
04 December 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Parallelising an Aggregate Programming Framework with Message-Passing Interface

Publisher:

Published version:

DOI:10.1109/ACSOS-C58168.2023.00054

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Institute of Electrical and Electronics Engineers Inc.

This is the author's manuscript

This version is available http://hdl.handle.net/2318/2029192 since 2024-11-01T10:49:03Z



Parallelising an Aggregate Programming Framework
with Message-Passing Interface

Giorgio Audrito
Dipartimento di Informatica

Università di Torino
Turin, Italy

0000-0002-2319-0375

Alberto Riccardo Martinelli
Dipartimento di Informatica

Università di Torino
Turin, Italy

0000-0002-3707-7015

Gianluca Torta
Dipartimento di Informatica

Università di Torino
Turin, Italy

0000-0002-4276-7213

Abstract—FCPP is an optimized C++ implementation of the
Aggregate Programming (AP) paradigm for the implementation
of distributed systems. Until now, it has been either deployed on
networks of constrained far edge devices, or used for simulating
AP systems on a single local computer. Recent work hints at
a third possibility, namely adopting AP as a way to effectively
program distributed algorithms, and execute them on a central-
ized high-performance hardware instead of a network of low-
end computational nodes. This could also allow an integration of
edge and cloud resources, where workload could be dynamically
moved between the computational layers.

In the present work, we describe the first extension of FCPP
that supports the execution on a distributed network of high-
end computational nodes (e.g., NUMA architectures, or small
computer networks). The extension allows the mapping of a large
simulation of a far edge system into such nodes basing on the
MPI (Message-Passing Interface) standard, providing a first step
towards an edge-cloud continuum for aggregate programs.

Index Terms—distributed systems, programming languages,
aggregate programming, high performance computing

I. INTRODUCTION

In recent years, Aggregate Programming (AP) [1] has
attracted significant attention as an innovative approach for
the development of fully distributed systems. The typical ap-
plications for which AP is particularly suited involve resource-
constrained, spatially-situated nodes that coordinate through
point-to-point, proximity-based communications. For example,
AP has been adopted in domains such as swarm-based explo-
ration, crowd safety management and monitoring [2]–[4], data
routing and collection from sensor networks, dynamic multi-
agent plan repair [5], [6].

The main implementations of AP [7]–[10] offer two largely
orthogonal features: support for the constructs of the foun-
dational language of AP, namely the Field Calculus (FC)
[11]; and connection of FC programs with the execution
environment where the distributed system is deployed. More
recently, the FC has also been re-instantiated into the more
expressive Exchange Calculus (XC) [12], [13].

This work is supported by the Spoke 1 “FutureHPC & BigData” of ICSC
– Centro Nazionale di Ricerca in High-Performance Computing, Big Data
and Quantum Computing, funded by European Union – NextGenerationEU;
by project NODES, funded by the MUR – M4C2 1.5 of PNRR with grant
agreement no. ECS00000036; by the Italian PRIN project “CommonWears”
(2020HCWWLP); and by the Ateneo/CSP ex-post 2020 project NewEdge.

In particular, the FCPP library [9] implements XC as a
C++ internal Domain-Specific Language (DSL). The main
execution environment provided by FCPP consists of sim-
ulations that run on a single computer, simulating sets of
nodes situated in space, their dynamics, and proximity-based
communications between them. Several research works have
used FCPP simulations in recent years, e.g., [2], [14], [15].

The FCPP library has also been extended to work in
two physical execution environments, where nodes are Micro
Controller Unit (MCU)-based boards communicating through
wireless networks [16], [17].

More recently, a new direction for the application of FCPP
has started to be explored [18], namely, the implementation
and execution of distributed algorithms on high-performance,
centralized computers such as the ones typically available in
a cloud environment. They have proposed a roadmap going
all the way to hybrid execution environments, where a single
FCPP application runs partly on small embedded devices,
and partly on a powerful central system. And as a first step,
they have extended FCPP to execute distributed algorithms on
graphs written in FC on a single machine.

