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ABSTRACT The amount of accessible computational devices over the Internet offers an enormous but
latent computational power. Nonetheless, the complexity of orchestrating and managing such devices
requires dedicated architectures and tools and hinders the exploitation of this vast processing capacity.
Over the last years, the paradigm of (Browser-based) Volunteer Computing emerged as a unique approach
to harnessing such computational capabilities, leveraging the idea of voluntarily offering resources. This
article proposes VFuse, a groundbreaking architecture to exploit the Browser-based Volunteer Computing
paradigm via a ready-to-access volunteer network. VFuse offers a modern multi-language programming
environment for developing scientific workflows using WebAssembly technology without requiring the user
any local installation or configuration. We equipped our architecture with a secure and transparent rewarding
mechanism based on blockchain technology (Ethereum) and distributed P2P file system (IPES). Further, the
use of Non-Fungible Tokens provides a unique, secure, and transparent methodology for recognizing the
users’ participation in the network. We developed a prototype of the proposed architecture and four example
applications implemented with our system. All code and examples are publicly available on GitHub.

INDEX TERMS Scientific computing, volunteer computing, browser-based volunteer computing, decen-

tralized web, Web 3.0, P2P, WebAssembly, distributed computing, parallel computing.

I. INTRODUCTION

Over the past decade, personal computers (PCs) have become
one of the most consolidated markets. In 2021, approximately
340 million PCs were shipped worldwide [1], considering
a revert of the trajectory since 2011 [2]. Still, today smart-
phones represent the most dominant technology, with around
1.5 billion devices sold per year in the last five years [3], [4].
Further, Internet users are currently growing at an annual rate
of 4.0 percent, equating to an average of more than half a
million new users each day [5]. This colossal number of com-
putational devices represents an enormous opportunity from
a computing perspective. According to the 2021 TOP500
rank [6], the most powerful supercomputer FUGAKU pro-
vides around 8 million cores. Based on these statistics, the
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computational power obtainable by a tiny number of all pos-
sible internet-accessible devices is significantly more. Taking
advantage of this huge (and mostly unused [7]) processing
capacity represents a powerful opportunity for science and
society.

The paradigm of Volunteer Computing [8] (VC) emerged
as a prominent approach to harnessing the computational
capabilities of such devices. VC is a type of distributed com-
puting based on two pillars: computation and participation.
The former refers to the ability of the network to orchestrate
heterogeneous computational nodes to perform a given task.
The latter is the cornerstone of the whole paradigm and refers
to the mechanism by that people voluntarily donate their com-
puting resources to the network to collaborate on a project.
Although VC comes with peculiar technological challenges
(e.g., managing nodes with heterogeneous hardware and soft-
ware, high dynamicity of the environment, asynchronism),
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this paradigm provides researchers with lower-cost comput-
ing power and reduced energy consumption. To alleviate
some intrinsic limitations of VC systems and encourage
joining volunteer networks, the paradigm of Browser-Based
Volunteer Computing (BBVC) [9] gained popularity, also
thanks to improvements in the processing capacity of web
browsers and the release of powerful software libraries (e.g.,
WebGL, and TensorFlow.js) [10]. BBVC provides access to
the volunteer network using web applications, which execute
volunteer jobs in the background and transparently from the
user’s perspective. These systems inherit all benefits from
web browsers, offering portability, flexibility, and ubiquity.

Contributions: Over the last four years, different BBVC
platforms have been proposed. Still, there is room for
improvements to make such platforms fully decentralized and
scalable, offering users a trusted computing environment and
providing complete control over the resources donated to the
volunteer network. To make a step toward this direction, this
paper introduces VFuse, a fully-distributed volunteer network
based on a peer-to-peer (P2P) architecture. VFuse offers
volunteers an easy and ready-to-use programming environ-
ment directly in their browsers through web-based interactive
notebooks, which allow users to develop and monitor the
requested computation and analyze its results. Further, our
platform provides a secure and trustworthy execution envi-
ronment and a reward mechanism thanks to the adoption of
Blockchain technology to ensure results’ reliability. VFuse
represents an effort to make the web decentralized [11],
allowing users to run intensive computing tasks in a free-to-
use and trusted environment.

The major contributions of this paper can be summarized
as follows:

o The design of a novel architecture for BBVC defined

over a fully-distributed P2P network;

« The proposal of an innovative rewarding strategy based
on blockchain technology to incentive users to join the
volunteer network;

o A user-friendly interface based on web notebooks to
easily access the volunteer network and benefit from its
computing capabilities transparently;

o An empowered multi-language programming environ-
ment offered via interactive web notebooks;

o A detailed description of four applications, presenting
how VFuse can be exploited in such contexts;

o« A prototype of the VFuse system, available on
a public GitHub repository [12], which includes
workflow orchestration functionalities, storage capa-
bilities using IPFS, and two execution backends
offered with JavaScript and Python programming
languages.

The remainder of this paper is organized as follows.
Section II reviews the key ideas behind BBVC, describes
the main existing frameworks in the context of BBVC and
discusses the challenges these frameworks need to face.
Section III illustrates the main features of VFuse, the ratio-
nale behind the choice of the technologies used, and how
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they impacted the platform’s design. Section IV details the
architecture of VFuse, delineating its functionalities and
internal mechanisms. Section V describes how VFuse can
be exploited through four use cases. Section VI discusses
a first performance evaluation and the current limitation of
the VFuse prototype. Finally, Section VII concludes this
work by delineating our current work and possible future
directions.

Il. BACKGROUND AND RELATED WORK

VFuse is a volunteer distributed browser-based library to
create and execute scientific workflows. To better clarify its
position within the state-of-the-art, we first introduce the
concept of VC, along with the most popular VC frameworks.
Then, we focus on BBVC and its peculiar challenges. Finally,
we present existing solutions, describe the peculiarities of our
proposed system, and provide a detailed comparison among
the available BBVC frameworks.

A. VOLUNTEER COMPUTING

VC is a computational paradigm based on the willingness
of people to donate idle computing resources to run com-
putational and storage-intensive tasks [13]. VC shares many
similarities with online community-based projects, in which
people’s desire to voluntarily contribute resources - such as
knowledge, time, and skills - underpins the sustainability of
such initiatives [8].

The idea of exploiting idle resources from volunteer com-
puters came from the GIMPS (Great Internet Mersenne Prime
Search) project in 1995 [14]. The project is still running,
and it allowed the discovery of the 51%' Mersenne prime
in 2018, the current largest known prime number. Other
early projects include distributed.net [15], SETI@home [16],
and Folding@home [17]. Today there are over 30 active
projects.

Two of the most popular VC frameworks are BOINC [18]
and XtremWeb [19]. Both frameworks exploit a centralized
architecture for managing jobs and resources. Further, they
require users to download and install a specialized client
to execute project tasks. This approach has two critical
drawbacks concerning the programmability and the trusti-
ness of the applications. First, there is a constraint on the
programming language used as each application must be
implemented with the same framework language. Second,
adopting a centralized architecture upper limits the number of
volunteer nodes as their number cannot exceed the network
and computational capabilities of the server node.

To address the issues related to the client-server archi-
tecture, other VC frameworks either rely on a P2P overlay
network [20], [21] or a blockchain-based system [22], [23].
Specifically, the idea of using a blockchain in a VC frame-
work is tailored to solve the issue of trust between devices and
the lack of traceability, making it difficult for users to evalu-
ate the contribution and credit of each volunteer [24]. Further,
the characteristics of blockchain, such as decentralization
and persistence, allow solving the problems of scalability
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and single point of failure under the traditional client-server
architecture [25], [26]. Golem [27] is an example of a P2P VC
platform based on blockchain, specifically focused on com-
putations such as computer graphics rendering and machine
learning algorithms. BOID [28] is another example of a
blockchain-based VC platform in which volunteers get paid
in custom BOID cryptocurrency tokens for their contributing
resources.

For a comprehensive review of VC frameworks, we refer
the reader to the survey of Mengistu and Che [13].

