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Aggressive and cannibalistic female spiders can impose strong selection on
male mating and fertilization strategies. Furthermore, the distinctive repro-
ductive morphology of spiders is predicted to influence the outcome of
sperm competition. Polyandry is common in spiders, leading to defensive
male strategies that include guarding, plugging and self-sacrifice. Paternity
patterns are highly variable and unlikely to be determined solely by
mating order, but rather by relative copulation duration, deployment of
plugs and cryptic female choice. The ability to strategically allocate sperm
is limited, either by the need to refill pedipalps periodically or owing to per-
manent sperm depletion after mating. Further insights now rely on
unravelling several proximate mechanisms such as the process of sperm
activation and the role of seminal fluids.

This article is part of the theme issue ‘Fifty years of sperm competition’.
1. Introduction
Since its conception marked by Geoff Parker’s seminal paper on sperm compe-
tition [1], the fiftieth anniversary of which we honour with this review, sperm
competition research has identified morphological, behavioural and ejaculate
traits that convey selective advantages to males. It has, however, become increas-
ingly clear that both sexes shape fertilization outcomes, with selection acting on
female morphology or behaviour that biases fertilization towards preferred or
compatible males. While cryptic female choice is often addressed separately or
in opposition to sperm competition, recent research considers the reproductive
interests of both sexes for a more comprehensive view of sperm competition.

Here, we argue that in spiders (48 692 described species; World Spider
Catalogue [2]) the female role is central to the outcome of sperm competition.
This may be why spiders have been key in the development of cryptic female
choice in the first place [3]. While researchers have been charmed by some of
their specialized behaviours, such as the ability to build silkwebs, their distinctive
reproductive biology poses a particularly costly challenge for males. Females can
be aggressive, predatory, cannibalistic and often substantially larger, imposing
strong selection on male mating and fertilization modes. Spider reproductive
morphology, most importantly their paired genitalia, are advantageous for the
study of post-mating selection as they afford the possibility to experimentally
manipulatewhichmale inseminateswhich spermatheca [4]. The presence of inde-
pendent sperm storage sites, however, challenges general theoretical predictions
because sperm from different males may not overlap spatially.

In this review, we provide an overview of post-copulatory sexual selection
mechanisms in spiders with a focus on sperm competition. We first describe
the reproductive biology of spiders, then we discuss female mating rates and
male adaptations to competitive fertilization, before describing fertilization out-
comes in spiders. We provide an overview of how copulation duration relates to
sperm transfer and discuss strategic sperm allocation when sperm is limited.
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Figure 1. Schematic representation of the entelegyne and haplogyne female genital systems from Uhl et al. [5]. Arrows indicate sperm entering the spermathecae
(grey) for storage and exiting for fertilizing the eggs (black); Cd, copulatory duct; Go, genital opening; Sp, spermathecae; Ue, uterus externus. Reprint with
permission from Springer Nature.
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2. Spider fertilization: an overview
Male spiders possess paired secondary sperm transfer organs
(pedipalps) that are not connected to the testes. Conse-
quently, prior to mating, males have to charge their
pedipalps with sperm. During sperm induction, males com-
monly build a small sperm web, release sperm from their
genital opening onto it and dip their pedipalps into the dro-
plet to uptake sperm. Sperm are then transferred to the
female sperm storage organs (the spermathecae) through
pedipalp insertions into the female copulatory openings.
The female genital system can be categorized crudely into
two types (figure 1). The entelegyne spermathecal type con-
sists of two bilaterally symmetrical copulatory openings,
each leading to a distinct sperm storage organ through an
insemination duct. From each spermatheca, a fertilization
duct leads to the oviduct where fertilization occurs. Fertilized
eggs are laid through an oviposition opening that is separate
from the copulatory opening. Spiders with a haplogyne sper-
mathecal type possess a single opening that functions as a
copulatory and oviposition opening and leads directly to
the oviduct (uterus externus). Pouches, paired or multiple
sperm storage organs, are connected to the oviduct and the
eggs released by the ovary are fertilized in the oviduct by
sperm from one of the spermathecae. In all spider species,
spermare encapsulated in the testes andarrive at the spermathe-
cae in this inactive form. In the spermathecae, sperm are
activated before oviposition, turning into motile sperm [6,7].

