
Received 19 August 2022, accepted 5 September 2022, date of publication 16 September 2022, date of current version 23 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3207167

A Volunteer Computing Architecture
for Computational Workflows on
Decentralized Web
ALESSIA ANTELMI , GIUSEPPE D’AMBROSIO, ANDREA PETTA, LUIGI SERRA,
AND CARMINE SPAGNUOLO
Department of Computer Science, Università degli Studi di Salerno, 84084 Fisciano, Italy

Corresponding author: Luigi Serra (lserra@unisa.it)

1

2

3

4

5

6

7

8

9

10

11

12

13

ABSTRACT The amount of accessible computational devices over the Internet offers an enormous but
latent computational power. Nonetheless, the complexity of orchestrating and managing such devices
requires dedicated architectures and tools and hinders the exploitation of this vast processing capacity.
Over the last years, the paradigm of (Browser-based) Volunteer Computing emerged as a unique approach
to harnessing such computational capabilities, leveraging the idea of voluntarily offering resources. This
article proposes VFuse, a groundbreaking architecture to exploit the Browser-based Volunteer Computing
paradigm via a ready-to-access volunteer network. VFuse offers a modern multi-language programming
environment for developing scientific workflows usingWebAssembly technology without requiring the user
any local installation or configuration. We equipped our architecture with a secure and transparent rewarding
mechanism based on blockchain technology (Ethereum) and distributed P2P file system (IPFS). Further, the
use of Non-Fungible Tokens provides a unique, secure, and transparent methodology for recognizing the
users’ participation in the network. We developed a prototype of the proposed architecture and four example
applications implemented with our system. All code and examples are publicly available on GitHub.

14

15

INDEX TERMS Scientific computing, volunteer computing, browser-based volunteer computing, decen-
tralized web, Web 3.0, P2P, WebAssembly, distributed computing, parallel computing.