B. BROWSER-BASED VOLUNTEER COMPUTING

The idea of BBVC comes from the need to overcome an
intrinsic limitation of VC systems. Usually, these frameworks
require the users to follow a given installation procedure,
which can be challenging for many [29]. Further, many users
fear installing unfamiliar software because of malware and
spyware [30]; they may be simply lazy or not appealed by the
project or even lack awareness of its existence [9]. In contrast,
the underlying concept of BBVC is to increase participation
in the volunteer network by providing more user-friendly
access to the network via a web application, hence with-
out requiring specific installation or configurations. In this
approach, a browser automatically and transparently executes
tasks during the user’s visit to a particular website; as a con-
sequence, users usually consider their impact negligible [31].

1) CHALLENGES OF BBVC FRAMEWORKS

Designing and implementing a VC system pose a set of non-
trivial challenges. These derive from the intrinsic nature of the
computing environment, and BBVC systems clearly inherit
them. To ease this process, Fabisiak and Danilecki [9] defined
a set of desirable features a BBVC system should have (the
same desiderata hold for a VC system). A brief description of
each desideratum follows.

o Accessibility. Easiness of accessing the platform and
sharing resources.

o Adaptability/Dynamicity. The BBVC platform should
be aware that the environment is ever-changing, as the
number of nodes may vary.

o Availability. The BBVC platform should be accessible
regardless of any problem.

o Fault Tolerance. The BBVC platform should be tolerant
of faults and disconnections.

o Heterogeneity. The BBVC platform should consider that
volunteer machines could have different hardware, oper-
ating systems, and performance.

o Programmability. Easiness of developing new tasks on
the BBVC platform.

e Scalability. The BBVC platform must handle a growing
amount of connections.

o Security. The code run by the platform should not harm
the volunteer machine.

o Usability. The BBVC platform should be easy to deploy
and use.
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Along with the above desiderata, we also defined some addi-
tional features a BBVC system should have to encourage vol-
unteers’ engagement and improve the platform’s reliability
and functionalities.

o Task deployment and scheduling. Flexibility of the
BBVC platform in supporting different deployment and
scheduling policies.

o Result reliability. The BBVC platform must ensure the
computed results’ correctness and prevent any result
manipulation or malicious execution.

o Supported programming languages. Flexibility of the
BBVC platform in supporting different programming
languages.

o Supported computational paradigms. Flexibility of the
BBVC platform in supporting different computational
paradigms.

o User resource usage. Possibility of configuring the num-
ber of local volunteer resources, such as CPU or mem-
ory, to allocate for computing the task.

o Data management. Ability of the BBVC platform to
support data operations, such as data gathering, manip-
ulation, and storage.

2) BBVC FRAMEWORKS

BBVC frameworks rose to prominence over the last decade
thanks to the incredible advancement in web technologies
and the ever-increasing web usage. We can distinguish three
generations of BBVC systems [9], which reflect the improve-
ments in the web programming language, communication
protocols, and thread support. In this paper, we specifi-
cally focus on reviewing and comparing the third-generation
frameworks most similar to VFuse. For a comprehensive
review of BBVC frameworks, we refer the reader to the
survey of Fabisiak and Danilecki [9].

Madoop [32] leverages the power of WebAssembly [37] to
implement a distributed MapReduce framework on browsers.
The central server, which hosts the Hadoop software, han-
dles the management of both jobs and results. Each job is
written in C/C++4 and compiled in a WebAssembly format
to be run in the browser. The client web page, which runs
a Madoop code snippet, requests a job to the main server,
and, upon completion of its execution, it returns the results to
the server. Then, the server sends back the results to the job
initiator.

JSDoop [10] is a library for distributed collaborative
high-performance computing in web browsers, based on the
MapReduce paradigm as Madoop. Both JSDoop clients and
servers are implemented in JavaScript. A queue server han-
dles the task scheduling and the result management, while
data are available in a centralized server. More queue servers
could be used to guarantee load balancing.

BrowserCloud.js [33] proposes a decentralized architec-
ture to find and utilize resources through a P2P overlay
network. Participants join the network via a centralized ren-
dezvous point; then, the message routing is handled via an
adaptation of the Chord routing algorithm, designed for a P2P
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TABLE 1. Main characteristics of the BBVC platforms. N/C stands for not clarified.

Platform

Adaptability/Dynamicity

Fault tolerance

Programmability

Programming
language(s)

Scalability

VFuse (Ours)

Madoop [32]

JSDoop [10]

BrowserCloud.js
[33]

Pando [34]

Genet [35]

CollabChain [36]

P2P overlay network and

asynchronous workflows.

Handled by the main server.

Handled by one or more

Queue Server(s).

DHT-based P2P overlay net-

work.

Faster devices receive more in-
puts, which are read when re-

sources are available.

Pando network with a fat-tree

overlay network.

P2P overlay network with a di-
rect exchange of data between

submitters and executors.

Role replication and gossip-
ing of the workflows.

Depends the main

server.

upon

Tasks are added back to the
execution queue in case of
problems.

Based on the DHT routing
protocol and the reliability
of each node (no replication
mechanism specified).

Depends upon a centralized
Stream Lender.

Depends upon the intermedi-
ary (internal) nodes of the fat-
tree overlay network.

Based on the reliability of the
Coordinator and Submitters.

Ready-to-use development en-
vironment via integrated web
notebooks.

Installation and setting of the
development environment.

Installation and setting of the
development environment.

Installation and setting of the
development environment.

Installation and setting of the
development environment.

Installation and setting of the
development environment.

Installation and setting of the
development environment.

Multi-language

(currently
supported:
JavaScript  and
Python).

C/C++ compiled
into the
WebAssembly

format.

JavaScript or
WASM code.

JavaScript

JavaScript

JavaScript

JavaScript

Fully-decentralized gossip-
ing strategy and distributed
file system (IPFS).

Depends upon the main
server.

Depends  upon  Queue
servers and database nodes.

DHT-based P2P overlay
network.

Depends upon a centralized
Stream Lender.

Fat-tree overlay network.

P2P network, but based on
a centralized Coordinator
to manage and schedule
tasks.

Platform Task deployment Task scheduling Result reliability Computing User resources Data management
paradigm
VFuse (Ours) Gossip of the requested ~ Chosen by each  Blockchain-based. Multiple paradigms  Users can configure ~ Decentralized (IPFS),

Madoop [32]

JSDoop [10]

BrowserCloud.js
[33]

Pando [34]

Genet [35]

CollabChain [36]

workflow on the P2P
network.

Registration of jobs and
relative inputs to the
main server.

Sent to the main
server that distributes
them across the queue
servers.

Sent on the P2P net-
work.

Sent to a centralized

Stream  Lender, via
(possible pipelined)
Unix commands.

Based on Pando.
Centralized  database
containing  submitted
tasks, stored in the
Coordinator.

node based on the
task priority.

Handled by a cen- N/C
tralized node (Mas-
ter).

Handled by one or N/C

more QUCUC SEervers.

Chosen by each N/C
node according to
their workload.
Handled by a N/C
centralized node

(Stream Lender).

Based on Pando. N/C

Chosen by the ex-
ecutor node from
the database of the
Coordinator.

Blockchain-based.

(e.g., workflow-
based, MapReduce,
Fork/Join)

MapReduce

MapReduce

MapReduce

Declarative
concurrent
programming
paradigm.

Declarative
concurrent
programming
paradigm.

Computation of sin-
gle JavaScript func-
tions.

the resources to do-
nate to the network.

N/A

N/A

N/A

N/A

N/A

N/A

centralized  (URL),
and inline (sent with
the task).

Centralized database.

Centralized database.

Inline (sent with the
task).

Handled by the
centralized Stream
Lender.

Handled by relay (in-
ternal) nodes of the
fat-tree overlay net-
work.

Sent in batch from the
submitter to the ex-
ecutor.

distributed hash table. The P2P interconnectivity is obtained
with WebRTC, a technology enabling Real-Time Communi-
cations in the browser via a JavaScript API. BrowserCloud.js
provides a simple mechanism to define JavaScript functions,
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including inline data and the number of required peers to
complete the task.

Pando [34] is a tool born with the intent of leveraging
the potential of VC for personal projects. Its programming
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model corresponds to a streaming version of the func-
tional map operation: Pando applies a given function on a
series of input values to obtain a series of results. Pando
relies on the pull-stream design pattern to manage the
input stream for functions, which are written in JavaScript
and can be combined in Unix pipelines. The task deploy-
ment is based on a Node.js master server (Stream Lender)
responsible for scheduling functions and collecting their
results.

