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Abstract In this paper,wefirst prove that any closed simply connected4-manifold that
admits a decomposition into two disk bundles of rank greater than 1 is diffeomorphic
to one of the standard elliptic 4-manifolds: S4, CP2, S2 × S

2, or CP2#±CP
2. As

an application we prove that any closed simply connected 4-manifold admitting a
nontrivial singular Riemannian foliation is diffeomorphic to a connected sum of copies
of standardS4,±CP

2 andS2×S
2. A classification of singular Riemannian foliations of

codimension 1 on all closed simply connected 4-manifolds is obtained as a byproduct.
In particular, there are exactly 3 non-homogeneous singular Riemannian foliations of
codimension 1, complementing the list of cohomogeneity one 4-manifolds.

Mathematics Subject Classification 53C24 · 57R30 · 57R55 · 57R60

1 Introduction

Four-dimensional manifolds form an extremely rich and interesting class of mani-
folds.1 This is the lowest dimension in which exotic smooth structures arise, e.g., the

1 Throughout this paper, all manifolds considered are connected and smooth.
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noncompact 4-space R
4 [8,14,23,49] and compact mCP

2#nCP2 for many pairs of
(m ≥ 1, n ≥ 2) [2,9,13]. Moreover, exotic smooth structures abound in this dimen-
sion and it is not knownwhether there is a 4-manifold with only one (standard) smooth
structure, even for the simplest 4-manifold S

4, the affirmative side of which is called
the smooth Poincaré conjecture in dimension 4.

It is thus natural to try to classify subclasses of 4-manifolds with additional struc-
tures. The study of 4-manifolds admitting smooth group actions received a lot of
attention, and there is rich literature on the subject. Joining several different indepen-
dent results (cf. [11,12,42–44]) we know that any closed simply connected 4-manifold
admitting a smooth action by a compact Lie group is diffeomorphic to a connected
sum of copies of standard S

4, ±CP
2 and S

2 × S
2. When admitting a cohomogeneity

one action, the closed simply connected 4-manifold splits as a union of two disk bun-
dles, glued along their common boundary. In this case the classification was carried
out by Parker [44] (see also [25,26,32]), who proved that such manifolds must be
diffeomorphic to S4, CP2, S2 × S

2, or CP2#−CP
2.

The first part of this paper is concerned with a classification of closed simply
connected 4-manifolds which admit a splitting structure into disk bundles but without
requiring any group action.

Theorem 1.1 Let N be a closed simply connected 4-manifold obtained by gluing
two disk bundles over closed submanifolds of codimension greater than 1. Then N is
diffeomorphic to one of the standard S

4, CP2, S2 × S
2, or CP2#±CP

2.

In [18], the first named author and Tang proved that if a homotopy 4-sphere admits
some properly transnormal function, or equivalently it has a splitting structure as in
Theorem 1.1, then it must be diffeomorphic to the standard S4. Thus, Theorem 1.1 was
known when N is a homotopy (topological) 4-sphere. As an immediate application,
we see that there exist no properly transnormal (isoparametric) function on any closed
simply connected 4-manifold other than the five standard elliptic 4-manifolds. This
should be compared to the interesting existence result of Qian and Tang [45] that every
homotopy n-sphere (n > 4) carries a properly isoparametric function.

Recall that a singular Riemannian foliation on a Riemannian manifold is, roughly
speaking, a partition of M into connected complete, injectively immersed submani-
folds which stay at a constant distance from each other, and it provides a generalization
of smooth actions of Lie groups. If the foliation has codimension 1, it gives rise to a
splitting structure as in Theorem1.1. Therefore, Theorem1.1 provides a generalization
of Parker’s result on cohomogeneity one 4-manifolds. Moreover, we obtain

Corollary 1.2 There are exactly 3 foliated diffeomorphism classes of non-homogene-
ous singular Riemannian foliations of codimension 1 in closed simply connected
4-manifolds.

In fact, in Corollary 3.4 we will recover all cohomogeneity one actions, together
with these three non-homogeneous singular Riemannian foliations of codimension
1, one of which on CP

2#−CP
2 and the other two on CP

2#CP2 (see some further
description in Subsect. 3.4). Notice thatCP2#CP2 does not admit cohomogeneity one
actions, though it indeed admits metrics of non-negative curvatures as the other four
cohomogeneity one 4-manifolds. This suggests the following
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Differentiable classification in dimension 4 527

Conjecture 1.3 Any closed simply connected non-negatively curved Riemannian
manifold admits singular Riemannian foliations of codimension 1, under the same
metric or a different bundle-like metric.

Existence of such foliations ensures that topologically the manifold admits a splitting
structure into two disk bundles as in Theorem 1.1. Hence this conjecture is essen-
tially attributed to Karsten Grove who conjectured that every compact non-negatively
curved manifold splits as a union of two disk bundles. A positive answer to this con-
jecture will in particular solve affirmatively the long-standing conjecture: a closed
simply connected non-negatively curved 4-manifold is diffeomorphic to one of the
standard S4, CP2, S2 × S

2, or CP2#±CP
2. The latter conjecture is still open even for

homeomorphism.
In the second part of this paper we turn to consider singular Riemannian foliations

of general codimension. At last we are able to recover and generalize the differentiable
classification obtained for group actions.

Theorem 1.4 Let N be a closed simply connected 4-manifold admitting a nontrivial
singular Riemannian foliation. Then it is diffeomorphic to a connected sum of copies
of standard S

4, ±CP
2 and S

2 × S
2.

When the singular Riemannian foliation is closed and of dimension 1, this result has
been proven by Galaz-Garcia and the second named author [16, Cor. 8.6], by showing
that such a foliation comes from a smooth effective circle action which then derives
the conclusion from the classification of circle actions on 4-manifolds by Fintushel
[11,12]. When the foliation is of dimension 3, Theorem 1.4 reduces to Theorem 1.1.

2 Preliminaries

In this section we collect some background materials on singular Riemannian folia-
tions, most part of which is based on the Preliminary section of [16]. We also refer the
reader to [4,40] for further results on the theory.

2.1 Singular Riemannian foliations

A transnormal system F on a complete Riemannianmanifold M is a decomposition of
M into complete, injectively immersed connected submanifolds, called leaves, such
that every geodesic emanating perpendicularly to one leaf remains perpendicular to
all leaves. A singular Riemannian foliation is a transnormal system F which is also
a singular foliation, i.e., such that there are smooth vector fields Xi on M that span
the tangent space Tp L p to the leaf L p through each point p ∈ M . If furthermore F
is regular, i.e., the leaves have the same dimension, then F is called a Riemannian
foliation. If M is a smooth manifold and (M,F) is a singular foliation, a metric g on
M is called bundle-like for F if (M, g,F) becomes a singular Riemannian foliation.
Slightly abusing notation, the pair (M,F) will also denote a singular Riemannian
foliation F on a complete Riemannian manifold (M, g).

We will call the quotient space M/F the leaf space, and will also denote it by
M∗. We will let π : M → M/F be the leaf projection map. A singular Riemannian
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foliation F will be called closed if all its leaves are closed in M . If F is closed, then
the leaf space M/F is a Hausdorff metric space.

A leaf of maximal dimension is called a regular leaf, and its dimension is defined
to be the dimension of F , denoted by dimF . Leaves of lower dimensions are called
singular leaves. The codimension of F is defined to be the codimension of a reg-
ular leaf. A singular Riemannian foliation (M,F) of codimension one is called an
isoparametric foliation if the regular leaves have constant mean curvature, and a
totally isoparametric foliation if the regular leaves have constant principal curvatures
in M . In fact, when (M,F) gives a splitting structure as (3.1), it can become isopara-
metric bymodifying the bundle-like metric on M (cf. [45]). A codimension one closed
singular Riemannian (resp. isoparametric, totally isoparametric) foliation on a closed
Riemannian manifold would be given by level sets of a transnormal (resp. isopara-
metric, totally isoparametric) function, which we do not introduce here but refer the
reader to [18,20,24,45,50,51].

