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Preface

For financial institutions (shortly, FI) facing continuing market volatility and up-
heaval, risk management plays a double role.
Defensive ex–post risk management, focused on regulatory compliance, controls
and, basically, on staying out of trouble, remains vitally important (Stress Test,
IFRS9, Risk Appetite Framework, introduction of Risk Policy, Regulatory rules).
But, more and more often, risk management is playing an active role (ex–ante) in
helping FI to identify and achieve growth and avoid losses from market volatility
and crisis also supporting Investment Team in the use of quantitative asset alloca-
tion models, see for example Cowell (2002) or Faber (2013).
Modern Risk Management is evolving in this direction using more and more so-
phisticated quantitative models for forecasting the distribution of portfolios returns,
in order to intercept sudden changes in market equilibrium and in diversification of
asset allocation.
These information are translated in risk indicators that allow to summarize the
complex dynamics of portfolios (Artzner, Delbaen, Eber, & Heath, 1999).
Based on these indicators the FI can create ’Risk Policies’ that translates the risk
appetite of the group in ’Risk Indicators limits’. It is essential to monitor these
limits on real–time bases in order to promptly adjust portfolio allocations in case
of sudden changes in market condition or in group risk appetite.
It is, therefore, important for FI to have frequently updated risk indicators, in order
to monitor the situation and to have time to act in one way or another. Unfortu-
nately this is difficult because of the complexity of models and high dimensional
portfolios (for example a medium Investment Management Company has at least
[200 − 300] portfolios invested in [5000 − 10000] assets). Hence the trade-off is
between reliability of forecasting and small computing time and simple application
to complex allocation.

Two are the targets to focus on: volatility and diversification. The first is both
specific of each asset, then, in a mathematical view, concerns the univariate evolu-
tion of a financial time series and on the portfolio. The second tries to describe the
dependence dynamic of assets in a portfolio, hence deals with multivariate mod-
els/distributions.
In last years most of the financial literature investigate efficient ways to describe
and forecast asset returns and volatility in univariate or at least bivariate case, see,
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e.g. (Dias & Embrechts, 2010), (Manner & Reznikova, 2012), (Patton, 2006),
(Okimoto, 2008). There is, on the other side, lack of studies on multivariate depen-
dence forecasting, for example Embrechts and Hofert (2014) or Stoeber and Czado
(2012).
The reason is the complexity of structures and the time-consuming calculations.
Hence in FI the most used models are still based on multivariate Gaussian dis-
tributions, even if it is known that in this way the forecasting looses the specific
non-linear dependence. Another approach involves the historical simulation with
some adjustment like EWMA(Equally Weighted Moving Average) like J.P.Morgan
(1985), with approximation of dependence via PCA (Principal Component Analy-
sis) or parallel historical bootstrap, as in Zenti and Pallotta (2002).

The aim of this thesis is try to give a contribution to the trade off between
applicability and reliability of forecasting models. We presents two different ap-
proaches:

• Operating approach: uses well known models focusing on dependence to
end up with an improved model that is also fast in calculation, can deal with
huge portfolio dimensions and with good results in back-testing.

• Innovative approach: investigate the use of an instrument similar to Copula
that can be useful for specific portfolio analysis.

We focus on dependence dynamic of asset returns. It changes over time, es-
pecially in Crisis periods, when there are fast-moving dependence structures that
can compromise some allocation actions finalized to preserve the portfolio returns
looking at diversification.
In Chapter 1 we review the known univariate models most used in finance, and also
in this thesis. We return the outcome in modeling dependence. In forecasting fi-
nancial returns there are evidences of tail dependence, comonotonicity in turbulent
periods and non-linear dependent between assets. We consider Copula function as
the proper instrument to deal with the characteristics described above, hence we
recall the theoretical back-ground of Copula, Nelsen (2006). Looking at differ-
ent Copula families we underlying useful properties and limitations. In the next
chapter we present different approaches in forecasting time–series, with some ex-
amples. In each approach we try to enlighten key strengths and limits.
Last chapter presents the original contributions of of this thesis and is organized in
two main sections introducing the application of two different models. We choose
a portfolio composed by International stock indexes and apply forecasting models
on this portfolio in 3 different turbulent financial periods long enough to perform
also some out-of-sample back–test and compared with analog method existing.
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Chapter 1

Mathematical background for
financial modeling

The theory and practice of asset price evolution over time involves financial time
series analysis and determines a key role of statistical theory and methods for many
financial studies. Concepts such as leptokurticity of the marginal distributions,
asymmetries, stationarity, autocorrelation, white noise, innovation are central in
this context. Primary models to refer to are, for example, the autoregressive inte-
grated moving average (ARIMA) models and vector autoregressive models (VAR)
or Autoregressive conditional heteroskedasticity (ARCH).
Another important topic in financial time series analysis is represented by co-
movements and dependence between assets and risk factors. To manage the risk of
a portfolio it is important to understand the diversification effect of asset allocation,
the higher contributors to risk and prevent comonotonicity effects.
In this chapter we recall mathematical background, basic definitions and main
properties of financial time series, stochastic processes. Furthermore, we describe
the copula framework as an instrument to deal with dependence separately from
the marginal behavior of assets.

1.1 Time series for financial modeling

Financial data include different time series. However, most financial studies in-
volve returns, instead of prices, of assets. (J. Campbell, Lo, & A.C., 1997) give
two main motivations for using returns. First, for average investors, return of an
asset is a complete and scale-free summary of the investment opportunity. Second,
return series are easier to handle than price series because the former have more
attractive statistical properties (Asset prices are generally non stationary. Re-
turns are usually stationary).
There are, however, several definitions of an asset return.
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Definition 1.1.1. Let T ⊆ Z and consider the sequence P = {Pi,t, t ∈ T} of the
daily observations of asset i price. Let X = {Xt, t ∈ T} be the corresponding
sequence of asset return; we define
Compound return (Groppelli & Nikbakht, 2000) as:

Xi,[t−1,t] = Xi,t =
Pi,t − Pi,t−1

Pi,t−1
(1.1.1)

While, we define continuous return (Groppelli & Nikbakht, 2000) as:

Xi,[t−1,t] = Xi,t = ln

(
Pi,t
Pi,t−1

)
= ln (Pi,t)− ln (Pi,t−1) (1.1.2)

In this thesis we use continuous asset return (1.1.2). This is commonly used
choice because it simplifies the passage from daily to weekly or monthly returns.
Indeed, let Xi,t be the return of asset i between t− 1 and t with daily interval and
let Xi,[t,t+s] be the return between t and t+ s with continuous returns, it holds:

Xi,[t,s] = ln

(
Pi,s
Pi,t

)
= ln (Pi,s)− ln (Pi,t) =

s∑
v=t

Xi,v.

Typically s = 5 indicates weekly returns and s = 21 means monthly returns.
The historical sample used in models is the last price of the day, hence the analyzed
financial time series are discrete in time (daily frequency) with continuous domain.

1.1.1 Conditional mean: ARMA models

A class of processes often considered to describe asset returns includes the ARMA
(AutoRegressive Moving Average) models:

Definition 1.1.2. The process X = {Xt, t ∈ T} follows an ARMA(p,q) process if
for every t the r.v. Xt satisfies:

Xt =

p∑
j=1

φjXt−j +

q∑
i=1

θiZt−i + Zt. (1.1.3)

where Zt is a white noise and φj and θi are the ARMA parameters.

Definition 1.1.3. Z = {Zt, t ∈ T} is a white-noise process if it is a sequence of
uncorrelated random variables: ∀t 6= s : cov(ZtZs) = 0.

Before detailing of this kind of processes, we recall some definitions.
There exist different type of stationarity:

Definition 1.1.4. X = {Xt, t ∈ T} is said strong stationary process if ∀ t1, t2, . . . , tn
and ∀k the joint distribution of {Xt1 , Xt2 , . . . , Xtn} is the same of the joint distri-
bution of

{
Xt1+k , Xt2+k , . . . , Xtn+k

}
.
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Definition 1.1.5. X = {Xt, t ∈ T} is a process with stationarity of order m if
∀t1, t2, . . . , tn and ∀k the joint moments to order m of {Xt1 , Xt2 , . . . , Xtn} are
the same of

{
Xt1+k , Xt2+k , . . . , Xtn+k

}
.

Definition 1.1.6. X = {Xt, t ∈ T} is a process with stationarity of order 2 if:

1. E[Xt] = µ, with µ not time dependent;

2. E[X2
t ] = µ2, with µ2 not time dependent;

3. E[XtXs] = φ(t− s), ∀t, s.

From now on, we consider only stationary processes of order 2.
An important aspect of these kind of processes is the presence of dependence be-
tween different times of the same process:

Definition 1.1.7. The autocovariance function of X = {Xt, t ∈ T} is:

γτ = γ(Xt, Xt+τ ) = cov(XtXt+τ ) = E[(Xt − µ)(Xt+τ − µ)] (1.1.4)

where τ is the time lag and γ0 is the variance.

Definition 1.1.8. The autocorrelation function of X = {Xt, t ∈ T} is:

ρ(τ) = ρXt,Xt+τ =
cov(XtXt+τ )√

var(Xt)var(Xt+τ )
(1.1.5)

Definition 1.1.9. Partial autocorrelation coefficient function (PACF) between Xt

and Xt−r, given Xt−1, is:

ρXt,Xt−r|Xt−1
=

ρXt,Xt−r − ρXt,Xt−1ρXt−1,Xt−2√(
1− ρ2

Xt,Xt−1

)(
1− ρ2

Xt−1,Xt−2

) (1.1.6)

A specific class of processes belonging to ARMA class is:

Definition 1.1.10. X = {Xt, t ∈ T} is an autoregressive process of order p
[AR(p)] if it satisfies:

Xt = c+

p∑
k=1

φkXt−k + Zt (1.1.7)

with Zt a white noise process and φk the AR parameters.
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The PACF of an AR(p) process is zero at lag τ ≥ p + 1, so the appropriate
maximum lag p is the one beyond which the partial autocorrelations (1.1.6) are all
zero.
In particular AR(1) is the most used process in financial time series and it is sta-
tionary of order 1 and if |φ| < 1 is asymptotically stationary of order 2.

Now we focus on the estimation of correct lag p and related AR parameters.
We recall here some methods and we introduce the necessary notations while we
refer to the literature for a more detailed presentation. Main references for this
paragraph are Box, Jenkins, and Reinsel (1994), Greene (1997), Enders (1995) and
Hamilton (1994).

There are many techniques to estimate the coefficients of an AR model, such
as the ordinary least squares (OLS) procedure or method of moments (MM).
The first step requests to estimate the p order that better fits the data.
Then, for the AR(p) model we should estimate the parameters φk, k = 1, · · · , p.
Since there is a direct correspondence between the φk parameters and the covari-
ance function of the process, we can invert this correspondence inverted to deter-
mine the parameters from the autocorrelation function (1.1.8). This is done using
the Yule–Walker equations.

The Yule–Walker equations, named for Yule (1927) and Walker (1931), are:

γm =

p∑
k=1

φkγm−k + σ2
εδm,0 (1.1.8)

where m = 0, . . . , p, yielding p+ 1 equations. Here γm is the autocovariance
function of Xt, σε is the standard deviation of the input noise process, and δm,0 is
the Kronecker delta function.
For m = 0, (1.1.8) becomes:

γ0 =

p∑
k=1

φkγ−k + σ2
ε , (1.1.9)

which can be solved to determine σ2
ε , once φm, m = 1, 2, · · · , p are known.

The remaining set of equations can be rewritten in matrix form, thus getting
γ1

γ2

γ3
...
γp

 =


γ0 γ−1 γ−2 . . .
γ1 γ0 γ−1 . . .
γ2 γ1 γ0 . . .
...

...
...

. . .
γp−1 γp−2 γp−3 . . .




φ1

φ2

φ3
...
φp


which can be solved for all φm, m = 1, 2, · · · , p.
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An alternative formulation makes use of the autocorrelation function. The AR
parameters are determined by the first p + 1 elements ρ(τ) of the autocorrelation
function. The full autocorrelation function can be expressed through

ρ(τ) =

p∑
k=1

φkρ(k − τ). (1.1.10)

The above equations (the Yule–Walker equations) provide several methods to
estimating the parameters of an AR(p) model, by replacing the theoretical covari-
ances with estimated values.

Alternatively, we can reformulate the problem as an extended form of OLS
prediction problem (Von Storch and Zwiers (2001)). Here two sets of prediction
equations are combined into a single estimation scheme and a single set of nor-
mal equations. One set is the set of forward-prediction equations and the other
is a corresponding set of backward prediction equations, relating to the backward
representation of the AR model:

Xt = c+

p∑
i=1

φiXt−i + Zt

.
Here, predicted values of Xt are based on the p last observed values of the se-
ries. This way of estimating the AR parameters is due to Burg (1968) and is called
the Burg method. Burg and later authors (Bos, De Waele, and Broersen (2002) and
Brockwell, Dahlhaus, and Trindade (2005)) called these particular estimates "max-
imum entropy estimates", but the reasoning behind this technique can be applied
to any set of estimated AR parameters. Compared to the estimation scheme using
only the forward prediction equations, different estimates of the auto-covariances
are produced, and the estimates have different stability properties. Burg estimates
are associated with maximum entropy spectral estimation.

Other possible approaches to estimation include maximum likelihood estima-
tion (Fisher (1925) , Self and Liang (1987) and Kiefer and Wolfowitz (1956)). Two
distinct variants of maximum likelihood are available: in one (broadly equivalent
to the forward prediction least squares scheme) the likelihood function considered
corresponds to the conditional distribution of later values in the series given the ini-
tial p values in the series; in the second, the used likelihood function corresponds
to the unconditional joint distribution of all the values in the observed series. Sub-
stantial differences in the results of these approaches can occur if the observed
series is short, or if the process is close to non-stationarity. For further details see
Enders (1995), Greene (1997) and Hamilton (1994).
In this thesis we use the conditional maximum likelihood estimation.
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1.1.2 Conditional Volatility: ARCH models

A last important phenomenon characterizing financial time series is the volatility
clustering, usually referred to as conditional heteroscedasticity. It is often observed
that periods of high price volatility follow periods of low volatility and vice versa,
in contrast to the often-assumed log-normal distribution of asset price returns.
Volatility clustering is usually approached by modeling the price process with an
ARCH-type model. The two most widely-used models are the autoregressive con-
ditional heteroskedasticity (ARCH) introduced by Engle (1982) and later extended
to GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) models
by Bollerslev (1986).
In this subsection we describe these models used for modeling the volatility of
financial time series.

Definition 1.1.11. The process {ξt, t ∈ T} follows an ARCH model if for every t
the r.v. ξt satisfies:

Et−1[ξt] = 0. (1.1.11)

and the conditional variance is

σ2
t = V art−1[ξt] = Et−1[ξ2

t ] = α0 +

p∑
j=1

αjξ
2
t−j (1.1.12)

Note that the variance depends non trivially on the σ-field generated by the
past observations: ξt−1, ξt−2, . . ., hence large observations in recent past strongly
influence the volatility.
The Generalized version of this process is called GARCH:

Definition 1.1.12. The process {ξt, t ∈ T} follows a GARCH model if for every t
the r.v. ξt satisfies:

Et−1[ξt] = 0. (1.1.13)

and the conditional variance

σ2
t = α0 +

p∑
j=1

αjξ
2
t−j +

q∑
k=1

βkσ
2
t−k (1.1.14)

Note that the variance depends again non trivially on the σ-field generated
by the past observations: ξt−1, ξt−2, . . .. Here, αj > 0, βk > 0, so that more
persistence with respect to the ARCH model is built into the volatility.

Let Xt denote the stochastic process of interest with conditional mean µt =
Et−1[Xt] and GARCH conditional volatility; the equation that describes this pro-
cess is: {

Xt = µt + ξt,
ξt = σtZt

(1.1.15)
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for t ∈ T . Here the conditional mean µt = E[Xt| Ft−1] and the volatility
σt = E[(Xt − µt)2| Ft−1]1/2 are measurable functions of the filtration Ft−1 gen-
erated by Xt−1 = {Xs, s ≤ t − 1, s ∈ T}, i.e., of the history of the process up
to time t − 1, while Zt is assumed to be independent on Ft−1. The terms ξt are
usually referred as the innovation terms of the process.

