
Citation: Negro, P.; Cesano, F.;

Casassa, S.; Scarano, D. Combined

DFT-D3 Computational and

Experimental Studies on g-C3N4:

New Insight into Structure, Optical,

and Vibrational Properties. Materials

2023, 16, 3644. https://doi.org/

10.3390/ma16103644

Academic Editors: Alina Pruna and

Alexander N. Obraztsov

Received: 24 March 2023

Revised: 3 May 2023

Accepted: 6 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Combined DFT-D3 Computational and Experimental Studies
on g-C3N4: New Insight into Structure, Optical, and
Vibrational Properties
Paolo Negro * , Federico Cesano , Silvia Casassa and Domenica Scarano *

Department of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre,
University of Torino & INSTM-UdR Torino, Via P. Giuria 7, 10125 Torino, Italy; federico.cesano@unito.it (F.C.);
silvia.casassa@unito.it (S.C.)
* Correspondence: pa.negro@unito.it (P.N.); domenica.scarano@unito.it (D.S.); Tel.: +39-011-6707834 (D.S.)

Abstract: Graphitic carbon nitride (g-C3N4) has emerged as one of the most promising solar-light-
activated polymeric metal-free semiconductor photocatalysts due to its thermal physicochemical
stability but also its characteristics of environmentally friendly and sustainable material. Despite the
challenging properties of g-C3N4, its photocatalytic performance is still limited by the low surface
area, together with the fast charge recombination phenomena. Hence, many efforts have been focused
on overcoming these drawbacks by controlling and improving the synthesis methods. With regard
to this, many structures including strands of linearly condensed melamine monomers, which are
interconnected by hydrogen bonds, or highly condensed systems, have been proposed. Nevertheless,
complete and consistent knowledge of the pristine material has not yet been achieved. Thus, to shed
light on the nature of polymerised carbon nitride structures, which are obtained from the well-known
direct heating of melamine under mild conditions, we combined the results obtained from XRD
analysis, SEM and AFM microscopies, and UV-visible and FTIR spectroscopies with the data from the
Density Functional Theory method (DFT). An indirect band gap and the vibrational peaks have been
calculated without uncertainty, thus highlighting a mixture of highly condensed g-C3N4 domains
embedded in a less condensed “melon-like” framework.

Keywords: graphitic carbon nitrides; melon polymorph structure; DFT-D3 computation; structure
and morphological properties; optical properties; vibrational properties

1. Introduction

The prospect of developing inexpensive, energy-efficient, green, and sustainable indus-
trial processes has attracted extensive interest in the scientific and industrial communities. For
this reason, in the past few years, among the carbon-based materials, g-C3N4, a polymeric
metal-free semiconductor photocatalyst with 2D graphene-like structure, has received massive
attention [1–7]. Due to its exceptional properties, including easy preparation methods from
economical raw materials (i.e., earth-abundant carbon- and nitrogen-based materials), high
thermal and chemical stabilities, non-toxicity, tunable band gap, and visible light absorption,
it turns out that widespread applications, such as the removal of toxic metal ions, degradation
of dye pollutants, selective organic transformation to fine chemicals, and photocatalysis for
hydrolytic hydrogen production, have been developed [8–12]. Moreover, it can be used in
additional fields such as metal-free organic syntheses [13–20], solar-light-driven photo-redox
catalysis, photocatalytic water splitting, photoelectric conversion, and fuel cells [9,12].

It is well known that g-C3N4 is a n-type semiconductor, the framework of which
is formed of π-conjugated N-bridged aromatic poly tri-s-triazine units (heptazine rings)
forming layers with strong C-N covalent bonds. Namely, it was found that the 2D lattice
consists of a periodic arrangement of nitrogen-linked heptazine units, in which each
nitrogen connects two or three heptazine rings, thus giving rise to a variety of structural
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motifs with different levels of condensation, ranging from partially to fully polymerised
structures [21,22]. The π-conjugated sp2 hybridised structure is also responsible for the
visible light absorption at about 460 nm, which explains the typical pale yellow colour [23].

Regarding the thermal properties, g-C3N4 is highly stable up to 600 ◦C, with C-N
fragmentation reactions occurring at higher temperature, while concerning the chemical
stability, the van der Waals interactions among layers render it non-reactive to many
conventional solvents [13].

