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a b s t r a c t 

Computer Vision is an approach of Artificial Intelligence (AI) that conceptually enables “computers and 

systems to derive useful information from digital images ” giving access to higher-level information and 

“take actions or make recommendations based on that information ”. Comprehensive two-dimensional chro- 

matography gives access to highly detailed, accurate, yet unstructured information on the sample’s chem- 

ical composition, and makes it possible to exploit the AI concepts at the data processing level ( e.g ., 

by Computer Vision) to rationalize raw data explorations. The goal is the understanding of the biolog- 

ical phenomena interrelated to a specific/diagnostic chemical signature. This study introduces a novel 

workflow for Computer Vision based on pattern recognition algorithms ( i.e ., combined untargeted and 

targeted UT fingerprinting) which includes the generation of composite Class Images for representa- 

tive samples’ classes, their effective re-alignment and registration against a comprehensive feature tem- 

plate followed by Augmented Visualization by comparative visual analysis. As an illustrative applica- 

tion, a sample set originated from a Research Project on artisanal butter (from raw sweet cream to 

ripened butter) is explored, capturing the evolution of volatile components along the production chain 

and the impact of different microbial cultures on the finished product volatilome. The workflow has 

significant advantages compared to the classical one-step pairwise comparison process given the abil- 

ity to realign and pairwise compare both targeted and untargeted chromatographic features belong- 

ing to Class Images resembling chemical patterns from many different samples with intrinsic biological 

variability. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The process of chromatographic fingerprinting on patterns ob- 

ained by comprehensive two-dimensional chromatography (C2DC) 

ims at detecting, re-aligning, and comparing features extracted 

rom 2D peaks across a series of analyzed samples [1] . The goal is

o have access to higher-level information related to unique and/or 
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istinctive composition ant its relation to the phenomenon under 

tudy. 

The representation of C2D chromatograms in digital images is 

btained by rasterization , i.e. , ordering detector data values from 

ingle modulation periods (or cycles) as a column of pixels (picture 

lements). Note that, when mass spectrometry (MS) with suitable 

nalyzers is used, each pixel corresponds to a spectrum, thus in- 

ormation on feature identity is left available for further investiga- 

ion. Rasterized pixel columns are then sequenced along the X-axis 

from left to right) according to the first dimension ( 1 D) retention, 

hile the second dimension ( 2 D) data are presented in a right- 

anded Cartesian coordinate system, and the 2 D retention time is 

lotted on the Y-axis (from bottom-to-top) [1] . Chromatographic 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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mages can be processed in various ways, adopting different fea- 

ure types and related tools [ 1 , 2 ]. 

The peak feature approaches, the most used tools implemented 

n all commercial data processing software, collect and sum data 

ith associated metadata for each analyte peak. When multiple 

hromatograms are examined, peak features are then matched 

cross multiple samples enabling detailed profiling of their com- 

onents. If they correspond to targeted analytes (known con- 

tituents), their peak is explicitly matched across chromatograms 

y their target name. If they are not a priori targeted ( i.e ., untar-

eted analytes), the cross-comparative analysis is more challeng- 

ng and unidentified peaks across many chromatograms must be 

atched by the software in a process usually referred to as peak 

atching or peak tracking [3] . An almost comprehensive review of 

he peak features approaches for C2DC has been recently proposed 

y Stilo et al. [1] . 

To compensate for peak matching inconsistencies occurring for 

arge data sets, region and peak region feature concepts have been 

ntroduced. Within region feature approaches, the tile-based Fisher 

atio analysis [4–6] enables effective cross-comparative analysis 

y adopting rectangular tiles to generate features over the chro- 

atographic space and inspecting tile’s detector response (includ- 

ng single m/z channels) for meaningful variations across samples 

e.g. , Fisher discriminant analysis). By peak region features, tiles are 

enerated around 2D peaks footprint with some advantages when 

hromatographic misalignment occurs. Further insights on this fea- 

ure type are provided below. 

Independent of the feature type adopted, the process that re- 

ligns and compares 2D peak patterns across many chromatograms 

s referred to as chromatographic fingerprinting [1] . However, if it 

an provide visual evidence of compositional differences between 

amples ( e.g ., by comparative visualization [7] ) it can also be con-

idered as a Computer Vision (CV) approach. CV is defined as “a 

eld of artificial intelligence (AI) that enables computers and sys- 

ems to derive meaningful information from digital images… and take 

ctions or make recommendations based on that information. If AI 

nables computers to think, computer vision enables them to see, ob- 

erve and understand ” [8] . 

Comparative visualization, a type of CV, was one of the earliest 

pproaches applied to reveal compositional differences between 

airs of 2D chromatograms. However, data point features which 

omprehensively cover all detected/untargeted analytes with the 

ighest precision on 2D fingerprint, result in greater computational 

omplexity since analytes are represented by multiple features (i.e., 

ultiple spectra per analyte), and/or might be imprecise due to 

etention-times inconsistencies which confound feature matching 

cross chromatograms. 

In this study, a novel workflow for effective comparative visual- 

zation of multiple chromatograms is proposed. In particular, CV is 

erformed by combined untargeted and targeted (UT) fingerprint- 

ng [ 9 , 10 ] with a fully automated procedure while Augmented Vi- 

ualization (AV) [11] is made possible by 2D chromatograms align- 

ent on reliable peaks and peak regions, information ( i.e ., feature 

etadata) which is available at each stage. 

As a challenging test bench, butter volatilome evolution along 

he production chain is studied. The complexity of the ana- 

yzed mixture relates to the large dynamic range of concentra- 

ions for characteristic chemical classes ( e.g ., short-chain fatty 

cids, alcohols, aldehydes, esters and lactones, etc.) associated to 

 limited volatility range. A CV approach with molecular res- 

lution is of great interest for food technology, it prompts in- 

ormation on compositional differences induced by a specific 

rocess, or technological conditions, supports decision-making 

trategies, and facilitates process optimization and product identi- 

ation [12] . 
2 
. Materials and methods 

.1. Reference standards and solvents 

Pure standards of n- alkanes (from n -C7 to n -C30) used for 

inear Retention Indices ( I T ) calibration, of α/ β-thujone and 2- 

ethyloctynoate used as Internal Standards (ISTDs), and solvents 

cyclohexane and dibutyl phthalate – 99% of purity) were from 

erck (Milan, Italy). 

For key-aroma compounds and potent odorants investigated in 

he study, identity confirmation was by authentic standards avail- 

ble from Merck (Milan, Italy). 

.2. Reference solutions and calibration mixtures 

Standard stock solutions of reference analytes were prepared at 

 concentration of 10 g/L in cyclohexane and stored at −18 °C for 

ne week. 

The Reference Solution for analytes identity confirmation was 

repared by mixing suitable amounts of standard stock solutions to 

each the concentration of 0.100 g/L using cyclohexane as solvent. 

The n- alkanes solution for I T calibration was prepared by mix- 

ng suitable amounts of standard stock solutions of pure standards 

o reach the concentration of 0.050 g/L using cyclohexane as sol- 

ent. 

