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Abstract

We consider in this paper a diffusion-convection reaction equation in one space di-
mension. The main assumptions are about the reaction term, which is monostable, and
the diffusivity, which changes sign once or twice; then, we deal with a forward-backward
parabolic equation. Our main results concern the existence of globally defined trav-
eling waves, which connect two equilibria and cross both regions where the diffusivity
is positive and regions where it is negative. We also investigate the monotony of the
profiles and show the appearance of sharp behaviours at the points where the diffusivity
degenerates. In particular, if such points are interior points, then the sharp behaviours
are new and unusual.
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1 Introduction

This paper deals with traveling-wave solutions to degenerate parabolic equations of forward-
backward type. More precisely, we consider the equation

ρt + f(ρ)x =
(
D(ρ)ρx

)
x

+ g(ρ), t ≥ 0, x ∈ R. (1.1)

We denote with ρ = ρ(t, x) the unknown function; also in view of applications we understand
ρ as a (normalized) density or a concentration and then assume that ρ is valued in the interval
[0, 1]. We now list our main hypotheses. On the convective term f we only assume

(f) f ∈ C1[0, 1], f(0) = 0.

The condition f(0) = 0 just fixes a flux representative, since convection is only defined
up to an additive constant. In the following, for brevity, we denote the derivative of f as
h(ρ) = ḟ(ρ). The main hypotheses are on the diffusivity D and the reaction term g. We
assume that g satisfies
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(g) g ∈ C0[0, 1], g > 0 in (0, 1), g(0) = g(1) = 0.

Assumption (g) is a natural condition in this framework; in this case the term g is of
monostable type.

The diffusivity D is required to satisfy one of the following assumptions, for some α, β ∈
(0, 1), see Figure 2:

(Dpn) D ∈ C1[0, 1], D > 0 in (0, α) and D < 0 in (α, 1);

(Dnp) D ∈ C1[0, 1], D < 0 in (0, β) and D > 0 in (β, 1);

(Dpnp) D ∈ C1[0, 1], D > 0 in (0, α) ∪ (β, 1) and D < 0 in (α, β), with α < β;

(Dnpn) D ∈ C1[0, 1], D < 0 in (0, β) ∪ (α, 1) and D > 0 in (β, α), with β < α.

It is worth noting that (Dpn)-(Dnp) deal with a diffusivity that changes sign once while
(Dpnp)-(Dnpn) with a diffusivity which changes sign twice. Observe that each condition is
intuitively labelled following the sign of D: “pn” in (Dpn) means that D is first positive
and then negative, and the others so on. Observe also that, under our notation, in each
assumption α denotes a zero of D such that Ḋ(α) ≤ 0 while β denotes a zero of D such that
Ḋ(β) ≥ 0. The case when D has more sign changes can be easily deduced from our results
below.
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Figure 1: Typical plots of the functions f and g.

The above assumptions on D are the main issue of this paper, and make (1.1) a forward
parabolic equation where D > 0 and a backward parabolic equation where D < 0. The
vanishing of D at α or β makes (1.1) a degenerate parabolic equation; the above conditions
leave also open the possibility that D vanishes at 0 or 1.
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Figure 2: Typical plots of the functions D.
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There are several motivations to study forward-backward parabolic equations as (1.1):
for a short list of different modeling we quote [22, 25, 31] for biology, [14] for geophysics, [23]
for thermodynamics. However, our main source of inspiration has been the recent modeling
of collective movements, namely of vehicular flows and crowds dynamics. About this topic,
we refer to [18, 19, 32] for general information, to [4, 5, 7] for the modeling using degenerate
parabolic equations, while for sign-changing diffusivities we refer to [11, 12, 30] and the
references in the two former papers. Roughly speaking, in this modeling ρ represents the
normalized density of the agents (cars or pedestrians) and f(ρ) = ρv(ρ) the corresponding
flux, where v is the prescribed velocity. Diffusion is included to prevent the formation of
unrealistic shock waves in the equation; moreover, the assumption D < 0 in some zones
models aggregation phenomena due to limited visibility conditions ahead in the case of
vehicular traffic flows, or the occurrence of panic behaviors in crowds dynamics. The term g
models entries, which are forbidden when the density is either 0 (simulating an aggregative
behavior) or 1 (modeling the physical impossibility of entering).

As we mentioned above, our interest in this paper is about traveling-wave solutions (TWs
for short) to (1.1); they are particular solutions to (1.1) of the form ρ(t, x) = ϕ(x−ct). Here,
the function ϕ = ϕ(ξ) is the profile of the TW and the real number c is its speed. The equation
for the profiles is then (

D(ϕ)ϕ′
)′

+
(
c− h(ϕ)

)
ϕ′ + g(ϕ) = 0, (1.2)

where ′ denotes the derivative with respect to ξ. More precisely we focus on wavefronts,
i.e., globally-defined (and so physically meaningful), noncostant (to avoid trivial solutions)
and monotone profiles. To fix ideas we deal with non-increasing profiles and this leads us,
because of (g), to impose the conditions

ϕ(−∞) = 1, ϕ(+∞) = 0. (1.3)

The study of non-decreasing profiles, in which the conditions in (1.3) are switched, is not
explicitly treated in this paper. Nevertheless, all the results can be rephrased in that case,
once that (roughly speaking) the direction of speeds is reversed. Clearly, even under (1.3)
the solutions to (1.2) are at most unique up to horizontal shifts. An interesting issue is
whether the equilibria 0 and 1 can be reached by a wavefront ϕ at a finite value ξ0. This
possibly occurs if D vanishes at those points, and in such cases ϕ is necessarily constant on
either (ξ0,∞) or (−∞, ξ0), with values 0 and 1, respectively. The profile is called sharp if it
is not of class C1 at ξ0. We refer to [20] for more information on traveling waves.

We now briefly report about what is currently known about TWs to (1.1), to the best
of our knowledge. The case D = 1 was first tackled in [1] when f = 0; for a more detailed
study of the profiles, also in the case D ≥ 0 and for general f , see [28]. We refer to [20]
for several results mainly in the case f = 0; in the case D, f , g are polynomials, see also
[21] and [13], the latter when g only vanishes at 0. In these cases, the mathematical thread
that links the various results is that profiles exist if and only if their speed c is larger than
a critical threshold c∗. We also refer to [9, 10] for the case where g has only one zero and
for applications to the modeling of collective movements.

The case where D changes sign has been considered by several authors but only when
f = 0. About this case, we quote [2, 25] for D satisfying (Dnp) and (Dpn), respectively,
and monostable g; [26] for the case (Dpn) and bistable g (i.e., g changes sign once); [17, 24]
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for the case (Dpnp) and where g is, respectively, monostable and bistable; [3] for the case
(Dpnp) and monostable g, but with a specific quadratic diffusivity D. The case (Dnpn) has
never been considered. We also refer to [11] for the case g = 0, for applications to collective
movements, and for a discussion of how to choose a diffusivity which results meaningful from
the point of view of applications.

The main result of the current paper is that there still exist wavefronts joining 1 with 0,
which travel across regions where D is negative. In our approach the profiles are constructed
by suitably pasting two semi-wavefronts and possibly a traveling wave solution in a bounded
interval (see the next section for a definition), as in [11]. As a consequence of this procedure,
one realizes that the assumptions on D can be somewhat relaxed, as in [2]. Indeed, for
instance in case (Dpn), it is sufficient to require D ∈ C[0, 1] and D ∈ C1[0, α] ∩ C1[α, 1]:
the derivatives at α− and α+ may be different. Analogous assumptions can be done in the
other cases, and the statements below should be modified in an obvious way. For sake of
simplicity, we always assume that D ∈ C1[0, 1].

We prove that the wavefronts constructed in this way are unique (up to shifts) and
provide results about the strict monotony of profiles; in particular, we characterize when
they are sharp. At last, we give rather precise bounds on the critical thresholds by exploiting
the estimates obtained in [6]; there, in turn, we used some related recent results proved in
[29]. We now give a geometric idea of the general framework where we are working by
considering the problem in the phase plane.

When D(0)D(1) 6= 0 we can write the equation (1.2), locally near 0 and 1, as the first-
order system  ϕ′ = ψ

D(ϕ) ,

ψ′ = − c−h(ϕ)
D(ϕ) ψ − g(ϕ),

(1.4)

which has (0, 0) and (1, 0) as critical points. If moreover g ∈ C1[0, 1] and f ∈ C2[0, 1],
then we can linearize (1.4) at those points. They are either saddles for every c, or stable
nodes but only for speeds c higher than a certain threshold; the different behavior mainly
depends on the sign of D close to them. By a direct computation it is possible to show that
semi-wavefronts exist in both cases [6, 8]. As a consequence, when the equilibria are stable
nodes the admissible speeds of the corresponding profiles belong to an half-line. Indeed,
both papers [6, 8] also deal with the general case when D vanishes at 0 or at 1.

We remark that the sign of ψ is always opposite to that of D, by the monotony property
of the wavefront profiles. In particular, in the case (Dpn), we have ψ < 0 when ϕ ∈ (0, α)
and ψ > 0 when ϕ ∈ (α, 1). Analogously for (Dnp). In both cases (Dpn) and (Dnp) we
obtain a wavefront profile by pasting two semi-wavefronts; however, it turns out that the
pasting provides a wavefront (in particular, it is a weak solution to (1.2)) if and only if
ψ vanishes when ϕ reaches the point α (resp., β). From a geometric point of view, this
means that the trajectory (ϕ,ψ) is at least continuous and, hence, every profile corresponds
to a trajectory in the (ϕ,ψ)-plane which passes through the point (α, 0) or (β, 0), where
D(α) = 0 or D(β) = 0, respectively.

The topological nature of the equilibria also reflects on the pasting, where the points α
and β play a key role. Indeed, as it was pointed out by Hadeler in [16] and Engler [15] (see
also [20, Theorem 3.1]), in intervals where D vanishes at most at the extremum points, the
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admissible wave speeds for equation (1.2) coincide with those of the non-degenerate equation

ϕ′′ +
(
c− h(ϕ)

)
ϕ′ +D(ϕ)g(ϕ) = 0. (1.5)

The interesting feature of this equivalence is that the linearized first-order system associated
to equation (1.5) also has (α, 0) or (β, 0) as equilibria, and the study of this linearization
shed a light on equation (1.2).

Assume (Dpn). Then both (0, 0) and (1, 0) are stable nodes for both the linearized first-
order systems corresponding to (1.2) (with the restrictions mentioned above) and (1.5), but
only when c is larger than a threshold c∗pn. If Ḋ(α) 6= 0, then the pasting of the corresponding
semi-wavefronts for (1.5) is possible, without any further conditions, essentially because
(α, 0) is a saddle for the first-order system deduced by (1.5) for every c. On the contrary,
assume (Dnp) and also Ḋ(β) 6= 0. Now, both (0, 0) and (1, 0) are saddles for every c, and
semi-wavefronts exist for any c. However, the pasting is only possible for c larger than a
threshold c∗np, essentially because in this case (β, 0) is a stable node for the first-order system
related to (1.5) only when c ≥ c∗np. We refer to Figure 3. Except in special cases, the
thresholds c∗pn and c∗np cannot be computed explicitly but are bounded from above and from
below by similar quantities, which however refer to the behavior of the terms of the equation
(1.1) at points 0, 1 and β, respectively. A similar discussion can be done for cases (Dpnp)
and (Dnpn).

