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A B S T R A C T

We study a quickest detection problem where the observation rate of the underlying process
can be increased at any time for higher precision, but at an observation cost that grows linearly
in the observation rate. This leads to a problem of combined control-and-stopping with incomplete
information, with a two-dimensional sufficient statistic comprised of the current observation rate
together with the conditional probability that disorder has already happened. The problem is
shown to have a semi-explicit solution, where for some parameter values it is too costly to
exert control at all, whereas for other parameter values the optimal strategy is to increase the
observation rate in such a way that the sufficient statistic reflects at a certain boundary until
the optimal stopping time. In both cases we fully characterise the optimal strategy with the
help of appropriate smooth fit conditions.

1. Introduction

In the quickest detection problem for a Wiener process, one seeks to detect a random disorder time 𝜃, as quickly as possible,
given observations of the type

d𝑋𝑡 = 1{𝜃≤𝑡}d𝑡 + d𝑊𝑡, (1.1)

where the additive noise 𝑊 is a standard Brownian motion. In a Bayesian setting, where 𝜃 has an exponential prior distribution, a
standard formulation of the disorder detection problem is to minimise the expression

P
(

𝜏 < 𝜃
)

+ 𝑎E
[

(𝜏 − 𝜃)+
]

(1.2)

over random times 𝜏 that are stopping times with respect to the observation filtration {𝑋
𝑡 }𝑡≥0, and where 𝑎 > 0 is a given constant

measuring the cost of detection delay. The solution to this problem can be obtained using the fact that the conditional probability
𝛱𝑡 = P(𝜃 ≤ 𝑡|𝑋

𝑡 ) is a diffusion process, thus building on the connection between optimal stopping problems and free-boundary
problems; for details see, 𝑒.𝑔., [23, Chapter 4]. In the current paper, we study the extension of the above problem to a situation
allowing for a controllable irreversible observation rate 𝐻 , so that the underlying process instead is given by

d𝑋𝑡 =
√

𝐻𝑡1{𝜃≤𝑡}d𝑡 + d𝑊𝑡. (1.3)

The aim is then to minimise the expression

P
(

𝜏 < 𝜃
)

+ 𝑎E
[

(𝜏 − 𝜃)+
]

+ 𝑏E
[

∫

𝜏

0
𝐻𝑡 d𝑡

]

(1.4)
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Fig. 1. The stopping boundary ℎ↦ 𝐵(ℎ) (in blue), the reflecting boundary ℎ ↦ 𝐶(ℎ) (in red) and a sample path of the optimally controlled process (𝐻∗ ,𝛱𝐻∗ ),
hich reflects along the boundary ℎ ↦ 𝐶(ℎ) until the time 𝜏∗ when 𝐻∗ reaches ℎ̄ and the problem is optimally stopped. The simulation is performed with

tarting point (ℎ, 𝜋) = (0, 0.25) (marked with a cross ‘x’) and the depicted boundaries 𝐵 and 𝐶 are numerical solutions of, respectively, Eqs. (3.9) and (4.7) with
arameters 𝑎 = 𝜆 = 1 and 𝑏 = 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ver both stopping times 𝜏 and monotone controls 𝐻 , where 𝑏 > 0 contributes to the observation cost. In this extension, the control
directly affects the learning rate (cf. (1.3)), but it also incurs an additional cost (cf. (1.4)). The current paper thus aims at resolving

he conflicting requirements of high precision and of cost minimisation.
As a motivation for the above problem formulation, consider a situation where one may perform countably many tests to detect

, and where each test 𝑖 results in an observation process

d𝑋𝑖
𝑡 = 1{𝜃≤𝑡}d𝑡 + d𝑊 𝑖

𝑡

f the type (1.1), where {𝑊 𝑖}∞𝑖=1 are independent standard Brownian motions. Moreover, at each instant in time one may choose to
rreversibly increase the number of tests that are currently run. If one chooses to run exactly 𝑛 tests during a certain time-interval,
hen the weighted sum 𝑋 ∶= (𝑋1 +𝑋2 +⋯ +𝑋𝑛)∕

√

𝑛 of the tests follows

d𝑋𝑡 =
√

𝑛1{𝜃≤𝑡}d𝑡 + d𝑊𝑡,

where 𝑊 ∶= (𝑊 1+𝑊 2+⋯+𝑊 𝑛)∕
√

𝑛 is a standard Brownian motion. Our problem is a continuous version of this model, 𝑖.𝑒., when
𝑋 follows (1.3) for an arbitrary monotone control 𝐻 , and where the cost term 𝑏E

[

∫ 𝜏0 𝐻𝑡 d𝑡
]

in (1.4) represents the total running
cost, measured linearly in the chosen observation rate 𝐻 (𝑖.𝑒., in the number of tests that are run). The irreversible feature of the
control may be interpreted as an infinite cost of downsizing the new resources that have been arranged to improve the detection. For
instance, the increase in the testing rate may be seen as the result of employing additional labour and/or devices in the detection,
but in a situation where it is too costly to reallocate the additional labour and/or to dismiss the devices.

In problems where the learning rate is controlled, one should note that the available observations depend on the chosen control,
which in turn is chosen based on observations of the system. This makes the precise formulation of the above problem (1.3)–(1.4)
cumbersome. In the current paper, we offer a rigorous formulation based on changes of the probability measure (the so called ‘‘weak
approach’’) and the Girsanov theorem, along with its solution. Specifically, we provide the existence of two boundaries: a reflecting
boundary ℎ ↦ 𝐶(ℎ) and a stopping boundary ℎ↦ 𝐵(ℎ). We then show that for some parameter values it is too costly to exert control
at all (𝐵 ≤ 𝐶), whereas for other parameter values the optimal strategy is to increase the observation rate in such a way that the
two-dimensional process (𝐻,𝛱) reflects along the boundary 𝐶 until it hits the boundary 𝐵, when it is optimal to stop (see Fig. 1).

1.1. Related literature

The quickest detection problem for a Wiener process (1.2) is a classical problem in optimal stopping and was studied, 𝑒.𝑔., in
[22] and [23, Chapter 4]; the literature on various extensions of that set-up is vast. For example, [1] solves detection problems when
the observation process is a Poisson process with a changing jump intensity; [11] considers multidimensional detection problems;
[13] studies detection problems for general diffusion processes; [18] investigates a case with a random post-change drift and [7]
solves a quickest detection problem with possible false negative outcomes in the tests.

Our problem combines stochastic control with optimal stopping and, given the nature of our control (a right-continuous,
increasing process), it is closely related to problems of singular control with discretionary stopping. A few problems in this class
2
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have been solved explicitly (or semi-explicitly) and we mention, among others, [2,4,15,17]. Notice that in these papers, and usually
in problems of singular control with discretionary stopping, the action region (where the control is exerted) and the stopping region
are separated and delimited by an upper boundary and lower boundary which do not intersect. A peculiar feature of our problem
is instead that the reflecting boundary and the stopping boundary are two upper boundaries and may have an intersection point.
In that case, if the starting point lies below the reflecting boundary, then it is optimal to stop at the first time the belief process 𝛱
hits the level at which the reflecting boundary intersects the stopping boundary.

More specifically, our detection problem with monotone learning rate is a problem of combined control, filtering and stopping, in
which the control directly influences the learning rate. The literature on such problems is much more sparse, with a few notable
exceptions. In [5], a case with a monotone observation rate is studied, and with a cost proportional to 𝐻𝜏 (in our notation) which
thus represents a purchasing cost, but with no running cost (in our notation, 𝑏 = 0). Using an assumption that 𝐻 can only take values
n a discrete set, the optimisation problem in [5] reduces to a sequence of stopping problems, each of which with a fixed learning
ate. Our set-up is very similar to the one in [3], with the key difference that the control 𝐻 in [3] is not necessarily monotone. In
hat case, the sufficient statistic consists of merely the conditional probability that the disorder has already happened. The problem
ecomes thus one-dimensional and the structure of the solution is thus different from ours. The authors show the existence of a
ouble threshold strategy, in terms of which the optimal control pair (𝜏,𝐻) can be described. Finally, for a sequential estimation

problem with costly control of the learning rate, we refer to [8], and for related articles within various fields of applications, we
refer to [9,14,24].

1.2. Outline of the paper

In Section 2 we formulate the problem via the so called ‘‘weak approach’’ and we provide a Verification theorem. In Section 3
we study the uncontrolled problem, where the observation rate is constant 𝐻 ≡ ℎ ∈ [0,∞), which leads to the candidate stopping
boundary. In Section 4 we extend the problem of Section 3 to allow for an increasing controllable observation rate and we obtain
the candidate reflecting boundary. In Section 5 we investigate the geometry of the problem by studying some properties of the
boundaries. In Section 6 we verify that the candidate reflection and stopping boundaries together provide the solution of the problem.
We conclude the paper with Appendix A, where we gather some technical results.

2. Problem formulation and verification theorem

Let (𝛺, ,P) be a complete probability space supporting a standard Brownian motion 𝑋 = (𝑋𝑡)𝑡≥0 and a random variable 𝜃 which
is independent of 𝑋 and satisfies

P(𝜃 = 0) = 𝜋 ∈ [0, 1) and P(𝜃 > 𝑥| 𝜃 > 0) = 𝑒−𝜆𝑥,

here 𝜆 > 0 is a given constant; thus, conditional on being non-zero, 𝜃 is exponentially distributed with intensity 𝜆. Let F = (𝑡)𝑡≥0 be
the smallest right-continuous filtration to which the process 𝑋 is adapted; similarly, let G = (𝑡)𝑡≥0 be the smallest right-continuous
iltration to which the pair (𝑋, 𝜃) is adapted.

Denote by  the collection of F-progressively measurable non-negative processes on [0−,∞) that are right-continuous, non-
ecreasing and bounded; for ℎ ≥ 0, denote by ℎ the sub-collection of controls with initial condition 𝐻0− = ℎ, 𝑖.𝑒.,

ℎ ∶= {𝐻 ∈  ∶ 𝐻0− = ℎ}.

or each 𝐻 ∈  and each 𝑡 ∈ [0,∞), we define the equivalent measure P𝐻𝑡 ∼ P on (𝛺,𝑡) by

dP𝐻𝑡
dP

∶= exp
{

∫

𝑡

0

√

𝐻𝑠1{𝜃≤𝑠} d𝑋𝑠 −
1
2 ∫

𝑡

0
𝐻𝑠1{𝜃≤𝑠} d𝑠

}

=∶ 𝜂𝐻𝑡 .

he measure change process 𝜂 = 𝜂𝐻 = (𝜂𝐻𝑡 )𝑡≥0 is then a (P,G)-martingale, and E[𝜂𝑡] = 1; consequently, each P𝐻𝑡 is a probability
easure on (𝛺,𝑡). Moreover, we may assume the existence of a probability measure P𝐻 on

∞ ∶= 𝜎(∪0≤𝑡<∞𝑡)

such that P𝐻 |𝑡 = P𝐻𝑡 (this can be guaranteed, 𝑒.𝑔., by the theory of the so called Föllmer measure, cf. [12]). By the Girsanov
theorem,

𝑋𝑡 = ∫

𝑡

0

√

𝐻𝑠1{𝜃≤𝑠} d𝑠 +𝑊 𝐻
𝑡 ,

where 𝑊 𝐻 is a standard (P𝐻 ,G)-Brownian motion. In particular, 𝑊 𝐻 is independent of 0, so 𝑊 𝐻 and 𝜃 are independent under
P𝐻 ; moreover, denoting E𝐻 the expectation under P𝐻 , we have

P(𝜃 > 𝑡) = E[1{𝜃>𝑡}] = E𝐻 [1{𝜃>𝑡}𝜂
𝐻
0 ] = P𝐻 (𝜃 > 𝑡),

where the second equality comes from the fact that 𝜃 is 0-measurable, so the law of 𝜃 is the same under P𝐻 as under P.
Denote by  the collection of F-stopping times. Here and in the rest of the paper, if not specified otherwise, we fix a starting

point (ℎ, 𝜋) ∈ [0,∞) × [0, 1). For an admissible pair (𝐻, 𝜏) ∈ ℎ ×  , we define the associated expected cost

𝐽 (𝐻, 𝜏;𝜋) ∶= E𝐻𝜋

[

1{𝜏<𝜃} + 𝑎(𝜏 − 𝜃)1{𝜏≥𝜃} + 𝑏
𝜏
𝐻𝑡 d𝑡

]