2.2 Stratification

Let (M,F) be a singular Riemannian foliation. For any point p ∈ M , we denote by
L p the leaf of F through p. For k ≤ dimF , define

�k = {p ∈ M : dim L p = k}.

Every connected component C of the set �k , called a stratum, is an embedded (pos-
sibly non-complete) submanifold of M and the restriction of F to C is a Riemannian
foliation. Moreover, any horizontal geodesic (perpendicular to the leaves) tangent to
�k , stays in the closure of �k for all time. The subset �dimF of regular leaves is
open, dense and connected in M ; it is called the regular stratum of M , and it will
be denoted by M0. All other strata have codimension at least 2 in M and are called
singular strata.

The quotient M/F inherits a stratification from M , where the strata are the projec-
tions�/F of the strata� ofF . Any such stratum�/F is an orbifold and in particular
the regular stratum M0/F is an orbifold which is open and dense in M/F .

2.3 Holonomy map

The fundamental group π1(L p) acts on the normal space νp L p of a regular leaf L p,
in such a way that if x, y ∈ νp L p belong to the same π1(L p)-orbit, then expp(t x),
expp(t y)belong to the same leaf, for all t . Such an action is calledholonomy map. Fixed

an ε-tubular neighborhood U of L p for some small ε, the universal cover Ũ admits a
foliation F̃ which is the lift of (U,F). One checks that Ũ splits as a product L̃ p × D,
where D is an ε-disk in νp L p around the origin. Therefore U = L̃ p ×π1(L p) D, where
π1(L p) acts by deck transformations on the first factor, and by the holonomy map on
the second. In particular, the normal bundle is orientable if and only if the holonomy
map acts preserving the orientation of νp L p. Moreover, the holonomy group is the
local group of the orbifold M0/� at the point π(p) (cf. [40, Section 3.6]).
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Differentiable classification in dimension 4 529

A regular leaf L is called principal if the holonomy map acts trivially on the
normal space νp L (the definition is independent on the point p ∈ L) and exceptional
otherwise. From the local description of F around L , a regular leaf is principal if and
only if it projects to a manifold point of M0/F .

2.4 Infinitesimal singular Riemannian foliations

Given a point p ∈ M , let Sp be the unit sphere in the normal space νp L p of the leaf
through p. On Sp we define a foliation Fp by saying that x, y ∈ Sp belong to the
same leaf in Fp if expp(εx) and expp(εy) belong to the same leaf of F , for every
ε > 0 small enough. If Sp is equipped with the round metric, the foliation (Sp,Fp) is
a singular Riemannian foliation, and it is called the infinitesimal foliation of F at p.
If p is a regular point, Fp is the trivial foliation whose leaves are points.

Infinitesimal foliations are useful to understand the relation between leaves of
different types, as follows. Consider a point p ∈ M , a vector x ∈ Sp, and let
q = expp εx . If ε is small enough, there is a well defined, smooth closest-point projec-
tion p : Lq → L p, that is a locally trivial fibration. Moreover, the connected compo-
nent of the fiber ofp through q can be identifiedwith the leafLx ∈ Fp through x . There
is a cover L p → L p of L p such that p lifts to a fibration p : Lq → L p with connected
fiber Lx (just take L p = L̃ p/p∗(π1(Lq)) where L̃ p is the universal cover of L p):

Lx −→ Lq −→ L p. (2.1)

3 Singular Riemannian foliations of codimension one

In this section we first prove Theorem 1.1 which is essentially the codimension 1 case
of Theorem 1.4, and then give a classification of singular Riemannian foliations of
codimension 1 on closed simply connected 4-manifolds in Corollary 3.4. Through-
out this paper we denote diffeomorphisms and homeomorphisms by “∼=” and “�”
respectively.

Let N be a closed simply connected 4-manifold obtained by gluing two disk bundles
over closed submanifolds M± of codimension m± greater than one, i.e.,

N = D(M+)
⋃

f

D(M−), (3.1)

where f : ∂ D(M+) → ∂ D(M−) is a diffeomorphism between the boundaries of
the disk bundles D(M±) of rank m± over M±. We denote the common boundary by
M := ∂ D(M+) ∼= ∂ D(M−) and it follows from the proof of [39, Cor. 11.4 and Thm.
11.3] that M is an orientable hypersurface of N . Without loss of generality, we assume
2 ≤ m+ ≤ m− ≤ 4. As remarked in the introduction, the case when N is a 4-sphere
has been solved in [18] and henceforth we assume dim H2(N ,Z2) = b2 ≥ 1 for
simplicity, although this case could also be derived by the same arguments.

123



530 J. Ge, M. Radeschi

For a splitting structure as (3.1), we have the following exact cohomology sequences
[10,30]:

· · · → Hi−1(M±,Z2)
θ±→ Hi−m∓(M∓,Z2)

α±→ Hi (N ,Z2)
i∗±→ Hi (M±,Z2) → · · · . (3.2)

Since N is simply connected, byPoincaré dualitywehave H1(N ,Z2) = H3(N ,Z2) =
0.

To prove Theorem 1.1 we analyze case by case according to the value of m− ∈
{2, 3, 4} in the following subsections.

3.1 m− = 4

Then M− = {pt} is a point in N and M ∼= S
3. By (3.2) we have

0 −→ H2−m+(M+,Z2)
α−→ H2(N ,Z2)

i∗−→ 0
θ−→ H3−m+(M+,Z2) −→ 0,

which, due to the assumption b2 ≥ 1, implies m+ = 2, H1(M+,Z2) = 0 and
H2(N ,Z2) = H0(M+,Z2) = Z2. Because 2-dimensional manifolds are determined
by their cohomology structures and closed simply connected 4-manifolds are deter-
mined up to homeomorphism by the second Betti number when it is less than 2 (cf.
[15]) , the equalities above lead to M+ ∼= S

2 ∼= CP
1, N � CP

2 and

N = D(CP1)
⋃

f

D4,

where f ∈ Diff(S3) is a diffeomorphism of the common boundary S3 of the 4-disk D4

and the 2-disk bundle D(CP1).Meanwhile it is known that one of the two isoparametric
foliations in CP2 (Both are homogeneous! cf. [20], etc.) splits CP2 as

CP
2 = D(CP1)

⋃

id

D4,

whereCP1 ⊂ CP
2 is the canonical inclusion and id is the identity map of the distance

sphere around the focal point of CP1 in CP
2. Note that one still gets CP

2 if the
gluing map id were replaced by an orientation reversing isometry (e.g. a reflection)
since it can be radially extended to the 4-disk D4. Now by Cerf [7] and Hatcher [29],
f ∈ Diff(S3) is isotopic to id up to an orientation reversing isometry, and therefore
using standard argument with the isotopy extension theorem (cf. [31, Thm. 2.3]) we
obtain N ∼= CP

2.

3.2 m− = 3

Then M− ∼= S
1 and M ∼= S

1 ×S
2 since the only nontrivial 2-sphere bundle over S1 is

non-orientable and thus impossible as discussed before. Using (3.2) again we get the
short exact sequence
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0 −→ Z2
θ−→ H2−m+(M+,Z2)

α−→ H2(N ,Z2) −→ 0,

which implies m+ = 2 and Z2 = H0(M+,Z2) = Z2 ⊕ H2(N ,Z2), contradicting
with the assumption b2 ≥ 1. This case occurs only if N ∼= S

4.