ϕ

ψ = ϕ′

N

α

S

1

N
ϕ

ψ = ϕ′

S

β

N

1

S

ϕ

ψ = D(ϕ)ϕ′

α 1
ϕ
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Figure 3: Above: schematic representation in the phase plane of the trajectories of the
first-order systems corresponding to (1.5), for c sufficiently large; small circles represents
equilibria. Left: the case (Dpn); right: the case (Dnp). S and N stand for saddle and stable
node, respectively. Below: trajectories of the profiles for equation (1.2). Notice the reverse
direction of the trajectories in the regions where D < 0, which makes ϕ globally decreasing
in [0, 1].

Equation (1.5) seems to suggest that the roles played by D and g are interchangeable; this
is not true, in general. Consider for instance the bistable (or Allen-Cahn) equation, where
D > 0 in (0, 1) but g satisfies g(0) = g(α) = g(1) = 0, g < 0 in (0, α) and g > 0 in (α, 1).
In this case it is known [1], at least if f = 0, that equation (1.1) admits a unique admissible
speed c corresponding to a wavefront from 1 to 0; roughly speaking, the trajectory connects
the unstable manifold of (0, 0) with the stable manifold of (1, 0), and avoids the point (α, 0).
In the current case (Dnp), on the contrary, where the role of D and g is commuted with
respect to the bistable case, we shall find a whole half line of admissible speeds. The same
result holds for the case (Dpn).
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A dynamical system analysis, as pointed out, should require strong regularity assump-
tions on the functions appearing in (1.2) and hence we investigate the existence and regu-
larity of semi-wavefronts, whence wavefronts, with a different method. Our main tool is a
well-known reduction (in regions where D has constant sign) of Equation (1.2) to singular
first-order systems [28] and its study by comparison-type techniques, that is by the intro-
duction of suitable upper- and lower-solutions. More precisely, if we denote z(ϕ) := D(ϕ)ϕ′,
where ϕ′ is computed at ϕ−1(ϕ) (notice that the inverse function of ϕ exists because of
the monotony of ϕ), then we are reduced to consider the problems, for instance in the case
(Dpn),

ż(ϕ) = h(ϕ)− c− (Dg)(ϕ)
z(ϕ) , ϕ ∈ (0, α),

z(ϕ) < 0, ϕ ∈ (0, α),

z(0) = 0,

or


ż(ϕ) = h(ϕ)− c− (Dg)(ϕ)

z(ϕ) , ϕ ∈ (α, 1),

z(ϕ) > 0, ϕ ∈ (α, 1),

z(1) = 0,

(1.6)
and similar problems in the other cases. We refer to [6] for a detailed study of (1.6)1.

Here follows an account of the sections of the paper. Section 2 contains some basic
definitions, a couple of further technical assumptions and our main results. In Section 3, we
first briefly summarize those results from [6] which shall be instrumental to the purposes of
this paper, concerning strict semi-wavefronts which connect α to 0. Then, we provide the
analogous results in the case of strict semi-wavefronts connecting 1 to β, and at last in the
negative-diffusivity regions. Section 4 contains the proofs of our results in the case that D
changes sign once; there, we make use of the tools built up in Section 3 for proving existence,
uniqueness and regularity of wavefronts connecting 1 to 0. Section 5 contains some explicit
examples about that case; their aim is to illustrate the role played by the convection term
f , the qualitative difference of the thresholds in the cases (Dpn) and (Dnp), the occurrence
of non-regular profiles. At last, Section 6 contains the proofs of the results in the case D
changes sign twice.

2 Main results

As we mentioned in the Introduction, traveling-waves can fail to be of class C1 in the whole
of their domain. The following definition makes precise what we mean by a TWs, see [20].

Definition 2.1. Assume f,D, g ∈ C[0, 1] and let I ⊂ R be an open interval. Let ϕ ∈ C(I)
be a function valued in [0, 1], which is differentiable a.e. and such that D(ϕ)ϕ ′ ∈ L1

loc(I); at
last, let c be a real constant.

Then the function ρ(x, t) := ϕ(x − ct), for (x, t) with x − ct ∈ I, is a traveling-wave
solution (briefly, a TW) to equation (1.1) with wave speed c and wave profile ϕ if we have∫

I

(
D
(
ϕ(ξ)

)
ϕ′(ξ)− f

(
ϕ(ξ)

)
+ cϕ(ξ)

)
ψ′(ξ)− g

(
ϕ(ξ)

)
ψ(ξ) dξ = 0, (2.1)

for every ψ ∈ C∞0 (I).

Now, we classify TWs according to their domain and regularity. We say that a TW is
global if I = R, while it is strict if I 6= R and ϕ cannot be extended to R; a TW is classical if
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ϕ is differentiable, D(ϕ)ϕ′ is absolutely continuous and (1.2) holds a.e.; a TW is sharp at `
if there exists ξ` ∈ I, with ϕ(ξ`) = `, such that ϕ is classical in I \{ξ`} and not differentiable
at ξ`. Analogously, a TW is classical at ` if it is classical in a neighborhood of ξ`.

At last, three more key definitions. A TW is: a wavefront if it is global, with a monotonic,
non-constant profile ϕ which satisfies either (1.3) or the converse condition; a semi-wavefront
to 1 (or to 0) if I = (a,∞) for a ∈ R, the profile ϕ is monotonic, non-constant and ϕ(ξ)→ 1
(respectively, ϕ(ξ) → 0) as ξ → ∞; a semi-wavefront from 1 (or from 0) if I = (−∞, b) for
b ∈ R, the profile ϕ is monotonic, non-constant and ϕ(ξ) → 1 (respectively, ϕ(ξ) → 0) as
ξ → −∞. About semi-wavefronts, we say that ϕ connects ϕ(a+) (1 or 0) with 1 or 0 (resp.,
with ϕ(b−)).

A few comments about these definitions are in order. First, by monotonic we mean that
ϕ is either non-increasing or non-decreasing, i.e. ϕ(ξ1) ≥ ϕ(ξ2) (ϕ(ξ1) ≤ ϕ(ξ2)) for every
ξ1 < ξ2 in the domain of ϕ; strictly monotonic refers to TW where the strict inequality
holds. The problem of the loss of regularity of ϕ depends on whether the parabolic equation
degenerates or not; more precisely, by arguing on the very equation (1.2), it is easy to see
that if f,D are of class C1 and g of class C0, then ϕ is classical in every interval I± ⊆ I
where ±D

(
ϕ(ξ)

)
> 0 for ξ ∈ I±; moreover, ϕ ∈ C2(I±).

We recall that for a function q : [0, 1]→ R, the notation D+(q)(ρ0) and D−(q)(ρ0), with
ρ0 ∈ [0, 1], stands for the right, resp., left lower Dini-derivative of q at ρ0; analogously, D±(q)
represent the right and left upper Dini-derivatives of q, see [33, §5.1]. More explicitly,

D±(q)(0) := lim inf
ρ→ρ±0

q(ρ)− q(ρ0)

ρ− ρ0
, D±(q)(ρ0) := lim sup

ρ→ρ±0

q(ρ)− q(ρ0)

ρ− ρ0
.

In addition to the main assumptions (f), (Dpn)–(Dnpn) and (g) stated in the Introduction,
we also need for some results two further regularity conditions on the product of Dg at the
boundary of the interval [0, 1], which are stated using the above notation:

D+ (Dg) (0) < +∞ and D− (Dg) (1) < +∞. (2.2)

If D does not vanish, then (2.2)1, for instance, implies that the dynamical system underlying
(1.2) has a node at (0, 0) if c is sufficiently large [1]. In general, (2.2)1 implies that problem
(1.6)1 has a super-solution for sufficiently large c, see [27] in the case f = 0, and hence it is
solvable for those c. Condition (2.2)1 is always satisfied if D(0) = 0, while, if D(0) 6= 0, it
requires that g is sublinear close to 0; condition (2.2)2 is commented analogously. At last,
we denote the difference quotient of a function F = F (ϕ) with respect to a point ϕ0 as

δ(F,ϕ0)(ϕ) :=
F (ϕ)− F (ϕ0)

ϕ− ϕ0
.

We first focus on the case (Dpn). The construction of a wavefront to (1.1) takes place
by properly joining two semi-wavefronts, each of them with an intrinsic threshold. The
existence of such semi-wavefronts in the region (0, α) has been done in [6, Theorem 2.1]; the
main content of that result is the following. Under (f), (Dpn), (g) and (2.2)1 there exists a
real number, denoted by c∗p,r, satisfying

max

{
sup
(0,α]

δ(f, 0), h(0) + 2
√
D+ (Dg) (0)

}
≤ c∗p,r ≤ sup

(0,α]
δ(f, 0) + 2

√
sup
(0,α]

δ(Dg, 0), (2.3)
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such that Equation (1.1) admits strict semi-wavefronts to 0, connecting α to 0, with speed
c if and only if c ≥ c∗p,r. It is worth noting that the left- and the right-hand side of (2.3)
describe a non-empty interval (possibly degenerating to a single point) of real numbers, as a
direct inspection trivially shows. Moreover, in [29, Theorem 3.1] the authors proved that in
case Dg differentiable at ϕ = 0 (e.g. in case D(0) = 0) the second addend of the right-hand
side of (2.3) can be further enhanced by replacing δ(Dg, 0)(ϕ) with its mean value in (0, ϕ),
that is

c∗p,r ≤ sup
(0,α]

δ(f, 0) + 2

√
sup

ϕ∈(0,α]

1

ϕ

∫ ϕ

0

D(s)g(s)

s
ds. (2.4)

We warn the reader that those semi-wavefronts are proved to be intrinsically nonunique,
i.e., nonuniqueness holds even understanding profiles differing by a horizontal shift as a
same profile. (See Proposition 3.1.)

We comment on the notation that we shall use for thresholds. The subscripts p, r in c∗p,r
mean that we are considering a case where D is positive in an interval I+ and vanishes in
the right extremum of I+, while g vanishes at the opposite extremum. Similarly, we shall
use the notation c∗n,l, c

∗
p,l and c∗n,r.

An analogous result for semi-wavefronts from 1, connecting 1 to α, is first deduced in
this paper. Assume (f), (Dpn), (g) and (2.2)2. There exists c∗n,l ∈ R satisfying

max

{
sup
[α,1)

δ(f, 1), h(1) + 2
√
D− (Dg) (1)

}
≤ c∗n,l ≤ sup

[α,1)
δ(f, 1) + 2

√
sup
[α,1)

δ(Dg, 1), (2.5)

such that Equation (1.1) admits strict semi-wavefronts from 1, connecting 1 to α, with speed
c, if and only if c ≥ c∗n,l. See Proposition 3.3 for more details. Here, we just notice that also
in this case profiles are intrinsically nonunique, as pointed out just above for profiles valued
in (0, α).

We now present our main results on wavefronts. Define, see Figure 4,

c∗pn := max
{
c∗p,r, c

∗
n,l

}
. (2.6)

ρ

c∗p,r

D > 0

c∗n,l

D < 0 ρ
0 1α ρ

c∗n,r

D < 0

c∗p,l

D > 0 ρ
0 1β

Figure 4: The thresholds c∗p,r, c
∗
n,l used in (2.6) and c∗n,r, c

∗
p,l, used below in (2.14).

For what concerns an estimate on c∗pn, see Remark 4.1. We introduce the quantity
s±(γ, c), defined formally by

s±(γ, c) :=
1

2

[
h(γ)− c±

√(
h(γ)− c

)2 − 4Ḋ(γ)g(γ)

]
. (2.7)

In the next result, we make use of (2.7) with γ = α. In this particular case, s−(α, c) is
well-defined since Ḋ(α)g(α) ≤ 0.
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Theorem 2.1. Assume (f), (Dpn), (g) and (2.2). Equation (1.1) admits a (unique up to
space shifts) wavefront, with speed c and profile ϕ satisfying (1.3), if and only if c ≥ c∗pn.