I. INTRODUCTION16

Over the past decade, personal computers (PCs) have become17

one of themost consolidatedmarkets. In 2021, approximately18

340 million PCs were shipped worldwide [1], considering19

a revert of the trajectory since 2011 [2]. Still, today smart-20

phones represent the most dominant technology, with around21

1.5 billion devices sold per year in the last five years [3], [4].22

Further, Internet users are currently growing at an annual rate23

of 4.0 percent, equating to an average of more than half a24

million new users each day [5]. This colossal number of com-25

putational devices represents an enormous opportunity from26

a computing perspective. According to the 2021 TOP50027

rank [6], the most powerful supercomputer FUGAKU pro-28

vides around 8 million cores. Based on these statistics, the29

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

computational power obtainable by a tiny number of all pos- 30

sible internet-accessible devices is significantly more. Taking 31

advantage of this huge (and mostly unused [7]) processing 32

capacity represents a powerful opportunity for science and 33

society. 34

The paradigm of Volunteer Computing [8] (VC) emerged 35

as a prominent approach to harnessing the computational 36

capabilities of such devices. VC is a type of distributed com- 37

puting based on two pillars: computation and participation. 38

The former refers to the ability of the network to orchestrate 39

heterogeneous computational nodes to perform a given task. 40

The latter is the cornerstone of the whole paradigm and refers 41

to themechanism by that people voluntarily donate their com- 42

puting resources to the network to collaborate on a project. 43

Although VC comes with peculiar technological challenges 44

(e.g., managing nodes with heterogeneous hardware and soft- 45

ware, high dynamicity of the environment, asynchronism), 46

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 98993

https://orcid.org/0000-0002-6366-0546
https://orcid.org/0000-0002-3685-3879


A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

this paradigm provides researchers with lower-cost comput-47

ing power and reduced energy consumption. To alleviate48

some intrinsic limitations of VC systems and encourage49

joining volunteer networks, the paradigm of Browser-Based50

Volunteer Computing (BBVC) [9] gained popularity, also51

thanks to improvements in the processing capacity of web52

browsers and the release of powerful software libraries (e.g.,53

WebGL, and TensorFlow.js) [10]. BBVC provides access to54

the volunteer network using web applications, which execute55

volunteer jobs in the background and transparently from the56

user’s perspective. These systems inherit all benefits from57

web browsers, offering portability, flexibility, and ubiquity.58

Contributions: Over the last four years, different BBVC59

platforms have been proposed. Still, there is room for60

improvements to make such platforms fully decentralized and61

scalable, offering users a trusted computing environment and62

providing complete control over the resources donated to the63

volunteer network. To make a step toward this direction, this64

paper introducesVFuse, a fully-distributed volunteer network65

based on a peer-to-peer (P2P) architecture. VFuse offers66

volunteers an easy and ready-to-use programming environ-67

ment directly in their browsers through web-based interactive68

notebooks, which allow users to develop and monitor the69

requested computation and analyze its results. Further, our70

platform provides a secure and trustworthy execution envi-71

ronment and a reward mechanism thanks to the adoption of72

Blockchain technology to ensure results’ reliability. VFuse73

represents an effort to make the web decentralized [11],74

allowing users to run intensive computing tasks in a free-to-75

use and trusted environment.76

The major contributions of this paper can be summarized77

as follows:78

• The design of a novel architecture for BBVC defined79

over a fully-distributed P2P network;80

• The proposal of an innovative rewarding strategy based81

on blockchain technology to incentive users to join the82

volunteer network;83

• A user-friendly interface based on web notebooks to84

easily access the volunteer network and benefit from its85

computing capabilities transparently;86

• An empowered multi-language programming environ-87

ment offered via interactive web notebooks;88

• A detailed description of four applications, presenting89

how VFuse can be exploited in such contexts;90

• A prototype of the VFuse system, available on91

a public GitHub repository [12], which includes92

workflow orchestration functionalities, storage capa-93

bilities using IPFS, and two execution backends94

offered with JavaScript and Python programming95

languages.96

The remainder of this paper is organized as follows.97

Section II reviews the key ideas behind BBVC, describes98

the main existing frameworks in the context of BBVC and99

discusses the challenges these frameworks need to face.100

Section III illustrates the main features of VFuse, the ratio-101

nale behind the choice of the technologies used, and how102

they impacted the platform’s design. Section IV details the 103

architecture of VFuse, delineating its functionalities and 104

internal mechanisms. Section V describes how VFuse can 105

be exploited through four use cases. Section VI discusses 106

a first performance evaluation and the current limitation of 107

the VFuse prototype. Finally, Section VII concludes this 108

work by delineating our current work and possible future 109

directions. 110

II. BACKGROUND AND RELATED WORK 111

VFuse is a volunteer distributed browser-based library to 112

create and execute scientific workflows. To better clarify its 113

position within the state-of-the-art, we first introduce the 114

concept of VC, along with the most popular VC frameworks. 115

Then, we focus on BBVC and its peculiar challenges. Finally, 116

we present existing solutions, describe the peculiarities of our 117

proposed system, and provide a detailed comparison among 118

the available BBVC frameworks. 119

A. VOLUNTEER COMPUTING 120

VC is a computational paradigm based on the willingness 121

of people to donate idle computing resources to run com- 122

putational and storage-intensive tasks [13]. VC shares many 123

similarities with online community-based projects, in which 124

people’s desire to voluntarily contribute resources - such as 125

knowledge, time, and skills - underpins the sustainability of 126

such initiatives [8]. 127

The idea of exploiting idle resources from volunteer com- 128

puters came from the GIMPS (Great InternetMersenne Prime 129

Search) project in 1995 [14]. The project is still running, 130

and it allowed the discovery of the 51st Mersenne prime 131

in 2018, the current largest known prime number. Other 132

early projects include distributed.net [15], SETI@home [16], 133

and Folding@home [17]. Today there are over 30 active 134

projects. 135

Two of the most popular VC frameworks are BOINC [18] 136

and XtremWeb [19]. Both frameworks exploit a centralized 137

architecture for managing jobs and resources. Further, they 138

require users to download and install a specialized client 139

to execute project tasks. This approach has two critical 140

drawbacks concerning the programmability and the trusti- 141

ness of the applications. First, there is a constraint on the 142

programming language used as each application must be 143

implemented with the same framework language. Second, 144

adopting a centralized architecture upper limits the number of 145

volunteer nodes as their number cannot exceed the network 146

and computational capabilities of the server node. 147

To address the issues related to the client-server archi- 148

tecture, other VC frameworks either rely on a P2P overlay 149

network [20], [21] or a blockchain-based system [22], [23]. 150

Specifically, the idea of using a blockchain in a VC frame- 151

work is tailored to solve the issue of trust between devices and 152

the lack of traceability, making it difficult for users to evalu- 153

ate the contribution and credit of each volunteer [24]. Further, 154

the characteristics of blockchain, such as decentralization 155

and persistence, allow solving the problems of scalability 156

98994 VOLUME 10, 2022



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

and single point of failure under the traditional client-server157

architecture [25], [26]. Golem [27] is an example of a P2PVC158

platform based on blockchain, specifically focused on com-159

putations such as computer graphics rendering and machine160

learning algorithms. BOID [28] is another example of a161

blockchain-based VC platform in which volunteers get paid162

in custom BOID cryptocurrency tokens for their contributing163

resources.164

For a comprehensive review of VC frameworks, we refer165

the reader to the survey of Mengistu and Che [13].166

B. BROWSER-BASED VOLUNTEER COMPUTING167

The idea of BBVC comes from the need to overcome an168

intrinsic limitation of VC systems. Usually, these frameworks169

require the users to follow a given installation procedure,170

which can be challenging for many [29]. Further, many users171

fear installing unfamiliar software because of malware and172

spyware [30]; they may be simply lazy or not appealed by the173

project or even lack awareness of its existence [9]. In contrast,174

the underlying concept of BBVC is to increase participation175

in the volunteer network by providing more user-friendly176

access to the network via a web application, hence with-177

out requiring specific installation or configurations. In this178

approach, a browser automatically and transparently executes179

tasks during the user’s visit to a particular website; as a con-180

sequence, users usually consider their impact negligible [31].181

1) CHALLENGES OF BBVC FRAMEWORKS182

Designing and implementing a VC system pose a set of non-183

trivial challenges. These derive from the intrinsic nature of the184

computing environment, and BBVC systems clearly inherit185

them. To ease this process, Fabisiak and Danilecki [9] defined186

a set of desirable features a BBVC system should have (the187

same desiderata hold for a VC system). A brief description of188

each desideratum follows.189

• Accessibility. Easiness of accessing the platform and190

sharing resources.191

• Adaptability/Dynamicity. The BBVC platform should192

be aware that the environment is ever-changing, as the193

number of nodes may vary.194

• Availability. The BBVC platform should be accessible195

regardless of any problem.196

• Fault Tolerance. The BBVC platform should be tolerant197

of faults and disconnections.198

• Heterogeneity. The BBVC platform should consider that199

volunteer machines could have different hardware, oper-200

ating systems, and performance.201

• Programmability. Easiness of developing new tasks on202

the BBVC platform.203

• Scalability. The BBVC platform must handle a growing204

amount of connections.205

• Security. The code run by the platform should not harm206

the volunteer machine.207

• Usability. The BBVC platform should be easy to deploy208

and use.209

Along with the above desiderata, we also defined some addi- 210

tional features a BBVC system should have to encourage vol- 211

unteers’ engagement and improve the platform’s reliability 212

and functionalities. 213

• Task deployment and scheduling. Flexibility of the 214

BBVC platform in supporting different deployment and 215

scheduling policies. 216

• Result reliability. The BBVC platform must ensure the 217

computed results’ correctness and prevent any result 218

manipulation or malicious execution. 219

• Supported programming languages. Flexibility of the 220

BBVC platform in supporting different programming 221

languages. 222

• Supported computational paradigms. Flexibility of the 223

BBVC platform in supporting different computational 224

paradigms. 225

• User resource usage. Possibility of configuring the num- 226

ber of local volunteer resources, such as CPU or mem- 227

ory, to allocate for computing the task. 228

• Data management. Ability of the BBVC platform to 229

support data operations, such as data gathering, manip- 230

ulation, and storage. 231

2) BBVC FRAMEWORKS 232

BBVC frameworks rose to prominence over the last decade 233

thanks to the incredible advancement in web technologies 234

and the ever-increasing web usage. We can distinguish three 235

generations of BBVC systems [9], which reflect the improve- 236

ments in the web programming language, communication 237

protocols, and thread support. In this paper, we specifi- 238

cally focus on reviewing and comparing the third-generation 239

frameworks most similar to VFuse. For a comprehensive 240

review of BBVC frameworks, we refer the reader to the 241

survey of Fabisiak and Danilecki [9]. 242

Madoop [32] leverages the power of WebAssembly [37] to 243

implement a distributed MapReduce framework on browsers. 244

The central server, which hosts the Hadoop software, han- 245

dles the management of both jobs and results. Each job is 246

written in C/C++ and compiled in a WebAssembly format 247

to be run in the browser. The client web page, which runs 248

a Madoop code snippet, requests a job to the main server, 249

and, upon completion of its execution, it returns the results to 250

the server. Then, the server sends back the results to the job 251

initiator. 252

JSDoop [10] is a library for distributed collaborative 253

high-performance computing in web browsers, based on the 254

MapReduce paradigm as Madoop. Both JSDoop clients and 255

servers are implemented in JavaScript. A queue server han- 256

dles the task scheduling and the result management, while 257

data are available in a centralized server. More queue servers 258

could be used to guarantee load balancing. 259

BrowserCloud.js [33] proposes a decentralized architec- 260

ture to find and utilize resources through a P2P overlay 261

network. Participants join the network via a centralized ren- 262

dezvous point; then, the message routing is handled via an 263

adaptation of the Chord routing algorithm, designed for a P2P 264

VOLUME 10, 2022 98995



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

TABLE 1. Main characteristics of the BBVC platforms. N/C stands for not clarified.

distributed hash table. The P2P interconnectivity is obtained265

with WebRTC, a technology enabling Real-Time Communi-266

cations in the browser via a JavaScript API. BrowserCloud.js267

provides a simple mechanism to define JavaScript functions,268

including inline data and the number of required peers to 269

complete the task. 270

Pando [34] is a tool born with the intent of leveraging 271

the potential of VC for personal projects. Its programming 272

98996 VOLUME 10, 2022



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

model corresponds to a streaming version of the func-273

tional map operation: Pando applies a given function on a274

series of input values to obtain a series of results. Pando275

relies on the pull-stream design pattern to manage the276

input stream for functions, which are written in JavaScript277

and can be combined in Unix pipelines. The task deploy-278

ment is based on a Node.js master server (Stream Lender)279

responsible for scheduling functions and collecting their280

results.281

Genet [35] is an evolution of Pando that tries to overcome282

its scalability problems - due to direct connections handled283

with WebRTC - by using a fat-tree overlay network (where284

processors are located on the leaves and internal nodes relay285

data for all their children). Genet differs from Pando in286

managing browser connections, switching a node’s role from287

management to relay when its direct connections (children)288

reach a given threshold.289

CollabChain [36] is a browser-based volunteer platform290

that relies on blockchain technology to provide a trusted envi-291

ronment and foster users to make their resources available to292

the network. CollabChain is based on a P2P overlay network293

and defines three types of nodes: submitters, executors, and294

coordinators. Submitters require a task, i.e., a JavaScript295

function and its inputs, while executors compute them. A sin-296

gle coordinator acts as a bootstrap node and maintains a297

database of all tasks uploaded by submitters. The blockchain298

guarantees payment for the volunteers that complete their299

work and honesty of results by matching the output evaluated300

by the volunteer and the pre-computed output described in the301

smart contract.302

CollabChain currently represents the most similar work to303

VFuse. Nonetheless, several major points distinguish the two304

architectures. The first significant difference relies on how305

tasks are deployed and scheduled. If a VFuse node wants to306

submit a workflow (see Section III-A), then it has to broadcast307

it over the P2P network and wait for the results. Even if308

the node disconnects, the network still gossips the workflow.309

Tasks of each workflow are then scheduled by each volunteer310

based on the associated priority. On CollabChain, submitters311

have to submit their tasks to the coordinator, and they are312

required to stay online even after delegating the process313

function and the inputs to the executors to obtain computed314

outputs from the executor. Executors directly choose tasks315

from the coordinator, and no scheduling policy is explic-316

itly described. The second significant distinction regards the317

computing paradigm. VFuse offers users a platform to define318

the requested computation as a workflow, within which either319

dependent or parallelizable tasks may be specified and run320

by different volunteers. In contrast, CollabChain defines the321

requested computation via a JavaScript function that can be322

run by a single executor. Other main dissimilarities relate323

to (i) the management of the user resources offered to the324

volunteer network (CollabChain does not offer a direct con-325

trol), (ii) how data are handled (VFuse relies on IPFS, while326

submitters and coordinators need to exchange data on Col-327

labChain directly), and (iii) the rewardingmechanism (VFuse328

exploits the rewarding mechanism to prioritize workflows, 329

while CollabChain provides an actual currency). 330

Table 1 compares VFusewith themain BBVC frameworks, 331

considering the desiderata described in Section II-B1. It is 332

worth noting that all systems inherit accessibility, availabil- 333

ity, heterogeneity, security, and usability requirements from 334

browsers. 335

III. METHODOLOGY AND DESIGN CHOICES 336

The VFuse architecture is built upon two cornerstones: 337

(i) ensuring a high level of scalability and (ii) storing 338

inputs, outputs, and authorship of users’ tasks over a pub- 339

lic blockchain. Table 2 describes the main characteristic of 340

VFuse, clarifying how the platform addresses the challenges 341

described in Section II-B1. The following sections illustrate 342

the main design choices behind VFuse. 343

A. PROGRAMMING PARADIGM 344

Distributed computing offers mechanisms and tools for 345

orchestrating distributed computational workflows and 346

resources for transparently solving problems. In this context, 347

a critical issue is to use the proper programming model to 348

define the distributed computation. Scientific workflow [38] 349

is a commonly used paradigm to manage the coordinated exe- 350

cution of actions that can be repeatable and dependent on each 351

other. This design enables the plugging of problem-solving 352

components within the workflow to prove a scientific hypoth- 353

esis. Such a paradigm brings several benefits, such as automa- 354

tion, scalability, resilience, and verifiability. 355

VFuse adopts the workflow pattern, allowing the design of 356

the requested computation as a sequence of interdependent 357

jobs (or tasks). In other words, the computation is divided into 358

self-consistent jobs, whose execution may depend on the ter- 359

mination of other tasks. Hence, a VFuse application is defined 360

by a pipeline of jobs that is modeled via a directed acyclic 361

graph (DAG) (see Section IV-B5.a). VFuse provides opera- 362

tions to build workflows, add jobs and describe dependencies 363

between them. The generic nature of this approach allows 364

programmers also to exploit other distributed paradigms in 365

VFuse, such as fork/join and MapReduce. 366

B. APPROACH BASED ON INTERACTIVE NOTEBOOKS 367

We designed VFuse to support the development and exe- 368

cution of distributed applications via an interactive web 369

notebook, à-la Jupyter, CodePen, Gitpod, or JS Fid- 370

dle. This choice offers VFuse volunteers a ready-to-use, 371

quick programming environment without requiring software 372

configuration and installation. Further, web notebooks 373

provide a dynamic programming environment supporting 374

multi-languages, workflow monitoring, submission, and 375

visualization of results. Specifically, VFuse provides a set of 376

asynchronous functions - that support different programming 377

languages - to retrieve and store data from the network, build 378

workflows, and add jobs to them, specifying input data and 379

dependencies. 380

VOLUME 10, 2022 98997



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

TABLE 2. Answers of VFuse to the challenges of BBVC.