, (2.1)
3

∫0
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where the sub-index is used to indicate the probability that 𝜃 = 0. Here 𝑎 > 0 contributes to the penalisation of a late detection of
𝜃, and 𝑏 > 0 specifies the running observation cost. Our objective problem is then to minimise the expected cost in (2.1) over all
admissible strategies, 𝑖.𝑒., we want to study the combined control-and-stopping problem

𝑉 (ℎ, 𝜋) ∶= inf
(𝐻,𝜏)∈ℎ×

𝐽 (𝐻, 𝜏;𝜋). (2.2)

Remark 2.1. Notice that in the minimisation problem (2.2) we can consider, without loss of generality, only pairs (𝐻, 𝜏) ∈ ℎ ×
uch that E𝐻𝜋 [𝜏] < ∞. Indeed, let (𝐻, 𝜏) ∈ ℎ ×  such that E𝐻𝜋 [𝜏] = ∞. Then,

𝐽 (𝐻, 𝜏;𝜋) ≥ 𝑎E𝐻𝜋
[

𝜏1{𝜏≥𝜃}
]

− 𝑎E𝐻𝜋
[

𝜃1{𝜏≥𝜃}
]

≥ 𝑎E𝐻𝜋
[

𝜏1{𝜏≥𝜃}
]

− 𝑎E𝐻𝜋
[

𝜃
]

.

oreover,

E𝐻𝜋 [𝜏] = E𝐻𝜋 [𝜏1{𝜏≥𝜃}] + E𝐻𝜋 [𝜏1{𝜏<𝜃}],

nd since the second term is bounded by E𝐻𝜋 [𝜃] = (1 − 𝜋)∕𝜆 <∞, we obtain

E𝐻𝜋 [𝜏1{𝜏≥𝜃}] = ∞.

ence,

𝐽 (𝐻, 0;𝜋) = 1 − 𝜋 <∞ = 𝐽 (𝐻, 𝜏;𝜋),

𝑖.𝑒., (𝐻, 0) ∈ ℎ ×  is a better strategy than (𝐻, 𝜏) ∈ ℎ ×  whenever E𝐻𝜋 [𝜏] = ∞.

The problem (2.2) will be analysed by means of the sufficient statistic (𝐻,𝛱𝐻 ), where the belief process 𝛱𝐻 ∶= (𝛱𝐻
𝑡 )𝑡≥0 is

efined by

𝛱𝐻
𝑡 ∶= P𝐻 (𝜃 ≤ 𝑡|𝑡).

ndeed, by conditioning, the objective functional 𝐽 can be expressed solely in terms of (𝐻,𝛱𝐻 ), 𝑖.𝑒.,

𝐽 (𝐻, 𝜏;𝜋) = E𝐻𝜋

[

1 −𝛱𝐻
𝜏 + 𝑎∫

𝜏

0
𝛱𝐻
𝑡 d𝑡 + 𝑏∫

𝜏

0
𝐻𝑡 d𝑡

]

or every (𝐻, 𝜏) ∈ ℎ ×  .
Following the innovations approach to stochastic filtering, we introduce the process

�̂� 𝐻
𝑡 = 𝑋𝑡 − ∫

𝑡

0

√

𝐻𝑠𝛱
𝐻
𝑠 d𝑠,

which is a (P𝐻 ,F)-martingale; moreover, it has continuous paths and quadratic variation [�̂� 𝐻 ]𝑡 = 𝑡, so by Levy’s theorem, �̂� 𝐻 is
a (P𝐻 ,F)-Brownian motion. Using the explicit representation

𝛱𝐻
𝑡 =

𝛷𝐻
𝑡

1 +𝛷𝐻
𝑡
,

here

𝛷𝐻
𝑡 = 𝑒𝜆𝑡

1 − 𝜋
𝑒𝑍

𝐻
𝑡

(

𝜋 + (1 − 𝜋)𝜆∫

𝑡

0
𝑒−𝜆𝑢−𝑍

𝐻
𝑢 d𝑢

)

nd

𝑍𝐻
𝑡 ∶= ∫

𝑡

0

√

𝐻𝑠 d𝑋𝑠 −
1
2 ∫

𝑡

0
𝐻𝑠 d𝑠

(see, 𝑒.𝑔., [3, Lemma 3.6]), one obtains from an application of Ito’s formula that

d𝛱𝐻
𝑡 = 𝜆(1 −𝛱𝐻

𝑡 ) d𝑡 −𝐻𝑡(𝛱𝐻
𝑡 )2(1 −𝛱𝐻

𝑡 ) d𝑡 +
√

𝐻𝑡𝛱
𝐻
𝑡 (1 −𝛱𝐻

𝑡 ) d𝑋𝑡, (2.3)

nd

d𝛱𝐻
𝑡 = 𝜆(1 −𝛱𝐻

𝑡 ) d𝑡 +
√

𝐻𝑡𝛱
𝐻
𝑡 (1 −𝛱𝐻

𝑡 ) d�̂� 𝐻
𝑡 . (2.4)

We now present a verification theorem for our problem.

heorem 2.2 (Verification Theorem). Let (ℎ, 𝜋) ∈ [0,∞)× [0, 1) and assume that 𝑣 ∶ [0,∞)× [0, 1) → R is a continuous function such that
0 ≤ 𝑣(ℎ, 𝜋) ≤ 1 − 𝜋. If

(i) for any admissible strategy 𝐻 ∈ ℎ, the process 𝑌 = 𝑌 𝐻 ∶= (𝑌𝑡)𝑡≥0, defined by

𝑌𝑡 ∶= 𝑣(𝐻𝑡,𝛱
𝐻
𝑡 ) + 𝑎∫

𝑡

0
𝛱𝐻
𝑠 d𝑠 + 𝑏∫

𝑡

0
𝐻𝑠 d𝑠, (2.5)

is a (P𝐻 ,F)-submartingale,
4
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then 𝑣(ℎ, 𝜋) ≤ 𝑉 (ℎ, 𝜋).
In addition to (i), assume that there also exists an admissible strategy (𝐻∗, 𝜏∗) ∈ ℎ ×  such that

(ii) the process (𝑌 ∗
𝑡∧𝜏∗ )𝑡≥0, where 𝑌

∗
𝑡 is defined by

𝑌 ∗
𝑡 ∶= 𝑣(𝐻∗

𝑡 ,𝛱
𝐻∗
𝑡 ) + 𝑎∫

𝑡

0
𝛱𝐻∗
𝑠 d𝑠 + 𝑏∫

𝑡

0
𝐻∗
𝑠 d𝑠,

is a (P𝐻∗ ,F)-martingale;
(iii) P𝐻∗ (𝜏∗ <∞) = 1;
(iv) 𝑣(𝐻∗

𝜏∗ ,𝛱
𝐻∗
𝜏∗ ) = 1 −𝛱𝐻∗

𝜏∗ .

Then, 𝑣(ℎ, 𝜋) = 𝑉 (ℎ, 𝜋) and (𝐻∗, 𝜏∗) is optimal for the problem in (2.2).

Proof. Let (ℎ, 𝜋) ∈ [0,∞) × [0, 1). We first want to prove that 𝑣(ℎ, 𝜋) ≤ 𝑉 (ℎ, 𝜋). Let (𝐻, 𝜏) ∈ ℎ ×  and, without loss of generality,
assume that P𝐻 (𝜏 < ∞) = 1 (recall Remark 2.1). Since 𝑌 is a P𝐻 -submartingale, by assumption, and 𝑛 ∧ 𝜏 is a bounded stopping
time for every 𝑛 ∈ N, we obtain by optional sampling and the fact that 𝑣(ℎ, 𝜋) ≤ 1 − 𝜋 that

𝑣(ℎ, 𝜋) ≤ E𝐻𝜋 [𝑌𝜏∧𝑛] ≤ E𝐻𝜋

[

1 −𝛱𝐻
𝜏∧𝑛 + ∫

𝜏∧𝑛

0
(𝑎𝛱𝐻

𝑠 + 𝑏𝐻𝑠) d𝑠
]

→ 𝐽 (𝐻, 𝜏;𝜋)

as 𝑛→ ∞, where the last step follows from bounded and monotone convergence. This gives our first desired result 𝑣(ℎ, 𝜋) ≤ 𝑉 (ℎ, 𝜋).
To show the opposite inequality and conclude, note that (ii), (iv) and 𝑣 ≥ 0 imply

𝑣(ℎ, 𝜋) = E𝐻∗
𝜋 [𝑌𝜏∗∧𝑛] ≥ E𝐻∗

𝜋

[

(1 −𝛱𝐻∗
𝜏∗ )1{𝜏∗≤𝑛} + ∫

𝜏∗∧𝑛

0
(𝑎𝛱𝐻∗

𝑠 + 𝑏𝐻∗
𝑠 ) d𝑠

]

→ 𝐽 (𝐻∗, 𝜏∗;𝜋)

as 𝑛→ ∞, which shows that 𝑣(ℎ, 𝜋) ≥ 𝑉 (ℎ, 𝜋). Consequently, 𝑣(ℎ, 𝜋) = 𝑉 (ℎ, 𝜋), and (𝐻∗, 𝜏∗) is an optimal strategy. □

3. The uncontrolled problem

In this section we provide the solution of the uncontrolled problem, in which the observation rate is fixed 𝐻𝑡 = ℎ ∈ [0,∞) for
very 𝑡 ∈ [0,∞). Since we consider strategies of the form 𝐻 ≡ ℎ, we use the notation Pℎ and 𝛱ℎ instead of P𝐻 and 𝛱𝐻 (and
imilarly in other expressions).

Let 𝑉 ℎ be the cost function associated to the uncontrolled problem, 𝑖.𝑒.,

𝑉 ℎ(𝜋) ∶= inf
𝜏∈

Eℎ𝜋

[

1 −𝛱ℎ
𝜏 + 𝑎∫

𝜏

0
𝛱ℎ
𝑡 d𝑡 + 𝑏ℎ𝜏

]

, (3.1)

here the process 𝛱ℎ follows (2.4) with 𝐻 ≡ ℎ. In line with the classical case for which 𝑏 = 0 (see [22]), we would expect the
xistence of a number 𝐵 = 𝐵(ℎ) ∈ [0, 1) such that the value function 𝑉 ℎ solves

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ𝑉 ℎ + 𝑎𝜋 + 𝑏ℎ = 0, 𝜋 < 𝐵(ℎ),
𝑉 ℎ(𝜋) = 1 − 𝜋, 𝜋 ≥ 𝐵(ℎ),
𝑉 ℎ
𝜋 (𝐵(ℎ)) = −1,

𝜆𝑉 ℎ
𝜋 (0+) + 𝑏ℎ = 0,

(3.2)

where

ℎ𝑉 ℎ ∶= ℎ
𝜋2(1 − 𝜋)2

2
(𝑉 ℎ)′′(𝜋) + 𝜆(1 − 𝜋)(𝑉 ℎ)′(𝜋).