For such c, we have ϕ′(ξ) < 0 when ϕ(ξ) ∈ (0, 1) \ {α}; there exists a unique ξα ∈ R
such that ϕ(ξα) = α and

ϕ′(ξ±α ) =


g(α)

s−(α,c) < 0 if Ḋ(α) < 0 or c > h(α),

−∞ if Ḋ(α) = 0 and c ≤ h(α).
(2.8)

At last, it holds that:

(i) if D(0)D(1) < 0, then ϕ is strictly decreasing and hence classical in R \ {ξα};

(ii) if D(0)D(1) = 0 and c > c∗pn, then ϕ is classical in R\{ξα}; ϕ is not strictly decreasing
if

c > min

{
h(0) + lim sup

ρ→0+

g(ρ)

ρ
, h(1) + lim sup

ρ→1−

g(ρ)

1− ρ

}
;

(iii) if D(0) = 0 and c = c∗pn = c∗p,r > h(0), then ϕ is sharp at 0 (reached at some ξ0 > ξα)
and if D(1) = 0 and c = c∗pn = c∗n,l > h(1), then ϕ is sharp at 1 (reached at some
ξ1 < ξα). In these cases we have

ϕ′(ξ−0 ) =


h(0)−c∗p,r
Ḋ(0)

< 0 if Ḋ(0) > 0,

−∞ if Ḋ(0) = 0,
ϕ′(ξ+

1 ) =


h(1)−c∗n,l
Ḋ(1)

< 0 if Ḋ(1) > 0,

−∞ if Ḋ(1) = 0.

Theorem 2.1 extends [25, Theorem 1] to the case of a non-zero convection term f ; if f = 0
the estimates on c∗pn deduced from (2.3) and (2.5) coincide with those in [25]. The estimates
(2.3), (2.5) imply in particular that c∗pn ≥ max

{
h(0), h(1)

}
. However, if h(ϕ) ≥ h(0) for

every ϕ in a right neighborhood of 0, then c∗p,r > h(0), see [6, Remark 6.2], and so c∗pn > h(0).
An analogous remark holds for the point 1. This means that the lower estimate on c∗pn is
not sharp, in general. Therefore we also extend the corresponding result of [25], since they
proved that the threshold c∗, which plays the role of c∗pn here, satisfies the stricter estimate
c∗ > 0. We also specify in item (ii) when the strict monotonicity fails; this information lacks
in [25].

On the other hand, a new result that could not occur in [25] is that we can have ϕ′(ξα) =
−∞, see (2.8)2, while in the case f = 0 profiles are always C1 at ξα. Explicit examples of
fronts passing from a positive- towards a negative-diffusivity region such that (2.8)2 occurs,
are given in Example 5.1. From a formal point of view, if f = 0 then this could occur if
c ≤ 0, see (2.8)2, while in that case c > 0 holds; more rigorously, see [25, (29)]. We emphasize
that this phenomenon does not depend on the change of sign of D at α, but merely on the
occurrence of the two conditions in (2.8)2, see [6, Remark 9.2]. Moreover, just to get an
insight on the problem, assume Ḋ(α) = 0; in order that (2.8)2 takes place it is necessary
that

max
{

sup
(0,α]

δ(f, 0), sup
[α,1)

δ(f, 1)
}
≤ h(α), (2.9)

so that we have room for c. Condition (2.9) has a simple geometric interpretation: the slope
of the tangent to the graph of f at α must be larger that the slope of any chord joining
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(0, 0) with any other point of the graph of f , in the interval in (0, α], and analogously for the
interval [α, 1). We easily see that sup(0,α] δ(f, 0) ≤ h(α) fails if f is concave in [0, α], while it
holds if f is convex; the converse result holds for the other condition. This means that (2.8)2

may hold only if f changes its convexity. Moreover, if f changes convexity only once, for
instance at α, then f must be convex in [0, α] and concave in [α, 1], and not conversely. In
other words, the profile may become vertical if, at least in some subintervals, the behavior
of f strongly contrast that of D.

We refer to Figure 5 for a pictorial representation of Theorem 2.1. We now comment
on (iii). The lack of results for the cases c∗p,r = h(0) or c∗n,l = h(1) is due to the fact that
in these extremal cases the regularity depends on further properties of D and g. Indeed,
under the mild assumptions of Theorem 2.1 the profile ϕ can be either sharp or classical
when reaches the equilibria 0 or 1 (for explicit examples at 0, we refer to [6, Remark 10.1];
the discussion at 1 is analogous).

ξ

ϕ

1

α

ξ1αξ3α ξ2αξ21

ϕ1

ϕ2

ϕ2

ϕ3

ξ30 ϕ3

Figure 5: Some possible wavefronts joining 1 with 0 in case (Dpn): a classical wavefront ϕ1

(for c > c∗pn and either Ḋ(α) < 0 or c > h(α)); a wavefront ϕ2 which is sharp at 1, with

finite right derivative at ξ21 and (ϕ2)′(ξ2α) = −∞ (for c = c∗n,l > h(1), D(1) = 0, Ḋ(1) > 0,

Ḋ(α) = 0 and c ≤ h(α)); a wavefront ϕ3 which is sharp at 0 with (ϕ3)′(ξ30) = −∞ (for
c = c∗p,r > h(0), D(0) = 0 = Ḋ(0)).

We focus now on (Dnp). Condition (Dnp) is specular to (Dpn), in an obvious sense: if
D satisfies (Dpn) then −D satisfies (Dnp). Despite this fact, the results in this case only
partially mimic those of Theorem 2.1. In particular, if we focus on the interval (β, 1), where
D > 0, the contrast with [6, Theorem 2.1] emerges evident. Apart from a trivial horizontal
translation, we are under the hypotheses considered in [10, Theorem 2.7] (compare (Dnp)-(g)
in the interval (β, 1) with the corresponding assumptions of [10, Theorem 2.7]). In contrast
with [6, Theorem 2.1] cited before, [10, Theorem 2.7] affirms that, for each c ∈ R, Equation
(1.1) admits (unique up to space shifts) strict semi-wavefronts from 1, connecting 1 to β.
Nevertheless, the system still admits a threshold speed, in the following sense. There exists
c∗p,l ∈ R such that the (unique up to space shifts) non-increasing wave profile ϕ, defined
maximally in (−∞, ξβ), satisfies [10, Theorem 2.6]

(
D(ϕ)ϕ′

)
(ξ−β ) =

{
0 if c ≥ c∗p,l,
` < 0 if c < c∗p,l.

(2.10)

We point out that by improving the estimates of c∗p,l contained in [10], in the same spirit of
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(2.3)-(2.4), it results that c∗p,l must satisfy

max

{
sup
(β,1]

δ(f, β), h(β) + 2

√
Ḋ(β)g(β)

}
≤ c∗p,l ≤

sup
(β,1]

δ(f, β) + 2

√
sup

ϕ∈(β,1]

1

ϕ− β

∫ ϕ

β

D(s)g(s)

s− β
ds. (2.11)

See Proposition 3.2 below for more details. Similarly, for every c ∈ R, Equation (1.1) admits
a (unique up to space shifts) strict semi-wavefront to 0, connecting β to 0. Moreover, there
exists c∗n,r ∈ R satisfying

max

{
sup
[0,β)

δ(f, β), h(β) + 2

√
Ḋ(β)g(β)

}
≤ c∗n,r ≤

sup
[0,β)

δ(f, β) + 2

√
sup

ϕ∈[0,β)

1

β − ϕ

∫ β

ϕ

D(s)g(s)

s− β
ds, (2.12)

such that the (unique up to space shifts) non-increasing wave profile ϕ, defined maximally
in (ξβ,+∞), satisfies

(
D(ϕ)ϕ′

)
(ξ+
β ) =

{
0 if c ≥ c∗n,r,
s > 0 if c < c∗n,r,

(2.13)

see Proposition 3.4. We now state the second main result of this paper, after setting (see
Figure 4)

c∗np := max
{
c∗n,r, c

∗
p,l

}
. (2.14)

In the next theorem, s±(β, c) is given by (2.7). Note that, in spite of Ḋ(β) ≥ 0, s±(β, c)
is well-defined since in virtue of (2.14) and (2.11) (or (2.12)), we clearly have (h(β)− c)2 ≥
(h(β)− c∗n,p)2 ≥ 4Ḋ(β)g(β).

Theorem 2.2. Assume (f), (Dnp) and (g). Then, Equation (1.1) admits a (unique up to
space shifts) wavefront, with speed c and profile ϕ satisfying (1.3), if and only if c ≥ c∗np.

For such c, we have ϕ′ < 0 if ϕ ∈ (0, 1) \ {β}. There exists a unique ξβ ∈ R such that
ϕ(ξβ) = β and

(1) if c > c∗np we have

ϕ′(ξ±β ) =
g (β)

s−(β, c)
; (2.15)

(2) if c = c∗np = c∗n,r = c∗p,l we have

ϕ′(ξ±β ) =


g(β)

s+(β,c∗np)
if Ḋ(β) > 0,

−∞ if Ḋ(β) = 0;
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(3) if c = c∗np = c∗n,r > c∗p,l we have

ϕ′(ξ−β ) =
g(β)

s−(β, c∗np)
> ϕ′(ξ+

β ) =


g(β)

s+(β,c∗np)
if Ḋ(β) > 0,

−∞ if Ḋ(β) = 0;

(4) if c = c∗np = c∗p,l > c∗n,r we have

ϕ′(ξ+
β ) =

g(β)

s−(β, c∗np)
> ϕ′(ξ−β ) =


g(β)

s+(β,c∗np)
if Ḋ(β) > 0,

−∞ if Ḋ(β) = 0.

At last, the following holds true:

(i) if D(0)D(1) < 0 then ϕ is strictly decreasing and hence classical in R \
{
ξβ
}

;

(ii) if D(0) = 0, and either c > h(0) or c = h(0) and Ḋ(0) < 0, then ϕ is classical at 0; if
D(1) = 0, and either c > h(1) or c = h(1) and Ḋ(1) < 0 then ϕ is classical at 1;

(iii) if D(0) = 0 and c < h(0), then ϕ is sharp at 0 (reached at some ξ0 > ξβ); if D(1) = 0
and c < h(1), then ϕ is sharp at 1 (reached at some ξ1 < ξβ). In these cases we have

ϕ′(ξ−0 ) =


h(0)−c
Ḋ(0)

if Ḋ(0) < 0,

−∞ if Ḋ(0) = 0,
ϕ′(ξ+

1 ) =


h(1)−c
Ḋ(1)

if Ḋ(1) < 0,

−∞ if Ḋ(1) = 0.

ξ

ϕ

1

β

ϕ1 ϕ2
ϕ3

ϕ4
ϕ5

Figure 6: Some possible wavefronts joining 1 with 0 in case (Dnp). Profiles are labelled
according to the cases (1)–(4) of Theorem 2.2; ϕ5 occurs in both cases (3) and (4). For
simplicity we only represented strictly monotone profiles.

Observe, from each one of (2.11) and (2.12), c∗np ≥ h(β) and c∗np > h(β) if Ḋ(β) > 0.
Hence, by their very definitions, s−(β, c) in Part (1) as well as s−(β, c∗np) and s+(β, c∗np)
appearing in Parts (2)-(4) are negative and finite real values.