ISTDs working solution for standard-in fiber pre-loading 

13] was prepared at 0.100 g/L in dibutyl phthalate and stored at 

18 °C in sealed vials. ISTDs were used for validation purposes 

method precision and repeatability) and to normalize the analytes’ 

bsolute responses ( i.e .,% normalized response). 

.3. Cream and butter samples 

Sweet cream from raw cow milk and butter samples were 

rovided by Dr. Fabio Bruno and were part of an experimental 

roduction of artisanal butter by Beppino Occelli Agrinatura S.r.l 

Farigliano, Cuneo, Italy). Samples consisted of raw sweet cream 

rom cow milk from two different farms located in Piedmont, Italy 

Farm #1 and Farm #2) which were then mixed in a ratio 1:1 be- 

ore pasteurization (95 °C/10 s) and inoculum with selected cul- 

ures (Standard - STD and TEST) for butter production. After 18 h 

rom the inoculum, samples were cooled to allow butterfat crystal- 

ization, which facilitates the churning and improves butter texture 

process step generally referred to as aging ). Once ready, samples 

ere transferred to a continuous butter-maker via a plate heat ex- 

hanger. The butter obtained, after draining and washing, was then 

ipened until 40 days. 

Quality control samples (QCs) were obtained from a commercial 

utter which was gently melted and homogenized before storage 

t −80 °C until analyzed. The melting process, expected to have 

n impact on the volatile fraction, was performed to obtain a truly 

omogeneous QC for analytical checks. The butter matrix is known 

o have a certain inhomogeneity due to the nonuniform bacterial 

rowth within the crystallized fat. 

Details on the sample set under study are provided in Table 1 

ogether with the acronyms adopted in the text; a schematic di- 

gram of available samples together with biological and technical 

eplicates is shown in Supplementary Figure 1. 

.4. Headspace solid-phase microextraction: devices and conditions 

Volatiles from cream and butter samples were extracted by 

S-SPME with a divinylbenzene/carboxen/polydimethyl siloxane 

DVB/CAR/PDMS) fiber ( d f 50/30 μm; 2 cm length) from Merck 

ifesciences - Supelco (Bellefonte, PA, USA) chosen on the basis of 
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Table 1 

List of samples together with processing details, acronyms adopted in the text, and corresponding class image generated for the computer vision (CV). 

Production stage Samples details Analyzed samples Class Images 

Farm #1 Farm #2 

Sweet cream - raw SCR #1 (n = 6) SCR #2 (n = 6) SCR 

Mixed 1:1 ratio 

Pasteurized cream Standard pasteurization 95 °C/15 s 

Inoculum “standard” for cream A or “test” for cream B – time 0 

PC STD -T0 

(n = 6) 

PC TEST -T0 

(n = 6) 

PCT0 

Inoculated cream Inoculum “standard” for cream A or “test” for cream B - aging for 18 h PC STD –T18 

(n = 6) 

PC TEST –T18 

(n = 6) 

PCT18 

Butter Butter at time 0 B STD-T0 B TEST-T0 BT0 

Butter after 8 days of ripening B STD-T8 B TEST-T8 BT8 

Butter after 20 days of ripening B STD-T20 B TEST-T20 BT20 

Butter after 40 days of ripening B STD-T40 B TEST-T40 BT40 
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revious studies [14] . The SPME fiber was conditioned before use 

s recommended by the manufacturer. 

The ISTDs for response normalization and quality control were 

reloaded onto the SPME device [15] by sampling 5.0 μL of α/ β- 

hujone and methyl 2-octynoate ISTDs solution (0.100 g/L) placed 

n a 20 mL headspace vial. ISTDs pre-loading was performed by 

xposing the SPME device in the HS at a temperature of 50 °C for 

 min. 

Sampling was carried out on 0.100 ± 0.005 g of sample, pre- 

isely weighed, in 20 mL headspace vials, kept at 50 °C for 50 min

nder constant agitation. The very low amount of sample was cho- 

en to match the HS linearity conditions for most of the charac- 

eristic analytes of the dairy fat volatilome. After extraction, the 

PME device was automatically transferred to the split/splitless in- 

ection port of the GC × GC system, kept at 250 °C, and submitted 

o thermal desorption was for 5 min. Samples were analyzed in 

hree replicates randomly distributed over a two-week time frame. 

.5. GC × GC-TOFMS: instrument set-up and conditions 

Comprehensive two-dimensional GC analyses were carried out 

ith an Agilent 7890B GC chromatograph (Agilent Technologies, 

ilmington, DE, USA) coupled with a Markes BenchTOF Select TM 

ass spectrometer featuring Tandem Ionization 

TM (Markes Inter- 

ational, Llantrisant, UK). The GC transfer line was set at 270 °C. 

he TOFMS was tuned for single ionization at 70 eV and the scan 

ange was set between 35 −350 m/z with a spectrum acquisition 

requency of 100 Hz. The thermal modulator was a loop-type, two- 

tage KT 2004 (Zoex Corporation, Houston, TX) cooled with liquid 

itrogen and controlled by Optimode, v2.0 (SRA Instruments, Cer- 

usco sul Naviglio, Milan, Italy). The modulation period ( P M 

) was 

et at 2.5 s, while the hot-jet pulse duration was set at 250 ms. 

he cold-jet stream at the mass flow controller (MFC) was pro- 

rammed to linearly reduce the total flow ( i.e ., 20 L/min) from 40%

o 8% along the analytical run. 

The column set consisted of a 1 D HeavyWax TM column (100% 

olyethylene glycol – PEG; 30 m × 0.25 mm d c × 0.25 μm d f ) 

oupled with a 2 D DB17 column (50% phenyl-methylpolysiloxane; 

.0 m × 0.10 mm d c × 0.10 μm d f ), both supplied by Agilent 

echnologies (Wilmington, DE, USA). A fused silica capillary loop 

1.0 m × 0.1 mm d c ) was used in the modulator slit. SilTite TM μ-

nions (Trajan Scientific and Medical, Melbourne, Australia) were 

sed to connect the columns with the capillaries. 

The GC split/splitless injector port was set at 250 °C and op- 

rated in pulsed-split mode (250 kPa overpressure applied to the 

njection port until 2 min) with a 1:20 split ratio. A special design 

iner for SPME thermal desorption (Merck Lifesciences) was used 

o improve the transfer of the analytes to the 1 D column and to 

imit band broadening in space. Helium was used as the carrier 
3 
as at a nominal flow of 1.3 mL/min. The oven temperature pro- 

ram was set as follows: from 50 °C (1 min) to 260 °C (5 min) at

.0 °C min 

–1 , to 270 °C (10 min) at 10 °C min 

−1 . 

The n- alkanes solution for I T s determination was analyzed un- 

er the following conditions: split/splitless injector in split mode, 

plit ratio: 1:50, injector temperature: 250 °C, and injection vol- 

me: 1 μL. 