In this research work, we add support for the distributed
execution of batches of simulations of aggregate systems in
FCPP, thus allowing to leverage massive computing resources
in the cloud for the task of developing and planning programs
for the far edge. Following the roadmap devised in [18], this
is a further step that provides the basis to develop extensions
supporting a true edge-cloud continuum.

II. BACKGROUND

A. Aggregate Programming

The AP paradigm is a programming approach suitable for
networks of devices, which abstracts away from the specific
details of the individual devices, and focuses on the aggregate
collective behavior of the whole network [1], [19]. As in
a swarm, the devices can communicate with their neighbor
devices, and can perform local sensing and actuating. Overall,
every device asynchronously executes so called computation
rounds at a (usually) steady rate, during which: it retrieves
received messages; it computes a program (the same for all
devices), performing local sensing and actuating as needed;
and it transmits the messages resulting from the program



aggregate function declaration
F::=FUN t d(ARGS, t x∗) {CODE i∗}
FUN EXPORT d t = export type<t∗>;

aggregate expression

e ::= x
∣∣ ℓ ∣∣ t(e∗) ∣∣ue ∣∣ e o e

∣∣ p(e∗) ∣∣ node.c(e∗) ∣∣
f(CALL, e∗)

∣∣ [&](t x∗)->t {i}
∣∣ e ? e : e

built-in aggregate functions

b ::= old
∣∣ nbr ∣∣ spawn ∣∣ self ∣∣ mod self

∣∣
map hood

∣∣ fold hood
∣∣ mux

Fig. 1. Syntax of FCPP aggregate functions.

execution to its neighbors. Different devices, at different times,
can follow different branches of the program, thus potentially
exhibiting different behaviors.

FCPP [9], [10], the C++ framework whose parallelisation
is the main focus of this paper, is one of the existing concrete
implementations of FC [11], the formal language underpinning
AP. Two other relevant implementations of FC are worth
mentioning: Protelis [7] and Scafi [8], both based on the JVM
and integrated with the Alchemist simulator [20].

In the rest of this section, we briefly present FC syntax
and semantics as it is implemented within FCPP (see Fig. 1),
while the next section will describe the architecture of FCPP.
Compared to an ordinary C++ function, the declaration of an
aggregate function requires to: prepend keyword FUN to the
whole declaration; prepend keyword ARGS to the parenthe-
sized sequence of comma-separated arguments; and prepend
keyword CODE to the other instructions in the function body.
Moreover, the declaration must be followed by the export
description, containing the types that are used by the function
in message-exchanging constructs.

The main types of aggregate expressions, include the usual
variable identifiers, literal values, unary operator and binary
operators, etc. Specific to the FCPP DSL are:

• component function calls node.c(e∗), where c is a func-
tion provided by some component (components are de-
scribed in the next section);

• aggregate function calls f(CALL, e∗), where keyword
CALL must be prepended to the rest of the arguments.

A crucial role is played by aggregate built-in functions in
Fig. 1, which provide the constructs of FC in the FCPP DSL.
In particular, function old (corresponding to the rep operator
of FC) allows a device to keep track of its own status across
different rounds, while function nbr (corresponding to the nbr
and share operators of FC) allows communication of a device
with neighbors. The main overloads of rep and nbr offered
by FCPP are:

• old(CALL, v0, v) with v0, v of type t, returns the value
fed as second argument v in the previous round of
computation, defaulting to v0 if no such value is available;

• old(CALL, v0, f) computes the result of applying func-
tion f : t → t to the value returned by old at the previous

round (using v0 if no such value is available);
• nbr(CALL, v0, v) with v0, v of type t returns the neigh-

boring field1 of values fed as second argument v in the
previous round of computation of the neighbor devices,
defaulting to v0 for the current node;

• nbr(CALL, v0, f) computes the result of applying func-
tion f : field<t> → t to the neighboring field of values
returned by nbr on the neighbor nodes at the previous
round, using v0 for the current node if no such previous
value is available for it.