Theorem 2.2 above extends [2, Theorem 1] to the case of a non-zero convection term f ;
if f = 0, the estimates on c∗np deduced from (2.11) and (2.12) improve those in [2], not only
because of a flaw in the upper estimate in c∗ (the analog of c∗np) in [2], see formula (14)
there, but also because the more precise estimates from [6] and [29] are involved here (and
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not in [2]). Moreover, by c∗np ≥ h(β), with a reasoning as above Theorem 2.1 we can further
show, as in [2], that c∗np > 0 when f = 0. In Theorem 2.2 we also prove the existence of
sharp profiles at either 0 or 1 even if c > c∗np, see case (iii) above. Again, this is due to the
presence of f . Indeed, from a formal point of view, by the estimates in (iii) it follows that,
if f = 0, then to have sharp profiles one needs c < 0, while c is always positive in this case.

It is worth noting that in Theorem 2.2 we do not require (2.2); indeed, recall what
we commented on just below (2.2). Also, we point out that, if c∗p,l > c∗n,r and ϕ is the

profile corresponding to c = c∗np = c∗p,l given by Theorem 2.2, then ϕ′(ξ−β ) 6= ϕ′(ξ+
β ). The

same conclusion holds if c∗p,l < c∗n,r and c = c∗np = c∗n,r. Both alternatives c∗p,l = c∗n,r and
c∗p,l 6= c∗n,r can indeed occur: explicit examples are shown in Example 5.3. This suggests that
Theorems 2.1 and 2.2 produce two separate families of solutions. Moreover, in Example
5.2, we show that the thresholds c∗pn of Theorem 2.1 and c∗np of Theorem 2.2 are essentially
different, in the sense that taking opposite diffusivities do not produce necessarily c∗pn = c∗np.
Roughly speaking, this is due essentially because (2.3) - (2.5) and (2.11) - (2.12) are unrelated
estimates.

A comparison between Theorems 2.1 and 2.2 is in order. Roughly speaking, we see that
the role of the points 0, 1 on the one side, is interchanged with that of β, on the other
side. An example of this dual behavior is the influence of the convective term f on the
smoothness of the profile that has been commented just below both statements. Another
example is provided by the comparison of (2.8) with the values of ϕ′(ξ±β ) in items (3) and
(4) in Theorem 2.2. The differences between Theorem 2.1 and 2.2 can be explained by
the phase plane analysis of the associated first-order systems, as already mentioned in the
Introduction.

Also notice the different role played by the sub-thresholds c∗p,r, c
∗
n,l and c∗p,l, c

∗
n,r: the

former two discriminate the existence of the semi-wavefronts, the latter two the regularity.
Indeed, the estimates (2.3), (2.5) concern the equilibrium points 0, 1 of g, while the estimates
(2.11), (2.12) only concern the point β where D vanishes. Also notice the values of ϕ′ at ξα or
ξβ: ϕ′(ξα) is uniquely determined (being possibly −∞), while we can have ϕ′(ξ−β ) 6= ϕ′(ξ+

β ).
Moreover, in the case (Dpn), a profile may be sharp only if c = c∗pn; in case (Dnp), a profile
can be sharp also if c > c∗np. As a consequence of these facts, the items (i)–(iii) in the two
theorems are similar but far from being symmetric.

At last, assume that the diffusivity D changes sign twice in (0, 1), that is we assume that
either (Dpnp) or (Dnpn) holds. We obtain the following results.

Theorem 2.3. Assume (f), (Dpnp), (g) and (2.2)1. Then, there exists c∗pnp ∈ R such that
Equation (1.1) admits a (unique up to space shifts) wavefront, with speed c and profile ϕ
satisfying (1.3), if and only if c ≥ c∗pnp.

Theorem 2.4. Assume (f), (Dnpn), (g) and (2.2)2. Then, there exists c∗npn ∈ R such that
Equation (1.1) admits a (unique up to space shifts) wavefront, with speed c and profile ϕ
satisfying (1.3), if and only if c ≥ c∗npn.

In both theorems one can easily deduce more informations on the profiles, as in Theorems
2.1 and 2.2. For brevity we leave these details to the reader. The case (Dpnp) has been
previously considered, in the case f = 0, in [3] in the case of an explicit polynomial D and
in [17], for a general D. The case (Dnpn) has never been previously studied, to the best of
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our knowledge. Further comments on Theorems 2.1 and 2.2 are provided in Remarks 6.1
and 6.2.

3 Semi-wavefronts

In this section, we show the existence of strict semi-wavefronts to Equation (1.1) when ρ lies
in intervals where D satisfies either (Dpn) or (Dnp) and has constant sign. These intervals
are (0, α) or (α, 1) in the case (Dpn), and (0, β) or (β, 1) in the case (Dnp). We present
in Subsection 3.1 the cases where D > 0 and in Subsection 3.2 the cases where D < 0;
we also provide the thresholds c∗p,r, c

∗
p,l, c

∗
n,l, c

∗
n,r and their estimates. For simplicity, we

always assume conditions (g) and either (Dpn) or (Dnp); it is clear, however, that all results
below hold under much lighter assumptions, involving only that part of the conditions above
corresponding to the interval under consideration. For instance, Lemma 3.1 below only
requires D ∈ C1[0, α], D > 0 in (0, α), D(α) = 0 and g(0) = 0.

We point out that the results that we list in Subsection 3.1 are essentially already known;
they are contained in [6], for what concerns (0, α) and in [10] for (β, 1). The results contained
in Subsection 3.2 are instead new, to the best of our knowledge, and derive by those in
Subsection 3.1 by suitable changes of variable.

3.1 Positive-diffusivity regimes

We first focus on the problem
ż(ϕ) = h(ϕ)− c− (Dg)(ϕ)

z(ϕ) if ϕ ∈ (0, α),

z(ϕ) < 0 if ϕ ∈ (0, α),

z(0) = 0.

(3.1)

Below, s−(α, c) is given by (2.7).

Lemma 3.1. Assume (f), (Dpn), (g) and (2.2)1. Then, there exists c∗p,r ∈ R satisfying (2.3)
such that the following holds.

(1) There exists a unique z ∈ C0[0, α]∩C1(0, α) satisfying (3.1) with the additional condition
z(α) = 0 if and only if c ≥ c∗p,r.

(2) For every c > c∗p,r, there exists β = β(c) < 0 such that (3.1) with the additional condition
z(α) < 0 admits a unique solution z ∈ C0[0, α] ∩ C1(0, α) if and only if z(α) ≥ β.

(3) For no c < c∗p,r problem (3.1) admits solutions.

If c ≥ c∗p,r and z ∈ C0[0, α] ∩ C1 (0, α) is the solution of (3.1) with z(α) = 0, then

lim
ϕ→α−

D(ϕ)

z(ϕ)
=
s−(α, c)

g(α)
. (3.2)

Proof. It is sufficient to apply [6, Propositions 4.1, 5.1 and 6.2, Corollary 5.3 and Lemma
9.1].
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As already mentioned in the Introduction, the interest of the formula (3.2) lies in the
fact that we shall apply Lemma 3.1 to z(ϕ) = D(ϕ)ϕ′, and then D/z coincides with 1/ϕ′.

The next proposition deals with the existence and regularity of strict semi-wavefronts.
We attract the attention on the existence of a whole family of semi-wavefronts ϕ`, which are
parameterized by ` ∈ [β(c), 0]. We refer to Figure 7.

ρ
α

D

10

g

ξ

ϕ

ξα

α

1

ρβ

D

1

g

ξ

ϕ

ξβ

β

1

Figure 7: Above: D satisfies (Dpn): Left: in thick lines we highlight the plots of D, g
in [0, α]; right, a corresponding profile, see Proposition 3.1. Below: D satisfies (Dnp); we
highlight the plots in [β, 1] of D, g; right, a corresponding profile, see Proposition 3.2.

Proposition 3.1. Assume (f), (Dpn), (g), (2.2)1 and let c∗p,r be the threshold defined in
Lemma 3.1. Then, Equation (1.1) has strict semi-wavefronts to 0, connecting α to 0, if and
only if c ≥ c∗p,r. If ϕ is the profile of one of them, then

ϕ′(ξ) < 0 for any 0 < ϕ(ξ) < α. (3.3)

For c > c∗p,r, every profile is uniquely determined (up to space shifts) by the value(
D (ϕ)ϕ′

)
(ξ+
α ) =: ` ∈ [β(c), 0], (3.4)

where ξα ∈ R is such that (ξα,+∞) is the maximal-existence interval of ϕ.
If ϕ` is the profile satisfying (3.4), then ϕ′`(ξ

+
α ) = −∞ if ` ∈ [β(c), 0), while

ϕ′0(ξ+
α ) =


g(α)

s−(α,c) if Ḋ(α) < 0 or c > h(α),

−∞ if Ḋ(α) = 0 and c ≤ h(α).
(3.5)

Proof. The first part of the proposition has been proved in [6, Theorem 2.1] by using those
results regarding (3.1) which are contained in [6] and collected in Lemma 3.1. The second
part follows from [6, Remark 9.2].
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Remark 3.1. Every semi-wavefront ϕ given in Proposition 3.1 satisfies(
D (ϕ)ϕ′

) (
ξ−0

)
= 0, (3.6)

(see e.g. [6, formula (9.19)]), where ξ0 = sup
{
ξ > ξα : ϕ(ξ) > 0

}
∈ (ξα,+∞].

We now consider the following problem:
ż(ϕ) = h(ϕ)− c− (Dg)(ϕ)

z(ϕ) if ϕ ∈ (β, 1),

z(ϕ) < 0 if ϕ ∈ (β, 1),

z(1) = 0.

(3.7)

We provide the companion of Lemma 3.1 for problem (3.7).

Lemma 3.2. Assume (f), (Dnp) and (g). Then, for every c ∈ R, Problem (3.7) admits a
unique solution z ∈ C0 [β, 1] ∩ C1 (β, 1). Moreover, there exists c∗p,l ∈ R satisfying (2.11)
such that z(β) = 0 if and only if c ≥ c∗p,l and it holds that

lim
ϕ→β+

D(ϕ)

z(ϕ)
=


s−(β,c)
g(β) < 0 if c > c∗p,l,

s+(β,c∗p,l)

g(β) < 0 if c = c∗p,l and Ḋ(β) > 0,

0 if c = c∗p,l and Ḋ(β) = 0 or c < c∗p,l.

(3.8)

Proof. The existence of a unique solution z to problem (3.7), its regularity and the existence
of the threshold c∗p,l such that z(β) = 0 if and only if c ≥ c∗p,l, follow by [10, Theorem 2.6].
Also, after a straightforward horizontal shift, the restrictions to [β, 1] of D, g and h fit with
the assumptions of their companions in [6, Proposition 4.1, Remark 5.1 and Corollary 5.3].
Moreover, as in Lemma 3.1, we apply the results quoted just above to obtain (2.11) in the
interval [β, 1] instead of [0, α]. Moreover, in this case also (2.4) holds, since ϕ 7→ (Dg)(ϕ) is
differentiable at ϕ = 0 (see [29, Theorem 3.1]). Thus, we have (2.11) after observing that, in
virtue of (Dnp) and (g), D+ (Dg) (β) = Ḋ(β)g(β). Finally, the proof of (3.8) was essentially
contained in [10] (see [10, proof of Theorem 2.5]).