.6. Combined untargeted and targeted (UT) fingerprinting by smart 

emplates 

A template is a pattern of 2D peaks and/or graphic objects ( i.e ., 

eatures) generated over a reference chromatogram or image (sin- 

le or cumulative image), which is used to identify similar pat- 

erns of 2D peaks in a set of analyzed chromatograms or images 

 10 , 16 ]. This procedure is guided by specific matching functions 

hat establish correspondences between features across many chro- 

atograms; specificity is achieved by defining confidence thresh- 

lds on retention times and MS spectral similarity to compensate 

or variable peak detection, and through suitable transform func- 

ions that successfully compensate for retention time inconsisten- 

ies between runs [ 17 , 18 ]. Once the correspondence between fea- 

ures is established, the template object metadata ( i.e ., chemical 

ame, retention times, mass spectra, informative ions and their rel- 

tive ratios) are transferred to candidate peaks and/or graphic ob- 

ects ( i.e ., peak regions) in the analyzed chromatogram. 

The feature template including untargeted reliable peaks and 

eak regions is obtained with a fully automated workflow in GC 

mage Investigator TM (GC Image TM , GC Image LLC). 

The workflow includes the following steps: 

a. Peak patterns are matched between all chromatogram pairs 

from a set of representative samples. Matching constraints were 

set for this study based on optimized parameters validated by 

Squara et al . [18] , i.e ., template peaks inclusion criterion S/N 

threshold of 50 or higher; peak reference spectra from peak 

spectrum ; MS constraint set at 700 for the direct match factor 

(DMF) and 700 for the reverse match factor (RMF) based on the 

NIST similarity algorithm [19] . 

b. Reliable peaks across the set of analyzed chromatograms are 

then selected. The template of reliable peaks is used at the 

successive step for chromatogram re-alignment in the tempo- 

ral domain. The criterion for inclusion was relaxed reliability 

[20] which selects 2D peaks that match at least 50% + 1 of the 

chromatograms. 

c. Chromatograms of representative samples are aligned consis- 

tently with the average retention times of the reliable peaks 

and then summed/fused into a composite chromatogram. 

d. From the composite chromatogram, a comprehensive untar- 

geted feature template is generated [20] including reliable 
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peaks and peak regions. These last are defined over the foot- 

print of all detected peaks in the composite chromatogram. 

This process was applied to generate composite class images 

rom samples with common characteristics, e.g. same processing 

tep. In particular, class images were built for raw sweet cream 

 SCR ); pasteurized sweet cream inoculated with selected cultures 

nd analyzed at time 0 and after 18 h ( PCT0 and PCT18 ); but-

er samples analyzed along ripening at 0–8–20–40 days ( BT0, BT8, 

T20, BT40 ). Acronyms and samples’ characteristics are reported in 

able 1 while a schematic diagram of butter making process is il- 

ustrated in Supplementary Figure 1. The data processing workflow 

s illustrated in Fig. 1 and further details are reported in Supple- 

entary Figure 2. In the Results and Discussion section insights on 

he novel workflow are provided. 

Identification of targeted features was by matching EI-MS frag- 

entation patterns collected from the peak apex (NIST MS Search 

lgorithm, version 2.0 [19] ) with those of commercial and in-house 

atabases. Identification thresholds were 900 for DMF and 950 for 

MF. A further constraint was applied for reliable identification 

ith ±20 units of tolerance for experimental vs . tabulated linear 

etention indices ( I T ) along the 1 D. 

The list of targeted features is reported in Table 2 together with 

hemical names, 1 D and 

2 D retention times ( 1 t R ; 
2 t R ), experimental 

 

T , tabulated I T , and odor quality as from reference literature. 

.7. Comparative visualization by visual features 

Visual features fingerprinting, with pair-wise image comparison, 

s a comparative visualization tool that computes the difference at 

ach data point ( i.e ., the output of the detector at a point in time)

etween pairs of 2D chromatograms. Absolute or relative response 

ifferences are mapped into hue-intensity-saturation (HIS) color 

pace to generate an image for visualizing the compositional dif- 

erences between image pairs in the retention times plane. The ap- 

roach enables comparative visualization with compositional dif- 

erences rendered with an array of colorization modes. 

In practice, the algorithm represents GC × GC raw data as an a 

m, n] matrix, where a is the analyzed chromatogram with indexed 

ixels by 1 D retention time, m , and 

2 D retention time, n . Each pixel

orresponds to a detector data package and its colorization reveals 

ifferential detector response between image pairs ( analyzed vs. 

eference ) [ 7 , 16 ]. In this study, comparative visualization is by the

rayscale fuzzy difference rendering. It subtracts pixel-by-pixel the 

nalyzed image minus the reference image. The range of pixel val- 

es is mapped linearly to grayscale from black to white (0 to 255), 

ith dark values (0–127) for negative differences, gray (value 128) 

or zero difference, and bright values (128–255) for positive differ- 

nces [21] . This difference is non-zero only if the pixel in one im- 

ge is outside the range of pixel values in a small neighbourhood 

n the other image. 

.8. Data acquisition and 2D data processing 

Data were acquired by TOF-DS TM (Markes International, 

lantrisant, UK) and processed by GC Image® suite, Release 2021r1 

GC Image, LLC, Lincoln NE, USA). 

Data Processing was by a laptop with a standard processor In- 

el(R) Core TM i7–7500CPU@2.70 GHz, 2904 Mha, 2 core, 4 logic 

rocessors; RAM 16Gb; NVIDIA GeForce 940MX. 

Statistical analysis and chemometrics were performed us- 

ng Matlab R2021a (The MathWorks, Inc., Natick, Massachusetts, 

nited States) with the following packages: PCA toolbox (v1.5) 

22] and Classification toolbox (v6.0) [23] , and XLSTAT statistical 

nd data analysis solution software (Addinsoft 2020, New York, 

SA). 
4 
. Results and discussion 

The intriguing concept of Computer Vision to highlight compo- 

itional differences between sample pairs is not new in the sce- 

ario of data processing tools for C2DC [ 1 , 24 ]. It can be achieved

y combining comparative visualization [7] with a comprehensive 

apping of features, i.e ., UT fingerprinting [9] . However, even for 

niform batch analyses, such as those acquired in a limited time 

rame without any change in the system hardware ( e.g ., column 

et, modulation loop alignment, MS calibration and tuning), reten- 

ion times misalignment might occur preventing consistent com- 

arisons. An example of comparative visualization by colorized 

uzzy difference of two slightly misaligned images is represented 

n Fig. 2 A–C. In Fig. 2 A the misalignment is along the 1 D in an

nalysis with a retention offset of 4.05% in the γ -terpinene region, 

ig. 2 B shows a misalignment in the 2 D with an offset of 15.71%

n the 3-methyl butanoic acid elution region, and Fig. 2 C shows a 

isalignment in both dimensions. Comparative visualization, if su- 

ervised by an analyst could lead to coherent conclusions due to 

xperience and knowledge. If Computer Vision is systematized in 

 decision-making process, misinterpretation could occur deriving 

rong conclusions about the actual compositional differences be- 

ween samples pair. 

