for medical image segmentation
are presented. However, like other approaches, they adopt simple
parameter averaging to integrate features or predictions from multiple
nodes.

3. Method

3.1. Overview

An overview of FedER is shown in Fig. 1. In this scenario, a
federation consists of a set of 𝑁 peer nodes, each owning a private
dataset.

Before the decentralized training algorithm is started, each node in-
ternally trains a privacy-preserving generative adversarial network, which
is used to generate synthetic samples from its private data distribution.
The training objective of the GAN is designed to enforce the constraint
that sampled data do not include privacy-sensitive information, while
maintaining the clinical features required for successful training.

At each round of decentralized training, each node receives a model
and a set of synthetic samples — ‘‘buffer’’ — from a random node
in the federation. The input model to the node is fine-tuned on both
the private dataset and the buffer, in a way that is reminiscent of
experience replay techniques in continual learning (e.g., Buzzega et al.,
2020), in order to learn features that transfer between nodes and that
can handle non-i.i.d. distributions. At the end of each round (i.e., after
performing several training iterations), the locally-trained model is sent
to a randomly-chosen successor node together with a buffer of local
synthetic samples, and the whole procedure is repeated.

In this work we specifically address the problem of federated learn-
ing for medical image classification; thus, the method is presented by
considering this task, but the whole strategy can be applied to any other
task without losing generalization.

3.2. Privacy-preserving GAN

In the proposed method, nodes exchange both models and data,
implementing a knowledge transfer procedure based on experience
replay (see Section 3.3 below). Of course, sharing real samples would
go against federated learning policies; hence, exchanged samples are
generated so that they are representative of the local data, while
taking precautions against privacy violations — which may happen, for

instance, if the generative model overfits the source dataset. f

3

Formally, we assume that each node 𝑛𝑖, from a set of 𝑁 nodes,
owns a private dataset 𝑖 =

{(

𝐱1, 𝐲1
)

,
(

𝐱2, 𝐲2
)

,… ,
(

𝐱𝑀 , 𝐲𝑀
)}

, where
each 𝐱𝑗 ∈  represents a sample in the dataset, and each 𝐲𝑗 ∈ 
represents the corresponding target.2 The local dataset can then be used
to train a conditional GAN (Mirza and Osindero, 2014), consisting of
a generator 𝐺, that synthesizes samples for a given label by modeling
𝑃 (𝐱|𝐲, 𝐳)), where 𝐳 ∈  is a random vector sampled from the generation
latent space, and a discriminator 𝐷, which outputs the probability
of an input sample being real, modeling 𝑃 (real|𝐱, 𝐲). The standard
GAN formulation introduces a discrimination loss, which trains 𝐷 to
distinguish between real and synthetic samples:

𝐷 = −E𝐱,𝐲
[

log (𝐷 (𝐱, 𝐲))
]

− E𝐳,𝐲
[

log (1 −𝐷 (𝐺 (𝐳, 𝐲) , 𝐲))
]

, (1)

and a generation loss, which trains 𝐺 to synthesize samples that appear
realistic to the discriminator:

𝐺 = −E𝐳,𝐲
[

𝐷 (𝐺 (𝐳, 𝐲) , 𝐲)
]

. (2)

While it has been theoretically proven that, at convergence, the
distribution learned by the generator matches and generalizes from the
original data distribution (Goodfellow et al., 2013), unfortunately GAN
architectures may be subject to training anomalies, including mode
collapse and overfitting: as a consequence, the basic GAN formulation
may lead to the generation of samples that are near duplicates of the
original samples, which would be unacceptable in a federated learning
scenario.

In order to mitigate this risk, we introduce a privacy-preserving loss,
enforcing the generation of samples that do not retain potentially sensi-
tive information, but still include features that are clinically relevant to
the target 𝐲 of the synthetic sample. In other words, if 𝐲 encodes generic
features for the diagnosis of a certain disease, we want the generator to
learn how to synthesize samples conditioned by 𝐲, that exhibit evidence
of that disease but cannot be traced back to any of the dataset’s samples
of the same disease.

To do so, our privacy-preserving loss aims at penalizing the model
proportionally to the similarity between pairs of real and synthetic
samples. We measure ‘‘similarity’’ by means of the LPIPS metric (Zhang
et al., 2018), which has been shown to capture perceptual similarity
by calibrating the distance between feature vectors extracted from a
pre-trained VGG model (Simonyan and Zisserman, 2015).

