Progress in Physical Geography

Was the Little Ice Age the coolest Holocene climatic period in the Italian central Alps?

Journal:	Progress in Physical Geography
Manuscript ID	PPG-19-045.R2
Manuscript Type:	Main Article
Keywords:	Polycyclic palaeosols, Frost pedofeatures, Mid-Late Holocene, Little Ice Age, Southern Alps, Micropedology
Abstract:	Estimation of the relative intensity of different cold periods occurring during the Late Quaternary are difficult tasks, particularly in non- glaciated mountain landscapes, and where high- to medium-resolution archives for proxy data are lacking. In this paper, we study a Holocene polycyclic soil sequence in the central Alps (Val Cavargna, Northern Italy) to estimate climatic parameters (specifically T) changes in non- glaciated, high altitude environments. We investigate this key site through palaeopedological and micromorphological analyses in order to understand phases of soil development and detect hidden evidence of cold conditions during its formation. Three phases of pedogenesis can be recognized and attributed in time to different periods during the Holocene. Pedogenetic phases were separated by two truncation and deposition episodes related to the reactivation of slope processes under cold conditions at the onset of the Neoglacial and the Iron Age Cold Epoch (IACE) respectively. Micromorphological evidence of frost action on soil can instead relate to pedogenetic processes acting in the Little Ice Age (LIA). The different expression of these three cold periods corresponds to different climatic conditions, pointing to the LIA as a cooler/drier period in comparison to the preceding ones.

SCHOLARONE[™] Manuscripts

Was the Little Ice Age the coolest Holocene climatic period in the Italian central Alps?

Abstract

Estimation of the relative intensity of different cold periods occurring during the Late Quaternary are difficult tasks, particularly in non-glaciated mountain landscapes, and where high- to medium-resolution archives for proxy data are lacking. In this paper, we study a Holocene polycyclic soil sequence in the central Alps (Val Cavargna, Northern Italy) to estimate climatic parameters (specifically T) changes in non-glaciated, high altitude environments. We investigate this key site through palaeopedological and micromorphological analyses in order to understand phases of soil development and detect hidden evidence of cold conditions during its formation. Three phases of pedogenesis can be recognized and attributed in time to different periods during the Holocene. Pedogenetic phases were separated by two truncation and deposition episodes related to the reactivation of slope processes under cold conditions at the onset of the Neoglacial and the Iron Age Cold Epoch (IACE) respectively. Micromorphological evidence of frost action on soil can instead relate to pedogenetic processes acting in the Little Ice Age (LIA). The different expression of these three cold periods corresponds to different climatic conditions, pointing to the LIA as a cooler/drier period in comparison to the preceding ones.

Keywords

Polycyclic palaeosols; Micropedology; Frost pedofeatures; Mid-Late Holocene; Little Ice Age; Southern Alps.

