
Commit-Chains Without Smart Contracts for Blockchain
Applications in Local Communities

Fadi Barbàra
fadi.barbara@unito.it
University of Turin
Torino, Italy, Italy

Flavia Fredda
flavia.fredda@unicam.it
University of Camerino
Camerino, Italy, Italy

Claudio Schifanella
claudio.schifanella@unito.it

University of Turin
Torino, Italy, Italy

ABSTRACT

Blockchain technology’s scalability is a major challenge that ham-
pers its adoption and utility, particularly in resource-constrained
local communities. In this paper, we present TokenCards 1, a novel
commit-chain tailored to local communities.

Our Layer 2 proposal utilizes an RSA accumulator, selected for its
efficiency overMerkle Trees and ability to provide non-membership
proofs, and propose a novel blockchain-agnostic time-stamping
mechanism called BATS to certify off-chain operations. Our ap-
proach allows TokenCards to offer a cost-free service to users
while incurring minimal costs for business owners. This strategy
supports local economies by digitizing transactions, enhancing
privacy.

Results indicate that RSA accumulators excel in performance in
terms of costs, computation and time complexity outperforming tra-
ditional methods. Moreover, the implementation of TokenCards
represents a significant advancement in the practical application
of blockchain technology in local communities, providing a user-
friendly, scalable, and economically feasible solution. Through this
innovation, we contribute to the field by offering a system that
imposes minimal costs, primarily on the business owner, and sig-
nificantly simplifies the user experience in local economic transac-
tions.

CCS CONCEPTS

• Security and privacy→ Digital signatures; Hash functions

and message authentication codes; • Applied computing→
Digital cash; Electronic funds transfer; •Networks→Network
File System (NFS) protocol; Cross-layer protocols.

KEYWORDS

blockchain, tokens, rsa accumulator, local communities, local econ-
omy

ACM Reference Format:

Fadi Barbàra, Flavia Fredda, and Claudio Schifanella. 2024. Commit-Chains
Without Smart Contracts for Blockchain Applications in Local Communi-
ties. In International Conference on Information Technology for Social Good

1https://github.com/flaviafredda/token-cards

This work is licensed under a Creative Commons Attribution International
4.0 License.

GoodIT ’24, September 04–06, 2024, Bremen, Germany
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1094-0/24/09
https://doi.org/10.1145/3677525.3678664

(GoodIT ’24), September 04–06, 2024, Bremen, Germany. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3677525.3678664

1 INTRODUCTION

It is widely known that permissionless and decentralized blockchains
“cannot scale”, i.e. transaction throughput do not improve as more
nodes participate in the network. This is noted both by the industry
practitioners (see the ubiquity of Buterin’s scalability trilemma [7],
a bi-dimensional trade-off asserting that it is possible to pick at
most two qualities among decentralization, security and high trans-
action throughput) and the great body of literature (see e.g. [38]).
Scalability is a significant issue impacting the usability of digital
applications in local communities, which otherwise could foster
a great variety of Grassroots Innovation (GRI). These innovations
are typically driven by economically disadvantaged individuals
who apply practical and creative solutions using indigenous knowl-
edge to solve localized problems [16]. However, the difficulty in
extending and improving everyday user-friendly applications, such
as the throttled transaction throughput leading to prohibitively
high transaction fees that generally exceed day-to-day transaction
values, presents a major obstacle. Therefore, addressing these pre-
vailing technological challenges is crucial to create opportunities
for such innovations to flourish.

To solve the scalability problem, a plethora of potential solutions
have been proposed, both in academic literature and by the industry.
The solutions range from more centralized blockchains such as
Solana [36], to permissioned blockchains such as Hyperledger [12],
pegged sidechains [2, 11, 29], sharding [35], payment channels [32],
state channels [27] or validating bridges [23]. The interested reader
can see in the work by Hafid et al. [17] a comprehensive survey on
the topic. However, none of them is tailored to the needs of local
communities.

The study of the aforementioned solutions let researchers un-
derstand the inherent characteristics of the problem and get new
insights. Probably as a consequence of the aforementioned scala-
bility trilemma, recent solutions nearly always assume moving the
vast majority of the transactions off-chain. This can be seen in both
of the most popular permissionless blockchain projects, namely
Ethereum [6] and Bitcoin [26]. The first is following a "roll-up ap-
proach" (off-chain batches of transactions without with on-chain
certification), as expressively announced by the Ethereum de facto
leader Vitalik Buterin in a series of blog posts [8, 9]. The latter
is mostly focused on its most popular payment channel network,
Lighting Network [32], while experiments with the off-chain smart
contract system RGB [33] and ZK-based roll-ups such as BitVM
[21].

216

https://orcid.org/0000-0001-8021-5500
https://orcid.org/0009-0001-2528-3372
https://orcid.org/0000-0001-7449-6529
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3677525.3678664
https://doi.org/10.1145/3677525.3678664
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677525.3678664&domain=pdf&date_stamp=2024-09-04


GoodIT ’24, September 04–06, 2024, Bremen, Germany Barbàra, et al.

The clear advantage of removing transactions from the main
blockchain, also known as Layer 1 or L1, is the decoupling of scala-
bility and security. By achieving a higher transaction throughput
outside the main blockchain the security and trust assumptions
regarding the L1 stay the same and no ulterior study or redesign of
consensus mechanisms is needed. Conversely, a notable drawback
of this method is the fragmentation of liquidity, which refers to
the reduction in the availability of assets or tokens that can be
quickly bought, sold or otherwise used in the network. Typically,
distinct L2s necessitate external liquidity for initiation and usage,
which is derived from the parent L1. This poses a challenge for the
integration of new users. At other times, liquidity is generated (or
issued) through questionable practices, such as "airdrops," where
tokens are distributed to new users based on specific and arbitray
rules.

Another issue with current L2 methods is that they are global in
nature. Unstated assumption is that the users should interact even
if geographically apart and do not know each other. Consequently,
every security model treats users as rational, active malicious at-
tackers until proven otherwise, an assumption that goes against
everyday experience

We claim that the union of these two facts is the major reason
contributing to a lack of adoption in everyday systems of blockchain
technology, especially in local communities. This despite the fact
that the decentralization and data integrity properties of blockchain
based systems and protocols are major advantages in user facing
systems.

Contributions: To investigate our claim, we propose a change of
attitude. In this paper, we present an off-chain architecture whose
assumption is that users are geographically close and does not
require any outside liquidity to start participating in the system,
while not engaging in speculation-fueled airdrops. We achieve the
latter by requiring backing of the token issuance via real physical
objects. To show the feasibility of our approach, we also present an
implementation, TokenCards, that can be thought of as a fidelity
card for local commerce. Starting from our previous work, Locale
[3], we extend it by adding token transfer, more efficiency and
stronger cryptographic guarantees while still retaining the user-
friendly experience necessary for adoption by local businesses and
consumers. To accomplish that, we developed a new time-stamping
mechanism (named BATS) that is blockchain agnostic, besides being
cheaper andmore private, which can be of independent interest. The
goal is to foster local economic growth but strengthen community
bonds through secure and efficient technological interactions.