In practice, given a batch of real samples
{

𝐱(𝑟)1 , 𝐱(𝑟)2 ,… , 𝐱(𝑟)𝑏

}

and a

batch of synthetic samples
{

𝐱(𝑠)1 , 𝐱(𝑠)2 ,… , 𝐱(𝑠)𝑏

}

, the privacy-preserving

2 The proposed approach is task-agnostic, as long as it is possible to sample
rom the  distribution. For simplicity, within the scope of this work, we will
ocus on classification tasks, and we will assume that targets are class labels.
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loss term is computed as:

PP = 1
𝑏
∑

𝐱(𝑟)

∑

𝐱(𝑠)
𝑑𝐿

(

𝐱(𝑟), 𝐱(𝑠)
)

, (3)

here 𝑑𝐿 is the LPIPS distance defined as:

L(𝐱(𝑟), 𝐱(𝑠)) =
∑

𝑖
𝑤𝑖 ⋅ ‖𝜙𝑖(𝐱(𝑟)) − 𝜙𝑖(𝐱(𝑠))‖2 (4)

where 𝜙𝑖 represents the feature maps extracted from the 𝑖th layer of a
eep neural network and 𝑤𝑖 is a weight learned to reflect the perceptual
mportance of that layer. Note that, in this formulation, we ignore
he 𝐲 targets associated to each 𝐱: we want to prevent the model from
enerating near-duplicates of real samples in general, regardless of class
orrespondence. Also, we intentionally employ a pairwise metric on
amples, rather than an aggregated metric such as Frêchet Inception
istance (Heusel et al., 2017), since we want to prevent similarity
etween samples, not between distributions, which would conflict with
he GAN objective.

The resulting new loss for the Generator is a combination of Eqs. (2)
nd (3):

𝐺-PP = 𝐺 − 𝛼PP (5)

here PP is sign reversed as we want to maximize Eq. (3), while 𝛼 is
hyperparameter used to balance the two terms.

The combined effect of the three loss terms — 𝐷, 𝐺, PP —
ushes the generator to explore the sample space to match the dataset
istribution, while ‘‘avoiding’’ latent space mappings that would project
o actual real samples.

.3. Federated learning with experience replay

Current approaches for federated learning are mostly based on pa-
ameter averaging (e.g., FedAvg), which is, however, a straightforward
ay to combine knowledge from multiple sources: feature locations are
ot aligned over different models and may be disrupted by updates,
efore slowly converging to consensus: hypothetically, two models
ould learn the same set of features at different locations of the same
ayer, to only have them cancel each other when averaging. In a
ecentralized scenario, this issue is even exacerbated, due to the lack
f an entity that enforces global agreement on node features.

In our approach, we address this problem by taking inspiration
rom continual learning strategies (Delange et al., 2021) that learn
ow to perform a task with a non-i.i.d data stream without forgetting

previously-learned knowledge: as a consequence, models are encour-
aged to reuse and adapt features so that they can equally serve the
current and previous tasks. Analogously, in the federated learning
setting, the objective is to train a global model trained on disjoint
non-i.i.d. data distributions coming from different nodes.

Given these premises, we define a federated learning strategy where
node receives another node’s model and surrogate data (generated

hrough our privacy-preserving GAN) — the ‘‘previous task’’ — and fine-
unes that model on its own private date — the ‘‘current task’’ — while
sing received synthetic data as a reference to what is necessary to
etain/adapt from the knowledge learned by the previous node. The
dea is to build for each node a model able to tackle its internal data
hile not forgetting about the data seen in previous nodes/iterations.

We first introduce the terminology used in the method’s description.
n our approach, we define a set of 𝑁 tasks  = (𝑇1, 𝑇2,… , 𝑇𝑁 ), where
𝑖 is the task to be solved within node 𝑛𝑖.

efinition 1. Task 𝑇𝑖 aims at optimizing a model 𝑀𝑖, parameterized
y 𝜽𝑖, on dataset 𝑖 residing on node 𝑛𝑖 and that cannot be shared to
ther nodes.

efinition 2. A buffer 𝑖 is a set of synthetic images, drawn from
latent space learned through a generative model 𝑖 using data 𝑖
vailable on node 𝑛𝑖.