3.3 m− = 2

Then m+ = 2. By (3.2) we have the following exact sequence

0 −→ H1(M−,Z2)
θ−→Z2

α−→ H2(N ,Z2)
i∗−→Z2

θ−→ H1(M+,Z2) −→ 0,

which gives

Z2 = H1(M−,Z2) ⊕ Image(α−), Z2 = H1(M+,Z2) ⊕ Image(i∗−),

H2(N ,Z2) = Image(α−) ⊕ Image(i∗−).
(3.3)

These equations show that dim H2(N ,Z2) = b2 ≤ 2 and hence b2 = 1 or 2.
When b2 = 1, N � CP

2 (cf. [15]) and either Image(α−) = 0, Image(i∗−) = Z2
or Image(α−) = Z2, Image(i∗−) = 0, correspondingly either H1(M−,Z2) = Z2,
H1(M+,Z2) = 0 or H1(M−,Z2) = 0, H1(M+,Z2) = Z2. Therefore M± are S2 and
RP

2. It is well known (cf. [47]) that any orientable circle bundle with Euler number m
over S2 is a lens space L(m, 1)2 which is a quotient of S3 by some Zm-action. Recall
(cf. [41]) that the orientable3 circle bundle over RP2 with Euler number e, denoted
by (On1 | e), is two-fold covered by the orientable circle bundle over S2 with Euler
number 2e, denoted by (Oo0 | 2e). Moreover, (On1 | 1) ∼= (Oo0 | 4) ∼= L(4, 1).
Thus (On1 | e) is the quotient of S3 (viewed as the unit quaternions) by the subgroup
Q4e generated by ω = cos(π/|e|) + i sin(π/|e|) and j (cf. [34]). Note that Q4e is
a binary dihedral group which is abelian only if e = 1. It follows that the common
boundary M , as circle bundles over both S

2 and RP
2, can only be S3/Q4 = L(4, 1).

In conclusion, we have proved

N = D(S2)
⋃

f

D(RP2),

where f ∈ Diff(L(4, 1)) is a diffeomorphism of the common boundary M ∼= L(4, 1).
On the other hand, it is known that the other (homogeneous) isoparametric foliation
on CP2 decomposes it as [20,48]

CP
2 = D(Q1)

⋃

id

D(RP2),

where Q
1 ∼= S

2 is the standard complex quadric in CP
2 and id is the identity on

M = ∂ D(Q1) = ∂ D(RP2) = L(4, 1). Due to the celebrated work on the (gener-

2 Here we ignore the specific orientations and identify L(±m, 1).
3 Here orientability refers to that of the total space.
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alized) Smale Conjecture of Hong, et al. [33], the inclusion of the isometry group
Isom(L(m, q)) → Diff(L(m, q)) of any lens space L(m, q) (m ≥ 3) is a homo-
topy equivalence. As a result, f ∈ Diff(L(4, 1)) is isotopic to the identity id or
an orientation-preserving isometry f0 ∈ Isom(L(4, 1)) = O(2) × SO(3) which pre-
serves thefibration of L(4, 1)overS2 and hence is radially extendable to an orientation-
preserving diffeomorphism f̃0 of the corresponding disk bundle D(S2). This derives

N = D(S2)
⋃

f

D(RP2) ∼= D(S2)
⋃

id or f0

D(RP2) ∼= D(Q1)
⋃

id

D(RP2) = CP
2,

(3.4)

where the second diffeomorphismwith respect to f0 comes from gluing f̃0 : D(S2) →
D(Q1) and the identity id : D(RP2) → D(RP2) (cf. [31, Thm. 2.2]).

Remark 3.1 In fact, here and later on, it is sufficient to use only the “π0-part” of the
Smale conjecture:π0(Isom(M)) → π0(Diff(M)) is an isomorphism induced from the
natural inclusion of Isom(M) in Diff(M). This part has been confirmed for every ellip-
tic 3-manifold (cf. [7,38] and references therein). In particular, π0(Diff(L(m, 1))) ∼=
π0(Isom(L(m, 1))) ∼= C2 is a cyclic group of order 2 for each m ≥ 1. Moreover, it
consists of (path components of) the identity and an orientation-reversing isometry f1
if m = 1 or 2, and an orientation-preserving isometry f0, which preserves the fibra-
tion of L(m, 1) over S2 and hence is radially extendable to an orientation-preserving
diffeomorphism f̃0 of the corresponding disk bundle D(S2), if m ≥ 3.

Now we turn to deal with the case when b2 = 2, i.e., N � S
2 ×S

2, or CP2# ±CP
2

(cf. [15]). By (3.3) we have H1(M±,Z2) = 0 and thus M+ ∼= M− ∼= S
2, M is a lens

space L(m, 1) for some m ≥ 0. These give a splitting structure on N as

N = D(S2)
⋃

f

D(S2), (3.5)

where f ∈ Diff(L(m, 1)) is a gluing diffeomorphism on the common boundary M ∼=
L(m, 1) for some m ≥ 0. Note that m is just the self intersection number of either S2

in N or equivalently the Euler number of the circle bundles L(m, 1) → S
2. The proof

of this case (and hence of the total Theorem 1.1) will be completed by the following.

Proposition 3.2 Let N be a closed (simply connected)4-manifold admitting a splitting
structure as (3.5). Then N is diffeomorphic to S

2 × S
2, or CP2# ±CP

2.

Remark 3.3 The classification can be explicitly described as follows. Without loss of
generality, we suppose the splitting structure (3.5) is given by gluing two copies of
an oriented disk bundle Dm(S2) of opposite orientations over S2 through a diffeo-
morphism f : L(m, 1) → L(m, 1) of the boundary with induced orientation from
Dm(S2) for some integer m ≥ 0. Then N is diffeomorphic to

(1) S
2 × S

2 if m > 2 is even, or m = 2 and [ f ] = [id] ∈ π0(Diff(RP3)) ∼= C2
(orientation-preserving), or m = 0 and [ f ] ∈ π0(Isom(S1 × S

2)) ∼= C2 × C2 ⊂
π0(Diff(S1 × S

2)) ∼= C2 × C2 × C2 (isotopic to an isometry);
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(2) CP
2#CP2 ifm =2 and [id] �=[ f ] ∈ π0(Diff(RP3)) ∼= C2 (orientation-reversing),

or m = 1 and [id] �= [ f ] ∈ π0(Diff(S3)) ∼= C2 (orientation-reversing);
(3) CP

2#−CP
2 if m > 2 is odd, or m = 1 and [ f ] = [id] ∈ π0(Diff(S3)) ∼= C2

(orientation-preserving), or m = 0 and [ f ] ∈ π0(Diff(S1 ×S
2))−π0(Isom(S1 ×

S
2)) (not isotopic to an isometry).

Proof It follows from van Kampen theorem that N is simply connected and thus
orientable, implying the splitting structure (3.5) has the form as described in the remark
above. Form > 2, f ∈ Diff(L(m, 1)) is isotopic to the identity id or a fiber-preserving
orientation-preserving isometry f0 which can be extended to an orientation-preserving
diffeomorphism f̃0 of the disk bundle Dm(S2) (see Remark 3.1), both giving rise to the
same double manifold N ∼= Dm(S2)

⋃
id −Dm(S2) as in (3.4). It is easily seen from

[47] that this double manifold is an oriented S2 bundle over S2 and m ∈ Z ∼= π1SO(2)
determines a reduction of the structural group SO(3) to SO(2) of the 2-sphere bundle.
Note that π1SO(3) ∼= Z2, thus each even m corresponds to the trivial bundle and each
odd m corresponds to the only nontrivial bundle, the total space of which is shown to
be diffeomorphic toCP2#−CP

2 in [47]. Hence, N is S2×S
2 if m is even,CP2#−CP

2

ifm is odd. The same argument holds for the cases whenm = 1, 2 and f is orientation-
preserving, or when m = 0 and f is isotopic to an isometry, since each isometry in
this case can be radially extended to the trivial disk bundle S2 × D2 (see the π0-part
or the homotopy type of Diff(S1 × S

2) in [22,28]).
When m = 2 (resp. 1) and f is isotopic to an orientation-reversing isometry (all in

one path component) in Isom(RP3) (resp. Isom(S3)), we would first get a homeomor-
phism N � CP

2#CP2 by checking the second Betti number b2 = 2 and the signature
σ = 2 using the Novikov’s additivity theorem. As there is only one path component
for the gluing diffeomorphism f , i.e., all gluing diffeomorphisms are isotopic to each
other, using the standard gluing argument as in (3.4) would deduce a diffeomorphism
once we establish the same splitting structure on CP2#CP2 for m = 2, 1 respectively.
Therefore it is sufficient to check the existence of the following splitting structures

CP
2#CP2 = D2(S

2)
⋃

id

D2(S
2) = D1(S

2)
⋃

id

D1(S
2),

where id denotes the identity on ∂ D2(S
2) = RP

3 and ∂ D1(S
2) = S

3 respectively.
The existence can be confirmed as follows. Consider the two embeddings of S2 in
CP

2#CP2 as two connected sumsCP1#CP1 via different embeddings ofCP1 ⊂ CP
2,

e.g., defined by the vanishing of different coordinate functions. The neighborhoods of
these two embeddings will give the splitting structure for the case m = 2. Considering
the standard embeddings of CP1 in the two copies of CP2 in CP2#CP2 will give rise
to the splitting structure for the case m = 1.