Implementation of these models through non-Gaussian distributed residuals
have been proposed (see, e.g., (McNeil, Frey, & Embrechts, 2005)) to account for
the time-varying effect. Moreover, a variety of alternative definitions of ARCH
and GARCH models have been proposed and applied (see, e.g., Palm (1996) for a
large list of related models).
In this thesis the estimation of GARCH(1,1) parameters is done using maximum-
likelihood estimation.

Concerning the multivariate setting, many generalizations of the previous mod-
els have been defined and applied in financial contexts. Engle and Kraft (1983)
introduced the basic M-GARCH (Multivariate Generalized AutoRegressive Con-
ditional Heteroskedasticity) model for a vector Xt = (X1,t, X2,t, . . . , Xn,t)

′ of
log-returns as {

Xt = µt + ξt,

ξt = Σ
1/2
t zt,

(1.1.16)

for t ∈ T . Here µt denotes the (n, 1) vector of conditional means, Σt denotes the
(n, n) conditional covariance matrix of the innovation term ξt, and the standard-
ized vector zt = (z1,t, . . . , zn,t) of residual term comes from a sequence of iid
vectors with mean E[zt] = 0 and variance-covariance matrix V [zt] = In (com-
monly, zt is assumed to be normally distributed). Here, Σ

1/2
t is any n× n positive

definite matrix such that Σt is the conditional covariance matrix of Xt, e.g., it may
be obtained by the Cholesky decomposition of Σt. Starting from this model, a
long list of multivariate ARCH or GARCH models have been proposed, having
the specification of Σt as the main difference. These models allow for inclusion of
asymmetric and time-varying effects. For a comprehensive survey on multivariate
GARCH models see, e.g., Bauwens, Laurent, and Rombouts (2006), or Jondeau,
Poon, and Rockinger (2007). In particular, non-Gaussian assumptions for zt can
be considered, in order to capture asymmetry or dependency in the tails of returns
distributions.

1.2 Dependence in finance

Copulae are the typical tool to model dependence between random variables. There
are many copulae families, in this subsection we focus on the most used in finance:
elliptical and Archimedean copulae. For details please refer to Nelsen (2006) and
Genest, Quesada Molina, and Rodriguez Lallena (1995). In both cases the param-
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eters are strictly connected to the dependence, we present the definition, the link
with dependence and the conditional distribution.

Cherubini, Luciano, and Vecchiato (2004) focus on a main fact: linear correla-
tion, which represents the standard tool used in risk management units to measure
the co-movement of markets, may turn out to be a flawed instrument in the pres-
ence of a non-normal return.
Linear correlation between the returns Xi,t and Xj,t of assets i and j may be writ-
ten as

corr(Xi,t, Xj,t) =
cov(Xi,t, Xj,t)

σi,tσj,t
=

1

σi,tσj,t

∫ ∞
−∞

∫ ∞
−∞

[Fi,j(x, y)

− Fi(x)Fj(y) dx dy

(1.2.1)

where σi,t and σj,t represent volatility. Notice that the correlation depends
on the marginal distributions of the returns. Its maximum value can be computed
by substituting the upper Fréchet bound (Fréchet, 1935 and Fréchet, 1951) in the
formula

corrmax(Xi,t, Xj,t) =
1

σi,tσj,t

∫ ∞
−∞

∫ ∞
−∞

[min {Fi(x), Fj(y)}

− Fi(x)Fj(y)] dx dy.

(1.2.2)

Furthermore, the value corresponding to perfect negative correlation can be
obtained by substituting the Fréchet lower bound

corrmin(Xi,t, Xj,t) =
1

σi,tσj,t

∫ ∞
−∞

∫ ∞
−∞

[max {Fi(x) + Fj(y)− 1, 0}

− Fi(x)Fj(y)] dx dy.

(1.2.3)

Note that the intuition on values +1 and - 1 of the correlation determined by
these bounds is false or at least is not true in general.
Of course, that is what happens when returns are normal and the result also holds
in the more general case of elliptic distributions. However, this does not hold for
other arbitrary choices for the dependencies. Looking at the problem from a differ-
ent viewpoint, correlation is an effective way to represent co-movements between
variables if they are linked by linear relationships, but it may be severely flawed
in the presence of nonlinear links. Readers may check this in the simple case of a
variable z normally distributed and z2 which is obviously perfectly correlated with
the first one, but has a chi-squared distribution.
Hence, using linear correlation to measure the co–movements of markets in the
presence of non–linear relationships may become misleading since it does not
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cover the whole range from −1 to +1 while two markets can be moved by the
same factor, becoming perfectly dependent.
Hence, in the Section 1.2.2, we introduce other measures of dependence.

1.2.1 Copulae - Definition and basic properties

It is possible to have assets with different distributions, eventually non-parametric,
and with specific tail dependence characteristic or positive dependence. In these
cases it is difficult to build the multivariate model of the overall portfolio without
split marginal specific characteristics from dependence structure.
Copula functions may be of great help to address these problems. As we will see,
copula functions provide a way to represent the dependence structure between dif-
ferent random variables, ignoring the marginal distribution of each of them. For
this reason they represent a useful instrument to describe market co-movements in
a world in which the marginal distributions of returns are not normal and change
with the assets.
This subsection firstly focus on two-dimensional copulas and their characteristics
and properties, in next sections we present multivariate cases.

In order to define the copula function, we need some preliminary definitions.
We use the notation of R = [−∞,+∞] and of R2

= R × R and I2 = I × I with
I = [0, 1].

Definition 1.2.1. Let A1 and A2 be two non-empty subsets of R and let H : A1 ×
A2 → R be a function. Given B = [x1, x2] × [y1, y2] a rectangle whose vertices
are in DomH . Then the H − volume of B is

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1)

Definition 1.2.2. A 2-place real function H is 2-increasing if VH(B) ≥ 0 for all
B = [x1, x2]× [y1, y2] whose vertices lie in DomH .

Note that the 2-increasing definition does not imply nor is implied by the fact
that H is non-decreasing in each argument. In order to have a similar relation, we
need to introduce a new definition.

Definition 1.2.3. Given A1 and A2 two non-empty subsets of R, with a least an
element s1 of A1 and s2 of A2, the function H : A1 × A2 → R is grounded if
H(x, s2) = 0 = H(s1, y) for all (x, y) in A1 ×A2.

Definition 1.2.4. LetA1 andA2 be two non-empty subsets of R, let b1 be the bigger
element ofA1 and let b2 be the bigger element ofA2. The functionH : A1×A2 →
R admits marginals F and G defined:

DomF = A1 and F (x) = H(x, b2) ∀x ∈ A1

DomG = A2 and G(y) = H(b1, y) ∀ y ∈ A2.
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We have, now, all the instruments to define the bi-variate copula function.

Definition 1.2.5. A two-dimensional copula C : I2 → I is a function that has the
following properties:

• for every u, v ∈ I

C is grounded : C(u, 0) = 0 = C(0, v) (1.2.4a)

C(u, 1) = u and C(1, v) = v; (1.2.4b)

• C is 2-increasing: for every u1, u2, v1, v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 (1.2.5)

We now introduce two important functions. They represent, in I2, the copula
boundaries:

Theorem 1.2.1. Given a copula C, for every (u, v) ∈ I2

max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v) (1.2.6)

The functions min(u, v) and max(u + v − 1, 0) are two copulas. M =
min(u, v) and W = max(u+ v − 1, 0) are called upper bound and lower bound
of Fréchet Hoeffding.

From the definition of copula and Theorem 1.2.1, we have that any copula is
a continuous surface in the unit cube I3, whose boundary is the skew quadrilateral
with vertices (0,0,0), (1,0,0), (1,1,1), (0,1,0) and that lies between the Fréchet-
Hoeffding bounds. Another important copula is the copula product Π(u, v) = uv.
In Figure 1.2.1 we can see these 3 different copulas:

Corollary 1.2.2. Let C be a copula and a any number in I. The horizontal section
of C at a is the function from I to I given by t → C(t, a); the vertical section
of C at a is the function given by t → C(a, t); and the diagonal section of C is
defined as δC(t) = C(t, t). All of these functions are non-decreasing and uniformly
continuous on I.

As far as the the level set {(u, v) ∈ I2 : C(u, v) = K} is concerned, we
observe that for K fixed, the level set lies in the triangle described by the Fréchet-
Hoeffding bounds: {(u, v) : max(u+ v − 1, 0) = K} and {(u, v) : min(u, v) =
K}.

This type of representation is called contour diagram.

We have introduced copulas as "simple" functions without reference to proba-
bility theory. But it is this the field where they assume a very important role: they
determine the relationship between multivariate distribution functions and their
univariate marginals.
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Figure 1.1: Graphs of the copulas M , Π and W

Figure 1.2: Contourn diagrams of the copulas M , Π and W
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Let X and Y be two random variables with marginal distributions F (x) =
P (X ≤ x) and G(y) = P (Y ≤ y) respectively and joint distribution H(x, y) =
P (X ≤ x, Y ≤ y). We can associate to every (x, y) three numbers: F (x), G(y)
and H(x, y). Each of these numbers lies in I. In other words, each (x, y) is as-
sociated with (F (x), G(y)), and this pair corresponds to a number H(x, y). We
will show that this correspondence, which assigns the value of the joint distribution
function to each ordered pair of values of the individual distribution functions, is
indeed a function, and this function corresponds to a copula.

We recall the principal properties of distribution functions.

Proposition 1.2.1. Let X be a random variable and F (x) = P (X ≤ x) its distri-
bution function. F is such that:

• F is non-decreasing;

• limx→+∞F (x) = 1;

• limx→−∞F (x) = 0;

• F is right continuous.

Proposition 1.2.2. Let X and Y be two random variables with joint distribution
function H(x, y) = P (X ≤ x, Y ≤ y). H is such that:

• H is two-increasing;

• limx→−∞H(x, y) = limy→−∞H(x, y) = 0;

• lim(x,y)→(+∞,+∞)H(x, y) = 1;

• H is right continuous.

Remark 1.2.1. From Proposition 1.2.2 we get that H is grounded. Since its do-
main is R2

, it has marginals F (x) = H(x,+∞) and G(y) = H(+∞, y).

The following theorem, proved in Sklar (1959), is essential to define the rela-
tionship between copulas and distribution functions. Sklar also was the first one to
use the name copula.

Theorem 1.2.3 (Sklar’s theorem). Let H be a joint distribution function with mar-
gins F and G. Then there exists a copula C such that for all x, y ∈ R2

,

H(x, y) = C(F (x), G(y)). (1.2.7)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined
on RanF × RanG. Conversely, if C is a copula and F and G are distribution
functions, then the function H defined by (1.2.7) is a joint distribution function with
margins F and G.
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Equation 1.2.7 gives an expression for joint distribution functions in terms of
a copula and two univariate distribution functions. That is why copula is called
dependence function. This equation can be inverted to express copulas in terms of
a joint distribution function and the inverses of the two margins. Since we cannot
we invert a margin if it is not strictly increasing, we introduce the definition of
“quasi-inverses”.

Definition 1.2.6. Let F be a distribution function. The quasi-inverse of F is any
function F (−1) with domain I such that

• if t ∈ RanF , then F (−1)(t) corresponds to any number x ∈ R such that
F (F (−1)(t)) = F (x) = t;

• if t 6∈ RanF , then F (−1)(t) = inf{x : F (x) ≥ t} = sup{x : F (x) ≤ t}.

If F is strictly increasing, then it has a single quasi-inverse, which is of course the
ordinary inverse, for which we use the customary notation F−1.

Corollary 1.2.4. Let H be a joint distribution function with F and G continuous
marginals. Then there exists a unique copula C such that for every (u, v) ∈ I2

H(x, y) = C(F−1(x), G−1(y)) (1.2.8)

Proposition 1.2.3. Let X and Y be random variables with joint distribution func-
tion H and marginals F and G. Then the copula associated with H is the distri-
bution function C of (F (X), G(Y )).

Remark 1.2.2. F (X) and G(Y ) are standard uniform random variables. The
proof is straightforward: if we call U = F (X), then

P (U ≤ u) = P (F (X) ≤ u) = P (X ≤ F−1(u)) = F (F−1(u)) = u. (1.2.9)

Hence the copula can be considered a joint distribution function of standard uni-
form random variables.

Theorem 1.2.5. LetX and Y be continuous random variables. ThenX and Y are
independent if and only if CX,Y = uv.

Proof. The proof follows from the fact that X and Y are independent if and only
if H(x, y) = F (x)G(y).

Having understood the usefulness of the copulas, we can rethink to the non-
linearity problem of assets dependence in terms of copulas. However their use
is often complex and statistical indexes can be a good alternative method to in-
vestigate the presence of dependence. Hence we consider some non-parametric
dependence measures, the Concordance measures.
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1.2.2 Concordance measures

Generally speaking, two random variables X and Y are “concordant” if for high
values of one correspond high values of the other and, viceversa, if for small values
of one correspond small values of the other.
Formally we identify the concordance measure between X and Y with MX,Y or,
if C is the copula describing their dependence, with MC .
The concordance measure has the following properties:

Definition 1.2.7. MX,Y = MC is the concordance measure between random vari-
ables X and Y with copula C if and only if:

• is defined for each couple of random variables;

• is a standardized measure, MX , Y ∈ [−1, 1];

• is symmetric, MX,Y = MY,X ;

• if X and Y are independent, then MX,Y = 0;

• M−X,Y = MX,−Y = −MX,Y ;

• MX,Y converges when the copulaC converges point-wise, if {(Xn, Yn)} is a
series of continuous random variables with copulaCn such that ∀(u, v) ∈ I2

limn→∞Cn(u, v) = C(u, v)

then
limn→∞MXn,Yn = MX,Y .

This definition implies invariance among increase transformation and the exis-
tence of limits for M in case of comonotonicity or contromonotonicity.

Theorem 1.2.6. Let π and ψ two strictly increasing functions respectively on
RanF and RanG, then MX,Y = Mπ(X),ψ(Y ).

Theorem 1.2.7. If X and Y are comonotone, then MX,Y = 1; if they are con-
tromonotone, then MX,Y = −1.

It is important to notice that independence is a sufficient, but not necessary,
condition of M = 0.

The most important concordance measures are τ of Kendall and ρ of Spearman.
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Definition 1.2.8. Kendall’s τ of a couple of random variables (X,Y ) is defined
as:

τ(X,Y ) = P [(X1 −X2) (Y1 − Y2) > 0]− P [(X1 −X2) (Y1 − Y2) < 0]
(1.2.10)

where (X1, Y1) and (X2, Y2) are couples of independent and identically distributed
random variables with the same joint distribution H of (X,Y ).

The following theorem underlines the link between τ(X,Y ) and copula func-
tion C of (X,Y ).

Theorem 1.2.8. Let X and Y be two continuous random variables with copula C.
Then Kendall’s τ is:

τ(X,Y ) = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1. (1.2.11)

The integral of Equation 1.2.11 can be seen as the expectation of C(U, V ),
where U and V are standard uniform with joint distribution C(U, V ). Then we can
rewrite (1.2.11) as:

τ(X,Y ) = 4E[C(U, V )]− 1. (1.2.12)

Definition 1.2.9. Spearman’s ρ of a couple of random variables (X,Y ) is defined
as:

ρS(X,Y ) = 3 (P [(X1 −X2) (Y1 − Y3) > 0]− P [(X1 −X2) (Y1 − Y3) < 0])
(1.2.13)

where (X1, Y1), (X2, Y2) and (X3, Y3) are couples of independent and identically
distributed random variables with the same joint distribution H of (X,Y ).

In line with Theorem 1.2.8, it follows the theorem that describe the link be-
tween Spearman’s ρS and (X,Y ) copula C:

Theorem 1.2.9. Let X and Y two continuous random variables with copula C.
Then Spearman’s ρS is:

ρS(X,Y ) = 12

∫ ∫
[0,1]2

uvdC(u, v)− 3 = 12

∫ ∫
[0,1]2

C(u, v)du dv − 3.