C. TECHNOLOGIES BEHIND VFuse381

The myriad of different technological challenges we incurred382

during the design of our system profoundly shaped the final383

architecture of VFuse. We exploited the following technolo-384

gies to enable communications among several P2P-connected385

devices, guarantee the trustiness of job executions, manage 386

distributed data, and support a multi-language programming 387

environment. A description of the key technologies chosen 388

and their impact on the VFuse follows. 389

• WebAssembly [37] (Wasm) is a low-level assembly-like 390

language runnable in web browsers. Wasm is designed 391

as a portable compilation target for programming lan- 392

guages, meaning that it allows languages like C/C++, 393

Rust, or Python to run on the web with near-native 394

performance. Wasm is also designed to run along- 395

side JavaScript, offering programmers a way to take 396

advantage of WebAssembly’s performance and power 397

and JavaScript’s expressiveness and flexibility in the 398

same application. Among the other strengths of Wasm, 399

there is its safeness (memory-safe, sandboxed execu- 400

tion) and easiness of debugging (textual format). Fur- 401

ther,Wasmmaintains the versionless, feature-tested, and 402

backward-compatible nature of the web. 403

Architecture Insight:The use ofWasm as a core technology 404

of VFuse is critical to improve Web Workers’ performance 405

and provide support for programming languages other than 406

JavaScript. Currently, VFuse supports the development of 407

workflows written in JavaScript or Python. The rationale 408

behind the choice of Python comes from the plethora of 409

libraries the language offers to manipulate and analyze data, 410

well-suited to implement scientific workflows. To imple- 411

ment Python Web Workers, we used Pyodide [39] as a 412

Wasm-compiled Python interpreter. Specifically, Pyodide is 413

a Python distribution for the browser and Node.js based 414

on WebAssembly/Emscripten [40] that makes it possible 415

to install and run Python packages in the browser with 416

an embedded version of the pip python package manager. 417

Hence, all general-purpose and scientific Python packages 418

- such as NumPy, pandas, SciPy, Matplotlib, and scikit- 419

learn - can be used. Further, Pyodide allows the program- 420

mer to easily mix JavaScript and Python in the same 421

code script thanks to a robust foreign function interface. 422

The use of WASM as underlying technology ensures that 423

VFuse can be easily expanded to support other programming 424

languages. 425

• Libp2p [41] is a network framework supporting the 426

development of decentralized P2P applications based 427

on WebSocket or WebRTC to enable communication 428

among nodes. Built upon the Kademlia DHT [42], 429

a network protocol that allows the development of P2P 430

network applications, Libp2p leverages public-key cryp- 431

tography [43] to manage peer identities and enable 432

secure communication. Libp2p offers NAT traver- 433

sal, circuit relay, stream multiplexing, and addressing 434

functionalities. 435

Architecture Insight: The use of Libp2p enables VFuse 436

to be aware of the status of the network by hindering the 437

underlying network communication protocol and details on 438

the routing tables. Libp2p also offers new VFuse volunteer 439

devices the possibility to join the network through bootstrap 440

nodes, whose number can be increased on-demand based on 441

98998 VOLUME 10, 2022



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

the size of the network. Lastly, Libp2p enables direct com-442

munication between VFuse nodes, allowing them to inform443

other devices about a new workflow to be run. The flooding444

of theworkflowwithin the network happens via a gossip strat-445

egy, which avoids a centralized orchestration, and terminates446

either when the Initiator ends its execution or its time-to-live447

(TTL) expires (see Section IV-B4).448

• IPFS [44] is a distributed file system built upon Libp2p449

to store large data files and support blockchain opera-450

tions. The main characteristic of IPFS is how content451

is identified. Rather than associating a location with452

a resource (like what happens with URLs), IPFS uses453

an immutable hash code - called Content Identifier454

(CID) - to identify resources in the network. To allow455

dynamic resource addressing, IPFS provides the Inter-456

Planetary Name System (IPNS) that leverages a unique457

hash pointer targeting different CIDs when the content458

changes. Further, IPFS ensures data distribution and459

replication to guarantee availability and fault tolerance.460

Architecture Insight: The VFuse architecture is designed461

as a fully-distributed application running over a volunteer462

network of computational nodes. The use of IPFS as a com-463

ponent of VFuse ensures the unique identification of inputs464

and jobs’ outputs, giving our platform the power of content-465

addressed storage. To safeguard the indefinite persistence466

of data and workflows on the VFuse network, these can467

be pinned to one or more IPFS nodes. Pinning gives the468

programmer control over disk space and data retention and469

guarantees that the pinned resources are not deleted during470

IPFS garbage collection. Further, the use of the IPFS Cluster,471

a distributed application that works as a sidecar to IPFS472

peers, enables VFuse to allocate, replicate, and track pinned473

resources among multiple peers; hence, guaranteeing data474

redundancy and availability without compromising the dis-475

tributed nature of the IPFS network. Finally, IPFS empowers476

the exploitation of blockchain functionalities to implement a477

secure and trustworthy mechanism (see Section IV-B5.d).478

• Ethereum [45] is a decentralized, open-source479

blockchain platform establishing a P2P network that480

securely executes and verifies smart contracts. Smart481

contracts are event-driven distributed programs stored482

on the blockchain that run when predetermined condi-483

tions are met. They allow participants to transact with484

each other without a trusted central authority. Trans-485

action records on Ethereum are immutable, verifiable,486

and securely distributed across the network, giving487

participants full ownership and visibility into transaction488

data.489

Ethereum allows the creation of unique and indivisi-490

ble tokens, called non-fungible tokens (NFTs). NFTs491

represent ownership of unique items, such as a piece492

of art, digital content, or media. Each NFT can only493

have one official owner at a time, and the Ethereum494

blockchain secures them (e.g., no one can modify the495

record of ownership or copying existing NFTs). In other496

words, NFTs embody an irrevocable digital certificate of 497

ownership and authenticity for a given digital or physical 498

asset. 499

Architecture Insight: VFuse exploits the Ethereum 500

blockchain to implement a rewarding strategy in the volunteer 501

network. Every time a node contributes to the computation 502

of a job, it receives a reward in the form of a VFuse NFT, 503

which guarantees the ownership of the produced digital asset 504

(namely, the result of the computation). The number of NFTs 505

collected by VFuse clients is then used to prioritize their 506

submitted workflows. Section IV-B5.b and Section IV-B5.d 507

detail this process. It is worth stressing that we did not 508

adopt a VFuse currency given the volunteer nature of the 509

network itself: users do not have to pay to use the network, 510

but, at the same time, they are encouraged to offer their 511

computing resources in exchange for a faster termination of 512

their submitted workflows. 513

IV. VFuse ARCHITECTURE 514

VFuse is a decentralized network that acts as a workflow 515

manager accessible via browser for volunteer-based dis- 516

tributed computation. VFuse’s primary purpose is to enable 517

users to access a robust and secure volunteer network without 518

requiring the installation and configuration of any additional 519

software. VFuse users can define asynchronous workflows 520

made up of functions (jobs or tasks) with possible temporal 521

dependencies on their execution. Thanks to the asynchronous 522

nature of VFuse workflows, users are free to leave the net- 523

work while their required workflow is running and gather its 524

results at any moment in the future. 525

The VFuse architecture is designed on top of the following 526

innovative objectives: 527

• providing a ready-to-use programming environment to 528

access a distributed volunteer network using interactive 529

web notebooks; 530

• designing a modular and expandable architecture that 531

transparently exploits the underlying technologies; 532

• supporting a distributed volunteer network built 533

on P2P communications, storage, and Blockchain 534

technologies. 535

A. VFuse NODE TYPES AND THEIR INTERACTION 536

A VFuse node may be either a computing, bootstrap, or pin- 537

ning node. Specifically, a computing node is a VFuse volun- 538

teer device that offers and may require network computing 539

capabilities through a web browser. Being a P2P network, 540

VFuse requires the presence of bootstrap nodes to allow 541

new devices to join the network. These special nodes are 542

responsible for the discoverability of the VFuse network as 543

well as for the initialization of new connections. In particular, 544

a VFuse bootstrap node runs the same software stack of 545

computing nodes plus a WebRTC signal server (publicly 546

accessible over the Internet and hosted on a NodeJS server) 547

that allows direct connections with other peers, such as a 548

browser-to-browser communication. It is worth noting that 549

every computing node may also act as a bootstrap node to 550

VOLUME 10, 2022 98999



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

FIGURE 1. Interactions between nodes within the VFuse network in a typical execution flow. A new
computing node C may enter the network by connecting with a VFuse bootstrap node (Step 0). A node
A which submits a workflow (Step 1) becomes the Initiator of the requested computation. Each
computing node of the network, such as B and D, receives the workflow, executes some jobs based
on the associated priority (Step 2), stores the results locally (Step 3), gets a reward (Step 4), and pins
the result to the IPFS cluster (Step 5). Eventually, each node broadcasts an update workflow message
(Step 6).