We also provide the proof of concept implementation of Token-
Cards2. In other words, TokenCards is an efficient and usable
extension of Locale (see Sections 2.3 and 6.2 to understand the
details of this difference)

Organization: The rest of the paper is structured as follows:
Section 2 discusses previous work in the field, Section 3 introduces
the basic concepts and technologies used in our work, namely
Accumulators (Section 3.1), and Blockchain Certification (Section
3.2). In Section 4, we presents the design of our solution, including
the actors involved and the threat model, while in Section 5, we
describe our implementation of the proposed solution. Finally, in

2The project repository can be found at: https://github.com/flaviafredda/token-cards

Section 6, we provide an evaluation of our solution. In Section 7,
we conclude the paper and discuss potential future work.

2 RELATEDWORKS

In the following we give an overview of current proposals for com-
mit chains. For a general overview on Layer2 systems, the interested
reader can see systematization of knowledge by Gudgeon et al. [15]
and the taxonomy by Jourenko et al. [18]. For a comparison be-
tween state of the art commmit-chain proposals and our proposal
see Table 1.2.1 NOCUST

The work by Khalil et al. [19] introduced the concept of Commit-
Chains. The system is based on the interaction between an Operator
and a smart contract deployed on an EVM blockchain. The users of
NOCUST can transfer coins off-chain, although after a registration
through the operator and a deposit of funds. Registration, deposit
and withdraw of funds are on-chain operations, so the user has
to pay the fees of the transaction in addition to providing exter-
nal liquidity to the system. Consequently, due to the deposit, the
NOCUST commit-chain lets users transfer pegged token already
present on the blockchain. If the operator is honest, the total sum
of funds in the commit-chain is equal to the totality of deposits of
the users.

User are expected to be periodically online and monitor the
blockchain to avoid loss in case of malicious behaviour by the
operator. In case of malicious actions on the part of the operator,
users have a window-period to withdraw the funds. Therefore as
long as the user has (periodic) access to the blockchain where the
smart contract is deployed, then the user is able to recover funds in
case of malicious actions.

2.2 Plasma Cash

G. Konstantopoulos in [20] proposes a Layer 2 scalability solution
named Plasma Cash. Plasma Cash is a Plasma [31] construction.
Plasma has been probably the first proposal to introduce shard-
ing to the ethereum blockchain. Plasma cash implementation uses
NFTs and Sparse Merkle Trees (SMTs) to reduce data storage and
bandwidth requirements for users.

NFTs make tokens unique and allow them to have a unique
history, so when a user receives a coin, they only need to monitor
the history of that specific coin rather than the entire Plasma chain.
This reduces the user’s checking requirements to the NFTs they
possess, in contrast to Plasma, which necessitates that usersmonitor
the entire Plasma chain to ensure transaction validity.

SMTs are used for efficient verification of (non)-inclusion of a
transaction involving a NFT in a block.

The overall system scales down the storage and bandwidth re-
quirements with respect to Plasma, but it still requires heavy storage
and bandwith burden on the coin’s senders, given that the proofs
required to send a coin in Plasma Cash are linear on the number of
blocks.

2.3 Locale

Our current research builds directly upon the Locale protocol intro-
duced by Barbàra et al. [3], leveraging its foundational blockchain-
based methodologies to further enhance and expand its capabilities.

217

https://github.com/flaviafredda/token-cards


Commit-Chains Without Smart Contracts for Blockchain Applications in Local Communities GoodIT ’24, September 04–06, 2024, Bremen, Germany

Table 1: Comparison of different Commit-Chain constructions.

On-Chain

Check

Off-Chain

Transfer Possi-

ble

Registration

Exemption

Security As-

sumptions

Different To-

kens Support

Type of Accu-

mulator

Smart Con-

tract Indepen-

dence

NOCUST Periodic Yes No Monitoring No Merkle Tree No
Plasma Cash Periodic Yes No Monitoring No Merkle Tree No
Locale Not Needed No Yes N/A Yes Merkle Tree Yes
TokenCards Not Needed Yes Yes Not needed Yes RSA Yes

It introduces Locale, a novel blockchain-based protocol designed
to digitize traditional paper loyalty systems through a new time-
stamping mechanism that aids fidelization processes in local com-
munities. The simplicity of the Locale protocol guarantees its fur-
ther developments to have user-friendly interfaces. It encourages
then community participation without demanding unnecessary
complexities, such for example the necessity of holding cryptocur-
rency funds on a Layer 2, thereby lowering the entry barrier for
users.

However, while the Locale protocol provides a proof of concept
for transitioning from paper-based systems to a digital platform,
it is not without limitations. The implementation uses a Merkle
Tree as an accumulator (Section 3.1) to maintain the integrity and
verifiability of transactions . Although secure, this choice is com-
putationally intensive and poses challenges for dynamic updates
which are crucial for businesses experiencing frequent purchases.
Additionally, the current design of Locale does not support the
transfer of tokens between customers, restricting its functionality
and potential for broader adoption within community-based loyalty
programs.

3 PRELIMINARIES

3.1 Accumulators

An accumulator is a cryptographic primitive whose goal is to suc-
cinctly represent a set of elements [5], with the capability to later
prove the inclusion of any element in the set without revealing the
entire set. Here succinctly means that the space complexity of the
accumulator is constant in the number of elements in the set.

Accumulators can be seen in four kinds: (dynamic) RSA accu-
mulators [10], Merkle Trees [24, 25], Bilinear accumulators [28]
and Expressive set accumulators [37]. For a general survey on ac-
cumulators see the work by Loporchio et al. [22]. In TokenCards
we decided to deviate from current state of the art and use RSA
accumulators instead of Merkle trees. Advantages of this choice
can be seen in Sections 6.2 and 6.3. Therefore the definitions in
this section will be done in that direction. We made this choice
for reason of efficiency and trustlessness. See Section 6 for more
details.