Other built-in aggregate functions worth mentioning here are:
• fold hood(CALL, f, ϕ) which folds the values in the

range of ϕ of type field<t> (i.e., a neighboring field)
through the binary operator f : (t, t) → t, reducing them
to a single value;

• mux(CALL, c, e1, e2) evaluates condition c and expressions
e1, e2; if c is true, it returns the value of e1, otherwise it
returns the value of e2.

The special keywords (corresponding to C++ macros) that
appear in the FCPP DSL syntax (FUN, ARGS, etc.) are used
to ensure that the aggregate context (represented by the
node object) is carried over throughout program execution.
This is needed, among other things, to update an internal
representation of the stack trace needed for the alignment of
messages; in this way, messages (implicitly) originating from
old and nbr are matched in future rounds (on the same or
different devices) only to the corresponding calls, i.e., calls
in the same position in the program syntax and in the stack
trace. This mechanism allows to freely compose functions, and
use recursion, without mixing-up messages between different
parts of the program. As an illustration, consider again the mux
built-in presented above: since both expressions e1 and e2 are
evaluated, regardless of the value of condition c, if e.g., e1
contains a call to nbr, such a call will be executed by all the
nodes, so a device where c holds will consider as neighbors
also devices where c does not hold (and vice versa). This is
different from what happens, e.g., when the call to nbr is in
a branch of a C++ if or ternary operator.

B. FCPP
The FCPP library architecture, shown in Fig. 2, consists of

three conceptual layers: (1) C++ data structures of general use;
(2) components; and (3) aggregate functions.

While the first layer defines data structures needed by
the other layers, and the third layer defines the aggregate
functions that implement FC (and several useful algorithms
built on-top of them), it is worth giving some details about the
components layer. As shown in Fig. 2, components define the
fundamental abstractions node (representing single devices)
and net (representing the overall network). Exploiting C++
template programming, several components can be combined
in a mixin-like fashion to define the specific types of node and
net for a given application. The purpose of the most relevant
components is shown in Table I.

1For the present purpose, a neighboring field can be thought of as a map
from neighbor device identifiers to associated values.



aggregate functions3

applications

libraries
dispersion

tracker
allocator

building blocks distance collection
election

partition

built-ins nbr
fold hood

old
map hood

self

components2
calculus

positioner

connector

randomizer timer

storage

logger

identifier

spawner

displayer
navigator

persister

node

net

data structures1

vec<n>
field<T>

array<T,n>
tuple<T...>

trace
distribution aggregator

tagged tuple multitype map
context

...

Fig. 2. The three main layers of the software architecture of FCPP: data structures for both other layers, and components which provide node and network
abstractions to aggregate functions. Dependencies between components can be either hard (solid), for which the pointed component is always required as an
ancestor of the other; or soft (dotted), for which the pointed component is required only in some settings.

TABLE I
MAIN FCPP COMPONENTS.

Component Provides
calculus allows usage of aggregate programming constructs
connector handles periodic broadcasts of messages
displayer provides a GUI for the whole network
identifier gives access to nodes through their unique identifiers
spawner automatically creates nodes in the identifier

storage attaches tagged data to nodes or to the net object
timer accesses and regulates scheduling of rounds

Some components come with variations for different sce-
narios, sharing a common interface. For example, the connec-
tor component has a variant simulated_connector used in
simulations, a variant hardware_connector used in physical
deployments, and a variant graph_connector for centralized
processing of graphs.

As an example of a relevant combination of components,
which is offered directly by FCPP, the node and net classes
suitable for a batch simulation can be obtained by defining the
batch_simulator type as follows:

DECLARE_COMBINE(batch_simulator,
simulated_connector, navigator, simulated_positioner, timer,
logger, storage, spawner, identifier, randomizer, calculus);

exploiting the DECLARE_COMBINE macro to combine all the
components listed as the remaining parameters.

C. Parallel and Distributed Computing

For improving the performance of an application, there are
several approaches. One option is to invest in faster hardware,
while another is to optimize the code to make better use of
the available resources.