Here the third equation is the condition of smooth fit, which is standard in optimal stopping theory, cf. [23]; the last equation in
(3.2) is obtained from formally plugging in 𝜋 = 0 into the first equation, cf. [10]. Moreover, 𝐵 would be the stopping barrier for
the problem (3.1) and, thus, the stopping time 𝜏𝐵 ∶= inf{𝑡 ≥ 0 ∶ 𝛱ℎ

𝑡 ≥ 𝐵(ℎ)} should be optimal in (3.1).
To construct a solution (𝑉 ℎ, 𝐵(ℎ)) to the above free-boundary problem, define 𝐹 ∶ (0,∞) × (0, 1) → R by

𝐹 (ℎ, 𝜋) ∶= − 𝑎𝜋 + 𝑏ℎ
𝜆(1 − 𝜋)

+ 1
𝜆 ∫

𝜋

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦, (ℎ, 𝜋) ∈ (0,∞) × (0, 1), (3.3)

here

𝑓 (𝑦) ∶=
𝑦

1 − 𝑦
𝑒−

1
𝑦 , 𝑦 ∈ (0, 1). (3.4)

The function 𝐹 solves, for every (ℎ, 𝜋) ∈ (0,∞) × (0, 1), the ordinary differential equation (ODE)

ℎ
𝜋2(1 − 𝜋)2

𝐹 (ℎ, 𝜋) + 𝜆(1 − 𝜋)𝐹 (ℎ, 𝜋) + 𝑎𝜋 + 𝑏ℎ = 0 (3.5)
5

2 𝜋
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(note, from (3.2), that this is the equation that 𝑉 ℎ
𝜋 is expected to solve). Moreover, we extend the domain of definition of 𝐹 to

[0,∞) × [0, 1) by setting

𝐹 (0, 𝜋) ∶= − 𝑎𝜋
𝜆(1 − 𝜋)

, 𝜋 ∈ (0, 1), (3.6)

nd

𝐹 (ℎ, 0) ∶= − 𝑏ℎ
𝜆
, ℎ ∈ [0,∞). (3.7)

e now study some properties of the function 𝐹 . We first determine its regularity.

roposition 3.1. The function 𝐹 defined in (3.3), (3.6) and (3.7) satisfies 𝐹 ∈ 𝐶1([0,∞) × [0, 1)). Moreover,

𝐹𝜋 (0, 𝜋) = − 𝑎
𝜆(1 − 𝜋)2

,

𝐹𝜋 (ℎ, 0) = −
(𝑎 + 𝑏ℎ)

𝜆
,

𝐹ℎ(ℎ, 0) = − 𝑏
𝜆
,

and

𝐹ℎ(0, 𝜋) =
𝑎𝜋2 − 2𝜆𝑏
2𝜆2(1 − 𝜋)

or (ℎ, 𝜋) ∈ [0,∞) × [0, 1). Finally, 𝐹 admits the form

𝐹 (ℎ, 𝜋) = − 2
ℎ ∫

𝜋

0

𝑎𝑦 + 𝑏ℎ
𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦, (ℎ, 𝜋) ∈ (0,∞) × (0, 1). (3.8)

The proof of Proposition 3.1 is presented in Appendix A.

Remark 3.2. The general solution 𝐹 of the ODE (3.5) is

𝐹 (ℎ, 𝜋) ∶=
𝐾(ℎ)

(𝑓 (𝜋))2𝜆∕ℎ
− 𝑎𝜋 + 𝑏ℎ
𝜆(1 − 𝜋)

+ 1
𝜆 ∫

𝜋

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦

or an arbitrary function ℎ ↦ 𝐾(ℎ). However, 𝐾 ≡ 0 is the only choice for which the solution does not explode for small 𝜋; also
ote that the choice 𝐾 ≡ 0 gives (3.7), which corresponds to the last condition in (3.2).

emma 3.3. We have 𝐹𝜋 < 0 on [0,∞) × [0, 1). Moreover,

lim
𝜋→1

𝐹 (ℎ, 𝜋) = −∞.

roof. For ℎ = 0 and for 𝜋 = 0, the assertion 𝐹𝜋 < 0 is immediate from Proposition 3.1. Also, if (ℎ, 𝜋) ∈ (0,∞) × (0, 1), then from
3.5) we have that

𝐹𝜋 (ℎ, 𝜋) = − 2
ℎ𝜋2(1 − 𝜋)

[

𝑎𝜋 + 𝑏ℎ
1 − 𝜋

+ 𝜆𝐹 (ℎ, 𝜋)
]

= − 2
ℎ𝜋2(1 − 𝜋) ∫

𝜋

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦 < 0.

For the asymptotics as 𝜋 → 1, note that if ℎ > 0, then

∫

𝜋

0

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ

d𝑦 ≤ ∫

𝜋

0

1
(1 − 𝑦)2

(

𝑦(1 − 𝜋)
𝜋(1 − 𝑦)

)
2𝜆
ℎ

d𝑦

= ℎ
2𝜆 + ℎ

𝜋
1 − 𝜋

,

o

𝐹 (ℎ, 𝜋) ≤ − 𝑎𝜋 + 𝑏ℎ
𝜆(1 − 𝜋)

+ 𝑎 + 𝑏ℎ
𝜆

ℎ
2𝜆 + ℎ

𝜋
1 − 𝜋

=
−2𝜆𝑎𝜋 − 𝑏ℎ2(1 − 𝜋) − 2𝜆𝑏

𝜆(2𝜆 + ℎ)(1 − 𝜋)

≤ −2𝜆𝑏
𝜆(2𝜆 + ℎ)(1 − 𝜋)

→ −∞

s 𝜋 → 1. □

Lemma 3.3 leads to the following proposition which characterises the optimal stopping barrier 𝐵 = 𝐵(ℎ) for the uncontrolled
roblem (3.1).
6



Stochastic Processes and their Applications 172 (2024) 104337E. Ekström and A. Milazzo

M

a

P
d

W

T

M

i

P
0

Proposition 3.4. For every ℎ ∈ [0, 𝜆∕𝑏], there exists a unique 𝐵 = 𝐵(ℎ) ∈ [0, 1) such that

𝐹 (ℎ, 𝐵) = −1. (3.9)

oreover,

𝐵(0) = 𝜆
𝑎 + 𝜆

, (3.10)

𝐵(𝜆∕𝑏) = 0 (3.11)

nd

𝐵(ℎ) ≥ 𝜆 − 𝑏ℎ
𝜆 + 𝑎

. (3.12)

roof. From (3.7) we obtain, for every ℎ ∈ [0, 𝜆∕𝑏), that 𝐹 (ℎ, 0) ∈ (−1, 0]. From Lemma 3.3, we have that 𝜋 ↦ 𝐹 (ℎ, 𝜋) is strictly
ecreasing with lim𝜋→1 𝐹 (ℎ, 𝜋) = −∞. By Proposition 3.1, the map 𝜋 ↦ 𝐹 (ℎ, 𝜋) is continuous on [0, 1), and thus it follows that there

exists a unique 𝐵 = 𝐵(ℎ) such that (3.9) holds. Eq. (3.10) follows immediately from (3.6) and (3.9), and (3.11) follows from (3.7).
By (3.3), 𝐹 (ℎ, 𝜋) ≥ − 𝑎𝜋+𝑏ℎ

𝜆(1−𝜋) , so

𝐹
(

ℎ, 𝜆 − 𝑏ℎ
𝜆 + 𝑎

)

≥ −1,

which proves (3.12). □

The candidate optimal stopping barrier 𝐵 = 𝐵(ℎ) is thus defined by the smooth-fit Eq. (3.9) for every ℎ ∈ [0, 𝜆∕𝑏], and we extend
it by continuity by letting

𝐵(ℎ) ∶= 0, ∀ ℎ ∈ (𝜆∕𝑏,∞). (3.13)

e now provide the solution of the uncontrolled problem (3.1).

heorem 3.5. Let 𝜋 ∈ [0, 1). For every ℎ ∈ [0,∞), let 𝐵 = 𝐵(ℎ) be defined by (3.9) and (3.13). Then,

𝑉 ℎ(𝜋) =

{

1 − 𝐵 − ∫ 𝐵𝜋 𝐹 (ℎ, 𝑥) d𝑥, 𝜋 < 𝐵,
1 − 𝜋, 𝜋 ≥ 𝐵.

(3.14)

oreover, the stopping time

𝜏𝐵 ∶= inf{𝑡 ≥ 0 ∶ 𝛱ℎ
𝑡 ≥ 𝐵}

s optimal in (3.1).

roof. Fix ℎ ≥ 0, and denote by 𝑣ℎ the function on the right-hand side of (3.14). Since −1 ≤ 𝐹 (ℎ, 𝜋) ≤ 0 for 𝜋 ≤ 𝐵(ℎ), we have that
≤ 𝑣ℎ(𝜋) ≤ 1 − 𝜋 for all 𝜋 ∈ [0, 1). For 𝜋 < 𝐵(ℎ) we have

ℎ𝑣ℎ + 𝑎𝜋 + 𝑏ℎ = 0

by construction, and for 𝜋 > 𝐵(ℎ) we have 𝑣ℎ(𝜋) = 1 − 𝜋, so

ℎ𝑣ℎ + 𝑎𝜋 + 𝑏ℎ = (𝑎 + 𝜆)𝜋 + 𝑏ℎ − 𝜆 ≥ 0,

where the inequality follows from (3.12). Therefore, it is straightforward to check that the process

𝑌𝑡 ∶= 𝑣ℎ(𝛱ℎ
𝑡 ) + 𝑎∫

𝑡

0
𝛱ℎ
𝑠 d𝑠 + 𝑏ℎ𝑡

is a (Pℎ,F)-submartingale. Moreover, the stopped process 𝑌𝑡∧𝜏𝐵 is a (Pℎ,F)-martingale, and 𝑣ℎ(𝛱ℎ
𝜏𝐵
) = 1 −𝛱ℎ

𝜏𝐵
. For finiteness of 𝜏𝐵 ,

the argument in Lemma 6.4 below can be used. The result therefore follows from an immediate adaption of Theorem 2.2 to the
current case of no control. □

4. The controlled problem: A reflecting boundary

The remainder of the paper is now devoted to the study of the controlled detection problem (2.2), 𝑖.𝑒. the problem

𝑉 (ℎ, 𝜋) ∶= inf
(𝐻,𝜏)∈ℎ×

E𝐻𝜋

[

1 −𝛱𝐻
𝜏 + 𝑎∫

𝜏

0
𝛱𝐻
𝑡 d𝑡 + 𝑏∫

𝜏

0
𝐻𝑡 d𝑡

]

.

The solution of the problem will be described in terms of two upper boundaries, 𝐵 and 𝐶, where 𝐵 is the stopping boundary defined
as in Section 3 and 𝐶 is a reflection boundary to be introduced below. The optimal strategy (𝐻∗, 𝜏∗) then consists of increasing 𝐻∗

∗ 𝐻∗ ∗ ∗ ∗
7

so that the two-dimensional process (𝐻 ,𝛱 ) reflects along the boundary 𝐶 as long as 𝐶(𝐻𝑡 ) < 𝐵(𝐻𝑡 ) and then stopping at 𝜏 ,



Stochastic Processes and their Applications 172 (2024) 104337E. Ekström and A. Milazzo

w

U
w

a

the first time that 𝛱𝐻∗
𝑡 = 𝐶(𝐻∗

𝑡 ) = 𝐵(𝐻∗
𝑡 ). Below, we will denote by ℎ̄ the smallest ℎ such that 𝐵(ℎ) ≤ 𝐶(ℎ). For a picture of 𝐵, 𝐶

and a path of the optimally controlled process (𝐻∗,𝛱𝐻∗ ), see Fig. 1.
In the current section we construct and study the reflection boundary ℎ ↦ 𝐶(ℎ). To do that, note that classical arguments based

on the dynamic programming principle suggests that the value function 𝑉 (ℎ, 𝜋) satisfies the variational inequality

min
{

𝑉 + 𝑎𝜋 + 𝑏ℎ, 𝑉ℎ, 1 − 𝜋 − 𝑉
}

= 0,

here

 ∶= ℎ
𝜋2(1 − 𝜋)2

2
𝜕2𝜋 + 𝜆(1 − 𝜋)𝜕𝜋 . (4.1)

sing the conjecture that we have a monotone reflecting upper boundary 𝐶 on [0, ℎ̄) and an upper stopping boundary 𝐵 on [ℎ̄,∞),
e formulate a free-boundary problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑉 )(ℎ, 𝜋) + 𝑎𝜋 + 𝑏ℎ = 0, 𝜋 < 𝐵(ℎ) ∧ 𝐶(ℎ),
𝑉ℎ(ℎ, 𝐶(ℎ)) = 0, 0 ≤ ℎ < ℎ̄,

𝑉 (ℎ, 𝐵(ℎ)) = 1 − 𝐵(ℎ), ℎ ≥ ℎ̄,
𝜆𝑉𝜋 (ℎ, 0+) + 𝑏ℎ = 0.

(4.2)

Additionally, in accordance with the general theory of optimal stopping, along the stopping boundary we impose the smooth-fit
condition

𝑉𝜋 (ℎ, 𝐵(ℎ)) = −1, ℎ ≥ ℎ̄.

Recall also that the boundary condition along reflection boundaries for two-dimensional problems with degenerate dynamics of the
controlled process is given by a vanishing second mixed derivative of the value function, cf. [6,16]. Since our problem is of the same
type (albeit with the additional complication that the diffusion coefficient depends on the controlled process), we will construct a
candidate value function by also imposing a vanishing mixed derivative condition

𝑉ℎ𝜋 (ℎ, 𝐶(ℎ)) = 0, ℎ < ℎ̄,

along the reflection boundary, and then verify its optimality.
Note that the differential equation in (4.2) is the same as the ODE appearing in the uncontrolled problem, compare (3.2). The

candidate value function 𝑉 that we will produce will thus satisfy 𝑉𝜋 = 𝐹 , where 𝐹 is the function defined in (3.3), (3.6)–(3.7).
Consequently, the mixed derivative will involve the function 𝐺(ℎ, 𝜋) ∶= 𝐹ℎ(ℎ, 𝜋), for which we have the following characterisation.