A RSA-accumulator (from now on, simply accumulator) Acc, is
a 7-tuple of functions such that:
• (A0, 𝑁 ) ← Acc.Setup(1𝜆) is a probabilistic algorithm that
initializes the accumulator with a biprime modulus 𝑁 = 𝑝𝑞

and the output of the Euler’s totient function 𝜙 = 𝜙 (𝑝, 𝑞) =
(𝑝 − 1) (𝑞 − 1), 𝑝 and 𝑞 strong prime numbers randomly
chosen, and a baseA0. Primes as large as 𝜆 bits, the security
parameter. Typically each prime is 1024 bits [30]. We stress

the fact that (A0, 𝑁 ) are public parameters, while the strong
primes 𝑝 and 𝑞 a the value 𝜙 are kept private by the creator
of the accumulator. This operation is done only once. We
may call the creator of the accumulator the owner of the
accumulator.
• A𝑖+1 ← Acc.Add(A𝑖 , 𝑁 , 𝑥) is a deterministic algorithm that
add a new token in the accumulator. It takes as input the
current state of the accumulator A𝑖 , the biprime modulus
𝑁 and an prime number 𝑥 , and outputs a new state of the
accumulator, typically by computing a new value as

(A𝑖 )𝑥 mod 𝑁 . (1)

Note that this operation can be efficiently done only by who
knows 𝑝 and 𝑞 and that the current state of the accumulator
is public parameter.
• A𝑖+1 ← Acc.Rm(A𝑖 , 𝑁 , 𝑥) is an algorithm that modifies the
accumulator to remove an element 𝑥 . In practice that func-
tion is instantiated by using Acc.Add(A𝑖 , 𝑁 , 𝑥−1 mod 𝜙).
It is easy to see the correctness of this operation by looking
at Equation (1) and noting that 𝑥𝑥−1 ≡ 1 mod 𝜙 . Note that
this operation can be efficiently done only by who knows 𝑝
and 𝑞, i.e. the owner.
• W𝑖 | 𝑒𝑟𝑟 ← Acc.GenMemProof (A𝑖 , 𝑁 , 𝑥, 𝑋 ) is an algorithm
that generates a proof of membership for an element 𝑥 if
included in A𝑖 without revealing any other elements, 𝑒𝑟𝑟
otherwise. In practice assume 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is the list
of 𝑛 elements included in A𝑖 . To prove that 𝑥 ∈ 𝑋 at state 𝑖 ,
the owner of the accumulator creates a membership witness
W𝑖 :

W𝑖 = A
∏

𝑦∈𝑋 \{𝑥 } 𝑦
0 mod 𝑁 (2)

where 𝑋 \ {𝑥} represents the set 𝑋 excluding the element
𝑥 . To accomplish this, the owner has to keep track of all
the elements 𝑥𝑘 , 𝑘 = 1, . . . , 𝑛 in order to efficiently compute∏

𝑦∈𝑋\{𝑥 } 𝑦.
• N𝑖 | 𝑒𝑟𝑟 ← Acc.GenNonMemProof (A𝑖 , 𝑁 , 𝑥, 𝑋 ) is an algo-
rithm that generates a proof of non-membership for an el-
ement 𝑥 ∉ 𝑋 and 𝑥 prime and outputs 𝑒𝑟𝑟 otherwise. This
confirms that 𝑥 has not been included in the accumulator in
a trustless manner; without this capability, the verifier would
have to rely on the assumption that the Acc.GenMemProof
function has returned an error, and would not be able to
independently verify that 𝑥 is indeed absent from the accu-
mulator.
In practice, consider 𝑋 as before and let 𝑝 =

∏
𝑦∈𝑋 𝑦. Since

𝑥 prime, then the Greatest Common Divisor gcd(𝑝, 𝑥) =

1, or equivalently there exist numbers 𝑎 and 𝑏 such that

218



GoodIT ’24, September 04–06, 2024, Bremen, Germany Barbàra, et al.

𝑎 · 𝑝 + 𝑏 · 𝑥 = 1 (see the Extended Euclidean Algorithm [34]).
Then N𝑖 = (𝑎, 𝑏) (see Acc.VerNonMemProof on how this
proof is verified)
• 0|1← Acc.VerMemProof (A𝑖 , 𝑁 , 𝑥, 𝑋,W𝑖 ) is a verification
algorithm that, given at least an element 𝑥 , a proof of mem-
bershipW𝑖 , and the current state of the accumulator A𝑖 ,
confirms whether 𝑥 is indeed a member of the accumulator
by checking:

(W𝑖 )𝑥
?≡ A𝑖 mod 𝑁 . (3)

As seen by Equation (3), wponentiation can be done equiva-
lently even if 𝑥 is the product of 𝑡 elements, i.e. 𝑥 =

∏𝑡
𝑖=1 𝑥𝑖 .

With this notation, Equation (2) still stands. Verifying many
token at once is called batch verification.
• 0|1 ← Acc.VerNonMemProof (A𝑖 , 𝑥,N𝑖 ,A0) is a verifica-
tion algorithm that, given an element 𝑥 , a proof of non-
membership N𝑖 = (𝑎, 𝑏), and the current state of the accu-
mulator, confirms whether 𝑥 is indeed not a member of the
accumulator by checking:

(A𝑖 )𝑎 (A0)𝑥 ·𝑏
?≡ A0 mod 𝑁 . (4)

Each component of the tuple is designed to support the secure,
efficient, and verifiable accumulation of data, ensuring the integrity
and confidentiality of the accumulated information.

3.2 Blockchain Certification and BATS

A timestamp serves as proof that a document existed in a particu-
lar state before a specific moment, thereby assigning a verifiable
date to that document (e.g., postmark). Digital data can be securely
timestamped by recording its value in a public public board with
verifiable integrity, e.g. in a blockchain via a transaction. If the
timestamp is obtained using a cryptographically secure hash func-
tion, the likelihood of a hash collision is negligible, as defined by
the properties of the hash function. This way, the timestamp acts as
a unique digital fingerprint of the document, virtually eliminating
the possibility of duplication. Securely recording timestamps is also
known as certification.

For blockchain-based timestamping and data certification, sev-
eral alternatives exist on platforms like Bitcoin, Ethereum and
Solana. The first and most famous if probably OpenTimeStamps3
for the Bitcoin blockchain. Other alternatives such as OriginStamp4
work on multiple blockchains via specific mechanisms.

Generally, current solutions use Merkle Trees as accumulators
to reduce the number of transactions on the blockchain, and embed
the root in blockchain-specific methods. For example, OpenTimeS-
tamps uses the OP_RETURN Bitcoin opcode to embed the root in the
transaction. Ethereum specific solution rely on smart contract to
store the root hash in the blockchain, as done by OriginStamp.

The problem with these methods is that they are not blockchain
agnostic: since the owner has to decide which blockchain to use
given a service, the owner (and the local community in general) is
then tied to one technological solution or project (and therefore
one company, in the majority of cases). In the following we present
a novel certification mechanism that only relies on elliptic curve

3https://dgi.io/ots/
4https://originstamp.com/blog/what-is-blockchain-based-timestamping

cryptography operations, and thus can be used in any blockchain.
We extend the pay-to-contract protocol by Gerhardt and Hanke
[14].