These features articulate important differences between
spiders and other arthropods, and warrant special consider-
ation within the current sperm competition paradigm. For
instance, paired sperm storage organs linked to separate
copulatory ducts in entelegyne spermathecal types implies
that sperm of different males may not necessarily mix in sto-
rage unless the same copulatory opening is used by multiple
males. Fertilization outcomes may therefore differ dramati-
cally based on whether sperm from the storage site is
activated and released differentially, with females potentially
playing an active role in the decapsulation and activation
of sperm (see references in [6]). Another important feature
is the indirect mode of insemination that separates the
amount of sperm available at copulation from the production
site. Thus, the insemination ability of a male depends not
only on the amount of sperm produced but also on the
amount of sperm stored in its pedipalps. Moreover, the fre-
quency and timing of sperm induction into the pedipalps,
which varies across species, may have implications for male
strategic sperm allocation and other reproductive decisions
as described below.
3. Female multiple mating (polyandry)
Polyandry, which sets the stage for sperm competition, is tax-
onomically widespread [8], particularly in arthropods, for
which monandry, mating with just one male, is the exception
[9] and polyandry is probably the ancestral state [10]. Females
that mate multiply are expected to collect direct and/or indir-
ect benefits that exceed the costs of copulations beyond those
needed to fertilize all eggs [9,11,12]. Spiders are no exception.
Polyandrous females may gain indirect genetic benefits for
their offspring (e.g. higher growth rates and offspring size
[13]) via genetic bet-hedging (Linyphia litigiosa; [14,15]),
inbreeding avoidance (Oedothorax apicatus; [16]) or by crypti-
cally favouring sperm of unrelated partners (Argiope lobata;
[17]). Alternatively, they may derive direct fecundity benefits
such as increased egg-laying (Pholcus phalangioides; [13]), by
either reducing the costs of rejections and/or foraging inter-
ference from males (Li. litigiosa; [18]). Resource and genetic
benefits can also operate in concert. In the nuptial feeding
spider Pisaura mirabilis, for instance, food donations from
multiple mating partners lead to faster oviposition and mul-
tiple male ejaculates lead to higher hatching success [19].
Finally, polyandry may not necessarily be adaptive and
females may mate multiply owing to sexual conflict, with
males manipulating female re-mating behaviour (e.g. Stego-
dyphus lineatus [20,21]).

Accurate estimates of female mating rates not only ease
interpretations on the adaptive value of polyandry, but
address the evolutionary consequences of sperm competition,
with implications for male mating strategies and patterns of
sperm use. Unfortunately, the paucity of data available for
spiders does not allow any general patterns to be drawn. In
fact, only a handful of studies have investigated female
mating frequencies in natural populations using laborious
field observations of marked animals [22–25] or paternity
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assessment from cocoons using allozyme [26–30] or microsa-
tellite [31] markers. The latter might provide an
underestimate of the degree of polyandry, given that females
can employ post-copulatory choice to use sperm from
particular males, reducing the number of sires.

Evidence for polyandry comes instead from experimental
laboratory studies using mostly double matings. Double
mating trials in quick succession might not represent natural
mating frequencies or capture realistic re-mating intervals,
both of which might strongly affect female receptivity and
sperm dynamics. Indeed, experimental studies often reveal
that mated females are particularly reluctant to re-mate
(examples across families reviewed in [32]). They are aggres-
sive [33] and unattractive to males [34–36]. While a decrease
in female receptivity following mating could reflect increased
choosiness in mated females, or male manipulations such as
mechanical or physiological effects caused by sperm and/or
seminal fluids (e.g. Schizocosa malitiosa [37]), decreased recep-
tivity may not necessarily rule out female polyandry. Females
may resume sexual receptivity at later stages, even after egg-
laying [38]. Australian redback spiders (Latrodectus hasselti),
for example, cease advertising by modifying the chemical
composition of their webs immediately after mating, but
resume pheromone production months later, after breeding
[39]. If this is common across species, re-mating rates are likely
to be underestimated. Monandry is seldomly female-driven
[40,41], but results from large travelling costs formate-searching
males and female-biased sex ratios [23,40,42,43], or is largely
under male control, as discussed below.
4. Paternity protection and fertilization outcome
Spiders offer a spectacular array of male adaptations that
protect paternity and exclude rivals [44,45], suggesting a
high risk of sperm competition. Behavioural adaptations
include mate guarding of the female against rivals either
before or after copulation [33,46–51]. Cohabiting males
respond agonistically to other males that enter the females’
web, with aggression levels depending on male future repro-
ductive prospects [52] or on the degree of paternity certainty
[53,54]. Web manipulation (reducing the female’s web, wrap-
ping it up in their own silk and sometimes discarding it) is
also common. This behaviour may reduce female attractive-
ness through reduced pheromone dissemination, or release
male pheromones that deter other males and decrease
female receptivity [55–57]. A rather extreme paternity protec-
tion strategy evolved independently in Larinia jeskovi and
Cyclosa argentoalba. Here, males remove a female genital
structure required for genital coupling [58–60], rendering
re-mating impossible even though females remain receptive
and attract males.