4

efinition 3. Training is organized in parallel rounds. At the end of
ound 𝑟, each node 𝑛𝑖 produces a model 𝑀𝑟

𝑖 trained on dataset 𝑖 and
n a buffer 𝑗 , received from another node 𝑛𝑗 , to optimize an objective
, i.e., to find arg min𝜽𝑟𝑖

= E(𝐱,𝐲)∼𝑖∪𝑗
[(𝑀𝑟

𝑖 (𝐱,𝜽
𝑟
𝑖 ), 𝐲)]. For each training

ound, all nodes in parallel share to/receive from other nodes, buffer
f synthetic images and trained models.

In the following, we describe our method (whose graphical repre-
entation is given in Fig. 1) from the point of view of a single node 𝑛𝑗 .
t a given round 𝑟, training for node 𝑛𝑗 can be seen as learning a new

ask 𝑇𝑗 , from dataset 𝑗 , in a continual learning setting by finetuning
he incoming model 𝑟−1

𝑖 (with parameters 𝜽𝑟−1𝑖 ) on 𝑗 and on the
ncoming buffer 𝑖 in order to learn 𝑇𝑗 while mitigating the forgetting
f 𝑇𝑖. Thus, unlike other federated learning approaches, each node does
ot have its own local model: as the decentralized learning strategy
roceeds, a node iteratively receives a model from another node and
pdates it with local information, while preserving previously-learned
nowledge, before sending it to the next node. Formally, the loss
unction for model 𝑟

𝑗 in node 𝑛𝑗 at round 𝑟 is given as:

(𝜽𝑟𝑗 ) = 𝜆E(𝐱,𝐲)∼𝑗
[(𝑀𝑟

𝑗 (𝐱,𝜽
𝑟
𝑗 ), 𝐲)]

+ (1 − 𝜆)E(𝐱′ ,𝐲′)∼𝑖
[(𝑀𝑟

𝑗 (𝐱
′,𝜽𝑟𝑗 ), 𝐲

′)]
(6)

here 𝜆 controls the importance between real samples from the local
ataset 𝐷𝑖 and replayed synthetic samples from node 𝑛𝑖. Note that,
or a given 𝑛𝑗 , the predecessor node 𝑛𝑖 is not fixed: in a practical
synchronous implementation, a node may receive a model and buffer
rom any random node in the federation at any time, using queues to
andle incoming data.

After optimizing the (𝜽𝑟𝑗 ) objective through mini-batch gradient
escent for a certain number of training iterations, the resulting model
𝑟
𝑗 (𝜽

𝑟
𝑗 ), with updated parameters 𝜽𝑟𝑗 , is sent to a random node 𝑛𝑘 of

he federation, along with a buffer 𝑗 of locally-generated synthetic
amples. The number of training rounds/iterations and the size of the
uffer is discussed in the next section.

Then, the general federated model , after all training rounds,
s given by the union of all the 𝑁 node models, i.e.,  = 𝑀1 ∪
2 ∪ ⋯ ∪ 𝑀𝑁 . However, experimental results, reported below in

ection 4, demonstrate that all models converge to similar decisions,
hus each node model can be considered as a general model for the
ntire network.

To ease the understanding of the whole training strategy we also
eport the algorithm pseudo-code in Alg. 1.

. Experimental results

We test FedER on two applications simulating real case scenarios
ith multiple centers holding, and not sharing, their own data: (1) tu-
erculosis classification from X-ray images using two different datasets,
nd (2) skin lesion classification with three different datasets. In this
ection we present the employed benchmarks, the training procedure
nd report the obtained results to demonstrate the advantages of the
roposed approach w.r.t. the state-of-the-art.

.1. Datasets

X-ray image datasets for tuberculosis classification. We assume
wo separate nodes in the federation: one with the Montgomery County
-ray set and another one with the Shenzhen Hospital X-ray set (Can-
emir et al., 2013; Jaeger et al., 2014, 2013). The Montgomery Set
onsists of 138 frontal chest X-ray images (80 negatives and 58 posi-
ives), captured with a Eureka stationary machine (CR) at 4020 × 4892
r 4892 × 4020 pixel resolution. The Shenzhen dataset was collected
sing a Philips DR Digital Diagnostic system. It includes 662 frontal
hest X-ray images (326 negatives and 336 positives), with a variable
esolution of approximately 3000 × 3000 pixels.
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Algorithm 1: FedER Learning Procedure
Notations The 𝑁 nodes are indexed by 𝑛𝑖; 𝐸 is the number of
local epochs for each round. 𝑅 the total round of communications
between nodes.
Each node 𝑛𝑖 contains:
𝑖 Private Dataset
𝑖 Generator (privacy-preserving) trained on 𝐷𝑖
𝑟