Modern computers often come equipped with multiple
CPUs, each containing multiple physical and logical cores. To
fully leverage this hardware, applications need to be designed
with parallelism in mind. However, parallelizing code can be a
challenging task, especially when the original code was written
with a sequential mindset. Writing parallel code introduces

additional complexities, such as the potential for deadlocks
or resources starvation. Consequently, significant efforts have
been made to simplify this process, ranging from low-level
libraries like PThreads [21], OpenMP [22], OpenCL [23] and
MPI to high-level skeleton-based approaches such as Skepu
[24], SkeTo [25], TBB [26], and Fastflow [27].

In many real-world and scientific applications that involve
heavy computations, a single computer’s CPUs, cores, and
memory may not be sufficient. In such cases, the application
needs to be distributed across multiple nodes. Writing dis-
tributed computing code introduces additional complexities.
The user must program communication over an unreliable
network, further increasing the importance of fault-tolerant
practices as more hardware is utilized, increasing the likeli-
hood of hardware failures.

To facilitate common operations in distributed computing,
the Message Passing Interface (MPI) provides a durable stan-
dard. MPI enables point-to-point communication for message
exchanges. It also supports collective communication, which
encapsulates common communication patterns between pro-
cesses, such as Broadcast, Scatter, Gather, and more.

To evaluate the quality of parallelization, two commonly
used measures are strong scaling and weak scaling.

Strong scaling refers to the capability of a software to solve
a problem of fixed size more efficiently as the computing
resources increase. It is closely tied to the concept of speedup
in a program. The speedup of a parallel program, denoted
as S(N), is defined as the ratio between the time taken by
the sequential program (ts) and the time taken by the parallel
program (tp(N)) with a given number of processing elements
(N). Ideally, the speedup should exhibit a linear relationship.

Amdahl’s law [28] states that there is an upper bound to
the speedup of a program. Let p ∈ [0, 1] represent the fraction
of time spent in the part of the code that can benefit from
parallelization, while s = 1−p represents the fraction of time
spent in the serial part of the code. Assuming an ideal speedup
in the parallel part, the execution time on N processors is no
better than tp(N) = s ∗ ts + p ∗ ts/N .



Amdahl’s law indicates that the maximum speedup, denoted
as S(N) = ts/tp(N) = ts/(s∗ ts+(1−s)∗ ts/N) = N/(1+
(N − 1) ∗ s), is strongly influenced by the sequential fraction
of the code. As N approaches infinity, S(N) approaches 1/s.

However, it’s important to note that Amdahl’s law doesn’t
account for all the overheads introduced by parallel imple-
mentations, such as communication, synchronization among
different workers, or initialization of processes/threads. As a
result, the actual performance of a program tends to be worse
than predicted by this law.

In the investigation of weak scaling, the focus is on a
variable problem size while maintaining a constant workload
per computing resource. Gustafson’s law [29], proposes a
different approach by scaling the problem size to the number
of processors rather than fixing the problem size. Instead of
deriving the execution time of the parallel code from the
sequential one like Amdahl’s law, Gustafson’s law aims to
keep the time spent on each processor constant by fixing the
problem size solved on each processor. As a result, the overall
problem scales as the number of processors (N) increases. For
a fully parallelizable code, the time required for a problem of
size O(N) to run on N processors remains constant, and weak
scalability is usually easier to achieve than strong scalability.

III. PARALLELISING FCPP WITH MPI
A. Goal

In this research work, we added support for the distributed
execution of batches of simulations of aggregate systems
in FCPP [10], thus allowing to leverage massive computing
resources in the cloud for the task of developing and planning
programs for the far edge. Following the roadmap devised in
[18], this is a step that provides the basis to develop further
extensions supporting a true edge-cloud continuum.

Thus, with this work we had multiple goals in mind. First,
we wanted to show that simulations in FCPP can be easily
split across resources in the cloud, speeding up the production
of global plots that are meant to guide the development
of far edge applications. Second, we wanted to abstract the
distribution details, allowing the final user to seamlessly use
our extension without significant effort or prior knowledge of
MPI processes. Finally, we wanted to provide a starting point
that could be reused in future extensions, where (parts of) a far
edge execution could be mirrored into a digital twin running
in the cloud in order to optimize the allocation of resources.