In this scenario, approaches that examine the response 

ecorded for peak and/or peak region features are preferable. By 

pplying retention times tolerance windows for features alignment 

nd matching, correct correspondences can be established. Addi- 

ional specificity is also achieved by including MS similarity con- 

traints above a pre-defined threshold [25] . However, while peak 

nd peak region patterns can be re-aligned and rationalized in 

eak tables for data mining/data analysis, chromatogram images 

annot. 

To solve this issue and enable an effective and reliable CV, chro- 

atogram alignment and registration in the temporal domain are 

andatory. Reichenbach and co-workers [ 10 , 26 ] and Schmarr et al. 

27] described similar approaches for the geometrical alignment of 

eatures across many chromatograms. Both methodologies adopt 

eak region features obtained by the alignment and combination 

f source chromatograms into a single composite chromatogram 

 e.g ., simply by addition or other fusion operations [27] ). The fea-

ure template, generated by outlining footprint regions around 

ach detected peak in the composite chromatogram, is then used 

o geometrically remap each source chromatogram. To note, the 

ransform operation to align a chromatogram for compositing is 

idirectional and can be used to map the feature template back 

o the source chromatogram. An example of the transform opera- 

ion from the template to the chromatogram image is illustrated in 

ig. 2 D–F where for the different misalignments described above, 

he template is matched to the correct peak feature by its trans- 

orm. 

The alignment consistency is improved if the feature tem- 

late matching is guided by appropriate transform models and 

dditional constraints related to spectral similarity when the MS 

hannel is available. Available transformation models include the 

lobal affine transform [28] , capable of compensating for linear 

hifts in both chromatographic dimensions, and the global, low- 

egree polynomial alignment transformations which have better 

erformances with non-linear and/or severe misalignments [29] . 

oth these algorithms are available in commercial software (GC 

mage TM , GC Image LLC) as those proposed by Pierce et al. [30] and

hang et al. [31] . Other approaches, not yet available in commer- 

ial data processing platforms for C2DC, include the piecewise lin- 

ar interpolation/extrapolation for 1 D shifts [32] ; natural-neighbor 

nterpolation for the 2 D [33] ; semi-parametric warping [34] ; and 

ARCHAN that uses a non-rigid transformation in the first dimen- 

ion and a rigid transformation in the second dimension [35] . 
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Table 2 

List of targeted features together with 1 D and 2 D retention times ( 1 t R ; 
2 t R ), experimental I T and tabulated I T , odor quality as from reference literature. Identification criteria: 

(a) by authentic reference compounds or (b) tentative identification combining I T ± 10 and spectral similarity direct match factor ≥900. 

Compound Name Identification 1 t R (min) 2 t R (sec) Experim. I T Tabulated I T Odor quality 