We say that a BlockchainAgnostic Timestamping Solution (BATS)
is a tuple of algorithms (BATS.Cr,BATS.Pub,BATS.Ver) such that:
• 𝑡𝑠 ← BATS.Cr(C,H , 𝑑𝑎𝑡𝑎) is the cryptographic algorithm
that given the curve parameters C, the hash functionH and
the data to be hashed, produces a timestamp 𝑡𝑠 .
• 𝑡𝑥 ← BATS.Pub(C, 𝑡𝑠, 𝑠𝑘from, 𝑝𝑘orig) is the cryptographic
algorithm that given the blockchain curve parameters C,
the timestamp 𝑡𝑠 and the private key 𝑠𝑘from, produces the
certification public key 𝑝𝑘cert that can be used to verify the
timestamp and sends the transaction to it, obtaining hash 𝑡𝑥 .
The public key 𝑝𝑘cert can be obtained doing:

𝑝𝑘cert = 𝑝𝑘orig + (𝑡𝑠 · C.𝐺) (5)

where C.𝐺 is the generator of the curve C. Note that no
block train is needed and curve is passed as parameters so
any curve and blockchain can be used. In another words this
is blockchain agnostic.
• 0|1← BATS.Ver(C,H , 𝑑𝑎𝑡𝑎, 𝑝𝑘to, 𝑡𝑥) is the cryptographic
algorithm that given the curve parameters C, the hash func-
tion H and the data to be hashed, and the transaction 𝑡𝑥 ,
verifies the timestamp.

As demonstrated by the preceding functions, no accumulation is
performed automatically: the decision to use data resulting from an
accumulator for timestamping rests solely with the BATS user. This
approach significantly enhances the flexibility available to BATS
users.

4 DESIGN

Actors. Actors within the system are identified by their associ-
ation with the client they operate for. Hence, references to actors
utilize neutral pronouns such as “it” or “them”.
• Operator : Acts as the instantiator andmanager of the commit-
chain. The operator is distinguished by a unique private-
public key pair (𝑠𝑘𝑏

𝑂
, 𝑝𝑘𝑏

𝑂
), managing all transactions, in-

cluding token generation and expenditure. In practice the
operator comprises of a server and a client, which can be a
smartphone application.
• Users: Engage with the system to receive, spend, and transfer
tokens issued by the operator. Users do not need to register to
TokenCards. They are only required to use the appropriate
client, generally a smartphone app.
• Blockchain: A distributed ledger that is accessible for moni-
toring and/or writing by any party.
• Decentralized File System (DFS): A repository where any en-
tity can upload files (e.g., IPFS). Modifications to the files are
restricted to the uploader.

We published the code in https://github.com/flaviafredda/token-
cards for the project.

Threat Model. We assume that all cryptographic primitives are
secure and follow the recommendations. In particular we assume
that operator and users use a permissionless blockchain based on
ECC using groups where the discrete logarithm is hard and where

219

https://dgi.io/ots/
https://originstamp.com/blog/what-is-blockchain-based-timestamping
https://github.com/flaviafredda/token-cards
https://github.com/flaviafredda/token-cards


Commit-Chains Without Smart Contracts for Blockchain Applications in Local Communities GoodIT ’24, September 04–06, 2024, Bremen, Germany

the operator has less than one-third of the resources needed to
participate in the consensus algorithm (be that hash rate for PoW
blockchains or stake for PoS ones). We assume that users can read
the blockchain whenever they want to (even if they are not required
to do that at any specific time). We assume that the primes 𝑝 and 𝑞
chosen by the operator during Acc.Setup (Section 3.1) are strong
so that the Strong RSA Assumption holds and the accumulator can
be considered collision free [4].

We assume the operator is able to keep public checkpoints of
the current state of the commit-chain. Furthermore we assume any
attacker is capable of corrupt the commit-chain operator or any user,
can perform double spend attempt or Sybil attack and Denial-of-
service. At the same time we assume that at least one between any
user or operator stays honest in case of attack (dishonest majority
scenario). Under these assumptions, commit-chain operator must
be online at least once with a epoch, i.e. to perform the checkpoint.

Security Goals. For any system two goals are important: Safety
and Liveness. In the following we explain what those two notions
mean in TokenCards.

• Safety: Unlike other Layer 2 (L2) systems, TokenCards
operates independently of external liquidity sources. Each
token is fungible and directly represents a verifiable real-
world transaction ascertained by the operator, such as a retail
purchase (e.g., the sale of a sandwich). Consequently, the
arbitrary issuance of new tokens does not detract from the
value of existing tokens. For example, the requirement for a
user to redeem a perk (e.g., a free sandwich) remains constant
at 10 tokens, irrespective of whether there are 100 or 1,000
additional tokens in circulation. On the other hand, any user
must be sure no one can spend its token undetected.
• Liveness. Essentially, any user can access its funds when
needed within a predetermined amount of time. In particular
users must be able to i) spend or ii) transfer funds irrespective
of the current state of the blockchain or the DFS.

Communication Model. Given the threat model and the security
goal, a specific communication model is needed. We assume users
have independent, private (from the operator view) non necessarily
secure channels between them (e.g. a messaging app), that all mes-
sages from and to the blockchain and DFS are bounded following
a semi-synchronous model [1]. All users can read the public key
of the operator, and all states of the accumulator, in particular the
initial, current and previous state of the accumulator. In practice,
the users are aware of the DFS link where all of these information
are stored.

5 TOKENCARDS

5.1 High Level Functions

It is important to understand which operations are carried out in
TokenCards. In particular, it is important to understand which
operation are performed by the operator 𝑂 and which by the user
𝑈 . Moreover, some operation performed by operator 𝑂 can be
triggered by external parties (i.e. are public) while others can only
be triggered by 𝑂 (i.e. are private). Finally some operations can
be performed by 𝑈 directly on the client. To differentiate between

operations in TokenCards, we prepend TC to the name of the
operation.

Private Operational Functions. The following are the functions
that can be performed by the operator 𝑂 :

• TC.Setup: this operation directly calls the Acc.Setup (Sec-
tion 3.1) function to initialize the accumulator and creates
public and private parameters and keys. It is a private op-
eration and it is performed once. Details are explained in
Section 5.2.
• TC.Add : this operation is responsible for updating the state
of the accumulator by incorporating a new token, thereby
expanding the set of valid tokens or credentials. Details are
explained in Section 5.3.
• TC.Spend: this operation checks if a given token is valid and
part of the current state of the accumulator. Upon successful
validation, the token is removed from the active set in the
accumulator. Details are explained in Section 5.4.

Public Operational Functions.

• TC.GenPrime: this operation generates prime number and
note 𝑐 , which is random number. Details are explained in
Sections 5.3 and 5.5.
• TC.SecureTransfer: given a valid note 𝑐 , this operation per-
forms a secure token transfer. Details are explained in Section
5.5.