Proposition 4.1. For every (ℎ, 𝜋) ∈ (0,∞) × (0, 1), the function 𝐺(ℎ, 𝜋) ∶= 𝐹ℎ(ℎ, 𝜋) is given by

𝐺(ℎ, 𝜋) = 2
ℎ2 ∫

𝜋

0

𝑎𝑦 + 𝜆(1 − 𝑦)𝐹 (ℎ, 𝑦)
𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ

d𝑦, (4.3)

nd it satisfies the equation

ℎ
𝜋2(1 − 𝜋)2

2
𝐺𝜋 (ℎ, 𝜋) + 𝜆(1 − 𝜋)𝐺(ℎ, 𝜋) −

𝑎𝜋
ℎ

−
𝜆(1 − 𝜋)

ℎ
𝐹 (ℎ, 𝜋) = 0. (4.4)

Proof. First note that

𝜕𝑦
⎛

⎜

⎜

⎝

𝐹 (ℎ, 𝑦)
(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ ⎞
⎟

⎟

⎠

=
(

𝐹𝑦(ℎ, 𝑦) +
2𝜆𝐹 (ℎ, 𝑦)
ℎ𝑦2(1 − 𝑦)

)(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ

= −2
𝑎𝑦 + 𝑏ℎ

ℎ𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
,

where the second equality comes from (3.5). Consequently, using integration by parts, we have

2∫

𝜋

0

𝑎𝑦 + 𝑏ℎ
𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
ln
𝑓 (𝑦)
𝑓 (𝜋)

d𝑦 = ∫

𝜋

0

ℎ𝐹 (ℎ, 𝑦)
𝑦2(1 − 𝑦)

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ

d𝑦.

Now, differentiation of 𝐹 in (3.8) gives

𝐺(ℎ, 𝜋) = 2
ℎ2 ∫

𝜋

0

𝑎𝑦
𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ

d𝑦 + 4𝜆
ℎ3 ∫

𝜋

0

𝑎𝑦 + 𝑏ℎ
𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
ln
𝑓 (𝑦)
𝑓 (𝜋)

d𝑦

= 2
ℎ2 ∫

𝜋

0

𝑎𝑦 + 𝜆(1 − 𝑦)𝐹 (ℎ, 𝑦)
𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ

d𝑦,

which is (4.3). Finally, the ODE in (4.4) is obtained by dividing by ℎ the ODE in (3.5) and then differentiating it with respect to ℎ,
or, alternatively, by direct differentiation of (4.3). □
8
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Since 𝐺 ∶= 𝐹ℎ, by Proposition 3.1 we have 𝐺 ∈ 𝐶([0,∞) × [0, 1)) with

𝐺(0, 𝜋) = 𝑎𝜋2 − 2𝜆𝑏
2𝜆2(1 − 𝜋)

, 𝜋 ∈ (0, 1), (4.5)

nd

𝐺(ℎ, 0) = − 𝑏
𝜆
, ℎ ∈ [0,∞). (4.6)

The asymptotic behaviour of 𝐺 is described by the following lemma.

emma 4.2. Let ℎ ∈ [0,∞). Then, we have

lim
𝜋→1

𝐺(ℎ, 𝜋) =

{

+∞, if 𝑎 > 2𝜆𝑏,
−∞, if 𝑎 < 2𝜆𝑏.

oreover, lim𝜋→1 𝐺(ℎ, 𝜋) < 0 if 𝑎 = 2𝜆𝑏.

roof. The proof is presented in Appendix A. □

The previous lemma leads us to the definition of the reflecting boundary ℎ↦ 𝐶(ℎ).

roposition 4.3. Let ℎ ∈ [0,∞). If 𝑎 ≤ 2𝜆𝑏, then 𝐺(ℎ, 𝜋) < 0 for every 𝜋 ∈ [0, 1). If 𝑎 > 2𝜆𝑏, then the equation

𝐺(ℎ, 𝐶) = 0 (4.7)

as a unique solution 𝐶 = 𝐶(ℎ) ∈ (0, 1), with

𝐶(0) =
√

2𝜆𝑏
𝑎
. (4.8)

oreover,

𝐺(ℎ, 𝜋) < 0 ⇔ 𝜋 < 𝐶(ℎ),

𝐺(ℎ, 𝜋) > 0 ⇔ 𝜋 > 𝐶(ℎ)

nd

𝐺𝜋 (ℎ, 𝐶(ℎ)) > 0.

roof. If ℎ = 0, then the proof and, in particular, Eq. (4.8) follow immediately from (4.5).
Fix ℎ ∈ (0,∞) and notice that, by substituting the form of 𝐹 in (3.3) into Eq. (4.4), we obtain

ℎ
𝜋2(1 − 𝜋)2

2
𝐺𝜋 (ℎ, 𝜋) + 𝜆(1 − 𝜋)𝐺(ℎ, 𝜋) =

1 − 𝜋

ℎ𝑓 (𝜋)
2𝜆
ℎ

𝜓(ℎ, 𝜋), 𝜋 ∈ (0, 1). (4.9)

here

𝜓(ℎ, 𝜋) ∶= − 𝑏ℎ
1 − 𝜋

𝑓 (𝜋)
2𝜆
ℎ + ∫

𝜋

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

𝑓 (𝑦)
2𝜆
ℎ d𝑦.

Then, 𝜓(ℎ, 0) = 0 and

𝜓𝜋 (ℎ, 𝜋) =
𝑓 (𝜋)

2𝜆
ℎ

𝜋2(1 − 𝜋)2
(𝑎𝜋2 − 2𝜆𝑏). (4.10)

ecall that, by (4.6), we have 𝐺(ℎ, 0) < 0. Let

𝐶 = 𝐶(ℎ) ∶= inf{𝜋 ≥ 0 ∶ 𝐺(ℎ, 𝜋) ≥ 0} ∧ 1

and notice that 𝐺(ℎ, 𝐶) = 0 and 𝐺𝜋 (ℎ, 𝐶) ≥ 0 if 𝐶 ∈ (0, 1).
If 𝑎 ≤ 2𝜆𝑏, then 𝜓𝜋 (ℎ, 𝜋) < 0 by (4.10), and so 𝜓(ℎ, 𝜋) < 0 for every 𝜋 ∈ (0, 1). Thus, by Eq. (4.9), we necessarily have 𝐶 = 1,

𝑖.𝑒., 𝐺(ℎ, 𝜋) < 0 for every 𝜋 ∈ [0, 1).
If 𝑎 > 2𝜆𝑏, by 𝐺(ℎ, 0) < 0, lim𝜋→1 𝐺(ℎ, 𝜋) = +∞ (Lemma 4.2) and continuity of 𝜋 → 𝐺(ℎ, 𝜋), we obtain that 𝐶 ∈ (0, 1). Moreover,

by Eq. (4.9) we have 𝜓(ℎ, 𝐶) ≥ 0, and therefore 𝜓(ℎ, 𝜋) > 0 for every 𝜋 ∈ (𝐶, 1) and 𝜓𝜋 (ℎ, 𝜋) > 0 for every 𝜋 ∈ [𝐶, 1). This
guarantees uniqueness of the solution to Eq. (4.7). To see this, we first claim that 𝐺𝜋 (ℎ, 𝐶) > 0. Indeed, if 𝐺𝜋 (ℎ, 𝐶) = 0, then we
would have 𝐺𝜋𝜋 (ℎ, 𝐶) ≤ 0, but differentiating (4.9) shows that 0 = 𝐺 = 𝐺𝜋 ≥ 𝐺𝜋𝜋 is in contradiction with 𝜓𝜋 (ℎ, 𝐶) > 0. Consequently,
𝐺𝜋 (ℎ, 𝐶) > 0, so 𝐺(ℎ, 𝜋) > 0 in a right neighbourhood of 𝐶. Moreover, if �̄� ∶= inf{𝜋 > 𝐶 ∶ 𝐺(ℎ, 𝜋) ≤ 0} ∧ 1 satisfies �̄� < 1, then
𝐺𝜋 (ℎ, �̄�) ≤ 0, 𝐺(ℎ, �̄�) = 0 and 𝜓(ℎ, �̄�) > 0, which contradicts Eq. (4.9). □

If 𝑎 > 2𝜆𝑏, then the reflecting boundary ℎ ↦ 𝐶(ℎ) is defined by Eq. (4.7). If 𝑎 ≤ 2𝜆𝑏, we then define by convention 𝐶(ℎ) = 1 for
9

every ℎ ∈ [0,∞).
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5. Behaviour of the boundaries

In this section we study some properties of the stopping boundary ℎ ↦ 𝐵(ℎ) and of the reflecting boundary ℎ ↦ 𝐶(ℎ). In
articular, we want to determine their regularity, in what regions they are monotonic and what is their respective position. When
e study 𝐶, we assume throughout this section that 𝑎 > 2𝜆𝑏 so that 𝐶(ℎ) < 1 for every ℎ ∈ [0,∞).

roposition 5.1. We have that 𝐵 ∈ 𝐶1([0, 𝜆∕𝑏]) and 𝐶 ∈ 𝐶1([0,∞)), with

𝐵′(ℎ) = −
𝐺(ℎ, 𝐵(ℎ))
𝐹𝜋 (ℎ, 𝐵(ℎ))

, ℎ ∈ [0, 𝜆∕𝑏], (5.1)

and

𝐶 ′(ℎ) = −
𝐺ℎ(ℎ, 𝐶(ℎ))
𝐺𝜋 (ℎ, 𝐶(ℎ))

, ℎ ∈ [0,∞). (5.2)

Proof. The boundaries 𝐵 and 𝐶 are, respectively, determined by the implicit Eqs. (3.9) and (4.7). Thus, the statement of the
proposition follows from the implicit function theorem and the fact that 𝐹𝜋 (ℎ, 𝐵(ℎ)) < 0 for every ℎ ∈ [0, 𝜆∕𝑏) (by Lemma 3.3) and
𝜋 (ℎ, 𝐶(ℎ)) > 0 for every ℎ ∈ [0,∞) (by Proposition 4.3). □

To determine the sign of 𝐶 ′ in (5.2), we need to study the function 𝐺ℎ, for which we have the following proposition.

roposition 5.2. For every ℎ ∈ (0,∞), we have that 𝐺ℎ(ℎ, 𝐶(ℎ)) < 0.

roof. As in the proof of Proposition 4.1,

𝜕𝑦
⎛

⎜

⎜

⎝

𝐺(ℎ, 𝑦)
(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ ⎞
⎟

⎟

⎠

=
(

𝐺𝑦(ℎ, 𝑦) +
2𝜆𝐺(ℎ, 𝑦)
ℎ𝑦2(1 − 𝑦)

)(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ

= 2
𝑎𝑦 + 𝜆(1 − 𝑦)𝐹 (ℎ, 𝑦)

ℎ2𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
,

where the second equality uses (4.4). Applying integration by parts, we thus have

2∫

𝜋

0

𝑎𝑦 + 𝜆(1 − 𝑦)𝐹 (ℎ, 𝑦)
𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
ln
𝑓 (𝑦)
𝑓 (𝜋)

d𝑦 = −ℎ2 ∫

𝜋

0

𝐺(ℎ, 𝑦)
𝑦2(1 − 𝑦)

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ

d𝑦.