B. User Interface

In order to provide the simplest interface for MPI parallel
execution to the user, we mainly expanded:

• the make.sh build helper (based on CMake), by adding
an mpi optional flag to enable MPI support;

• the batch::run function, by writing an overload that
instead executes the processes on an MPI cluster of nodes.

The new overload is selected by passing a new execution
policy (other than the previously existing sequential, parallel,
dynamic policies), called distributed execution, which is a
configuration struct with 4 fields: (i) the number of threads

per node to use, (ii) the size of dynamic chunks, (iii) the
fraction of simulations to be assigned in dynamic chunks rather
than statically, and (iv) a boolean flag on whether the simula-
tions should be (deterministically) shuffled. If batch::run
is called without a policy, the default policy is distributed
execution if MPI is enabled, otherwise is dynamic execution.

Overall, the provided extensions allow to run a large
batch of simulations on an MPI cluster while requiring
minimal effort from the user. By just adding the mpi
flag in the build helper script, the previously existing tar-
get run/spreading_collection_batch.cpp of the
FCPP sample project2 will run on multiple nodes, specified
in a file hosts.txt, provided that they have MPI installed.

C. Implementation

To parallelize the code we followed the methodology pre-
sented in [30], using the durable MPI standard for the com-
munication across different computational nodes. We chose
MPI over higher level libraries for several reasons. MPI is
extensively used in HPC for distributed applications, and
its implementations are highly mature and well-optimized.
For our specific use case, MPI offers an optimal level of
abstraction, effectively concealing the intricacies of various
network architectures while maintaining satisfactory perfor-
mance levels. Opting for a higher level tool wouldn’t have
been more advantageous, as it could potentially decrease
performance and introduce additional dependencies. Another
advantage of MPI is its versatility, as it can be employed on
various network architectures, and there are multiple mature
implementations (e.g. OpenMPI [31], MVAPICH [32], etc...)
tailored to different purposes. As a result, the same MPI
program can be executed on different network architectures
while delivering state-of-the-art performance.

FCPP is written in modern C++, making it easy to identify
the loops that need parallelization. By adhering to modern and
well-established Software Engineering practices, FCPP avoids
the misuse of global variables or functions with a high number
of parameters, thus facilitating the parallelization process.

Originally, FCPP was a multithreaded code designed to run
a set of simulations using a pool of threads to take advantage
of a single modern multicore CPU. Since the need to run
numerous simulations may exceed the computational capacity
of a single node, we decided to distribute FCPP using MPI,
enabling us to execute multiple simulations in parallel across
multiple nodes, effectively reducing the overall runtime.

Thus, we spawn a multi-threaded MPI process per node.
According to the distributed execution policy, the set of simu-
lations for each of the N nodes is obtained first by assigning
regularly one every N of the first part of simulations to each
node, then by dynamically assigning the remaining simulations
in chunks to nodes as they finish. In both phases, threads
within each node are assigned single simulations dynamically.

Once the simulations on a node are completed, a plot struc-
ture is generated, containing an aggregation of the obtained

2https://github.com/fcpp/fcpp-sample-project

https://github.com/fcpp/fcpp-sample-project


nodes

sp
ee
du

p strong scaling

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

nodes

ti
m
e
(s
) weak scaling

2 4 6 8 10 12 14 16

80

90

100

110

static seeds first static seeds last dynamic seeds first dynamic seeds last ideal

Fig. 3. Strong and weak scaling for different configurations and orderings, relative to an ideal baseline

data, and able to produce PDF plots. The plot structures
generated by all nodes must be aggregated to create a single
final plot. Thus, all MPI processes send their plots to a master
process, which combines them to generate the final plot. While
this step could potentially become a bottleneck, the typical
size of plot structures is relatively small as they only contain
aggregated information (a few kilobytes at most; e.g., 28 KB
for the example in our evaluation). Thus, in our tests we did
not observe a noticeable degradation in performance. In case
larger plot structures could become relevant in the future,
the resulting aggregation issue could still be easily solved
by implementing an O(logN) global reduce operation on the
plots, leveraging their associative and commutative nature.