The last case left to analyze is when m = 0 and f is not isotopic to an isometry,
i.e., it belongs to the four “rotation” path components of Diff(S1 × S

2) given by
compositions of isometries of S1 × S

2 with a “rotation” (generator) diffeomorphism
(cf. [22])
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τ(z, w) = (z, φ(z)w) (3.6)

where φ(z)w = (z · (w1, w2), w3) is a rotation of w = (w1, w2, w3) ∈ S
2 around

the w3-axis through the angle of z ∈ S
1. We can finally produce only one 4-manifold

from these four isotopy classes of gluing diffeomorphisms since as mentioned before,
all isometries of S1 × S

2 can be radially extended to diffeomorphisms of the trivial
disk bundle D0(S

2) = S
2 × D2 and consequently their compositions with τ as gluing

maps give rise to the same 4-manifold as that by τ itself. It thus suffices to prove

N = S
2 × D2

⋃

τ

−(S2 × D2) ∼= CP
2# − CP

2. (3.7)

Now we regard N as given by first cutting out the sphere-factors along their equators,
then gluing the disk-factors pointwise along the north and south hemispheres, at last
regluing these two hemispheres back using the transformation map τ0 : S1 → SO(2)
induced from τ . Then it turns out to be an oriented S2 bundle over S2 with the reduced
structural group SO(2) ⊂ SO(3) corresponding to the element [τ0] = 1 ∈ Z ∼=
π1SO(2). Hence N ∼= CP

2#−CP
2 as before (cf. [47]).

The proof is now complete. �
As a corollary, we conclude the following differential classification of singular

Riemannian foliations of codimension one on closed simply connected 4-manifolds.
Note that by the result of [45] introduced in Subsect. 2.1, these singular Riemannian
foliations can become isoparametric with only the bundle-like Riemannian metrics on
the 4-manifolds modified.

Corollary 3.4 Let N be a closed simply connected 4-manifold admitting a singular
Riemannian foliation F of codimension one with regular leaf M and two singular
leaves M±. Then the following Table 1 gives a foliated diffeomorphism classification
of (N ,F) with F in terms of (M, M±):

where the column “Homog” (resp. “T-Isopar”, “Isopar”) means whether there
exist a homogeneous (resp. totally isoparametric, isoparametric) representative in the
foliated diffeomorphism class.

Proof The classification is clear by the proof of Theorem 1.1 and that of [18, Thm. 1.1]
for S4, where the equivalence of the foliations with the same (M, M±) follows from
the consideration on isotopy classes of the gluing diffeomorphisms and the observation
that all possible extensions of the gluing diffeomorphisms can be made radially (so to
preserve the leaves).As for the homogeneity, one can comparewith the classification of
cohomogeneity one 4-manifolds in [44].4 Naturally, the 7 homogeneous foliations are
totally isoparametric. The 2 nonhomogeneous foliation classes on CP2#CP2 can also
be represented by totally isoparametric foliations as follows. Fix an invariant metric
g̃1 for the homogeneous foliation (CP2#−CP

2,F ′ = (L(1, 1),S2,S2)). This induces
a singular Riemannian foliation representing (CP2#CP2,F1 = (L(1, 1),S2,S2)), by

4 In [44] the second case in CP
2 was missing, as remarked also in [26,32]. Note also that it should be

CP
2#−CP

2 other than CP
2#CP2, as the covering space of the manifolds 43 and 49 in Parker’s list.
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Table 1 SRF of codim 1 on closed simply connected 4-manifolds

N F Properties

M M± Homog T-Isopar Isopar

S
4 L(1, 1) pt , pt Yes Yes Yes

L(0, 1) S
1, S2

SO(3)/(Z2 ⊕ Z2) RP
2, RP2

CP
2 L(1, 1) pt , S2

L(4, 1) RP
2, S2

S
2 × S

2 L(2m, 1), m ≥ 0 S
2, S2

CP
2#CP2 L(1, 1) S

2, S2 No

L(2, 1) S
2, S2

CP
2#−CP

2 L(2m + 1, 1), m ≥ 0 S
2, S2 Yes

L(0, 1) S
2, S2 No Unknown

gluing the homogeneous foliations of the twodisk bundles D1(S
2) in (CP2#−CP

2,F ′)
through an orientation-reversing isometry f1 ∈ Isom(S3) (with respect to the metric
induced from g̃1), with the bundle-like metric g1 on (CP2#CP2,F1) also glued from
the restrictions of g̃1 to the two disk bundles D1(S

2) by the isometry f1. The metric
g1 is smooth and well-defined because the gluing map f1 is an isometry with respect
to g̃1|∂ D1(S2)

. It follows that each regular leaf L(1, 1) of F1 has constant principal
curvatures and thus (CP2#CP2, g1,F1) is totally isoparametric. The same argument
is applicable to the case (CP2#CP2,F2 = (L(2, 1),S2,S2)) with the homogeneous
foliation (S2 × S

2,F ′′ = (L(2, 1),S2,S2)) taking place of (CP2#−CP
2,F ′). The

last nonhomogeneous foliation class (CP2#−CP
2,F = (L(0, 1),S2,S2)) can be

represented by an isoparametric foliation, either by the result of [45] cited above, or
simply using the isoparametric foliation obtained from the pull-back of the standard
isoparametric foliation on S

2 through a Riemannian submersion CP
2#−CP

2 → S
2

with totally geodesic S
2-fibres (cf. [18]). We remark that one can not use directly

the argument above for (CP2#CP2,F1) to obtain a totally isoparametric represen-
tative in this case, since the gluing map now does not belong to the isometry group
of S1 × S

2. �

Note that we have found two nonhomogeneous examples of totally isoparamet-
ric foliations on CP

2#CP2 while such foliations were guessed to be homogeneous
(cf. [20]). However, we do not know whether there exists any totally isoparamet-
ric representative in the last nonhomogeneous foliation class (CP2#−CP

2,F =
(L(0, 1),S2,S2)). Observing that now S

2 represents the homology class ±(1,−1) ∈
H2(CP

2#−CP
2), we see that this question relates with the homology representa-

tion (minimal genus problem) (cf. [35,36]) with further geometric restrictions: the
complement of the embedding sphere is an open disk bundle over another embed-
ding sphere, and every tubular hypersurface of either embedding sphere has constant
principal curvatures under some Riemannian metric on CP

2#−CP
2. Note moreover
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that the latter curvature condition forces both embedding spheres to have constant
principal curvatures which are independent of the choice of unit normal vectors
(cf. [19]). Nevertheless, the answer to this question seems to be negative in view
of the following observation motivated by the pull-back construction in the proof
above.

Proposition 3.5 There exists no totally isoparametric foliationF = (S1×S
2,S2,S2)

on CP
2#−CP

2 that can be projected to a singular Riemannian foliation on S
2 via a

Riemannian submersion π : CP2#−CP
2 → S

2 with totally geodesic fibres.