I. Introduction

One of the most difficult tasks in paleoclimate studies – before the introduction of instrumental measurements – is the estimation of climate parameters and their variation with time (Edwards et al., 2007a; Bradley, 2015). When records are irregular and limited to shortened time-spans, discontinuous or low in resolution, such as in many continental palaeoenvironmental archives, the reconstruction of climatic conditions and their effects on the landscape becomes much more challenging (Kutzbach, 1976; Federici, 2005; Giraudi et al., 2011; Bradley, 2015; Furlanetto et al., 2018). This is especially true when dealing with the effects of cold periods in middle latitude and Mediterranean mountain ranges, such as the Alps and Apennines of Italy, known as highly dynamic regions (Porter and Orombelli 1985; Baroni and Orombelli 1996; Federici, 2005; Hughes et al., 2011; Kuhlemann et al., 2013; Pelfini et al., 2014; Colucci et al., 2016; Bollati et al., 2018). Where extensive landforms and stratigraphic records of Quaternary glacial advances are not present, evident traces of cold phases are often hard to study. Poorly visible, buried and hidden signs of cold periods – as much as of the subsequent warm phases - are only occasionally embedded and rarely well-preserved in landforms and within palaeosols and sedimentary records (Angelucci et al., 1992; Calderoni et al., 1998; Fischer et al., 2012; Compostella et al., 2012, 2014; Waroszewski et al., 2018). In the latter, evidence of cold phases is often associated with breaks in the sedimentary succession or with an increased frequency of slope processes related to climatic instability (Bertolini et al., 2004; Nicolussi et al., 2005; Magny et al., 2009a; Arnaud et al., 2012; Cremaschi and Nicosia, 2012; Compostella et al., 2014; Pelfini et al, 2014; Mariani et al., 2019). Despite the extensive documentation regarding the Little Ice Age (LIA) traced in paleoclimate studies (Kullman and Öberg, 2009; Arnaud et al., 2012; Nicolussi, 2013; Carturan et al., 2014; Loso et al., 2014), many questions are still open, for example, the influence of climate variations on non-glaciated mountain landscapes during the LIA is poorly known, especially when compared to previous cold intervals such as the Neoglacial, the Lateglacial, and the Last Glacial Maximum (LGM) (e.g., Wanner et al., 2011; Badino et al., 2018; Furlanetto et al., 2018). In the mountain environments of middle latitudes, where glacial and periglacial landforms are undetectable or have been vanished/truncated/erased due to enhanced slope activity (e.g.: Allison, 1996; Giraudi et al., 2011; Compostella et al., 2014; Mariani et al., 2018), paraglacial (Knight and Harrison, 2009), or zoogeomorphological processes (e.g., Butler, 1995, 2012), the effects of cold phases are virtually absent from the scientific record.

In this paper, we studied a Holocene polycyclic soil sequence formed in the Mid-Late Holocene in the Italian Central Alps (Val Cavargna, CO). Our aim is to find records of Holocene

21 ⁰, 22 ₆₈

24 69

climatic influence on the evolution of surface processes (Nicholson, 1988), and to assess whether soils and paleosols (and their pedofeatures) can record climatic changes in Alpine environments. The studied soil sequence shows clear traces of the presence of cold conditions during its formation, strong enough to promote soil frost and trigger the formation of frost-induced pedofeatures (sensu Van Vliet-Lanoë, 1998; Van Vliet-Lanoë et al., 2018) without the influence of glacial or periglacial processes. No evidence for glacials were found at the study site and in its close vicinity. Using multiple palaeopedological techniques, and in particular micropedology, we were able to characterize different Holocene cold phases affecting soil formation. We also stress the impact as a climatic parameter of different atmospheric temperatures during the cold periods of the last few millennia. We lastly suggest an alternative qualitative approach to interpret past fluctuations of climatic parameters based on their effect on surface processes.

II. The study area

The studied soil sequence is located at Alpe Piazza Vacchera (46°06'32"N, 9°08'33"E), in Val Cavargna (San Bartolomeo municipality, Italian Central Alps), at an elevation of 1680 m a.s.l. (Figures 1 and 2). The bedrock of the studied area is part of a portion of the Southalpine basement - the tectono-metamorphic unit of the Dervio-Olgiasca Zone (after Spalla et al., 2002) - and consists mainly of garnet-staurolite-bearing schist and minor gneiss with lenses of amphibolite. Schists are particularly prone to weathering, especially in areas of pervasive jointing due to tectonic deformation. The study site is currently above the treeline and covered by grassland pastures; mean annual rainfall is between 2000-2500 mm/y and mean annual temperature between 3.8 and 10.9°C (Ceriani and Carelli, 2000). Snow accumulation is high, estimated between 1-2 m/y, with a residence time greater than 100 days (Gazzolo and Pinna, 1973). The permanent snow line for the Alps varies from N to S and from W to E according to factors related to latitude, continentality and slope insulation, but it is generally located between 2500-2800 m a.s.l. (Barry, 1992), thus well above the area of study. The area does not contain permafrost: in this portion of the Alps favourable conditions for permafrost are found only above 2200–2300 m a.s.l. (Boeckli et al., 2012), and the first instances of permafrost or related landforms are found in a range of tens of kilometres to the North (Cremonese et al., 2011). During the LGM, valley glaciers did not cover the area but at least a few cirgue or slope glaciers were present in the highest part of the mountain range (Bini et al., 2009). Since then, no traces of further glacial influence are found on the slopes or in the valley below (Bini et al., 2009). Periglacial processes are visible as sparse, possibly inactive solifluction lobes on the surrounding slopes, today highly disturbed by zoogeomorphologically induced game

trails, causing instability and enhanced gully erosion and transportation of soil material in the 90 vicinity of the studied area (e.g., Butler, 2018; Zerboni and Nicoll, 2018). 91