However, some drawbacks must be mentioned, including the low specific surface area,
the chemical inertness itself, the poor charge carrier mobility, and the high exciton recom-
bination rates. Nevertheless, since g-C3N4 has been considered a promising/challenging
material in many fields [24–26], to overcome the aforementioned drawbacks, and also
to improve its already existing properties, g-C3N4 has been combined often with metals
or other semiconductors to form heterojunctions or composites with innovative architec-
tures, aiming at enhancing the charge carrier rates, the surface properties, the surface
area, etc. [27]. Concerning the innovative architectures, low dimensional carbon nitride
nanostructures, i.e., 1D nanowires, nanotubes, or nanorods, as well as 2D nanosheets,
show improved charge transfer ability compared to the bulk structures. Furthermore,
porous 3D nanospheres provide an increased specific surface area, thus also improving
adsorption ability and, ultimately, the photocatalytic performance [21,28]. In this respect,
detailed investigations on the surface properties of carbon nitride structures with different
polymerisation degrees have been carried out to understand the role of terminal amino
groups and (C=N–C) neighbouring triazine nitrogen units in catalytic reactions as potential
active sites to form heterostructures [29].

It is known that, due to the commonly used synthesis methods (thermal polyconden-
sation in air), high crystalline g-C3N4 structures are difficult to obtain [3]. This means that
the peculiar properties of g-C3N4 itself depend strongly on the experimental conditions, i.e.,
on the different precursors that are used during the synthesis, on the reaction rates, and/or
temperatures, thus affecting the local structure, the stacking order, and the formation of
defective situations, which play a significant role in modifying the band structures [5,23].

On this matter, several computation models have been proposed and compared with
the experimental data by changing the stacking order and the inter-layer and inner-layer
distances between heptazine chains, together with, in some cases, ring-opening reactions,
which give rise to nitrogen defects, thus increasing the complexity of the models [6,30–33].
Despite the many efforts focused either on experimental (i.e., neutron and X-ray diffraction
patterns) and on computational approaches [3], which predict amazing properties and
applications, the complex structure of the polymeric carbon nitride systems is still poorly
understood, being, therefore, also a matter of a controversial debate [14,34,35].

Along this theme, our aim is to give some insights into the more suitable carbon nitride
model with a stable configuration, which is able to describe properly the experimental
results obtained from X-ray diffraction patterns, UV-visible, and FTIR spectra. Therefore,
two structures with two different degrees of condensation of g-C3N4 systems have been
investigated and characterised at the Density Functional Theory level (DFT) by means of
the periodic simulation code CRYSTAL [36]. Indeed, interestingly, a realistic model that
is able to explain the experimentally measured properties is based on the coexistence of
different structural motifs. As previously stated, it is challenging for the adopted approach
to shed light on the electronic structure of both partially (melon-like) and fully (g-C3N4)
polymerised systems as such, with the aim of developing more complex heterostructures
such as homo–heterojunctions, which could enable a more effective light absorption with
the consequent use in visible-light-responsive photocatalysis.

With regard to this, it is well known that DFT calculations can also provide a descrip-
tion of the valence and conduction bands in terms of atomic orbitals, which potentially
play a relevant role as oxidation and reduction sites in photocatalysis [2].
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2. Computational Set Up

Throughout this work, we apply DFT as implemented in CRYSTAL17 [36], a periodic
quantum-mechanical code based on the description of the crystalline wave function as a
linear combination of localised Gaussian-type atomic orbitals.

A 6-21G basis set plus polarisation functions (3-1G for hydrogen atoms), which is used
extensively for solid-state system calculation, was adopted for C and N atoms and will be
referred to in the following sections as 621pol [37]. Functionals with different percentage of
Hartree–Fock (HF) exchange have been explored, including pure Perdew–Burke–Ernzerhof
functional (PBE) [38], PBE0 (25% of exact change) [39,40], and HSE06 [41] (Table S1). The
calculations were finally performed at the PBE/621pol level. Moreover, since the van der
Waals interactions play a fundamental role in establishing these materials, the PBE was
enriched with the D3 a-posteriori empirical correction proposed by Grimme [42] to account
for the London dispersion forces (PBE-D3).

The DFT exchange-correlation contribution was evaluated via numerical integration
over the unit cell volume by using a pruned grid with 99 radial and 1454 angular points.
Integration over the reciprocal space was carried out by using Pack–Monkhorst meshes
of 4 × 4 × 4. The Coulomb and exchange series, which were summed in direct space,
were truncated by using overlap criteria thresholds of [7, 7, 7, 12, 24]. Convergence for the
self-consistent field algorithm was achieved up to a threshold of 10−9 Hartree on the total
energy, per unit cell [43].

Geometry optimisation was performed by using analytical gradients with respect to
atomic co-ordinates and unit cell parameters, within a quasi-Newtonian scheme combined
with Broyden–Fletcher–Goldfarb–Shanno Hessian updating [44,45]. The default conver-
gence criteria were adopted for both gradient components and nuclear displacements.

A full set of vibrational frequencies in k = Γ was obtained within the harmonic ap-
proximation by diagonalising the mass-weighted Hessian matrix. This matrix was built
by numerically differencing the analytical gradient with respect to atomic cartesian co-
ordinates [46,47].