Proof Let π : (N = CP
2#−CP

2, g) → (S2, g′) be a Riemannian submersion with
totally geodesic fibers, and let F ′ = (S1, pt, pt) be a codimension 1 singular Rie-
mannian foliation on (S2, g′). The pull-back foliation F = π−1(F ′), obtained by
the preimages of the leaves in F ′, is a singular Riemannian foliation on (N , g), and
suppose that any regular leaf L = π−1(S1) ∼= S

1 × S
2 of F has constant principal

curvatures in N .
Asmentioned in Subsect. 2.1, the foliationsF ,F ′ consist of level sets of some (non-

unique) functions F, f on N ,S2, respectively,where F = f ◦π is totally isoparametric
on (N , g) and f is transnormal on (S2, g′). In fact, for our purpose it suffices to let F ,
f be the distance functions to one of the singular leaves, which are well-defined and
smooth on the regular parts N0 = N − (S2 �S

2) = π−1(N ′
0), N ′

0 = S
2 − (pt � pt) of

the foliations F ,F ′. By the relation between the shape operator S on L with respect
to the unit normal vector field ξ := ∇F/|∇F | (normalized gradient) and the Hessian
HF of F on (N , g), namely

g(S(X), Y ) = −HF (X, Y )/|∇F |, f or X, Y ∈ T L ,

F is totally isoparametric if and only if F is transnormal, i.e., |∇F |2 = b(F) for some
function b : R → R, and HF |T L has constant eigenvalues on any regular leaf L .

Let L ′ ∼= S
1 be any regular leaf in (S2, g′,F ′) and L = π−1(L ′). Let e be the

basic horizontal unit vector field on L that projects to the (oriented) unit vector field
on L ′, and let {u, v} be a local vertical orthonormal frame on L , such that {e, u, v} is
a local orthonormal frame on L . Notice that the basic horizontal vector fields e, ξ are
well-defined on the whole of the regular part N0. Recall that the O’Neill’s integrability
tensor A acts skew-symmetrically on the horizontal orthonormal frame {e, ξ} as

Aeξ = g(∇eξ, u)u + g(∇eξ, v)v,

where∇ denotes the covariant derivative on (N , g). This tensor measures the obstruc-
tion to integrability of the horizontal distribution. When the fibres are totally geodesic,
A ≡ 0 if and only if the total space N is locally a Riemannian product of the base
manifold and the fiber (see more details and properties of the A-tensor in, e.g., [17]).
In particular, in our case the A-tensor cannot vanish identically on N since otherwise
N would have to split isometrically as S2 × S

2.
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Straightforward calculations show that under the orthonormal frame {e, u, v},

HF |T L =
⎛

⎝
HF (e, e) |∇F |g(∇eξ, u) |∇F |g(∇eξ, v)

|∇F |g(∇eξ, u) 0 0
|∇F |g(∇eξ, v) 0 0

⎞

⎠ .

Therefore, HF |T L has constant eigenvalues if andonly if HF (e, e) = � f ◦π is constant
(i.e., f is isoparametric) and |∇F |2|Aeξ |2 = |∇F |2(g(∇eξ, u)2 + g(∇eξ, v)2) is
constant on L . Then |Aeξ |2 is constant on L because |∇F |2 = b(F) �= 0 is constant
on L . Noticing that Aeξ is now a global tangent vector field of constant length along
each S

2-fibre in L , we conclude that A ≡ 0 on L and hence on N0. By continuity
A ≡ 0 on N = N0 which gives the contradiction as described in the preceding
paragraph. �

3.4 Further remark on the 3 non-homogeneous foliations

To conclude this section, we would like to remark further on the exactly 3 non-
homogeneous singular Riemannian foliations of codimension one in Table 1 of Corol-
lary 3.4. In fact, these non-homogeneous foliations all arise by somewhat “twisted”
gluing of two copies of a homogeneous foliation on a disk bundle.

Explicitly, (CP2#−CP
2,F = (L(0, 1) = S

1 × S
2,S2,S2)) can be regarded as the

pull-back of the homogeneous foliation of S2 by concentric circles, via the S2-bundle
projection CP

2#−CP
2 → S

2 as in Proposition 3.5. This can thus also be seen as a
twisted gluing of the homogeneous foliations on the two trivial S2-bundles over the
south and north hemispheres, i.e., on the trivial disk bundleS2×D2. The twisted gluing
diffeomorphism is nothing but the non-isometric “rotation” τ in (3.6) (under appro-
priate choices of orientations of the trivial disk bundles and possibly some isotopy),
which proves directly the diffeomorphism (3.7) and moreover, implies the “failure”
(Proposition 3.5) of gluing two copies of the homogeneous foliation into a totally
isoparametric foliation since τ is not isometric. This also gives an interesting example
of non-homogeneous foliation (M,F) that projects, via a foliated map M → N , to
a homogeneous foliation on N . Conversely, examples of homogeneous foliations that
project to non-homogeneous foliations were rather well-known on the Hopf fibrations
S
2n+1 → CP

n (see for example [20]).
This “twisted” gluing phenomenon occurs similarly for the other two non-

homogeneous foliations on CP
2#CP2, but with isometric twisted (orientation-

reversing) gluing diffeomorphisms instead, which ensures the success of the gluing
into totally isoparametric foliations. One is glued from two copies of the (unique)
homogeneous foliation on D1(S

2), the disk bundle over S2 with Euler number 1 along
the boundary L(1, 1) = S

3. The other is glued from two copies of the (unique) homo-
geneous foliation on D2(S

2), the disk bundle over S2 with Euler number 2 along the
boundary L(2, 1) = RP

3.
Notice that there are neither non-isometric, nor orientation-reversing isotopy classes

of diffeomorphisms on the lens spaces L(m, 1) for m > 2. This explains somewhat
why there are only these 3 “twisted” gluing cases and hence non-homogeneous classes.
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4 Singular Riemannian foliations of general codimension

In this section we first prove a conjecture of Molino for 4-manifolds which reduces
the objects to closed singular Riemannian foliations. Then we prove Theorem 1.4
by verifying the only remaining case of closed 2-dimensional singular Riemannian
foliations.

Let (M,F) be a singular Riemannian foliation. Recall that F is defined as the
partition of M given by the closures of the leaves in F . It is a transnormal system,
i.e. the leaves are locally at a constant distance from each other. Moreover, Molino
[40] proved that in the regular part of F , F is a singular Riemannian foliation, and he
conjectured that F is actually a singular Riemannian foliation on the whole of M . In
the following proposition, we show that Molino’s conjecture holds for 4-manifolds,
and therefore F is a closed singular Riemannian foliation.

Proposition 4.1 Molino’s conjecture holds for 4-manifolds.

Proof If dimF = 2, 3, it is easily seen that for every point p ∈ M , the infinitesimal
foliation (Sp,Fp) either consists of points (if p is regular), or it consists of one leaf,
or it is a foliation of codimension one. All these foliations are polar, i.e., the leaf space
Sp/Fp is isometric to a Riemannian orbifold, and this makes F infinitesimally polar.
Molino’s conjecture is known to hold for such foliations [5] and thus one only needs
to prove it for 1-dimensional singular Riemannian foliations.

We need to prove that there is a family of smooth vector fields {Xi } such that, for
each point p ∈ M , the tangent space of the leaf L p of F through p is the span of
the vectors {Xi (p)}. Notice that this is a local condition. Moreover, Molino himself
proved that this condition is satisfied around regular points of F , so we only have to
prove that the condition holds around the singular leaves of F .

Since dimF = 1, the singular leaves are just points and in particular they are
closed. Moreover, a metric ball around each singular leaf is foliated diffeomorphic to
the orbit decomposition of a representation R → O(4). The closure of such actions
is well known to be homogeneous, and more precisely given by the action of a torus
T 2 → O(4). In particular, the closure of F around the singular leaves of F is a
singular foliation, which is what we wanted to prove. �

From the proposition above, if a 4-manifold M admits a singular Riemannian
foliation F then it also admits a closed singular Riemannian foliation F . Moreover,
if M is simply connected and closed, its Euler characteristic is positive and by [21]
there is a compact leaf. In particular, the leaves of F cannot be dense in M , and F is
a nontrivial closed foliation.

In what follows, we will assume that (M,F) is a closed, nontrivial singular Rie-
mannian foliation on a closed simply connected 4-manifold. As introduced in Sect. 1,
Theorem 1.4 has been proven by Galaz-Garcia and the second named author [18,
Cor. 8.6] for closed foliations of dimension 1, by showing that such a foliation comes
from a smooth effective circle action and then applying Fintushel’s classification of
4-manifolds with a circle action [13, 14]. For foliations of dimension 3 Theorem 1.4
reduces to Theorem 1.1, and therefore we are left to study the case when dimF = 2.
Now the codimension of F is 2, and by [37] the leaf space M∗ is a simply connected
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orbifold, which has no boundary if and only if F is a regular foliation. According to
this criterion we prove the theorem separately in the following two subsections.