The males of many species defend their paternity by plug-
ging the female genitalia [5]. Mating plugs may consist of
amorphous masses visible on the female genital openings.
These may not necessarily be male-derived however; both
mating partners may jointly produce the plug [61]. Plugs
can be extremely durable and last until oviposition [62], or
can be removed partly or entirely by subsequent males,
suggesting that female control and male quality affect plug
efficacy [63,64]. Although the production of amorphous
plugs can be costly [61], it does not prevent males from
mating with several females [65]. However, mating plugs
are formed from broken male genitalia left inside the
female genital opening, which may come at the expense of
the male’s future reproduction. Depending on the species,
either the entire pedipalp or the tip of the intromittent
organ are detached [66], rendering the pedipalp dysfunc-
tional after a single use [5]. One-shot genitalia that limit
males to a maximum of two copulations are generally associ-
ated with a monogynous mating system, a male-biased
sex ratio and extreme sexual dimorphism that have evolved
several times independently in spiders [67–69]. Under con-
ditions when more males than females mate, monogynous
(or rarely bigynous) males that succeed in monopolizing
paternity with a single female will gain above-average
paternity [70]. Indeed, genital mating plugs can reduce re-
mating probability of females considerably [5,71–73]. In
some species sterile males survive and guard the female, in
others they die during copulating with or without female
intervention [66,74,75].

One of the most frequent adaptations to enhance
fertilization success is transferring high numbers of sperm
(e.g. [76,77]). If ejaculates differ in size, fertilization may
become a function of the relative number of sperm transfer-
red by each male, similar to a fair raffle [78]. Accordingly,
P2 (the proportion of offspring sired by the second male)
often relates to the relative copulation duration of two or
more males (e.g. Latrodectus; [79], Argiope bruennichi; [80];
Pardosa agrestis [81]).

Ejaculate characteristics may interact with other impor-
tant processes, such as storage modalities (e.g. stratification,
displacement, sperm loss) to determine paternity outcomes.
Mating order is often associated with skewed paternity in
other invertebrates [76], with fertilizations biased towards
the first or last male to mate. An early attempt to explain pat-
terns of sperm precedence in spiders relied exclusively on
female reproductive anatomy, suggesting the two separate
ducts (one for insemination and one for fertilization) of ente-
legynes favours first-male sperm priority, in a first-in first-out
fashion, and the single duct of haplogynes favours last-male
sperm priority (last-in-first-out) [82]. Despite abundant
empirical tests measuring P2 in double matings (electronic
supplementary material, table S1), this hypothesis has been
largely confuted. Spider spermathecal morphology is far
more diverse [83] and the considerable variation in P2
reported in spiders (values range from 0% to 100%) argues
against rigid first- or last-male priority patterns.

Strict first-male precedence can occur when sperm
becomes a physical impediment for additional sperm to
enter the storage organ or by plugging the female genital
opening [5]. However, this pattern may vary with the effec-
tiveness of the mating plug [84,85]. Pronounced last-male
precedence can occur owing to sperm removal as in haplo-
gyne pholcids (Ph. phalangioides and Holocnemus pluchei) in
which males use pedipalp movements to reach the sperm sto-
rage site with shovel-like structures that seem to remove rival
sperm [86,87].

Finally, female decisions during mating are pivotal for
determining fertilization outcomes and interact inextricably
with the processes described above. Females may for instance
delay sexual cannibalism at mating, allowing preferred part-
ners to copulate for longer and therefore transfer more sperm
[78]. They can selectively store sperm from preferred males
[17,88–90], or dump sperm from their spermathecae [91] to
bias paternity outcomes.
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5. Copulation duration and sperm transfer
Copulation duration among spiders can vary considerably
between species, and in some cases within individuals. For
example, certain cave-dwelling linyphiids copulate for 18 h
while some orb-web spiders (e.g. Argiope spp.) only copulate for
a few seconds [92]. Moreover, a male’s copulation duration can
change substantially between his first and second mating [93].

Intuitively, copulation duration should reflect sperm trans-
fer resulting in a linear relationship between the amount of
time in copulation and the amount of sperm stored. However,
even ifmales have ceased sperm transfer, prolonged copulation
durationmay have a positive impact on fertilization success if it
prevents females from ejecting sperm,matingwith othermales
[94], if males remove the sperm from previous males [87] or
perform copulatory courtship [86].