Genet [35] is an evolution of Pando that tries to overcome
its scalability problems - due to direct connections handled
with WebRTC - by using a fat-tree overlay network (where
processors are located on the leaves and internal nodes relay
data for all their children). Genet differs from Pando in
managing browser connections, switching a node’s role from
management to relay when its direct connections (children)
reach a given threshold.

CollabChain [36] is a browser-based volunteer platform
that relies on blockchain technology to provide a trusted envi-
ronment and foster users to make their resources available to
the network. CollabChain is based on a P2P overlay network
and defines three types of nodes: submitters, executors, and
coordinators. Submitters require a task, i.e., a JavaScript
function and its inputs, while executors compute them. A sin-
gle coordinator acts as a bootstrap node and maintains a
database of all tasks uploaded by submitters. The blockchain
guarantees payment for the volunteers that complete their
work and honesty of results by matching the output evaluated
by the volunteer and the pre-computed output described in the
smart contract.

CollabChain currently represents the most similar work to
VFuse. Nonetheless, several major points distinguish the two
architectures. The first significant difference relies on how
tasks are deployed and scheduled. If a VFuse node wants to
submit a workflow (see Section III-A), then it has to broadcast
it over the P2P network and wait for the results. Even if
the node disconnects, the network still gossips the workflow.
Tasks of each workflow are then scheduled by each volunteer
based on the associated priority. On CollabChain, submitters
have to submit their tasks to the coordinator, and they are
required to stay online even after delegating the process
function and the inputs to the executors to obtain computed
outputs from the executor. Executors directly choose tasks
from the coordinator, and no scheduling policy is explic-
itly described. The second significant distinction regards the
computing paradigm. VFuse offers users a platform to define
the requested computation as a workflow, within which either
dependent or parallelizable tasks may be specified and run
by different volunteers. In contrast, CollabChain defines the
requested computation via a JavaScript function that can be
run by a single executor. Other main dissimilarities relate
to (i) the management of the user resources offered to the
volunteer network (CollabChain does not offer a direct con-
trol), (ii) how data are handled (VFuse relies on IPFS, while
submitters and coordinators need to exchange data on Col-
labChain directly), and (iii) the rewarding mechanism (VFuse
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exploits the rewarding mechanism to prioritize workflows,
while CollabChain provides an actual currency).

Table 1 compares VFuse with the main BBVC frameworks,
considering the desiderata described in Section II-B1. It is
worth noting that all systems inherit accessibility, availabil-
ity, heterogeneity, security, and usability requirements from
browsers.

ill. METHODOLOGY AND DESIGN CHOICES

The VFuse architecture is built upon two cornerstones:
(i) ensuring a high level of scalability and (ii) storing
inputs, outputs, and authorship of users’ tasks over a pub-
lic blockchain. Table 2 describes the main characteristic of
VFuse, clarifying how the platform addresses the challenges
described in Section II-B1. The following sections illustrate
the main design choices behind VFuse.

A. PROGRAMMING PARADIGM

Distributed computing offers mechanisms and tools for
orchestrating distributed computational workflows and
resources for transparently solving problems. In this context,
a critical issue is to use the proper programming model to
define the distributed computation. Scientific workflow [38]
is acommonly used paradigm to manage the coordinated exe-
cution of actions that can be repeatable and dependent on each
other. This design enables the plugging of problem-solving
components within the workflow to prove a scientific hypoth-
esis. Such a paradigm brings several benefits, such as automa-
tion, scalability, resilience, and verifiability.

VFuse adopts the workflow pattern, allowing the design of
the requested computation as a sequence of interdependent
jobs (or tasks). In other words, the computation is divided into
self-consistent jobs, whose execution may depend on the ter-
mination of other tasks. Hence, a VFuse application is defined
by a pipeline of jobs that is modeled via a directed acyclic
graph (DAG) (see Section IV-B5.a). VFuse provides opera-
tions to build workflows, add jobs and describe dependencies
between them. The generic nature of this approach allows
programmers also to exploit other distributed paradigms in
VFuse, such as fork/join and MapReduce.

B. APPROACH BASED ON INTERACTIVE NOTEBOOKS

We designed VFuse to support the development and exe-
cution of distributed applications via an interactive web
notebook, a-la Jupyter, CodePen, Gitpod, or JS Fid-
dle. This choice offers VFuse volunteers a ready-to-use,
quick programming environment without requiring software
configuration and installation. Further, web notebooks
provide a dynamic programming environment supporting
multi-languages, workflow monitoring, submission, and
visualization of results. Specifically, VFuse provides a set of
asynchronous functions - that support different programming
languages - to retrieve and store data from the network, build
workflows, and add jobs to them, specifying input data and
dependencies.
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TABLE 2. Answers of VFuse to the challenges of BBVC.

Challenge

VFuse feature

Accessibility

Adaptability/
Dynamicity

Availability

Fault Tolerance

Heterogeneity

Programmability

Scalability

Security

Usability

The only requirement to participate as a volunteer in
the VFuse system is to have a web browser.

VFuse is resilient to the arrival/removal of network
nodes thanks to the implementation of asynchronous
workflows over a P2P network. Tasks are gossiped
within the network until their associated TTL expires,
or the Initiator stops their execution.

Today, web browsers are ubiquitous on computing
devices, such as personal and desktop computers, as
well as mobile phones.

If a node - either the Initiator or any other node
- disconnects, the requested workflow will continue
flowing within the network. Further, being a P2P
network, there is no centralized entity that can fail.

Being a BBVC system, VFuse is inherently cross-
platform. Any device can collaborate by simply con-
necting to the service via a browser.

VFuse relies on the use of interactive web-based
notebooks, which do not require installing and con-
figuring any local development environment. Further,
VFuse allows testing the workflow to submit (to the
volunteer network) on the user’s local machine.

VFuse accommodates both communication and stor-
age scalability. The former is guaranteed by using a
fully-decentralized gossip strategy to propagate work-
flows within the network. The latter directly derives
from the use of the distributed file system IPFS.

Web browsers guarantee the safe execution of pro-
grams on the host device as they run web pages in a
sandbox. Moreover, communication happens via the
HTTPS protocol.

VFuse does not require the installation of additional
software but a browser.

Task
deployment
and scheduling

Result reliabil-
ity

Supported pro-
gramming lan-
guages

Supported
computational
paradigms

User resource
usage

Data
management

VFuse exploits a self-organized mechanism (gossip
flooding) in which all nodes exchange information
on available workflows and the status of jobs’ exe-
cutions.

The reliability of the computed results is inherently
guaranteed by using a blockchain to store them; once
written on the blockchain, the outcome and its author
cannot be modified. Further, VFuse produces a warn-
ing message if two or more clients generate different
results for the same workflow’s job.

VFuse uses the WebAssembly runtime module to
support a multi-language programming environment.
Currently, a VFuse application can be either imple-
mented in JavaScript or Python.

VFuse stands as a workflow-based manager tool for
a volunteer network, enabling programmers to ex-
ploit distributed computational paradigms, such as
fork/join and MapReduce.

Each VFuse user can configure the number of concur-
rent functions to run on their device.

VFuse relies on the distributed file system IPFS to
store data. Further, our platform offers methods to
retrieve data from URLSs and upload data inline.

C. TECHNOLOGIES BEHIND VFuse

The myriad of different technological challenges we incurred
during the design of our system profoundly shaped the final
architecture of VFuse. We exploited the following technolo-
gies to enable communications among several P2P-connected
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devices, guarantee the trustiness of job executions, manage
distributed data, and support a multi-language programming
environment. A description of the key technologies chosen
and their impact on the VFuse follows.

o WebAssembly [37] (Wasm) is a low-level assembly-like
language runnable in web browsers. Wasm is designed
as a portable compilation target for programming lan-
guages, meaning that it allows languages like C/C++,
Rust, or Python to run on the web with near-native
performance. Wasm is also designed to run along-
side JavaScript, offering programmers a way to take
advantage of WebAssembly’s performance and power
and JavaScript’s expressiveness and flexibility in the
same application. Among the other strengths of Wasm,
there is its safeness (memory-safe, sandboxed execu-
tion) and easiness of debugging (textual format). Fur-
ther, Wasm maintains the versionless, feature-tested, and
backward-compatible nature of the web.