Hexane a 4.38 0.54 600 / / 

Heptane a 4.78 0.7 700 / / 

Dimethyl sulfide b 4.81 0.5 729 754 

Cyclohexane a 4.9 0.72 811 766 / 

Triethylamine a 5.13 0.76 821 780 Fishy 

Octane a 5.48 1 835 / / 

Acetone a 5.72 0.54 845 826 Solvent 

1-Chlorobutane b 6.07 0.72 860 842 / 

4-Methyloctane b 6.24 1.28 868 850 / 

Butanal a 6.59 0.64 883 867 Cocoa 

Acetic acid ethenyl ester b 6.72 0.65 887 890 

Ethyl acetate a 6.83 0.66 893 884 Ethereal 

Nonane a 6.88 1.46 895 / / 

2-Butanone b 7.05 0.56 907 907 

3-Methylbutanal a 7.35 0.76 915 917 Aldehydic, fruity 

Ethanol a 7.58 0.5 925 926 Alcoholic 

1-Nonene b 7.82 1.42 935 931 / 

2,2,4,6,6-Pentamethylheptane b 8.17 1.9 950 954 / 

Butyl ether a 8.34 1.46 957 963 Ethereal 

3-Methylnonane b 8.34 1.82 957 966 / 

Diacetyl a 8.87 0.6 979 980 Buttery 

Decane a 9.16 2.02 992 / / 

Isobutyl acetate a 9.74 0.92 1012 1013 Fruity 

α-Pinene a 9.92 1.66 1018 1023 Herbal, woody 

Tetrachloroethylene b 9.98 1.12 1020 1024 / 

Chloroform a 10.03 0.6 1021 1024 / 

1-Propanol a 10.33 0.52 1030 1031 Alcoholic 

Ethyl butanoate a 10.44 1.08 1034 1042 Fruity 

1-Decene b 10.44 1.88 1034 1044 / 

Camphene a 11.26 1.82 1060 1060 Woody, camphor 

Isopentyl acetate b 11.67 1.12 1080 1080 Fruity 

Hexanal a 11.9 0.98 1083 1083 Grassy, apple 

Isobutyl alcohol a 12.02 0.54 1091 1085 Ethereal 

Undecane a 12.25 2.44 1091 / / 

β-Pinene a 12.66 1.9 1103 1109 Herbal 

2-Pentanol a 13.01 0.62 1112 1113 Mild, musty 

Sabinene a 13.18 1.68 1117 1121 Woody 

1-Methoxy-2-propanol b 13.36 0.62 1122 1126 / 

(E) −2-Pentenal a 13.53 0.84 1126 1127 Green, apple 

4-Methyl-3-penten-2-one b 13.65 0.92 1129 1131 Pungent, potato 

p-Xylene a 13.71 1.2 1131 1136 / 

1-Butanol a 13.88 0.58 1136 1138 Fermented, fruity 

m-Xylene a 13.94 1.14 1137 1141 / 

δ−3-Carene a 14.18 1.86 1143 1147 Citrus 

3-Heptanone a 14.41 1.18 1150 1148 Green, ketonic 

3-Methylundecane b 14.7 2.62 1157 / / 

2-Methylpropyl butanoate b 14.7 1.4 1157 1158 Fruity 

α-Phellandrene a 14.76 1.74 1159 1160 Terpenic 

β-Myrcene a 14.76 1.52 1159 1162 Peppery, woody 

2-Methoxy-1-propanol b 14.76 0.68 1159 / / 

Pyridine a 15.17 0.8 1170 1175 Fishy 

α-Terpinene a 15.34 1.76 1174 1177 / 

2-Heptanone a 15.46 1.1 1178 1178 Fruity, sweet 

Heptanal a 15.63 1.18 1182 1181 Oily, fatty 

2-Ethyl hexanal a 15.69 1.34 1184 1188 / 

Methyl hexanoate a 15.75 1.24 1185 1188 Fruity 

Dodecane a 15.93 2.74 1190 1200 / 

Limonene a 16.04 1.74 1193 1202 Terpenic, herbal 

3-Methyl-1-butanol a 16.22 0.6 1198 1207 Fermented, fusel 

1,8-Cineole a 16.39 1.84 1202 1211 Herbal, minty 

2-Hexanol a 16.74 0.68 1211 1220 Chemical, winey 

(E) −2-Hexenal a 16.86 0.94 1215 1223 Bitter almond, green 

2-Pentylfuran a 17.38 1.3 1228 1235 Fruity, green 

β-Ocimene a 17.44 1.58 1230 1238 Floral, green 

Ethyl hexanoate a 17.5 1.44 1231 1240 Sweet, fruity 

1-Dodecene b 17.62 2.28 1234 1242 / 

ƴ-Terpinene a 17.85 1.78 1240 1249 / 

1-Butoxy-2-ethylhexane b 18.14 2.62 1248 / / 

3-Octanone a 18.2 1.3 1249 1250 Fresh, mushroom 

Styrene a 18.32 1.04 1252 1257 Balsamic, gasoline 

Isoamyl butyrate b 18.73 1.58 1263 1267 Fruity, waxy 

Hexyl acetate a 19.02 1.3 1271 1274 Fruity 

4-Heptanol b 19.13 0.78 1274 1281 Alcoholic 

α-Terpinolene a 19.25 1.82 1277 1283 Fresh, woody 

1,3,5-Trimethylbenzene b 19.25 1.34 1277 1285 / 

3-Hydroxy-2-butanone (acetoin) a 19.54 0.58 1284 1287 Buttery, creamy 

Octanal a 19.6 1.24 1286 1291 Fatty, sharp 

Tridecane a 19.72 2.86 1289 1300 / 

( continued on next page ) 

5 
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Table 2 ( continued ) 

Compound Name Identification 1 t R (min) 2 t R (sec) Experim. I T Tabulated I T Odor quality 