avoid centralized bottlenecks. Lastly, pinning nodes belong to551

the IPFS cluster and protect data from the garbage collection552

of IPFS. Figure 1 shows an overview of the VFuse system,553

depicting the three possible roles a VFuse node may play and554

how they interact during a workflow’s life cycle. First, each555

user who wants to join the volunteer network has to connect556

to a VFuse bootstrap node (Step 0, see Section IV-B1).557

The execution flow of a computing request then starts when558

a computing node submits a workflow, hence becoming its559

Initiator. The requested workflow is then gossiped within560

the volunteer network (Step 1, see Section IV-B5.a). Each561

computing node determines the task to compute based on the562

priority of the Initiator (Step 2, see Section IV-B5.b). Upon563

completion of each job, every computing node store the com-564

puted results on the IPFS Network (Step 3, see Section IV-565

B5.a), gets its reward (Step 4, see Section IV-B5.d), pins the566

results on the IPFS cluster (Step 5, see Section III-C), and567

gossips the workflow’s updates (Step 6).568

B. ARCHITECTURE569

This section delineates the main components of the VFuse570

architecture (see Figure 2), briefly describing their function-571

alities. Each VFuse node runs the VFuse suite, made up572

of five software components. The whole suite relies on the573

storage technologies offered through the IPFS distributed574

file system, along with the communication protocols imple-575

mented by Libp2p for P2P architectures. A description of576

each component of the VFuse protocol suite follows.577

Access Component. This component gives users access to the578

VFuse network, offering a graphical web interface of the579

system. It allows VFuse users to manage their profile,580

FIGURE 2. VFuse architecture.

create, define, submit, and stop workflows inside inter- 581

active web notebooks, which enable the (remote/local) 582

verification of workflow executions. 583

API Component. This component defines the synchronous 584

and asynchronous function interfaces to let users access 585

the VFuse platform. 586

Events and Data Component. This component provides data 587

and communication utilities across components. Com- 588

munication happens via events, which transmit informa- 589

tion about jobs’ status and about creating, updating, and 590

deleting data asynchronously. 591

Network Component. This component is responsible for 592

providing the VFuse network communication protocol 593

and data management (i.e., storage) functionalities by 594

exploiting Libp2p and IPFS over HTTPS. It further 595

99000 VOLUME 10, 2022



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

FIGURE 3. Snapshots of the VFuse web client application (My Workflows page).

offers (i) a set of callbacks to get information on the596

nodes’ status, (ii) bootstrap operations, and (iii) an inter-597

face to the IPFS Cluster.598

Engine Component. This is the core component of the VFuse599

architecture, which provides all computing, rewarding,600

and user-related functionalities. It is made up of four601

modules: (i) the Workflow Module handling the work-602

flows lifecycle; (ii) the Computing Module managing603

job executions from specific workflows; (iii) the Iden-604

tity Module administrating user access and preferences;605

and (iv) the Reward Module defining and managing606

the rewarding mechanism via a blockchain for securely607

storing user rewards.608

The following sections illustrate each component in detail.609

1) ACCESS COMPONENT610

The VFuse access component embodies the middleman611

between users and the VFuse system. It offers users access612

to the network through a web application (implemented via613

the ReactJS framework1) that exploits the API component to614

use the functionalities provided byVFuse. Specifically, a user615

who wants to join the volunteer network sends an HTTPS616

request to the VFuse central server, hosting the VFuse web617

application. Once the browser renders the application, the618

user can then join a specific VFuse volunteer network by619

specifying the required (i) bootstrap node, (ii) signal server,620

and (iii) pinning cluster. It is worth stressing that the VFuse621

web application runs all code client-side or via the P2P622

volunteer network. Hence, the central server’s only task is to623

serve the VFuse application.624

1https://reactjs.org/

The VFuse application provides access to the user pro- 625

file configurations (Profile page), workflow management 626

features (My Workflows and Running Workflows 627

pages), network monitoring (Network page), and a logging 628

console (Console page). 629

• In the Profile tab, each user can set up the informa- 630

tion related to the particular VFuse network to join by 631

specifying the IP address of its bootstrap node, signal 632

server, and pinning cluster. 633

• On the My Workflows page, users can create, 634

develop, locally test, and submit a new workflow to 635

the volunteer network. Figure 3a shows a snapshot 636

of the VFuse client application detailing the program- 637

ming IDE offered to manipulate workflows. Users can 638

also visualize an interactive graphical representation 639

of the computation using a Job DAG (see Figure 3b), 640

which is automatically updated according to the com- 641

putation’s status and provides the computed results for 642

each job. 643

• In the Running Workflows tab, users can visu- 644

alize the queue with the received and running work- 645

flows, representing all workflows the user received 646

from the network and offered to their computational 647

resources. 648

• In the Network tab, users can continuously monitor the 649

status of the VFuse network by listing the peers they are 650

connected with. 651

• Finally, on the Console page, users can check VFuse 652

logging messages. 653

2) API COMPONENT 654

The API Component provides external access to the func- 655

tionalities offered by the VFuse platform. Further, this 656

VOLUME 10, 2022 99001



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

TABLE 3. VFuse API for developing workflows within the VFuse IDE panel.

component offers programmers an API to manage workflows657

and develop them using different programming languages.658

Specifically, the workflow API allows the programmer to659

(i) retrieve and store computation data asynchronously and660

(ii) manage new jobs and their dependencies. Table 3 briefly661

describes each function, along with the required parameters662

and return type.663

3) EVENTS AND DATA COMPONENT664

The VFuse Events and Data Component offers a software665

interface to orchestrate communication across components666

and manipulate local and remote data via the Event Module667

and the Data Management Module, respectively.668

The Event Module controls the inter-component com-669

munication and network updates through events, which670

transmit information about jobs’ status and data asyn-671

chronously. This module also handles the initialization of672

each node’s workspace - comprising local data (such as673

the user profile, workflows, and settings), the Gossip and674

Execution queues (see Section IV-B4 and Section IV-B5.b),675

and local web workers for communicating and running676

jobs. Table 4 lists the available system messages to handle677

events.678

The Data Management module abstracts the underlying679

IPFS services by offering a high-level interface to store,680

delete, and update data and workflows. Specifically, this681

module exploits the IPFS Mutable File System (MFS) to682

manage local user information, such as preferences, work-683

flows, execution data, and publishing queues. Remote data,684

such as submitted workflows, shared data, and job results, are685

handled using the IPFS network API.686

4) NETWORK COMPONENT 687

The VFuse network component is based on the event-driven 688

programming paradigm and enables VFuse peers to exchange 689

workflows and data through GossipSub [46], a publish/- 690

subscribe protocol. GossipSub exploits the idea of gossip- 691

ing [47]; namely, it floods the network with messages to 692

ensure a reliable communication of data and workflows in a 693

dynamic environment. Messages to gossip are stored in the 694

nodes’ local Gossip queue and are forwarded only if their 695

TTL is not expired or the Initiator stopped the workflow. The 696

message payload is compressed using the LZ77 [48], [49] 697

algorithm to preserve bandwidth and memory. 698

Further, the communication component also provides (i) 699

a configurable proxy to enable the system to use HTTPS and 700

Web Socket Secure protocols and (ii) a built-in IPFS gateway, 701

granting direct access to the IPFS resources via the HTTP 702

protocol and avoiding the use of an external public gateway. 703

5) ENGINE COMPONENT 704

The Engine component is the core of the VFuse architecture. 705

It comprises four interoperable modules, through which it 706

defines (Workflow module) and orchestrates workflows and 707

their computation (Computing module), stores users’ profile 708

information and preferences (Identity module), and regulates 709

the reward mechanism (Reward module). A detailed descrip- 710

tion of each module follows. 711

a: WORKFLOW MODULE 712

A VFuse computation is defined using a computing work- 713

flow. Specifically, each workflow is a sequence of jobs, i.e., 714

functions with properties and data. The programmer can 715

99002 VOLUME 10, 2022



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

TABLE 4. VFuse events and data component messages.