The topological analysis of electron density, which allows an accurate mapping of
bonds and atoms, was carried out by means of the TOPOND [48] program, which was
recently incorporated in the CRYSTAL [48–50] code. The topological properties of the
critical points of the bonds were analysed according to Bader’s theory of atoms in molecules
and crystals (QTAMAC) [51] to acquire information on the number and type of interactions.

3. Materials and Methods

Graphitic carbon nitride (g-C3N4) was prepared by heating 2 g of melamine powder
(Sigma-Aldrich, Burlington, MO, USA, Melamine 99% M2659) inside a muffle (Nabertherm
B400). In more detail, to avoid the melamine leak during the precursor sublimation, the
powder was pressed into the form of a pellet and introduced in a ceramic crucible, which
was closed with a ceramic lid (even if not-hermetically). The sample was heated up to a
temperature of 823 K with a heating rate of 1 K per minute and kept for 2 h at the same
temperature. Then the sample was slowly cooled down to room temperature and weighed
(resulting in about 48% of the initial mass) (see Scheme 1).

From the photograph in Scheme 1, it appears that the obtained material on the white
sample holder shows a yellowish colour, which makes it possible to predict the energy
value of the absorption edge in the UV-Vis diffuse reflectance spectra (vide infra).

The X-ray diffraction patterns were obtained by using a PANalytical PW3050/60
X’Pert PRO MPD X-ray diffractometer with a Cu radiation (Kα = 1.54060 υ) and a Ni filter
in Bragg–Brentano configuration, which was equipped with a X’Celerator detector. The
diffractograms were acquired in the 5◦ ≤ 2θ ≤ 80◦ interval with an acquisition step of 0.01◦.
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Scheme 1. Main steps of g-C3N4 synthesis.

N2 adsorption–desorption experiments were carried out at 77 K by a Micromeritics
ASAP 2020 instrument (Micromeritics, Norcross, GA, USA) to determine the Brunauer–
Emmett–Teller (BET) surface area. The surface area of the samples was determined after
outgassing at 423 K, overnight.

Scanning Electron Microscopy (SEM) analyses were carried out by using a ZEISS EVO
50 XVP microscope with a LaB6 source. Before performing the analysis, the insulating
samples were covered with a gold layer of about 15 nm in thickness to avoid any charging
effect (Bal-tec SCD050 sputter coater).

Atomic Force Microscopy measurements were carried out in the Intermittent-Contact
(IC) mode by using a modified Nanosurf Easyscan2 AFM instrument, which was equipped
with a 10 µm scan-head, inside a shielded and acoustically insulated enclosure on a high-
performance anti-vibration platform.

The optical properties were investigated in the 190–2500 nm wavelength range by
means of a Cary 5000 UV-vis-NIR spectrophotometer, which was equipped with a diffuse
reflectance sphere in the diffuse reflectance (DR) mode. The sample was diluted in PTFE
powder (2% by weight).

FTIR spectra were acquired in transmission mode by means of a Bruker VECTOR22
spectrometer that was equipped with a cryogenic MCT detector with 2 cm−1 resolution.
Due to the high absorbance of the sample in the IR spectrum, the material was diluted in
KBr (2% by weight). Each sample was pressed in the form of self-supporting pellets and
then analysed under vacuum at 298 K.

4. Results and Discussion
4.1. Crystal Structure by XRD Analysis and Modelling
4.1.1. Experimental XRD Analysis

From the X-ray diffraction pattern of our specimen (Figure 1, black line), two main
peaks at approximately 13.04◦ and 27.6◦ are both assigned to layered g-C3N4 systems, in
agreement with the literature data [7,52–56]. In particular, the feature at 27.6◦ (002), which
is typical of the layered structure, is due to the inter-layer π–π stacking with a distance
d(002) = 3.218 υ.
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Figure 1. XRD patterns of the synthetised sample (black line) and of melamine (grey line). Red dotted
lines highlight the presence of weak melamine features in the diffraction pattern of our sample.

The feature at 2θ = 13.04◦ represents the in-plane packing of heptazine units and could
be assigned either to the (210) diffraction planes of an orthorhombic unit cell [7] or to the
(100) diffraction planes of a hexagonal unit cell [52–55].

For the sake of comparison, the XRD pattern of pure melamine powder has been shown
(Figure 1, grey line). Due to the presence of broad and weak reflections at approximately
2θ = 17.7◦ and 2θ = 21.9◦ on the pattern of our specimen (red dotted lines), which are
typical of melamine, it can be reasonably hypothesised that a network of hydrogen-bonded
melamine/triazine units is present inside the heptazine framework.

From Scherrer’s equation D = kλ/βcosθ, where λ is the X-ray wavelength, β is the
FWHM of the diffraction line corrected by the instrumental broadening, θ is the diffraction
angle, and K is Scherrer’s constant or shape constant, which has been assumed to be 0.9, in
agreement with Alizadeh et al. [57], the mean crystallite thickness of the particles has been
calculated. In particular, from the (002) XRD peak (i.e., 2θ = 27.6◦), the estimated dimension
of the scattering domains is about 48 nm, in agreement with the BET surface area (about
9 m2/g).