2-Ethyl-2-hexenal a 19.95 1.24 1295 1314 / 

Hexanenitrile b 20.01 0.9 1296 1305 / 

2-Heptanol a 20.48 0.74 1309 1318 Fresh, fruity 

3-Methyl-2-buten-1-ol b 20.59 0.6 1312 1321 Fruity, sweet 

N,N-Dimethyl formamide b 20.65 0.78 1313 1326 / 

(Z) −2-Hexenal a 20.88 1.02 1319 1326 Leaves, cut grass 

α-Methyl styrene b 21.12 1.18 1325 1327 / 

6-Methyl-5-hepten-2-one a 21.41 1.12 1333 1339 Fatty, green 

1-Hexanol a 21.76 0.68 1342 1340 Fruity, banana 

4-Hydroxy-4-methyl-2-pentanone b 22.34 0.68 1358 1366 / 

Dipropyl disulfide b 22.87 1.64 1371 1372 Sulfury. earthy 

2-Nonanone a 23.33 1.32 1384 1390 Fruity, cheesy 

Nonanal a 23.51 1.3 1388 1397 Fatty, waxy 

Tetradecane a 23.54 2.86 1388 1400 Mild, waxy 

2-Butoxyethanol a 23.74 0.72 1395 1403 / 

α-Thujone a 24.68 1.4 1420 1421 Thujonic 

(E) −2-Octenal a 24.79 1.08 1423 1428 Green, nut 

Benzene, 1-ethenyl-3-ethyl- b 25.01 1.01 1427 1424 

p-Cymenene b 25.08 1.28 1431 1430 Phenolic, spicy 

Ethyl octanoate a 25.08 1.58 1431 1431 Fruity, waxy 

β-Thujone a 25.38 1.3 1439 1440 Thujonic 

1-Heptanol a 25.55 0.72 1443 14 4 4 Herb 

1-Octen-3-ol a 25.78 0.82 1449 1450 Mushroom, herbal 

(E,E) −2,4-Heptadienal a 26.08 0.9 1457 1465 Fatty, rancid 

Furfural b 26.13 0.66 1459 1466 Bready, brown 

Butyl-2-ethylhexanoate b 26.25 2 1462 1471 / 

Acetic acid a 26.72 0.4 1475 1479 Sour, vinegary 

Decanal a 27.36 1.42 1492 1490 Sweet, waxy 

2-Nonanol a 27.88 0.86 1507 1508 Waxy 

(E,E) −3,5-Octadien-2-one b 28 1 1510 1518 Geranium-like 

Camphor a 28.06 1.44 1512 1512 Camphoreus 

Benzaldehyde a 28.23 0.86 1517 1521 Fruity, sweet 

1,3-Butanediol a 28.53 0.5 1525 1540 / 

(E) −2-Nonenal a 28.64 1.14 1528 1532 Paper-like, fatty 

Linalool a 28.93 0.86 1537 1537 Floral, citrus 

1-Octanol a 29.23 0.78 1545 1547 Nut, mushroom 

5-Methyl-2-furancarboxaldehyde a 29.51 1.05 1548 1570 Caramel-like 

2,3-Butanediol b 29.75 0.5 1560 1569 Creamy 

2-Undecanone a 30.8 1.42 1590 1592 Fruity, waxy 

Undecanal a 31.03 1.48 1597 1606 Waxy, aldehydic 

Benzonitrile b 31.15 0.8 1600 1597 / 

2-(2-ethoxyethoxy)-ethanol b 31.38 0.7 1607 1599 / 

Butanoic acid, 4–chloro- b 31.85 0.74 1621 / / 

Menthol a 32.08 0.96 1628 1632 Mentholic, cooling 

Butyrolactone b 32.15 1.05 1629 1632 

(E) −2-Decenal a 32.32 1.22 1635 1642 Fishy, fatty 

Acetophenone a 32.55 0.92 1642 1645 Floral, powdery 

Methyl-2-octynoate a 32.61 1.16 1644 / / 

Butanoic acid a 32.84 0.44 1650 1647 / 

3-Methylbutanoic acid a 33.75 0.58 1668 1666 Cheese, sweat 

α-Terpineol a 34.01 0.98 1685 1692 Terpenic, citrus 

ƴ-Hexalactone a 34.3 0.88 1694 1703 Herbal, coconut 

Dodecanal a 34.53 1.52 1701 1709 Soapy, waxy, citrus 

Naphthalene a 35.47 1.14 1730 1740 Pungent 

(E) −2-Undecenal a 35.88 1.26 1743 1750 Fruity, waxy 

α, α-Dimethylbenzenemethanol b 35.99 0.76 1747 1766 / 

Methoxy phenyl oxime b 35.99 0.44 1747 / / 

δ-Hexalactone a 37.1 0.9 1781 1893 Creamy, chocolate 

1,3-Propanediol b 38.21 0.6 1792 1789 

Butyl benzoate a 39.43 1.28 1857 1870 Balsamic, fruity 

Hexanoic acid a 40.02 0.48 1876 1880 Cheesy, fatty 

Dimethyl sulfone b 40.37 0.56 1887 1895 / 

Benzene ethanol b 40.66 0.7 1897 1906 Floral 

ƴ-Octalactone a 40.95 0.96 1907 1925 Coconut, lactonic 

Diethylene glycol a 42.29 0.52 1952 1968 / 

δ-Octalactone a 42.35 1.04 1954 1946 Coconut, creamy 

1-Dodecanol b 42.58 1.28 1960 1966 

Biphenyl b 43.05 1.22 1978 1986 Green, floral 

Heptanoic acid a 43.52 0.48 1994 1997 Rancid, cheesy 

ƴ-Nonalactone a 44.22 1.02 2019 2038 Fatty, coconut 

Octanoic acid a 46.55 0.5 2105 2088 Rancid, soapy 

2-Phenoxyethanol b 47.25 0.68 2130 2110 Floral 

δ-Decalactone a 48.71 1.12 2181 2160 Coconut, peach 

Nonanoic acid a 49.58 0.52 2213 2197 Fatty, waxy, cheesy 

Farnesol a 51.16 1.66 2276 2293 Floral, fresh 

Decanoic acid a 52.44 0.54 2328 2309 Soapy, waxy 

δ-Undecalactone b 52.25 1.58 2340 2341 Sweet, coconut 

1(3H)-Isobenzofuranone b 52.85 0.84 2344 2356 / 

γ -Dodecalactone b 53.06 1.2 2364 2365 Creamy, sweet 

Diethyl Phthalate a 53.32 1.12 2363 2378 / 

δ-Dodecalactone a 54.6 1.2 2415 2420 Creamy, sweet 

Dodecanoic acid a 57.87 0.58 2554 2537 Fatty, soapy, coconut 

6
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Fig. 1. Multistep CV data processing workflow: step 1 includes all the data pre-processing operations needed to create composite class images for representative samples’ 

classes. Subsequently, the class images are effectively re-alignment and registered against a comprehensive feature template. Subsequently, by comparative visual analysis, 

samples are pairwise compared to highlight process diagnostic patterns after the alignment of univocal features across all patterns. 
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The next sections include an insight into the CV challenges 

aced approaching a large dataset of chromatograms as those col- 

ected along the butter-making process, followed by the descrip- 

ion of the novel workflow for Augmented Visualization with 

olecular resolution. Results are presented and validated against 

 conventional peak feature approach. 
7 
.1. Computer vision by datapoint features: chromatograms transform 

nd registration 

The dataset adopted to develop and validate the CV workflow 

ncluded 84 chromatograms (7 butter processing steps × 2 inoc- 

la × 2 biological replicates × 3 analytical replicates) plus ad- 
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Fig. 2. (A–C) Comparative visualization as colorized fuzzy ratio of three regions of 

misaligned chromatograms with 1 D retention shift (A), 2 D retention shifts (B) and 

both (C). Colored circles indicate the 2D peaks centroids and their relative position 

in the two chromatograms. Black lines connect peaks of the same feature in the 

misaligned images and ideally illustrate how template transformation operates to 

re-align patterns. 
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itional quality control samples (QCs) from a commercial butter 

ample analyzed to check for analytical system consistency over 

ime ( n = 12). Once the alignment of QCs in terms of peak features

esponse was examined, they were excluded by the CV workflow. 

Peaks and peak regions in the comprehensive feature template 

see Section 3.2 for template construction) were 346, of them 

60 were putatively targeted according to criteria described in 

ection 2.6 and 186 were left untargeted by assigning them a 

nique identifier. The feature template was matched, transformed, 

nd aligned over the 84 source chromatograms. Features metadata 

ere collected in a spreadsheet for data evaluation and machine 

earning ( Section 3.3 ). 

Retention time fluctuations along the two chromatographic di- 

ensions were at first examined since they would prevent a direct 

mage comparison (cf. Fig. 2 A–C). Along the 1 D, retention times 

ccounted for a% relative standard deviation (%RSD) computed on 

heir absolute values of 0.43 mean/0.25 median with a minimum 

alue of 0.07 for γ -dodecalactone and a maximum of 5.82 for 

-terpinene. The non-normal distribution of 1 t R values was con- 

ected to the retention variability/inconsistency of higher volatiles 

ikely impacted by extra-chromatographic phenomena related to 
8 
PME fiber desorption kinetic into the GC injector. On the other 

and, 2 D misalignment showed%RSD values of 8.77 mean/8.27 me- 

ian with a minimum value of 0.1 for n- C14 (tetradecane) and a 

aximum of 16.7 for 3-methyl butanoic acid. This variability, as 

xpected, was higher because of the simplified system configura- 

ion adopted that did not include a secondary oven isolated by the 

oop-type thermal modulator operating with liquid nitrogen as a 

oolant. 

Fig. 3 A shows an enlarged area of a sample’s chromatogram ( B 

TD-T20 R2_rep #3) with the superimposed comprehensive feature 

emplate, containing peak features objects (red areas). By matching 

nd transforming with polynomial second-order function ( Fig. 3 B) 

he template compensates for retention time shifts. To note, the 

nlarged area corresponds to the elution region of butanoic acid 

larger peak) and 3-methylbutanoic acid (black arrow) that was af- 

ected by a severe misalignment across the chromatograms set. 

Comparative visualization is highly dependent on chro- 

atogram registration by feature template matching, otherwise it 

ould fail in precisely informing about compositional differences. 

s shown in Fig. 3 C without registration, several peak regions 

ould be misaligned (yellow arrows); after registering, they were 

ffectively aligned as shown in Fig. 3 D. 

After the temporal misalignment issue was solved, the possibil- 

ty of achieving an Augmented Visualization with access to chro- 

atogram metadata, i.e ., information about features’ identity, was 

onsidered. The concept of AV refers to “computational techniques 

or visualizing what cannot be seen with raw image input ” [11] . With 

he software platform here adopted, comparative visualization is 

inked to feature (data points and peaks) metadata. Therefore, once 

he information contained in the feature template is linked to the 

hromatographic image, comparative visualization is augmented by 

olecular information giving access to higher-level information 

bout the phenomenon under study. 

.2. Augmented visualization by ut fingerprinting on composite class 

mages: principle and workflow 

The novel workflow was based on the UT fingerprinting au- 

omated process, a routine available in GC Image Investigator TM 

GC Image TM , GC Image LLC). The procedure is described in de- 

ail in the experimental section. In practice, samples were grouped 

n classes as a function of the processing stage: raw sweet cream 

 SCR ); pasteurized sweet cream inoculated with selected cultures 

nd analyzed at time 0 and after 18 h ( PCT0 and PCT18 ); but-

er samples analyzed along ripening at 0–8–20–40 days ( BT0, BT8, 

T20, BT40 ). 