define temporal dependencies between jobs and visualize716

them via the workflow DAG, representing jobs as nodes and717

dependencies as edges. Users can check the execution of718

the workflows they submitted by monitoring the associated719

DAGs since the status of each job (i.e., node) is continuously720

updated. VFuse workflows are asynchronous, meaning that721

any node of the network can run them, regardless of the722

presence of the workflow Initiator (i.e., the node submitting723

the workflow).724

Each VFuse web notebook represents a workspace where725

the user can define the workflow’s jobs, their dependencies,726

and properties. Before submitting each workflow, users must727

locally build it; this procedure implies compiling and storing728

it in the local storage. Once submitted, the workflow is pinned729

in the shared IPFS cluster. This operation returns the CID730

associated with the workflow, which is then assigned to its731

Initiator. From now on, other computing nodes can retrieve732

the submitted workflow from the shared IPFS cluster.733

Job Status: During the computation, a job may assume734

different statuses, each one coded with a specific color:735

(i) Ready (green) when available to be run, (ii) Waiting736

(yellow) when waiting for the termination of other jobs, (iii) 737

Repeating (grey) when the job is (re)scheduled until the 738

entire workflow stops or expires, (iv) Terminated (blue) 739

or Errored (red) when terminates with no or one or more 740

errors, respectively. 741

Job Dependencies: The execution of a job j may depend 742

on the termination of one or more other tasks. In this case, 743

the status of the job j will switch from Waiting to Ready 744

when all previous tasks have been completed by at least a 745

node of the network. 746

Job Repeating:VFuse allows users to define repeating jobs 747

(marked with the status Repeating) to (re)schedule the 748

same job (hence, reiterate some workflow activities) until 749

the entire workflow stops or expires. In practice, when a 750

repeating job terminates, its status does never change to 751

Terminated. The same dependency rules also apply in this 752

case. 753

b: COMPUTING MODULE 754

The Computing module takes care of all aspects related to 755

orchestrating workflows over the VFuse volunteer network 756

and exchanging the computed results among nodes. 757

Workflow Orchestration: Upon submitting the workflow 758

(see Section IV-B5.a), the Initiator transparently broadcasts 759

a new EXECUTION_REQUEST message. As this message 760

is also used to update a workflow already existing on the 761

network, every peer receiving it compares the CID of the 762

local copy of the workflow (if existing) with the information 763

received and updates the Gossip and Execution queues. If the 764

node receives the workflow for the first time, it adds it to both 765

queues. 766

A workflow terminates in either one of the three follow- 767

ing cases: (i) all jobs of the workflow have been computed 768

at least once, (ii) the TTL associated with the workflow 769

expires, or (iii) the Initiator stops the workflow. In this last 770

case, the system broadcasts a DROP_REQUEST message, 771

which forces each node receiving the message to remove 772

the given workflow from its working queues. This mes- 773

sage is then broadcasted until the TTL of the workflow 774

runs out. 775

Workflow and Job Selection: A VFuse node selects the 776

next workflow to compute by choosing a candidate in the 777

Execution queue. The final choice depends on three factors: 778

(i) whether the workflow has at least a job in the status 779

Ready, (ii)whether the workflow has at least one job that has 780

not been selected for execution by another node, and (iii) the 781

associated priority (see next paragraph). In particular, this 782

value is proportional to the amount of reward owned by the 783

Initiator of the workflow. 784

After selecting the workflow, the node chooses a job uni- 785

formly at random among all Ready jobs not present in the 786

Selected Jobs List. This list keeps track of all jobs that will 787

be run in the network. Specifically, each node broadcasts 788

information about the jobs it is about to process with the 789

VOLUME 10, 2022 99003



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

message SELECTED_JOBS. Upon receiving this message,790

each node adds the received job ids in the Selected Jobs791

List, attaching to each of them the time the message arrived792

and a Selection_TTL. When the TTL expires, the job793

ID is removed from the list. The node repeats the whole794

process until the maximum number of concurrent jobs is795

reached.796

Workflow Priority: Users offering their computational797

capabilities to a VFuse network collect VFuse NFTs, which798

are saved into a public blockchain (see Section IV-B5.d).799

The number of NFTs (i.e., reward) owned by the Initiator800

impacts the priority of the requested workflow. This design801

choice translates into granting workflows of users with higher802

rewards a higher probability of being scheduled before the803

workflow submitted by a user with a lower amount of reward.804

In other words, the more a user contributes to computing jobs805

on a VFuse network, the sooner its submitted workflow will806

be completed. To avoid the starvation of workflows requested807

by users with low rewards, we introduced a scaling factor808

based on the waiting time of the workflow, i.e., the time that809

a workflow has been waiting in the Execution queue before810

being selected.811

Hence, the priority associated with each workflow keeps812

into account (i) how much the Initiator of the requested813

workflow has already contributed to the volunteer network814

(i.e., amount of rewards) and (ii) the waiting time of the815

workflow, according to the following rule:816

∀w ∈ Ev : P(w,t) =
R(uw)∑

w∈Ev R(uw)
×

t − tw∑
w∈Ev (t − tw)

,817

where818

• v is a volunteer node;819

• w is a workflow;820

• Ev is the Execution queue of a node v;821

• uw is the user that has submitted the workflow w;822

• R(uw) is the number of NFTs (reward) owned by the user823

uw;824

• t is the current scheduling time, such that t > tw.825

• tw is the timewhen the client v has received the workflow826

w.827

The so-designed priority function balances the contribution828

previously given to the network (in terms of computing capa-829

bilities) by the Initiator with the time they have to attend to830

see their requested workflow completed. If (the Initiators of)831

two different workflows have the same reward, the workflow832

with a higher waiting time will be computed first. Clearly,833

if a user with a low reward submits a workflow and there is834

no competition, then the requested workflow will be imme-835

diately computed.836

Each VFuse node computes the priority of each workflow837

in the status Ready in its Execution queue before the selec-838

tion phase.839

Job Results: A job may terminate because (i) its computa-840

tion naturally ends by producing the desired result(s), (ii) its841

TABLE 5. VFuse local messages.

computation errored, or (iii) its computation time exceeded 842

the maximum running time offered by the volunteer node. 843

Each VFuse node that has run a job informs the entire net- 844

work of the computed result(s) (or obtained error(s)), broad- 845

casting an EXECUTION_RESPONSE message and pinning 846

them on the shared IPFS cluster. When a VFuse node receives 847

the result(s) related to a job it has already computed, it then 848

compares its locally stored result(s) with the one(s) received. 849

If they differ, the node launches a WARNING_RESULT to 850

inform the Initiator that there has been a divergence in the job 851

result(s). This protocol guarantees that each workflow will 852

eventually end (with the expected results) since the same job 853

will not be scheduled again for the same client. Consequently, 854

it allows two or more peers to compute results for the same 855

task if they scheduled the same job concurrently. 856

Execution Backend: Each VFuse node offers its compu- 857

tational capabilities by providing a pool of Web Workers 858

running different computational backends developed using 859

WebAssembly. In more detail, Web Workers are threads run- 860

ning in a private scope that allow the code to be executed 861

in a sandbox. Hence, they ensure that a VFuse client cannot 862

be damaged by any malicious code. The Computing mod- 863

ule automatically runs the Web Worker associated with the 864

specific implementation language and asynchronously com- 865

municates with them via JavaScript promises. Web Workers 866

directly enable this module to build the workflow, locally 867

execute a workflow and run jobs. These operations are piloted 868

using the specific messages detailed in Table 5. It is worth 869

noting that even though VFuse is designed to be executed in 870

a web browser, it can also be run - without any changes - in 871

other computing environments, such as desktop machines or 872

servers running a NodeJS server. 873

c: IDENTITY MODULE 874

The Identity module is responsible for storing users’ personal 875

information within the browser using the Events and Data 876

Component. Specifically, this module creates a new user 877

environment inside the browser cache when the node is ini- 878

tialized. Table 6 lists the environment properties (which users 879

can personalize), specifying the parameters for (i) entering 880

a specific VFuse network, (ii) defining the computing capa- 881

bilities offered to the network, and (iii) tuning the network 882

performance for receiving and sending data. 883

99004 VOLUME 10, 2022



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

TABLE 6. VFuse user profile properties, which can be configured in the
setting panel of the web client application.

d: REWARD MODULE884

The Reward module handles all the utilities concerning the885

rewarding mechanism provided by VFuse, such as the def-886

inition of smart contracts and the integration with IPFS to887

implement the VFuse NFTs.888

The VFuse rewarding strategy is based on the concept of889

artifacts. Every time a node computes a job, it stores its result890

on IPFS, which will assign to it a unique and immutable CID.891

We consider this identifier (and, hence, the result written on892

the IPFS cluster) as an artifact produced by a user’s contri-893

bution to the computation of a workflow. A VFuse peer is894

rewarded with a VFuse NFT per artifact. Specifically, an NFT895

is a smart contract [50] assigning the ownership of a particular896

thing (in our case, a file on IPFS) to a specific user (a VFuse897

node).898

V. EXAMPLE WORKFLOWS899

This section presents four use cases addressed with our sys-900

tem, describing the design and the workflow of each VFuse901

application. Each listing highlights the use of the VFuse902

API, leaving out the implementation details of the specific903

algorithms. Readers interested in the complete version of the904

code can refer to the VFuse GitHub repository.905

A. MOST COMMON WORD IN A TEXT906

Finding the word which occurs the most in a text is a907

variation of the famous word count problem. This class of908

problems is often exploited to demonstrate the benefits of909

distributedMapReduce paradigm, given their embarrassingly910

parallelizable nature.911

1) VFuse WORKFLOW912

The implemented VFuse workflow assigns to each job a913

different portion of the file that returns the number of914

FIGURE 4. Job DAG of the WordCount example.