IV. EVALUATION

For our experiments we used up to 16 light nodes of the
OCCAM cluster 3, with the following technical specs.

• CPU: 2xIntel Xeon E5-2680 v3, 12 core at 2.5Ghz
• RAM: 128GB/2133 (8 x 16 Gb)
• DISK: SSD 400GB SATA 1.8 inch.
• NET: IB 56Gb + 2x10Gb
• LAYER IB: 56 Gbps
• LAYER ETH10G: 10 Gbps
• TOPOLOGY IB: FAT-TREE
Each test consists in running the “spreading collection”

batch of simulations from the FCPP sample project, using
up to 16 nodes. In the simulated scenario, randomly moving
devices compute a self-adaptive estimate of the network diam-
eter, by a combination of information spreading and gathering.
The batch of simulations measures the performance of the
diameter estimation while varying random seeds as well as
25 levels of device speed, device density, network diameter in
hops, and variance of the computation schedule.

We performed 5 runs for each test and calculated mean
and standard deviation, comparing two different configurations
of the distributed execution policy (fully static and fully
dynamic), and two different orderings of simulations: ordered

3https://c3s.unito.it

so that heavier simulations repeat every 24 simulations (seeds
first), and a more mixed-up ordering (seeds last). In both
configurations we disabled shuffling, and we set the dynamic
chunk size to 1 (single simulations are being dynamically
assigned to nodes), as we found shuffling and larger chunk
sizes were not sufficiently beneficial for the system considered.
As a baseline for strong and weak scaling, we used the version
of FCPP before introducing MPI on a single node, assuming
perfect scaling for more nodes (ideal line).

Fig. 3 shows strong and weak scaling (c.f. Sec. II-C) for
the different policies and orderings. The plots show good
scaling performance on all different configurations, with very
low variance, and the centralized communications step does
not seem to be a problem with the number of nodes used.
Having the simulations in an even (seeds last) or uneven (seeds
first) ordering has a strong impact, with seeds last reaching
almost ideal scaling, and seeds first being almost twice as slow
for 12 nodes. The difference in performance increases with
the greatest common divisor (GCD) between the number of
nodes and 24, so that 24 nodes would result in the maximum
unevenness. Furthermore, the dynamic policy seems preferable
as it always outperforms the static one: by a small margin
for the favorable ordering, and by a larger margin for the
unbalanced one.

V. CONCLUSIONS AND FUTURE WORK

In this work, we added support for the distributed execution
of batches of simulations in FCPP, allowing to leverage cloud
resources for the planning of algorithms for the far edge. The
support has been designed while ensuring seamless integration
with existing FCPP projects, and requiring minimal effort
from the final user. We validated our contribution on the
main example in the FCPP sample project, checking both
weak and strong scaling, obtaining good results. In [33]
the Alchemist simulator is integrated with the MultiVeSta
statistical analysis tool [34] to execute distributed simulations
of algorithms written in Protelis [7]. While in general JVM-
based implementations of AP are slower than FCPP, as shown

https://c3s.unito.it


in [9], a deeper comparison with the distribution approach and
performance of [34] is worth exploring in future work.

Following the roadmap devised in [18], this work is a first
step towards the integration of edge and cloud resources. Even
though at present FCPP does not yet support a true edge-cloud
continuum, it could reach it by performing a few additional
steps, that we plan to do in future work:

1) Allowing the distribution with MPI of a single large-
scale simulation. This could be accomplished by apply-
ing similar techniques as those used in this paper to the
main event cycle of FCPP, which is currently already
multi-threaded (but not multi-CPU).

2) Designing a cloud digital twin of a far edge system.
This could be accomplished by developing a “mirroring”
component, exchanging the necessary data from far edge
devices and a centralized digital twin of the system, that
could run on the cloud thanks to the achievement in (1).

3) Devising strategies for the dynamic offloading of compu-
tations. By empowering the mirroring component with
suitable policies, the computation could be dynamically
moved from being executed on the edge device to being
executed on the digital twin.

REFERENCES

[1] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
Internet of Things,” IEEE Computer, vol. 48, no. 9, pp. 22–30, 2015.