The process was carried out with the primary aim of sam- 

les’ chromatogram re-alignment and combination into a compos- 

te class image representing all detected features in that class. The 

umber of source chromatograms for each class was homogeneous, 

 chromatograms (2 biological replicates × 3 analytical replicates) 

ere automatically pre-processed (file import, rasterization, col- 

rization, baseline correction, 2D peaks detection and integration) 

ith method parameters optimized by the analyst according to the 

ample compositional complexity, chromatographic resolution and 

bsolute sensitivity. S/N threshold was set at 50 and baseline cor- 

ected according to Reichenbach et al . using the default algorithm 

36] . Then, a comprehensive pair-wise peak matching was run for 

 total of 30 cross-matches [ i.e ., (6 × 6) −6] and a computational 

ime of about 30 min. The determination of reliable registration 

eaks was by most relaxed constraint and included 2D peaks that 

atched in at least 50% + 1 of the chromatograms. This last op- 

ration took less than one minute and selected on average 10 0 0 

eaks per class. Note that the higher the number of anchor points 

or template matching, the better the image registration. The 2D 

hromatograms were then aligned according to the set of reliable 
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Fig. 3. Enlarged section of the B STD-T20 R2_rep n °3 2D chromatogram, between 25 and 28 min ( 1 D), 0.2 and 1.1 s ( 2 D). In Fig. 3 A the feature template is over imposed 

and (3B) the retention time shifts corrected operated by the template matching algorithm. Comparative analysis between two misaligned chromatograms visualized in 

transparency before (3C) and after (3D) image registration. 
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egistration peaks, transformed and registered before saving data, 

nd making them available for combination into a composite im- 

ge. For each chromatogram, this process took about 2 min. As the 

ast step, the composite chromatogram (Class Image) was gener- 

ted by the combination of the registered images in a single one, 

hich was then processed for baseline correction and 2D peaks 

etection. The reliable template was matched and graphic objects 

 i.e ., areas corresponding to peak region features, shown with the 

ed contour in Fig. 3 A, B) were generated around all detected 2D 

eaks before their inclusion in the final feature template. The to- 

al computational time from raw data pre-processing until the fi- 

al step with feature template composition was about 50 min per 

lass. 

A schematic diagram of the workflow is illustrated in Fig. 1 (left 

ide) while an in-depth scheme is provided in Supplementary 

ig. 2. 

The seven Class Images were then used to feed a new UT fin- 

erprinting workflow ( Fig. 1 , right side) at this stage to re-align 

hem against a comprehensive feature and vice-versa, in a way to 

btain transformed and realigned Class Images for effective pair- 

ise comparisons. Moreover, the comprehensive feature template 

btained at this stage was targeted by adding putative identifi- 

ations for known components (see Section 2.6 for identification 

riteria) and matched back to all single chromatograms (i.e. , sin- 

le samples n = 84 and Class Images n = 7). This global re-alignment

nabled AV with access to the higher-level information and tradi- 

ional data mining by machine learning on the complete data set 

i.e. , 84 chromatograms × 346 features). 
9 
The next section illustrates as proof of concept some investiga- 

ion possibilities offered by AV with registered Class Images. The 

exibility of the workflow is so high that the analyst can answer 

any different questions just by properly designing the Class Im- 

ges composition and consequent pair-wise matches. 

.3. Molecular patterns in butter processing 

The volatile fraction of butter and butter oil has been the object 

f several studies since the mid-1950s; one of the most complete 

ists of known components ( i.e ., targeted volatiles) accounts for 287 

olatiles [37] . Within them, the sub-group of potent odorants and 

ey-aroma compounds play a crucial role in consumers’ acceptabil- 

ty and preferences [38] . However, many other volatiles contribute 

o the definition of butter quality. For example, terpenes and ter- 

enoids, transferred from cow feeding to milk and sweet cream, 

nform about feeding systems (e.g., pasture or indoor feeding [39] ), 

sters naturally formed during fermentation and cream acidifica- 

ion, are characteristic of the inocula, since precursors ( i.e ., primary 

nd secondary alcohols and acids) are formed by specific metabolic 

athways [40] . Lactones, formed by the intra-esterification of hy- 

roxyl acids [41] , leave a diagnostic signature on many dairy prod- 

cts. 

The evolution of the detectable volatilome along the butter pro- 

uction chain was examined by sequential pair-wise comparisons 

f Class Images. AV captured the compositional differences of prod- 

cts against the primary material, i.e ., the raw sweet cream. By 

hese approaches, volatiles with increasing or decreasing trends are 
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Fig. 4. Heatmap of target analytes showing the largest variations (indicated as fold change) relative to raw sweet cream. The heatmap colorization (light blue to dark blue) 

is scaled on the row values. Comparisons are between PCT0 vs. SCR – S1, PCT18 vs. SCR – S2, BT0 vs. SCR – S3, BT8 vs. SCR – S4, BT20 vs. – S5, BT40 vs. SCR – S6. 
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asily mapped over the chromatographic space thanks to specific 

olorizations, while metadata inspection enables access to higher- 

evel information. Fig. 4 shows as a heat map the fold change for 

 selection of features that showed the largest variations within 

he processing steps. Fold change is calculated through the ratio of 

he target analytes’ absolute responses from Class Images and tak- 

ng the raw sweet cream Class Image as a reference. Comparisons 

re between PCT0 vs . SCR (pasteurized cream at T0 vs . raw sweet 

ream – S1), PCT18 vs . SCR (pasteurized cream at T18 vs . raw sweet 

ream – S2), BT0 vs . SCR (butter at T0 vs . raw sweet cream – S3),

T8 vs . SCR (butter at T8 vs . raw sweet cream – S4), BT20 vs . SCR

butter at T20 vs . raw sweet cream – S5), BT40 vs . SCR (butter at

40 vs . raw sweet cream – S6). 

Analytes that showed the largest variations, with a progres- 

ive increment during processing are volatile acids (acetic acid, bu- 

anoic acid, and hexanoic acid) reaching a relative abundance in 

he ripened butter after 40 days, which corresponds to one order 

f magnitude higher than in the raw sweet cream. They are formed 

y both fermentation of milk primary metabolites and by enzy- 

atic hydrolysis of triglycerides. Another analyte of interest for 

utter aroma identity is acetoin (3–hydroxy-2-butanone) [ 42 , 43 ]; 

t is formed from sugars through the pyruvate pathway by the lac- 

ic acid bacteria metabolism [44] . It reaches a maximum after in- 

culation of ferments in pasteurized raw cream (S2 comparison 

15.3 fold-change) and then stays stable along butter ripening. 

nterestingly, its reduction product, 2,3-butanediol, has a similar 

rend. Another group of analytes showing meaningful variations 

re lactones, they contribute to the creamy and sweet aroma of 

ilk and dairy products [45] ; γ -nonalactone, δ-decalactone and δ- 

odecalactone have an incremental trend along processing. 

AV facilitates the prompt capture of these information, Fig. 5 A 

hows the comparative visualization rendered as grayscale fuzzy ra- 
10 
io between PCT0 vs . SCR (pasteurized cream at T0 vs . raw sweet 

ream – S1). The yellow boxes over imposed on the chromato- 

raphic plane (zoomed area with green lines) highlight the peak 

egion of acetoin (3–hydroxy-2-butanone). The access to relative 

nd absolute responses, bottom tabular area, is facilitated and 

ventually guided by analysts with a mouse click on the chro- 

atogram image. In Fig. 5 B, another possibility is a comparative 

ide-by-side visualization. The red box indicates the butanoic acid 

eak regions in the comparison between Class Images BT40 vs . SCR 

butter at T40 vs . raw sweet cream – S6). 