92 Human activity in Val Cavargna is known since the Mesolithic, with the establishment and abandonment of sporadic settlements in the upper part of the valley. Subsequent occasional 93 occupation of the area with evidence of widespread forest fires took place multiple times from the 94 Neolithic to the Middle Ages (Castelletti et al., 2012a). The systematic exploitation of the area, 95 resulting in an increase in human pressure on the landscape, dates back mainly to post-medieval 96 times (Castelletti and Tremari, 2012). Documented instances of forest clearance in the upper valley 97 appear since the XVI century CE, with a change in land use for charcoal production (Grandi, 2012). 98 99 At this time, large portions of deforested land - between 1400-1800 m a.s.l. - were converted to pasture lands (Castelletti et al., 2012b). Near the studied section, the first establishment of a small 100 ²² 101 cattle farm and trail can be loosely attributed to the same period.

III. Materials and methods 26 103

1 2

3

4

5

6 7

8 9

10 11

12

13

14

15 16

17 18

19 20

21

27

28 104 To investigate the soil in the field we dug a trench along the western slope of Mount Pianchette – 29 105 Pizzo di Gino, in correspondence of a natural filled trench forming a small terrace on a deep-seated 30 31 106 gravitational slope deformation (DSGSD). This landform represents large to extremely large mass 32 ³³ 107 movements generally affecting the entire length of high-relief valley flanks, extending up to 200-34 300 m in depth, which can frequently extend beyond the slope ridge (Crosta et al., 2013). Soil 35 108 36 descriptions and horizon designations were carried out according to the guidelines of FAO (2006); 37 109 38 ₃₉ 110 colour definition followed the Munsell Color® (1994) nomenclature. The diagnostic horizons of 40 111 buried palaeosols in the sequence were defined according to the international classification 41 ⁴² 112 systems (FAO, 2014; Soil Survey Staff, 2014; Zerboni et al., 2011, 2015). Soil samples for chemical-43 ⁴⁴ 113 physical analyses were collected for each horizon. Particle size distribution was determined using 45 laser diffraction (Malvern Mastersizer MS-2000) after H₂O₂ and HCl treatments, according to the 46 114 47 procedure described in Crouvi et al. (2008). The total amount of Fe and Al in the samples was 48 115 49 ₅₀ 116 determined by complete dissolution in a mixture of HF, HCl, HNO₃ and HClO₄, followed by 51 measurement of the solubilised ions using an ICP-ES (Jobin-Yvon JV24). Dithionite- (Mehra and 117 52 ⁵³ 118 Jackson, 1960) and oxalate-extractable (McKeague et al., 1971; Schwertmann, 1973) fractions of Fe 54 55 119 and AI oxyhydroxides, representing a quantification for free and amorphous Fe and AI forms 56 57 120 respectively, were also measured with the same instrument. The Activity Ratio between oxalate-58 and dithionite-extractable iron (Fe(o)/Fe(d)) was also calculated. Analytical data are reported in 59 121 60 122 Table 1 and summarized in Figure 3.

Page 5 of 55

Progress in Physical Geography

Thin sections were produced from undisturbed samples taken from relevant soil horizons 123 after impregnation with polyester resin according to the method described in Murphy (1986). 124 Slides were examined with an Olympus BX41 petrographic microscope, under plane-polarized light 125 (PPL), cross-polarized light (XPL), and oblique incident light (OIL). The terminology of Stoops (2003) 126 was used to describe thin sections, whereas micromorphological interpretation was mainly based 127 128 on the concepts reported in Stoops et al. (2018).

The age of the polycyclic soil sequence was obtained by dating with radiocarbon (AMS⁻¹⁴C) two samples of charcoal. AMS⁻¹⁴C dating results were calibrated (2σ range) using the INTCAL13 curve (Reimer et al., 2013).