5.2 Setup

As part of the initialization of TokenCards, the operator 𝑂 per-
formsTC.Setup. This operation differs fromAcc.Setup, even though
Acc.Setup is included in TC.Setup. At first, the function setups
the RSA accumulator to register all the tokenID, using function
Acc.Setup. The RSA accumulator is initialized with a base value
A0. Then,𝑂 creates a pair of private-public key (𝑠𝑘𝑏

𝑂
, 𝑝𝑘𝑏

𝑂
) related

to blockchain funds and a pair of private-public key (𝑠𝑘 𝑓
𝑂
, 𝑝𝑘

𝑓

𝑂
) to

upload and sign content in the DFS.
Careful consideration must be given to the difference between

public and private parameters. Let 𝑁 = 𝑝𝑞 be the RSA modulus and
𝜙 = (𝑝 − 1) (𝑞 − 1) the related Euler’s totient function, where 𝑝 and
𝑞 are distinct large prime numbers, known only to the accumulator
manager (i.e. the operator,𝑂 in our context). Then the factorization
of 𝑁 (i.e. 𝑝 and 𝑞) and 𝜙 are kept secret to ensure the security of the
accumulator. On the other hand 𝑂 releases (A0, 𝑁 , 𝑝𝑘𝑏

𝑂
) publicly

in the DFS. Finally 𝑂 sends a blockchain transaction to addr(𝑝𝑘𝑏
𝑂
),

the address related to 𝑝𝑘𝑏
𝑂
: the value of the transaction should cover

fees for the different certifications (see Section 5.6 and Section 6.3
to understand how that operation is very efficient in terms of 𝑂’s
finances).

We require𝑂 to publish all the details that ensure the successful
setup, namely the address or link to the DFS where (A0, 𝑁 , 𝑝𝑘𝑏

𝑂
)

are published, the hash of the transaction (or equivalently a link to
a block explorer) and the public key 𝑝𝑘 𝑓

𝑂
of the operator. An easy

way to publish this in a local community is by exposing a serialized
version of the information in a QR code in the shop, beside sending
it to the users clients.

220



GoodIT ’24, September 04–06, 2024, Bremen, Germany Barbàra, et al.

5.3 Add New Token

Upon a customer making a purchase 𝑤 , the operator calls the
TC.Add function. This function generates a new tokenID 𝑡𝑤 using
a pseudorandom function. 𝑡𝑤 is uniquely associated with the shop-
ping transaction, in another words the token is backed by a real
life purchase, and therefore a physical object exchange. Since the
element 𝑡𝑤 may not be prime, theAcc.Add function can not take 𝑡𝑤
as input (see Section 3.1). For this reason 𝑡𝑤 = TC.GenPrime(𝑡𝑤)
is used as the input for Acc.Add. The function TC.GenPrime() is
a deterministic function that maps any number to a prime number.
Multiple efficient algorithms can be used to compute that function,
see e.g. [13].

Beside token 𝑡𝑤 ,𝑂 also computes its inverse (𝑡𝑤)−1 mod 𝜙 and
the pair (𝑡𝑤 , (𝑡𝑤)−1 mod 𝜙) is presented as a QR code to the user
in order to facilitate the experience. The inverse is needed for token
transfer, see Section 5.5. The user saves the pair in the smartphone
app together with all the other tokenIDs acquired from other stores.

On the other hand 𝑂 stores only 𝑡𝑤 in the RSA accumulator.
Specifically, for each new tokenID 𝑡𝑤 , 𝑂 follows Equation (1) and
computesA𝑤 = (A𝑤−1)𝑡𝑤 mod 𝑁 . The new state of the accumu-
lator A𝑤 is signed with 𝑠𝑘 𝑓

𝑂
and stored in the DFS. As of now the

current state of the accumulator is visible by all users, but is not
certified to the blockchain.

5.4 Spend Token

When a customer wishes to redeem tokens {𝑡1, 𝑡2, . . . , 𝑡𝑤} for re-
wards or discounts, the operator calls the TC.Spend operation. This
operation first batch verifies the authenticity and validity of the
tokenIDs in question. In practice, after user request, 𝑂 replies with
the couple (W𝑖 ,N𝑖 ) whereW𝑖 is the witness for inclusion of the to-
kenIDs in the accumulator at state 𝑖 whileN𝑖 is the witness for non
inclusion of the tokenIDs in the accumulator.W𝑖 is created using
Equation (3), while N𝑖 is created using Equation (4). If all tokens
{𝑡1, 𝑡2, . . . , 𝑡𝑤} are in the accumulator, then N𝑖 = 𝑒𝑟𝑟 and the veri-
fication is considered to be successful. Otherwise the verification
fails and the user must try again.

If verification is successful, {𝑡1, 𝑡2, . . . , 𝑡𝑤} are deleted from the
accumulator and exchanged for the agreed-upon reward or discount.
The removal of the token is done as explained in Section 3.1 and
uses the Acc.Rm function. The RSA-accumulator on the operator’s
server is updated accordingly from A𝑖 to A𝑖+1, signed with 𝑠𝑘

𝑓

𝑂
and uploaded to the DFS.

5.5 Transfer Token

We explain how to securely transfer a token between user 𝑈1 and
𝑈2. In principle a simple communication of the token from 𝑈1 to
𝑈2 is enough: 𝑂 can not stop that since tokens in the accumulator
are anonymously added. Yet this is not secure in practice:𝑈1 could
still spend the token after the communication, making the transfer
non secure for𝑈2.

Assume tokenID 𝑡𝑤 currently belongs to𝑈1. Recall that for each
𝑡𝑤 there is an inverse (𝑡𝑤)−1 mod 𝜙 created during the the cre-
ation of the token (see Section 5.3). The inverse is needed for trans-
fer.

When𝑈1 wants to securely transfer a token to𝑈2,𝑈1 sends the
couple (𝑡𝑤 , (𝑡𝑤)−1 mod 𝜙) to 𝑈2. 𝑈2 then calls the TC.GenPrime

function obtaining the couple (𝑡 ′𝑤 , 𝑐). Here 𝑡 ′𝑤 is a prime generated
by 𝑂 and 𝑐 is a note proving that 𝑈2 has initiated a secure transfer.
Finally𝑈2 sends (𝑡 ′𝑤 · (𝑡𝑤)−1 mod 𝜙, 𝑐) to TC.SecureTransfer

This function facilitates the transfer of a token from 𝑈1 to 𝑈2.
Upon acceptance of 𝑐 , the TC.SecureTransfer function upon check-
ing the validity of 𝑐 invokes Acc.Add(t′w · (tw)−1 mod 𝜙), updat-
ing the state of the accumulator. Given the identity

𝑡𝑤 · 𝑡 ′𝑤 · (𝑡𝑤)−1 ≡ 𝑡 ′𝑤 mod 𝜙,

adding 𝑡 ′𝑤 · (𝑡𝑤)−1 mod 𝜙 to the accumulator effectively removes
𝑡𝑤 and adds 𝑡 ′𝑤 . Consequently, this process is equivalent to 𝑈1
spending 𝑡𝑤 and𝑈2 getting 𝑡 ′𝑤 , but achieved in an atomic manner.

5.6 Checkpoints

5.6.1 Creation. In our framework, the operator periodically, or
upon reaching a designated threshold, certifies the state of the RSA
accumulator using BATS (Section 3.2) at predetermined intervals.
In practice, in TokenCardswe partition time into discrete intervals
termed epochs. For example, an epoch can span two weeks. The op-
erator𝑂 , holding a private-public keypair (𝑠𝑘𝑏

𝑂
, 𝑝𝑘𝑏

𝑂
) is tasked with

committing the state of a RSA accumulatorA𝑖 to the blockchain at
the closure of each epoch, an action that could be automated for
efficiency .