4.1.2. Modelling the Crystal Structure

In this work, among the many structures proposed for carbon nitride polymerised
structures, including g-C3N4, which was subjected to extensive and controversial discus-
sions [1–7], we adopted the model proposed by Fina et al. based on their XRD and neutron
diffraction analyses [7], which are reported for the sake of comparison in the a and c panels
of Figure 2.

After a complete geometry optimisation at the PBE-D3/621pol level, the system
produced results as in the b and d panels of Figure 2.

The peculiar intra-layer melon-like structure is retained, but the interplanar distance
decreases, and a remarkable zig-zag layer deformation occurs. The data, which is reported
in Table 1, confirm the aforementioned structural relaxation, which causes a contraction of
the a, along the z direction, together with a slight increase in the b and c parameters with
respect to the experimental values. As a result, a decrease in the total volume of the unit
cell of about 5% is obtained.
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Figure 2. Melon structure before ((a,c) panels) [7] and after geometry optimisation ((b,d) panels).
Top-view: (a,b) panels; side-view: (c,d) panels, obtained with Jmol program [58].

Table 1. Structural parameters of partially condensed melon unit cell. Lattice parameters: a, b, c
[υ] unit cell vectors; α, β, γ [◦] unit cell angles. Volume of unit cell (V [υ3]), inter-layer distance [υ],
and bending angles before (Fina et al.) and after PBE-D3/621pol optimisation [◦]. The difference in
percentage between the two structures is reported in the last column.

Fina et al. PBE-D3 Difference [%]

a [υ] 16.24 15.18 −6.53
b [υ] 12.52 12.60 +0.64
c [υ] 6.52 6.55 +0.46

α = β = γ [◦] 90 90 0
V [υ3] 1324.90 1253.61 −5.38

Inter-layer distance [υ] 3.28 3.26 −0.61
Bending angle

N77–N86–N130 [◦] 175.0 150.5 −14.0

The degree of distortion from the planar geometry can be estimated by comparing
the bending angle defined as the angle among three in-plane nitrogen atoms univocally
identified in Figure S1 of the Supporting Information. The magnitude of this angle changes
from 175◦ in the experimental geometry to 151◦ in the optimised one.

It is worth noting that the zig-zag layer deformation is also evident at the PBE level, as
shown in Figures S1 and S2 of the Supporting Information, and, therefore, cannot be an
artifact due to an overestimation of the dispersive interactions between layers due to the
D3 correction.

Thus, a notable rumpling of the layers characterises the equilibrium structure of the
system calculated at zero Kelvin. The discrepancy between the calculated and experimental
structures can be explained by invoking temperature effects. The refined structure, which
was obtained at room temperature, could represent the average position of the vibrating
lattice structure along the z-direction, above and below the plane around the equilibrium
positions. If at T = 0 K, the interactions between the layers can freeze the structure in one
of its lowest energy configurations, as the temperature increases, the kinetic degrees of
freedom prevail, the structure vibrates, and the measurements provide the average position
of the atoms.

To support the hypothesis of a stabilisation of the structure due to the formation of
interactions between layers, we performed a comprehensive search of the charge density
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critical points and applied the full machinery of the topological analysis to characterise
their nature.

In particular, bond critical points (BCP) were clearly revealed between hydrogen and
nitrogen atoms belonging to neighbouring layers. Based on the values of the topological
indicators (i.e., Laplacian of the charge density, virial density, ratio between total energy
density and charge density), these interactions can be classified as hydrogen bonds, ref. [49]
and could be responsible for the rippling of the planes. In addition, similar interactions,
H-N, N-N, and C-N in type, were found between intra-layer atoms of neighbouring
rows, and these can affect the lattice contraction. As expected, the structure expands due
to the increase in temperature, and this explains the difference in volume between the
experimental and the computed structures.

As a next step towards the atomic-scale insight into the synthesised sample, a close
comparison among the XRD patterns was performed and reported in Figure 3. The XRD
analysis computed on the geometry proposed by Fina et al., which is represented by the
blue line in Figure 3, shows a good agreement with the pattern measured on our synthesised
sample, black line, as both the characteristic peaks, due to the (210) and (002) diffractions,
are clearly present. It is worth mentioning that the (002) signal is due to the inter-layer π–π
stacking, while the (210) is related to in-plane packing of heptazine units. Thus, we can state
that at least a partial condensation has been achieved and that our structure corresponds
mainly to the melon polymorph with an orthorhombic space group P21212.
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Figure 3. XRD diffraction patterns of the experimental structure (black line) compared with the XRD
computed diffraction pattern before (Fina et al.) (blue line) and after PBE-D3/621pol optimisation
(red line).