133 **IV. Results**

Along the slope of Mt. Pianchette and Mt. Pizzo di Gino, inside the morphological trench formed by a detachment niche of a DSGSD, are present a series of shallow depressions filled with 24 135 sediments deposited through colluvial slope processes that were subsequently weathered and 26 136 reorganized into soils. In the uppermost depression, several soil horizons were identified (Table 1), ₂₈ 137 ---30⁻⁻⁻138 consisting of three different soil units on successively deposed parent materials (Figure 2). The 139 uppermost unit corresponds to the extant soil, down to a depth of about 49 cm. It is an organic 33 140 temperate mountain soil differentiated in thicker organic A horizons sometimes alternated with 35 141 thinner levels of rubified soil material containing dark mottles. The same material is also present at the bottom of the unit as a mineral Bw horizon. The boundary between this unit and the 37 142 intermediate one is marked by an erosional surface bearing a residual lens of macroscopic charcoal ₃₉ 143 144 fragments, several centimetres thick, identified as the remains of a fireplace. Dating from two ⁴² 145 charcoal samples taken from this lens gave a result of 2730±43 (RC-369) and 2683±42 (RC-370) ⁴⁴ 146 years uncal BP (2926–2756 years cal BP and 2863–2747 years cal BP respectively). The intermediate unit is a buried palaeosol divided into three main horizons: an eluvial 2E horizon occupies the 46 147 47 upper position above a rubified 2Bs horizon; below them is a mineral 2BC horizon with common 48 148 49 50 149 reddish mottles. The lowermost soil unit, starting at a depth of 75 cm, is quite similar to the 51 150 previous one, but pedofeatures are better expressed. A whitish eluvial 3Et horizon, in which are still 52 ⁵³ 151 present reddish mottles comparable to those of the level above it, forms the upper portion of the 54 55 152 unit, followed by a weathered rubified 3Bs horizon. Below the latter, a 3C horizon marks the 56 boundary to the bedrock at about 130 cm below the current surface. Charcoal fragments from the 57 153 58 59 154 3Bs horizon of this unit were dated to 6850±20 years uncal BP (UGAMS-38048, 7721-7621 years 60 155 cal BP).

3

4 5

6 7

8 9

Grain size analytical data from a selection of soil samples shows where units differ and 156 157 where instead similarities emerge (Figure 3). The A2 horizon of the top unit differs from the others, 158 showing a bimodal distribution of grain size classes: the main mode is represented by silt, while a secondary mode is shifted towards medium/coarse sand. Its much broader distribution also 159 indicates a poor selection of grains. Horizons from the other two units show very similar categories. 160 10 11 161 In particular, the E horizons share almost the same bell curve weakly skewed to the left and centred 12 13 162 on coarse silt. All B horizons (Bw, 2Bs and 3Bs) also share a similar trend with a mode at the fine 14 sand and a higher skewness towards the finer fractions that are more expressed in the bottom unit. 15 163 16 17 164 Total iron content in the soil sequence amounts to 3-5.5% of the total mass in all soil horizons, with 18 concentrations in the B horizons of the top and bottom units (Figure 3; Table 1). Eluvial horizons 165 19 20 166 show lower concentrations of Fe, with the 3Et horizon being the scarcest in total iron content 21 ²² 167 (3.06%). The intermediate unit is also low in iron content, with only a slight increase of total iron in 23 the 2B horizon. Free iron measured as Fe-dithionite peaks in the Bw and 3B horizons and shows the 24 168 25 lowest concentration at the bottom of the sequence (11.6 g/kg in the 3C horizon); generally, free 26 169 27 iron accounts for 47-71% of total iron content. The Activity Ratio is mostly between 0.35 and 0.5 for ₂₈ 170 29 171 all horizons, with the exception of E horizons where it reaches the lowest values (below 0.3). 30