Assuming we are in epoch 𝑖 , we denote the current state of the
accumulator as A𝑖 and the content identifier in the DFS as 𝑐𝑖𝑑𝑖 .
Then the data to certify is 𝑑𝑎𝑡𝑎𝑖 = (A𝑖 ∥ 𝑐𝑖𝑑𝑖 ).
Setting 𝑝𝑘0 = 𝑝𝑘𝑏

𝑂
, we can define recursively 𝑝𝑘𝑖 as:

𝑝𝑘𝑖 := 𝑝𝑘𝑖−1 + (𝑡𝑠𝑖 · C.𝐺)
where 𝑡𝑠𝑖 = BATS.Cr(C,H , 𝑑𝑎𝑡𝑎𝑖 ), and analogous definition works
for 𝑠𝑘𝑖 . The certification then is done by 𝑂 by computing

BATS.Pub(C,B, 𝑡𝑠, 𝑠𝑘𝑖−1, 𝑝𝑘𝑖 )

obtaining the transaction hash 𝑡𝑥𝑖 .

5.6.2 Verification. Customers can independently verify the cer-
tification of their tokens. By accessing the certified data on the
blockchain, they can perform necessary calculations to confirm the
inclusion of their tokenID.

In particular, after the publication on the blockchain and the
sharing of 𝑡𝑥𝑖 , users can independently get the public key 𝑝𝑘𝑖−1

and the content identifier 𝑐𝑖𝑑𝑖 and the current state of the ac-
cumulator A𝑖 . Therefore they can compute 𝑑𝑎𝑡𝑎𝑖 and compute
BATS.Ver(C,H , 𝑑𝑎𝑡𝑎𝑖 , 𝑝𝑘𝑖−1)

If the computation is succesful, then users can be sure the cur-
rent state of the accumulator they accessed has been certified. To
see if their tokens are in the current accumulator, users can use
the batched verification process via function Acc.GenMemProof
described in Section 3.1. If this computation is successful too, then
the user is sure its token is included in the accumulator.

6 EVALUATION

In the following, we present a comparison of the performance and
qualities of TokenCards with respect to the current state of the
art, namely NOCUST and Plasma Cash (see Section 2).

221



Commit-Chains Without Smart Contracts for Blockchain Applications in Local Communities GoodIT ’24, September 04–06, 2024, Bremen, Germany

6.1 Guarantees

TokenCards adheres to both security goals defined in Section 4.
It ensures safety because token creation is contingent upon pur-
chasing something from the Owner, who is the sole minter of new
tokens. Note that exchanging tokens involves atomically remov-
ing and adding a new token to the accumulator. For this reason, it
is impossible to create new tokens without purchasing products.
Therefore, TokenCards is not subject to token inflation.

Note that with the use of non-membership proofs, a cheating
operator is always detected. Since the operator can block the spend-
ing or transferring of tokens by requiring a membership proof, any
legitimate blocking of such operations must be atomically accom-
panied by a membership proof. Refusal of operations without this
proof will be considered cheating and thus detected.

TokenCards also ensures liveness. Since buying and selling
products from the owner are not dependent on blockchain opera-
tions or interaction with the DFS, TokenCards is always live (as
long as the shop is open in the community, in the case of minting
and spending tokens). This is because spending tokens and trans-
ferring funds require the user and the operator to interact with the
accumulator, which is stored on a server, eliminating the need to
interact with the blockchain directly.

6.2 Performance

Since performance is closely related to the accumulator used, this
part of the comparison essentially contrasts the RSA accumulator
used in TokenCards with the Merkle Tree (MTs) used in NOCUST
and Plasma Cash. For a summary of the comparison, see Table 2.
For a detailed comparison between accumulators, including the
RSA accumulator and MT, refer to the work by Loporchio et al. .
[22]

The primary difference between MTs and RSA accumulators lies
in the operations they use. MTs utilize hash functions for element
inclusion, while RSA accumulators use modular exponentiation.
This distinction offers advantages for TokenCards. Specifically,
modular exponentiation allows the accumulator owner to perform
batch verification. This is crucial in settings like a fidelity card sys-
tem, as proposed in this paper, where customers typically spend
many tokens at once to receive a discount. If tokens needed to
be verified individually, as with MTs, the process would become
increasingly inefficient as the number of tokens grows. Batch ver-
ification, on the other hand, ensures efficient operations for both
users and operators.

Beyond batching, the accumulator used in TokenCards has ad-
vantages in proof size, generation, and verification. Let 𝑁 be the
cardinality of the set of elements in the accumulator. RSA member-
ship proofs are constant in size, while those created by MTs grow
logarithmically with 𝑁 . Furthermore, MT proof generation and
verification timese both grow logarithmically with 𝑁 . In contrast,
RSA proof generation grows linearly with 𝑁 , while proof verifi-
cation remains constant. We consider this a significant advantage
in our setting. Membership proof generation is always performed
by the accumulator’s operator, who is expected to have at least
a retail-grade laptop, a device generally more powerful than the
mobile applications used by customers. Therefore, the fixed time
complexity of verification operations (which are generally done by

the users), regardless of the growth of the token set, is a strength
of our proposal.

Regarding proofs, RSA accumulators offer the advantage of non-
membership proofs, which are not possible withMTs. Consequently,
the RSA accumulator operator can prove that an element is not in
the accumulator. This feature is used in TokenCards to prevent
potential misbehavior by the operator, who controls both the shop
and the accumulator itself. This prevents the operator from refus-
ing token spending by honest users (see Section 6.1 for a detailed
explanation).

6.3 Costs

In the following we present the costs (in gas) of both NOCUST and
TokenCards. We could not compare cost estimates with Plasma
Cash as it does not provide a cost evaluation.

Conversely, the work on NOCUST includes a cost analysis in
terms of gas, the unit of cost in EVM blockchains. For the purpose
of comparison, we also provide costs in gas for EVM compatible
blockchain, even though TokenCards is blockcahin agnostic (in-
cluding the ability to be used alongside other L2).

As shown in Table 3, the only costs incurred by the operator
in TokenCards are for check-pointing, which are half of those
in NOCUST. Additionally, users of TokenCards do not incur any
costs, as no deposits or withdrawals are required.

7 CONCLUSIONS

We introduced a new system that provides a Layer2 scaling solu-
tion for blockchains, specifically designed for local communities.
Our system relies on commit-chains and assumes a moderate but
well-defined level of trust, which is typical in local communities.
Nonetheless, his level of trust aligns with the threat models of
state-of-the-art commit-chains. Notably, our commit-chain pro-
posal enhances the state of the art in terms of cost and performance.
Additionally, we have developed a new time-stamping system for
the blockchain that is more private and less costly than current
methods. It is also blockchain agnostic, setting it apart from other
commit systems on the blockchain.