Differentiating 𝐺 in (4.3) then yields

𝐺ℎ(ℎ, 𝜋) = − 2
ℎ
𝐺(ℎ, 𝜋) + 2𝜆

ℎ2 ∫

𝜋

0

𝐺(ℎ, 𝑦)
𝑦2(1 − 𝑦)

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ

d𝑦

− 4𝜆
ℎ4 ∫

𝜋

0

𝑎𝑦 + 𝜆(1 − 𝑦)𝐹 (ℎ, 𝑦)
𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
ln
𝑓 (𝑦)
𝑓 (𝜋)

d𝑦

= − 2
ℎ
𝐺(ℎ, 𝜋) + 4𝜆

ℎ2 ∫

𝜋

0

𝐺(ℎ, 𝑦)
𝑦2(1 − 𝑦)

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ

d𝑦

= 4
ℎ2 ∫

𝜋

0

𝜆(1 − 𝑦)𝐺(ℎ, 𝑦) − 𝑎𝑦
ℎ − 𝜆(1−𝑦)

ℎ 𝐹 (ℎ, 𝑦)

𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ

d𝑦

= − 2
ℎ ∫

𝜋

0
𝐺𝜋 (ℎ, 𝑦)

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦,

where the last equality uses (4.4).
Finally, applying integration by parts and using that 𝐺(ℎ, 𝐶(ℎ)) = 0, we obtain

𝐺ℎ(ℎ, 𝐶(ℎ)) =
4𝜆
ℎ2 ∫

𝐶(ℎ)

0

𝐺(ℎ, 𝑦)
𝑦2(1 − 𝑦)

(

𝑓 (𝑦)
𝑓 (𝐶(ℎ))

)
2𝜆
ℎ
d𝑦 < 0,

here the inequality follows since 𝐺(ℎ, 𝑦) < 0 for every 𝑦 ∈ [0, 𝐶(ℎ)) by Proposition 4.3. □

Proposition 5.2 allows us to obtain the monotonicity of the reflecting boundary ℎ ↦ 𝐶(ℎ).

orollary 5.3. For every ℎ ∈ (0,∞), we have that 𝐶 ′(ℎ) > 0.

roof. By Proposition 4.3, we have that 𝐺 (ℎ, 𝐶(ℎ)) > 0. Thus, by Proposition 5.2 and (5.2) we obtain that 𝐶 ′(ℎ) > 0. □
10
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ℎ̄ ∶= inf{ℎ ≥ 0 ∶ 𝐶(ℎ) ≥ 𝐵(ℎ)}. (5.3)

f 𝑎 ≤ 2𝜆𝑏, then ℎ̄ = 0 since 𝐶(0) = 1 and 𝐵(0) < 1. If 𝑎 > 2𝜆𝑏, since 𝐶(0) > 0 (recall (4.8)), ℎ ↦ 𝐶(ℎ) is increasing (by Corollary 5.3)
nd 𝐵(ℎ) = 0 for every ℎ ≥ 𝜆∕𝑏 (recall (3.13)), we must have ℎ̄ < 𝜆∕𝑏. Moreover, we have the following proposition, which in
articular implies that ℎ ↦ 𝐵(ℎ) attains its maximum at ℎ̄.

roposition 5.4. We have that 𝐵′(ℎ) > 0 for every ℎ ∈ [0, ℎ̄) if ℎ̄ > 0. Moreover, 𝐵′(ℎ̄) ≤ 0 and 𝐵′(ℎ) < 0 for every ℎ ∈ (ℎ̄, 𝜆∕𝑏).
onsequently, if 𝑎 > 2𝜆𝑏, then 𝐶(ℎ) > 𝐵(ℎ) for every ℎ > ℎ̄.

roof. Recall that, by Lemma 3.3, we have that 𝐹𝜋 (ℎ, 𝜋) < 0 for every (ℎ, 𝜋) ∈ [0,∞) × (0, 1).
If 𝑎 ≤ 2𝜆𝑏 (and so ℎ̄ = 0), then by Lemma 4.2 we have that 𝐺(ℎ, 𝜋) < 0 for every (ℎ, 𝜋) ∈ [0,∞) × [0, 1). Therefore, by (5.1), we

obtain that 𝐵′(ℎ) < 0 for every ℎ ∈ [0, 𝜆∕𝑏).
Now let 𝑎 > 2𝜆𝑏. If ℎ̄ > 0, since 𝐵(ℎ) > 𝐶(ℎ) for every ℎ ∈ [0, ℎ̄), then by Proposition 4.3 we have that 𝐺(ℎ, 𝐵(ℎ)) > 0 and so, by

(5.1), we obtain that 𝐵′(ℎ) > 0 for every ℎ ∈ [0, ℎ̄). Since 𝐶(ℎ̄) ≥ 𝐵(ℎ̄), then by Proposition 4.3 we have that 𝐺(ℎ̄, 𝐵(ℎ̄)) ≤ 0 and so,
by (5.1), we obtain that 𝐵′(ℎ̄) ≤ 0. Since 𝐶 ′(ℎ̄) > 0, then by continuity there exists 𝛿 > 0 such that 𝐶(ℎ) > 𝐵(ℎ) for every ℎ ∈ (ℎ̄, ℎ̄+𝛿]
and so, by Proposition 4.3, 𝐺(ℎ, 𝐵(ℎ)) < 0 for every ℎ ∈ (ℎ̄, ℎ̄ + 𝛿]. Hence, by (5.1), we obtain 𝐵′(ℎ) < 0 for every ℎ ∈ (ℎ̄, ℎ̄ + 𝛿].
uppose by contradiction that there exists ℎ0 ∈ (ℎ̄, 𝜆∕𝑏) such that 𝐵′(ℎ0) ≥ 0 and let

ℎ̂ ∶= inf{ℎ ∈ (ℎ̄, 𝜆∕𝑏) ∶ 𝐵′(ℎ) ≥ 0} > ℎ̄ + 𝛿.

Then, by continuity of 𝐵′, we must have 𝐵′(ℎ̂) = 0. By (5.1), this is equivalent to 𝐺(ℎ̂, 𝐵(ℎ̂)) = 0 and thus, by definition (4.7), we
obtain 𝐵(ℎ̂) = 𝐶(ℎ̂). This is a contradiction because 𝐶(ℎ̄) ≥ 𝐵(ℎ̄), 𝐶 ′(ℎ) > 0 for every ℎ ∈ [0,∞) and 𝐵′(ℎ) < 0 for every ℎ ∈ (ℎ̄, ℎ̂)
y construction. Hence, 𝐶(ℎ̂) > 𝐵(ℎ̂) which proves that 𝐵′(ℎ) < 0 for every ℎ ∈ (ℎ̄, 𝜆∕𝑏). This also implies that 𝐶(ℎ) > 𝐵(ℎ) for every
> ℎ̄. □

Let us now define

�̄� ∶= 𝑎𝜆
2(𝑎 + 𝜆)2

, (5.4)

nd notice that �̄� < 𝑎
2𝜆 . The value of the observation cost 𝑏 with respect to the threshold �̄� determines the respective positions of

he boundaries 𝐵 and 𝐶 as in the following proposition.

roposition 5.5. We have that:

(i) if 𝑏 ≥ �̄�, then 𝐶(ℎ) ≥ 𝐵(ℎ) for every ℎ ∈ [0,∞);
(ii) if 𝑏 < �̄�, then ℎ̄ > 0 where ℎ̄ is defined in (5.3). In particular,

𝐶(ℎ) < 𝐵(ℎ), ∀ ℎ ∈ [0, ℎ̄),

𝐶(ℎ̄) = 𝐵(ℎ̄),

𝐶(ℎ) > 𝐵(ℎ), ∀ ℎ ∈ (ℎ̄,∞).

Proof. If 𝑏 ≥ �̄�, then by (3.10) and (4.8) we have that 𝐶(0) ≥ 𝐵(0), and so also ℎ̄ = 0. Thus, by Proposition 5.4, we have 𝐶(ℎ) > 𝐵(ℎ)
or every ℎ ∈ (0,∞). If 𝑏 < �̄�, then 𝐶(0) < 𝐵(0) and, by continuity and by definition (5.3), we have that 𝐶(ℎ) < 𝐵(ℎ) for every ℎ < ℎ̄
ith 𝐶(ℎ̄) = 𝐵(ℎ̄). Finally, by Proposition 5.4, we obtain 𝐶(ℎ) > 𝐵(ℎ) for every ℎ > ℎ̄. □

Notice that Fig. 1 refers to the case 𝑏 < �̄�, whereas in Fig. 2 we depict the case 𝑏 ≥ �̄�.

. Solution of the problem

In this section we provide the solution to our problem (2.2). Recall that the boundaries 𝐵 and 𝐶 satisfy 𝐵(ℎ) ≥ 𝐶(ℎ) for ℎ < ℎ̄
nd 𝐵(ℎ) ≤ 𝐶(ℎ) for ℎ ≥ ℎ̄, where ℎ̄ ≥ 0 as in (5.3). Moreover, ℎ̄ > 0 precisely if 𝑏 < �̄� = 𝑎𝜆

2(𝑎+𝜆)2 as in (5.4).
Our main result (Theorem 6.1) can be summarised as follows. If ℎ̄ = 0 (𝑖.𝑒., if 𝑏 ≥ �̄�), then it is optimal to never increase the

control 𝐻 and to stop as soon as the belief process 𝛱𝐻 goes above the stopping boundary 𝐵. On the other hand, if ℎ̄ > 0 (𝑖.𝑒., if
𝑏 < �̄�), then the optimal strategy is described by a reflection of the two-dimensional process (𝐻∗,𝛱𝐻∗ ) along the boundary 𝐶 until
the first time the belief process 𝛱𝐻∗ goes above the stopping boundary 𝐵 (at ℎ = ℎ̄), where it is optimal to stop. Recall Fig. 1.

For a fixed starting point (ℎ, 𝜋) ∈ [0,∞) × [0, 1), we first show how to specify the candidate strategy 𝐻∗ ∈ ℎ provided ℎ̄ > 0.
he function 𝐶 ∶ [0,∞) → [

√

2𝜆𝑏∕𝑎, 1) is then increasing (recall Corollary 5.3), and we denote by 𝐶−1 ∶ [
√

2𝜆𝑏∕𝑎, 1) → [0,∞) its
inverse, which we extend by continuity to 𝐶−1(𝜋) = 0 for every 𝜋 ∈ [0,

√

2𝜆𝑏∕𝑎]. Define �̃� ∶ [0,∞) × 𝐶([0,∞)) → R by

�̃�𝑡(𝑤) ∶= ℎ ∨
(

𝐶−1
(

sup 𝑤𝑠

)

∧ ℎ̄
)

, (6.1)
11

𝑠∈[0,𝑡]
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Fig. 2. Case 𝑏 ≥ �̄�: the boundaries 𝐵 and 𝐶 computed as numerical solutions of, respectively, Eqs. (3.9) and (4.7) with parameters 𝑎 = 𝜆 = 1 and 𝑏 = 0.2.

which will be intended as the feedback map of the optimal control. Now consider the stochastic differential equation

d𝑍𝑡 = 𝜆(1 −𝑍𝑡) d𝑡 − �̃�𝑡(𝑍)𝑍2
𝑡 (1 −𝑍𝑡) d𝑡 +

√

�̃�𝑡(𝑍)𝑍𝑡(1 −𝑍𝑡) d𝑋𝑡, (6.2)

ith 𝑍0 = 𝜋. The drift and diffusion coefficients of the SDE (6.2) satisfy the (locally) Lipschitz conditions of [21, Ch. V, Th. 12.1]
nd thus the SDE (6.2) admits a unique strong solution 𝑍 = (𝑍𝑡)𝑡≥0. Then, define the candidate optimal control by

𝐻∗
0− = ℎ and 𝐻∗

𝑡 ∶= �̃�𝑡(𝑍), 𝑡 ≥ 0, (6.3)

here �̃� is defined in (6.1). Since 𝑍 is F-adapted and �̃� is bounded, we have that 𝐻∗ ∈ ℎ. Recall, from (2.3), that 𝛱𝐻∗ satisfies
he SDE (with random coefficients)

d𝛱𝐻∗
𝑡 = 𝜆(1 −𝛱𝐻∗

𝑡 ) d𝑡 −𝐻∗
𝑡 (𝛱

𝐻∗
𝑡 )2(1 −𝛱𝐻∗

𝑡 ) d𝑡 +
√

𝐻∗
𝑡 𝛱

𝐻∗
𝑡 (1 −𝛱𝐻∗

𝑡 ) d𝑋𝑡. (6.4)

y construction, also 𝑍 satisfies the SDE (6.4). Moreover, since 𝐻∗ is bounded, the SDE (6.4) admits a unique strong solution (see,
.𝑔., [20, Theorem 1.3.15]) and so 𝛱𝐻∗ is indistinguishable from 𝑍.