Interestingly enough, the XRD pattern of the PBE-D3/621pol optimised structure (red
line), shows, besides the features due to the (210) and (002) diffraction planes, additional
intense components, within the 25◦ < 2θ < 35◦ range, due to different diffraction lattice
planes caused by the rippling of the relaxed geometry.

Concerning the broadening of the experimental features (black line), we assume that
it can be explained with an envelope of many XRD features that are reasonably related
to different diffraction planes. This makes it possible to hypothesise the occurrence of
differently oriented domains inside the synthesised sample. Therefore, for a complete
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interpretation of the XRD experimental results, it must be considered that a single model
(partially polymerised melon) is not fully representative of the synthesised sample, but a
total polymerised model can also be taken into account. According to this, a computational
characterisation of a fully polymerised g-C3N4 structure becomes crucial to accurately
reproduce the experimental result.

The most plausible structure for representing the totally polymerised g-C3N4 has been
proposed by Teter and Hamley [35] and belongs to the triclinic lattice, space group 1. In
Figure 4, the experimental and PBE-D3/621pol optimised structures are shown for the sake
of comparison, and in Table 2, the values of lattice parameters, volume of the reference cell,
and the respective percentage variations are detailed. Although less evident with respect
to the melon optimised structure, a layer rippling due to inter-/intra-layer interactions
is observed on the relaxed structure (fully condensed g-C3N4 model, Figure 4b,d panels).
Moreover, the bending angle between the N6, C21, and N3 atoms undergoes a variation of
about 9% instead of 14%, as calculated for the partially condensed melon structure. Finally,
a general shortening of the three lattice parameters (a, b, and c) that is accompanied by a
decrease in volume of about 7% can be noticed.
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Figure 4. Fully condensed g-C3N4 structure before ((a,c) panels) [35] and after geometry optimisation
((b,d) panels). Top-view: (a,b) panels; side-view: c and d panels, which were obtained with the Jmol
program [58].

Table 2. Structural parameters of fully condensed g-C3N4 unit cell. Lattice parameters: a, b, c [υ]
unit cell vectors; α, β, γ [◦] unit cell angles. Volume of unit cell (V [υ3]), inter-layer distance [υ],
and bending angles before (Teter and Hamley [35]) and after PBE-D3/621pol optimisation [◦]. The
difference in percentage between the two structures is reported in the last column.

Teter and Hamley PBE-D3 Difference [%]

a [υ] 7.11 6.99 −1.75
b [υ] 7.11 6.99 −1.72
c [υ] 6.49 6.43 −0.99
α [◦] 90.00 77.58 −13.80
β [◦] 90.00 96.17 +6.86
γ [◦] 120.00 120.01 0.00

V [υ3] 284.37 265.47 −6.64
Inter-layer distance [υ] 3.25 3.12 −4.00
Bending angle N6 –C21

–N3 [◦] 180.00 163.90 −8.94

The diffraction patterns that were calculated for the Teter and Hemly geometry (blue
line) and for the PBE-D3/621pol relaxed one (red line) are compared with the XRD pattern
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measured on our sample, and the agreement is again quite good. The peaks relating to the
diffraction planes (002), (210), and (100) are present, although at slightly different 2 Theta
values with respect to the experimental ones. In agreement with the decreased inter-layer
distance of 4%, the position at higher angle values of the computed (002) diffraction angles
(blue and red patterns in Figure 5) can be also reasonably explained.
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Figure 5. XRD diffraction patterns of the experimental structure (black line) compared with the
XRD computed diffraction pattern before (Teter and Hemley) (blue line) and after PBE-D3/621pol
optimisation (red line).

A more effective comparison between the melon-like and totally polymerised struc-
tures discussed so far is shown in Figure S3 Supporting Information.

On the basis of the results discussed so far, we can definitely state that a realistic model,
which is able to explain the experimental XRD patterns, implies the combination of different
structural motifs including partially (melon-like) and fully polymerised g-C3N4 structures, as
further shown in the following discussion, in agreement with Changbin Im et al. [22].

This result can find an explanation by considering the reaction equilibria along the
slow pathway from melamine to fully polymerised C3N4. Indeed, the semi-closed reaction
environment causes the formation of different volatile compounds including ammonia,
which can stabilise several structures with a different polymerisation degree, including
the melon-like structure, the fully polymerised C3N4, etc., with small differences in ther-
mochemical stability, as confirmed by Changbin Im et al. [22]. (See reaction scheme in
Figure S4 in Supporting Information). It is known that low temperatures and high pNH3
favour the formation of less condensed melon-string structures, whereas high temperatures
and low pNH3 lead to more condensed g-C3N4 systems. Since these limited cases are not
representative of the real situation inside the reaction environment, we expect that the
obtained material consists of a mixture of less and more condensed structures [22].