[2] G. Audrito, F. Damiani, V. Stolz, G. Torta, and M. Viroli, “Distributed
runtime verification by past-ctl and the field calculus,” J. Syst. Softw.,
vol. 187, p. 111251, 2022.

[3] G. Audrito and G. Torta, “Towards aggregate monitoring of spatio-
temporal properties,” in VORTEX. ACM, 2021, pp. 26–29.

[4] G. Audrito, F. Damiani, G. M. D. Giuda, S. Meschini, L. Pellegrini,
E. Seghezzi, L. C. Tagliabue, L. Testa, and G. Torta, “RM for users’
safety and security in the built environment,” in VORTEX. ACM, 2021,
pp. 13–16.

[5] G. Audrito, R. Casadei, and G. Torta, “Fostering resilient execution
of multi-agent plans through self-organisation,” in ACSOS Companion
Volume. IEEE, 2021, pp. 81–86.

[6] ——, “Towards integration of multi-agent planning with self-organising
collective processes,” in ACSOS Companion Volume. IEEE, 2021, pp.
297–298.

[7] D. Pianini, M. Viroli, and J. Beal, “Protelis: practical aggregate pro-
gramming,” in Symposium on Applied Computing (SAC). ACM, 2015,
pp. 1846–1853.

[8] R. Casadei, M. Viroli, G. Audrito, and F. Damiani, “Fscafi : A core
calculus for collective adaptive systems programming,” in ISoLA (2),
ser. Lecture Notes in Computer Science, vol. 12477. Springer, 2020,
pp. 344–360.

[9] G. Audrito, “FCPP: an efficient and extensible field calculus frame-
work,” in International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS). IEEE, 2020, pp. 153–159.

[10] G. Audrito, L. Rapetta, and G. Torta, “Extensible 3d simulation of
aggregated systems with FCPP,” in COORDINATION, ser. Lecture Notes
in Computer Science, vol. 13271. Springer, 2022, pp. 55–71.

[11] G. Audrito, M. Viroli, F. Damiani, D. Pianini, and J. Beal, “A higher-
order calculus of computational fields,” ACM Trans. Comput. Log.,
vol. 20, no. 1, pp. 5:1–5:55, 2019.

[12] G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli,
“Functional programming for distributed systems with XC,” in Pro-
ceedings of ECOOP 2022, ser. LIPIcs, vol. 222. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022, pp. 20:1–20:28.

[13] G. Audrito, R. Casadei, F. Damiani, G. Torta, and M. Viroli, “Pro-
gramming distributed collective processes for dynamic ensembles and
collective tasks,” in Proceedings of COORDINATION 2023, ser. Lecture
Notes in Computer Science, vol. 13908. Springer, 2023, pp. 71–89.

[14] G. Audrito, R. Casadei, and G. Torta, “On the dynamic evolution of
distributed computational aggregates,” in Proceedings of ACSOS 2022,
Companion Volume. IEEE, 2022, pp. 37–42.

[15] G. Audrito, F. Damiani, S. Rinaldi, L. C. Tagliabue, L. Testa, and
G. Torta, “Aggregate programming for customized building management
and users preference implementation,” in IoT Edge Solutions for Cogni-
tive Buildings - Technology, Communications and Computing. Springer,
2023, pp. 147–172.

[16] L. Testa, G. Audrito, F. Damiani, and G. Torta, “Aggregate processes
as distributed adaptive services for the industrial internet of things,”
Pervasive and Mobile Computing, vol. 85, 2022.

[17] G. Audrito, F. Terraneo, and W. Fornaciari, “Fcpp+miosix: Scaling
aggregate programming to embedded systems,” IEEE Trans. Parallel
Distributed Syst., vol. 34, no. 3, pp. 869–880, 2023. [Online]. Available:
https://doi.org/10.1109/TPDS.2022.3232633

[18] G. Audrito, F. Damiani, and G. Torta, “Bringing aggregate programming
towards the cloud,” in Proceedings of ISoLA 2022, Part III, ser. Lecture
Notes in Computer Science, vol. 13703. Springer, 2022, pp. 301–317.