Currently, our token transfer mechanism requires interaction
between the user and the owner of the commit-chain. In the future,
we plan to develop a system that allows for non-interactive transfers
between parties. This would make our proposal more efficient and
private, further reducing trust assumptions and improving upon
other commit-chain proposals.

REFERENCES

[1] Hagit Attiya and Jennifer L. Welch. 2004. Distributed computing - fundamentals,
simulations, and advanced topics (2. ed.). Wiley.

[2] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,
Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. 2014. Enabling
blockchain innovations with pegged sidechains. URL: http://www. opensciencere-
view. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains 72
(2014), 201–224.

[3] Fadi Barbàra, Flavia Fredda, and Claudio Schifanella. 2023. A New Token Manage-
ment System for Local Communities.. In Proceedings of the 2023 ACM Conference
on Information Technology for Social Good, GoodIT 2023, Lisbon, Portugal, Septem-
ber 6-8, 2023. 237–245. https://doi.org/10.1145/3582515.3609540

[4] Niko Baric and Birgit Pfitzmann. 1997. Collision-Free Accumulators and Fail-
Stop Signature Schemes Without Trees.. In Advances in Cryptology - EUROCRYPT
’97, International Conference on the Theory and Application of Cryptographic

222

https://doi.org/10.1145/3582515.3609540


GoodIT ’24, September 04–06, 2024, Bremen, Germany Barbàra, et al.

Table 2: Comparison of RSA Accumulators and Merkle Trees

Feature Description RSA

Accumulators

Merkle Trees

Base Operation Type of function used for element inclu-
sion

Modular
exponentiation

Hash functions

Batch Verification Efficiency in verifying multiple ele-
ments at once

Yes No

Proof Size Size of membership proofs O(1) O(log(𝑁 ))
Non-membership Proofs Ability to prove an element is not in the

accumulator
Yes No

Proof Generation Time Time to generate membership proofs O(𝑁 ) O(log(𝑁 ))
Proof Verification Time Time to verify membership proofs O(1) O(log(𝑁 ))

Table 3: Cost Comparison between NOCUST and Token-

Cards

Cost Type NOCUST TokenCards

Check-pointing 96,073 2, 300
Deposits 64, 720 None
Withdrawals 169, 238 None

Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding. 480–494. https:
//doi.org/10.1007/3-540-69053-0_33

[5] Josh Cohen Benaloh and Michael de Mare. 1993. One-Way Accumulators: A
Decentralized Alternative to Digital Sinatures (Extended Abstract). In Advances
in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of of
Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings (Lecture
Notes in Computer Science, Vol. 765), Tor Helleseth (Ed.). Springer, 274–285. https:
//doi.org/10.1007/3-540-48285-7_24

[6] Vitalik Buterin. 2014. A next generation smart contract and decentralized
application platform. https://blockchainlab.com/pdf/Ethereum_white_paper-
a_next_generation_smart_contract_and_decentralized_application_platform-
vitalik-buterin.pdf

[7] Vitalik Buterin. 2017. This sounds like there’s some kind of scalability
trilemma at play. What is this trilemma and can we break through it?
https://vitalik.eth.limo/general/2017/12/31/sharding_faq.html#this-sounds-
like-theres-some-kind-of-scalability-trilemma-at-play-what-is-this-trilemma-
and-can-we-break-through-it

[8] Vitalik Buterin. 2021. An Incomplete Guide to Rollups. https://vitalik.eth.limo/
general/2021/01/05/rollup.html

[9] Vitalik Buterin. 2023. Different types of layer 2s. https://vitalik.eth.limo/general/
2023/10/31/l2types.html

[10] Jan Camenisch and Anna Lysyanskaya. 2002. Dynamic Accumulators and Appli-
cation to Efficient Revocation of Anonymous Credentials. In Advances in Cryptol-
ogy - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 18-22, 2002, Proceedings (Lecture Notes in Computer
Science, Vol. 2442), Moti Yung (Ed.). Springer, 61–76. https://doi.org/10.1007/3-
540-45708-9_5

[11] Johnny Dilley, Andrew Poelstra, Jonathan Wilkins, Marta Piekarska, Ben Gorlick,
and Mark Friedenbach. 2016. Strong federations: An interoperable blockchain
solution to centralized third-party risks. arXiv preprint arXiv:1612.05491 (2016).

[12] Hyperledger Foundation. 2018. An Introduction to Hyperledger Foun-
dation. https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/
Hyperledger/Offers/HL_Whitepaper_IntroductiontoHyperledger.pdf.

[13] Pierre-Alain Fouque and Mehdi Tibouchi. 2019. Close to Uniform Prime Number
Generation With Fewer Random Bits. 65, 2 (2019), 1307–1317. https://doi.org/10.
1109/TIT.2018.2859045

[14] Ilja Gerhardt and Timo Hanke. 2012. Homomorphic Payment Addresses and
the Pay-to-Contract Protocol. CoRR abs/1212.3257 (2012). arXiv:1212.3257 http:
//arxiv.org/abs/1212.3257

[15] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and
Arthur Gervais. 2020. SoK: Layer-Two Blockchain Protocols.. In Financial Cryp-
tography and Data Security - 24th International Conference, FC 2020, Kota Kin-
abalu, Malaysia, February 10-14, 2020 Revised Selected Papers. 201–226. https:
//doi.org/10.1007/978-3-030-51280-4_12

[16] Shaphali Gupta. 2020. Understanding the feasibility and value of grassroots
innovation. Journal of the Academy of Marketing Science 48 (2020), 941–965.
https://doi.org/10.1007/s11747-019-00639-9

[17] Abdelatif Hafid, Abdelhakim Senhaji Hafid, and Mustapha Samih. 2020. Scaling
Blockchains: A Comprehensive Survey. 8 (2020), 125244–125262. https://doi.
org/10.1109/ACCESS.2020.3007251

[18] Maxim Jourenko, Kanta Kurazumi, Mario Larangeira, and Keisuke Tanaka. 2019.
SoK: A Taxonomy for Layer-2 Scalability Related Protocols for Cryptocurrencies.
2019 (2019), 352. https://eprint.iacr.org/2019/352

[19] Rami Khalil and Arthur Gervais. 2018. NOCUST - A Non-Custodial 2nd-Layer
Financial Intermediary. 2018 (2018), 642. https://eprint.iacr.org/2018/642

[20] Georgios Konstantopoulos. 2019. Plasma Cash: Towards More Efficient Plasma
Constructions. abs/1911.12095 (2019). http://arxiv.org/abs/1911.12095

[21] Robin Linus. 2023. BitVM: Compute Anything on Bitcoin. https://bitvm.org/bitvm.
pdf