𝑖 Model for node 𝑛𝑖 at round 𝑟
𝑖 Synthetic data buffer sampled using 𝐺𝑖

// Before Federated Training
for each node 𝑛𝑖 ∈ 𝑁 do

Train 𝑖 on 𝑖
Generate Buffer 𝑖 using 𝑖
Train 0

𝑖 on 𝑖
end

// Federated Training
for each round 𝑟 = 1, 2, ..., 𝑅 do

for each node 𝑛𝑗 ∈ 𝑁 in parallel do
Send 𝑟−1

𝑗 , 𝑗 to a node 𝑛𝑘 ∈ {𝑁 ⧵ 𝑛𝑗}
Receive 𝑟−1

𝑖 , 𝑖 from a node 𝑛𝑖 ∈ {𝑁 ⧵ 𝑛𝑗}
𝑟

𝑗 ← 𝑟−1
𝑖

Train 𝑟
𝑗 on {𝑗 ∪ 𝑖} for 𝐸 epochs

end
end

Skin lesion classification. We employ the ISIC 2019 challenge
ataset, which contains 25,331 skin images belonging to nine different
iagnostic categories. In this case, we assume a federation with three
odes as data provided belongs to three different sources: (1) the
CN20000 (Combalia et al., 2019) dataset, consisting of 19,424 images
f skin lesions captured from 2010 to 2016 in the Hospital Clínic in
arcelona; (2) the HAM10000 dataset (Tschandl et al., 2018), which
ontains 10,015 skin images collected over a period of 20 years from
wo different sites, the Department of Dermatology at the Medical
niversity of Vienna, Austria, and the skin cancer practice of Cliff
osendahl in Queensland, Australia; (3) the MSK4 (Codella et al., 2018)
ataset, which is anonymous and includes 819 samples. Among all skin
esion classes, we only consider the melanoma class, posing the problem
s a binary classification task.

In all tasks and datasets we adopt 80% of the available data to
rain both the privacy-preserving GAN and the classification model,
hile the remaining 20% of each dataset is used as test set. Test sets
re also balanced w.r.t. the label to avoid performance biases due
o class imbalance. For all tested federated methods (including state-
f-the-art ones), model selection is carried out through with 5-fold
ross-validation on the training set, as a grid search on number of
raining rounds, number of rounds per epoch and learning rate. For
edProx (Li et al., 2020), we also include the 𝜇 hyperparameter.

.2. Training procedure and metrics

.2.1. Federated training
In all settings, we employ ResNet-18 as classification model, trained

y minimizing the cross-entropy loss with mini-batch gradient descent
sing the Adam optimizer. Mini-batch size is set to 32 and 8 for the
henzhen and Montgomery datasets, respectively, and to 64 for skin
esion datasets. The learning rate was found, through cross-validation,
o be 10−4. Data augmentation is carried out with random horizontal
lip; for skin images we additionally apply random 90-degree rotations.
ll images are resized to 256 × 256. The ratio between real and syn-

hetic samples controlled by 𝜆 in Eq. (6) is set to 0.5 for all experiments,
.e., each mini-batch is composed by the same quantity of real and
5

ynthetic images. This also ensures that our method performs the same
umber of optimization steps as other approaches that do not use any
ynthetic data.

The node federation is trained for 𝑅 rounds. In our implementation,
t each round nodes are randomly ordered to establish each node’s pre-
ecessor and successor: given our focus on medical applications, we can
ssume that the number of nodes is low enough that synchronization
s not an issue. However, asynchronicity can be achieved by assuming
hat nodes can store incoming data in a queue: if the distribution
f successor nodes is uniform and computation times are similar for
ll nodes, this is on average equivalent to the synchronous case. The
umber of rounds 𝑅 and epochs 𝐸 for FedER on the tuberculosis and
elanoma classification tasks are set both to 100, according the 5-

old cross-validation results shown in Table 1. Buffer size is set for all
xperiments to 512.