4.1 .

If the foliation is regular, the leaf space M∗ is an orbifold without boundary. On the
one hand we know that the projection π : M → M∗ induces a surjection π1(M) →
π1(M∗), and therefore M∗ must be topologically a 2-sphere. On the other hand, by
[37, Cor. 5.3] the orbifold fundamental group of M∗ is also trivial, and therefore M∗
is an orbifold 2-sphere S2(p, q) with at most 2 orbifold points of coprime order p, q.
In particular, it is possible to write M∗ as a union of 2 disks around the orbifold points,
and the preimages of these disks decompose M into a union of two disk bundles along
possibly exceptional leaves, which proves the result by Theorem 1.1. In this case it is
actually possible to know more about which manifolds come up as follows.

Proposition 4.2 If (M,F) is a (regular) closed Riemannian foliation of dimension
2 on a compact simply connected 4-manifold M, then the leaves are the fibers of a
S
2-bundle over S2. In particular, M is diffeomorphic to S

2 × S
2 or CP2#−CP

2.

Proof Let M∗ be the leaf space of (M,F). The frame bundle Fr(M∗) is a smooth
manifold with an almost free O(2)-action (cf. [1, Thm. 1.23]), and the projection P :
Fr(M∗) → M∗ is a smooth map in the orbifold sense. If E O(2) denotes the universal
O(2)-bundle, we construct the Haefliger classifying space B = Fr(M∗)×O(2) EO(2)
of M∗. The map B → M∗ taking [x, g] to P(x) induces an isomorphism in rational
cohomology and thus on rational homotopy (cf. [27]), and therefore π2(B)⊗Q = Q.

Up to homotopy, there is a fibration (see for example [16])

L → M̂ → B (4.1)

where M̂ is homotopic to M and L → M̂ is homotopic to the inclusion of a regular
leaf. From the long exact sequence in homotopy of the fibration (4.1) it follows that
π1(L)⊗Q = Q or 0. Since L is a compact (orientable) surface, it follows that L = S

2.
The only possible exceptional leaf would beRP2. In such case the holonomy ofF (cf.
Subsect. 2.3) would act on νp(RP

2) = R
2 without fixed points except the origin, and

therefore it would act by an orientation-preserving map. This implies that the normal
bundle of RP2 is orientable, but this would give a contradiction since M is orientable
andRP2 is not. In particular there cannot be exceptional leaves, M∗ is diffeomorphic to
S
2, and M is an L = S

2-bundle over M∗ = S
2. Therefore M is foliated diffeomorphic

to (S2 × S
2,S2 × {pt}), or CP2#−CP

2 foliated by the fibers of the 2-sphere bundle
CP

2#−CP
2 → S

2. �

4.2 .

If the foliation is singular, the leaf space M∗ is homeomorphic to a disk D2, where
the boundary points correspond exactly to the singular leaves of F . In this case the
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leaves are orientable surfaces, and they admit a fibration over the singular leaves as
described in (2.1). In particular, unless the the regular leaves are tori the only possible
singular leaves are points. In such a case, let p be a singular point and let (Sp,Fp) be
the infinitesimal foliation at p. Since Sp = S

3 in this case, by [46] the regular leafL of
Fp must be diffeomorphic to either S2 or T 2. The fibration (2.1) in this case becomes
L → L → p, where L is a regular leaf of F , and thus L must also be diffeomorphic
to either S2 or T 2.

If the regular leaves of F are diffeomorphic to S
2 then the singular leaves must

be points, and the singular stratum �0 is the whole boundary of M∗, which is diffeo-
morphic to S

1. In this case, M∗ can be written as a union of a ball of a point in the
interior, and a tubular neighborhood of the boundary. The preimage of this decom-
position under π gives M a splitting structure as (3.1), and the result follows from
Theorem 1.1.

The only remaining case to consider is the one where the regular leaf L of F is
diffeomorphic to T 2. In this case we have the following structure [16]:

• The leaf space M∗ is homeomorphic to a disk D2 with boundary and corners.
There are at least 2 corners.

• The leaves corresponding to the interior points of M∗ are diffeomorphic to T 2.
The leaves corresponding to points in the boundary of M∗ (not corner points) are
diffeomorphic to S1. The leaves corresponding to the corners are points.

The preimage of each component of ∂ M∗ under π is a singular stratum of F . Fix a
regular leaf L0 ∼= T 2, and for each edge Ei of ∂ M∗ fix a leaf Li ∼= S

1 in the preimage of
the corresponding edge, and a fibrationpi : L0 → Li . Let (mi , ni ) ∈ π1(L0) = Z⊕Z,
gcd(mi , ni ) = 1, be a primitive generator of the kernel of pi ∗ : π1(L0) → π1(Li ).
Notice that {±(mi , ni )} does not depend on the choice of Li and pi . Call (mi , ni ) the
weight of the edge Ei . These correspond precisely to the weights defined in [42]. In
particular, the following properties hold:

Proposition 4.3 (i) For every γ : [0, 1] → M∗ such that γ (0) ∈ Ei , γ (1) ∈ E j ,
and γ ′(0) ⊥ Ei , γ ′(1) ⊥ E j , the preimage of I m(γ ) in M is a lens space, with

fundamental group Z/kZ, where k =
∣∣∣∣
mi m j

ni n j

∣∣∣∣. Call any such curve a (Ei , E j )-

curve.
(ii) If ∂ M∗ consists of at most 4 edges, then M can be divided as a union of two disk

bundles of rank greater than 1.
(iii) If ∂ M∗ consists of more than 4 edges, then there exist edges Ei , E j , j �= i ± 1,

such that the preimage of every (Ei , E j )-curve is diffeomorphic to S
3.

(iv) If ∂ M∗ consists of more than 4 edges, then (M,F) can be written as a foliated
connected sum (M̃1,F1)#(M̃2,F2), where F1, F2 are codimension 2 singular
Riemannian foliations by tori, whose leaf spaces M̃∗

1 , M̃∗
2 have boundaries with

a number of edges strictly lower than that of ∂ M∗.

This proves Theorem 1.4 for 2-dimensional foliations by induction and use of
Theorem 1.1. Hence, the proof of the total Theorem 1.4 will be complete.

Proof (i) Given a (Ei , E j )-curve γ , let Si j be the preimage of γ under π . It is clear
that π−1(γ |(0,1)) is a manifold. Moreover, since γ ′(0) is perpendicular to Ei , the
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preimage of γ |(0,ε), for ε > 0 small enough, is diffeomorphic to a vector bun-
dle over π−1(γ (0)) = S

1, and therefore π−1(γ |[0,ε)) is a manifold. By symmetry,
π−1(γ |(1−ε,1]) is a manifold, and therefore Si j is a manifold as well.

Without loss of generality, we can suppose that γ passes through π(L0). Consider
the open cover U0 = π−1(γ [0, 1)), U1 = π−1(γ (0, 1]) of Si j . U0 and U1 retract to
π−1(γ (0)) and π−1(γ (1)) respectively, which are both diffeomorphic to S

1, while
U0∩U1 retracts to L0. Moreover, the inclusion maps ι0 : U0∩U1 → U0 and ι1 : U0∩
U1 → U1 are homotopic to the projections pi : L0 → Li and p j : L0 → L j , respec-
tively. The maps pi ∗,p j ∗ : Z2 → Z induced between the fundamental groups, are

pi ∗(x, y) = ni x − mi y, p j ∗(x, y) = n j x − m j y.

By van Kampen theorem, the fundamental group of Si j has a presentation

〈g1, g2| gni
1 = g

n j
2 , gmi

1 = g
m j
2 〉.