Architecture Insight: The use of Wasm as a core technology
of VFuse is critical to improve Web Workers’ performance
and provide support for programming languages other than
JavaScript. Currently, VFuse supports the development of
workflows written in JavaScript or Python. The rationale
behind the choice of Python comes from the plethora of
libraries the language offers to manipulate and analyze data,
well-suited to implement scientific workflows. To imple-
ment Python Web Workers, we used Pyodide [39] as a
Wasm-compiled Python interpreter. Specifically, Pyodide is
a Python distribution for the browser and Node.js based
on WebAssembly/Emscripten [40] that makes it possible
to install and run Python packages in the browser with
an embedded version of the pip python package manager.
Hence, all general-purpose and scientific Python packages
- such as NumPy, pandas, SciPy, Matplotlib, and scikit-
learn - can be used. Further, Pyodide allows the program-
mer to easily mix JavaScript and Python in the same
code script thanks to a robust foreign function interface.
The use of WASM as underlying technology ensures that
VFuse can be easily expanded to support other programming
languages.

o Libp2p [41] is a network framework supporting the
development of decentralized P2P applications based
on WebSocket or WebRTC to enable communication
among nodes. Built upon the Kademlia DHT [42],
a network protocol that allows the development of P2P
network applications, Libp2p leverages public-key cryp-
tography [43] to manage peer identities and enable
secure communication. Libp2p offers NAT traver-
sal, circuit relay, stream multiplexing, and addressing
functionalities.

Architecture Insight: The use of Libp2p enables VFuse
to be aware of the status of the network by hindering the
underlying network communication protocol and details on
the routing tables. Libp2p also offers new VFuse volunteer
devices the possibility to join the network through bootstrap
nodes, whose number can be increased on-demand based on
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the size of the network. Lastly, Libp2p enables direct com-
munication between VFuse nodes, allowing them to inform
other devices about a new workflow to be run. The flooding
of the workflow within the network happens via a gossip strat-
egy, which avoids a centralized orchestration, and terminates
either when the Initiator ends its execution or its time-to-live
(TTL) expires (see Section IV-B4).

o IPFS [44] is a distributed file system built upon Libp2p
to store large data files and support blockchain opera-
tions. The main characteristic of IPFS is how content
is identified. Rather than associating a location with
a resource (like what happens with URLs), IPFS uses
an immutable hash code - called Content Identifier
(CID) - to identify resources in the network. To allow
dynamic resource addressing, IPFS provides the Inter-
Planetary Name System (IPNS) that leverages a unique
hash pointer targeting different CIDs when the content
changes. Further, IPFS ensures data distribution and
replication to guarantee availability and fault tolerance.

Architecture Insight: The VFuse architecture is designed

as a fully-distributed application running over a volunteer
network of computational nodes. The use of IPFS as a com-
ponent of VFuse ensures the unique identification of inputs
and jobs’ outputs, giving our platform the power of content-
addressed storage. To safeguard the indefinite persistence
of data and workflows on the VFuse network, these can
be pinned to one or more IPFS nodes. Pinning gives the
programmer control over disk space and data retention and
guarantees that the pinned resources are not deleted during
IPFS garbage collection. Further, the use of the IPFS Cluster,
a distributed application that works as a sidecar to IPFS
peers, enables VFuse to allocate, replicate, and track pinned
resources among multiple peers; hence, guaranteeing data
redundancy and availability without compromising the dis-
tributed nature of the IPFS network. Finally, IPFS empowers
the exploitation of blockchain functionalities to implement a
secure and trustworthy mechanism (see Section IV-B5.d).

o Ethereum [45] is a decentralized, open-source
blockchain platform establishing a P2P network that
securely executes and verifies smart contracts. Smart
contracts are event-driven distributed programs stored
on the blockchain that run when predetermined condi-
tions are met. They allow participants to transact with
each other without a trusted central authority. Trans-
action records on Ethereum are immutable, verifiable,
and securely distributed across the network, giving
participants full ownership and visibility into transaction
data.

Ethereum allows the creation of unique and indivisi-
ble tokens, called non-fungible tokens (NFTs). NFTs
represent ownership of unique items, such as a piece
of art, digital content, or media. Each NFT can only
have one official owner at a time, and the Ethereum
blockchain secures them (e.g., no one can modify the
record of ownership or copying existing NFTs). In other
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words, NFTs embody an irrevocable digital certificate of
ownership and authenticity for a given digital or physical
asset.

Architecture Insight: VFuse exploits the FEthereum
blockchain to implement a rewarding strategy in the volunteer
network. Every time a node contributes to the computation
of a job, it receives a reward in the form of a VFuse NFT,
which guarantees the ownership of the produced digital asset
(namely, the result of the computation). The number of NFTs
collected by VFuse clients is then used to prioritize their
submitted workflows. Section IV-B5.b and Section IV-B5.d
detail this process. It is worth stressing that we did not
adopt a VFuse currency given the volunteer nature of the
network itself: users do not have to pay to use the network,
but, at the same time, they are encouraged to offer their
computing resources in exchange for a faster termination of
their submitted workflows.

IV. VFuse ARCHITECTURE

VFuse is a decentralized network that acts as a workflow
manager accessible via browser for volunteer-based dis-
tributed computation. VFuse’s primary purpose is to enable
users to access a robust and secure volunteer network without
requiring the installation and configuration of any additional
software. VFuse users can define asynchronous workflows
made up of functions (jobs or tasks) with possible temporal
dependencies on their execution. Thanks to the asynchronous
nature of VFuse workflows, users are free to leave the net-
work while their required workflow is running and gather its
results at any moment in the future.

The VFuse architecture is designed on top of the following

innovative objectives:

« providing a ready-to-use programming environment to
access a distributed volunteer network using interactive
web notebooks;

« designing a modular and expandable architecture that
transparently exploits the underlying technologies;

o supporting a distributed volunteer network built
on P2P communications, storage, and Blockchain
technologies.

A. VFuse NODE TYPES AND THEIR INTERACTION

A VFuse node may be either a computing, bootstrap, or pin-
ning node. Specifically, a computing node is a VFuse volun-
teer device that offers and may require network computing
capabilities through a web browser. Being a P2P network,
VFuse requires the presence of bootstrap nodes to allow
new devices to join the network. These special nodes are
responsible for the discoverability of the VFuse network as
well as for the initialization of new connections. In particular,
a VFuse bootstrap node runs the same software stack of
computing nodes plus a WebRTC signal server (publicly
accessible over the Internet and hosted on a NodeJS server)
that allows direct connections with other peers, such as a
browser-to-browser communication. It is worth noting that
every computing node may also act as a bootstrap node to
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FIGURE 1. Interactions between nodes within the VFuse network in a typical execution flow. A new
computing node C may enter the network by connecting with a VFuse bootstrap node (Step 0). A node
A which submits a workflow (Step 1) becomes the Initiator of the requested computation. Each
computing node of the network, such as B and D, receives the workflow, executes some jobs based
on the associated priority (Step 2), stores the results locally (Step 3), gets a reward (Step 4), and pins
the result to the IPFS cluster (Step 5). Eventually, each node broadcasts an update workflow message

(Step 6).

avoid centralized bottlenecks. Lastly, pinning nodes belong to
the IPFS cluster and protect data from the garbage collection
of IPFS. Figure 1 shows an overview of the VFuse system,
depicting the three possible roles a VFuse node may play and
how they interact during a workflow’s life cycle. First, each
user who wants to join the volunteer network has to connect
to a VFuse bootstrap node (Step 0, see Section IV-Bl).
The execution flow of a computing request then starts when
a computing node submits a workflow, hence becoming its
Initiator. The requested workflow is then gossiped within
the volunteer network (Step 1, see Section IV-BS5.a). Each
computing node determines the task to compute based on the
priority of the Initiator (Step 2, see Section IV-B5.b). Upon
completion of each job, every computing node store the com-
puted results on the IPFS Network (Step 3, see Section IV-
B5.a), gets its reward (Step 4, see Section IV-B5.d), pins the
results on the IPFS cluster (Step 5, see Section III-C), and
gossips the workflow’s updates (Step 6).