occurrences for each word encountered (map function). 915

Results are then collected and combined to compute the word 916

with the highest number of occurrences (reduce function). 917

Figure 4 depicts the resulting job DAG. 918

2) IMPLEMENTATION DETAILS 919

The implementation of the most common word in a text2 is 920

shown in Listing 1. 921

The workflow starts retrieving the size of the file using a 922

fetch (Lines 25− 27) to evenly split the text among the jobs 923

(Lines 28−40). Each job runs a map function (Lines 1−18), 924

implementing the core logic of the algorithm. This function 925

receives two parameters in input: the URL of the file and two 926

indices (bytes) limiting the chunk to compute. The map func- 927

tion uses the VFuse API getDataFromURL() to retrieve 928

the associated chunk based on the input indices and computes 929

howmany times each word occurs, avoiding truncated words. 930

Line 41 adds each job to the VFuse workflow and includes 931

it in the group map_group. The reduce function collects 932

the results calculated by these jobs (Line 43), finally com- 933

puting the word with the maximum number of occurrences 934

(Lines 20 − 23). It is worth highlighting how VFuse trans- 935

parently handles the data dependencies between the map and 936

reduce jobs. This mechanism is implemented via job groups; 937

in this example, the function reduce waits for all jobs 938

included in groups startingwith theword corresponding to the 939

regex ‘‘^map_’’. 940

B. ML ALGORITHMS COMPARISON 941

Binary classification is a common task studied in Machine 942

Learning (ML) that aims to classify the instances of a dataset 943

into two groups [51]. Binary classification problems are 944

pretty common, and several models exist to address them. 945

Each model has a different performance depending on the 946

application domain; thus, it may produce optimal results 947

on some data while performing poorly on another. Conse- 948

quently, a crucial task in ML is to identify the best model 949

for a specific problem. In this use case, we compare several 950

binary classifiers available in the Python library scikit-learn.3 951

2https://github.com/luigser/js-vfuse/blob/master/packages/vfuse-
core/src/examples/javascript/wordcountMapReduce_fromUrl.js

3https://scikit-learn.org/

VOLUME 10, 2022 99005



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

LISTING 1. Most common word in a text (JavaScript).

Specifically, this VFuse Python application trains and tests952

five different binary classifiers using the UCI PIMA Indian953

Diabetes dataset to predict whether a person has dia-954

betes or not using the medical attributes provided. The955

algorithms used are Linear Discriminant Analysis (LDA),956

Decision tree classifier (specifically, CART), K-Neighbors957

Classifier (KNN), Naive Bayes (NB), and Support Vector958

Machine (SVM). All algorithms were run using their default959

parameter configurations.960

1) VFuse WORKFLOW961

The implemented VFuse application assigns a different962

binary classifier to as many jobs. Each job receives the train-963

ing and testing data sets and returns the model’s accuracy.964

Each algorithm is evaluated using 10-fold cross-validation965

using the same random seed to ensure consistency when966

splitting the training data.967

2) IMPLEMENTATION DETAILS968

The implementation of the comparison of ML models4 is969

shown in Listing 2.970

4https://github.com/luigser/js-vfuse/blob/master/packages/vfuse-
core/src/examples/python/MLComparison.py

LISTING 2. Comparison of different ML algorithms (Python).

First, the workflow loads the required libraries (Lines 1−3) 971

with the standard Python syntax. Then, as in the previous 972

use case, the workflow reads the data from an URL and 973

returns a string (Line 5). In lines 22 − 25, the execution 974

of each classification model is delegated to a different job 975

(whose behavior is described by the function eval(), lines 976

10 − 15). The workflow then waits for the termination of 977

all jobs and gets the computed data as input to compare the 978

performance of all algorithms via the function compare() 979

(Lines 27 and 10 − 15). The data transfer between the two 980

computing functions - i.e., eval() and compare() - is 981

automatically provided by VFuse. 982

C. PI ESTIMATION USING MONTE CARLO 983

Monte Carlo methods are a broad class of computational 984

algorithms that rely on repeated random sampling to obtain 985

numerical results. One of the Monte Carlo algorithm’s pri- 986

mary applications is Pi’s estimation. Specifically, this method 987

considers a square space with a circle inscribed and generates 988

several random points within this space. The value obtained 989

by dividing the total number of points by the number of 990

points within the circle represents an approximation of Pi. 991

The random nature of the Monte Carlo algorithm implies 992

that the more the points generated, the more accurate the 993

result is. Adopting a distributed approach would allow the 994

generation of hundreds of thousands of points, resulting in 995

a more accurate value. 996

1) VFuse WORKFLOW 997

The workflow implemented by this VFuse application is 998

based on a Repeating job, which never reaches the status 999

99006 VOLUME 10, 2022



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

LISTING 3. Estimating the value of Pi using Monte Carlo (JavaScript).

Terminated (see Section IV-B5.a). Every time a node1000

publishes new random points, the application reevaluates the1001

estimation of Pi.1002

2) IMPLEMENTATION DETAILS1003

The implementation of the Monte Carlo estimation of Pi5 is1004

shown in Listing 3. The application sets as a repeating job1005

the function getPoints() (lines 9 − 10), that generates1006

random points within a given interval (lines 1 − 4). In the1007

sameway, the application assigns the functionestimatePi1008

(lines 5−8) to a job (line 11) and declares the job as repeating1009

(line 12).1010

D. SEQUENCE ALIGNMENT WITH SMITH-WATERMAN1011

One of the most common procedures in molecular biology is1012

searching for similarities in protein and DNA sequences [52].1013

The established method to perform sequence alignment is the1014

Smith-Waterman algorithm, based on the dynamic program-1015

ming approach developed by Temple F. Smith and Michael1016

S. Waterman. The algorithm computes optimal local align-1017

ments of two sequences identifying the two sub-sequences1018

with maximal similarity scoring. The sequence comparison1019

is made using the segments of all possible lengths instead1020

of the entire sequence. The Smith–Waterman algorithm first1021

determines the scoring matrix, then performs a trace-back1022

measure to generate the segments with the highest similarity1023

score using the previous scoring matrix. Although effective,1024

this algorithm is costly in terms of computational cost since1025

it requires a number of operations proportional to the prod-1026

uct of the length of the sequences. Therefore, searching for1027

similarities in large data sets requires a huge amount of time.1028

The use of distributed computing in sequence alignment can1029

drastically reduce the time required: the data set tomatchwith1030

a sequence can be split among different workers to find the1031

most similar one.1032

1) VFuse WORKFLOW1033

The VFuse workflow assigns a portion of the sequence data1034

set to each job. Upon receiving the data, each job computes1035

the similarity between the string to match and the sequences1036

included in its assigned data chunk and returns the sequence1037

5https://github.com/luigser/js-vfuse/blob/master/packages/vfuse-
core/src/examples/javascript/PiEstimationEndless.js

LISTING 4. DNA Matching using Smith-Waterman (Python).

with the highest similarity score. The workflow waits for the 1038

results computed by all jobs and compares their outcomes to 1039

find the best matching sequence. 1040

2) IMPLEMENTATION DETAILS 1041

The implementation of the standard Smith-Waterman for 1042

sequence alignment6 is shown in Listing 4. 1043

First, the workflow loads the data set via the function 1044

getDataFromURL() (line 23). Then, it splits the data set 1045

and assigns each chunks to a different job (lines 28 − 33), 1046

which computes the Smith-Waterman algorithm on its 1047

input data (function sw(), lines 15 − 17). The functions 1048

similarity() (lines 2 − 5), fill_matrix() (lines 1049

7 − 9), and trace_back() (lines 11 − 13) are three 1050

auxiliary functions used by the matching algorithm. Finally, 1051

the workflow waits for the termination of all jobs and gets 1052

the computed data as input to find the sequence with the 1053

maximum alignment score via the function compare() 1054

(Lines 19− 21). 1055

VI. DISCUSSION AND LIMITATIONS 1056

We performed a preliminary evaluation of the VFuse proto- 1057

type, experimenting with the Most Common Word example 1058

described in the previous section. Specifically, we bench- 1059

marked and analyzed the running time of computing the 1060

most frequent word among 64 equally-sized files for a total 1061

6https://github.com/luigser/js-vfuse/blob/master/packages/vfuse-
core/src/examples/python/SmithAndWaterman.py

VOLUME 10, 2022 99007



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

FIGURE 5. Running time and relative speedup of the P2P BBVC VFuse
platform compared against the centralized BBVC system Pando.