31 172 The observation of thin sections reveals the general composition and fabric of the soil units 32 ³³ 173 (Table 2). The micromass of all investigated horizons shows a dominance of coarse mineral material 34 (mainly micas, then quartz and feldspar) with the fine material either compactly filling the 35 174 36 remaining space in B horizons (Figure 4a), or weakly aggregating in granular peds in E horizons 37 175 38 ₃₉ 176 (Figure 4b). Fine charcoal is always present; coarser fragments can be found in the A1 and 3Et 40 177 horizons as well as in the charcoal-bearing lens at the top of the 2E horizon. The 3Et horizon shows 41 42 178 microlaminated clay coatings (Figure 4c, d) inside a groundmass with marked differences from the 43 ⁴⁴ 179 B horizons: the fine material bears a greyish colour and no visible aggregation is present. The A1 45 and A2 horizons are locally arranged in a pattern of horizontal planar voids (isoband fabric, sensu 46 180 47 Dumanski and St-Arnaud, 1966), not visible in the deeper parts of the soil sequence (Figure 5a). 48 181 49 ₅₀ 182 This pattern is randomly distributed in the two horizons as large centimetric patches sharing the 51 same features: a net of partially interconnected straight or slightly curved planar voids up to a 183 52 ⁵³ 184 millimetre long and less than 100 µm thick that separate lenses of soil material up to 1 mm thick. 54 55 185 Vesicles are often associated with soil lenses (Figure 5b) and the pattern itself. Clusters of parallel-56 57 186 oriented coarse fragments (Figure 5c) are visible in the Bw horizon. All these features are usually 58 undisturbed by the presence of bioturbation otherwise found in many instances in the soil mass in 59 187 60 188 the form of passage features (Figure 5d).

190 V. Discussion

In the following parts we reconstruct the evolution of the investigated soil sequence discussing the main pedogenetic processes involved in its formation. We then highlight the occurrence of pedofeatures in the different soil units that record past temperature shifts in the area.

195 **5.1. Soil forming processes and chronology**

The characterization of pedogenesis in the three units shows evidence of similar soil formation processes in different periods of time, thus confirming the existence of a soil polysequence (Cremaschi and Rodolfi, 1991). The very similar grain sizes of the different horizons imply that each soil unit was formed by deposition over the previous surface – exposed by truncation – of the same type of sediments removed from above by short-range (tens to hundreds of metres) slope transportation movements. Each soil unit shares the combined presence of an E/B horizon series, with the E substituted by a moderately depleted A2 horizon in the uppermost unit. The formation of clay and Fe oxyhydroxides in the soil mass is accompanied by their translocation downwards from the eluvial horizons into the lower rubified B horizons, or even below in older soil units, as in the case of the clay coatings that crossed the boundary into the 3Et horizon. Particle translocation is also supported by the shift from the 2Bs to the 3Et horizon, which hints to clay depletion from the second unit and illuviation into the unit below, and by the enrichment in fine material in the 3Bs horizon. The low activity ratio shows a relative depletion in the amorphous iron forms, easier to mobilise, in E horizons. The three units show different degrees of the same pedogenetic processes pedoplasmation, soil formation by weathering and translocation of clay minerals and Fe oxyhydroxides; Duchaufour, 1983), decreasing in strength of expression upwards. In fact, although the bottom unit looks the most developed in a well-defined series of horizons, Fe oxyhydroxides do not change markedly along the units, showing again uniformity in weathering. Pedogenesis is in any case only moderately developed, and the accumulation of Fe in the B horizons appears to be not only a result of in-situ weathering, but also of translocation from the overlying horizons and younger parent materials (Duchaufour, 1977; Cornell and Schwertmann, 2003).

Pedogenesis occurred under warm/temperate climate phases with the presence of continuous vegetation (Duchaufour, 1983) and promoted the accumulation of microlaminated clay coatings by illuviation into the unit below (e.g. Fedoroff, 1997; Compostella et al., 2014). The microstructure of E horizons and the presence of red mottles in B horizons (Table 3) suggest an incipient podsolization process (Duchaufour, 1983; Van Ranst et al., 2018), likely supported by local

conditions of seasonal water saturation (Duchaufour, 1983; Sevink and de Waal, 2010; Vepraskas et 222 al., 2018). The identification of wood species from charcoal fragments found in various soil horizons 223 shows the dominance of silver fir (Abies alba) throughout the soil sequence: reconstructions of the 224 vegetation history of the area point to the presence of an open forest under moderately warm 225 conditions (Castelletti et al., 2012b). At the current surface and towards the top of the intermediate 226 10 11 227 unit, charcoal assemblages suggest a sparsely forested heathland, revealing colder phases of forest 12 retreat or anthropogenic pressure (Castelletti et al., 2012b). 13 228

