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Introduction

The ability to predict with precision events, such as the number of battle-related fatalities,

is not only of academic interest, but it holds significant implications for policy-making

and conflict prevention too. This broad interest has enlightened our research, which,

specifically, delves into the use of temporal transformers as a new approach to predict

the number of battle-related deaths, at the country-level and over a forecast temporal

horizon spanning from 3 to 14 months.

Our Artificial Intelligence - Early Warning System (AI-EWS), proposed for the 2023/24

VIEWS prediction competition [Hegre et al., Forthcoming], leverages a multi-headed at-

tention mechanism as outlined by Vaswani et al. [2017]. We chose the temporal transform-

ers due to their proven efficacy in time series representation learning, as demonstrated

in Zerveas et al. [2021]. The model incorporates residual connections from input to

output, preserving linear activation, a method supported by empirical evidence for its

effectiveness in time-series forecasting [Zeng et al., 2023]. The following section details

the methodology used to harness this model for time series regression.

0.1 The Temporal Transformers Model

The proposed AI-EWS employs a transformer model to predict fatalities across all coun-

tries over twelve weeks. Inspired primarily by the Time-series Dense Encoder (TiDE)

model, known for its proficiency in long-term forecasting [Das et al., 2023], our approach

replaces the traditional dense encoder with an attention-based encoder, improving our

results. Consistent with the original TiDE implementation, our model includes residual

connections from input to output, preserving linear activation, a method validated for its

efficiency in time-series forecasting [Zeng et al., 2023].

Past data processing involves segmenting into covariates (the independent features)

and target values (the dependent feature, i.e. the number of fatalities), and dimension-

ality reduction of the covariates using a residual block, with linear activation, to keep

foundational linearity [Das et al., 2023]. Merging this processed data with positional en-
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Figure 2: Model Architecture

coding, it’s then channeled through the attention mechanism crucial in the transformer

framework. The outputs are structured to effectively interface with the temporal de-

coder, which processes the data incrementally per forecast horizon, using direct residual

connections, which integrate information from past values.

Overall, the model’s design is geared towards robust long-term prediction, while main-

taining a prime simplicity in its architecture and balancing advanced modeling techniques

with practical forecasting reliability. The model is trained using the Negative Log Like-

lihood (NLL) loss function to optimize its probabilistic forecasts, assuming a negative

binomial distribution of the outcome and fitting the model effectively to the multivariate

nature of the problem.

NLL Loss = − 1
N

N∑
i=1

H∑
j=1

log P (yij|yi−L:i, xi−L:i)), (1)

where N is the number of training samples, H is the number of forecasted horizons,

yij is the actual value for the j-th horizon of the i-th sample, P (yij|xi) is the predicted

probability distribution of the j-th horizon given the input sample (yi−L:i, xi−L:i), and L

is the lookback length of the sample.

For the purpose of code reproducibility, the parameters used are shown in the table

below:

feat_proj transf_enc_dim head_size num_heads num_transf_enc mlp_dec_dim dropout
32 32 32 3 1 1024 0.1
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Data Implementation

To address the challenge of forecasting battle-related deaths over a time horizon of 3 to

14 months, we incorporated lag features with an initial gap of 2 months:

target lag_3 lag_4 lag_n lag_13 lag_14
1 4.0 5.0 ... 14.0 15.0
2 5.0 6.0 ... 15.0 15.0
3 6.0 7.0 ... 15.0 15.0
4 7.0 8.0 ... 15.0 15.0
5 8.0 9.0 ... 15.0 15.0
6 9.0 10.0 ... 15.0 15.0
7 10.0 11.0 ... 15.0 15.0
8 11.0 12.0 ... 15.0 15.0
9 12.0 13.0 ... 15.0 15.0
10 13.0 14.0 ... 15.0 15.0
11 14.0 15.0 ... 15.0 15.0
12 15.0 15.0 ... 15.0 15.0
13 15.0 15.0 ... 15.0 15.0
14 15.0 15.0 ... 15.0 15.0
15 15.0 15.0 ... 15.0 15.0

In the table, italicized values represent unknown future values not available in the

dataset. For these, we used the last known historical value.

To ensure robust model training and evaluation, we partitioned the data to exclude

any entries with unknown future values. Our data partitioning strategy for each country

was as follows:

1. Dropped Data (last 14 months): All entries with unknown future values were

excluded during training and validation.

2. Validation (6-10 months before testing period): The 6-10 months immedi-

ately preceding the testing period were used for validation.

3. Training (remaining data): All remaining data before the validation period were

allocated to the training set.
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Results

The tables below present a comparison between the results of our “Transformer” model

and the benchmark models from the competition.

CRPS
Model Y2018 Y2019 Y2020 Y2021 Y2022 Y2023 mean

Transformer 12,16763 10,4524 23.76307 76,88208 119,0455 51,11477 48.90424
benchmark_conflictology_12m 14.48288 9.146306 21.33933 76.84948 123.9952 50.35671 49.02849
benchmark_last_with_poisson 20.17346 9.480041 23.69811 85.60546 131.0171 678.9598 158.8226

benchmark_boot_240 23.57732 22.45758 31.41744 86.62632 120.2492 52.72215 56.50867
benchmark_exactly_zero 24.13045 23.01876 32.04058 87.33901 120.9682 53.54319 56.50636

IGN
Model Y2018 Y2019 Y2020 Y2021 Y2022 Y2023 mean

Transformer 0,841352 0,877735 0,849775 0,802891 1,344082 1,067288 0,963854
benchmark_conflictology_12m 0.640281 0.610132 0.566535 0.685623 0.694711 0.682261 0.646257
benchmark_last_with_poisson 1.198439 1.045585 1.110316 1.227781 1.124429 1.124699 1.138875

benchmark_boot_240 1.123216 1.111029 1.115448 1.152036 1.154555 1.154135 1.135403
benchmark_exactly_zero 1.55813 1.55813 1.549433 1.614664 1.632058 1.614664 1.587513

MIS
Model Y2018 Y2019 Y2020 Y2021 Y2022 Y2023 mean

Transformer 121,3819 102,1785 381,7671 1436,088 2284,74 841,821 861,3294
benchmark_conflictology_12m 186.554 89.0579 344.964 1435.55 2142.13 1042.92 873.529
benchmark_last_with_poisson 380.623 172.686 455.806 1690.71 2599.28 13523.5 3120.434

benchmark_boot_240 454.09 426.006 606.003 1708.3 2380.74 1030.99 1101.355
benchmark_exactly_zero 482.609 460.375 640.812 1746.78 2419.36 1070.86 1363.466

Conclusions

In this study, we presented our predictive model for forecasting battle-related fatalities

over a forecast horizon ranging from 3 to 14 months.

The results demonstrate that the Transformer model outperforms on average the

benchmark models in CRPS and MIS, but not in IGN, where the Conflictology bench-

mark model surpasses our Transformer model. Overall, the Transformer model shows

superior probabilistic forecasting and prediction accuracy compared to the benchmarks.

Importantly, it should be noted that no optimization of the Transformer model was per-

formed in this evaluation. Future optimization efforts are planned to further enhance

the model’s performance, potentially leading to even better forecasting results and more

accurate predictions.
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