(1.2.14)

Let F and G the marginal distribution respectively of X and Y , defining U =
F (X) and V = G(Y ) the (1.2.14) becomes:

ρS(X,Y ) = 12

∫ ∫
[0,1]2

uvdC(u, v)− 3 = 12E[UV ]− 3 =

=
E[UV ]− 1/4

1/12
=

E[UV ]− E[U ]E[V ]√
V ar(U)

√
V ar(V )

=

=
Cov(U, V )√

V ar(U)
√
V ar(V )

= ρ(F (X), G(Y )).

(1.2.15)
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This means that Spearman’s ρS corresponds to the linear correlation coeffi-
cient ρ of F (X) and G(Y ): Spearman’s ρS is called Rank correlation coefficient
because is the correlation coefficient of integral transformation of X and Y . Also
Kendall’s τ is a Rank correlation coefficient.

Having understood the usefulness of the copulas, we can rethink to the non-
linearity problem of assets dependence in terms of copulas. However their use is
often complex and statistical indexes can be a good alternative method to inves-
tigate the presence of dependence. Hence we consider here non-parametric de-
pendence measures, such as Spearman’s ρS and Kendall’s τ . The non-parametric
feature of these measures implies that they do not depend on the marginal proba-
bility distributions.
These measures are directly linked to the copula function. We recall the following
relationships:

ρS = 12

∫ 1

0
C(u, v)du dv − 3 (1.2.16)

τ = 4

∫ 1

0
C(u, v)dC(u, v)− 1. (1.2.17)

Notice that the specific shape of the marginal probability distributions does not
enter in these relationships. Furthermore, it may be proved that substituting the
maximum and minimum copulas in these equations gives values of −1 and +1
respectively.
Differently from the linear correlation measure, then, if the two variables are per-
fectly dependent we get +1 for Spearman’s ρS and Kendall’s τ , while a score -1
corresponds to perfect negative dependence.
The relationship between non–parametric dependence measures and copula func-
tions can also be applied to recover a first calibration technique of the copula func-
tion itself. In some cases the relationship between these non-parametric statistics
and the parameters of the copula function may become particularly easy.

1.2.3 Tail dependence

The departure from normality in a multivariate system and the need to represent
the co-movement of markets as closely as possible raises a second dimension of
the problem. We know that non-normality at the univariate level is associated with
skewness and leptokurtosis phenomena. This is known as the fat-tail problem. In
a multivariate setting, the fat tail problem can be referred both to the marginal
univariate distributions or to the joint probability of movements in a large market.
This last instance is called tail dependence. Intuitively, we may conceive markets
in which the marginal distributions are endowed with fat tails, but extreme market
movements are orthogonal, or cases in which the returns on each market are nor-
mally distributed, but large market movements are likely to occur together. The
use of copula functions enables us to model these two features, fat tails and tail
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dependence, separately.
To represent tail dependence we consider the likelihood that one event with proba-
bility lower than q occurs in first variable Xi, given that an event with probability
lower than q occurs in the second one (Xj). Concretely, we compute the proba-
bility to observe, for example, a crash with probability lower than q = 1% in the
Asset i, given that a crash with probability lower than 1% has occurred in the Asset
j:

λ(q) = P (Fi(Xi) ≤ q|Fj(Xj) ≤ q) =
P (Fi(Xi) ≤ q, Fj(Xj) ≤ q)

P (Fj(Xj) ≤ q)
=
C(q, q)

q
(1.2.18)

where Fi and Fj are cdf respectively of Xi and Xj .

If we compute this dependence measure far in the lower tail, that is, for very
small values of q, we obtain the so-called tail index, in particular the lower tail
index:

λL = limq→0P (Fi(Xi) ≤ q|Fj(Xj) ≤ q) (1.2.19)

and the upper tail index:

λU = limq→1P (Fi(Xi) > q|Fj(Xj) > q) (1.2.20)

1.2.4 Copulae in Finance

There exist many copulae families but in this subsection we focus only on the most
used in finance: elliptical and Archimedean copulae.
For each family, we give the copula definition, its density and its conditional dis-
tribution.
In both cases the parameters are strictly connected to the dependence properties
and, whenever possible, we focus on the relationship between these parameters
and the measures of concordance or tail dependence defined above.
For further details please refer to Nelsen (2006).
Elliptical copulas are simpler to deal with, they are defined through (1.2.7) for an
elliptical distribution function F , here we refers to the most used.

Gaussian copula

Definition 1.2.10. The Gaussian copula is defined as follows:

CGaρ (u, v) = Φρ(Φ
−1(u),Φ−1(v)) (1.2.21)

where Φρ is the bivariate joint distribution of a standard normal vector of dimen-
sion 2, with linear correlation ρ and Φ is the standard normal distribution function.

Therefore:
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CGaρ (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

{
s2 − 2ρst+ t2

2(1− ρ2)

}
ds dt.

(1.2.22)
An alternative representation of (1.2.22) (demonstrated by (Roncalli, 2002)) is:

CGaρ (u, v) =

∫ u

0
Φ

(
Φ−1(v)− ρ Φ−1(t)√

1− ρ2

)
dt. (1.2.23)

This representation is usefull to calculate the conditional distribution function
via copula. The Cv|u corresponds to ∂C(u,v)

∂u , hence we have:

CGaρ (v|u) = Φ

(
Φ−1(v)− ρ Φ−1(u)√

1− ρ2

)
. (1.2.24)

This copula may generate the Gaussian bivariate joint distribution function.
Specifically, we have the following:

Proposition 1.2.4. The Gaussian copula generates the joint normal standard dis-
tribution function (via Sklar’s theorem) if and only if the marginals are standard
normal.

Proof. Observe that

CGaρ (F1(x), F2(y)) =

∫ x

−∞

∫ y

−∞

1

2π
√

1− ρ2
exp

{
s2 − 2ρst+ t2

2(1− ρ2)

}
ds dt.

(1.2.25)
if and only if Φ−1(F1(x)) = x and Φ−1(F2(y)) = y, equivalent to F1 = F2 =
Φ.

For any other choice of the marginals, the Gaussian copula is not the distribu-
tion of a standard jointly normal vector. Both in the positive and in the negative
correlation cases, the same copula, together with different marginals, determines a
different joint distribution.
An example is Gaussian copula with T-Student marginals.
In order to have a visual representation of the phenomenon, and more generally of
the effect of “coupling” the same copula with different marginals, let us consider
the example reported in Cherubini et al. (2004). The joint density functions in the
following figures is obtained coupling the Gaussian copula with standard Gaussian
margins (above) and with three Student’s t degree of freedom (dof); we consider
both the case ρ = 0.2, in Figure 1.3 , and ρ = 0.9, in Figure 1.4.

Note that marginal Student distributions increase the tail probabilities. In gen-
eral, Figures 1.3 and 1.4 provide examples of the modeling flexibility obtained
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Figure 1.3: Density and level curves of the distribution obtained coupling the Gaus-
sian copula with standard normal marginals (top) and 3-d.o.f. Student ones (bot-
tom), ρ = 0.2
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Figure 1.4: Density and level curves of the distribution obtained coupling the Gaus-
sian copula with standard normal marginals (top) and 3-d.o.f. Student ones (bot-
tom), ρ = 0.9
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using copula functions instead of joint distribution functions.

Using the definition of Kendall’s τ and Spearman’s ρS , one can show that

τ =
2

π
arcsinρ (1.2.26)

and
τ =

6

π
arcsin

1

2
ρ (1.2.27)

Furthermore, it can be shown that Gaussian copulas have neither upper nor
lower tail dependence, unless ρ = 1:

λU = λL =

{
0 iffρ < 1
1 iffρ = 1

Finally, they present PQD if ρ ≥ 0.

T-Student copula

Definition 1.2.11. The T-Student copula is defined as follows:

CTρ,υ(u, v) = tρ,υ(t−1
υ (u), t−1

υ (v)) (1.2.28)

where tρ,υ is the bivariate joint distribution of a T-Student vector of dimension 2
and dof υ, with linear correlation ρ. Furthermore, tυ is the univariate T-Student
(with υ dof) distribution function.

Therefore:

CTρ,υ(u, v) =

∫ t−1
υ (u)

−∞

∫ t−1
υ (v)

−∞

1

2π
√

1− ρ2

(
1 +

s2 − 2ρst+ t2

υ(1− ρ2)

)−υ+2
2

ds dt.

(1.2.29)
When the number of degrees of freedom diverges, the copula converges to the

Gaussian one.
If υ > 2, each margin admits a (finite) variance υ

(υ2) , and can be interpreted as a
linear correlation coefficient.

T-Student copula has no close form link between ρ and Kendall τ or Spearman
ρS .

The conditional distribution function via copula is ((Roncalli, 2002)):

CTρ,υ(v|u) = tυ+1

(√
υ + 1

υ + t−1
υ (u)2

t−1
υ (v)− ρ t−1

υ (u)√
1− ρ2

)
. (1.2.30)
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T-Student copula has tail dependence for finite υ:

λU = λL =

{
> 0 if fρ > −1
0 if fρ = 1

They present PQD if ρ ≥ 0.

Archimedean copulae
Differently from Gaussian and T-Student copulas, the Archimedean copulas are
not derived from bivariate distributions through the Sklar theorem.
The construction of such copulas is based on the possibility of separating the joint
distribution H from the two marginals F and G through a function λ(t), positive
in the interval I: λ(H(x, y)) = λ(F (x))λ(G(y)). If we replace with ϕ(t) =
−ln(λ(t)) the relation becomes ϕ(H(x, y)) = ϕ(F (x)) + ϕ(G(y)) in terms of
copulae we get

ϕ(C(u, v)) = ϕ(u) + ϕ(v). (1.2.31)

In order to proceed further, we need to define the pseudo-inverse function of ϕ.

Definition 1.2.12. Let ϕ a function ϕ : I → [0,+∞] continuous and strictly
decreasing with ϕ(1) = 0 and ϕ(0) ≤ +∞. The ϕ pseudo-inverse is the function
ϕ[−1] with Domϕ[−1] = [0,+∞] and Ranϕ[−1] = I given by:

ϕ[−1](t) =

{
ϕ−1 0 ≤ t ≤ ϕ(0)
0 ϕ(0) ≤ t ≤ +∞ (1.2.32)

Observation 1. Note that the function ϕ[−1] is continuous, non-decreasing on
[0,+∞] and strictly increasing on [0, ϕ(0)]. Furthermore ϕ[−1](ϕ(u)) = u on
I, and

ϕ(ϕ[−1](t)) =

{
t 0 ≤ t ≤ ϕ(0)
ϕ(0) ϕ(0) ≤ t ≤ +∞

Finally, if ϕ(0) = +∞, then ϕ[−1] = ϕ−1.

Having defined the pseudo-inverse of function ϕ, we can reverse the previous
Equation 1.2.31 to get:

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)).

Theorem 1.2.10. Let ϕ : I → [0,+∞] a continuous, strictly decreasing func-
tion,such that ϕ(1) = 0 and let ϕ[−1] the pseudo-inverse of ϕ defined in (1.2.12).
Then the function C : I2 → I defined as:

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) (1.2.33)

is a copula if and only if ϕ is convex.
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Definition 1.2.13. The bivariate Archimedean copulae are defined as:

CA(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) (1.2.34)

where ϕ is called generator. If ϕ(0) = +∞ then ϕ[−1] = ϕ−1 and ϕ is called
strict generator, generating a strict Archimedean copula.

Theorem 1.2.11. Let CA an Archimedean copula with generator ϕ. Then:

• CA is simmetric: CA(u, v) = CA(v, u)∀u, v ∈ I;

• CA is associative: CA(CA(u, v), w) = CA(u,CA(v, w))∀u, v, w ∈ I;

• if ϕ is a generator of CA, then ∀c> 0 constant c ϕ is still a generator of CA.

The Archimedean copulas are linked to the association measures introduced in
Section 1.2.2. IfX and Y are continuous random variables with unique Archimedean
copula CA and with generator ϕ, then the relationship between ϕ and Kendall τ is:

τ = 1 +

∫ 1

0

ϕ(t)

ϕ′(t)
dt. (1.2.35)

In this thesis we consider the Archimedean copulas with 1 parameter, defined
using generator ϕθ depending on real parameter θ. Here a table of the most rele-
vant Archimedean copulas in finance and their properties.

Table 1.1: Generator function of some 1-parameter Archimedean copulas
Name Generator function

Gumbel ϕθ(t) = (ln(t))θ, θ ∈ [1,+∞)

Clayton ϕθ(t) = (t−θ−1)
θ , θ ∈ [−1, 0) ∪ (0,+∞)

Frank ϕθ(t) = −ln exp(−θt)−1
exp(−θ)−1 , θ ∈ (−∞, 0),∪(0,+∞)

Table 1.2: Copula function of some 1-parameter Archimedean copulas
Name Copula

Gumbel CGuθ (u, v) = e−[(−ln u)θ+(−ln v)θ]
1
θ

Clayton CClθ (u, v) = max[(u−θ + v−θ − 1)−
1
θ , 0]

Frank CFrθ (u, v) = −1
θ ln(1 + (e−θu−1)(e−θv−1)

e−θ−1

1.2.5 Multivariate Copulas

We extend here to higher dimensions, the results presented in previous paragraphs.
In particular, for n ≥ 2 the definitions of Rn, In, groundness and n-increasing
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Table 1.3: Conditional distribution via copula of some 1-parameter Archimedean
copulas

Name Conditional distribution via copula
Gumbel CGuθ (v|u) = CGuθ (u, v) 1

u(−ln u)θ−1[(−ln u)θ(−ln v)θ]
1
θ
−1

Clayton CClθ (v|u) = u−θ−1[(u−θ + v−θ − 1)−
1
θ
−1]

Frank CFrθ (v|u) = (e−θu−1)(e−θv−1)+e−θv−1
(e−θu−1)(e−θv−1)e−θ−1

Table 1.4: Link between parameter and Kendall τ of most relevant 1-parameter
Archimedean copulas

Name τ of Kendall
Gumbel τ = 1− 1

θ

Clayton τ = θ
θ+2

Frank τ = 1− 4
θ (1− 1

θ

∫ θ
0

x
ex−1dx)

function are the straightforward extention of the previously given ones with n = 2.
Let H be a function whose domain DomH is a subset of Rn and whose range
RanH is a subset of Rn.

Definition 1.2.14. Let A1, . . . , An be n non empty subsets of Rn and H be a real
valued function
H : A1 × · · · ×An → R. H is n-increasing if

VH(B) =
∑

(sgn(c)H(c)) ≥ 0

for every B = [a,b] rectangle ⊂ A1 × · · · × An. The sum is defined on every
vertex c of B and

sgn(c) =

{
+1 if ck = ak an even number of times
−1 se ck = ak an odd number of times

Definition 1.2.15. Let A1, . . . , An be n non empty subsets of Rn and H be a real
valued function H : A1 × · · · × An → R. Let ak be the smaller element of every
Ak, k = 1, . . . , n. H is grounded if H(t) = 0 for every t ∈ DomH such that
tk = ak for at least one k.

Definition 1.2.16. Let A1, . . . , An be n non empty subsets of Rn and H a real
valued function H : A1 × · · · × An → R. Let bk be the smaller elemen of every
Ak, k = 1, . . . , n. Then H has marginals and the univariate marginals are the
functions Hk, with domain DomHk = Ak, defined as:

Hk(x) = H(b1, . . . , bk−1, x, bk+1, . . . , bn) ∀x ∈ Ak.

Now, we extend the notion of copula to the multivariate case.
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Definition 1.2.17. A n-dimensional copula is a function C : In → I such that:

• for every u∈ In

C(u) = 0 (1.2.36a)

if at least one of the coordinates of u is equal to 0, for every k = 1, . . . , n

C(1, . . . , 1, uk, 1, . . . , 1) = uk; (1.2.36b)

• for every a, b∈ I such that a ≤ b we have that∑
(sgn(c)C(c)) ≥ 0. (1.2.37)

Theorem 1.2.12. Let C be a multidimensional copula. Then C is uniformly con-
tinuous in its domain.

Now, we extend the properties of the joint distribution function of n variables,
n > 2.

Proposition 1.2.5. Let X = (X1, . . . , Xn) be a random vector with joint distribu-
tion function H(x) = P (X1 ≤ x1, . . . , Xn ≤ xn). Then H satisfies the following
properties:

• H is n-increasing;

• H(x) = 0 ∀ x ∈ Rn such that xk = −∞ for at least one k;

• limx→+∞H(x) = 1;

• H is right continuous.