[22] Matteo Loporchio, Anna Bernasconi, Damiano Di Francesco Maesa, and Laura
Ricci. 2023-08. A Survey of Set Accumulators for Blockchain Systems. 49 (2023-
08), 100570. https://doi.org/10.1016/J.COSREV.2023.100570

[23] Patrick McCorry, Chris Buckland, Bennet Yee, and Dawn Song. 2021. SoK:
Validating Bridges as a Scaling Solution for Blockchains. IACR Cryptol. ePrint
Arch. (2021), 1589. https://eprint.iacr.org/2021/1589

[24] Ralph C. Merkle. 1980. Protocols for Public Key Cryptosystems. In Proceedings of
the 1980 IEEE Symposium on Security and Privacy, Oakland, California, USA, April
14-16, 1980. IEEE Computer Society, 122–134. https://doi.org/10.1109/SP.1980.
10006

[25] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology - CRYPTO ’87, A Conference on the Theory
and Applications of Cryptographic Techniques, Santa Barbara, California, USA,
August 16-20, 1987, Proceedings (Lecture Notes in Computer Science, Vol. 293), Carl
Pomerance (Ed.). Springer, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[26] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[27] Raiden Network. 2018. Fast, cheap, scalable token transfers for Ethereum. https:

//raiden.network/
[28] Lan Nguyen. 2005. Accumulators from Bilinear Pairings and Applications. In

Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA Con-
ference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings (Lecture
Notes in Computer Science, Vol. 3376), Alfred Menezes (Ed.). Springer, 275–292.
https://doi.org/10.1007/978-3-540-30574-3_19

[29] Jonas Nick, Andrew Poelstra, and Gregory Sanders. 2020. Liquid: A bitcoin
sidechain. https://blockstream.com/assets/downloads/pdf/liquid-whitepaper.pdf.

[30] National Institute of Standards and Technology. 2023. Cryptographic Algorithms
and Key Sizes for Personal Identity Verification. Technical Report Federal Informa-
tion Processing Standards Publications (FIPS PUBS) 800-78-5. U.S. Department
of Commerce, Washington, D.C. https://doi.org/10.6028/NIST.SP.800-78-5.ipd

[31] Joseph Poon and Vitalik Buterin. 2017. Plasma: Scalable Autonomous Smart
Contracts. (2017). https://plasma.io/plasma-contracts.html

[32] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin
lightning network: Scalable off-chain instant payments.
https://static1.squarespace.com/static/6148a75532281820459770d1/t/61af971f7ee2b432f1733aee/1638897446181/lightning-
network-paper.pdf.

223

https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://vitalik.eth.limo/general/2017/12/31/sharding_faq.html#this-sounds-like-theres-some-kind-of-scalability-trilemma-at-play-what-is-this-trilemma-and-can-we-break-through-it
https://vitalik.eth.limo/general/2017/12/31/sharding_faq.html#this-sounds-like-theres-some-kind-of-scalability-trilemma-at-play-what-is-this-trilemma-and-can-we-break-through-it
https://vitalik.eth.limo/general/2017/12/31/sharding_faq.html#this-sounds-like-theres-some-kind-of-scalability-trilemma-at-play-what-is-this-trilemma-and-can-we-break-through-it
https://vitalik.eth.limo/general/2021/01/05/rollup.html
https://vitalik.eth.limo/general/2021/01/05/rollup.html
https://vitalik.eth.limo/general/2023/10/31/l2types.html
https://vitalik.eth.limo/general/2023/10/31/l2types.html
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/Hyperledger/Offers/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/Hyperledger/Offers/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://doi.org/10.1109/TIT.2018.2859045
https://doi.org/10.1109/TIT.2018.2859045
https://arxiv.org/abs/1212.3257
http://arxiv.org/abs/1212.3257
http://arxiv.org/abs/1212.3257
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/s11747-019-00639-9
https://doi.org/10.1109/ACCESS.2020.3007251
https://doi.org/10.1109/ACCESS.2020.3007251
https://eprint.iacr.org/2019/352
https://eprint.iacr.org/2018/642
http://arxiv.org/abs/1911.12095
https://bitvm.org/bitvm.pdf
https://bitvm.org/bitvm.pdf
https://doi.org/10.1016/J.COSREV.2023.100570
https://eprint.iacr.org/2021/1589
https://doi.org/10.1109/SP.1980.10006
https://doi.org/10.1109/SP.1980.10006
https://doi.org/10.1007/3-540-48184-2_32
https://raiden.network/
https://raiden.network/
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.6028/NIST.SP.800-78-5.ipd
https://plasma.io/plasma-contracts.html


Commit-Chains Without Smart Contracts for Blockchain Applications in Local Communities GoodIT ’24, September 04–06, 2024, Bremen, Germany

[33] RGB. 2023. RGB. Private & scalable smart contracts for Bitcoin and Lightning
Network. https://rgb-org.github.io/

[34] Berk Sunar. [n. d.]. Euclidean Algorithm. In Encyclopedia of Cryptography and
Security. Springer US, 427–430. https://doi.org/10.1007/978-1-4419-5906-5_27

[35] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. 2019. SoK: Sharding
on Blockchain. In Proceedings of the 1st ACM Conference on Advances in Finan-
cial Technologies (Zurich, Switzerland) (AFT ’19). Association for Computing
Machinery, New York, NY, USA, 41–61. https://doi.org/10.1145/3318041.3355457

[36] Anatoly Yakovenko. 2017. Solana: A new architecture for a high performance
blockchain v0.8.13. https://coincode-live.github.io/static/whitepaper/source001/

10608577.pdf.
[37] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2017. An Expres-

sive (Zero-Knowledge) Set Accumulator. In 2017 IEEE European Symposium on
Security and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. IEEE, 158–173.
https://doi.org/10.1109/EUROSP.2017.35

[38] Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. 2020. Solutions to
Scalability of Blockchain: A Survey. IEEE Access 8 (2020), 16440–16455. https:
//doi.org/10.1109/ACCESS.2020.2967218

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

224

https://rgb-org.github.io/
https://doi.org/10.1007/978-1-4419-5906-5_27
https://doi.org/10.1145/3318041.3355457
https://coincode-live.github.io/static/whitepaper/source001/10608577.pdf
https://coincode-live.github.io/static/whitepaper/source001/10608577.pdf
https://doi.org/10.1109/EUROSP.2017.35
https://doi.org/10.1109/ACCESS.2020.2967218
https://doi.org/10.1109/ACCESS.2020.2967218

	Abstract
	1 Introduction
	2 Related Works
	2.1 NOCUST
	2.2 Plasma Cash
	2.3 Locale

	3 Preliminaries
	3.1 Accumulators
	3.2 Blockchain Certification and BATS

	4 Design
	5 TokenCards
	5.1 High Level Functions
	5.2 Setup
	5.3 Add New Token
	5.4 Spend Token
	5.5 Transfer Token
	5.6 Checkpoints

	6 Evaluation
	6.1 Guarantees
	6.2 Performance
	6.3 Costs

	7 Conclusions
	References