.2.2. GAN training
We recall that GAN training is carried out before federated learning

sing training data only, while leaving out test samples, as men-
ioned in Section 4.1. Our privacy-preserving GAN employs StyleGAN2-
DA (Karras et al., 2020b) as a backbone, because of its suitability

n low-data regimes and its generation capabilities. Training is carried
ut in two steps: (1) the GAN is initially trained without any privacy-
reserving loss to support learning of high-quality visual features; (2)
fterwards, we enable privacy-preserving loss and fine-tune the model
n order to limit the embedding of patient-specific patterns in the GAN
atent space. For classification purposes, GANs are trained in a label-
onditioned fashion with a mini-batch size of 32 and learning rate of
.0025 for both the generator and the discriminator. Early-stopping
riteria are based on the Frêchet Inception Distance (FID) (Heusel et al.,
017) between real and synthetic distributions: in the first training step,
e stop training if FID does not improve for 10,000 iterations; in the

econd training step, we employ a criterion which stops training if FID
ncreases by a factor of 2.5 w.r.t. the value obtained in the first step. As
or the 𝛼 parameter in Eq. (3), we tested multiple values of 𝛼 (0, 0.5, 1,
.5, 2 and 3) and found that the value of 1 yields the best compromise
etween image generation quality and pairwise LPIPS distance (Zhang
t al., 2018) over all tested datasets. In order to quantitatively evaluate
rivacy preservation, we also compute the average LPIPS distance
etween each real image and its closest synthetic sample by means
f latent space projection (described in Section 4.4): the higher value
f LPIPS, the lower the possibility to reconstruct real images from the
enerator.

.3. Federated learning performance

We first evaluate the performance (in terms of classification ac-
uracy) of FedER in the non-i.i.d. setting, and compare it to several
entralized baselines, namely:

• Centralized training: all datasets are merged in a single node
where all training happens. In this setting, no federated learning
constraints are applied.

• Centralized training with synthetic data only. In this setting,
each node trains a privacy-preserving GAN model and shares a
synthetic version of its own data with the central node, where
global training is performed. In this case, we aim to assess how
much information is retained by synthetic data to support classi-
fication.

• Centralized training with synthetic and real data. This setting
is a combination of the previous two: real and synthetic samples
are centrally merged and used for training a global classifier. This
scenario measures the contribution of synthetic data as a data

augmentation approach.
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Table 1
Rounds and epochs in FedER. Results (mean ± standard deviation) obtained with 5-fold cross-validation. Buffer size = 512.

Rounds Epochs Tuberculosis Melanoma

Shenzhen Montgomery BCN HAM MSK4

Accuracy Accuracy Accuracy Accuracy Accuracy

10
1 82.39 ± 6.91 56.13 ± 3.03 76.73 ± 2.07 82.24 ± 4.01 67.93 ± 4.84

10 82.86 ± 2.44 86.73 ± 4.22 83.83 ± 1.96 84.72 ± 2.29 73.67 ± 2.59
100 83.56 ± 1.72 90.79 ± 3.92 85.51 ± 1.85 88.65 ± 1.12 71.81 ± 2.04

100
1 83.31 ± 2.59 88.71 ± 3.82 78.94 ± 2.55 87.34 ± 1.62 72.07 ± 3.45

10 85.22 ± 2.42 89.72 ± 3.46 84.62 ± 1.40 85.05 ± 1.62 73.72 ± 2.41
100 87.10 ± 2.31 91.50 ± 2.60 86.06 ± 0.96 89.26 ± 1.11 72.41 ± 1.53
Table 2
Comparison between FedER and centralized baselines. Results for FedER are obtained with a buffer size of 512, 100 rounds and 100 epochs per round.

Methods Tuberculosis Melanoma

Shenzhen Montgomery Mean BCN HAM MSK4 Mean

Standalone 82.31 90.00 86.16 82.90 82.55 69.75 78.40

Centralized training 82.77 77.67 80.22 78.80 82.90 71.23 77.64
Centralized training with synthetic data only 76.92 79.33 78.13 60.71 61.09 61.23 61.01
Centralized training with synthetic data and real data 85.38 86.67 86.03 81.53 80.44 73.46 78.48

FedER (ours) 80.15 86.67 83.41 82.11 84.58 68.40 78.36
e
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Table 3
Accuracy convergence among distributed node models. Each local model is evaluated
on all test sets of the federation in order to measure convergence and generalization
(lower standard deviation corresponds to higher convergence).