4.2. Morphology by SEM and AFM Microscopies

The morphology of the polymerised sample that is obtained from melamine, according
to the previously described method, is SEM and AFM imaged in Figure 6.
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From the SEM image (Figure 6a), a highly heterogeneous material, due to the several
chemical processes occurring during the thermal treatment [59], including the decom-
positions and release of volatile compounds, has been obtained. In particular, complex
aggregates of differently elongated rhombohedrons, besides lamellar and hollow structures,
which are 5–15 µm in size, can be observed at the adopted resolution.

The high level of aggregation, together with the large size of the lamellar structures, in
particular, can be explained with sintering effects due to slow synthesis steps, in agreement
with the low specific surface area (see Paragraph 4.1.1).

In Figure 6b, the surface of a portion of g-C3N4 is 3D-AFM imaged on a flat freshly
cleaved mica support that again confirms the formation of sintered structures, which are
well adhering to each other and consist of large aggregates, as observed from the SEM
image (Figure 6a).

Moreover, in Figure 6c, two height profiles along two directions on the inset image are
shown. From the observed black and red profiles, the sizes of aggregated polymerised C-N
nanoparticles can be estimated in the range of several tens of nanometres. Notice that the
high degree of aggregation prevents us from evaluating the size of the single nanoparticles,
or of the different domains as obtained from XRD analysis.

4.3. Optical and Electronic Properties Determined via UV-Vis Spectroscopy and DFT Calculations

The optical properties, as well as the electronic structure of the obtained specimen, have
been investigated by means of UV-Vis spectroscopy and compared with DFT calculations.

In Figure 7a, the UV-visible spectrum is shown, together with the computed Tauc’s
plots for indirect (Figure 7b, red dotted line) and direct (Figure 7c, red dotted line) band
gap estimations.
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From Figure 7a, the typical optical absorption edge of the polymerised carbon nitride
system, due to the transition from HOMO N3− 2px,z antibonding orbitals to the LUMO
N3− 2pz and C4+ 2px,z lowest-energy orbitals (vide infra), has been observed, and the
nitrogen and carbon pz orbitals are available as oxidation and reduction sites for O2 and
H2 evolution reactions, respectively [21].

Furthermore, a remarkable red shift towards longer wavelengths, with respect to
melamine (Figure S5 in Supporting Information), can be detected as a result of the high
polymerisation degree of our sample. This causes more delocalised π-electrons in the
network, either inside the layers or along the stacking direction where the π-orbitals
overlap [60]. In particular, from the evaluation of the optical band gap, the extrapolated
onset, which is estimated via the Tauc’s plots, gives an indirect band gap value of 2.59 eV
and a direct band gap value of 2.79 eV (Figure 7b,c, respectively). In the case of melamine,
an indirect band gap of 4.71 eV and a direct band gap of 4.84 eV were obtained (Figure
S3). Notice that the indirect band gap value of melamine is in agreement with that shown
by Liu et al. (4.76 eV) [4]. The results are also consistent with those obtained via the
theoretical calculations (vide infra). As a matter of fact, even if many studies have been
focused on the investigations of the optical properties of g-C3N4, identifying the nature of
band gap, whether it is direct or indirect, is not always straightforward. Therefore, for a
deep understanding of the electronic properties of the material, an accurate description
of the electronic band structures of both the partially and totally polymerised systems
becomes crucial.

From the band structures shown in Figures 8a and 9a, the semiconductor behaviour of
melon and fully condensed g-C3N4 systems, respectively, can be highlighted. In particular,
an indirect transition between the Z point at the top of valence band and the Γ point at the
bottom of the virtual/conduction band of 2.36 eV and a direct transition from Γ (valence
band) to Γ (conduction band) of 2.40 eV were computed for the partially condensed melon
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(Figure 8a). These results are in good agreement with the experimental estimation obtained
from the Tauc’s plots (Figure 7b,c), and with a substantial amount of data reported in
the literature [2,3,55,56,60–63], thus establishing that bulk structures show lower band
gap than their few-layer or monolayer counterparts, which is expected to enhance the
light-harvesting.
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nitrogen, blue lines for carbon, green lines for hydrogen).
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Figure 9. Band structure of fully polymerised g-C3N4 with the selected k-points: Γ (0,0,0), S (0,1/2,0),
T (0,1/2,1/2), M (1/4,1/2,1/2), R (1/2,1/2,1/2), and N (3/4,1/2,1/4) (a); projected density of states
(PDOS) on the atomic orbitals (b); projected density of states (PDOS) on each atom (c). (Red lines for
nitrogen and blue lines for carbon atoms).
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Concerning the totally condensed g-C3N4, an indirect transition from the N (3/4,1/2,1/4)
to the M (1/4, 1/2, 1/2) point of 1.72 eV and a direct transition in the Γ point of 2.75 eV were
computed. On the basis of these results, it becomes apparent that the optical properties of
our material are better explained by the melon system, given that the computed energy
gap is closer to the experimentally estimated one. However, the presence of some totally
condensed g-C3N4 domains within the melon framework could not be excluded. Indeed,
either the computed XRD or, mostly, the computed vibrational modes (vide infra), are
in agreement with the experimental results, if a coexistence of both structures is taken
into account.