We can enunciate the extension of Sklar’s Theorem in n-dimensions.

Theorem 1.2.13 (Sklar’s theorem: n dimensional version, n > 2). Let X =
(X1, . . . , Xn) be a vector of random variables with joint distribution H(x) and
marginals F1(x1), . . . ,
Fn(xn). Then there exists a n-dimensional copula such that for every x ∈ Rn we
have:

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (1.2.38)

If the marginals are continuous, then C is unique. Otherwise, it is uniquely defined
on RanF1 × · · ·×RanFn. Conversely, if C is a n-copula and F1(x1), . . . , Fn(xn)
are the distribution functions of (X1, . . . , Xn), then the function H defined in
(1.2.38) is a joint distribution function with marginals F1(x1), . . . , Fn(xn).
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Corollary 1.2.14. Let H be a joint distribution with univariate marginals
F1(x1), . . . , Fn(xn). For every u ∈ In we get:

C(u1, . . . , un) = H(F (−1)(u1), . . . , F (−1)(un)). (1.2.39)

If the marginals are strictly increasing, we have:

C(u1, . . . , un) = H(F1
−1(u1), . . . , Fn

−1(un)). (1.2.40)

Observation 2. If the marginals are continuous, C is unique and we can contruct
it.

Theorem 1.2.15. Let C be a n-dimensional copula. For n > 2, 1 < k < n, the
k-dimensional marginal of C are k-dimensional copulas.

We can also extend M,W,Π to the n-dimensional case. There exist the exten-
sions Mn,Wn,Πn defined by Mn = min(u1, . . . , un), Wn = max(u1 + · · · +
un − n+ 1, 0), Πn = u1 . . . un. We observe a relevant difference between W and
Wn: Wn is no more a copula for n > 2. However, it is again the best lower bound
for a copula. We get, then, an order:

Theorem 1.2.16. For every C n-dimensional copula:

Wn(u) ≤ C(u) ≤Mn(u) ∀u ∈ In.

There exists the analogous theorem concerning the role of Πn with independent
random variables.

Theorem 1.2.17. Let X1, . . . , Xn be continuous and random variables. They are
independent if and only if the copula associated is Πn.

Proposition 1.2.6. LetX1, . . . , Xn be continuous random variables with joint dis-
tribution functionH and marginals F1, . . . , Fn. The the copulaC associated is the
joint distribution function of (F1(X1), . . . , Fn(Xn)).

Since (F1(X1), . . . , Fn(Xn)) are standard uniforms, the copula associated to
them corresponds to the joint distribution function of n standard uniform random
variables.

1.2.6 Impossibility Theorem

In this last short section we introduce a crucial property that determines the neces-
sity to introduce another class of dependence functions: the Linkages.

From Sklar’s theorem, we know that if C is a bivariate copula and F and G are
univariate distribution functions, then C(F (x), G(y)) is a distribution function.
But what if F and G are multivariate functions? On this, an important result was
proved by Genest et al. (1995) with the so called theorem of impossibility.
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Theorem 1.2.18 (Theorem of impossibility). Let m and n be two positive integer
such that m + n ≥ 3 and suppose C is a bivariate copula such that H(x,y) =
C(F (x), G(y)) is a distribution function of dimension m + n with marginals
H(x,+∞) = F (x) andH(+∞,y) = G(y) for everym-dimensional distribution
functions F and n-dimensional G. Then, C = Π.

Namely, the only possible copula which works with multidimensional marginals
is the independent one. In the next section we present an alternative instrument that
can deal with this limitation.

1.2.7 Linkages - The standard construction

In their paper dated 1996, Li, Scarsini and Shaked (Li, Scarsini, & Shaked, 1996)
define a new tool, the linkage function, that can be used for the study of multivari-
ate distributions with given multivariate marginals. The linkage emphasizes the
roles of dependence structure between given marginals, and the dependence struc-
ture within each of them, like copula, but overcomes the limitation that the copula
function can’t handle with multivariate marginals with rare exemptions (see Theo-
rem 1.2.18).

GivenX1, X2, . . . , Xn univariate random variables with marginals Fi and joint
distribution F , let us consider Fi+1|1,2,...,i(·|x1, x2, . . . , xi) the conditioned dis-
tribution of Xi+1 given X1 = x1, . . . , Xi = xi. We should also introduce the
inverse of Fi and of Fi+1|1,2,...,i(·|x1, x2, . . . , xi) for every (x1, . . . , xi) in the sup-
port of X1, . . . , Xi. The first one is defined (as we did in Definition 1.2.6) as
F−1
i (u) = sup(x : F (x) ≤ u), u ∈ [0, 1], and similarly for the others.

Definition 1.2.18. For i = 1, 2, . . . , k, the transformation Ψ : Rn → [0, 1]n is
defined as

ΨF (x1, . . . , xn) = (F1(x1), F2|1(x2|x1), . . . , Fn|1,...,n−1(xn|x1, . . . , xn−1))
(1.2.41)

for any (x1, . . . xn) in the support of (X1, . . . , Xn) .

Lemma 1.2.19. Let X1, X2, . . . , Xn be n random variables as described above
with an absolutely continuous joint distribution function F . Consider

(U1, . . . , Un) = ΨF (X1, . . . , Xn) (1.2.42)

Then U1, . . . , Un are independent uniform [0, 1] random variables.

For the proof please refer to Li et al. (1996).

It is possible to invert ΨF by induction:

x1 = F−1(u1) (1.2.43a)

xi = F−1
i+1|1,2,...,i(ui+1|x1, x2, . . . , xi), i = 2, . . . , n (1.2.43b)
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The function Ψ∗F : [0, 1]n → Rn is defined as

Ψ∗F (u1, . . . , un) = (x1, . . . , xn), (u1, . . . , un) ∈ [0, 1]n (1.2.44)

where xi are the ones defined in 1.2.43b.
Let

(X̂1, X̂2, . . . , X̂n) ≡ Ψ∗F (U1, U2, . . . , Un). (1.2.45)

Then
(X̂1, X̂2, . . . , X̂n) =st (X1, X2, . . . , Xn), (1.2.46)

where =st means equality in law. In fact, if F is absolutely continuous, then

Ψ∗F ◦ΨF (X1, X2, . . . , Xn) =a.s. (X1, X2, . . . , Xn), (1.2.47)

where =a.s. means equality almost surely under the probability measure associated
with F .

Let now X1,X2, . . . ,Xk be k random vectors of dimensions m1,m2, . . . ,mk,
respectively, that can be independent or not. Let them have marginal distribu-
tions F1, F2, ..., Fk, of dimension m1,m2, ...,mk, and let F be the corresponding∑k

i=1mi-dimensional joint distribution function. It is possible to associate to the
random vector (X1,X2, . . . ,Xk) the above defined linkage function as follows.

Let ΨFi : Rmi → [0, 1]mi be defined as in (1.2.41). By using it, we can
define the vectors Ui = ΨFi(Xi), i = 1, 2, . . . , k, where each Ui is made by mi

independent uniformly distributed on [0, 1] variables. Notice that, since Xi are not
necessarily independent, then the Ui could be not independent.
The joint distribution L of

(U1,U2, . . . ,Uk) = (ΨF1(X1),ΨF2(X2), . . . ,ΨFk(Xk)) (1.2.48)

is called the linkage corresponding to (X1,X2, . . . ,Xk).
It is important to note that different distributions F can have the same linkage.

The linkage emphasizes the dependence between the Xi, but does not contain any
information about the dependence properties within the Xi. These types of info
are lost when we compute Ui.

Theorem 1.2.20. If X1,X2, . . . ,Xk have joint distributionF and U1,U2, . . . ,Un

have joint distribution the linkage L, then

(X̂1, X̂2, . . . , X̂n) ≡ (Ψ∗F1
(U1),Ψ∗F1

(U2), . . . ,Ψ∗F1
(Un)) (1.2.49)

is such that
(X̂1, X̂2, . . . , X̂n) =st (X1,X2, . . . ,Xk). (1.2.50)
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Chapter 2

Financial modeling

Forecasting financial stock returns or modeling stochastic volatilities is a very ac-
tive area of research in recent decades ((Brooks, 2014), (Taylor, 1994) and (Clements,
Hendry, & Mills, 2012)).
Traders, academic and risk managers have proposed several financial, statistical
and econometric theories attempting to explain the features, the patterns and the
dynamics of stock prices.
Modeling or forecasting financial time series remains a very difficult task due to
the complexity of the phenomena driving the dynamics of market prices.
However, the composition of optimal portfolio requests the formulation of reli-
able and efficient forecasting models. The presence of non-linearity, skewness, fat
tails, volatility clustering, leverages effects, co-movements in volatility of the exist-
ing financial returns models, from the Integrated Autoregressive Moving Average
models (ARIMA) to the General Autoregressive and Conditionally Heteroskedas-
tic (GARCH) and others stochastic volatility models including those by Bera and
Higgins (1995), Bollerslev, Chou, and Kroner (1992), Bollerslev, Engle, and Nel-
son (1994) determines the necessity of elaborating alternative forecasting statistical
methods.
Furthermore the diversification effect between assets in a portfolio of hundred of
assets is often understimated in existing models. When the market is turbolent the
the traders can obtain gains only with a well diversified portfolio, However, in these
periods comonotonic behaviors of assets increase their role. Hence, both traders
and risk managers need to forecast the rapidity of changes in the right direction of
the asset allocation of a portfolio.

The purpose of this chapter is to illustrate some well known forecasting mod-
els used in Risk Management industry and to introduce other sophisticated models
recently published in academic papers not yet regularly used for industry applica-
tion. A preliminary part of this Chapter presents some used Risk indicators and the
Back-test used both by Regulators and Risk Managers.
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2.1 Risk Management

In financial institutions Risk Management identifies, computes, understands and
monitors risks. This task is performed to maintain the risk under control.
There are several causes of risks, but one particularly relevant is the market risk.
Market risk is the possibility for an investor to experience losses due to factors that
affect the overall performance of the financial markets. It is also called "system-
atic risk" and cannot be eliminated through diversification, though it can be hedged
against. The risk that a major natural disaster will cause a decrease in the mar-
ket as a whole is an example of market risk. Other sources of market risk include
recessions, political turmoil, changes in interest rates. Financial institutes created
statistical models that try to compute and control market risk.

2.1.1 Measures of risk

To compute and monitoring risk it is useful to identify some indicators that sum-
marize in a number the whole risk, a Risk Measure. Artzner et al. (1999) analyzed
some risk measures. In the following we introduce some financial definitions that
will be used in the next sections.

Definition 2.1.1. A measure of risk is a mapping from a set of random variables
Xi (portfolio returns) to the real numbers

ρ : L→ R

that satisfies these properties:

• translative: if a ∈ R and Z ∈ L, then ρ(Z + a) = ρ(Z) + a;

• monotone: if Z1, Z2 ∈ L and Z1 ≤ Z2, then ρ(Z2) ≤ ρ(Z1);

• homogeneous: if a ∈ R and Z ∈ L, then ρ(λZ) = λρ(Z);

• subadditivity: ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2), Z1, Z2 ∈ L.

A measure of risk that satisfies all these properties is called coherent.
Modern portfolio theory (MPT) is a theory of finance that attempts to maximize
portfolio expected returns for a given amount of portfolio risk, or equivalently to
minimize the risk for a given level of expected return, by carefully choosing the
proportions of various assets.

Value at risk (VaR) is the most used measure of risk. Folklore attributes the
introduction of this indicator to Dennis Weatherstone at J. P. Morgan in 1990. He
was looking for a way to convey meaningful information on risk exposure to the
financial institution’s board but he wanted to avoiding the request of significant
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technical expertise to understand the presentation. However, there are evidences
that it was already internally used, at least at Federal Reserve Bank of New York,
from 1985.

Definition 2.1.2. For a given portfolio at time t, a time horizon T and a probability
α, the V aRα is defined as a threshold loss value, such that the probability that the
loss on the portfolio over the given time horizon exceeds this value is α.

Or more formally:

Definition 2.1.3. Let X[t,T ] be the variable whose fulfillment are the possible per-
formances of the portfolio (or asset) at time t with time horizon T and let fX[t,T ]

(x)
its density at time T , the VaR at time T at significance level α ∈ (0, 1) is the quan-
tile of X[t,T ]:

V aRα(X[t,T ]) = −qα(X[t,T ])

where q indicates the α-quantile of X[t,T ].
That is the value V aRα such that:

P (X[t,T ] ≤ V aRα) = α

.

Note that VaR is not coherent, because it does not satisfy subadditivity. Fur-
thermore, VaR is not a good measure to limit risks assumed by traders since it
answers to the question “How bad can things go?”, but it is useless to deal with
other questions such as “If things go bad, how much do we loss?”.
In order to consider this type of instances, it was introduced another measure, the
Expected Shortfall.

Definition 2.1.4. Espected Shorfall of level α ∈ (0, 1) of a portfolio at time horizon
T is

ESα(X[t,T ]) = − 1

α

∫ α

0
qu(X[t,T ]) du,=

1

α

∫ α

0
V aRu(X[t,T ]) du,

that is the expected value of VaR of level≤ α computed at level α. X[t,T ] is defined
as in 2.1.3.

If X[t,T ] is absolutely continuous, it holds also this definition:

ESα(X[t,T ]) = −E[x|X[t,T ] ≤ qα(X[t,T ])] = E[X[t,T ]|X[t,T ] ≤ V aRα(X[t,T ])]

A key advantage of VaR over most other measures of risk such as Expected
Shortfall is the availability of several back-testing procedures for validating a set
of VaR forecasts, Kupiec method (Kupiec (1995)) is the most used. Early examples
of back-tests can be found in Christoffersen (1998).
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2.1.2 VaR Model Back-Test

The shortcomings of methods we will present in this chapter and VaR in general
are the most significant reason for a double check of the accuracy of the risk esti-
mates. In fact, in order to evaluate the quality of the estimates, the model should
be verified with different back-testing tools. Back-testing is a statistical procedure
where actual profits and losses are systematically compared to corresponding VaR
estimates, a violation occurs when the daily loss is larger than the VaR calculated
the previous day (Out-of-Sample Back-Test). For example, if the confidence level
used for daily computation of VaR is 99%, we expect exceptions to occur once
in every 100 days on average. In the back-testing process we statistically exam-
ine whether the frequency of exceptions over some specified time interval is in
line with the selected confidence level. These kinds of tests are known as tests of
unconditional coverage (S. D. Campbell (2007)). Their implementation is straight-
forward, since they do not take into account the time when the exceptions occur.
However, a good VaR model not only produces the correct amount of exceptions,
but also exceptions that are evenly spread over time, i.e., are independent of each
other. Clustering of exceptions indicates that the model does not accurately cap-
ture the changes in market volatility and correlations. Suitable tests of conditional
coverage should be performed to check the independence hypothesis for the times
between exceptions.
Among these tests we consider here those mentioned in Basel Committee’s traf-
fic light approach (on Banking Supervision (1996)), i.e., the Kupiec’s propor-
tion of failures-test (Kupiec (1995)) and the Christoffersen’s interval forecast test
(Christoffersen (1998)).

The Basel Regulation back-testing process is based on the fact that if V counts
the number of successes in a number T of independent experiments then V is a bi-
nomial random variable, whose p parameter is estimated by the number of excep-
tions. Thus, the Basel Regulation back-testing process test requests of comparing
the last 250 daily 99% VaR estimates with corresponding daily trading outcomes.
The accuracy of the model (Basel Committee, 1996) is then evaluated by counting
the number of exceptions during this period, and accepted or rejected accordingly
to the values shown in Figure 2.1. Assuming that the model is correct, the ex-
pected number of exceptions is 2.5. If there are zero to four exceptions observed,
the model falls into green zone and is defined to be accurate as the probability of
accepting an inaccurate model is quite low.