B. ARCHITECTURE

This section delineates the main components of the VFuse
architecture (see Figure 2), briefly describing their function-
alities. Each VFuse node runs the VFuse suite, made up
of five software components. The whole suite relies on the
storage technologies offered through the IPFS distributed
file system, along with the communication protocols imple-
mented by Libp2p for P2P architectures. A description of
each component of the VFuse protocol suite follows.

Access Component. This component gives users access to the
VFuse network, offering a graphical web interface of the
system. It allows VFuse users to manage their profile,
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FIGURE 2. VFuse architecture.

create, define, submit, and stop workflows inside inter-
active web notebooks, which enable the (remote/local)
verification of workflow executions.

API Component. This component defines the synchronous
and asynchronous function interfaces to let users access
the VFuse platform.

Events and Data Component. This component provides data
and communication utilities across components. Com-
munication happens via events, which transmit informa-
tion about jobs’ status and about creating, updating, and
deleting data asynchronously.

Network Component. This component is responsible for
providing the VFuse network communication protocol
and data management (i.e., storage) functionalities by
exploiting Libp2p and IPFS over HTTPS. It further
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FIGURE 3. Snapshots of the VFuse web client application (My workflows page).

offers (i) a set of callbacks to get information on the
nodes’ status, (ii) bootstrap operations, and (iii) an inter-
face to the IPFS Cluster.

Engine Component. This is the core component of the VFuse
architecture, which provides all computing, rewarding,
and user-related functionalities. It is made up of four
modules: (i) the Workflow Module handling the work-
flows lifecycle; (ii) the Computing Module managing
job executions from specific workflows; (iii) the Iden-
tity Module administrating user access and preferences;
and (iv) the Reward Module defining and managing
the rewarding mechanism via a blockchain for securely
storing user rewards.

The following sections illustrate each component in detail.

1) ACCESS COMPONENT

The VFuse access component embodies the middleman
between users and the VFuse system. It offers users access
to the network through a web application (implemented via
the ReactJS framework!) that exploits the API component to
use the functionalities provided by VFuse. Specifically, a user
who wants to join the volunteer network sends an HTTPS
request to the VFuse central server, hosting the VFuse web
application. Once the browser renders the application, the
user can then join a specific VFuse volunteer network by
specifying the required (i) bootstrap node, (ii) signal server,
and (iii) pinning cluster. It is worth stressing that the VFuse
web application runs all code client-side or via the P2P
volunteer network. Hence, the central server’s only task is to
serve the VFuse application.

1 https://reactjs.org/
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The VFuse application provides access to the user pro-
file configurations (Profile page), workflow management
features (My Workflows and Running Workflows
pages), network monitoring (Network page), and a logging
console (Console page).

o Inthe Profile tab, each user can set up the informa-
tion related to the particular VFuse network to join by
specifying the IP address of its bootstrap node, signal
server, and pinning cluster.

e On the My Workflows page, users can create,
develop, locally test, and submit a new workflow to
the volunteer network. Figure 3a shows a snapshot
of the VFuse client application detailing the program-
ming IDE offered to manipulate workflows. Users can
also visualize an interactive graphical representation
of the computation using a Job DAG (see Figure 3b),
which is automatically updated according to the com-
putation’s status and provides the computed results for
each job.

e In the Running Workflows tab, users can visu-
alize the queue with the received and running work-
flows, representing all workflows the user received
from the network and offered to their computational
resources.

« Inthe Network tab, users can continuously monitor the
status of the VFuse network by listing the peers they are
connected with.

« Finally, on the Console page, users can check VFuse
logging messages.

2) APl COMPONENT
The API Component provides external access to the func-
tionalities offered by the VFuse platform. Further, this
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TABLE 3. VFuse API for developing workflows within the VFuse IDE panel.

Function/Object Parameter(s) Returns Description
VFuse - - The VFuse object to access the API methods/functions:
VFuse .api_name(parameters).
Data API
getData CID String Retrieve content from IPFS using the given unique identifier CID.
getDataFromUrl URL, Start, End String Retrieve content from a given URL address. This method also permits the partial
request of data if the server support the property Accept-Ranges: bytes.
saveData Data CID Store data on IPFS and returns a new CID, which uniquely identifies the data on IPFS.
Workflow API
addJob Name, Input, JID Adds a new job to the workflow DAG.
Dependencies, e Name: string value that corresponds to the function name defining the job;
Groups e Input: the data in input to the job - may also be null;
o Dependencies: an array of job dependencies - it contains job IDs or regular
expressions identifying matching jobs or group names;
o Groups: an array of string values corresponding to the groups’ names to which
the job belongs.
It returns an integer value corresponding to the unique identifier of the job in a
workflow (JID).
addToGroup JID, Groups Boolean Assign a job to all groups defined by the given array of string.
setRepeating JID Boolean Set a job as a repeating job, i.e., a job is (re)scheduled every time all its dependencies

are satisfied.

component offers programmers an API to manage workflows
and develop them using different programming languages.
Specifically, the workflow API allows the programmer to
(i) retrieve and store computation data asynchronously and
(ii) manage new jobs and their dependencies. Table 3 briefly
describes each function, along with the required parameters
and return type.

3) EVENTS AND DATA COMPONENT

The VFuse Events and Data Component offers a software
interface to orchestrate communication across components
and manipulate local and remote data via the Event Module
and the Data Management Module, respectively.

The Event Module controls the inter-component com-
munication and network updates through events, which
transmit information about jobs’ status and data asyn-
chronously. This module also handles the initialization of
each node’s workspace - comprising local data (such as
the user profile, workflows, and settings), the Gossip and
Execution queues (see Section IV-B4 and Section IV-B5.b),
and local web workers for communicating and running
jobs. Table 4 lists the available system messages to handle
events.

The Data Management module abstracts the underlying
IPES services by offering a high-level interface to store,
delete, and update data and workflows. Specifically, this
module exploits the IPFS Mutable File System (MFS) to
manage local user information, such as preferences, work-
flows, execution data, and publishing queues. Remote data,
such as submitted workflows, shared data, and job results, are
handled using the IPFS network APIL.
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4) NETWORK COMPONENT
The VFuse network component is based on the event-driven
programming paradigm and enables VFuse peers to exchange
workflows and data through GossipSub [46], a publish/-
subscribe protocol. GossipSub exploits the idea of gossip-
ing [47]; namely, it floods the network with messages to
ensure a reliable communication of data and workflows in a
dynamic environment. Messages to gossip are stored in the
nodes’ local Gossip queue and are forwarded only if their
TTL is not expired or the Initiator stopped the workflow. The
message payload is compressed using the LZ77 [48], [49]
algorithm to preserve bandwidth and memory.

Further, the communication component also provides (i)
a configurable proxy to enable the system to use HTTPS and
Web Socket Secure protocols and (ii) a built-in IPFS gateway,
granting direct access to the IPFS resources via the HTTP
protocol and avoiding the use of an external public gateway.

5) ENGINE COMPONENT

The Engine component is the core of the VFuse architecture.
It comprises four interoperable modules, through which it
defines (Workflow module) and orchestrates workflows and
their computation (Computing module), stores users’ profile
information and preferences (Identity module), and regulates
the reward mechanism (Reward module). A detailed descrip-
tion of each module follows.

a: WORKFLOW MODULE

A VFuse computation is defined using a computing work-
flow. Specifically, each workflow is a sequence of jobs, i.e.,
functions with properties and data. The programmer can
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TABLE 4. VFuse events and data component messages.

Event Description

Inter-component communication
NODE_ Log the status update of a node’s workspace. Values:
STATUS o Initializing, Started, Stopped, Updated, Errored.
WORKFLOW_ Log the status update of a workflow. Values:
UPDATE o Create, Delete, Job Running, Job Ended, Local

Execution, Error.

CONSOLE_ Log system-related operations.
MESSAGE

Network communication updates
NEW_PEER Inform the network that a new peer has entered the

network.
EXECUTION Inform the network about a new submitted workflow.
_REQUEST Each peer receiving this message adds the workflow to

its Gossip and Execution queues.

Payload:

o Workflow_ID, Timestamp, CID of workflow
data (may be updated).

SELECTED Inform the network about which set of jobs (of a
_JOBS workflow) a node has selected to run.

Payload:

o Workflow_ID, List of selected jobs.

EXECUTION Inform the network that a node has run a set of jobs (of
_RESPONSE a workflow).

Payload:

o Workflow_ID, List of job updates.