Validation of the CV results was by conventional UT fingerprint- 

ng on the complete data matrix including 84 chromatograms × 28 

eatures (having Fisher ratio values > 8). Peak region features ab- 

olute responses for the three randomized replicated analyses were 

xamined by Partial Least Square Discriminant Analysis (PLS-DA) 

fter range scaling to highlight variables capable of classes dis- 

rimination ( i.e ., SCR, PCT0, PCT18, BT0, BT8, BT20 , and BT40 ). All

LS-DA models were cross-validated via Montecarlo validation ex- 

luding 20% of the dataset out of the model construction and us- 

ng it as a validation set; this validation process was reiterated 

0 0 0 times to satisfy robustness requirements. PLS-DA results are 

isualized in Fig. 6 A; from left to right processing steps are dis- 

ributed over the Cartesian space delineated by the first two com- 

onents. Sweet raw cream and pasteurized cream at t0 form clear 

lusters, due to an almost similar composition of their volatile 

raction; after 18 h from the inoculum ( PCT18 – yellow indica- 

ors) the volatilome is evolving/changing and samples dispersion 

ncreases coherently with the logarithmic development of lactic 

acteria. Then, after fat crystallization and butter ripening ( BT0 - 

 BT40 ), sample clusters show some overlapping. Of the most in- 

ormative variables, according to Variable Importance for the Pro- 

ections (VIPs), capable of effectively discriminating all classes (i.e., 
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Fig. 5. (5A) Comparative overlayed visualization rendered as grayscale fuzzy ratio between PCT0 vs. SCR – S1. The peak region of 3–hydroxy-2-butanone (Acetoin – yellow 

boxes) is highlighted and zoomed within green areas, and its metadata in the two chromatograms are reported in the tabular area. (5B) Comparative side-by-side visualization 

between BT40 vs. SCR – S6. Butanoic acid peak regions with its metadata in both chromatograms is highlighted by red boxes. 
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Fig. 6. (6A) PLS-DA (82 samples x 28 variables with Fisher ratio > 8) score plot on the first two latent variables of the various steps of artisanal butter production and 

ripening from raw sweet cream after range scaling as pre-processing step. Montecarlo validation 20% out was conducted for model validation and performance evaluation. 

(6B) PLS-DA (48 samples x 49 variables with Fisher ratio > 4) score plot on the first two latent variables of the two butter samples deriving from different microbial inocula 

(Test vs STD) after range scaling as pre-processing step. Montecarlo validation 20% out was conducted for model validation and performance evaluation. (6C, 6D, 6E) boxplots 

showing the absolute response distribution of the most impacting key odorants in Test vs STD butter samples. 
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IPs ± SD > 1), acetic acid ranked second after an untargeted fea- 

ure (#115 not identified). They are then followed with decreas- 

ng VIPs values by: 1-heptanol; butanoic acid; propanoic acid; 1- 

cten-3-ol; feature #48; acetic acid ethenyl ester; feature #285; 

–hydroxy-2-butanone (acetoin); δ-decalactone; 3-methylbutanoic 

cid; hexanoic acid; γ -nonalactone; and 2,3-butanediol isomers. 

ost of them were promptly revealed by CV by Class Images com- 

arison. PLS-DA in Fig. 6 A was built with 7 latent variables (LVs), 

nd achieved good sensitivity, specificity, and precision results; in 

articular, the best classification performances are achieved for the 

aw and pasteurized sweet cream, while worse discriminating ca- 

abilities are achieved when trying to discriminate butter samples 

ccording to shelf life. As reported in the confusion matrix and in 

he ROC curves (Supplementary Figure 3), the greatest mistakes 

appen within successive time points, this may be recollected to 

he fact that different sam ples in different physical areas of the 

utter are at different ripening stages due to inhomogeneous dis- 

ribution of microbial in the matrix. 

By further investigating the differential impact of the two in- 

cula ( i.e ., Test vs . STD), a PLS-DA was conducted on UT peak re-

ion features normalized responses from butter samples (from t0 

o t40 days of ripening). Results are visualized in Fig. 6 B where 

he sample classes are represented by pink and purple indicators. 
12 
he model is guided by 28 UT features with a VIPs ± SD > 1, of

hem, those with the highest odor impact are 2-heptanol; 2,3- 

utanediol isomers; 1,3-propanediol; octanal; 3-methylbutanoic 

cid; acetic acid; 3–hydroxy-2-butanone (acetoin); 1-octen-3- 

l; 2-heptanone; 2-butanone; 5-methyl-2-furancarboxaldehyde; δ- 

ndecalactone; and γ -butyrolactone. Key-odorants differential dis- 

ribution is rendered in box-plots of Fig. 6 C–E [2,3-butanediol 

somers;3-methyl butanoic acid; and 3–hydroxy-2-butanone (ace- 

oin)]. The second model created on two butter samples deriving 

y different microbial inocula (STD vs Test) shows optimal clas- 

ification parameters as reported in Supplementary Figure 3. This 

onfirms how the volatile fraction is heavily influenced by the mi- 

robial culture. 

Augmented visualization results on Class Images were validated 

y conventional data mining (PLS-DA) on UT fingerprinting on 

ingle chromatogram Images. AV by combining data from differ- 

nt samples minimizes the effect of confounding/secondary vari- 

bles ( e.g ., sweet cream suppliers, inoculum bacteria, and timing) 

hile facilitating the prompt capture of common features. Ana- 

ytes with a clear increment along processing are also those with 

 classification role in the class model; they are acetic acid; bu- 

anoic acid; hexanoic acid; 3–hydroxy-2-butanone (acetoin); 2,3- 

utanediol isomers; acetic acid ethenyl ester; γ -nonalactone; and 
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-decalactone. Those which were not cross-validated have a sec- 

ndary information role most related to the secondary variables’ 

mpact. 

. Conclusions 

This study demonstrates how CV combined with chromato- 

raphic fingerprinting can effectively enable Augmented Visualiza- 

ion facilitating access to samples’ compositional data and inter- 

retation of the phenomena related to it. The capture of diagnostic 

atterns within the complex fraction of volatiles from food (food 

olatilome) is complicated by the concurrent effect of many bio- 

ogical phenomena which could hide informative patterns. 

The multi-step workflow proposed is successful in realigning 

nd combining chromatograms from samples belonging to spe- 

ific classes, pre-defined based on the investigation questions. 

nce generated, Class Images can be pairwise compared with 

asy access to peak feature metadata. As a bench test, the but- 

er volatilome was investigated for its evolution along the pro- 

uction chain. Besides the presence of confounding variables, step- 

ise comparisons promptly revealed analytes and analyte patterns 

ith increasing trends from primary material (i.e. sweet cream) to 

he final product (i.e., ripened butter at 40 days). 

The workflow is highly flexible, reliable, and robust by compen- 

ating for temporal misalignments occurring in large time-frame 

tudies. Validation against a conventional approach based on UT 

ngerprinting on peak and peak region features confirms its con- 

istency, supports its adoption as decision-making tool in food 

uality applications, and suggests its application in many other 

elds. 

In a scenario where AI algorithms can support decisions in 

any fields, the high-resolution separation and multi-level infor- 

ation provided by C2DC are ideally suited to the Augmented Vi- 

ualization processes. 
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