Some references (see, e.g., Haas (2001)) remind that the Basel traffic light ap-
proach cannot be used to evaluate the goodness of a VaR model. An example of
reason for this criticism is that it ignores the independence of exceptions. Due to
the severe drawbacks of the Basel framework, this method is mainly used as a pre-
liminary test for VaR accuracy.
In any kind credible model validation process, the traffic light approach is simply
inadequate, and more advanced tests should be performed. Kupiec (1995) sug-
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Figure 2.1: Traffic light approach: Cumulative probability is the probability of
obtaining a given number or fewer exceptions when the model is correct (i.e. true
coverage is 99%). The boundaries are based on a sample of 250 observations. For
other sample sizes, the yellow zone begins at the point where cumulative probabil-
ity exceeds 95%, and the red zone begins at cumulative probability of 99.99%

gested the most widely used unconditional coverage test based on failure rates.
Kupiec’s test, also known as the POF-test (Proportion Of Failures), measures
whether the number of exceptions is consistent with the confidence level. The
number V of exceptions follows the binomial distribution as discussed previously.
Hence, the only information required to implement a POF-test are the total number
of observations (T ) and the observed number of exceptions (v). The null hypothe-
sis is that the frequency of violations is consistent with the VaR significance level
α, i.e., α = α̂ = v

T , where α is the pre-specified level of VaR. As well-known,
under the null hypothesis the ratio

v − αT√
α(1− α)T

converges to a standard normal distribution as T increases, and the likelihood-ratio

LRk = −2ln

(
(1− α)T−vαv[
1−

(
v
T

)]T−v ( vT )v
)

converges to a χ2
1 distribution (see Kupiec (1995) for details). Hence, the null

hypothesis is validated when the p-value of the test is lower than 95% or 99%.
Resulting p-values for Kupiec’s test under different confidence levels and sample
sizes have been computed.

The Basel framework and unconditional coverage tests, such as the POF-test,
focus only on the number of exceptions. In theory, however, we would expect
these exceptions to be evenly spread over time. Good VaR models are capable
of reacting to changing volatility and correlations in a way that exceptions occur
independently of each other, whereas bad models tend to produce a sequence of
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consecutive exceptions.

Clustering of exceptions is something that VaR users want to be able to detect
since large losses occurring in rapid succession are more likely to lead to disas-
trous events than individual exceptions taking place every now and then. Tests of
conditional coverage try to deal with this problem by examining the frequency of
VaR violations together with their occurrence times. For this aim, the Christof-
fersen’s Interval Forecast Test ((Christoffersen, 1998)) is suggested. It uses the
same log-likelihood testing framework as in Kupiec’s test, but extends it to include
also a separate statistic for checking the independence of exceptions. With respect
to the correct rate of coverage, this test examines whether the probability of an
exception on any day depends on the outcome of the previous day. To perform this
check, in addiction to Kupiec indicator v, this test defines ni,j as the number of
days when condition j occurred assuming that condition i occurred on the previ-
ous day. We denote with πi the probability of observing an exception conditional
on state i on the previous day, i.e., π0 =

n0,1

n0,0+n0,1
, π1 =

n1,1

n1,0+n1,1
. Then the term

π =
n0,1+n1,1

n1,0+n1,1+n0,0+n0,1
plays the same role as p̂ = v

T in Kupiec’s test. If the
model is accurate, then an exception today should not depend on whether or not
an exception occurred on the previous day. In other words, under the null hypoth-
esis the probabilities π1 and π0 should be the equal. The relevant test statistic for
independence of exceptions is the likelihood-ratio

LRind = −2ln

(
(1− π)n0,0+n1,0 πn0,1+n1,1

(1− π0)n0,0 π
n0,1

0 (1− π1)n1,0 π
n1,1

1

)
By combining this independence statistic with Kupiec’s POF-test we obtain a joint
test that examines both properties of a good VaR model, the correct failure rate
and independence of exceptions, i.e. conditional coverage: LR = LRk + LRind.
Under the null hypothesis the quantity LR is sum of two χ2

1 quantities, hence it is
distributed as a χ2 with 2 degrees of freedom.
Christoffersen’s framework allows examining the reason for not passing the test
deciding if it is caused by inaccurate coverage by clustered exceptions or by both
of them. This evaluation can be done simply by calculating each statistic, LRk and
LRind,separately and using χ2 distribution with one degree of freedom as the crit-
ical value for both statistics. S. D. Campbell (2007) reminds that in some cases it
is possible that the model passes the joint test while it fails either the independence
test or the coverage test. Therefore it is advisable to run the separate tests even
when the joint test yields a positive result.

2.2 Forecasting Models

In this section we present forecasting models used in industry and those recently
proposed in academic world. The list of the considered models can be divided ac-
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cording with three main types of models: parametric models, historical simulation
and Monte Carlo simulation

2.2.1 Historical Simulation

The historical simulation is based on the hypothesis that the past observed returns
are a good and complete representation of future returns probability density func-
tion (pdf). This is sometimes called the empirical distribution of returns.
It has a huge use in industries because of its simplicity and lack of distributional as-
sumption about underlying process of returns. it only assumes that the historically
observed returns used in the simulation are taken from independent and identical
distributions (iid) and that the same distributions can be applied for forecasting.

For the standard VaR, historical simulation (empirical distribution) method
suppose to observe data from day 1 to day t. Indicating with Xt the return of asset
on day t, then the method is based on a series of observed returns x1, x2, . . . , xt.
The Value at Risk with coverage rate α is calculated as:

V aRαt+1 = percentile[x1, x2, . . . , xt, α]

Bootstrap historical simulation approach is an extension of traditional histor-
ical simulation. It is a simple and intuitive estimation procedure. The bootstrap
technique draws a sample from the data set, records the VaR from that particular
sample and returns the data. This procedure is repeated over and over and records
multiple sample VaRs. Since the data is always returned to the data set, this proce-
dure is like sampling with replacement.The best VaR estimate from the full data set
is the average of all sample VaRs. (See Chernick, Gonzalez-Manteiga, Crujeiras,
and Barrios (2011))

An alternative to bootstrapping consists in the use of kernel estimation of his-
torical distribution. The kernel density estimator ((Silverman, 1986), (Sheather &
Marron, 1990)) is a way of determining the probability density function from the
data. While a histogram results in a density that is piecewise constant, a kernel es-
timator results in a smooth density. Any continuous shape spread around each data
point allows to smooth the data to obtain a continuous density. As the sample size
grows, the net sum of all the smoothed points approaches the true pdf, whatever
that may be, irrespective of the method of smoothing the data. The most used is
the Gaussian Kernel density. In the first step we estimate the pdf and cumulative
distribution function (cdf) of asset returns. Define the pdf of the asset returns as
f and the cdf of the returns as F . The kernel estimator of the pdf , using a fixed
Gaussian kernel, is given by

f̂(x) =
1

n

1

x h

n∑
i=1

1

√
2πe

− 1
2

(
x−xi
h

)2
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where h is the bandwidth, which in this case can be interpreted as a standard devi-
ation and xi is the return of day iand n is the sample size.

In the second step we estimate the distribution of a percentile of the order
statistic.
Using pdfs estimated with the kernel density estimator above, it can be derived
the pdf of the j − th order statistic and calculate its mean and variance. The pdf
is not known in closed form but we can compute its moments through numerical
methods. The mean implied by that pdf is the estimate of VaR. From the standard
error of the estimate one can calculate confidence intervals.
The distribution of the j-th order statistic is derived as follows (Stuart and Ord
(1987)).
Suppose our observations x1, x2, . . . , xn come from some known distribution (or
cumulative density) function F (x), with j − th order statistic x(j). Hence, x(1) ≤
x(2) ≤ . . . ≤ x(n). The probability that j of our n observations do not exceed a
fixed value x must then obey the following binomial distribution:

gj(x) =
n!

j!(n− j)!
F (x)j(1− F (x))n−j . (2.2.1)

It follows that the probability that at least j observations in the sample do not
exceed x is also a binomial

Gj(x) =

n∑
k=j

n!

k!(n− k)!
F (x)k(1− F (x))n−k, (2.2.2)

Gj(x) is therefore the distribution function of our order statistic. It follows, in
turn, thatGj(x) also gives the distribution function of our VaRs. For further details
we refer to Butler and Schachter (1996) and Hendricks (1996).

As already mentioned, the main strength of the historical simulation approach
is that it is non-parametric (no specific distributional assumptions about the data
are made ex ante, and no distributional parameters need to be estimated). There-
fore, the data determine the shape of the return distribution. Hendricks (1996)
showed that the historical simulation approach provided good estimates of the first
percentile of the distribution using simulated spot foreign exchange portfolios with
departures from normality in the return distribution. Mahoney (1995) obtained a
similar result studying simulated spot currency and equity portfolios.
When the historical sampling period is too short arises one of the main shortcom-
ing of historical simulation. In this case arises the risk of unreliable estimation of
VaR ; ? (?) found that longer historical sample periods result in less variability in
the VaR estimate. In applying this approach a trade-off must be made between long
sample periods, which potentially violate the assumption of i.i.d. observations, or
a parametric model such as GARCH with short sample periods, which reduce the
precision of the estimate.
A related problem in the historical simulation approach is that the only possible
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changes in returns in the forecast distribution are those that are observed in the his-
torical sample period. This problem may be especially significant in the estimation
of tail probabilities or to intercept a ’black swan’ event.

2.2.2 Filtered Historical Simulation

Filtered historical simulation (FHS) is a generalized historical simulation method
proposed by Barone-Adesi, Giannopoulos, and Vosper (1999). They try to render
returns i.i.d. removing any serial correlation and volatility clusters present in the
dataset, after filtering ARMA-GARCH residuals result i.i.d. then easier to simu-
late. They propose to capture volatility clusters by modeling returns as GARCH
processes ((Bollerslev, 1986)) and the serial dependency with ARMA models.
The resulting filter is a combination of ARMA and GARCH models described in
Chapter 1.

Definition 2.2.1. The process X = {Xt, t ∈ T} follows an ARMA(1,1)-GARCH(1,1)
process if for every t the r.v. Xt satisfies:

Xt = φXt−1 + θξt−1 + ξt. (2.2.3)

where θ is the MA parameter, φ is the AR parameter and {ξt, t ∈ T} follows a
GARCH model where for every t the r.v. ξt satisfies:

Et−1[ξt] = 0 (2.2.4)

and the conditional variance

σ2
t = k + αξ2

t−1 + βσ2
t−1 (2.2.5)

depends non trivially on the σ-field generated by the past observations: ξt−1, ξt−2, . . .
and where k is a constant, α and β are the GARCH(1,1) parameters.

To standardize residual returns we need to divide the estimated residual ξ̂ by
the corresponding volatility σ̂t. Thus the standardized residual return is given as
zt = ξ̂t

σ̂t
.

Under the GARCH hypothesis the set of standardized residuals are independent
and identically distributed (i.i.d.) and therefore suitable for historical simulation.
It is clear that this method is similar to a Monte Carlo simulation. However, tradi-
tional approaches based on Monte Carlo simulation typically use a set of stochastic
differential equations for generating returns over the time horizon. So traditional
Monte-Carlo simulation uses arbitrary assumptions about the distribution of re-
turns, which define “a priori” the structure of risk that is supposed to investigate.
The results of FHS are sensitive to changing market conditions and can predict
losses outside the historical range. From a computational standpoint, this method
is very appealing for large portfolios and empirical evidence supports its predictive
ability. Various authors extensively tested it, see for example Zenti and Pallotta
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Table 2.1: Historical standardized residuals of portfolio assets
z1,−T z2,−T . . . zn−1,−T zn,−T
z1,−T+1 z2,−T+1 . . . zn−1,−T+1 zn,−T+1

. . . . . . . . . . . . . . .
z1,t−1 z2,t−1 . . . zn−1,t−1 zn,t−1

z1,t z2,t . . . zn−1,t zn,t
z1,t+1 z2,t+1 . . . zn−1,t+1 zn,t+1

. . . . . . . . . . . . . . .
z1,0 z2,0 . . . zn−1,0 zn,0

(2002).

This model is a univariate model, it focus only on an asset or a portfolio returns
directly, without taking in consideration the diversification effects of asset alloca-
tion in portfolio or the dependence between assets.
A possible evolution of this model is the Parallel Filtered Bootstrapping (Marsala,
Pallotta, and Zenti (2004)). The main idea is to use implicit correlation of asset
returns focusing on implicit historical correlation of standardized residuals zt.

Given a portfolio of n assets, let Xi,t be the return at time t of asset i, with
i = 1, . . . , n, we estimate the ARMA-GARCH filter of each asset returns (as in

2.2.1) and calculate the standardized residuals zi,t =
ξ̂i,t
ˆσi,t

to get:
Instead of bootstrapping the single standardized return zi,t they bootstrap the

vector of standardized returns of all portfolio assets at time t, hence
[z1,t, z2,t, . . . , zn−1,t, zn,t]. In this way they reproduce the historical correlation of
past time t in forecasting simulation, reflecting actual time-varying correlations.

The parallel Filtered Bootstrap approach to the simultaneous assessment of
market risk of assets returns relies on an empirical multivariate probability dis-
tribution inferred from financial data in a semi-parametric way. The model cap-
tures most of the features observed in financial time series, such as conditional
heteroskedasticity, autocorrelation and leptkurtosis. As bootstrap is applied in a
parallel way to all the risk factors (asset returns), their comovements are captured
in a semi-parametric way, without any restrictive hypothesis about the correlation
structure, that in general is not linear and it is variable over time.
These features characterize a suitable and flexible way to generate future scenar-
ios both on short and medium term horizons. Therefore, this model is particularly
appropriate for asset management companies with a broad investment universe,
usually managing several balanced portfolios, with multiple horizons to keep un-
der control.
A possible improvement requests the use of an explicit correlation (may be time-
varying) in parallel bootstrapping in absence of crisis period in historical sample

42



and no comonotonic phenomena in historical data is observed. In these conditions,
the observed correlations are the only possible. The existence of an explicit ex-
pression for the correlation allows to stress correlation between assets and gives a
more intuitive view of diversification effect in portfolio. It clarifies not only the
most important contributors to risk, but also the dependence of these contributors
to the rest of assets in the portfolio, allowing more efficient asset allocation.
In Chapter 3 we propose an alternative to this model trying to catch the above
mentioned improvements through the use of a GARCH-Copula approach.

2.2.3 Parametric Model - EVT

The basic idea of parametric models is to find a specific well known distribution of
returns (e.g. Normal, Weibull, t-student, . . . ). The main strength of these models
is that they use distributions that are known in close form (hence the quantile, the
volatility, the expected returns, . . . are known too).
This fact avoids the use of simulations and only the parameter estimations become
necessary.
The classical example is the multivariate normal distribution. The model hypoth-
esize that every asset returns in a portfolio fits the Gaussian distribution. Hence,
known mean vector and variance-covariance matrix it is possible to get all risk in-
dicators without necessity of any simulation. Even after 2008 financial crisis, that
showed how this approach is insufficient to measure the risk in stressed condition,
there are companies that still provide risk indicators that use this model for their
calculation (Riskmetrics R©, Barra R©).
It is possible that some asset returns can be described with parametric distribution,
however the fact that the theoretical distribution fits returns for one asset does not
mean that it works well for every asset in the portfolio. Hence, it is not possible to
use a multivariate parametric distribution but, in this case, it is possible to model
separately the marginal distributions of each assets and then model separately the
dependence between them with multidimensional copulas.
Building multidimensional copulas has always been considered a difficult problem.
As we saw in Chapter 1, there are large number of families of bivariate copulas,
but the set of the multidimensional ones is very limited. Attempts have been made
to build multivariate extensions of Archimedean bivariate copulas, however con-
structions of this type have limitations: one of the strongest is that it can be applied
only on variables that exhibit the same dependence structure. To solve the problem,
it is introduced a new multivariate model construction methodology: pair-copula
construction (PCC).

2.2.4 Pair Copula Construction and Vine Copulas

The pair-copula construction (PCC) theory concerns the construction of multivari-
ate structures through the use of bivariate copulas, the so-called pair-copulas. It is
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introduced by Joe (1996) and then developed in Bedford and Cooke (2001),Bedford
and Cooke (2002). With Aas, Czado, Frigessi, and Bakken (2009), Czado (2010)
and Dissman, Brechmann, Czado, and Kurowicka (2013) we get industry applica-
tion examples.
Nowadays, this method represents the most flexible and intuitive way to construct
multivariate copulas.

Definition 2.2.2. A pair copula is a bivariate copula with conditioned copulas as
argument.