Dataset FedER Standalone

Tuberculosis Shenzhen 80.54 ± 1.20 66.15 ± 22.84
Montgomery 85.67 ± 2.36 70.00 ± 28.28

Melanoma
BCN 82.87 ± 1.22 65.06 ± 19.68
HAM 84.45 ± 0.75 59.94 ± 20.47
MSK4 67.78 ± 1.28 65.43 ± 5.05

We also compare FedER against standard training of the local
ode models, referred to as ‘‘Standalone’’. Classification accuracy is
omputed using local node models on their own data. The results,
eported in Table 2, show that standalone training appears to be the
ost favorable scenario. Centralized strategies perform generally worse

han standalone training, because of the non-i.i.d. nature of the data.
owever, when the centralized approach is trained with original data
ugmented with synthetic samples, its classification accuracy is on par
ith the standalone training, possibly due to the learned generative

atent spaces that likely tend to smooth different modes of non-i.i.d.
ata. FedER, instead, outperforms its centralized counterpart and yields
lightly worse performance (1.5 percent points less) than standalone
raining. Although this may appear, at a first glance, as a shortcoming
f FedER, we recall that in a federated learning scenario, we aim at
uilding a model that, leveraging multiple data distributions present in
he federation, may generalize better, thus addressing possible future
ata drifts. In order to assess the capabilities of the trained models to
chieve such a generalization, we measure the decision convergence by
valuating how a local node model performs on other node datasets.
esults are in Table 3 and show a good average accuracy, with a

ow standard deviation, by FedER, indicating that each node model
erforms equally well on its own dataset and on the others (i.e., all node
odels converge to similar decisions). Conversely, standalone train-

ng yields significantly lower accuracy and higher standard deviation
han ours, demonstrating to be an unsuitable strategy for the sought
eneralization properties.

Thus, Table 2 shows the performance obtained by each node model
n its internal test data, while Table 3 shows, instead, the performance
btained when each node model is tested again all other nodes’ data.
he latter results indicate that in FedER, any arbitrary node model can
e used for the final evaluation, as all federation models converge to the
ame decisions. However, we further investigate whether building an
6

nsemble of all node models yields better performance than using one
rbitrary model. Results are given in Table 5 indeed showing higher
ccuracy by the ensemble. However, the models’ ensemble leads to
ncreased communication overhead (after training, all models have to
e shared across the federation) and inference costs (each node needs to
ake a forward pass for all its available models to make the prediction).

or this reason, the following experiments are carried out without using
nsemble.

We then compare our approach (without ensemble) to state-of-the-
rt federated learning approaches, namely: (a) server-based federated
ethods, FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020),
hich have shown to perform generally better than decentralized
ethods (Sun et al., 2021; Lalitha et al., 2019), and (b) a personalized
ethod, FedBN (Li et al., 2021). As already mentioned, to avoid

iased assessment, we use the official code repository3 of FedBN (Li
t al., 2021) and hyper-parameter selection on the tested datasets was
arried out through grid search on training rounds/epochs, learning
ate and 𝜇 for FedProx (Li et al., 2020) using 5-fold cross validation
s for our approach. Results, for the tuberculosis and the melanoma
asks, are reported in Table 4 and show that FedER outperforms all
ethods under comparison. Interestingly, FedER learning strategy does

etter than: (a) server-based methods, FedAvg (McMahan et al., 2017)
nd FedProx (Li et al., 2020), suggesting that experience replay is
more effective feature aggregation approach than naive parameter

veraging; (b) personalized methods, such as FedBN (Li et al., 2021),
hich affects a limited aspect of feature representation (i.e., input layer
istributions), while our approach adapts the entire model to local and
emote tasks.

These above results suggest that experience replay plays a key role
n federated models as a principled way to integrate features coming
rom different data distributions. To further assess its contribution,
e evaluate FedER performance when using buffer at different sizes.
esults on the tuberculosis task, measured as mean and standard de-
iation of the local node models over a given dataset, are shown in
able 6 and indicate a clear contribution of the buffer in terms of
verall performance and models’ agreement. Indeed, with no buffer
e obtain the lowest average performance and the highest standard
eviation. As the buffer is enabled, we can observe a performance gain
mainly for the Shenzhen dataset) and a significant drop in standard
eviation. Performance improves as buffer size increases, although gain
ecomes negligible above 512. Since higher buffer sizes result in more
ata to be shared among nodes, we use a buffer size of 512, as the best
rade-off between accuracy and communication costs.

3 https://github.com/med-air/FedBN.

https://github.com/med-air/FedBN
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Table 4
Comparison with state-of-the-art methods. In bold, best accuracy values.

Tuberculosis Melanoma

Shenzhen Montgomery Mean BCN HAM MSK4 Mean

FedAvg (McMahan et al., 2017) 72.31 83.33 77.82 77.55 75.15 67.28 73.33
FedProx (Li et al., 2020) 78.46 76.67 77.56 78.80 81.87 64.81 75.16
FedBN (Li et al., 2021) 63.08 70.00 66.54 82.19 81.12 59.26 74.19
FedER (ours) 80.15 86.67 83.41 82.11 84.58 68.40 78.36
Table 5
Accuracy performance with and without models’ ensemble. Results are computed by
testing (first line) each node model with its own data and (second line) creating an
ensemble and testing it on all nodes’ data.