We next construct a candidate value function for problem (2.2). To do that, define the function

𝑔(ℎ) ∶=

{

1 − 𝐶(ℎ̄) − ∫ ℎ̄ℎ 𝐶
′(𝑥)𝐹 (𝑥, 𝐶(𝑥)) d𝑥, ℎ < ℎ̄,

1 − 𝐵(ℎ), ℎ ≥ ℎ̄.

oreover, define the regions

 ∶= {(ℎ, 𝜋) ∈ [0,∞) × [0, 1) ∶ 0 ≤ 𝜋 ≤ 𝐵(ℎ) ∧ 𝐶(ℎ)},

1 ∶= {(ℎ, 𝜋) ∈ [0,∞) × [0, 1) ∶ 𝐶(ℎ) < 𝜋 ≤ 𝐵(ℎ̄), ℎ < ℎ̄}

nd

2 ∶= {(ℎ, 𝜋) ∈ [0,∞) × [0, 1) ∶ 𝜋 > 𝐵(ℎ ∨ ℎ̄)}.

efer to Fig. 3 for an illustration of the three regions. Notice that, since 𝐵(ℎ) = 0 for every ℎ ≥ 𝜆∕𝑏, the continuation region  is
ounded. Then, for (ℎ, 𝜋) ∈ [0,∞) × [0, 1), the candidate value function is defined as

𝑣(ℎ, 𝜋) ∶=

⎧

⎪

⎨

⎪

⎩

𝑔(ℎ) − ∫ 𝐵(ℎ)∧𝐶(ℎ)𝜋 𝐹 (ℎ, 𝑦) d𝑦, if (ℎ, 𝜋) ∈ ,
𝑔(𝐶−1(𝜋)), if (ℎ, 𝜋) ∈ 1,
1 − 𝜋, if (ℎ, 𝜋) ∈ 2.

(6.5)

otice that the function ℎ ↦ 𝑔(ℎ) is defined to satisfy 𝑔(ℎ) = 𝑣(ℎ, 𝐶(ℎ)) for ℎ ∈ [0, ℎ̄]. In particular, it is constructed to be the solution
f the ODE 𝑔′(ℎ) = 𝑣ℎ(ℎ, 𝐶(ℎ)) = 0, required from the free-boundary problem (4.2), with boundary condition 𝑔(ℎ̄) = 1 − 𝐶(ℎ̄).

Notice also that the optimal control 𝐻∗, defined in (6.3), acts as follows: (i) if (ℎ, 𝜋) ∈ , then reflect along the boundary 𝐶 or
ontinue until 𝛱𝐻∗ hits the stopping boundary 𝐵; (ii) if (ℎ, 𝜋) ∈ 1, then immediately jump to the boundary value 𝐶−1(𝜋) and, after
12

hat, proceed as in (i); (iii) if (ℎ, 𝜋) ∈ 2, then stop immediately.
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Fig. 3. The geometry of the problem depicted by the regions  (in light blue), 1 (in orange) and 2 (in red). The parameters corresponding to this figure are
= 𝜆 = 1 and 𝑏 = 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

heorem 6.1. For (ℎ, 𝜋) ∈ [0,∞) × [0, 1), define 𝐻∗ as in (6.3) and let

𝜏∗ ∶= inf{𝑡 ≥ 0 ∶ 𝛱𝐻∗
𝑡 ≥ 𝐵(𝐻∗

𝑡 )}. (6.6)

hen 𝑉 (ℎ, 𝜋) = 𝑣(ℎ, 𝜋), where 𝑉 and 𝑣 are, respectively, defined in (2.2) and in (6.5). Moreover, (𝐻∗, 𝜏∗) ∈ ℎ ×  is an optimal strategy.

The proof of Theorem 6.1 is supported by Proposition 6.2, Lemma 6.3 and Lemma 6.4 and it is thus postponed. In particular,
roposition 6.2 provides smoothness of the value function.

roposition 6.2. We have that

𝑣 ∈ 𝐶1([0,∞) × [0, 1)
)

and 𝑣𝜋𝜋 ∈ 𝐶0([0,∞) × [0, 1) ⧵ {(ℎ, 𝐵(ℎ)) ∶ ℎ ∈ [ℎ̄, 𝜆∕𝑏]}
)

.

urthermore, for every (ℎ, 𝜋) ∈ [0,∞) × [0, 1), we have that

𝑣ℎ(ℎ, 𝜋) ≥ 0 and 𝑣(ℎ, 𝜋) + 𝑎𝜋 + 𝑏ℎ ≥ 0,

here  is defined in (4.1). In particular, 𝑣 + 𝑎𝜋 + 𝑏ℎ = 0 on .

roof. First, it is straightforward to check that 𝑣 is continuous. Then on , recalling that 𝐹 (ℎ, 𝐵(ℎ)) = −1, we obtain

𝑣ℎ(ℎ, 𝜋) = −∫

𝐵(ℎ)∧𝐶(ℎ)

𝜋
𝐺(ℎ, 𝑦)d𝑦 ≥ 0, (6.7)

here the inequality follows immediately from Proposition 4.3. Continuity of 𝐺 ∶= 𝐹ℎ (recall Proposition 3.1) guarantees continuity
f 𝑣ℎ on . Moreover, 𝑣ℎ = 0 on 1 ∪2 and it is thus clear, from (6.7), that 𝑣ℎ is continuous also across the boundary of .

By continuity of 𝐹 , 𝐵 and 𝐶, we obtain continuity of 𝑣𝜋 with

𝑣𝜋 (ℎ, 𝜋) =

⎧

⎪

⎨

⎪

⎩

𝐹 (ℎ, 𝜋), on ,
𝐹 (𝐶−1(𝜋), 𝜋), on 1,
−1, on 2.

oreover, by continuity of 𝐹𝜋 (recall Proposition 3.1) and 𝐶 and recalling that 𝐺(ℎ, 𝐶(ℎ)) = 0, it follows that

𝑣𝜋𝜋 ∈ 𝐶0([0,∞) × [0, 1) ⧵ {(ℎ, 𝐵(ℎ)) ∶ ℎ ∈ [ℎ̄, 𝜆∕𝑏]}
)

,

ith

𝑣𝜋𝜋 (ℎ, 𝜋) =

⎧

⎪

⎨

⎪

⎩

𝐹𝜋 (ℎ, 𝜋), on ,
𝐹𝜋 (𝐶−1(𝜋), 𝜋), on 1,
0, on 2.

It is clear by construction (recall (3.5)) that 𝑣 + 𝑎𝜋 + 𝑏ℎ = 0 on . Furthermore, on 1,
1ℎ𝜋2(1 − 𝜋)2𝐹 (𝐶−1(𝜋), 𝜋) + 𝜆(1 − 𝜋)𝐹 (𝐶−1(𝜋), 𝜋) + 𝑎𝜋 + 𝑏ℎ
13

𝑣 + 𝑎𝜋 + 𝑏ℎ = 2 𝜋
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=
(

ℎ − 𝐶−1(𝜋)
)( 1

2𝜋
2(1 − 𝜋)2𝐹𝜋 (𝐶−1(𝜋), 𝜋) + 𝑏

)

= −
(

ℎ∕𝐶−1(𝜋) − 1
)(

𝜆(1 − 𝜋)𝐹 (𝐶−1(𝜋), 𝜋) + 𝑎𝜋
)

.

Now recall from Proposition 4.3 that 𝐹ℎ = 𝐺 ≥ 0 on 1 (since 1 vanishes if 𝑎 ≤ 2𝜆𝑏), so

𝜆(1 − 𝜋)𝐹 (𝐶−1(𝜋), 𝜋) + 𝑎𝜋 ≥ 𝜆(1 − 𝜋)𝐹 (0, 𝜋) + 𝑎𝜋 = 0

by (3.6). Consequently, 𝑣 + 𝑎𝜋 + 𝑏ℎ ≥ 0 on 1.
Also, on 2 we have

𝑣 + 𝑎𝜋 + 𝑏ℎ = −𝜆(1 − 𝜋) + 𝑎𝜋 + 𝑏ℎ ≥ 0,

where the inequality uses (3.12) and, if ℎ̄ > 0, also the fact that 𝐵(ℎ̄) > 𝐵(ℎ) for every ℎ ∈ [0, ℎ̄) (recall Proposition 5.4). □

Lemma 6.3. We have that 0 ≤ 𝑣(ℎ, 𝜋) ≤ 1 − 𝜋 for every (ℎ, 𝜋) ∈ [0,∞) × [0, 1).

Proof. Since 𝐹 (ℎ, 𝜋) ≤ 0 and 𝐶 ′(ℎ) > 0 for any (ℎ, 𝜋) ∈ [0,∞)× [0, 1), it is easy to see that 𝑣(ℎ, 𝜋) ≥ 0. By construction, 𝑣(ℎ, 𝜋) = 1−𝜋
for (ℎ, 𝜋) ∈ 2 and 𝑣(ℎ, 𝜋) = 𝑣(𝐶−1(𝜋), 𝜋) for (ℎ, 𝜋) ∈ 1. Therefore, we only need to prove that 𝑣(ℎ, 𝜋) ≤ 1 − 𝜋 for (ℎ, 𝜋) ∈ . Since
𝑣𝜋𝜋(ℎ, 𝜋) = 𝐹𝜋 (ℎ, 𝜋) ≤ 0 for (ℎ, 𝜋) ∈ , 𝜋 ↦ 𝑣(ℎ, 𝜋) is concave on . Notice that 𝑣(ℎ, 𝐵(ℎ)) = 1 − 𝐵(ℎ) and 𝑣𝜋 (ℎ, 𝐵(ℎ)) = −1. Then, for
ℎ ≥ ℎ̄ and 𝜋 ≤ 𝐵(ℎ), by concavity we also obtain 𝑣(ℎ, 𝜋) ≤ 1 − 𝜋. Now recall that, for ℎ < ℎ̄,

𝑣(ℎ, 𝐶(ℎ)) = 𝑔(ℎ) = 1 − 𝐶(ℎ̄) + ∫

ℎ̄

ℎ
𝐶 ′(𝑥)𝐹 (𝑥, 𝐶(𝑥))d𝑥.

Thus, 𝑣(ℎ, 𝐶(ℎ)) ≤ 1 − 𝐶(ℎ) if and only if

𝐶(ℎ̄) − 𝐶(ℎ) ≥ −∫

ℎ̄

ℎ
𝐶 ′(𝑥)𝐹 (𝑥, 𝐶(𝑥))d𝑥.

The last inequality holds since 𝐹 (𝑥, 𝐶(𝑥)) ≥ −1 (given that 𝐶(𝑥) ≤ 𝐵(𝑥) for 𝑥 ∈ [0, ℎ̄]) and thus 𝑣(ℎ, 𝐶(ℎ)) ≤ 1 − 𝐶(ℎ). Finally,
𝑣𝜋 (ℎ, 𝐶(ℎ)) = 𝐹 (ℎ, 𝐶(ℎ)) ∈ [−1, 0) and, again by concavity, we obtain 𝑣(ℎ, 𝜋) ≤ 1 − 𝜋 also for ℎ ≤ ℎ̄ and 𝜋 ≤ 𝐶(ℎ). This concludes the
proof. □

Lemma 6.4. Let (ℎ, 𝜋) ∈ [0,∞) × [0, 1) and 𝜏∗ be defined as in (6.6). Then E𝐻∗
𝜋 [𝜏∗] < ∞.

roof. Denote �̄� ∶= 𝐵(ℎ̄). For 𝜋 ∈ [0, �̄�], define

𝑢(𝜋) ∶= 1
𝜆
log 1 − 𝜋

1 − �̄�
.

hen, 𝑢 satisfies
{

𝜆(1 − 𝜋)𝑢𝜋 + 1 = 0, 𝜋 ∈ [0, �̄�],
𝑢(�̄�) = 0.

in fact, 𝑢(𝜋) = E𝐻𝜋 [𝜏�̄�], where 𝜏�̄� ∶= inf{𝑡 ≥ 0 ∶ 𝛱𝐻
𝑡 ≥ �̄�} is the first passage time 𝛱𝐻 over �̄� if 𝐻 ≡ 0). Since 𝑢 is concave, an

application of Ito’s formula shows that the process 𝑢(𝛱𝐻∗
𝑡 ) + 𝑡 is a P𝐻∗ -supermartingale, and optional sampling gives

𝑢(𝜋) ≥ E𝐻∗
𝜋 [𝑢(𝛱𝐻∗

𝜏∗∧𝑛) + 𝜏
∗ ∧ 𝑛] ≥ E𝐻∗

𝜋 [𝜏∗ ∧ 𝑛]

for all 𝑛 ∈ N. Letting 𝑛→ ∞, monotone convergence then yields E𝐻∗
𝜋 [𝜏∗] ≤ 𝑢(𝜋) < ∞. □