Existence and regularity of semi-wavefronts from 1, connecting 1 to β was obtained
essentially in [10, Theorem 2.7] in the case D(1) > 0 and [8, Theorems 2.3 and 2.5] when
D(1) = 0, starting from results analogous to those in Lemma 3.2. We collect these results
in the next proposition. With respect to the quoted results in [10] and [8], we obtain here
the sharper estimate (2.11) for the threshold c∗p,l. We refer to Figure 7.

Proposition 3.2. Assume (f), (Dnp), (g). Then, for every c ∈ R, Equation (1.1) has a
(unique up to space shifts) strict semi-wavefront solution from 1, connecting 1 to β, with
speed c and profile ϕ defined in its maximal-existence interval (−∞, ξβ), for some ξβ ∈ R.
It holds that ϕ′ < 0 if β < ϕ < 1.

Let c∗p,l be as in Lemma 3.2. Then, (2.10) holds true and we have

ϕ′(ξ−β ) =


g(β)

s−(β,c) if c > c∗p,l,

g(β)

s+
(
β,c∗p,l

) if c = c∗p,l and Ḋ(β) > 0,

−∞ if c = c∗p,l and Ḋ(β) = 0 or c < c∗p,l.

(3.9)
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Moreover, the following results hold

(i) If D(1) > 0, then ϕ is classical and strictly decreasing.

(ii) If D(1) = 0 and either c > h(1) or c = h(1) and Ḋ(1) < 0 then ϕ is classical.

(iii) If D(1) = 0 and c < h(1) then ϕ is sharp at 1 (reached at some ξ1 < ξβ) with

ϕ′(ξ+
1 ) =


h(1)−c
Ḋ(1)

< 0 if Ḋ(1) < 0,

−∞ if Ḋ(1) = 0.

3.2 Negative-diffusivity regimes

In this subsection, we consider Equation (1.1) in the backward parabolic regions (α, 1) and
(0, β). Semi-wavefronts in such cases can be determined starting from solutions of proper
first order problems, as well as in Subsection 3.1. Nevertheless, a simple argument shows
that we can exploit the existence of semi-wavefronts given in Propositions 3.1 and 3.2 to
directly derive the corresponding results in this subsection. We follow the latter strategy.

Proposition 3.3. Assume (f), (Dpn), (g) and (2.2)2. There exists c∗n,l ∈ R satisfying (2.5)
such that Equation (1.1) admits strict semi-wavefronts from 1, connecting 1 to α, with speed
c, if and only if c ≥ c∗n,l.

Moreover, if ϕ is the non-increasing profile of one of such fronts, then it holds that

ϕ′(ξ) < 0 if α < ϕ(ξ) < 1. (3.10)

For c > c∗n,l, there exists γ(c) > 0 such that every profile is uniquely determined (up to space
shifts) by the value (

D (ϕ)ϕ′
)

(ξ−α ) =: s ∈ [0, γ(c)], (3.11)

where ξα ∈ R is such that (−∞, ξα) is the maximal-existence interval of ϕ.
If ϕs is the profile satisfying (3.11), then ϕ′s(ξ

−
α ) = −∞ if s ∈ (0, γ(c)], while

ϕ′0(ξ−α ) =


g(α)

s−(α,c) if Ḋ(α) < 0 or c > h(α),

−∞ if Ḋ(α) = 0 and c ≤ h(α).
(3.12)

Proof. We refer to Figure 8. Take, for ϕ ∈ [0, 1],

D̄ (ϕ) := −D (1− ϕ) , ḡ (ϕ) := g (1− ϕ) , f̄ (ϕ) := f(1)− f (1− ϕ) . (3.13)

Set ᾱ := 1−α. It is plain to verify that D̄, ḡ, f̄ satisfy (Dpn) with ᾱ replacing α, (g), (f) and

(2.2)1. Set h̄ = ˙̄f . We then apply Proposition 3.1 to deduce that there exists a real value c∗

satisfying

max

{
h̄(0) + 2

√
D+

(
D̄ḡ
)

(0), sup
(0,ᾱ]

δ
(
f̄ , 0
)}
≤ c∗ ≤ sup

(0,ᾱ]
δ
(
f̄ , 0
)

+ 2
√

sup
(0,ᾱ]

δ (Dg, 0)

such that there exist strict semi-wavefronts connecting 0 to ᾱ, with speed c, if and only if
c ≥ c∗. Direct manipulations show that the above chain of inequalities coincides with (2.5),
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in virtue of (3.13). Fix c ≥ c∗ and let ϕᾱ,0 be the profile of a semi-wavefront connecting ᾱ
to 0, having speed c, given by Proposition 3.1. Moreover, assume that ϕᾱ,0 is maximally
defined in (ξᾱ,+∞). Define then ϕ1,α : (−∞,−ξᾱ)→ R by

ϕ1,α(ξ) := 1− ϕᾱ,0 (−ξ) for ξ < ξα := −ξᾱ. (3.14)

Notice that, because ϕᾱ,0 connects ᾱ to 0, then (3.14) implies

lim
ξ→−∞

ϕ1,α(ξ) = 1 and lim
ξ→ξ−α

ϕ1,α(ξ) = α,

thus ϕ1,α connects 1 to α. Also, from (3.14) and D̄
(
ϕᾱ,0

)
ϕ′ᾱ,0 ∈ L1 (ξᾱ,∞), we have

D
(
ϕ1,α

)
ϕ′1,α ∈ L1 (−∞, ξα). Since ϕᾱ,0 satisfies (1.2), with D̄, ḡ, h̄, in (ξᾱ,+∞) for c ≥ c∗,

then direct computations show that ϕ1,α satisfies (1.2) in (−∞, ξα) with the same c. Solutions
are always meant in the sense of Definition 2.1.

Viceversa, let ϕ be a profile of a strict semi-wavefront of (1.1), connecting 1 to α asso-
ciated to some c ∈ R, defined maximally in (−∞, 0). By setting

ϕᾱ,0(τ) := 1− ϕ (−τ) for τ > 0, (3.15)

we obtain the profile of a strict semi-wavefront, from ᾱ to 0, of Equation (1.2) (with D̄, ḡ
and f̄ as in (3.13)) associated to the speed c. By applying Proposition 3.1 we deduce that
c ≥ c∗. The first part of the statement is hence proved, with the choice c∗n,l = c∗ defined
above.

Finally, (3.10)–(3.12) follow by (3.14) and Proposition 3.1, for γ(c) := −β(c).

Remark 3.2. According to (3.14) and Remark 3.1, every semi-wavefront ϕ given in Propo-
sition 3.3 satisfies (

D (ϕ)ϕ′
) (
ξ+

1

)
= 0, (3.16)

where ξ1 := inf
{
ξ < ξα : ϕ(ξ) < 1

}
∈ [−∞, ξα).

Proposition 3.4. Assume (f), (Dnp) and (g). For every c ∈ R, Equation (1.1) has a
(unique up to space shifts) strict semi-wavefront solution to 0, connecting β to 0, with speed
c and profile ϕ defined in its maximal-existence interval (ξβ,+∞), for some ξβ ∈ R. It holds
that ϕ′ < 0 if 0 < ϕ < β. In addition,there exists c∗n,r ∈ R such that (2.13) holds true and
we have

ϕ′(ξ+
β ) =


g(β)

sβ−(c)
if c > c∗n,r,

g(β)

sβ+(c∗n,r)
if c = c∗n,r and Ḋ(β) > 0,

−∞ if c < c∗n,r or c = c∗n,r and Ḋ(β) = 0.

(3.17)

Moreover, the following results hold.

(i) If D(0) < 0, then ϕ is classical and strictly decreasing.

(ii) If D(0) = 0 and either c > h(0) or c = h(0) and Ḋ(0) < 0 then ϕ is classical;
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Figure 8: Above: on the left, D, g satisfying (Dpn), (g) (in thick lines their profiles in
(α, 1)), on the right, a profile (see Proposition 3.3). Below: on the left, D, g satisfying
(Dnp), (g) (in thick lines their profiles in (0, β)), on the right, a profile (see Proposition
3.4).

(iii) If D(0) = 0 and c < h(0) then ϕ is sharp at 0 (reached at some ξ0 > ξβ) with

ϕ′(ξ−0 ) =


h(0)−c
Ḋ(0)

< 0 if Ḋ(0) < 0,

−∞ if Ḋ(0) = 0.

Proof. We refer to Figure 8. Let D̄, ḡ and f̄ be defined by (3.13). We already observed in
the proof of Proposition 3.3 that ḡ and f̄ still satisfy (g) and (f). In this case, instead, D̄
satisfies (Dnp) with β̄ := 1 − β replacing β. Hence, Proposition 3.2 applied to D̄, ḡ and f̄
informs us that strict semi-wavefronts with speed c ∈ R connecting 1 to β̄ exist for every
arbitrary c. Let ϕ1,β̄ be a profile of one of such fronts, defined in (−∞, ξβ̄). Set ξβ := −ξβ̄
and

ϕβ,0(ξ) := 1− ϕ1,β̄(−ξ) for ξ > ξβ. (3.18)

With analogous arguments to those in the proof of Proposition 3.3, it turns out that ϕβ,0
is the profile of a desired strict semi-wavefront of (1.1), connecting β to 0. Hence, the first
part of the statement is proved. By Lemma 3.2 and Proposition 3.2 applied to D̄, ḡ and f̄ ,
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in the interval [β̄, 1], we obtain that there exists a real value, say c̄∗, satisfying

max

sup
(β̄,1]

δ(f̄ , β̄), h̄(β̄) + 2

√
˙̄D(β̄)ḡ(β̄)

 ≤
c̄∗ ≤ sup

(β̄,1]

δ(f̄ , β̄) + 2

√
sup

ϕ∈(β̄,1]

1

ϕ− β̄

∫ ϕ

β̄

D̄(s)ḡ(s)

s
ds

such that (
D̄(ϕ1,β̄)ϕ′1,β̄

)
(ξ−
β̄

) =

{
0 if c ≥ c̄∗,
` < 0 if c < c̄∗,

and

ϕ′1,β̄(ξ−
β̄

) =


ḡ(β̄)

s̄−(β̄,c)
if c > c̄∗,

ḡ(β̄)

s̄+(β̄,c̃∗)
if c = c̄∗ and ˙̄D(β̄) > 0,

−∞ if c = c̄∗ and ˙̄D(β̄) = 0 or c < c̄∗.

(3.19)

Here, s̄± is defined as s± in (2.7) but with D̄, ḡ and h̄ instead of the non-subscripted ones.
Define c∗n,r = c̄∗. The former of the two previous formulas reads as

(
D(ϕβ,0)ϕ′β,0

)
(ξ+
β ) =

{
0 if c ≥ c∗n,r,
−` > 0 if c < c∗n,r,

which is (2.13). Analogously, (3.19) implies (3.17). Finally, (i)–(iii) follow from the applica-
tion of (i)–(iii) of Proposition 3.2 to ϕ1,β̄ and (3.18)-(3.13). The proof is then concluded.

4 Wavefronts under one-sign-changing diffusivities

In this section, by taking advantage of the results showed in the previous sections, we prove
Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Let c∗p,r and c∗n,l be the thresholds given in Proposition 3.1 and 3.3,
respectively, and define c∗pn as in (2.6).