To better understand this definition let us consider (X1, . . . , Xn) random vari-
ables with joint distribution function F . We can write their density f uniquely
as:

f(x1, . . . , xn) = f1(x1) f2|1(x2|x1) f3|12(x3|x1, x2) . . . fn|1...n−1(xn|x1, . . . , xn−1).
(2.2.6)

If F is absolutely continuous with continuous and strictly increasing marginals
Fi(xi), using Sklar theorem (1.2.7), we can rewrite (2.2.6) as

f(x1, . . . , xn) = c1,2,...,n(F1(x1), F2(x2), . . . , Fn(xn)) f1(x1) . . . fn(xn).
(2.2.7)

where c1,2,...,n is the density of copula C1,2,...,n that is unique.
The objective is rewrite (2.2.6) using (2.2.7).
The second factor f2|1(x2|x1) can be rewritten as:

f2|1(x2|x1) =
f(x1, x2)

f1(x1)

=
c12(F1(x1), F2(x2))f1(x1) f2(x2)

f1(x1)

= c12(F1(x1), F2(x2))f2(x2)

(2.2.8)

The third factor f3|12(x3|x1, x2) can be rewritten as:

f3|12(x3|x1, x2) =
f23|1(x2, x3|x1)

f2|1(x2|x1)

=
c23|1(F2|1(x2|x1), F3|1(x3|x1))f2|1(x2|x1) f3|1(x3|x1)

f2|1(x2|x1)

= c23|1(F2|1(x2|x1), F3|1(x3|x1)) f3|1(x3|x1)

= c23|1(F2|1(x2|x1), F3|1(x3|x1)) c13(F1(x1), F3(x3))f3(x3).

(2.2.9)

We can see that this third factor of (2.2.6) is the product of two pair-copulas
and one univariate density.
Generalizing we get the n-dimensional case. We omit functions arguments to get
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a simpler notation and we consider ci,j|i1,...,ik with i < j and i1 < . . . < ik, k ∈
[1, n− 1] conditional copula densities and we get:

fn|1,...,n−1 = c1,n|2...n−1(F1|2...n−1, Fn|2...n−1)fn|2...n−1

=

[
n−2∏
s=1

cs n|s+1...n−1(Fs|s+1...n−1, Fn|s+1...n−1)

]
cn−1 n(Fn−1, Fn) fn.

(2.2.10)

Substituting (2.2.10) in (2.2.6) we get the pair copula construction of multivari-
ate density:

f =

n−1∏
j=1

n−j∏
i=1

ci i+j|vij (Fi|vij , Fj|vij )

 n∏
k=1

fk (2.2.11)

where vij is the set of indexes i+ 1, . . . , i+ j − 1.
If vij is 1-dimensional:

F (x|v) =
∂Cxv(Fx(x), Fv(v))

∂Fv(v)
. (2.2.12)

When x and v are uniform variables (f(x)=f(v)=1), we defineF (x, v) = h(x, v,Θ)
and obtain

h(x, v,Θ) = F (x|v) =
∂Cxv(Fx(x), Fv(v))

∂Fv(v)
(2.2.13)

where h is the conditional variable and Θ is the set of parameters of the copula
Cxv.

Vines
For high dimension distributions, there is a large number of possible PCCs. Bed-
ford and Cooke ((Bedford & Cooke, 2001),(Bedford & Cooke, 2002)) have in-
troduced graphical models that help to organize possible pair-copulas decomposi-
tions. These models have been called regular vines. To define the vines, first we
remember the definition of tree:

Definition 2.2.3. A tree T = N,E is an acyclic connected graph, where N is the
set of nodes and E set of edges, non-ordered nodes couples.

A tree with n nodes has n− 1 edges. A tree is completely determined if all its
edges are specified (see an example in Figure 2.2).

Definition 2.2.4. V is a vine of n elements if:

• V = (T1, . . . , Tn − 1);

• T1 is a tree with N1 = 1, . . . , n set of nodes and E1 set of edges;
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Figure 2.2: Regular vine trees representation for d = 5.

• Ti is a tree with Ni = Ei−1 set of nodes and with card(Ni) = n − (i − 1)
for i = 2, . . . , n;

V is a regular vine if it holds also:

• proximity condition: if a = {a1, a2} and b = {b1, b2} are two nodes of
Ti+1 such that {a, b} ∈ Ei+1, then one of aj is equal to one of bj for i =
2, . . . , n− 1 and j = 1, 2.

Proposition 2.2.1. Let V = (T1, . . . , Tn−1) be a R-Vine, then:

• the V edges number is n(n−1)
2 ;

• Each conditioning set corresponds to a couple and each couple of indexes
appears only one time as a conditioning set;

• If two edges have the same conditioning set then they are the same edge.

The R-vines is a wide class and it is possible to identify large number of struc-
tures but we focus on two specific families of vines: Canonical-Vines (C-vines)
and Drawable-Vines (D-vines).

Definition 2.2.5. A R-vines is:

• a C-vines if each Ti has only one node of degree n− i, with i = 1, . . . , n−1;

• a D-vines if each node in T1 has at most degree 2.

Working with these two families of vines is often convenient: their structure is
completely determined by the first level tree T − 1, in D-vine case, or by the hier-
archy of conditioning of the variables, in C-vine case. These properties also allow
to calculate the number of different C-vines and D-vines that can be obtained with
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n variables.
In the C-vines the conditioning set is the same for all the edges of a tree. In general,
for the choice of the only element of the conditioning set in the T2 tree there are n
possible choices, for the tree T3 the number of choices decreases to n − 1 and so
on up to the tree Tn−2 for which there are three choices. So in total there are n!

2
different C-vines with n variables.
For a n-dimensional D-vine there are n! different permutations for the indexes in
T1; however, the edges of a generic vine are not oriented: the order of the nodes
in the first tree of a D-vine can be inverted without changing the type of vine. As
a consequence, the number of permutations that leads to actually different D-vines
is halved, reducing again to n!

2 .

Link between R-Vines and PCC

By introducing the R-vines, we obtain models whose purpose is to provide
help in organizing the various decompositions in the PCC. In particular, the link
between these graphic structures and pair-copulas occurs through the combination
of R-vines edges to pair-copulas. To each R-vine corresponds therefore a R-vine
copula specification, formally defined in this way:

Definition 2.2.6. (F,V, B) is a R-vine copula specification (or vine-copula) if:

• F = F1, . . . , Fn is a continuous and invertible distribution function vector;

• V is a R-vine of n elements;

• B = Be|e ∈ Ei, i = 1, . . . , n− 1 is a set of bivariate copulas, in this case
pair-copulas.

Definition 2.2.7. The joint distribution F of a random vector (X1, . . . , Xn) real-
izes a R-vine copula specification (F,V, B) if for i = 1, . . . , n − 1 and for each
edge e = a, b ∈ Ei then Be ∈ B is the bivariate copula of XCe,a and XCe,b condi-
tioned by XDe = Xi|i ∈ De.
cCe,a,Ce,b|De = ca,b|De is the density function of bivariate copula Be for edge
e = a, b.
Fj is the marginal distribution of Xj for j = 1, . . . , n.

The density of a R-vine can be factored into the product of the conditioned and
unconditioned bivariate copulas associated with each of its edges.

Theorem 2.2.1. Let (F,V, B) be a vine-copula on n elements, then there is one
and only one distribution function of R-vine, and the density function f is given by:

f =

n∏
k=1

fk

n−1∏
i=1

∏
e∈Ei

ca,b|De(Fa|De , Fb|De) (2.2.14)

where e = a, b and fi is the marginal density corresponding to marginal distribu-
tion Fi, i = 1, . . . , n. The density arguments are omitted for simpler writing.
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Equation (2.2.14) shows that the vine-copula has closed form density when
F1, . . . , Fn and bivariate copula B are differentiable.
For a C-vine the set of bivariate copula is B = Ci1,i2|1,...,i1−1 : 1 ≤ i1 < i2 ≤ n,
while for a D-vine is B = Ci1,i2|i1+1,...,i2−1 : 1 ≤ i1 < i2 ≤ n.
Using these notions we get C-vine and D-vine density functions.
The n-dimensional density f corresponding to a canonical vine is given by

f =

n∏
k=1

fk

n−1∏
j=1

n−j∏
i=1

cj,j+i|1,,j−1(Fj|1,,j−1, Fj+i|1,,j−1). (2.2.15)

The n-dimensional density f corresponding to a drawable vine is given by

f =

n∏
k=1

fk

n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,,i+j−1(Fi|i+1,,i+j−1, Fi+j|i+1,,i+j−1) (2.2.16)

We will present an empirical application of these techniques in Chapter 3, Sec-
tion 3.3.2.

2.2.5 Conclusion

In this chapter we described different techniques for forecasting financial time se-
ries, each of them has some drawback.
Filtered Historical Simulation presented in Section 2.2.2 use an implicit correla-
tion, hence it is not possible use this model for a “Stress Test” on increasing cor-
relation and we cannot monitor the correlation evolution of the assets or do some
analysis on dependence.
The vine approach is effective only if we estimate the best fitting bivariate copula
at each step of vine estimation and it is onerous for portfolio with large number of
assets.
An alternative is define “a priori” the bivariate copula to use, but also in this case
we lose the dependence focus we need to describe correctly our portfolio dynam-
ics.
In the next chapter we try to improve these models and analyze the difference
between “old” and “new” also using the back–test techniques presented at the be-
ginning of this chapter.
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Chapter 3

Modern approaches and new
results

We have seen in Chapter 1 and Chapter 2 different tools and models to forecast
assets and portfolios returns. The focus is on both marginal distribution of each
asset and dependence structure of all assets in portfolio allocation. An important
task that is not analyzed in the previous chapter is the stability of the chosen model
(hence parameters) over time; in fact, all presented models have not time-varying
parameters and describe a static portfolio. This is a good approximation if the
forecasting time-horizon is one day, but it can be misleading if the time-horizon is
higher because the market condition evolves over time and the same should happen
to the parameters.
There exists a huge number of references where authors try to construct a math-
ematical tools to reproduce time–varying dependence between assets. All these
models seem to be appropriate in specific contexts, but they require an initial effort
in the model construction that financial industry cannot allow. An example is Dias
and Embrechts (2010), where a new flexible time–varying copula approach with
new correlation specifications to describe the dependence between exchange rates
is proposed. In their paper they present a new approach that allows the conditional
correlation between exchange rates to be both time–varying and modeled indepen-
dently from the marginal distributions. They introduce a dynamic specification for
the correlation using the Fisher transformation. Applied to Euro/US dollar and
Japanese Yen/US dollar, their results reveal a significantly time–varying correla-
tion, dependent on the past return realizations. The dynamic copula model outper-
forms at six different time horizons, ranging from hourly to daily, confirming the
model specification. In this case the model performs better than other well-known
models, but under a bivariate specification. In our opinion, it can be extremely hard
to create a similar model to describe time–varying correlation for financial portfo-
lios involving many assets.
In this chapter we try to give an alternative formulation or an improvement of the
existing models focusing on stability of parameters and dependence, also having
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in mind their impact and flexibility for applicative purposes. In particular, we de-
scribe the proposed model, related inference procedures and simulations applied to
a specific financial portfolio.
In the first section we present and describe the portfolio used in analysis, with some
additional statistical analysis.
In the next section we present a filtered GARCH-Copula model which is based, on
historical simulations, on a Montecarlo simulation and on a parametric assumption
for the dependence structure. We focus on the analysis of dependence structure of
this model and on the stability and evolution of model parameters. We present the
back-testing and a comparison with FHS.
Last section is devoted to propose a new tool, similar to copula, that overcomes
the limitation highlighted by the ’Impossibility Theorem’ and that can be used in
forecasting model as alternative to Vine Copulae.

3.1 Financial application

3.1.1 Data Description

In our analysis, we considered an equally weighted portfolio of seven MSCI (Mor-
gan Stanley Capital International) regional indexes of financial markets. Being the
understanding of the global financial situation in the last decade among our goals,
with reference to the evolution of dependence in financial markets across the world,
we focused on the macro regions World, North America, Asia-except-Japan, Japan,
Europe, Italy and Switzerland. Particular attention on market behaviors in Europe
and Italy compared with Switzerland and Japan was given. In details, the following
indexes have been considered.

• The MSCI World Index, which captures large and mid cap representation
across 23 Developed Markets (Australia, Austria, Belgium, Canada, Den-
mark, Finland, France, Germany, Hong Kong, Ireland, Israel, Italy, Japan,
Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden,
Switzerland, the UK and the US).

• The MSCI North America Index, which is designed to measure the perfor-
mance of the large and mid cap segments of the US and Canada markets.

• The MSCI AC Asia except Japan Index, which captures large and mid cap
representation across Developed Markets countries in Asia (Hong Kong and
Singapore, excluding Japan) and 8 Emerging Markets countries (China, In-
dia, Indonesia, Korea, Malaysia, the Philippines, Taiwan and Thailand).

• The MSCI Europe Index captures large and mid cap representation across 15
Developed Markets (Austria, Belgium, Denmark, Finland, France, Germany,
Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzer-
land and the UK) countries in Europe.
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• The MSCI Japan Index captures large and mid cap segments of the Japanese
market. With 319 constituents, the index covers approximately 85% of the
free float-adjusted market capitalization in Japan.

• The MSCI Italy Index captures large and mid cap segments of the Italian
market. With 23 constituents, the index covers about 85% of the equity
universe in Italy.

• The MSCI Switzerland Index captures large and mid cap segments of the
Swiss market. With 38 constituents, the index covers approximately 85% of
the free float-adjusted market capitalization in Switzerland.

It should be pointed out that the top constituents of both Europe and Switzerland
are the same, with different weight, and this cause a positive correlation between
the two corresponding indexes.The same situation occurs in the case of MSCI
World Index and MSCI North America Index. This fact is confirmed in Figure
3.1, where the evolution of these historical correlations is always above 0.75.

Figure 3.1: Evolution of historical correlation (based on calculation of 2 years of
daily returns correlation) between MSCI Switzerland and MSCI Europe (Blu line)
and MSCI North America and MSCI World. Period 12/2005 to 07/2016

The data is composed of daily observations (last prices), comprising the period
from 29-th December 2005 to 29-th July 2016, with a total of 2762 points. During
this period all the indexes were affected by the financial crisis in the United States
that started in 2008 (in our analysis from end of 2007 to end of 2009), the European
debt crisis of 2011 (in our analysis from begin of 2011 to end of 2012), the Chinese
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stock market turbulence in summer 2015 and at the beginning of 2016, and the
Brexit event for the European market. Temporal evolutions of these indexes are
shown in Figure 3.2.

Figure 3.2: Price evolution of indexes and the Equally-Weighted analyzed portfo-
lio. Period 12/2005 to 07/2016

Our analyses are daily, hence we prefer to focus on a different market period to
see if our model fitting is good enough in every condition. To this aim, we choose
three different crisis periods of last decade described above. To account for the
last Crisis we analyze the 2 years from September 2014 to August 2016 that are
characterized also by fast mini-crisis. In all the cases the modeling is performed
with previous daily returns of last 2 years (504 daily observations). This means
that, for example for 2008 Crisis, the data used for the first step are from December
2005 to December 2007 and for the last step are from October 2009 to October
2011.
The VaR simulated with data return observed from t to t + 503 is compared with
the observation of the return at the end of the working-day t+ 504.

3.1.2 Statistical analysis

In this section we verify that, as we expected, the Gaussian Hypothesis is not cor-
rect and that Financial Crisis can be identify with high-volatility periods.
For each rolling window used for model estimation (504 daily observations) we
verify the rejection of Jarque-Bera Null Hypothesis (JB p-value < 0.01 reject the
null hypothesis of Gaussian distribution, (Jarque & Bera, 1987)), and calculate
some statistical indicators.
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Figures 3.3 and 3.4 show an example of the descriptive statistics done at each step
of estimation for the continuous returns of such data . We can see that this data
usually exhibits both negative asymmetry and kurtosis excess. Also, according to
Jarque-Bera test statistics, there is evidence that the log-returns are not normally
distributed, i.e., the marginal of returns are not in an elliptical world.