Given integers p, q such that mi p + ni q = 1, we obtain g1 = gmi p+ni q
1 =

g
m j p+n j q
2 and therefore π1(Si j ) is generated by g2 only. Moreover, 1 = gmi ni −ni mi

1

= g
mi n j −ni m j
2 and thus π1(Si j ) is cyclic of order mi n j −ni m j , as we wanted to prove.
(ii) If ∂ M∗ has at most 2 edges, M∗ can be decomposed as a union of two balls

around 2 points in ∂ M∗, containing the vertices. If ∂ M∗ has three vertices, M∗ can
be decomposed as the union of a disk around one vertex, and the disk around the
opposite edge. Finally, if ∂ M∗ has four vertices, it is diffeomorphic (as an orbifold) to
a rectangle, and M∗ can be decomposed as a union of the disks around two opposite
edges. Therefore, in each case the preimage of the decomposition in M∗ divides M
as a union of disk bundles, where the preimage of an edge is S2.

(iii) This point was proved in [42, Thm. 5.7]. For the sake of completeness, we
exhibit the proof here. Let r ≥ 5 be the number of edges of M∗. Notice that the
preimage of a (Ei , Ei+1)-curve is diffeomorphic to the unit sphere S3 around the (0-
dimensional) leaf that is the preimage of the corner between Ei and Ei+1. From part
(i) it follows that

∣∣∣∣
mi mi+1
ni ni+1

∣∣∣∣ = ±1, i = 1, . . . r, (4.2)

where one should read r + 1 = 1. We now choose the generators of π1(L0) = Z
2

so that the edges E1 has weight (0, 1), and E2 has weight (1, 0). From (4.2), the
weights of E3 and Er are, respectively, (m3,±1), (±1, nr ). Notice that if m3 = 0
(resp. m3 = ±1) , then the preimage of a (Er , E3)-curve (resp. a (E1, E3)-curve) is
diffeomorphic to S3. In the same way, if nr = 0, (resp. nr = ±1) then the preimage of
a (Er , E3)-curve (resp. a (Er , E2)-curve) is diffeomorphic to S

3. Moreover, for any
i if we have |mi | = |ni |, then mi , ni = ±1 since mi , ni are coprime, and thus the
preimage of any (E1, Ei )-curve or (E2, Ei )-curve is S3.

Therefore, we can now restrict to the case |m3| > 1 = |n3|, |nr | > 1 = |mr |,
and |mi | �= |ni | for every i = 3, . . . r . Let 3 ≤ i < r be the first index such that
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|mi | ≥ |ni |+1, |ni+1| ≥ |mi+1|+1.The existenceof such an i is assuredby (4.2). Then

|mi ni+1| ≥ (|ni | + 1)(|mi+1| + 1) = |mi+1ni | + |mi+1| + |ni | + 1

and therefore

1 = |mi ni+1 − mi+1ni | ≥ |mi ni+1| − |mi+1ni | ≥ |mi+1| + |ni | + 1.

In particular mi+1 = ni = 0, which implies |ni+1| = |mi | = 1, and applying the
result in (i) again,weobtain that the preimages of both (E1, Ei )-curves and (E2, Ei+1)-
curves are diffeomorphic to S3.

(iv) By (iii), the preimage S ∼= S
3 of some (Ei , E j )-curve decomposes M as a union

of two connected 4-manifolds M1, M2 along S. In the following we will focus on M1,
but everything will hold for M2 as well. Now (M1,F |M1) is a foliated 4-manifold with
boundary S, and the restriction of F to S gives a codimension 1 B-foliation (S,F |S).
By [16] it is foliated diffeomorphic to (S3,F ′), where F ′ is given by the orbit decom-
position of the (unique up to conjugation) isometric T 2-action on the round S

3. This
action can be extended to an isometric action on the 4-diskD4, and this action induces
a singular Riemannian foliation FD4 . The manifold

M̃1 := M1 ∪S∼=S3 D
4

is canonically foliated by the singular foliation F1 that restricts to F |M1 on M1 and
FD4 on D

4. In the next section we will prove the following, rather technical, lemma:

Lemma 4.4 (Gluing lemma) There is a metric g̃ on M̃1 that is bundle-like for F1,
i.e., such that (M̃1, g̃,F1) is a singular Riemannian foliation.

This proves, in particular, that (M,F) is foliated diffeomorphic to a foliated connected
sum (M̃1,F1)#(M̃2,F2) of two codimension 2 singular Riemannian foliations by tori.
Moreover, it is easy to see that the leaf spaces M̃i/Fi are obtained by gluing a corner
D
4/FD4 � {(x, y) ∈ D

2| x ≥ 0, y ≥ 0} to Mi/F |Mi along the common boundary
S
3/F ′ � S/F |S , and in particular have strictly less boundary edges than M/F by iii).
The proof of the proposition is now complete. �

5 The gluing lemma

The goal of this section is to prove Lemma 4.4 above. Since (S,F |S) is foliated
diffeomorphic to (S3,F ′)wewill from now on identify these two spaces, and suppose
that the (foliated) boundary of M1 is (S3, g0,F ′) with some metric g0.

In what follows, we write S3 as a union of disk bundles

S
3 = D

2 × S
1
⋃

φ0

−D
2 × S

1, (5.1)
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where φ0 ∈ Diff(T 2 = ∂(D2 × S
1)) is the map interchanging the two factors, such

that the leaves of F ′ are the concentric tori with respect to the canonical metric in
D
2 × S

1.
First of all, we observe the following.

Lemma 5.1 There is a neighborhood U of S3 in M1 that is foliated diffeomorphic
to (S3 × [−ε, 0],F ′ × {pt}). Moreover, the metric g on M1 induces a metric on
S
3 × [−ε, 0] of the form gt + dt2, where F− = {gt }t∈[−ε,0] is a family of bundle-like

metrics on (S3,F ′).

Proof Consider the unique unit length normal vector field X on S3 ⊆ M1, pointing in
the outward direction of M1. Since X is uniquely defined, its restriction to every leaf
of F ′ is basic with respect to the projection M1 → M1/F |M1 . Since S

3 is compact,
there is a neighborhood U of S3 in M1 such that the map (p, t) �→ expp t X (p)

defines a diffeomorphism exp⊥ : S
3 × [−ε, 0] → U . On the other hand, by the

equifocality of singular Riemannian foliations [6, Thm. 1.5] exp⊥ is also a foliated
map because X is basic. Moreover, X is perpendicular to the family of submanifolds
St = exp⊥(S3×{t}), all diffeomorphic to S3 via exp⊥, and therefore the tangent space
of U splits orthogonally as T St ⊕ 〈X〉. If dt denotes the (exact) 1-form dual to X ,
then the metric g splits as g|T St + dt2. By setting gt = (exp⊥)∗(g|T St ) we obtain the
result. �

In the same way, there is a neighborhood of (S3 = ∂D4, g1,F ′) in (D4,FD4) that
is foliated diffeomorphic to S

3 × [1, 1 + ε], where the metric has the form gt + dt2

for some family of bundle-like metrics F+ = {gt }t∈[1,1+ε] on S
3.

Suppose now that the metrics g0 and g1 on S
3 can be connected by a family F =

{gt }t∈[0,1] of smoothly varying bundle-like metrics for F ′, i.e., such that (S3, gt ,F ′)
is a singular Riemannian foliation for all t ∈ [0, 1]. In this case one can extend F to a
smooth family {gt }t∈[−ε,1+ε] using F±. In particular (S3 ×[0, 1], gt +dt2,F ′ × {pt})
is a singular Riemannian foliation that can be glued smoothly with (M1,F |M1) and
(D4,FD4), giving a singular Riemannian foliation on

M1

⋃
(S3 × [0, 1])

⋃
D
4 ∼= M̃1.

We are thus left to produce a smooth family F of bundle-like metrics connecting g0
to g1. Notice that it is enough to produce a piecewise smooth family. The construction
will proceed along the following steps:

(i) Find an orientation-preserving foliated diffeomorphism F ∈ Diff(S3,F ′) such
that F

∗
g0 and g1 have the same horizontal spaces near the singular leaves.

(ii) Prove that F is foliated isotopic to the identity. If Ft is such an isotopy, then F
∗
t g0

is a one parameter familty F1 between g0 and F
∗
g0.