DROP_REQUEST Inform the network to stop gossiping a workflow (if it
is expired or the Initiator wants to unpublish it).
Payload:

o Workflow_ID

define temporal dependencies between jobs and visualize
them via the workflow DAG, representing jobs as nodes and
dependencies as edges. Users can check the execution of
the workflows they submitted by monitoring the associated
DAG:s since the status of each job (i.e., node) is continuously
updated. VFuse workflows are asynchronous, meaning that
any node of the network can run them, regardless of the
presence of the workflow Initiator (i.e., the node submitting
the workflow).

Each VFuse web notebook represents a workspace where
the user can define the workflow’s jobs, their dependencies,
and properties. Before submitting each workflow, users must
locally build it; this procedure implies compiling and storing
itin the local storage. Once submitted, the workflow is pinned
in the shared IPFS cluster. This operation returns the CID
associated with the workflow, which is then assigned to its
Initiator. From now on, other computing nodes can retrieve
the submitted workflow from the shared IPFS cluster.

Job Status: During the computation, a job may assume
different statuses, each one coded with a specific color:
(i) Ready (green) when available to be run, (ii) Waiting
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(yellow) when waiting for the termination of other jobs, (iii)
Repeating (grey) when the job is (re)scheduled until the
entire workflow stops or expires, (iv) Terminated (blue)
or Errored (red) when terminates with no or one or more
errors, respectively.

Job Dependencies: The execution of a job j may depend
on the termination of one or more other tasks. In this case,
the status of the job j will switch from Waiting to Ready
when all previous tasks have been completed by at least a
node of the network.

Job Repeating: VFuse allows users to define repeating jobs
(marked with the status Repeating) to (re)schedule the
same job (hence, reiterate some workflow activities) until
the entire workflow stops or expires. In practice, when a
repeating job terminates, its status does never change to
Terminated. The same dependency rules also apply in this
case.

b: COMPUTING MODULE

The Computing module takes care of all aspects related to
orchestrating workflows over the VFuse volunteer network
and exchanging the computed results among nodes.

Workflow Orchestration: Upon submitting the workflow
(see Section IV-B5.a), the Initiator transparently broadcasts
a new EXECUTION_REQUEST message. As this message
is also used to update a workflow already existing on the
network, every peer receiving it compares the CID of the
local copy of the workflow (if existing) with the information
received and updates the Gossip and Execution queues. If the
node receives the workflow for the first time, it adds it to both
queues.

A workflow terminates in either one of the three follow-
ing cases: (i) all jobs of the workflow have been computed
at least once, (ii) the TTL associated with the workflow
expires, or (iii) the Initiator stops the workflow. In this last
case, the system broadcasts a DROP_REQUEST message,
which forces each node receiving the message to remove
the given workflow from its working queues. This mes-
sage is then broadcasted until the TTL of the workflow
runs out.

Workflow and Job Selection: A VFuse node selects the
next workflow to compute by choosing a candidate in the
Execution queue. The final choice depends on three factors:
(i) whether the workflow has at least a job in the status
Ready, (ii) whether the workflow has at least one job that has
not been selected for execution by another node, and (iii) the
associated priority (see next paragraph). In particular, this
value is proportional to the amount of reward owned by the
Initiator of the workflow.

After selecting the workflow, the node chooses a job uni-
formly at random among all Ready jobs not present in the
Selected Jobs List. This list keeps track of all jobs that will
be run in the network. Specifically, each node broadcasts
information about the jobs it is about to process with the
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message SELECTED_JOBS. Upon receiving this message,
each node adds the received job ids in the Selected Jobs
List, attaching to each of them the time the message arrived
and a Selection_TTL. When the TTL expires, the job
ID is removed from the list. The node repeats the whole
process until the maximum number of concurrent jobs is
reached.

Workflow Priority: Users offering their computational
capabilities to a VFuse network collect VFuse NFTs, which
are saved into a public blockchain (see Section IV-B5.d).
The number of NFTs (i.e., reward) owned by the Initiator
impacts the priority of the requested workflow. This design
choice translates into granting workflows of users with higher
rewards a higher probability of being scheduled before the
workflow submitted by a user with a lower amount of reward.
In other words, the more a user contributes to computing jobs
on a VFuse network, the sooner its submitted workflow will
be completed. To avoid the starvation of workflows requested
by users with low rewards, we introduced a scaling factor
based on the waiting time of the workflow, i.e., the time that
a workflow has been waiting in the Execution queue before
being selected.

Hence, the priority associated with each workflow keeps
into account (i) how much the Initiator of the requested
workflow has already contributed to the volunteer network
(i.e., amount of rewards) and (ii) the waiting time of the
workflow, according to the following rule:

R(utyy) «
2 wer, Rluy)

t—ty

VWGEV:P(WJ)Z Z ]E(t—[)’
welk, w

where

e Vis a volunteer node;

o wis a workflow;

« [, is the Execution queue of a node v;

e u,, is the user that has submitted the workflow w;

o R(uy,) is the number of NFTs (reward) owned by the user

Uy
o 1 is the current scheduling time, such that t > 7.
o 1, 1s the time when the client v has received the workflow
w.

The so-designed priority function balances the contribution
previously given to the network (in terms of computing capa-
bilities) by the Initiator with the time they have to attend to
see their requested workflow completed. If (the Initiators of)
two different workflows have the same reward, the workflow
with a higher waiting time will be computed first. Clearly,
if a user with a low reward submits a workflow and there is
no competition, then the requested workflow will be imme-
diately computed.

Each VFuse node computes the priority of each workflow
in the status Ready in its Execution queue before the selec-
tion phase.

Job Results: A job may terminate because (i) its computa-
tion naturally ends by producing the desired result(s), (ii) its
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TABLE 5. VFuse local messages.

Message Description

BUILD_DAG Message sent to a worker to require the creation
_REQUEST of a DAG associated with a workflow.
JOB_EXECUTION Message sent to a worker to run a specific job.
_REQUEST The worker (i) receives the job’s implementation

code, and its input data, (ii) executes the task, and
(iii) returns the computed results or any error(s).

LOCAL_EXECUTION Message sent to test the execution of a workflow

_REQUEST locally. The module forwards the request to the
local worker pool, collects the results, and up-
dates the job DAG.

computation errored, or (iii) its computation time exceeded
the maximum running time offered by the volunteer node.

Each VFuse node that has run a job informs the entire net-
work of the computed result(s) (or obtained error(s)), broad-
casting an EXECUTION_RESPONSE message and pinning
them on the shared IPFS cluster. When a VFuse node receives
the result(s) related to a job it has already computed, it then
compares its locally stored result(s) with the one(s) received.
If they differ, the node launches a WARNING_RESULT to
inform the Initiator that there has been a divergence in the job
result(s). This protocol guarantees that each workflow will
eventually end (with the expected results) since the same job
will not be scheduled again for the same client. Consequently,
it allows two or more peers to compute results for the same
task if they scheduled the same job concurrently.

Execution Backend: Each VFuse node offers its compu-
tational capabilities by providing a pool of Web Workers
running different computational backends developed using
WebAssembly. In more detail, Web Workers are threads run-
ning in a private scope that allow the code to be executed
in a sandbox. Hence, they ensure that a VFuse client cannot
be damaged by any malicious code. The Computing mod-
ule automatically runs the Web Worker associated with the
specific implementation language and asynchronously com-
municates with them via JavaScript promises. Web Workers
directly enable this module to build the workflow, locally
execute a workflow and run jobs. These operations are piloted
using the specific messages detailed in Table 5. It is worth
noting that even though VFuse is designed to be executed in
a web browser, it can also be run - without any changes - in
other computing environments, such as desktop machines or
servers running a NodeJS server.

c: IDENTITY MODULE

The Identity module is responsible for storing users’ personal
information within the browser using the Events and Data
Component. Specifically, this module creates a new user
environment inside the browser cache when the node is ini-
tialized. Table 6 lists the environment properties (which users
can personalize), specifying the parameters for (i) entering
a specific VFuse network, (ii) defining the computing capa-
bilities offered to the network, and (iii) tuning the network
performance for receiving and sending data.
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TABLE 6. VFuse user profile properties, which can be configured in the
setting panel of the web client application.

Name Description

Network properties

WebRTC signal server address.
IPFES cluster address.