Furthermore, the density of states that are projected on both the atomic orbitals and
atoms (PDOS) of melon (Figure 8b,c panels, respectively) and of fully condensed g-C3N4
(Figure 9b,c panels, respectively) has been computed.

By comparing the panel a and b in Figure 8, it becomes apparent that the main
contribution to the valence band of melon is mainly due to the pz orbitals of nitrogen atoms,
while the conduction band consists predominantly of carbon pz orbitals, in agreement with
Wang et al. [14]. This is further evident from the analysis of the projections on each atomic
orbital in Figure 8c, in which the contribution of nitrogen (red lines) and carbon (blue
lines) atoms to the valence and conduction band, respectively, are clearly remarkable. As
expected, the hydrogen atoms (green line) have a negligible role in the PDOSs projection,
even if their contribution in hydrogen bonding interactions between layers and rows is
confirmed via the topological analysis of the electron density and supported by FTIR
spectra (vide infra).

Concerning the valence and conduction band character, similar considerations can be
extended to the total condensed system, except for the absence of hydrogen atoms together
with functional end groups such as -NH (Figure 9b,c panel). Namely, the majority contri-
bution to the valence band is given by nitrogen pxy and pz orbitals, while the conduction
band comes mainly from carbon pz orbitals.

4.4. Surface Vibrational Properties Determined via FTIR

FTIR experimental (black line) and computed spectra of partially condensed melon
(blue line) and fully condensed g-C3N4 (red line), together with the experimental spectrum
of pristine melamine (grey line), as reference, have been shown in Figure 10.

The wide absorption band in the 3000–3500 cm−1 range of the experimental spectrum
can be assigned to the stretching modes of NH/NH2 terminal groups of a melon-like
structure [4,6,54–56,61,64–67], while the broadening is explained with H-bonding interac-
tions [53,55]. This assignment is confirmed by the presence of the same features on the
pristine melamine spectrum (grey line in Figure 10) [65]. From a close examination of
the computed spectrum of melon, the main components inside the experimental convo-
lution band can be identified as a combination of symmetric and asymmetric stretching
modes of N-H and NH2 functional groups. Notice that due to the absence of NH/NH2
terminal groups in the fully condensed g-C3N4, no spectral features are observed in the
3000–3500 cm−1 range, as expected.

Moving to the 1200–1750 cm−1 region (I and II in Figure 10), the typical vibrational
modes of C-N heterocycles are found, as also confirmed via the theoretical computation [62].
In particular, the absorptions at 1636 cm−1, 1558 cm−1 and 1455 cm−1, 1407 cm−1 (region I),
which have already been observed in the pristine melamine sample (grey line in Figure 10),
are related to the stretching vibrational modes of C=N and C-N moieties, respectively,
within the heterocycles [56,61,64]. By considering the main features of the melon computed
spectrum (blue line in region I), the contribution due to the -NH and -NH2 terminal groups
cannot be excluded. Indeed, the feature at 1413 cm−1 can be assigned to the bending mode
of the C-NH-C units.
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Figure 10. FTIR experimental spectra of our sample (black line) and melamine precursor (grey line);
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from I to IV.

From the comparison of the experimental FTIR spectra of pristine melamine and our
sample (grey and black experimental lines, respectively, in Figure 10), it becomes apparent
that the two main absorptions at 1317 cm−1 and 1240 cm−1 (region II), which have quite
similar intensity, are absent in the precursor, thus confirming that these features are related
to partial (blue line) and/or total (red lines) condensed units. Currently, on the basis of the
literature data, the 1317 cm−1 and 1240 cm−1 bands are assigned mainly to the stretching
mode of both trigonal C-NH-C units, i.e., the partial-condensation model, or bridging
C–N(–C)–C units, which is also called the full-condensation model [6,53,55,64,67,68].

In order to make a more precise assignment, we have to consider the partially con-
densed melon and the fully condensed g-C3N4 computed spectra, in which two main
features at 1297 cm−1 and at 1240 cm−1 (blue line) and at 1291 cm−1 and at 1262 cm−1 (red
line) can be observed.