Proof (Proof of Theorem 6.1). We want to apply the Verification Theorem 2.2. By Lemma 6.3, we have that 0 ≤ 𝑣(ℎ, 𝜋) ≤ 1 − 𝜋 for
every (ℎ, 𝜋) ∈ [0,∞) × [0, 1). We now want to prove that, for any 𝐻 ∈ ℎ, the process 𝑌 = 𝑌 𝐻 in (2.5) is a (P𝐻 ,F)-submartingale.
By the regularity properties of 𝑣, see Proposition 6.2, we can apply a generalised Ito’s formula [19] to 𝑌 and obtain

𝑌𝑡 = 𝑣(ℎ, 𝜋) + ∫

𝑡

0

[

𝑣(𝐻𝑠,𝛱
𝐻
𝑠 ) + 𝑎𝛱𝐻

𝑠 + 𝑏𝐻𝑠

]

d𝑠 + ∫

𝑡

0
𝑣ℎ(𝐻𝑠,𝛱

𝐻
𝑠 ) d𝐻𝑐

𝑠 (6.8)

+
∑

0≤𝑠≤𝑡

[

𝑣(𝐻𝑠,𝛱
𝐻
𝑠 ) − 𝑣(𝐻𝑠−,𝛱

𝐻
𝑠 )

]

+ ∫

𝑡

0
𝑣𝜋 (𝐻𝑠−,𝛱

𝐻
𝑠 )

√

𝐻𝑠−𝛱
𝐻
𝑠 (1 −𝛱𝐻

𝑠 ) d�̂� 𝐻
𝑠 ,

where 𝐻𝑐
𝑡 ∶= 𝐻𝑡 −

∑

𝑠∈[0,𝑡] 𝛥𝐻𝑠 is the continuous part of 𝐻 and 𝛥𝐻𝑡 ∶= 𝐻𝑡 − 𝐻𝑡−. Since 𝑣𝜋 is bounded and 𝐻 is admissible (and
hus bounded) the stochastic integral in (6.8) is a (P𝐻 ,F)-martingale. Since, by Proposition 6.2, 𝑣+ 𝑎𝜋 + 𝑏ℎ ≥ 0 and 𝑣ℎ ≥ 0 then it

follows that 𝑌 𝐻 is a (P𝐻 ,F)-submartingale, so (i) in Theorem 2.2 holds.
Now, since 𝑣(ℎ, 𝐵(ℎ)) = 1 − 𝐵(ℎ) for ℎ ≥ ℎ̄, and since 𝑣 + 𝑎𝜋 + 𝑏ℎ = 0 on  and 𝑣ℎ(ℎ, 𝐶(ℎ)) = 0 for ℎ ∈ [0, ℎ̄] by Proposition 6.2,

t is clear that (ii) and (iv) also hold. Since (iii) is proved in Lemma 6.4, this concludes the proof. □

emark 6.5. In the formulation of the objective functional 𝐽 in (2.1), one may substitute the cost 𝑏E ∫ 𝜏0 𝐻𝑡d𝑡 with a more general
ost of control E ∫ 𝜏0 𝑘(𝐻𝑡)d𝑡, for an arbitrary function 𝑘 ∶ [0,∞) → (0,∞). This would mostly affect the form of 𝐺(ℎ, 𝜋) ∶= 𝐹ℎ(ℎ, 𝜋)
nd, as a consequence, the discussion around the reflecting boundary ℎ ↦ 𝐶(ℎ). In particular, one would need to obtain conditions
14

n ℎ ↦ 𝑘(ℎ) under which the existence and monotonicity of ℎ ↦ 𝐶(ℎ) are guaranteed.
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Appendix A. Properties of the functions 𝑭 and 𝑮

In this appendix we provide some results on the functions 𝐹 and 𝐺 = 𝐹ℎ. In particular, we prove that 𝐹 ∈ 𝐶1([0,∞) × [0, 1)),
which also means that 𝐺 ∈ 𝐶([0,∞) × [0, 1)). We start by introducing two lemmas.

Lemma A.1. Let 𝜑 ∶ [0, 1) → R be such that 𝜑 ∈ 𝐶1((0, 1);R). Then, for every (ℎ, 𝜋) ∈ (0,∞) × (0, 1), we have

∫

𝜋

0

1
ℎ

𝜑(𝑦)
𝑦2(1 − 𝑦)

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦 =

𝜑(𝜋)
2𝜆

− 1
2𝜆 ∫

𝜋

0
𝜑′(𝑦)

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦,

where 𝑓 is defined in (3.4).

Proof. Since, for every 𝑦 ∈ (0, 1),
𝑓 ′(𝑦)
𝑓 (𝑦)

= 1
𝑦2(1 − 𝑦)

,

e have that

∫

𝜋

0

1
ℎ

𝜑(𝑦)
𝑦2(1 − 𝑦)

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦 = 1

2𝜆
𝑓 (𝜋)−

2𝜆
ℎ
∫

𝜋

0
𝜑(𝑦) d

d𝑦

(

𝑓 (𝑦)
2𝜆
ℎ
)

d𝑦.

hen, the result follows easily by applying integration by parts. □

emma A.2. Let 𝜑 ∶ [0, 1] → R be such that 𝜑 ∈ 𝐶1((0, 1);R) and, for every 𝑦 ∈ (0, 1),

(1 − 𝑦)[𝑦𝜑′(𝑦) + 2𝜑(𝑦)] + 𝑦𝜑(𝑦) ≥ 0. (A.1)

Then, for every ℎ ∈ (0,∞), the function 𝛤ℎ ∶ [0, 1] → R defined by

𝛤ℎ(𝜋) ∶= ∫

𝜋

0

𝜑(𝑦)
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦,

is non-decreasing on (0, 1).

Proof. Let 𝜋 ∈ (0, 1). Then,

𝛤 ′
ℎ(𝜋) =

𝜑(𝜋)
(1 − 𝜋)2

− 2𝜆
ℎ

1

𝜋2(1 − 𝜋)𝑓 (𝜋)
2𝜆
ℎ

∫

𝜋

0

𝜑(𝑦)
(1 − 𝑦)2

𝑓 (𝑦)
2𝜆
ℎ d𝑦.

otice that, for 𝜋 ∈ (0, 1), the sign of 𝛤 ′
ℎ is the same as the sign of 𝛬ℎ, where 𝛬ℎ is defined as

𝛬ℎ(𝜋) ∶=
ℎ
2𝜆

𝜋2𝜑(𝜋)𝑓 (𝜋)
2𝜆
ℎ

1 − 𝜋
− ∫

𝜋

0

𝜑(𝑦)
(1 − 𝑦)2

𝑓 (𝑦)
2𝜆
ℎ d𝑦.

We have that 𝛬ℎ(0) = 0 and

𝛬′
ℎ(𝜋) =

ℎ
2𝜆

𝑓 (𝜋)
2𝜆
ℎ

(1 − 𝜋)[𝜋2𝜑′(𝜋) + 2𝜋𝜑(𝜋)] + 𝜋2𝜑(𝜋)
(1 − 𝜋)2

.

Thus, if condition (A.1) holds, we obtain the desired result. □

emark A.3. Notice that condition (A.1) holds, in particular, if 𝜑 ≥ 0 and 𝜑′ ≥ 0.

We can now show that 𝐹 ∈ 𝐶1([0,∞) × [0, 1)).

roof of Proposition 3.1. Representation (3.8) follows directly from (3.3) and Lemma A.1 with

𝜑(𝑦) =
𝑎𝑦 + 𝑏ℎ
1 − 𝑦

.

The rest of the proof is divided into three steps: continuity of 𝐹 , continuity of 𝐺 = 𝐹ℎ and continuity of 𝐹𝜋 .
Step 1. (Continuity of 𝐹 .) Recall the definition of 𝐹 in (3.3), (3.6) and (3.7). It is easy to see that 𝐹 is continuous at any point

ℎ, 𝜋) ∈ (0,∞) × (0, 1). We start by proving that, for every 𝜋0 ∈ (0, 1), we have that

lim
(ℎ,𝜋)→(0,𝜋0)

𝐹 (ℎ, 𝜋) = −
𝑎𝜋0

𝜆(1 − 𝜋0)
= 𝐹 (0, 𝜋0). (A.2)

From (3.3), we have that

lim 𝐹 (ℎ, 𝜋) = −
𝑎𝜋0 + 1 lim

𝜋 𝑎 + 𝑏ℎ
(

𝑓 (𝑦)
)

2𝜆
ℎ
d𝑦.
15

(ℎ,𝜋)→(0,𝜋0) 𝜆(1 − 𝜋0) 𝜆 (ℎ,𝜋)→(0,𝜋0)∫0 (1 − 𝑦)2 𝑓 (𝜋)
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Clearly,

lim inf
(ℎ,𝜋)→(0,𝜋0)∫

𝜋

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑥 ≥ 0.

Now, let

𝛤ℎ(𝜋) ∶= ∫

𝜋

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑥,

and note that 𝜋 ↦ 𝛤ℎ(𝜋) is non-decreasing for every ℎ ∈ (0,∞) by Lemma A.2. Without loss of generality, in computing the limit in
(A.2), we can consider 𝜋 ∈ (𝜋0 − 𝛿, 𝜋0 + 𝛿) for 𝛿 ∈ (0, 𝜋0). Thus,

lim sup
(ℎ,𝜋)→(0,𝜋0)∫

𝜋

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦 ≤ lim sup

ℎ→0 ∫

𝜋0+𝛿

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋0 + 𝛿)

)
2𝜆
ℎ
d𝑦 = 0,

here the last equality follows by the dominated convergence theorem. Hence, (A.2) holds.
To conclude Step 1 we prove that, for every ℎ0 ∈ [0,∞),

lim
(ℎ,𝜋)→(ℎ0 ,0)

𝐹 (ℎ, 𝜋) = −
𝑏ℎ0
𝜆

= 𝐹 (ℎ0, 0) (A.3)

provided that the limit on the right-hand-side exists. From (3.3), we have that

lim
(ℎ,𝜋)→(ℎ0 ,0)

𝐹 (ℎ, 𝜋) = −
𝑏ℎ0
𝜆

+ 1
𝜆

lim
(ℎ,𝜋)→(ℎ0 ,0)∫

𝜋

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦.

learly,

0 ≤ lim inf
(ℎ,𝜋)→(ℎ0 ,0)∫

𝜋

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑥 ≤ lim sup

(ℎ,𝜋)→(ℎ0 ,0)∫

𝜋

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦

≤ lim sup
(ℎ,𝜋)→(ℎ0 ,0)∫

𝜋

0

𝑎 + 𝑏ℎ
(1 − 𝑦)2

d𝑦 = 0.

Hence, (A.3) holds.
Step 2. (Continuity of 𝐺.) By substituting the explicit expression (3.3) of 𝐹 into Eq. (4.3), we obtain that, for (ℎ, 𝜋) ∈ (0,∞)×(0, 1),

𝐺(ℎ, 𝜋) = 𝐼1(ℎ, 𝜋) + 𝐼2(ℎ, 𝜋), (A.4)

where

𝐼1(ℎ, 𝜋) ∶= −2𝑏
ℎ ∫

𝜋

0

1
𝑦2(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦,

𝐼2(ℎ, 𝜋) ∶=
2
ℎ ∫

𝜋

0

𝐼3(ℎ, 𝑦)
𝑦2(1 − 𝑦)

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦

and

𝐼3(ℎ, 𝑦) ∶=
1
ℎ ∫

𝑦

0

𝑎 + 𝑏ℎ
(1 − 𝑧)2

(

𝑓 (𝑧)
𝑓 (𝑦)

)
2𝜆
ℎ
d𝑧.