of 4GB. We further exploited this use case to compare the1062

performance of VFuse against the centralized BBVC system1063

Pando [34]. We used the pre-configured Docker Image on the1064

Pando official repository7 and adapted the example according1065

to its execution logic. We ran the experiment on a cluster of1066

Windows 10 Pro desktop machines equipped with an Intel(R)1067

Core(TM) i7-8700T CPU, 16GB RAM, 512GB SSD, and the1068

Google Chrome browser. We employed the default settings1069

for VFuse, configured to utilize four threads per node, while1070

we chose an equivalent device configuration for Pando. It is1071

worth stressing that, in this evaluation, we only considered1072

Pando as it was the only framework providing a ready-to-run1073

Docker container. Unfortunately, all other publicly available1074

BBVC repositories required outdated dependencies, which1075

made the systems too complex to run.1076

Figure 5 depicts the running time (left y-axis, lines) and1077

the relative speedup (right y-axis, bars) at the variation of1078

the number of volunteer nodes from 1 to 8. As shown in the1079

plot, both systems exhibit comparable scalability. In particu-1080

lar, VFuse provides better performance when the number of1081

nodes is low, while the gap between the performance of the1082

two systems decreases when the number of nodes increases.1083

Another critical point worth mentioning is related to pos-1084

sible privacy and security issues that may arise in the context1085

of BBVC systems. Specifically, at this stage, the proposed1086

architecture does not consider possible leaks of data privacy1087

since data are publicly available on the blockchain and IPFS.1088

Nonetheless, this architectural choice does not harm the1089

system’s usability as computation using private data is not1090

a frequent use case in the context of volunteer computing.1091

Currently, VFuse relies on a standard approach in VC-based1092

systems to ensure that the required computation and its out-1093

come have not been corrupted in the process. As described1094

in the Paragraph Job results of Section IV-B5.b, each job’s1095

result is assessed by every node involved in the computation1096

of the same job. Still, blockchain technology enables the1097

implementation of more complex security mechanisms.1098

7https://github.com/elavoie/pando-computing

VII. CONCLUSION AND FUTURE WORK 1099

The paradigm of (BB)VC gained attention over the last years 1100

as a potential tool for allowing researchers and companies to 1101

access the enormous computing capabilities over the Internet 1102

for solving high-demand computational problems. 1103

In this work, we proposed VFuse, a novel BBVC archi- 1104

tecture that offers (i) a ready-to-access network through web 1105

browsers and (ii) amulti-language programming environment 1106

thanks to WebAssembly, (iii) stimulates users’ participation 1107

by providing a secure and transparent rewarding mechanism 1108

based on Blockchain technology, and (iv) specifies an innova- 1109

tive definition of users’ participation via NFTs that guarantee 1110

the user ownership of computing results. We demonstrated 1111

the advantages of VFuse and its added value by comparing 1112

our platform with the most common BBVC and discussing 1113

four example applications. A prototype of VFuse and the 1114

presented examples are freely available on GitHub. 1115

Currently, we are working on developing the rewarding 1116

mechanism implemented with the Ethereum blockchain and 1117

IPFS. In future work, we plan to perform systematic experi- 1118

ments to assess the performance gain of our platform against 1119

other well-known systems. We also aim to introduce work- 1120

flows with an associated deadline, whose importance could 1121

be reflected in the workflow priority and the rewarding strat- 1122

egy. Another interesting future directions is integratingVFuse 1123

into standard web pages to allow visitors of websites, such 1124

as online news and game sites, blogs, and social networks, 1125

to participate in a VFuse volunteer network by visiting some 1126

dedicated pages offered by the owner of the service. Future 1127

research should also consider designing a more sophisti- 1128

cated scheduling algorithm to allow a fairer job execution, 1129

includingmore advanced security mechanisms, extending the 1130

workflow definition by adding more programming constructs 1131

for enriching the programming model, and developing other 1132

programming backends supported by WebAssembly. 1133

REFERENCES 1134

[1] Gartner. Gartner Says Worldwide PC Shipments Grew 1% in Third 1135

Quarter of 2021. Accessed: Nov. 11, 2021. [Online]. Available: 1136

https://www.gartner.com/en/newsroom/press-releases/2021-10-11- 1137

gartner-says-worldwide-pc-shipments-grew-1-percent-in-third-quarter- 1138

of-2021 1139

[2] Statista. Personal Computer (PC) Unit Shipments Worldwide From 1140

2009 to 2022, by Quarter. Accessed: Dec. 4, 2022. [Online]. Available: 1141

https://www.statista.com/statistics/264467/global-pc-shipments-since- 1142

1st-quarter-2009/ 1143

[3] Gartner. Gartner Says Global Smartphone Sales Grew 6% in 2021. 1144

Accessed: Feb. 2, 2022. [Online]. Available: https://www.gartner. 1145

com/en/newsroom/press-releases/2022-03-01-4q21-smartphone-market- 1146

share 1147

[4] Statista. Number of Smartphones Sold to end Users Worldwide 1148

From 2007 to 2021. Accessed: Mar. 14, 2022. [Online]. Available: 1149

https://www.statista.com/statistics/263437/global-smartphone-sales-to- 1150

end-users-since-2007/ 1151

[5] DatarePortal.Digital Around theWorld. Accessed: Apr. 22, 2022. [Online]. 1152

Available: https://datareportal.com/global-digital-overview 1153

[6] Still Waiting for Exascale: Japan’S Fugaku Outperforms all Com- 1154

petition Once Again. Accessed: Apr. 22, 2022. [Online]. Available: 1155

https://www.top500.org/ 1156

[7] DatarePortal. Digital 2019: Global Digital Overview. Accessed: 1157

Apr. 29, 2022. [Online]. Available: https://datareportal.com/reports/ 1158

digital-2019-global-digital-overview 1159

99008 VOLUME 10, 2022



A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

[8] O. Nov, D. Anderson, and O. Arazy, ‘‘Volunteer computing: A model1160

of the factors determining contribution to community-based scientific1161

research,’’ in Proc. 19th Int. Conf. World Wide Web (WWW). New York,1162

NY, USA: Association for Computing Machinery, 2010, pp. 741–750, doi:1163

10.1145/1772690.1772766.1164

[9] T. Fabisiak and A. Danilecki, ‘‘Browser-based harnessing of volun-1165

tary computational power,’’ Found. Comput. Decis. Sci., vol. 42, no. 1,1166

pp. 3–42, 2017.1167

[10] J. A.Morell, A. Camero, and E. Alba, ‘‘Jsdoop and tensorflow.js: Volunteer1168

distributed web browser-based neural network training,’’ IEEE Access,1169

vol. 7, pp. 158671–158684, 2019.1170

[11] MIT Digital Currency Initiative and the Center for Civic Media.1171

The Decentralized Web. Accessed: May 26, 2022. [Online]. Available:1172

https://dci.mit.edu/decentralizedweb1173

[12] A. Antelmi, G. D’Ambrosio, A. Petta, L. Serra, and C. Spagnuolo.1174

vFuse Public Repository. Accessed: Apr. 29, 2022. [Online]. Available:1175

https://github.com/luigser/js-vfuse.git1176

[13] T. M. Mengistu and D. Che, ‘‘Survey and taxonomy of volunteer comput-1177

ing,’’ ACM Comput. Surv., vol. 52, no. 3, pp. 1–35, Jul. 2019.1178

[14] Great Internet Mersenne Prime Search—Gimps. Accessed: Apr. 22, 2022.1179

[Online]. Available: https://www.mersenne.org/1180

[15] Distributed.net. Accessed: Apr. 22, 2022. [Online]. Available:1181

https://www.distributed.net/1182

[16] Seti@home. Accessed: Apr. 22, 2022. [Online]. Available:1183

https://setiathome.berkeley.edu/1184

[17] Folding@home. Accessed: Apr. 22, 2022. [Online]. Available:1185

https://foldingathome.org/1186

[18] D. P. Anderson, ‘‘BOINC: A system for public-resource computing and1187

storage,’’ in Proc. 5th IEEE/ACM Int. Workshop Grid Comput., Nov. 2004,1188

pp. 4–10.1189

[19] G. Fedak, C. Germain, V. Neri, and F. Cappello, ‘‘XtremWeb: A generic1190

global computing system,’’ in Proc. 1st IEEE/ACM Int. Symp. Cluster1191

Comput. Grid (CCGrid), 2001, pp. 582–587.1192

[20] M. Kuhara, N. Amano, K.Watanabe, Y. Nogami, andM. Fukushi, ‘‘A peer-1193

to-peer communication function among web browsers for web-based1194

volunteer computing,’’ in Proc. 14th Int. Symp. Commun. Inf. Technol.1195

(ISCIT), 2014, pp. 383–387.1196

[21] W. Li, W. Guo, and E. Franzinelli, ‘‘Achieving dynamic workload bal-1197

ancing for P2P volunteer computing,’’ in Proc. 44th Int. Conf. Parallel1198

Process. Workshops, Sep. 2015, pp. 240–249.1199

[22] I. Al Ridhawi, M. Aloqaily, and Y. Jararweh, ‘‘An incentive-based mech-1200

anism for volunteer computing using blockchain,’’ ACM Trans. Internet1201

Technol., vol. 21, no. 4, pp. 1–22, Jul. 2021.1202

[23] R. Lamba, V. Jain, and D. Saini, ‘‘Calculating the proof of work using1203

volunteer computing,’’ in Proc. 3rd Int. Conf. Comput. Inform. Netw.1204

Singapore: Springer, 2021, pp. 427–437.1205

[24] D. Lázaro, J. M. Marquès, and X. Vilajosana, ‘‘Flexible resource discovery1206

for decentralized P2P and volunteer computing systems,’’ in Proc. 19th1207

IEEE Int. Workshops Enabling Technol., Infrastruct. Collaborative Enter-1208

prises, Jun. 2010, pp. 235–240.1209

[25] B. Shan, ‘‘A design of volunteer computing system based on blockchain,’’1210

in Proc. IEEE 13th Int. Conf. Comput. Res. Develop. (ICCRD), Jan. 2021,1211

pp. 125–129.1212

[26] Y. Kim and J. Park, ‘‘Hybrid decentralized pbft blockchain framework for1213

openstack message queue,’’ Hum.-Centric Comput. Inf. Sci., vol. 10, no. 1,1214

p. 31, 2020.1215

[27] The Golem Project. Accessed: Apr. 22, 2022. [Online]. Available:1216

https://www.golem.network/1217

[28] Boid, White Paper. Accessed: Apr. 22, 2022. [Online]. Available:1218

https://www.boid.com/statics/Boid-WhitePaper-v2.pdf1219

[29] I. Charalampidis, D. Berzano, J. Blomer, P. Buncic, G. Ganis, R. Meusel,1220

and B. Segal, ‘‘CernVM webAPI—Controlling virtual machines from the1221

web,’’ J. Phys., Conf. Ser., vol. 664, no. 2, Dec. 2015, Art. no. 022010, doi:1222