According to our model of melon structure, we hypothesise that the feature at
1297 cm−1, which shifted downwards with respect to the experimentally observed one at
1317 cm−1, can be due to combined collective stretching and bending vibrations of the
N-C(NH2)-N units, also involving the -NH2 terminal groups, while the 1240 cm−1 band
corresponds mostly to the collective modes of the C-NH-C units involving the –NH groups.
Notice that the higher intensity of the 1240 cm−1 band with respect to the other components
in the 1200–1750 cm−1 region of the computed spectrum (blue line) is consistent with
our adopted model based on a melon-like structure, which is formed by a sequence of
a large number of linked heptazine units. Considering the computed spectrum of the
totally condensed system (red line), the features at 1291 cm−1 and at 1262 cm−1 are both
ascribed to the C-N(-C)-C total condensed units either inside the heptazine units or among
connected moieties as described in Scheme 2.
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Scheme 2. Structural unit models of melon (blue) and C3N4 (red) with relative computed
vibrational frequencies.

Furthermore, the three shoulders observed at about 1195 cm−1, 1126 cm−1, and 1069 cm−1

inside the complex envelope of the experimental spectrum (Region III in Figure 10) can be
related to the 1185 cm−1, the 1105 cm−1, and the 1080 cm−1 computed modes of the totally
condensed system (red line). From this, it comes out that the shoulders can be assigned to
combined vibrations of domains formed by heptazine units and C-N(C)-C condensed moieties,
which connect three heptazine units. It is noteworthy that on the melon computed spectrum
(blue line), these modes are absent.

Lastly, the sharp peaks at 885 cm−1 and 804 cm−1 on the experimental spectrum
(Region IV) have been assigned to the typical in-plane and out-of-plane bending vibrations
(breathing modes) of the heptazine/triazine units [4,6,53–56,61,62,64–67]. These features
are also found at 880 cm−1 and 730 cm−1 and at 900 cm−1 and 747 cm−1 on the computed
spectra of the partially condensed melon (blue line) and fully condensed system (red
line), respectively.

It is noteworthy that, moving from the melamine precursor spectrum (grey line) to the
other spectra (both computed and experimental ones), the different intensity ratio between
the (3000–3500 and 1400–1600 cm−1) main regions can be justified with a different amount
of the terminal units (NH2) with respect to the number of heterocycle rings. Namely,
this provides a further explanation of the condensation of triazine units in more complex
structures to form a heptazine lattice.

In conclusion, from a detailed analysis of FTIR spectra, significant information on
the polymerisation degree of carbon nitride-based systems can be obtained. In partic-
ular, features due to NH/NH2 stretching vibrations, such as wide absorptions in the
1200–1750 cm−1 range, which are typical of heterocycle C-N/C=N stretching vibrations,
together with the sharp peaks in the 700–800 cm−1 range due to breathing modes of the
heptazine rings, are indicative of a complex structure consisting of totally condensed g-
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C3N4 domains embedded in a partially condensed system, i.e., the melon-string structure
formed by a network of linked heptazine units [22,60].

5. Conclusions

In summary, polymerised carbon nitride systems have been obtained via a facile
one-step calcination method by starting from melamine as an affordable precursor.

The structure analysis based on X-ray powder diffraction makes it possible to highlight
the typical layered structure of the semiconductor, while the computational study makes
it possible to identify a mixture of both the partially and totally polymerised structures,
as expected from the adopted experimental synthesis conditions. Moreover, the geometry
optimisation and the topological analysis of the charge density at the PBE-D3/621pol level
confirm the tendency of the material to maximise the interactions between layers and rows
for both the models.

Combined computation and experimental UV-Vis studies of the electronic properties
agree that the material has an indirect band gap with energy values of about 2.59 eV
(experimental one), while the theoretical ones are 2.36 eV for the partially polymerised
structure and 1.72 eV for the totally condensed g-C3N4. The experimental band gap value is
likely the result of a complex situation in which more and less condensed motifs, including
condensed melamine units, small g-C3N4 condensed domains, etc., are all embedded in
a framework of partially condensed strings, which are formed by a network of linked
heptazine units, that is, the melon structure.

In addition, a careful analysis of the FTIR features compared to the computed spectra
provides significant information on the frequency values of different functional groups
and lattice modes on both systems, thus making it possible to highlight the simultaneous
presence of domains with different polymerisation levels inside our synthetised specimen.

In future studies, the concept of a mixed system (based on highly condensed g-C3N4
domains embedded in a less condensed “melon-like” framework) that was developed in
this work will be taken into consideration in order either to explore different synthesis and
post-synthesis procedures or to design challenging heterostructures, such as C3N4/C3N4
homojunctions and/or C3N4/semiconductor heterojunctions, which could be effective in
several renewable-energy-activated processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16103644/s1, Table S1: Lattice parameters and energy gap
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(150.5◦, in the centre) and PBE (153.9◦, on the right side) level; Figure S2. Melon structure optimised
at PBE level and relative structural parameters; Figure S3. Comparison of XRD patterns: experimental
(black), obtained from Fina et al. model before and after optimisation (blue line), obtained from Teter
and Hamley model before and after optimisation (red line). Figure S4. Reaction scheme of direct
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for indirect (b) and direct (c) band gap estimation.
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