(iii) Find a one parameter family F2 between F
∗
g0 to a metric g′ that has the same

horizontal spaces as g1.
(iv) Find a one parameter family F3 between g′ and g1.

The one parameter family we need is obtained by composing F1 ∗ F2 ∗ F3. We prove
each step in a separate lemma.
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544 J. Ge, M. Radeschi

Lemma 5.2 (Step i) There exist orientation-preserving foliated diffeomorphisms
F, G ∈ Diff(D2 × S

1) with F |S1 = id = G|S1 , which glue to a diffeomorphism
F := (F, G) ∈ Diff(S3,F ′) such that F

∗
g0 and g1 have the same horizontal spaces

around the singular leaves.

Proof Let r : D2 × S
1 → [0, 1] denote the radial function on D

2 × S
1. Consider the

homothetic transformation with respect to g1 (cf. [40]):

h1
λ : D2 × S

1 → D
2 × S

1, λ ∈ (0, 1],

defined in such a way that if q = expp(x) for some p ∈ S
1 and some g1-horizontal

vector x , then h1
λ(q) = expp(λx). In the same way, define the homothetic transfor-

mation h0
λ with respect to g0. Notice that for each λ ∈ (0, 1], fλ = (h1

λ)
−1 ◦ h0

λ is
a foliated diffeomorphism of D2 × S

1 that restricts to the identity on S
1, f1 = id,

and fλ converges smoothly to exp⊥
g1 ◦(exp⊥

g0)
−1 as λ → 0, where exp⊥

g1 , exp
⊥
g0 denote

the normal exponential maps of {0} × S
1 ⊆ D

2 × S
1, and the normal bundles of

the singular leaf L+ are identified via νL+ � TS
3/TS

1. In particular, if we define
f0 = exp⊥

g1 ◦(exp⊥
g0)

−1, then f0|S1 = id and f0 takes g0-horizontal geodesics to
g1-horizontal geodesics (and thus f ∗

0 g0 and g1 have the same horizontal spaces).
Let

f : D2 × S
1 × [0, 1] −→ D

2 × S
1

(p, t) �−→ ft (p)

Now consider a function ϕ : [0, 1] → [0, 1] such that ϕ(t) = 0 in [0, ε), and ϕ(t) = 1
in (1 − ε, 1], and define an embedding

ι : D2 × S
1 −→ D

2 × S
1 × [0, 1]

p �−→ (
p, ϕ(r(p))

)

The composition F := f ◦ ι gives an orientation-preserving foliated diffeomorphism
of D2 × S

1 that coincides with f0 in a neighborhood of S1, and is the identity next
to the boundary. If we denote by G the same map on the other copy of D2 × S

1, we
can glue the diffeomorphisms by φ0 in (5.1) and obtain the desired F = (F, G) ∈
Diff(S3,F ′). �
Lemma 5.3 (Step ii) The map F in Lemma 5.2 is foliated isotopic to the identity.

Proof Consider tubular neighborhoodsU± of small radius ε around the singular leaves
L±. First, noticing that F = id at the singular leaves, we can regard F |U± alternatively
as a new tubular neighborhood map F |U± : νL± → S

3, where we have identified U±
and the normal bundles νL±. Since tubular neighborhood maps are foliated isotopic
to each other (cf. Theorems 5.3 and 6.5 in Chapter 4 in [31]), F |U± is foliated isotopic
to the identity inclusion id : νL± → S

3. Then by the isotopy extension theorem
(Theorem 1.3 in Chapter 8 in [31]), F is foliated isotopic to a diffeomorphism that
restricts to the identity on U±.
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Suppose now that F fixes U+ ∪ U−. Let r = distL+ , where the distance is taken
with respect to either metric, and let Lt = r−1(t). We can assume, up to rescaling the
metric, that the two singular leaves correspond to L+ = r−1(0) and L− = r−1(1).
Set T = Lε . Using for example the normal holonomy with respect to g0, we can
identify any Lr , r ∈ [ε, 1 − ε] with T . Since F sends any leaf Lr to itself, and it
fixes every leaf Lt with t ∈ [0, ε] ∪ [1 − ε, 1], we can think of F as a closed loop
γ : t ∈ [ε, 1−ε] �→ F |Lt ∈ Diff(Lt ) = Diff(T )based at the identity. In particular, the
path lies in the identity componentDiff0(T ). Let (D2×S

1, T ) denote the homogeneous
foliation where T = T 2 (seen as a Lie group) acts linearly on D

2 × S
1. By fixing a

foliated diffeomorphism U+ � D
2 × S

1, we obtain an action of T on each Lt , t ≤ ε,
and in particular on T itself. We thus obtain a map ι : T → Diff0(T ) that is known
to be a deformation retract of Diff0(T ). In particular, we can homotope the loop γ (t)
to a loop in ι(T ), and this gives an isotopy between F and a diffeomorphism F̂ such
that F̂ |Lt ∈ ι(T ) for all t .

The map γ̂ : t ∈ [ε, 1 − ε] �→ F̂ |Lt ∈ ι(T ) is a loop based at the identity.
However, since every diffeomorphism in ι(T ) can be completed to a diffeomorphism
ofU+—and this completion can bemade canonical using the foliated diffeomorphism
U+ � D

2 × S
1—we can homotope the curve γ̂ by only fixing the end point, and

letting the initial point free to move within ι(T ). In this way we obtain an isotopy
through foliated diffeomorphisms that still fix U− but may not in general fix U+. It
is clear then, that by allowing such freedom in γ̂ we can homotope it to the constant
map t �→ id ∈ Diff0(T ), which corresponds to isotoping F̂ (and hence F) to the
identity. �
Lemma 5.4 (Step iii) If g, g̃ are two bundle-like metrics of (S3,F ′) with the same
horizontal spaces near the singular leaves, there is a one-parameter family of bundle-
like metrics gt from g̃ to a metric g′ with the same horizontal spaces as g.

Proof Denote by S
3
reg the complement in S

3 of the singular leaves. There are two

horizontal distributions �, �̃ given by the g- and g̃-orthogonal spaces to F ′, which
are both of dimension one in S3reg . Notice moreover that, by assumption, � = �̃ in a

neighbourhood of the singular leaves. Choose a variation of distributions �t from �̃

to �, in such a way that �t is always transverse to F , and �t (p) is constant wherever
�(p) = �̃(p). For each point p ∈ S

3, define �⊥
t the g̃-orthogonal distribution to �t ,

and the g̃-orthogonal projections πt : TpS
3 → �⊥

t , πh : TpS
3 → �̃. Finally, define

ht (x, y) = g̃(πt x, πt y) + g̃(πh x, πh y)

Notice that ht is a metric, and it satisfies the following properties:

• If �t varies smoothly, ht varies smoothly since it is defined in terms of functions
that depend smoothly on �t .

• The ht -orthogonal space to F ′ is �t . In fact, if v ∈ Tp L p and x ∈ �t , then
πt (x) = 0, πh(v) = 0 and thus ht (v, x) = 0.

• Wherever �t (p) = �̃(p), we also have ht (p) = g̃(p).
• The transverse metric hT

t equals the transverse metric g̃T .
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546 J. Ge, M. Radeschi

In particular, ht is a bundle-like metric (cf. [3]), and thus defining g′ = h1 completes
the proof of the lemma. �
Lemma 5.5 (Step iv) Let (M,F) be any singular Riemannian foliation, and let g, g′
be two bundle-like metrics with the same horizontal distribution. Then for any t, the
metric gt = tg + (1 − t)g′ is a bundle-like metric.

Proof Of course gt is a metric, and the gt -horizontal distribution is the same as the
g- and g′- horizontal distributions. In particular, gT

t = t · gT + (1 − t) · g′T . On
each stratum �, we can take a vertical vector field X ∈ X(F), and since g, g′ are
bundle-like metrics of (�,F |�), we have L X gT = L X g′T = 0. Therefore

L X gT
t = t · L X gT + (1 − t) · L X g′T = 0

and therefore gt is a bundle-like metric on each stratum. By [3], this is enough to
ensure that gt is a bundle-like metric for F . �
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