First, we take c ≥ c∗pn and prove that there is a wavefront to equation (1.1) that satisfies
(1.3) and has speed c. Proposition 3.1 informs us that, associated to such a value of c, there
exists a strict semi-wavefront to 0 with wave speed c, connecting α to 0, such that its wave
profile, that we call ϕ0 according to the notation introduced in the statement of Proposition
3.1, satisfies (

D (ϕ0)ϕ′0
)

(ξ+
α ) = 0, (4.1)

see (3.4). In (4.1), the value ξα, which is finite because we are considering a strict semi-
wavefront, is such that ϕ0 is maximally defined in (ξα,+∞). Analogously, from Proposition
3.3, we have that there exists a semi-wavefront from 1 with wave speed c, which connects 1
to α and such that its profile ψ0 realizes(

D (ψ0)ψ′0
)

(ξ−α ) = 0, (4.2)
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see (3.11). Here, we assumed that ψ0 is maximally defined in (−∞, ξα); this is always
possible unless of shifting ψ0. We refer to Remark 4.2 for the reasons of the choices of ϕ0

and ψ0.
Let ξ1, ξ0 ∈ R be such that

ξ0 := sup
{
ξ > ξα : ϕ0(ξ) > 0

}
∈ (ξα,+∞],

ξ1 := inf
{
ξ < ξα : ψ0(ξ) < 1

}
∈ [−∞, ξα),

see Figure 9. Define then the function ϕ = ϕ(ξ) by

ϕ(ξ) =

{
ϕ0(ξ), ξ ≥ ξα,
ψ0(ξ), ξ < ξα.

(4.3)

It is clear that ϕ is well-defined and continuous in (−∞,+∞); moreover, ϕ is non-increasing
and connects 1 to 0. Since both ϕ0 and ψ0 satisfy (1.2) in their domains, then ϕ satisfies
(1.2) pointwise in (−∞, ξ1) ∪ (ξ1, ξα) ∪ (ξα, ξ0) ∪ (ξ0,+∞).

ξξα

ϕ

ψ0

ϕ0

ϕ

ξ0

ψ0
α

1

ξ1

ϕ0

Figure 9: Construction of the profile ϕ in the case ξ0, ξ1 ∈ R.

Formula (4.1) together with (4.2) implies that D(ϕ)ϕ′ is continuously extended up to
ξ = ξα; we have (

D (ψ0)ψ′0
)

(ξ+
1 ) = 0 and

(
D (ϕ0)ϕ′0

)
(ξ−0 ) = 0. (4.4)

Formula (4.4)2 follows from (3.6) applied to ϕ0 and (4.4)1 follows from (3.16) applied to ψ0.
Hence, we showed that D(ϕ)ϕ′ ∈ L1

loc(−∞,+∞). It remains to show that ϕ is a solution
of (1.2) in (−∞,+∞), according to Definition 2.1. To this purpose, take ζ ∈ C∞0 (−∞,∞).
Since ϕ is a distributional solution of (1.2) in both (−∞, ξα) and (ξα,+∞), then we can
reduce to test (2.1) when supp ζ ⊆ [ξα− δ, ξα + δ] ⊂ (ξ1, ξ0), for some δ > 0. Hence, we need
to test whether ∫ ξα+δ

ξα−δ

(
D (ϕ)ϕ′ − f (ϕ) + cϕ

)
ζ ′ − g (ϕ) ζ dξ = 0. (4.5)

Clearly, the left-hand side of (4.5) equals∫ ξα

ξα−δ

(
D (ψ0)ψ′0 − f (ψ0) + cψ0

)
ζ ′ − g (ψ0) ζ dξ+∫ ξα+δ

ξα

(
D (ϕ0)ϕ′0 − f (ϕ0) + cϕ0

)
ζ ′ − g (ϕ0) ζ dξ. (4.6)
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Let us focus on the former addend of (4.6). We have:∫ ξα

ξα−δ

(
D (ψ0)ψ′0 − f (ψ0) + cψ0

)
ζ ′ − g (ψ0) ζ dξ =

lim
δ>ε→0+

∫ ξα−ε

ξα−δ

(
D (ψ0)ψ′0 − f (ψ0) + cψ0

)
ζ ′ − g (ψ0) ζ dξ =

lim
δ>ε→0+

((
D (ψ0)ψ′0

)
(ξα − ε)− f

(
ψ0 (ξα − ε)

)
− cψ0 (ξα − ε)

)
ζ (ξα − ε) =(

D (ψ0)ψ′0
) (
ξ−α

)
ζ (ξα)−

(
f (α)− cα

)
ζ (ξα) = −

(
f (α)− cα

)
ζ (ξα) . (4.7)

Similar arguments involving the latter addend of (4.6) lead to∫ ξα+δ

ξα

(
D (ϕ0)ϕ′0 − f (ϕ0) + cϕ0

)
ζ ′ − g (ϕ0) ζ dξ =

−
(
D (ϕ0)ϕ′0

) (
ξ+
α

)
ζ (ξα) +

(
f(α)− cα

)
ζ (α) =

(
f(α)− cα

)
ζ (ξα) . (4.8)

Putting together (4.7) and (4.8) proves (4.5).

Conversely, we prove that if there exists a wavefront with speed c, whose profile ϕ is
non-increasing and satisfies (1.2)-(1.3), then c ≥ c∗pn. Let ξα ∈ R be such that ϕ(ξα) = α.
Such a ξα obviously exists since ϕ is continuous and satisfies (1.3). Furthermore, we have

{ϕ = α} = {ξα} . (4.9)

Indeed, otherwise there exists an open set J ⊂ {ϕ = α} where ϕ is constantly equal to α.
Thus, in J , equation (1.2) for ϕ reduces to g(α) = 0, which is clearly forbidden by (g). Then,
we proved (4.9).

The function ϕα,0 : (ξα,+∞) → (0, α), defined by ϕα,0 = ϕ, is a strict semi-wavefront
to 0 with speed c, connecting α to 0, and the function ϕ1,α : (−∞, ξα) → (α, 1), defined
by ϕ1,α = ϕ, is a strict semi-wavefront from 1, with speed c, connecting 1 to α. From
Propositions 3.1 and 3.3, both c ≥ c∗p,r and c ≥ c∗n,l must occur. Hence, c ≥ c∗pn, and the
first part of Theorem 2.1 is proved.

To conclude the proof, we apply [6, Corollary 9.1] to ϕα,0 (defined just above) and to
ϕᾱ,0 (defined by (3.15)). �

Remark 4.1 (Estimates for c∗pn). We now explicitly provide estimates for the threshold c∗pn
in (2.6). Obviously, c∗pn inherits the bounds, from above and below, for both c∗p,r and c∗n,l.
Such estimates are contained in Propositions 3.1 and 3.3. We hence have:

c∗pn ≥ max

{
sup
(0,α]

δ(f, 0), sup
[α,1)

δ(f, 1), h(0) + 2
√
D+ (Dg) (0), h(1) + 2

√
D− (Dg) (1)

}
,

and

c∗pn ≤ max

sup
(0,α]

δ(f, 0) + 2
√

sup
(0,α]

δ(Dg, 0), sup
[α,1)

δ(f, 1) + 2
√

sup
[α,1)

δ(Dg, 1)

 .

If f is identically zero, such an estimate was given in [25, formula (14) in Theorem 1].
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Remark 4.2. It is worth emphasizing that, among the profiles in the families

{ϕ` : ` ∈ [β, 0]} and {ψs : s ∈ [0, γ]},

given by Propositions 3.1 and 3.3 respectively, we can only benefit from ϕ0 and ψ0 to
construct a wavefront as in Theorem 2.1. In particular, we can take advantage only of those
profiles whose associated functions z and w vanish at both the extrema of their domains. In
all the other cases, the pasting of a profile ϕ` with a profile ψs does not provide a solution
(according to the distributional sense of Definition 2.1) in a neighborhood of the matching
point. Indeed, under these assumptions, (4.7) and (4.8) read respectively as∫ ξα

ξα−δ

(
D (ψs)ψ

′
s − f(ψs) + cψs

)
ζ ′ − g(ψs)ζ dξ =

[
s+ cα− f(α)

]
ζ(ξα), (4.10)∫ ξα+δ

ξα

(
D (ϕ`)ϕ

′
` − f(ϕ`) + cϕ`

)
ζ ′ − g(ϕ`)ζ dξ =

[
−`− cα+ f(α)

]
ζ(ξα). (4.11)

Thus, in place of (4.5), putting together (4.10) and (4.11) gives∫ ξα+δ

ξα−δ

(
D (ϕ)ϕ′ − f(ϕ) + cϕ

)
ζ ′ − g(ϕ)ζ dξ = (s− `) ζ(ξα), (4.12)

which vanishes for each arbitrary test function ζ if and only if s = ` = 0.
In the first instance, this seems to be suggested by the fact that if, formally,

z(α) = D
(
ϕ(ξα)

)
ϕ′(ξ−α ) = D(α)ϕ′(ξ−α ) < 0,

then necessarily ϕ′(ξ−α ) = −∞, because D(α) = 0; the same remark holds if w(α) > 0.
Nonetheless, the failure of the pasting is not due to a possibly infinite derivative of the
profile at the matching point; indeed, Theorem 2.1 (ii) shows that the wavefront ϕ can well
have infinite slope at ξα, see profile ϕ2 in Figure 5.

The reason is deeper and lies in the same meaning of distributional solution, which
essentially prescribes the L1-balance of the quantity ρ across any curve in the (x, t)-plane,
by using the Gauss-Green Theorem. In our case (i.e., for traveling waves) such a condition
simply amounts to the vanishing of the traces of D(ϕ)ϕ′ on both sides of the matching point,
which corresponds to a whole line in the (x, t)-plane.

Proof of Theorem 2.2. Note, for each c ∈ R, Propositions 3.2 and 3.4 provide (respectively)
the existence of a strict semi-wavefront ϕ1,β from 1, connecting 1 to β, and a strict semi-
wavefront ϕβ,0 to 0, connecting β to 0. Let c∗np be as in (2.14), where c∗n,r and c∗p,l are those
of Propositions 3.4 and 3.2, respectively. Take c ≥ c∗np. Proposition 3.2 informs us that ϕ1,β

satisfies (2.13)1 while Proposition 3.4 implies that ϕβ,0 realizes (2.10)1. In addition, from
the uniqueness up to horizontal translations of both ϕ1,β and ϕβ,0, we can suppose without
loss of generality that their maximal-existence intervals are one the complement of the other
and that the two of them have the finite extremum at the same ξβ ∈ R. Thus, by proceeding
in the same spirit of the proof of Theorem 2.1, we conclude that gluing together, at ξβ, ϕ1,β

and ϕβ,0 produces the desired wavefront. In particular, take ζ ∈ C∞0 (−∞,+∞) such that
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supp ζ ⊆
[
ξβ − δ, ξβ + δ

]
, for δ > 0 small enough. Then, we have∫ ξβ

ξβ−δ

(
D
(
ϕ1,β

)
ϕ′1,β − f

(
ϕ1,β

)
+ cϕ1,β

)
ζ ′ − g

(
ϕ1,β

)
ζ dξ =

lim
δ>ε→0+

∫ ξβ−ε

ξβ−δ

(
D
(
ϕ1,β

)
ϕ′1,β − f

(
ϕ1,β

)
+ cϕ1,β

)
ζ ′ − g

(
ϕ1,β

)
ζ dξ =

lim
δ>ε→0+

((
D
(
ϕ1,β

)
ϕ′1,β

)
(ξβ − ε)− f

(
ϕ1,β(ξβ − ε)

)
+ cϕ1,β(ξβ − ε)

)
ζ(ξβ − ε) =(

D
(
ϕ1,β

)
ϕ′1,β

)(
ξ−β

)
ζ
(
ξβ
)
−
(
f(β)− cβ

)
ζ
(
ξβ
)

= −
(
f(β)− cβ

)
ζ
(
ξβ
)
.