Signal Server

Pinning Server

Bootstrap Nodes List of bootstrap nodes’ addresses.
Computing properties
Max Jobs Maximum number of concurrent job to

run.

Max Job time Maximum execution time for a job.

Network tuning properties

Heartbeat Frequency of heartbeat messages sent to

neighbors.
Workflow Advertisement ~ Frequency of workflow-related mes-
sages.

Results Advertisement Frequency of result-related messages.

d: REWARD MODULE

The Reward module handles all the utilities concerning the
rewarding mechanism provided by VFuse, such as the def-
inition of smart contracts and the integration with IPFS to
implement the VFuse NFTs.

The VFuse rewarding strategy is based on the concept of
artifacts. Every time a node computes a job, it stores its result
on IPFS, which will assign to it a unique and immutable CID.
We consider this identifier (and, hence, the result written on
the IPFS cluster) as an artifact produced by a user’s contri-
bution to the computation of a workflow. A VFuse peer is
rewarded with a VFuse NFT per artifact. Specifically, an NFT
is a smart contract [50] assigning the ownership of a particular
thing (in our case, a file on IPFS) to a specific user (a VFuse
node).

V. EXAMPLE WORKFLOWS

This section presents four use cases addressed with our sys-
tem, describing the design and the workflow of each VFuse
application. Each listing highlights the use of the VFuse
API, leaving out the implementation details of the specific
algorithms. Readers interested in the complete version of the
code can refer to the VFuse GitHub repository.

A. MOST COMMON WORD IN A TEXT

Finding the word which occurs the most in a text is a
variation of the famous word count problem. This class of
problems is often exploited to demonstrate the benefits of
distributed MapReduce paradigm, given their embarrassingly
parallelizable nature.

1) VFuse WORKFLOW
The implemented VFuse workflow assigns to each job a
different portion of the file that returns the number of
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FIGURE 4. Job DAG of the WordCount example.

occurrences for each word encountered (map function).
Results are then collected and combined to compute the word
with the highest number of occurrences (reduce function).
Figure 4 depicts the resulting job DAG.

2) IMPLEMENTATION DETAILS
The implementation of the most common word in a text? is
shown in Listing 1.

The workflow starts retrieving the size of the file using a
fetch (Lines 25 — 27) to evenly split the text among the jobs
(Lines 28 —40). Each job runs a map function (Lines 1 — 18),
implementing the core logic of the algorithm. This function
receives two parameters in input: the URL of the file and two
indices (bytes) limiting the chunk to compute. The map func-
tion uses the VFuse API getDataFromURL () to retrieve
the associated chunk based on the input indices and computes
how many times each word occurs, avoiding truncated words.
Line 41 adds each job to the VFuse workflow and includes
it in the group map_group. The reduce function collects
the results calculated by these jobs (Line 43), finally com-
puting the word with the maximum number of occurrences
(Lines 20 — 23). It is worth highlighting how VFuse trans-
parently handles the data dependencies between the map and
reduce jobs. This mechanism is implemented via job groups;
in this example, the function reduce waits for all jobs
included in groups starting with the word corresponding to the
regex ““map_".

B. ML ALGORITHMS COMPARISON

Binary classification is a common task studied in Machine
Learning (ML) that aims to classify the instances of a dataset
into two groups [51]. Binary classification problems are
pretty common, and several models exist to address them.
Each model has a different performance depending on the
application domain; thus, it may produce optimal results
on some data while performing poorly on another. Conse-
quently, a crucial task in ML is to identify the best model
for a specific problem. In this use case, we compare several
binary classifiers available in the Python library scikit-learn.?

2https ://github.com/luigser/js-vfuse/blob/master/packages/vfuse-
core/src/examples/javascript/wordcountMapReduce_fromUrl.js
3 https://scikit-learn.org/
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1 async funct n map (data) {

2 et url = data[0]

3 et start = data[l]

4 let end = datal[2]

5 [...]

6 if (start == 0){

7 let j = end+offset

8 string = await . (url, start,
3)

9 } else {

10 let i = start-offset

11 let j = endtoffset

12 string = await . (url, i, 3J)

13 local_start = local_start+offset

14 local_end = j-i-offset

15 }

16 [...]

17 return mapped

18 }

19

20 £ ion reduce (data) {

21 .1

22 eturn max

23}

24

25 let url = "https://172.16.149.100/wordcount.txt"

26 let response = await fetch(url)

27 let size = response.headers.get ("content-length");

28 let num_jobs = 8

29 let chunk = Math.floor(size / num_jobs)

30 let r = size % num_jobs

31 let start = 0

32 let end = 0

33 for(let i=0; i<num_jobs; i++) {

34 f(i < r){

35 start = i * (chunk + 1)

36 end = start + chunk + 1

37 lelse{

38 start = 1 * chunk + r

39 end = start + chunk

40 }

41 await 5 (map, [], [url, start, end], ’
map_group’)

42}

43 await (reduce, [’"map_’])

LISTING 1. Most common word in a text (JavaScript).

Specifically, this VFuse Python application trains and tests
five different binary classifiers using the UCI PIMA Indian
Diabetes dataset to predict whether a person has dia-
betes or not using the medical attributes provided. The
algorithms used are Linear Discriminant Analysis (LDA),
Decision tree classifier (specifically, CART), K-Neighbors
Classifier (KNN), Naive Bayes (NB), and Support Vector
Machine (SVM). All algorithms were run using their default
parameter configurations.

1) VFuse WORKFLOW

The implemented VFuse application assigns a different
binary classifier to as many jobs. Each job receives the train-
ing and testing data sets and returns the model’s accuracy.
Each algorithm is evaluated using 10-fold cross-validation
using the same random seed to ensure consistency when
splitting the training data.

2) IMPLEMENTATION DETAILS
The implementation of the comparison of ML models* is
shown in Listing 2.

4https://github.com/luigser/js—vfuse/blob/master/packages/vfuse—
core/src/examples/python/MLComparison.py

99006

from sklearn import model_selection
Lo

import numpy

DB W N =

string = await . ("https://raw.
githubusercontent.com/Jjbrownlee/Datasets/master/
pima-indians-diabetes.data.csv")

f = StringIO(string)

datanp = numpy.loadtxt (f, delimiter=",")

models = [’LDA’, ’KNN’, ’CART’, ’'NB’, ’SVC’]

foool
kfold = model_selection.KFold(n_splits=10,
random_state=7, shuffle=True)
13 cv_results = model_selection.
cross_val_score (LogisticRegression (max_iter=1000),
X, Y, cv=kfold, scoring=’accuracy’)

6
7
8
9
10 def eval (input) :
11
12

14 [...]

15 return model_results

16

17 def compare (data):

18 [...]

19 return max

20

21 result = []

22 for model in models:

23 input = [model, datanp]

24 model_res = await . (eval, [], input)
25 result.append (model_res)

26

27 awai (compare, ['eval’], [])

LISTING 2. Comparison of different ML algorithms (Python).

First, the workflow loads the required libraries (Lines 1—3)
with the standard Python syntax. Then, as in the previous
use case, the workflow reads the data from an URL and
returns a string (Line 5). In lines 22 — 25, the execution
of each classification model is delegated to a different job
(whose behavior is described by the function eval (), lines
10 — 15). The workflow then waits for the termination of
all jobs and gets the computed data as input to compare the
performance of all algorithms via the function compare ()
(Lines 27 and 10 — 15). The data transfer between the two
computing functions - i.e., eval () and compare () - is
automatically provided by VFuse.

C. PI ESTIMATION USING MONTE CARLO

Monte Carlo methods are a broad class of computational
algorithms that rely on repeated random sampling to obtain
numerical results. One of the Monte Carlo algorithm’s pri-
mary applications is Pi’s estimation. Specifically, this method
considers a square space with a circle inscribed and generates
several random points within this space. The value obtained
by dividing the total number of points by the number of
points within the circle represents an approximation of Pi.
The random nature of the Monte Carlo algorithm implies
that the more the points generated, the more accurate the
result is. Adopting a distributed approach would allow the
generation of hundreds of thousands of points, resulting in
a more accurate value.