It is then easy to see that 𝐺 is continuous at any point (ℎ, 𝜋) ∈ (0,∞) × (0, 1). We now want to show that, for every 𝜋0 ∈ (0, 1),

lim
(ℎ,𝜋)→(0,𝜋0)

𝐺(ℎ, 𝜋) =
𝑎𝜋20 − 2𝜆𝑏

2𝜆2(1 − 𝜋0)
= 𝐺(0, 𝜋0). (A.5)

By Lemma A.1, we obtain that

𝐼1(ℎ, 𝜋) = − 𝑏
𝜆

1
1 − 𝜋

+ 𝑏
𝜆 ∫

𝜋

0

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦. (A.6)

Therefore,

lim
(ℎ,𝜋)→(0,𝜋0)

𝐼1(ℎ, 𝜋) = − 𝑏
𝜆

1
1 − 𝜋0

+ 𝑏
𝜆

lim
(ℎ,𝜋)→(0,𝜋0)∫

𝜋

0

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦 = − 𝑏

𝜆
1

1 − 𝜋0
. (A.7)

where the second equality is calculated as in Step 1.
Applying Lemma A.1 to 𝐼3, we obtain

𝐼3(ℎ, 𝑦) =
(𝑎 + 𝑏ℎ)𝑦2

− 1 𝑦 (𝑎 + 𝑏ℎ)(2𝑧 − 𝑧2)
(

𝑓 (𝑧)
)

2𝜆
ℎ
d𝑧.
16

2𝜆(1 − 𝑦) 2𝜆 ∫0 (1 − 𝑧)2 𝑓 (𝑦)
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B

I

C

B

Therefore, by definition of 𝐼2, we have

𝐼2(ℎ, 𝜋) = ∫

𝜋

0

1
ℎ
(𝑎 + 𝑏ℎ)𝑦2

𝜆(1 − 𝑦)
1

𝑦2(1 − 𝑦)

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦 + 𝐼4(ℎ, 𝜋), (A.8)

where

𝐼4(ℎ, 𝜋) ∶= − 1
𝜆 ∫

𝜋

0

1
𝑦2(1 − 𝑦)

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
[

∫

𝑦

0

1
ℎ
(𝑎 + 𝑏ℎ)𝑧2(2𝑧 − 𝑧2)

1 − 𝑧
1

𝑧2(1 − 𝑧)

(

𝑓 (𝑧)
𝑓 (𝑦)

)
2𝜆
ℎ
d𝑧
]

d𝑦.

y applying again Lemma A.1 to (A.8), we obtain

𝐼2(ℎ, 𝜋) =
(𝑎 + 𝑏ℎ)𝜋2

2𝜆2(1 − 𝜋)
− 1

2𝜆2 ∫

𝜋

0

(𝑎 + 𝑏ℎ)(2𝑦 − 𝑦2)
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦 + 𝐼4(ℎ, 𝜋). (A.9)

n a similar way as was done for 𝐼1 in Step 1 above, by means of Lemma A.2, we obtain that

lim
(ℎ,𝜋)→(0,𝜋0)

1
𝜆2 ∫

𝜋

0

(𝑎 + 𝑏ℎ)(2𝑦 − 𝑦2)
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦 = lim

(ℎ,𝜋)→(0,𝜋0)
𝐼4(ℎ, 𝜋) = 0. (A.10)

Therefore,

lim
(ℎ,𝜋)→(0,𝜋0)

𝐼2(ℎ, 𝜋) =
𝑎𝜋20

2𝜆2(1 − 𝜋0)
. (A.11)

By (A.7) and (A.11), the limit in (A.5) holds.
To conclude Step 2 we want to prove that, for every ℎ0 ∈ [0,∞), we have that

lim
(ℎ,𝜋)→(ℎ0 ,0)

𝐺(ℎ, 𝜋) = − 𝑏
𝜆
= 𝐺(ℎ0, 0). (A.12)

From (A.6), we have that

lim
(ℎ,𝜋)→(ℎ0 ,0)

𝐼1(ℎ, 𝜋) = − 𝑏
𝜆
+ 𝑏
𝜆

lim
(ℎ,𝜋)→(ℎ0 ,0)∫

𝜋

0

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦.

learly,

0 ≤ lim inf
(ℎ,𝜋)→(ℎ0 ,0)∫

𝜋

0

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦 ≤ lim sup

(ℎ,𝜋)→(ℎ0 ,0)∫

𝜋

0

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦

≤ lim sup
𝜋→0 ∫

𝜋

0

1
(1 − 𝑦)2

d𝑦 = 0.

Hence,

lim
(ℎ,𝜋)→(ℎ0 ,0)

𝐼1(ℎ, 𝜋) = − 𝑏
𝜆
. (A.13)

In a similar way, by (A.9), we obtain

lim
(ℎ,𝜋)→(ℎ0 ,0)

𝐼2(ℎ, 𝜋) = 0. (A.14)

Therefore, (A.13) and (A.14) imply (A.12).
Step 3. (Continuity of 𝐹𝜋 .) For every (ℎ, 𝜋) ∈ (0,∞) × (0, 1), we have that

𝐹𝜋 (ℎ, 𝜋) = − 2
ℎ𝜋2(1 − 𝜋)

[

𝑎𝜋 + 𝑏ℎ
1 − 𝜋

+ 𝜆𝐹 (ℎ, 𝜋)
]

.

Substituting the explicit expression (3.3) for 𝐹 , we have

𝐹𝜋 (ℎ, 𝜋) = −
2(𝑎 + 𝑏ℎ)
𝜋2(1 − 𝜋) ∫

𝜋

0

1
ℎ

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦,

and Lemma A.1 yields that

𝐹𝜋 (ℎ, 𝜋) = − 𝑎 + 𝑏ℎ
𝜆(1 − 𝜋)2

+ 𝑎 + 𝑏ℎ
𝜋2(1 − 𝜋) ∫

𝜋

0

2𝑦 − 𝑦2

(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦. (A.15)

y (A.10), for every 𝜋0 ∈ (0, 1), we thus obtain

lim
(ℎ,𝜋)→(0,𝜋0)

𝐹𝜋 (ℎ, 𝜋) = 𝐹𝜋 (0, 𝜋0) = − 𝑎
𝜆(1 − 𝜋0)2

.

To conclude Step 3 (and so the proof of Proposition 3.1) we want to prove that, for every ℎ0 ∈ [0,∞),

lim 𝐹𝜋 (ℎ, 𝜋) = 𝐹𝜋 (ℎ0, 0) = −
𝑎 + 𝑏ℎ0 . (A.16)
17

(ℎ,𝜋)→(ℎ0 ,0) 𝜆
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By (A.15), we obtain

lim
(ℎ,𝜋)→(ℎ0 ,0)

𝐹𝜋 (ℎ, 𝜋) = −
𝑎 + 𝑏ℎ0
𝜆

+ lim
(ℎ,𝜋)→(ℎ0 ,0)

𝑎 + 𝑏ℎ
𝜋2(1 − 𝜋) ∫

𝜋

0

2𝑦 − 𝑦2

(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦.

learly, we have that

lim inf
(ℎ,𝜋)→(ℎ0 ,0)

𝑎 + 𝑏ℎ
𝜋2(1 − 𝜋) ∫

𝜋

0

2𝑦 − 𝑦2

(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦 ≥ 0.

ithout loss of generality, when computing the limit in (A.16), we can consider ℎ ∈ (0, ℎ0 + 𝛿) for some 𝛿 > 0. Thus, we obtain

lim sup
(ℎ,𝜋)→(ℎ0 ,0)

𝑎 + 𝑏ℎ
𝜋2(1 − 𝜋) ∫

𝜋

0

2𝑦 − 𝑦2

(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦

≤ lim sup
𝜋→0

𝑎 + 𝑏(ℎ0 + 𝛿)
𝜋2(1 − 𝜋) ∫

𝜋

0

2𝑦 − 𝑦2

(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆

ℎ0+𝛿 d𝑦 = 0,

here the last equality follows for example by using the estimate
𝑓 (𝑦)
𝑓 (𝜋)

≤ 𝑒
1
𝜋 −

1
𝑦 .

ence (A.16) holds. □

We conclude this appendix with the proof of Lemma 4.2.

roof of Lemma 4.2. If ℎ = 0 the properties are easily obtained from the explicit Eq. (4.5).
Let ℎ ∈ [0,∞) and 𝜋 ∈ (0, 1). Since e1∕𝑦 ≤ 𝑒1∕𝑧 if 0 < 𝑧 ≤ 𝑦 ≤ 𝜋, we have that

∫

𝑦

0

1
(1 − 𝑧)2

(

𝑓 (𝑧)
𝑓 (𝑦)

)
2𝜆
ℎ
d𝑧 ≤

(

𝑦
1 − 𝑦

)− 2𝜆
ℎ

∫

𝑦

0

1
(1 − 𝑧)2

(

𝑧
1 − 𝑧

)
2𝜆
ℎ
d𝑧 = ℎ

ℎ + 2𝜆
𝑦

1 − 𝑦
. (A.17)

Recall the form of 𝐺 in (A.4) and thus notice that

𝐼3(ℎ, 𝑦) = ∫

𝑦

0

𝑎 + 𝑏ℎ
(1 − 𝑧)2

(

𝑓 (𝑧)
𝑓 (𝑦)

)
2𝜆
ℎ
d𝑧 ≤ ℎ(𝑎 + 𝑏ℎ)

ℎ + 2𝜆
𝑦

1 − 𝑦
.

By Lemma A.1, we obtain

𝐼1(ℎ, 𝜋) = − 𝑏
𝜆(1 − 𝜋)

+ 𝑏
𝜆 ∫

𝜋

0

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦.

Therefore, from (A.4), we have that

𝐺(ℎ, 𝜋) ≤ − 𝑏
𝜆(1 − 𝜋)

+ 𝑏
𝜆 ∫

𝜋

0

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦

+
2(𝑎 + 𝑏ℎ)
ℎ + 2𝜆 ∫

𝜋

0

1
ℎ

1
𝑦(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦.

y applying again Lemma A.1 to the second integral, we obtain

𝐺(ℎ, 𝜋) ≤ − 𝑏
𝜆(1 − 𝜋)

+ 𝑏
𝜆 ∫

𝜋

0

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦

+ 𝑎 + 𝑏ℎ
𝜆(ℎ + 2𝜆)

𝜋
1 − 𝜋

− 𝑎 + 𝑏ℎ
𝜆(ℎ + 2𝜆) ∫

𝜋

0

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦

=
−𝑏(ℎ + 2𝜆) + 𝑎𝜋 + 𝑏ℎ𝜋

𝜆(ℎ + 2𝜆)(1 − 𝜋)
+ 2𝜆𝑏 − 𝑎
𝜆(ℎ + 2𝜆) ∫

𝜋

0

1
(1 − 𝑦)2

(

𝑓 (𝑦)
𝑓 (𝜋)

)
2𝜆
ℎ
d𝑦.

sing again (A.17), we arrive at

𝐺(ℎ, 𝜋) ≤ (ℎ + 2𝜆)[−𝑏(ℎ + 2𝜆) + 𝑎𝜋 + 𝑏ℎ𝜋] + (2𝜆𝑏 − 𝑎)ℎ
𝜆(ℎ + 2𝜆)2(1 − 𝜋)

provided 𝑎 ≤ 2𝜆𝑏. Hence, lim𝜋→1 𝐺(ℎ, 𝜋) = −∞ if 𝑎 < 2𝜆𝑏 and lim𝜋→1 𝐺(ℎ, 𝜋) < 0 if 𝑎 = 2𝜆𝑏.
To show that lim𝜋→1 𝐺(ℎ, 𝜋) = +∞ if 𝑎 > 2𝜆𝑏, note that we can estimate the term in (A.17) from below as

∫

𝑦

0

1
(1 − 𝑧)2

(

𝑓 (𝑧)
𝑓 (𝑦)

)
2𝜆
ℎ
d𝑧 ≥ 𝑒

2𝜆
ℎ ( 1𝑦−

1
(1−𝜖)𝑦 )

∫

𝑦

(1−𝜖)𝑦

1
(1 − 𝑧)2

(

𝑧(1 − 𝑦)
𝑦(1 − 𝑧)

)
2𝜆
ℎ
d𝑧

≥ 𝑒
2𝜆
ℎ ( 1𝑦−

1
(1−𝜖)𝑦 ) ℎ

(

𝑦
− 𝜖−(2𝜆+ℎ)∕ℎ

)

.

18

ℎ + 2𝜆 1 − 𝑦
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Consequently, for every 𝜀 ∈ (0, 1) there exists 𝛿 ∈ (0, 1) such that

∫

𝑦

0

1
(1 − 𝑧)2

(

𝑓 (𝑧)
𝑓 (𝑦)

)
2𝜆
ℎ
d𝑧 ≥ ℎ

ℎ + 2𝜆
(1 − 𝜀)

𝑦
1 − 𝑦

, ∀ 𝑦 ∈ (1 − 𝛿, 1).

Using this lower bound and applying a similar argument as above by means of Lemma A.1, we obtain that lim𝜋→1 𝐺(ℎ, 𝜋) = +∞ if
𝑎 > 2𝜆𝑏. □
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