Analogously, we have∫ ξβ+δ

ξβ

(
D
(
ϕβ,0

)
ϕ′β,0 − f

(
ϕβ,0

)
+ cϕβ,0

)
ζ ′ − g

(
ϕβ,0

)
ζ dξ =

lim
δ>ε→0+

∫ ξβ+δ

ξβ+ε

(
D
(
ϕβ,0

)
ϕ′β,0 − f

(
ϕβ,0

)
+ cϕβ,0

)
ζ ′ − g

(
ϕβ,0

)
ζ dξ =

lim
δ>ε→0+

(
−
(
D
(
ϕβ,0

)
ϕ′β,0

)
(ξβ + ε) + f

(
ϕβ,0(ξβ + ε)

)
− cϕβ,0(ξβ + ε)

)
ζ(ξβ + ε) =(

−D
(
ϕβ,0

)
ϕ′β,0

)(
ξ+
β

)
ζ
(
ξβ
)

+
(
f(β)− cβ

)
ζ
(
ξβ
)

=
(
f(β)− cβ

)
ζ
(
ξβ
)
.

Thus, we obtain the analog of (4.5), from which we conclude the if part of the statement.
Suppose now that ϕ is a profile of a wavefront connecting 1 to 0 associated to some

c ∈ R. Necessarily, there exists a unique ξβ ∈ R such that ϕ(ξβ) = β. Let ϕ+ be defined by
ϕ+(ξ) = ϕ(ξ), for ξ ∈ (−∞, ξβ). Here, the index “+” stands for the positive sign of D (ϕ+)
in its domain. The function ϕ+ is a semi-wavefront from 1, connecting 1 to β. Analogously,
ϕ− defined by ϕ−(ξ) = ϕ(ξ), for ξ ∈ (ξβ,+∞) is a semi-wavefront to 0, connecting β to
0. The function ϕ is a solution of Equation (1.2), according to Definition 2.1. Thus, if
ζ ∈ C∞0 (−∞,+∞) is a test function with supp ζ ⊆

[
ξβ − δ, ξβ + δ

]
then we have∫ ξβ+δ

ξβ−δ

(
D (ϕ)ϕ′ − f (ϕ) + cϕ

)
ζ ′ − g (ϕ) ζ dξ = 0. (4.13)

Observe that both ϕ+ and ϕ− are classical solution of (1.2) in (−∞, ξβ) and (ξβ,+∞), re-

spectively, because in these domains ±D (ϕ±) > 0. Since
∫ ξβ+δ
ξβ−δ = limδ>ε→0+

∫ ξβ−ε
ξβ−δ +

∫ ξβ+δ
ξβ+ε ,

from (4.13) and integration by parts we obtain(
D (ϕ+)ϕ′+

) (
ξ−β

)
ζ(ξβ) = 0 and

(
D (ϕ−)ϕ′−

) (
ξ+
β

)
ζ(ξβ) = 0.

Therefore, (2.10)1 for ϕ+ and (2.13)1 for ϕ− both hold true. As a consequence, by applying
Proposition 3.2 to ϕ+ and Proposition 3.4 to ϕ− we deduce that c ≥ c∗p,l and c ≥ c∗n,r, from
which c ≥ c∗np.

Finally, Parts (1)–(4) follow from each possible combination of (3.9) applied to ϕ+ and
(3.17) applied to ϕ−; Analogously, Parts (i)–(iii) follow from putting together Parts (i)–(iii)
of Proposition 3.2 applied to ϕ+ and Parts (i)–(iii) of Proposition 3.4 applied to ϕ−. �
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Remark 4.3. In Remark 4.1 we deduced estimates from above and below for c∗pn. Bounds
for c∗np of Theorem 2.2 can be obtained similarly, starting now from (2.11), (2.12) and (2.14).

5 Examples

In this section we provide some examples about Theorems 2.1 and 2.2 showing some peculiar
features of the thresholds and the related solutions.

Example 5.1. This example shows that (2.8)2 can indeed occur when a front goes from a
positive- towards a negative-diffusivity region and the term f is not identically zero. Consider
D, g and f defined by

D(ϕ) =

ϕ
(
ϕ− 1

2

)2
if ϕ ∈ [0, 1/2],

− (1− ϕ)
(

1
2 − ϕ

)2
if ϕ ∈ (1/2, 1],

g(ϕ) =

{
ϕ if ϕ ∈ [0, 1/2],

1− ϕ if ϕ ∈ (1/2, 1],

and

f(ϕ) =

ϕ3

3 + 3
4ϕ

2 − 1
2ϕ if ϕ ∈ [0, 1/2],

ϕ3

3 −
7
4ϕ

2 + 2ϕ− 5
8 if ϕ ∈ (1/2, 1].

Note, with these choices, D satisfies (Dpn) with α = 1/2 and Ḋ(α) = 0 while (g)
and (f) hold for g and f . Moreover, h(α) = 1/2. From direct inspection, the function
z(ϕ) := ϕ

(
ϕ− 1/2

)
, for 0 ≤ ϕ ≤ 1/2, satisfies (3.1) with c = 0 < h(α). By integrating the

formal identity z(ϕ) = D(ϕ)ϕ′, the profile ϕα,0 of a semi-wavefront connecting α to 0, with
speed c = 0, can be determined. In particular, the following Cauchy problem:

ϕ′ =
1

ϕ− 1/2
and ϕ(0) =

1

4
,

is solved by ϕα,0(ξ) := 1
2 −

√
1
16 + 2ξ, for any ξ ≥ − 1

32 , and ϕ > 0 for ξ < 3
32 . Since

g(0) = 0, by setting ϕα,0(ξ) = 0 for ξ ≥ 3
32 we have that ϕα,0 : (− 1

32 ,+∞)→ [0, 1/2) is the
desired wave profile associated to the speed c = 0. Moreover, with the notations of Theorem
2.1, ξα = − 1

32 and ϕ′α,0
(
ξ+
α

)
= −∞. Similar arguments lead to conclude that the function

ϕ = ϕ(ξ) defined by

ϕ(ξ) :=


1 if ξ ≤ −5/32,
1
2 +

√
−1/16− 2ξ if − 5/32 < ξ < −1/32,

1
2 −

√
1/16 + 2ξ if − 1/32 ≤ ξ < 3/32,

0 if ξ ≥ 3/32,

is the profile of a (sharp at both 0 and 1) wavefront of (1.1) with speed c = 0, such that
ϕ′
(
ξ±α
)

= −∞. Observe, from Part (ii) of Theorem 2.1 it must occur c∗pn = 0.

Example 5.2. We show that c∗pn in Theorem 2.1 and c∗np in Theorem 2.2 are essentially
different: opposite diffusivities do not produce necessarily c∗pn = c∗np. To this aim, define

g(ϕ) :=

 ϕ2 if ϕ ∈
[
0, 1/2

]
,

(1− ϕ)2 if ϕ ∈
(
1/2, 1

]
,

f(ϕ) :=

 ϕ2 (ϕ− 1) if ϕ ∈
[
0, 1/2

]
,

ϕ(1− ϕ)2 − 1/4 if ϕ ∈
(
1/2, 1

]
.
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The functions g and f satisfy (g) and (f). Let D1 and D2 be defined by

D1(ϕ) :=

 ϕ
(
1/2− ϕ

)
if ϕ ∈

[
0, 1/2

]
,

− (1− ϕ)
(
ϕ− 1/2

)
if ϕ ∈

(
1/2, 1

]
,

D2(ϕ) = −D1(ϕ) for ϕ ∈ [0, 1].

With these choices, D1 satisfies (Dpn) with α = 1/2 and D2 satisfies (Dnp) with β = 1/2.
From (2.3) and h(0) = ḟ(0) = 0 we have c∗p,r ≥ 0. Direct computations show that the
function z = z(ϕ) defined by

z(ϕ) := ϕ2
(
ϕ− 1/2

)
, ϕ ∈

[
0, 1/2

]
, (5.1)

solves ż = h−D1g/z in (0, 1/2), z < 0 in (0, 1/2) and z(0) = 0. From Lemma 3.1 we have
c∗p,r ≤ 0. Then, c∗p,r = 0 follows at once by (2.3). Also, the symmetry of the coefficients
implies that c∗n,l = c∗p,r = 0. Thus,

c∗pn = 0.

Observe that we actually need to involve z in (5.1) since none of the intervals given by (2.3)
and (2.5), even in the sharper form involving (2.4), reduce to the point {0}.

It is also worth noting that, starting from the formal identity ż(ϕ) = D(ϕ)ϕ′, (5.1),
we can explicitly compute the expression of the profile ϕ of the (unique, modulo horizontal
shifts) wavefront associated to c∗pn in the current case. We have:

ϕ(ξ) =


1
4e
−ξ ξ > log(1/2),

1− eξ ξ ≤ log(1/2),

where in the interval ξ ≤ log(1/2) we make use of the symmetry of the problem.
On the other hand, consider now D2, g and f together. We have

c∗p,l ≥ max

sup
( 1
2
,1]

δ
(
f, 1/2

)
, h(1/2) + 2

√
Ḋ2(1/2)g(1/2)

 > 0,

since h(1/2) = −1/4 and 2
√
Ḋ2(1/2)g(1/2) = 1/

√
2. It follows necessarily that

c∗np ≥ c∗p,l > 0.

Then, we proved that replacing D, which satisfies (Dpn), with −D, which then satisfies
(Dnp), one can get c∗np > c∗pn.

Example 5.3. In Theorem 2.2 the case c∗p,l 6= c∗n,r reveals the existence of unusual non-
regular fronts, where ϕ = β, while in the case c∗p,l = c∗n,r this is not possible. We now show
an example in either case.

First, assume that D and g satisfy (Dnp)-(g) and are such that Dg is convex in (0, β) and
concave in (β, 1). For instance, we can take β = 1

2 , D(ϕ) = ϕ − 1/2 and g(ϕ) = ϕ(1 − ϕ).
We plainly have

sup
ϕ∈[0,β)

1

β − ϕ

∫ β

ϕ

(Dg)(s)

s− β
ds = Ḋ(β)g(β) and sup

ϕ∈(β,1]

1

ϕ− β

∫ ϕ

β

(Dg)(s)

s− β
ds = Ḋ(β)g(β).
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Suppose also that f = 0 in [0, 1]. Under these assumptions, inequalities (2.11) and (2.12)
become indeed equalities:

c∗n,r = c∗p,l = c∗np = 2

√
Ḋ(β)g(β).

Second, consider D ∈ C1 [0, 1] such that D < 0 in (0, 1/2) and D(ϕ) =
(
ϕ− 1/2

)3
, for

ϕ ∈ [1/2, 1]; assume that g satisfies (g) with g(ϕ) = 1 − ϕ, for ϕ ∈ [1/2, 1], and let f be
defined by

f(ϕ) :=

 0 if ϕ ∈ [0, 1
2),(

ϕ− 1
2

)2 (
ϕ− 3

2

)
if ϕ ∈ [1

2 , 1].

For 1/2 ≤ ϕ ≤ 1, set

z(ϕ) :=

(
ϕ− 1

2

)2

(ϕ− 1) .

Such a z solves (3.7) with c = 0 in (1/2, 1). Moreover, since it also holds z(1/2) = 0, Lemma
3.2 in particular gives 0 ≥ c∗p,l. The left-hand side of (2.11) implies that c∗p,l ≥ 0, because

h(1/2) = ḟ(1/2) = 0. Thus, c∗p,l = 0. On the other hand, if we have h = 0 constantly in
(0, 1/2), then c∗n,r > 0 (as already observed in Introduction, for the case of non-negative D
we refer to [6, Remark 6.2] and reference therein; the case when D is negative is treated
similarly). Thus, in this case we have

c∗np = c∗n,r > c∗p,l.