1) VFuse WORKFLOW
The workflow implemented by this VFuse application is
based on a Repeat ing job, which never reaches the status
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ion getPoints (interval) {

2 fooo]

3 return {square_points : square_points,
circle_points : circle_points}

4 }

5 £ ion estimatePi (data) {

6 0oo)

7 turn pi

8

9 await . (getPoints, [], 1000)

10 await .setRepeating (job_id)

11 job_id = await . (estimatePi, [’getPoints’])

12 await .setRepeating (job_id)

LISTING 3. Estimating the value of Pi using Monte Carlo (JavaScript).

Terminated (see Section IV-B5.a). Every time a node
publishes new random points, the application reevaluates the
estimation of Pi.

2) IMPLEMENTATION DETAILS

The implementation of the Monte Carlo estimation of Pi’ is
shown in Listing 3. The application sets as a repeating job
the function getPoints () (lines 9 — 10), that generates
random points within a given interval (lines 1 — 4). In the
same way, the application assigns the function est imatePi
(lines 5—8) to ajob (line 11) and declares the job as repeating
(line 12).

D. SEQUENCE ALIGNMENT WITH SMITH-WATERMAN
One of the most common procedures in molecular biology is
searching for similarities in protein and DNA sequences [52].
The established method to perform sequence alignment is the
Smith-Waterman algorithm, based on the dynamic program-
ming approach developed by Temple F. Smith and Michael
S. Waterman. The algorithm computes optimal local align-
ments of two sequences identifying the two sub-sequences
with maximal similarity scoring. The sequence comparison
is made using the segments of all possible lengths instead
of the entire sequence. The Smith—Waterman algorithm first
determines the scoring matrix, then performs a trace-back
measure to generate the segments with the highest similarity
score using the previous scoring matrix. Although effective,
this algorithm is costly in terms of computational cost since
it requires a number of operations proportional to the prod-
uct of the length of the sequences. Therefore, searching for
similarities in large data sets requires a huge amount of time.
The use of distributed computing in sequence alignment can
drastically reduce the time required: the data set to match with
a sequence can be split among different workers to find the
most similar one.

1) VFuse WORKFLOW

The VFuse workflow assigns a portion of the sequence data
set to each job. Upon receiving the data, each job computes
the similarity between the string to match and the sequences
included in its assigned data chunk and returns the sequence

5 https://github.com/luigser/js-vfuse/blob/master/packages/vfuse-
core/src/examples/javascript/PiEstimationEndless.js
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1 import numpy

2 def similarity(char):

3 a = char[0]

4 b = char[1l]

5 return match if a == b else mismatch
6

7 def fill _matrix(string):

8 foool

9 return [max_v, max_v_i, max_v_3j, matrix]
10

11 def trace_back (data):

12 foool

13 return [align_a, align_b]

14

15 def sw(pair):

16 [oool

17 return [max_scr, max_str, max_aligns]

19 def compare (data) :

20 fooo]

21 return [max_scr, max_str, max_aligns]

22

23 data = await ("https://raw.

githubusercontent.com/giusdam/data/main/dna.txt")

24 str_cmp = 'AGTACTACAAGGGTCAACCATAACCACAGCACTAGTTAT
CTCTACTTGACAAAAACTGGCCCCARATAGCC”

25 match = 1

26 gap = -1

27 mismatch = -1

28 Jjobs_n = 10

29 data = data.split()

30 data = numpy.array (data)

31 split = numpy.array_split (data, Jjobs_n)

32 for job in split:
33 await . (sw, [], [str_cmp, list(job)])
34 awai (compare, ['sw’])

LISTING 4. DNA Matching using Smith-Waterman (Python).

with the highest similarity score. The workflow waits for the
results computed by all jobs and compares their outcomes to
find the best matching sequence.

2) IMPLEMENTATION DETAILS
The implementation of the standard Smith-Waterman for
sequence alignment® is shown in Listing 4.

First, the workflow loads the data set via the function
getDataFromURL () (line 23). Then, it splits the data set
and assigns each chunks to a different job (lines 28 — 33),
which computes the Smith-Waterman algorithm on its
input data (function sw (), lines 15 — 17). The functions
similarity () (lines 2 — 5), £i11_matrix () (lines
7 —9), and trace_back () (lines 11 — 13) are three
auxiliary functions used by the matching algorithm. Finally,
the workflow waits for the termination of all jobs and gets
the computed data as input to find the sequence with the
maximum alignment score via the function compare ()
(Lines 19 — 21).

VI. DISCUSSION AND LIMITATIONS

We performed a preliminary evaluation of the VFuse proto-
type, experimenting with the Most Common Word example
described in the previous section. Specifically, we bench-
marked and analyzed the running time of computing the
most frequent word among 64 equally-sized files for a total

6https ://github.com/luigser/js-vfuse/blob/master/packages/vfuse-
core/src/examples/python/SmithAndWaterman.py
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FIGURE 5. Running time and relative speedup of the P2P BBVC VFuse
platform compared against the centralized BBVC system Pando.

of 4GB. We further exploited this use case to compare the
performance of VFuse against the centralized BBVC system
Pando [34]. We used the pre-configured Docker Image on the
Pando official repository’ and adapted the example according
to its execution logic. We ran the experiment on a cluster of
Windows 10 Pro desktop machines equipped with an Intel(R)
Core(TM) i7-8700T CPU, 16GB RAM, 512GB SSD, and the
Google Chrome browser. We employed the default settings
for VFuse, configured to utilize four threads per node, while
we chose an equivalent device configuration for Pando. It is
worth stressing that, in this evaluation, we only considered
Pando as it was the only framework providing a ready-to-run
Docker container. Unfortunately, all other publicly available
BBVC repositories required outdated dependencies, which
made the systems too complex to run.

Figure 5 depicts the running time (left y-axis, lines) and
the relative speedup (right y-axis, bars) at the variation of
the number of volunteer nodes from 1 to 8. As shown in the
plot, both systems exhibit comparable scalability. In particu-
lar, VFuse provides better performance when the number of
nodes is low, while the gap between the performance of the
two systems decreases when the number of nodes increases.

Another critical point worth mentioning is related to pos-
sible privacy and security issues that may arise in the context
of BBVC systems. Specifically, at this stage, the proposed
architecture does not consider possible leaks of data privacy
since data are publicly available on the blockchain and IPFS.
Nonetheless, this architectural choice does not harm the
system’s usability as computation using private data is not
a frequent use case in the context of volunteer computing.
Currently, VFuse relies on a standard approach in VC-based
systems to ensure that the required computation and its out-
come have not been corrupted in the process. As described
in the Paragraph Job results of Section IV-B5.b, each job’s
result is assessed by every node involved in the computation
of the same job. Still, blockchain technology enables the
implementation of more complex security mechanisms.

7 https://github.com/elavoie/pando-computing
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VIi. CONCLUSION AND FUTURE WORK

The paradigm of (BB)VC gained attention over the last years
as a potential tool for allowing researchers and companies to
access the enormous computing capabilities over the Internet
for solving high-demand computational problems.

In this work, we proposed VFuse, a novel BBVC archi-
tecture that offers (i) a ready-to-access network through web
browsers and (ii) a multi-language programming environment
thanks to WebAssembly, (iii) stimulates users’ participation
by providing a secure and transparent rewarding mechanism
based on Blockchain technology, and (iv) specifies an innova-
tive definition of users’ participation via NFTs that guarantee
the user ownership of computing results. We demonstrated
the advantages of VFuse and its added value by comparing
our platform with the most common BBVC and discussing
four example applications. A prototype of VFuse and the
presented examples are freely available on GitHub.

Currently, we are working on developing the rewarding
mechanism implemented with the Ethereum blockchain and
IPFS. In future work, we plan to perform systematic experi-
ments to assess the performance gain of our platform against
other well-known systems. We also aim to introduce work-
flows with an associated deadline, whose importance could
be reflected in the workflow priority and the rewarding strat-
egy. Another interesting future directions is integrating VFuse
into standard web pages to allow visitors of websites, such
as online news and game sites, blogs, and social networks,
to participate in a VFuse volunteer network by visiting some
dedicated pages offered by the owner of the service. Future
research should also consider designing a more sophisti-
cated scheduling algorithm to allow a fairer job execution,
including more advanced security mechanisms, extending the
workflow definition by adding more programming constructs
for enriching the programming model, and developing other
programming backends supported by WebAssembly.
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