Figure 3.3: Descriptive statistics of Indexes log–returns. 12/2005 - 12/2007

Figure 3.4: Descriptive statistics of Indexes log–returns. 10/2009 - 10/2011

In following graphs one can observe the evolution of Statistical Indicators.
As expected the skewness and kurtosis values confirm the non Gaussianity of his-
torical samples at each step, with few exceptions for some intervals of MSCI AC
Asia except Japan Index and MSCI Japan Index (Kurtosis near 3 in Figure 3.8).
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Figure 3.5: Mean evolution of Indexes log–returns.

Figure 3.6: Daily Volatility evolution of Indexes log–returns.

3.2 GARCH-Copula

For financial industry the main goal is end up with a model which is easy to under-
stand and maintain, that could help in the interpretation of the final risk indicators,
and that could quickly enough react to the changes in market conditions without
onerous model updating. The idea of this section is to investigate if a model based
on standard assumptions and constant parameters, where the time–varying depen-
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Figure 3.7: Skewness evolution of Indexes log–returns.

Figure 3.8: Kurtosis evolution of Indexes log–returns.

dence is modeled through frequent updating of the parameters, instead of through
a fixed initial estimation of the time-varying evolution law of the parameters, can
be a suitable alternative model for forecasting the risk of a multivariate portfolio in
different financial situation.
We use the Student-t copula to describe the dependence between residuals of our
filtered marginal distributions. We assumed the correlations of residuals to be con-
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stant in the model, but since they are affected by evolution in time, their estimation
is daily updated by rolling the observations used in estimation. In details, denoted
with t = 0 the first day of the rolling set of observations, and with t = T the last
day, for any pair of assets i and j, with i 6= j, the correlation between innovations
ξi,T+1 and ξj,T+1 given the algebra FT is defined as

ρ(ξi,T+1, ξj,T+1) =
Cov(ξi,T+1, ξj,T+1)√

V ar(ξi,T+1) V ar(ξj,T+1)
,

where

Cov(ξi,T+1, ξj,T+1) = E[ξi,T+1 ξj,T+1]− E[ξi,T+1] E[ξj,T+1]

= E[σi,T+1 zi,T+1 σj,T+1 zj,T+1]

= E[σi,T+1 σj,T+1] E[zi,T+1 zj,T+1]

= E[σi,T+1 σj,T+1] ρi,j

and where ρi,j denotes the constant correlation coefficient between the residuals zi
and zj .
Hence, observing that in terms of 1-day forecasting volatilities are constant given
FT , it holds:

ρ(ξi,T+1, ξj,T+1) =
σi,T+1 σj,T+1 ρi,j

σi,T+1

√
V ar(zi,T+1) σj,T+1

√
V ar(zj,T+1)

=
ρi,j√

V ar(zi,T+1) V ar(zj,T+1)
.

(3.2.1)

Thus, the dependence between innovations ξi,T and ξj,T depends on ρi,j and
on the volatility of residuals, i.e., there is an adjustment of correlation between in-
novation and residuals when the volatility of residuals is different from one.

It can be seen that correlations among residuals evolve along time, i.e., are
not constant, while, on the contrary, correlations of historical returns have low-
reacts to the changes in market dependencies. This fact can be clearly observed
in the correlation evolution the first financial periods under study: after the crisis,
the dependence among assets remains high and stable for almost two years before
reaching again normal levels. This fact is related with the equally-weighed infor-
mation that we get for the last two years of data, while with the residual correlation
we have a sort of adjust effect in correlation through the update of the parameters
of marginal models.

An empirical evidence is the focus on the evolution of bivariate correlation
between the MSCI European and the MSCI Japanese indexes in the 2008-2010
period. Figure 3.9shows the evolution of estimated bivariate correlations between
recorded returns and estimated residuals (2-years rolling, hence 504 working days
observed in the past). It also shows the correlations between simulated forecasting
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(based on historical sample of 2-years, 504 working days) and returns (all based
on a rolling of 1000 days). Note that it is immediately observable the jump from
positive to negative correlation in late 2010. Such instability arises because in
late 2010 the historical sample used for the estimation does no more contain the
observations of 2008 crisis, and hence the correlation decreases significantly. On
the contrary, looking at the evolution of the residuals’ correlation, we observe a
smoother decrease, with some increase. Hence the one day forecasting simulation
in 2009 has smaller correlation than the observed one, but is more representative
of what was going on.

Figure 3.9: Evolution of 2-year correlation between MSCI Europe and MSCI
Japan. Historical vs Simulated one, period 2007-2009

This observation is of fundamental importance in the study of the time varying
dynamic of dependence, since it is a mitigation of the jumps that occur in his-
torical dynamics of correlation caused by the rolling data-set used. The idea of
GARCH models is to focus on more recent data, in order to have a fast reaction
of the model to the sudden changes in volatility, and modeling the dependence of
GARCH through residuals we recreate a more stable and realistic description of
correlation among assets, where the correlation becomes more reactive to the mar-
ket also for the Xi,t. This is not the case of Vine-Copulas approach, as we will see
in Section 3.3.2.

3.2.1 Inference and Simulation

We first make inferences on the marginal models for the log-returns, then we ob-
serve the residuals according to the selected univariate model, and we dynamically
estimate the parameters of the copula connecting the observed residuals. The re-
sulting marginal models and the estimated copula for the residuals are finally used
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to evaluate daily portfolio’s returns through different measures of risk. For the
copula describing the dependence among residuals, we use the Student-t copula
(having a number of degrees of freedom and correlation matrix P dynamically es-
timated along time), since, as we will see in next sections, these parameters are not
constants over time, but are stable enough to understand the dynamic of the model.

At the end of the market-day we collect the last 2 years of observed daily log-
return (504 observations) for every asset in our portfolio and we use it has historical
sample to estimate the 1-day forecasting model. This approach, whose goal is to
obtain a tractable tool for forecasting purposes, is based on the following steps.

1. Model estimation, which consists in:

(a) Estimation of the parameters of the univariate models, using the last
2 years of observed daily log-return (504 observations), using condi-
tional maximum likelihood estimation;

(b) Computation of the empirical correlated residuals according to the marginal
univariate models (details are provided next in this section).

(c) Estimation of the correlation matrix P and the degrees of freedom ν of
the Student-t copula starting from empirical correlated residuals.

2. Simulation. Once the marginal model is fixed, a simulation of 1000 possible
1-day forecasting portfolio returns to estimate their distribution is performed.
At any step, the simulation consists in:

(a) generation of a multivariate vector having marginal uniformly distributed
variables and the previously estimated Student-t copula as the joint dis-
tribution (whose dimension is the number of assets in the portfolio);

(b) generation of the correlated vector of residual through the inverse em-
pirical distribution function (by Kernel function) of the past residu-
als created during the estimation phase (so that no assumptions on the
marginal distribution of residuals is needed);

(c) generation of new future correlated stock returns using marginal mod-
els with estimated parameters, starting from last observed residuals and
returns;

(d) generation of the empirical distribution for the portfolio subject of the
study.

3. Risk valuation. Common risk factors as the Value at Risk (VaR), the Ex-
pected Shortfall (ES) and the volatility can now be estimated through the
empirical joint distribution of the portfolio’s returns at 1-day time horizon
forecast.

4. Back-testing. For this final phase the VaR at 1-day horizon and the realized
returns of the next day (out-of-sample back-test), for at least 1 year (250
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data), are considered. All the previous phases are repeated for 250/500/750
working days, and back-testing analysis are performed.

For the estimation of the parameters of the copula, historical residuals recreated
from assets’ marginal models are used. Given the estimated parameters µi and ϕi
and the observed returns Xi,t with t = 0, ..., T , one can first recreate the historical
innovations as

ξ̂i,t = Xi,t − µi − ϕi Xi,t−1.

Then, given the initial values of variance model ξi,0 and σi,0, we can recreate the
historical conditional variance time series through

σ̂2
i,t = Ki + αi ξ̂

2
i,t−1 + βi σ̂

2
i,t−1, t = 1, . . . , T,

where the coefficients Ki, αi and βi are those estimated for the marginal mod-
els. The resulting historical time series for the residuals is then given by ẑi,t =

ξ̂i,t / σ̂i,t. Finally, the correlations ρi,j,T+1 = ρ(zi,T+1, zi,T+1) between residu-
als of assets i and j at time T + 1 are estimated through the sequences of pairs
{(ẑi,t, ẑj,t), t = 0, . . . , T}. Also the degree of freedom of the Student-t copula is
estimated from this multivariate sample, hence the copula is parametrized.

In order to catch the fat tail and anomalous skewness in different market period
we do not impose a parametric distribution for the simulation of residuals, but we
used the empirical distribution with a kernel smoothness function. In this way
the combined effect between estimated and non constant tail dependence using the
Student-t copula and the empirical distribution of residual allow us to forecast a 1-
day distribution of future log-returns of a portfolio that quickly catch the changes
in market.

3.2.2 Back-testing and Comparison with FHS

Once the marginal model for the univariate evolutions of the indexes in the portfo-
lio is fixed, and the copula of the residuals is dynamically estimated, it is possible to
provide daily forecast computing the empirical distribution of the portfolio, based
on the marginal empirical distributions of the log-returns and the related estimated
connecting copula.

In our analysis, the importance of VaR is linked to the possibility of performing
back-testing of the model through generation of samples of portfolio’s value in the
next day, and then to provide the validation of negative tail of future returns. In
fact, daily estimation of log-returns by means of the previously described proce-
dure can easily allows for generation of 1000 samples of portfolio’s returns, and
thus of estimates of risks measures.

In all three cases the forecast passed the back testing according the Basel Reg-
ulation, as shown in Figure 3.10.
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Figure 3.10: Results of back-testing of GARCH-Copula model according to Mar-
ket Risk Capital Requirements (Basel) test.

As we saw in Section 2.1.2, this is the Regulatory back-test but it has sta-
tistical limits. Hence we focus on Kupiec (Kupiec (1995)) and Christoffersen
(Christoffersen (1998)) back-tests.
The Kupiec results are summarized in Figure 3.11, and clearly show the admissi-
bility of the estimated VaR.

Figure 3.11: Results of Kupiec test on GARCH-Copula model for 2008 Financial
Crisis (12/2007-12/2009), European Debt Crisis (01/2011-12/2012) and Chinese
Turbulence (08/2014-07/2016)

Also the resulting p-values for Christoffersen’s test under different confidence
levels and sample sizes have been computed. The results are summarized in Figure
3.12, and also in this case show the admissibility of the estimated VaR, except for
few cases.

Figure 3.12: Results of Christoffersen test on GARCH-Copula model for 2008
Financial Crisis (12/2007-12/2009), European Debt Crisis (01/2011-12/2012) and
Chinese Turbulence (08/2014-07/2016)

In fact, in 2014− 2016 the Christoffersen test fail for confidence level of 95%
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(pointed out in red color). Problems also raised for the European and Italian in-
dexes probably due to the Brexit effect; here the market volatility is increased
because of political/exogenous reasons and it is not possible to head off the phe-
nomenon from past observed data, but a risk manager can integrate the qualitative
view (increasing of market uncertainty) with the model estimation and VaR. It can
prevent some draw-down with coverage instrument or low the European exposure
of the portfolio for that period. Of course in our equally-weighted portfolio the
Brexit effect affects also the VaR estimation of the overall portfolio.

An interesting comparison can be done with the Parallel Filtered Bootstrapping
Approach (PFB).
One relevant difference between the two models is that the GARCH-Copula has a
Montecarlo simulation while The PFB model is based in historical simulation (see
Section 2.2.2 for details).
Another significant difference is the dependence modeling, in GARCH-Copula we
use a semi-parametric approach with the estimation of explicit correlation structure
of our portfolio, while in PFB model the correlation is not estimated and is implic-
itly considered using the parallel bootstrapping.
These two differences have a great impact on the back-testing results, as we can see
in Figures 3.13,3.14 and 3.15, this model does not perform well in Crisis periods.

Figure 3.13: Results of back-testing of PFB model according to Market Risk Cap-
ital Requirements (Basel) test.

Figure 3.14: Results of Kupiec test on PFB model for 2008 Financial Crisis
(12/2007-12/2009), European Debt Crisis (01/2011-12/2012) and Chinese Turbu-
lence (08/2014-07/2016)

Another usefull term of comparison between these two models is look at the
evolution of estimated VaRs linked to effective returns of the portfolio.
Figures 3.16, 3.18 and 3.20 show the estimated VaR at percentiles 1% and 5%, and
the true value of the asset in the previous day for Copula-GARCH model, while
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Figure 3.15: Results of Christoffersen test on PFB model for 2008 Financial Crisis
(12/2007-12/2009), European Debt Crisis (01/2011-12/2012) and Chinese Turbu-
lence (08/2014-07/2016)

Figures 3.17, 3.19 and 3.21 show the same information for Parallel Filtered Boot-
strap model. The good performance of the estimated VaR is graphically confirmed,
even if with quite different behavior; both the risk indicators react quickly to finan-
cial crisis, and in 2008 big one in particular, but also in the beginning of 2011
and in late 2015, or in the beginning of 2016, proving that both the models give a
reliable estimations of risk also in the after-crisis periods.
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Figure 3.16: Observed log-returns of the portfolio, and estimated (via Copula-
GARCH) 1% and 5% corresponding VaR, period from 12-2007 to 12-2009.

Figure 3.17: Observed log-returns of the portfolio, and estimated (via Parallel
Filtered Bootstrap) 1% and 5% corresponding VaR, period from 12-2007 to 12-
2009.

63



Figure 3.18: Observed log-returns of the portfolio, and estimated (via Copula-
GARCH) 1% and 5% corresponding VaR, period from 01-2011 to 12-2012.

Figure 3.19: Observed log-returns of the portfolio, and estimated (via Parallel
Filtered Bootstrap) 1% and 5% corresponding VaR, period 01-2011 to 12-2012.
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Figure 3.20: Observed log-returns of the portfolio, and estimated (via Copula-
GARCH) 1% and 5% corresponding VaR, period 08-2014 to 07-2016.

Figure 3.21: Observed log-returns of the portfolio, and estimated (via Parallel
Filtered Bootstrap) 1% and 5% corresponding VaR, period 08-2014 to 07-2016.
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A relevant difference between the two models is their stability despite the fast-
reactivity to market conditions. The Copula-GARCH model even in daily fore-
casting has a more stable adjustment with respect to the Parallel Filtered Bootstrap
one. It is undeniable if we compare the different VaR evolution in all time series
considered:

• In Global Financial Crisis of 2008 the Copula-GARCH model reacts almost
instantaneously (with a delay maybe of 1 day) to the Crisis Beginning and
identifies the first huge negative returns as Crisis (VaR remain high, in abso-
lute term, for week). Furthermore, it recognizes fast the intermediate recov-
ery in April 2009 and the end of the Crisis in summer of 2009 (Figure 3.16)
with less conservative VaR. In Figure 3.17 we see that the reaction of PFB
model is quite precise but the rebound of the market returns determines the
presence of fluctuations on its values. This means an excessive sensibility of
the model to new positive observations and a lack of stability.

• In European debt Crisis the situation is quite different, in this case only
Copula-GARCH model reacts at appropriate time, while Parallel Filtered
Bootstrap is too slow, the reason is that the data sample used for September
2011 start at September 2009, hence the data used in historical forecasting
came from a positive market period, with not enough ’tail event’ to predict a
Crisis. Indeed the VaR becomes more conservative (higher in absolute value)
after some large negative returns occur and becomes part of the data sample
used for the forecasting.
In this the Parallel Filtered Bootstrap Model is also slow in understanding
the change in correlation between assets. Using the historical implicit corre-
lation it takes a while to capture from the data the comonotonicity typical of
financial Crisis, while in previous analysis we showed that Copula-GARCH
model reacts faster in describing correlation between assets and identifying
comonotonicity events.

• The analysis of the last 2 years confirms what anticipated in the first item.
Copula-GARCH is quick to understand the end of high-volatility financial
period. In these years there were some fast ’mini-crisis’, the beginning of
2015, the Summer of 2015, the beginning of 2016 and the Brexit event, but
in Figure 3.20 the evolution of VaR identifies all these periods. In Figure 3.21
, instead, the PFB model does not recognized that there is a period between
’mini-crisis’ of normal financial situation. This difficulty is determined by
the presence in historical data of negative returns related with high volatility
periods. The results is that with Parallel Filtered Bootstrap we predict too
conservative VaRs.