Method Tuberculosis Melanoma

No ensemble 83.41 ± 4.61 78.36 ± 8.72
Ensemble 84.77 ± 4.57 80.35 ± 9.42

Table 6
FedER classification accuracy w.r.t. buffer size. Each local model is evaluated on all
test sets of the federation in order to measure convergence and generalization (lower
standard deviation corresponds to higher convergence).

Buffer Node convergence

Shenzhen Montgomery

0 70.62 ± 11.97 80.33 ± 10.84
256 80.46 ± 2.96 81.67 ± 4.24
512 80.54 ± 1.20 85.67 ± 2.36
1024 82.23 ± 1.31 86.00 ± 3.01
2048 82.08 ± 1.39 88.67 ± 2.97

We finally evaluate the capability of FedER to scale with the size of
he federated network. Accordingly, we quantify this property using an
.i.d. setting on both tuberculosis (Shenzhen dataset) and skin lesion
lassification (BCN dataset) tasks, by equally splitting the available
ata on multiple nodes. Fig. 2 shows how the proposed approach is
ble to keep classification accuracy high and performs on par with
tate-of-the-art approaches (namely, FedAvg, FedProx and FedBN).

.4. Privacy-preserving performance

In this section we quantify how much information of real samples
s retained by our privacy-preserving method, and in particular in the
apping between latent space and synthetic images. To do so, we

mploy the projection method proposed in Karras et al. (2020a): given
real image 𝐱, we find an intermediate latent point 𝐰 such that the

enerated image 𝐺(𝐰) is most similar to 𝐱, by optimizing 𝐰 to minimize
the LPIPS distance (Zhang et al., 2018) between 𝐱 and 𝐺(𝐰).

In practice, for each image of the dataset used for GAN training,
we perform backprojection to find its most similar synthetic sample,
and measure the LPIPS distance between the original and projected
images. Fig. 3 shows the histograms of the resulting distances on the
Shenzhen dataset, using GAN models trained with and without the
proposed privacy-preserving loss (both models start from the same 𝐰,
for fairness). The histograms show that standard GAN training, with no
privacy-preserving loss, tends to yield distances closer to 0, demonstrat-
ing that real images are indeed included into the generator latent space;
while our model significantly mitigates this issue, by synthesizing
samples that are substantially different than the original ones. In order
to qualitatively substantiate these findings, Fig. 4 compares original
samples from the Shenzhen dataset with the corresponding projections,
generated with and without our privacy-preserving loss.4 It is easy to
notice that generated samples with a traditional GAN highly resemble
real data, making it impossible to share such samples, albeit synthetic,
in a privacy-safe manner, as they clearly contain patient information.

4 We show only X-ray synthesized samples, as the effect is of our
rivacy-preserving strategy, is more appreciable than in skin lesion data.
7

Fig. 2. Scalability performance in the i.i.d. setting w.r.t. number of nodes for the
proposed approach and state-of-the-art methods.

Fig. 3. Quantitative analysis of privacy-preserving generation. In blue, LPIPS distance
histogram between real images and the corresponding images obtained through latent
space projection using a GAN trained without the proposed privacy-preserving loss. In
red, LPIPS distance histogram between real images and the closest images generated
with the proposed approach. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Instead, comparing real images with the projections obtained from
privacy-preserving GAN confirms the inability of the generator to find
latent representations that recover real images used during training.

Given the high realism of generated samples, we run additional
tests by proposing two FedER variants aiming to increase the level of
privacy preservation: (a) FedER-A: models are not shared among nodes
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Fig. 4. Qualitative samples of our privacy-preserving generation. Top row: real images from the Shenzhen dataset. Middle row: projection with a standard GAN. Bottom row:
projection with our privacy-preserving GAN.
Fig. 5. Privacy-enhanced alternative architectures. (a) FedER-A configuration (‘‘Buffer-only sharing’’): a local node model is trained on real data, but only a buffer of synthetic
amples is shared with other nodes. (b) FedER-B (‘‘Synthetic-only training’’): Even within the dataset owner node, models are trained on synthetic data only.
only synthetic buffers are sent and received; (b) FedER-B: models are
trained only using synthetic data, even on local nodes. Fig. 5 shows the
internal architecture of each node in the two variants. Results obtained
with these alternative privacy-enhanced configurations are provided
in Table 7. It can be noted that FedER-A (i.e., ‘‘buffer-only sharing’’)
configuration achieves comparable performance to our standard FedER
(82.76 vs. 83.41), but, remarkably, it outperforms all existing federated
learning methods on the same datasets (compare Table 4 with the
node performance block in Table 7). The FedER-B (i.e., ‘‘synthetic-only
training’’) configuration, instead, performs slightly worse than the other
two configurations, but is still on par with existing federated methods.