The relationship between copulation duration, sperm
released by the male, sperm storage by the female and con-
sequently fertilization success is complex. A male that
copulates for longer may fertilize more eggs [78,89] because
he transferred more sperm or because the female stored
more of his sperm. Unravelling this complexity requires infor-
mation on how much sperm the male released and how
much of this sperm was stored by the female. Because the
male pedipalps are paired, and most entelegyne species
insert one pedipalp at a time, the amount of sperm released
from a given pedipalp can be estimated by counting the
amount of sperm in the unused pedipalp and the amount
of sperm left in the used pedipalp [95].

To date, only a few studies have related copulation dur-
ation to sperm release and/or sperm storage in spiders
(electronic supplementary material, table S2). While some
studies report a linear increase of sperm release/storage
with copulation duration, the majority reports no relationship
(electronic supplementary material, table S2). It stands to
reason that in species with very short copulations the main
function of copulation is sperm transfer, in which case, a
linear relationship is predicted. Species where copulation
duration is much longer however, other functions, such as
sperm removal, plugging and copulatory courtship are
more likely to generate nonlinear relationships between copu-
lation duration and sperm release/storage. More in-depth
studies are needed to comprehensively test these predictions.
6. Strategic sperm allocation, when sperm
limitation is at play

Theory predicts that males can maximize their fitness returns
by strategically allocating sperm to females depending on
the risk of sperm competition, their reproductive prospects
(male age, female availability) or partner quality (female
fecundity, age) [77,96]. Male spiders can distinguish female
reproductive status and mating history [34,97], with males
commonly investingmore towards unmated females, perform-
ing enhanced copulatory behaviour [98,99], releasing more
sperm [100] or discriminating against already inseminated
genital openings [101] (but see [102]). Given its correlation
with fecundity, female size is also an indicator of individual
quality. Male Ph. phalangioides, for instance performmore ped-
ipalpmovements, which relate to sperm transfer, when mating
with larger females [103]. When responding to sperm compe-
tition risk (presence of rivals), males are reported either to
not adjust (Trichonephila senegalensis) [104] or to reduce
(Pi. mirabilis) [105] sperm allocation.

Whethermale spiders strategically tailor their sperm invest-
ment in response to the above-mentioned factors may depend
largely on permanent or temporary sperm limitations, and
whether males face physical danger during mating. In nephi-
lids, araneids and theridiids, there is a phylogenetic signal for
independently evolved severe sperm limitation [106,107]. In
these spider families, the testes shut down sperm production
after the male matures as an adult [93,107,108]. Consequently,
the males of these species have no opportunity to refill their
palps. Permanent sperm depletion appears to have coevolved
with mono- or bigyny, genital mutilation and plugging of the
female genitalia with male body parts [73]. As a result, males
maximize their fertilizations by transferring as much of their
spermduring a single copulationwith their ‘one-shot genitalia’.
Transferring as much sperm as possible during a single mating
may represent a terminal investment strategy, especially when
facing cannibalistic females. However, strategic sperm allo-
cation is still predicted when trading off current versus future
mating opportunities. For example, in T. senegalensis, a species
with sperm depletion but no genital mutilation and cannibal-
ism, males can mate up to four times by partitioning sperm
among females [108].

In most spider species, however, testes actively produce
sperm throughout the male’s lifetime. While males in some
species can successfully sire broods from two consecutive mat-
ings without reloading their palps [109,110], others deplete
their entire sperm load after a single mating [94]. The degree of
sperm depletion from the pedipalps (examples in the electronic
supplementarymaterial, table S2), and the timing and frequency
of sperm induction is likely to determine strategic sperm allo-
cation. In some species, sperm induction occurs during the
mating sequence itself. In linyphiids, for example, initial copu-
lation without transfer (pseudocopulation) is followed by a
sequence of transfers and inductions [54,111]. In other spiders,
induction occurs shortly after copulation [112] or at some point
between matings with different females [65,113]. The associated
costs of recharging the pedipalps may also vary. Cost may
include the ability for males to build sperm webs [112,114,115],
the risks of losing the mating partner or risk of predation
associatedwith interrupting thematingsequence to reloadpalps.
7. Outlook
The last decades of sperm competition research in spiders
has progressed our understanding of the evolutionary impli-
cations of male adaptations to competitive fertilization
success tremendously, but the proximatemechanisms involved
remain poorly understood. The most pressing outstanding
questions include: how intense is sperm competition in natural
populations? How does sperm storage (together or separately)
affect sperm precedence patterns? What is the site and timing
of sperm activation and how does it affect fertilization out-
comes? What is the degree of sperm depletion in male
pedipalps and what role does seminal fluid play? Integrating
these functional processes with the fitness consequences
of male traits will fill important gaps in our understanding of
spider reproduction and evolution.
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