66



3.3 Linkages

In this section we introduce an application of Linkages, instruments similar to Cop-
ulas presented in Section 1.2.7. As already underlined, Linkages emphasize roles
of dependence structure between given marginals, and dependence structure within
each of them, like copula, but overcome some limitation that the copula function
cannot handle. We use empirical distribution function aiming to comparing the
evolution and back-testing results with the similar approach of D-Vines Copulas,
but different multivariate parametric distributions could be used for each group of
random variables.

3.3.1 Inference and Simulation of Linkages model

As for previous analysis we callXi the vector of 504 returns of title i, i = 1, . . . , 7.
Their joint distribution will be denoted as F and the marginals Fi, i = 1, . . . , 7.
With some specific tests (Anderson-Darling test or Jacque-Bera or Kolmogorov-
Smirnov) it’s possible to study if Xi is distributed as a normal random variable. In
section 3.1.2 we see that our data in general are not Gaussian distributed but in this
case, only for the construction of the Linkages function and the linear correlation
structure, we assume the Gaussianity of all variables. However in the simulation
phase we will proceed as for GARCH-Copula with a Montecarlo simulation of em-
pirical distribution of all assets.

We divided the Xi in three groups, the improvement of this method is that we
can choose how to group the variables if we have financial constrains. In this case
we decide to group Europe Area Indexes (MSCI Europe, MSCI Italy and MSCI
Switzerland), the rest of the world (MSCI World, MSCI North America and MSCI
Asia ex Japan) and MSCI Japan in the last group, alone because the Japan financial
evolution is pretty different from others.
Each variable has mean µi, i = 1, . . . , 7 and their covariance matrix is ΣX .
For an easier computation we standardize the Xi, i = 1, . . . , 7, variables and we
rename them in Zi:

Zi =
Xi − µi
σi

. (3.3.1)

The covariance matrix of Zi, i = 1, . . . , 7 is the correlation matrix of Xi, i =
1, . . . , 7, hence ΣZ = ρX .
For example Table 3.1 shows the correlation matrix of portfolio calculated with
returns observed in 25/09/2012− 29/08/2014.

For each group we calculate the conditional variables Yi, i = 1, . . . , 7, in this
way the Yi of the same group are independent from each other:
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Table 3.1: Historical Spearmann correlation of X, equal to the covariance matrix
of Z estimated with data sample 25/09/2012− 29/08/2014

1.0000 0.7814 0.8012 0.7641 0.5509 0.3519 0.0996
0.7814 1.0000 0.5095 0.5484 0.3920 0.1665 -0.0198
0.8012 0.5095 1.0000 0.5821 0.3639 0.3117 0.1872
0.7641 0.5484 0.5821 1.0000 0.9191 0.4845 0.3056
0.5509 0.3920 0.3639 0.9191 1.0000 0.3267 0.0794
0.3519 0.1665 0.3117 0.4845 0.3267 1.0000 0.4427
0.0996 -0.0198 0.1872 0.3056 0.0794 0.4427 1.0000



Y1

Y2

Y3

Y4

Y5

Y6

Y7


=



Z1

Z2|Z1

Z3|Z1, Z2

Z4

Z5|Z4

Z6|Z4, Z5

Z7


(3.3.2)

To simplify our computations we re-standardize these conditional variables
and rename them according with their belonging to the three groups in M =
(M1,M2,M3) with joint distribution function FM , K = (K4,K5,K6) with joint
distribution FK and Y7. 

M1

M2

M3

K4

K5

K6

Y7


=



Y1
Y2−µ2|1
σ2|1

Y3−µ3|1,2
σ3|1,2

Y4
Y5−µ5|4
σ5|4

Y6−µ6|4,5
σ6|4,5

Y7


(3.3.3)

The linkage function, then, is the joint distribution function L of

U1

U2

U3

V4

V5

V6

W7


=



Φ(M1)
Φ(M2)
Φ(M3)
Φ(K4)
Φ(K5)
Φ(K6)
Φ(Y7)


(3.3.4)

with U1, U2, U3 independent uniform [0, 1] random variables and V4, V5, V6 too.
Note that the two groups are not independent within each other and are not inde-
pendent from W7. In order to get some insight about the distribution L, we recall
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that it is the linkage of [M1,M2,M3,K4,K5,K6, Y7] and according with our hy-
pothesis it is a 7-variate normal random variable with parameters:

µL = (0, 0, 0, 0, 0, 0, 0)

ΣL =



1 0 0 C(M1,K4) C(M1,K5) C(M1,K6) C(M1,K7)
0 1 0 C(M2,K4) C(M2,K5) C(M2,K6) C(M2,K7)
0 0 1 C(M3,K4) C(M3,K5) C(M3,K6) C(M3,K7)

C(K4,M1) C(K4,M2) C(K4,M3) 1 0 0 0
C(K5,M1) C(K5,M2) C(K5,M3) 0 1 0 0
C(K6,M1) C(K6,M2) C(K6,M3) 0 0 1 0
C(Y7,M1) C(Y7,M2) C(Y7,M3) C(Y7,K4) C(Y7,K5) C(Y7,K6) 1


The variance/covariance matrix calculation is not difficult, but it is time consuming
because of the presence of conditional variables. For example

C(M1,K4) = C(Y1, Y4) = C(Z1, Z4) = ρX(1, 4)

C(M1,K5) = E[M1 K5]− E[M1] E[K5]

= E[Z1

Z5 − ρX(4,5)
∗ Z4√

1− ρ2
X(4,5)

]

= E[
Z1 ∗ Z5 − ρX(4,5)

∗ Z4 ∗ Z1√
1− ρ2

X(4,5)

]

=
E[Z1 ∗ Z5]− E[Z4 ∗ Z1] ∗ ρX(4,5)√

1− ρ2
X(4,5)

=
ρX(1,5)

− ρX(4,1)
∗ ρX(4,5)√

1− ρ2
X(4,5)

(3.3.5)

In analogous way we calculate the remaining conditional correlations. The cor-
responding dependence parameter of Table 3.1 (the correlation matrix on 25/09/2012−
29/08/2014), for example , is 3.2:

At this point, we need to generate u1, u2, u3, v4, v5, v6, w7 random uniform.
Note that we hypothesize the independence within the groups but not the inde-
pendence between groups. It results easier to parametrize the copula using the
correlation, this can be done using elliptical Copulas function with parameters the
estimated correlation matrix (and in case of T-Copula a specific degree of freedom).

Having u1, . . . , v6, w7, we generate ŷ1, . . . , ŷ7 distributed as the performances
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Table 3.2: Correlation matrix of [M1,M2,M3,K4,K5,K6, Y7] calculated on
25/09/2012− 29/08/2014 period.

1.0000 0.0000 0.0000 0.7641 -0.3840 -0.1629 0.0996
0.0000 1.0000 0.0000 -0.0779 0.0253 -0.1564 -0.1564
0.0000 0.0000 1.0000 -0.0784 -0.2142 0.1085 -0.2751
0.7641 -0.0779 -0.0784 1.0000 0.0000 0.0000 0.3056
-0.3840 0.0253 -0.2142 0.0000 1.0000 0.0000 -0.5112
-0.1629 -0.1564 0.1085 0.0000 0.0000 1.0000 0.1715
0.0996 -0.1564 -0.2751 0.3056 -0.5112 0.1715 1.0000

y1, . . . , y7 of our portfolio, i.e. recalling the definition of u1, . . . , v6, w7:

u1 = F1(y1)

u2 = F2|1(y2|y1)

u3 = F3|1,2(y3|y1, y2)

v4 = F4(y4)

v5 = F5|4(y5|y4)

v6 = F6|4,5(y6|y4, y5)

w7 = F7(y7)

Inverting, in analogous way used for copula function but with conditional distribu-
tions:

ŷ1 = F−1
1 (u1)

ŷ2 = F−1
2|1 (u2|ŷ1)

ŷ3 = F−1
3|1,2(u3|ŷ1, ŷ2)

ŷ4 = F−1
4 (v4)

ŷ5 = F−1
5|4 (v5|ŷ4)

ŷ6 = F−1
6|4,5(v6|ŷ4, ŷ5)

ŷ7 = F−1
7 (w7)

At this point becomes evident of the possibility to use different multivariate dis-
tribution functions. We can use F1,2,3 multivariate distribution for the first group
and G4,5,6 multivariate distribution for the second one, without limitation.
But to compare the results with D-Vine copulas and to avoid the use of parametric
marginal models we prefer to use marginal and conditional empirical distribution
functions F1, F2|1, F3|1,2, F4, F5|4, F6|4,5, F7. As for the GARCH-Copula model,
to estimate them, we use the kernel density estimation.
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Doing iteratively these passages we get the n-simulated 1-day forecast corre-
lated asset returns of our portfolio. (The distribution of this forecasting is given in
the next Section 3.3.2).

3.3.2 Linkages back-testing and Comparison with D-vine copulas

As in Section 3.2.2, also for this model we perform some back-testing in the three
analyzed periods.
In all three cases the Linkages forecast passed the back testing according the Basel
Regulation, as shown in Table 3.22.

Figure 3.22: Results of back-testing of Linkages model according to Market Risk
Capital Requirements (Basel) test.

As we mentioned in Section 2.1.2, this back-test is the Regulatory one but it
has shortcut in statistical background hence we focus on Kupiec (Kupiec (1995))
and Christoffersen (Christoffersen (1998)) back-test.
The Kupiec results are summarized in Table 3.23, and show the admissibility of
the estimated VaR.

Figure 3.23: Results of Kupiec test on Linkages model for 2008 Financial Crisis
(12/2007-12/2009), European Debt Crisis (01/2011-12/2012) and Chinese Turbu-
lence (08/2014-07/2016)

Table 3.23 confirms the good performance of the method through back-test.
The only exception is given by the values obtained in the period 2007-2009 for Var
1%. This period included financial crisis of 2008 that is not well recognized. This
fact, together with other observations that we will introduce in the following, is
determined by slower reaction times of this model with respect to the AR-GARCH
models. A cause of this difficulty should be recognized in the use of the empirical
distribution in alternative to the previously used filter.
This is confirmed by the resulting p-values for Christoffersen’s test under different
confidence levels and sample sizes. Looking at the results summarized in Table
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3.24 it is clear that the model has the right number of exceeded but in the first
two analyzed periods they are not independent, while they become independent in
last period. This happens because in the first two cases the negative returns are
gathered in few close-range days the empirical marginal distribution is adapting
to the new situation without the introduction of a filter. This fact slows down in
2015-16 period, otherwise, there were a number of mini-crisis distant in time and
the model works well.

Figure 3.24: Results of Christoffersen test on Linkages model for 2008 Financial
Crisis (12/2007-12/2009), European Debt Crisis (01/2011-12/2012) and Chinese
Turbulence (08/2014-07/2016)

An interesting comparison can be done with the Vine Copulas (see previous
Section 2.2.4).

We simulate the D-Vine copulas instead of the C-Vines because in this ap-
proach, studying the correlation matrix of the variables, we can select the path,
with nodes corresponding to the variables, that maximize the sum of the absolute
values of τ of Kendall. This procedure corresponds to the resolution of the fa-
mous problem of the traveling salesman ((Lawler, 1985)), that is the problem of
the choice of the minimum path (in this specific case we are looking for the maxi-
mum one).
To solve the problem we use the nearest neighbor algorithm. This operation is
very simple: we choose a node as the beginning of the journey and at each step
we consider the following node as the node at maximum distance, i.e. the node
with highest correlation value. The main advantage presented by nearest neighbor
is that the choice of the path is automatically processed. This path corresponds to
the first level tree. The subsequent trees are determined in an analogous way.

We use this method to model the dependence structure of our portfolio and then
to simulate correlated uniform random variables used to end up with the forecast
of each portfolio assets using empirical distribution.

The relevant difference between the two models is the dependence construc-
tion: Vine Copulas construct overall dependence starting from bivariate copulae,
selecting the best copula at each step, while with Linkages we focus on specific
qualitative groups that can have dimension higher than two.
Another significant difference is that in Vine copula the composite dependence
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structure is ’hidden’ (we use the best-fitting bivariate copulas at each step but we
loose the interpretability of the results), while, with this alternative method, we can
see the interaction between groups in Linkages case.

These two differences have a great impact to the back-testing results, as illus-
trated in Figures 3.25, 3.26 and 3.27. Unfortunately this model does not perform
well in Crisis periods.

Figure 3.25: Results of back-testing of D-Vines model according to Market Risk
Capital Requirements (Basel) test.

Figure 3.26: Results of Kupiec test on D-Vines model for 2008 Financial Crisis
(12/2007-12/2009), European Debt Crisis (01/2011-12/2012) and Chinese Turbu-
lence (08/2014-07/2016)

Figure 3.27: Results of Christoffersen test on D-Vines model for 2008 Financial
Crisis (12/2007-12/2009), European Debt Crisis (01/2011-12/2012) and Chinese
Turbulence (08/2014-07/2016)
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Another useful term of comparison between these two models considers the
evolution of estimated VaRs linked to effective returns of the portfolio.
Figures 3.28, 3.29,3.30, 3.31,3.32 and 3.33 show the evolution of estimated VaR at
percentiles 1% and 5% for Linkages model and D-Vine one and the true value of
the asset in the previous day.
A relevant difference between these two models is stability despite the fast-reactivity
to market conditions. The Linkages model has a more stable adjustment with re-
spect to the D-Vine one.
Looking at the graphs, the intuition is also that Linkages model reacts faster than D-
Vine one in case of comonotonicity events (when the 2008 and 2011 crisis started
the Linkages model adjusted the estimation correctly, while D-Vine one had some
reverse estimations from one day to the next one).
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Figure 3.28: Observed log-returns of the portfolio, and estimated (via Linkages)
1% and 5% corresponding VaR, period from December 2007 to December 2009.

Figure 3.29: Observed log-returns of the portfolio, and estimated (via D-Vines)
1% and 5% corresponding VaR, period December 2007 to December 2009.
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Figure 3.30: Observed log-returns of the portfolio, and estimated (Linkages) 1%
and 5% corresponding VaR, period from January 2011 to December 2012.

Figure 3.31: Observed log-returns of the portfolio, and estimated (D-Vines) 1%
and 5% corresponding VaR, period January 2011 to December 2012.
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Figure 3.32: Observed log-returns of the portfolio, and estimated (Linkages) 1%
and 5% corresponding VaR, period August 2014 to July 2016.

Figure 3.33: Observed log-returns of the portfolio, and estimated (D-Vines) 1%
and 5% corresponding VaR, period August 2014 to July 2016.
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Conclusions

In this thesis we present two forecasting models focused on innovative tools to deal
with dependence analysis of portfolio.
The performed analysis seem to suggest that the Copula-GARCH model is appro-
priate in periods of big financial crisis; it appears to quickly reacts at beginning
of crisis but also, equally important, also intercepts in right time the end of crisis.
Sometime, however, the filter does not intercept mini-crisis, as we saw in 2015-16
back-test.
In particular, the forecasting of European and Italian indexes fail probably because
of the Brexit effect. In this case, the market volatility increases because of politi-
cal/exogenous reasons and it is not possible to head off the phenomenon from past
observed data. However, a risk manager can integrate the model and VaR estima-
tion with qualitative views, preventing draw-downs with coverage instrument or
decreasing the European exposure of portfolio. Of course, in our equally-weighted
portfolio the Brexit effect also affects the VaR estimation of the overall portfolio.
The problem seems to be overcome by using the Linkages model, which better
performs in this period.
Linkages model has the right number of exceeded, but it should be pointed out that
in the first two analyzed periods the exceeding are not independent. The reason is
that in the first two cases the negative returns are gathered in few close-range days,
hence the empirical marginal distribution adapts too slowly to the new situations
without a filter. In 2015-16 period, otherwise, there were a number of mini-crisis
not too close in time, that allows for a correct fat tail empirical distribution esti-
mate.
The slower reaction on negative returns in the second model is caused by the use
of empirical distribution function without the application of the AR-GARCH filter,
hence this is a limit due to univariate projections rather than lacks in dependence
modeling.
Back-tests and graphical analysis confirm that both models suitably intercept in
right time the changes in dependence structure. They also confirm the superiority
of ARMA-GARCH models in describing the univariate forecasting of asset returns
with respect to an approach based directly on historical simulations, empirical dis-
tribution or bootstrapping.
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