[19] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and D. Pianini,
“From distributed coordination to field calculus and aggregate comput-
ing,” J. Log. Algebraic Methods Program., vol. 109, 2019.

[20] D. Pianini, S. Montagna, and M. Viroli, “Chemical-oriented simulation
of computational systems with ALCHEMIST,” J. Simulation, vol. 7,
no. 3, pp. 202–215, 2013.

[21] D. R. Butenhof, Programming with POSIX Threads. USA: Addison-
Wesley Longman Publishing Co., Inc., 1997.

[22] I. Park, M. J. Voss, S. W. Kim, and R. Eigenmann, “Parallel pro-
gramming environment for openmp,” Sci. Program., vol. 9, no. 2,3, p.
143–161, 2001.

[23] OpenCL, Khronos Compute Working Group., 2023 (last accessed), https:
//www.khronos.org/opencl/.

[24] J. Enmyren and C. W. Kessler, “Skepu: A multi-backend skeleton
programming library for multi-gpu systems,” in Proc. 4th Int. Workshop
on High-Level Parallel Programming and Applications, ser. HLPP ’10.
ACM, 2010, p. 5–14.

[25] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu, “A library of construc-
tive skeletons for sequential style of parallel programming,” in Proc. of
the 1st Int. Conf. on Scalable Information Systems, ser. InfoScale ’06.
ACM, 2006, p. 13–es.

[26] Intel Threading Building Blocks, Intel Corp., 2020 (last accessed), http:
//software.intel.com/en-us/intel-tbb/.

[27] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, Fastflow:
High-Level and Efficient Streaming on Multicore. Wiley-Blackwell,
Jan. 2017, pp. 261–280.

[28] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proc. Spring Joint Computer
Conference, ser. AFIPS ’67 (Spring). ACM, 1967, p. 483–485.

[29] J. L. Gustafson, “Reevaluating amdahl’s law,” Commun. ACM,
vol. 31, no. 5, p. 532–533, may 1988. [Online]. Available:
https://doi.org/10.1145/42411.42415

[30] M. Aldinucci, V. Cesare, I. Colonnelli, A. R. Martinelli, G. Mittone,
B. Cantalupo, C. Cavazzoni, and M. Drocco, “Practical parallelization
of scientific applications with openmp, openacc and mpi,” Journal
of Parallel and Distributed Computing, vol. 157, pp. 13–29, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0743731521001295

[31] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open mpi:
Goals, concept, and design of a next generation mpi implementation,”
in Recent Advances in Parallel Virtual Machine and Message Passing
Interface, D. Kranzlmüller, P. Kacsuk, and J. Dongarra, Eds. Springer
Berlin Heidelberg, 2004, pp. 97–104.

[32] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The
mvapich project: Transforming research into high-performance mpi
library for hpc community,” Journal of Computational Science, vol. 52,
pp. 101–208, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1877750320305093

[33] D. Pianini, S. Sebastio, and A. Vandin, “Distributed statistical analysis
of complex systems modeled through a chemical metaphor,” in 2014
International Conference on High Performance Computing & Simulation
(HPCS), 2014, pp. 416–423.

[34] S. Sebastio, A. Vandin et al., “Multivesta: Statistical model checking for
discrete event simulators,” in VALUETOOLS. ACM, 2013, pp. 310–315.

https://doi.org/10.1109/TPDS.2022.3232633
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
http://software.intel.com/en-us/intel-tbb/
http://software.intel.com/en-us/intel-tbb/
https://doi.org/10.1145/42411.42415
https://www.sciencedirect.com/science/article/pii/S0743731521001295
https://www.sciencedirect.com/science/article/pii/S0743731521001295
https://www.sciencedirect.com/science/article/pii/S1877750320305093
https://www.sciencedirect.com/science/article/pii/S1877750320305093

	Introduction
	Background
	Aggregate Programming
	FCPP
	Parallel and Distributed Computing

	Parallelising FCPP with MPI
	Goal
	User Interface
	Implementation

	Evaluation
	Conclusions and Future Work
	References