4.5. Communication and computational performance

We conclude the experimental analysis by measuring communication
and computational costs.

As for communication costs, compared to state-of-the-art approaches,
FedER requires additional transmission of synthetic images between
nodes at each round. Table 8 reports per-node communication costs
for state-of-the-art models (the table reports FedAvg, but the same
values apply for FedProx and FedBN) and for FedER, in its full for-
mulation and in the FedER-A variant, where only buffers of synthetic
data are shared. The main cost for state-of-the-art models lies in the

transfer of the model, and depends on the specific architecture (we

8

Table 7
Classification accuracy of the proposed privacy-enhanced strategies in the non-i.i.d.
setting. FedER-A: only buffers are shared (Fig. 5-a). FedER-B: models are trained on
synthetic data only (Fig. 5-b). Node performance measures how each node model
performs on its own private dataset, while node convergence assesses how a node
model performs on other federation nodes.

Config Node performance Node convergence

Shenzhen Montgomery Mean Shenzhen Montgomery

FedER 80.15 86.67 83.41 80.54 ± 1.20 85.67 ± 2.36
FedER-A 83.54 82.00 82.76 78.84 ± 6.64 81.00 ±3.30
FedER-B 74.15 81.33 77.74 73.61 ± 4.68 80.40 ± 3.60

included ResNet-18 and ResNet-152 as representative examples of dif-
ferent model scales). Values for our approach are reported for buffers of
size 512 containing 256 × 256 images, and depend on the color space.
For our full FedER model, the increment in communication costs is
significant but not excessive. However, if we take into consideration the
variant where only synthetic data are exchanged (i.e., FedER-A), which
still performs better than state-of-the-art methods (Tables 4 and 7),
communication overhead becomes significantly less than model-sharing
approaches.

As for computational costs of federated training, FedER incurs the
same overhead for parameter optimization and aggregation as state-of-
the-art methods. Additionally, before federated training starts, FedER
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Table 8
Communication results comparison.

Tuberculosis Melanoma

ResNet-18 ResNet-152 ResNet-18 ResNet-152

FedAvg
45 MB 230 MB 45 MB 230 MBFedProx

FedBN

FedER 65 MB 250 MB 105 MB 290 MB
FedER-A 20 MB 20 MB 60 MB 60 MB

requires that each node trains a local privacy-preserving GAN off-line;
this, however, does not affect online federated learning costs, as it is
carried out only once at the very beginning of the whole procedure.

Furthermore, we argue that, in the medical domain, the number
of institutions in a federation is relatively low and it is reasonable to
assume that nodes can benefit from a powerful communication network
and computing infrastructure: thus, the overhead introduced by FedER
is tolerable, in light of the methodological advantages and the obtained
performance and generalization capabilities showed by the resulting
models.

5. Conclusion

In this paper, we propose FedER, a decentralized federated learning
framework that replaces traditional parameters averaging with a more
principled feature integration approach based on the combination of
experience replay and privacy-preserving generative models. In FedER,
nodes communicate with each other by sharing local models and
buffers of synthetic samples; local model updates are carried out in
a way that encourages the reuse and adaptation of features learned
by other nodes, thus avoiding potentially disruptive effects due to
blind feature averaging. Experimental results show that our method
outperforms significantly state-of-the-art server-based approaches in
a non-i.i.d. scenario, which is a typical setting in the medical do-
main. Additionally, quantitative and qualitative analysis shows that our
privacy-preserving generation approach is able to synthesize samples
that are significantly different from real data, while correctly support-
ing the learning of discriminative features. In the future, we aim at
investigating some unexplored properties of our method: for instance,
unlike all other existing methods based on parameter averaging is
required, our approach does not strictly require that all nodes share
the same model architecture. Model heterogeneity could therefore be
employed to create a shared ensemble and combine different feature
learning capabilities.
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