10.1088/1742-6596/664/2/022010.1223

[30] C. Cusack, C. Martens, and P. Mutreja, ‘‘Volunteer computing using casual1224

games,’’ in Proc. Future Play Int. Conf. Future Game Design Technol.,1225

2006, pp. 1–8.1226

[31] Y. Pan, J. White, Y. Sun, and J. Gray, ‘‘Gray computing: An analysis of1227

computing with background Javascript tasks,’’ in Proc. IEEE/ACM 37th1228

IEEE Int. Conf. Softw. Eng., vol. 1, May 2015, pp. 167–177.1229

[32] H. Matsuo, S. Matsumoto, Y. Higo, and S. Kusumoto, ‘‘Madoop: Improv-1230

ing browser-based volunteer computing based on modern web technolo-1231

gies,’’ in Proc. IEEE 26th Int. Conf. Softw. Anal., Evol. Reeng. (SANER),1232

Feb. 2019, pp. 634–638.1233

[33] D. Dias and L. Veiga, ‘‘Browsercloud.Js: A distributed computing fabric 1234

powered by a P2P overlay network on top of the web platform,’’ in Proc. 1235

33rd Annu. ACM Symp. Appl. Comput., Apr. 2018, pp. 2175–2184. 1236

[34] E. Lavoie, L. Hendren, F. Desprez, andM. Correia, ‘‘Pando,’’ in Proc. 20th 1237

Int. Middleware Conf., 2019, pp. 96–109. 1238

[35] E. Lavoie, L. Hendren, F. Desprez, and M. Correia, ‘‘GeNet: A quickly 1239

scalable fat-tree overlay for personal volunteer computing usingwebRTC,’’ 1240

in Proc. IEEE 13th Int. Conf. Self-Adapt. Self-Organizing Syst. (SASO), 1241

Jun. 2019, pp. 117–126. 1242

[36] K. S. Sagar Bharadwaj, S. Dharanikota, A. Honawad, and 1243

K. Chandrasekaran, ‘‘Collabchain: Blockchain-backed trustless web- 1244

based volunteer computing platform,’’ in Proc. 18th Int. Conf. Comput. 1245

Inf. Syst. Ind. Manag. (CISIM), Belgrade, Serbia, Sep. 2019, pp. 509–522. 1246

[37] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, 1247

L. Wagner, A. Zakai, and J. Bastien, ‘‘Bringing the web up to speed with 1248

webassembly,’’ inProc. 38th ACMSIGPLANConf. Program. Lang. Design 1249

Implement. New York, NY, USA: Association for Computing Machinery, 1250

2017, pp. 185–200. 1251

[38] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, 1252

C. Goble, M. Livny, L. Moreau, and J. Myers, ‘‘Examining the challenges 1253

of scientific workflows,’’ Computer, vol. 40, no. 12, pp. 24–32, 2007. 1254

[39] Pyodide. Accessed: Apr. 22, 2022. [Online]. Available: 1255

https://pyodide.org/ 1256

[40] Emscripten. Accessed: Apr. 22, 2022. [Online]. Available: 1257

https://emscripten.org/ 1258

[41] Libp2P Project. Accessed: Apr. 22, 2022. [Online]. Available: 1259

https://libp2p.io/ 1260

[42] P. Maymounkov and D. Mazières, ‘‘Kademlia: A peer-to-peer information 1261

system based on the XOR metric,’’ in Peer-to-Peer Systems (Lecture 1262

Notes in Computer Science), vol. 2429. Berlin, Germany: Springer, 2002, 1263

pp. 53–65. 1264

[43] S. L. Garfinkel, ‘‘Public key cryptography,’’ Computer, vol. 29, no. 6, 1265

pp. 101–104, Jun. 1996. 1266

[44] IPFS. Accessed: Apr. 22, 2022. [Online]. Available: https://ipfs.io/ 1267

[45] Ethereum. Accessed: Apr. 22, 2022. [Online]. Available: 1268

https://ethereum.org/ 1269

[46] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras, ‘‘Gos- 1270

sipSub: Attack-resilient message propagation in the filecoin and ETH2.0 1271

networks,’’ 2020, arXiv:2007.02754. 1272

[47] J. Leitao, J. Pereira, and L. Rodrigues, ‘‘HyParView: A membership pro- 1273

tocol for reliable gossip-based broadcast,’’ in Proc. 37th Annu. IEEE/IFIP 1274

Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2007, pp. 419–429. 1275

[48] J. Ziv and A. Lempel, ‘‘Compression of individual sequences via variable- 1276

rate coding,’’ IEEE Trans. Inf. Theory, vol. IT-24, no. 5, pp. 530–536, 1277

Sep. 1978. 1278

[49] J. Ziv and A. Lempel, ‘‘A universal algorithm for sequential data compres- 1279

sion,’’ IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343, May 1977. 1280

[50] I. Team. Mint an NFT With IPFS. Accessed: Apr. 22, 2022. [Online]. 1281

Available: https://docs.ipfs.io/how-to/mint-nfts-with-ipfs/ 1282

[51] Z. Ligang and K. K. Lai, ‘‘Benchmarking binary classification models 1283

on data sets with different degrees of imbalance,’’ Frontiers Comput. Sci. 1284

China, vol. 3, pp. 205–216, Jun. 2009. 1285

[52] S. A. Manavski and G. Valle, ‘‘Cuda compatible GPU cards as efficient 1286

hardware accelerators for smith-waterman sequence alignment,’’ BMC 1287

Bioinf., vol. 9, no. 2, p. S10, 2008. 1288

ALESSIA ANTELMI graduated with full marks in 1289

computer science at the Università degli Studi di 1290

Salerno, Italy, in 2018, under the supervision of 1291

Prof. Vittorio Scarano. Before starting her Ph.D. 1292

studies in November 2018, she joined the Unit 1293

for Social Semantics, Data Science Institute, Gal- 1294

way, Ireland, lead by Prof. John Breslin, under 1295

the Erasmus+ Traineeship Grant. She currently 1296

holds a postdoctoral position with the ISISLab 1297

laboratory, Università degli Studi di Salerno, col- 1298

laborating with Prof. Vittorio Scarano, Prof. Gennaro Cordasco, and Dr. 1299

Carmine Spagnuolo. Her research interests include the fields related to 1300

complex networks, especially hypergraphs, and agent-based models. 1301

VOLUME 10, 2022 99009

http://dx.doi.org/10.1145/1772690.1772766
http://dx.doi.org/10.1088/1742-6596/664/2/022010


A. Antelmi et al.: VC Architecture for Computational Workflows on Decentralized Web

GIUSEPPE D’AMBROSIO graduated with full1302

marks in computer science at the Università1303

degli Studi di Salerno, Italy, in 2020, under the1304

supervision of Prof. Vittorio Scarano. He is cur-1305

rently pursuing the Ph.D. degree with the ISISLab1306

laboratory, Università degli Studi di Salerno,1307

supervised by Prof. V. Scarano and Dr. Carmine1308

Spagnuolo. His research interests include the reli-1309

ability and scalability of scientific computing1310

applications exploiting advanced computational1311

paradigms, including cloud computing, parallel, and distributed computing.1312

ANDREA PETTA is currently pursuing the Ph.D.1313

degree in computer science. His Ph.D. thesis1314

concerns distributed systems and volunteer cloud1315

computing. His goal is to build a public, reli-1316

able, cost-effective, secure, efficient, green, and1317

privacy-aware volunteer cloud platform for sci-1318

entific and general-purpose cloud computing.1319

He is also interested in web technologies and1320

computer-supported cooperative work.1321

LUIGI SERRA is currently pursuing the Ph.D. 1322

degree in computer science with the Diparti- 1323

mento di Informatica, University of Salerno, Italy. 1324

He is mainly interested in topics, such as par- 1325

allel computing, peer-to-peer architectures, and 1326

distributed volunteer systems. He has worked on 1327

web-based collaborative systems, and he has been 1328

with KAUST, Saudi Arabia, to join the Prof. Cav- 1329

allo teamworking on topics, such as computational 1330

chemistry and bioinformatics. 1331

CARMINE SPAGNUOLO received the master’s 1332

degree (cum laude) in computer science from the 1333

Università degli Studi di Salerno, in 2013, and 1334

the Ph.D. degree in computer science from the 1335

Università degli Studi di Salerno, in 2017, under 1336

the supervision of Prof. Vittorio Scarano and Prof. 1337

Gennaro Cordasco. In 2012, he got a grant from 1338

the Office of Naval Research (ONR) for visiting 1339

the George Mason University (GMU). In May 1340

2017 and from October to December 2017, he was 1341

a Visiting Student with the University of Chicago and the Argonne National 1342

Laboratory, under the supervision of Dott. Jonathan Ozik and exploiting a 1343

grant from ANL. In December 2019, he was a Visiting Researcher with 1344

George Mason University (GMU) under the supervision of Prof. Sean Luke. 1345

He is currently a Postdoctoral Researcher with the Università degli Studi di 1346

Salerno, where he is also a Senior Member of the ISISLab laboratory. He is 1347

the coauthor of more than 30 papers in international refereed journals and 1348

conferences. His research interests include parallel algorithms, distributed 1349

systems, graph theory, social networks, and agent-based simulations. 1350

1351

99010 VOLUME 10, 2022