Similarly, one can be provide examples where c∗np = c∗p,l > c∗n,r.

6 Wavefronts under two-sign-changing diffusivities

In this section we prove Theorems 2.3 and 2.4.

Proof of Theorem 2.3. We follow the main scheme of the proofs of Theorems 2.1 and 2.2.
We need to divide our problem in three sub-problems corresponding to the three connected
components of {D 6= 0}, that is, remembering (Dpnp), the intervals (0, α), (α, β) and (β, 1).
In the intervals (0, α) and (β, 1) we can apply the conclusions of Propositions 3.1 and 3.2,
respectively, because of the relevant assumptions there are satisfied by the current case.
Indeed, recall that the results of Section 3 hold lighter assumptions, as stated at the beginning
of that section.

Let c∗p,r and c∗p,l be the thresholds appearing in Propositions 3.1 and 3.2, respectively.
Hence, associated to the same speed c, both a semi-wavefront connecting α and 0, with
profile ϕα,0 satisfying (4.1) and a semi-wavefront connecting β to 1, whose profile is ϕ1,β

satisfying (2.10)1, are given, if and only if c ≥ max{c∗p,r, c∗p,l}.
We claim that there exists c∗αβ ∈ R such that the following holds: if and only if c ≥

c∗αβ, Equation (1.1) admits a strict TW, connecting β to α, whose non-increasing profile
ϕβ,α ∈ (α, β) is defined in some interval (ξβ, ξα), where −∞ < ξβ < ξα < +∞ are such that
ϕβ,α(ξ+

β ) = β and ϕβ,α(ξ−α ) = α and also(
D
(
ϕβ,α

)
ϕ′β,α

)(
ξ+
β

)
= 0 =

(
D
(
ϕβ,α

)
ϕ′β,α

)(
ξ−α

)
. (6.1)
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Indeed, if the claim is proven to hold, then by gluing together ϕ1,β, ϕβ,α and ϕα,0 (modulo
horizontal shifts if needed) we obtain the desired front of (1.1) satisfying (1.3), in virtue of
(6.1) and arguments analogous to those in the proof of Theorem 2.1. Clearly, we define

c∗pnp = max
{
c∗p,r, c

∗
p,l, c

∗
αβ

}
.

This proves the if part of Theorem 2.3. Viceversa, assume that a wavefront of (1.1), associ-
ated with a certain speed c, is given. With arguments similar to those in the proof of the only
if part of Theorems 2.1 and 2.2, such a wavefront can be decomposed into a semi-wavefront
which connects 1 to β whose profile satisfies (2.10), a strict TW connecting β to α and a
strict semi-wavefront connecting α to 0. Thus, as a consequence of Propositions 3.1 and 3.3,
the only if part of our claim implies c ≥ c∗pnp. Thus, Theorem 2.3 follows from the claim.
We refer to Figure 10.

ξ

ϕ

1

β

ξβ

α

ξα

ϕ1,β

ϕα,β

ϕα,0

Figure 10: The pasting of the profiles.

We prove the claim. First, observe that, in [α, β], we have D < 0 in (α, β), D(α) =
D(β) = 0 and g > 0 in [α, β]. Let D̄, ḡ and f̄ be defined, in [α, β], by

D̄(ϕ) = −D (α+ β − ϕ) , ḡ(ϕ) = g (α+ β − ϕ) , f̄(ϕ) = f(β)− f (α+ β − ϕ) .

Then, D̄ ∈ C1 [α, β], D̄ > 0 in (α, β) and D̄(α) = D̄(β) = 0, as well as ḡ ∈ C0 [α, β] and
ḡ > 0 in [α, β]. The function f̄ is of class C1 [α, β]. We apply [6, Proposition 4.1] to D̄, ḡ
and h̄, and conclude that there exist a unique solution z to

ż(ϕ) = h̄(ϕ)− c− D̄(ϕ)ḡ(ϕ)
z(ϕ) if ϕ ∈ (α, β),

z(ϕ) < 0 if ϕ ∈ (α, β),

z(α) = z(β) = 0,

(6.2)

if and only if c ≥ c∗, for some threshold c∗ ∈ R. Set c∗αβ = c∗. Moreover, as in (3.2) and
(3.8), we have

lim
ϕ→β−

D̄(ϕ)

z(ϕ)
=
s̄−(β, c)

ḡ(β)
if c ≥ c∗αβ and lim

ϕ→α+

D̄(ϕ)

z(ϕ)
=


s̄−(α,c)
ḡ(α) if c > c∗αβ,

s̄+(α,c∗αβ)

ḡ(α) if c = c∗αβ.
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Here s̄ refers to D̄, f̄ , ḡ. This means that w(ϕ) := −z(α+ β − ϕ) solves
ẇ(ϕ) = h(ϕ)− c− D(ϕ)g(ϕ)

w(ϕ) if ϕ ∈ (α, β),

w(ϕ) > 0 if ϕ ∈ (α, β),

w(α) = w(β) = 0,

(6.3)

if and only if c ≥ c∗αβ, and moreover we have

lim
ϕ→α+

D(ϕ)

w(ϕ)
=
s−(α, c)

g(α)
if c ≥ c∗αβ and lim

ϕ→β−
D(ϕ)

w(ϕ)
=


s−(β,c)
g(β) if c > c∗αβ,

s+(β,c∗αβ)

g(β) if c = c∗αβ.
(6.4)

We now determine profiles ϕα,β from w and viceversa. Since the procedure has been largely
investigated in the literature (see Introduction) we just resume here the main steps. Fix
c ≥ c∗αβ and let ϕ = ϕ(ξ) be determined by

ϕ′ =
w(ϕ)

D(ϕ)
and ϕ(0) =

α+ β

2
. (6.5)

Since all involved functions are smooth enough (at least near ϕ = α+β
2 ) there exists a unique

ϕ satisfying the Cauchy problem (6.5), defined in its maximal-existence interval (ξβ, ξα), for
some −∞ ≤ ξβ < ξα ≤ +∞. Also, ϕ(ξ+

β ) = β and ϕ(ξ−α ) = α. Direct computations show
that ϕ is a classical solution of (1.2) in (ξβ, ξα). Since (6.4) holds then it turns out that

ϕ′(ξ+
β ) < 0 and ϕ′(ξ+

α ) < 0. (6.6)

Note, the fact that in certain cases, with Ḋ(β) = 0 or Ḋ(α) = 0, the above slopes can
become −∞ does not affect the following arguments. The inequalities (6.6) mean that the
TW associated to ϕ must be strict, that is ξβ and ξα must be finite. Finally, (6.1) easily
follows by (6.5)1 and (6.3)3. Thus, after setting ϕβ,α = ϕ, the if part of the claim is proved.
Viceversa, assume that there exists ϕ = ϕβ,α with the properties listed above. Manipulations
of (1.2) implies that ϕ must satisfy ϕ′ < 0 when α < ϕ < β. Thus, the inverse function
ξ = ξ(ϕ) of ϕ is well-defined. This means, in particular, that it is well-defined the function

w(ϕ) := D(ϕ)ϕ
(
ξ(ϕ)

)
for ϕ ∈ (α, β).

From its very definition, w turns out to be a solution of (6.3). Thus, c ≥ c∗αβ. This conclude
the proof of the claim and hence the proof of Theorem 2.3. �

Remark 6.1. The analog of Theorem 2.3 when f = 0 was given in the first part of [17,
Theorem 4.2] with slightly different notation and where, in particular, c∗ plays the role of
our c∗pnp. We point out that in [17] wavefronts are necessarily classical at 1 (called classical or
sharp of type (I), there). Instead, when D(1) = 0, a consequence of Proposition 3.2 applied
to the semi-wavefront from 1 to β (labelled as ϕ1,β in the proof of Theorem 2.3) implies that
the wavefronts of Theorem 2.3 can be sharp at 1, too. This occurs if the assumptions of
Part (iii) of Proposition 3.2 are verified, namely, if c < h(1) (which cannot happen if f = 0).
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We also observe that, as in [17, Theorem 4.2], wavefronts are sharp at 0 if and only if
D(0) = 0 and c = c∗pnp. This, because we apply [6, Corollary 9.1] to the profile connecting α
to 0 (ϕα,0 in the proof of Theorem 2.3). Moreover, if D(0) = 0 and c = c∗, in the last part
of [17, Theorem 4.2], the authors proved that if it holds (see [17, Formula (4.1)])

Ḋ(β)g(β) > sup
(0,α]

δ(Dg, 0), (6.7)

then the profiles are classical. We generalize (6.7) as follows. Assume that D(0) = 0 and
c = c∗pnp. We claim that the wavefront of Theorem 2.3 is classical at 0 if

max

{
sup

[α,1]\{β}
δ (f, β) , h(β) + 2

√
Ḋ(β)g(β)

}
> sup

(0,α]
δ (f, 0) + 2

√
sup
(0,α]

δ (Dg, 0). (6.8)

Indeed, as in [17], we just need to apply the fact that, associated to a wave speed c > c∗p,r,
the profile labelled as ϕα,0 in the proof of Theorem 2.3 must be classical at 0 (in virtue of
[6, Corollary 9.1]). It suffices then to impose

max
{
c∗αβ, c

∗
p,l

}
> c∗p,r, (6.9)

that is c∗pnp > c∗p,r. Condition (6.9) follows from (6.8), after some manipulations starting from
(2.3), (2.11) and the corresponding one for c∗αβ (which we omit since they can be obtained
similarly to the others). Note, (6.8) reads exactly as (6.7) if f = 0.

Proof of Theorem 2.4. Similarly to the case of Theorem 2.3, we consider separately the
intervals where D has constant sign, that is (0, β), (β, α) and (α, 1). From Proposition
3.3 we deduce that a semi-wavefront connecting 1 to α, with speed c and profile satisfying
(3.11) with s = 0, exists if and only if c ≥ c∗n,l. Proposition 3.4 implies that there exists a
semi-wavefront connecting β to 0 with speed c and profile satisfying (2.13)1 if and only if
c ≥ c∗n,r. To deal with the interval (β, α), we reason analogously to the proof of Theorem
2.3, but considering the solution z of Problem (6.2), with D, g and f in (β, α), in place
of the function w. By applying [6, Proposition 4.1] we infer that such a z exists if and
only if c ≥ c∗βα, for some c∗βα ∈ R. Furthermore, as a consequence of this latter fact and
with essentially the same arguments employed in the proof of Theorem 2.3, we have that
a strict TW connecting α to β with speed c and profile ϕα,β : (ξα, ξβ) → (β, α) satisfying
ϕα,β(ξ+

α ) = α, ϕα,β(ξ−β ) = β and such that
(
D(ϕα,β)ϕα,β

)
(ξ) tends to 0 if either ξ → ξ+

α

and ξ → ξ−β , exists if and only if c ≥ c∗βα. To conclude the proof, we set

c∗npn := max{c∗n,l, c∗n,r, c∗βα}.

�

Remark 6.2. With the same spirit of the latter part of Remark 6.1, we deduce that every
profile of wavefronts given in Theorem 2.4 must be classical at 1 if D(1) < 0, c > c∗npn or

max

{
sup

[0,α]\{β}
δ(f, β), h(β) + 2

√
Ḋ(β)g(β)

}
> sup

[α,1)
δ(f, 1) + 2

√
sup
[α,1)

δ(Dg, 1).

30



Acknowledgments

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità
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