14 Radiocarbon dating stresses formation of the various soil units within the Holocene, 15 229 16 ₁₇ 230 showing how the soil sequence has in fact experienced more than one warm climate phase. The 18 231 development of the bottom unit, dated to 7721-7621 years cal BP, can be very clearly attributed to 19 20 232 the Early-Middle Holocene (Mayewski et al., 2004; Arnaud et al., 2012; Grosjean et al., 2007), during 21 ²² 233 a warm period preceding the cold event at 4.2 ka cal BP (e.g., Zanchetta et al., 2016), possibly the 23 Atlantic Warm Period (AWP) or the Late Neolithic Thermal Maximum (LNTM). In this longer period 24 234 25 of pedogenesis, potentially lasting a few thousands of years, the soil had the time to develop 26 235 27 ₂₈ 236 pedofeatures under a rapidly warming phase. Afterwards, the warm and stable phase responsible 29 237 for the formation of the intermediate unit should occur after the Middle/Late Holocene transition, 30 31 when several warm fluctuations occurred (Mayewski et al., 2004; Deline and Orombelli, 2005): the 238 32 ³³ 239 longest phase takes place during the Bronze Age, loosely between 3800 and 2800 years BP (e.g., 34 Arnaud et al., 2012 and references therein), and can be confirmed by dating from the truncation of 35 240 36 the unit indicated by the residual fireplace (2926–2756 and 2863–2747 years cal BP). It is therefore 37 241 38 ₃₉ 242 possible that this pedogenesis took place in a period not much longer than a thousand years. The 40 243 truncation points to the transition from a warm period to the next cold phase (Plunkett and 41 ⁴² 244 Swindles, 2008; Magny et al., 2009b; Wanner et a., 2011; Regattieri et al., 2014; Cremaschi et al., 43 ⁴⁴ 245 2016) corresponding to the Iron Age Cold Epoch (IACE). This cold stage probably witnesses both 45 the truncation of the intermediate unit due to enhanced slope processes and the deposition of the 46 246 47 parent material composing the top one. The last phase of pedogenesis probably started since the 48 247 49 ₅₀ 248 Roman Warm Period (RWP) onwards to present time, covering less than 2000 years of duration in a 51 fluctuating climate. 249 52

⁵³ 250 54

56

1 2

3

4

5

6 7

8 9

55 251 5.2. Are frost-related pedofeatures a proxy for past temperatures?

The typical pedofeatures found at the top unit (A1-A2 horizons) relate to specific climate 57 252 58 59 253 conditions and can be safely attributed to a post-RWP cold phase on the basis of the above-60 254 mentioned chronological framework. The LIA is most likely the coldest climatic phase in that time Page 9 of 55

1

Progress in Physical Geography

interval (Wanner et al., 2011; Furlanetto et al., 2018). The pattern of microscopic horizontal planar voids separating the matrix into homogeneous lenses of soil material indicates the action of frost on soil horizons (Dumanski and St-Arnaud, 1966). Vesicles are also related to the entrapment of air bubbles in the soil mass during the freezing process (Table 3). As suggested by Van Vliet-Lanoë (1987, 1998) and Van Vliet-Lanoë et al. (2018), this regular pattern is connected to the presence of intermittent or seasonal frost episodes localised at the soil surface when the penetration of the freezing front is not very deep. This is expected for temperate environments, considering that very low air temperatures are needed to freeze the open ground below the first centimetres (Henry, 2007). Deformation of the soil mass is only limited to sporadic preferential orientations of coarse fragments, also indicating weak freezing conditions (Van Vliet-Lanoë et al., 1984). Nevertheless, the durability of these features to later pedo/bio-turbation (Van Vliet-Lanoë et al., 1984) indicates a certain level of stability compatible with repeated freeze-thaw cycles during an extended period.

The weak expression of the above described frost-related pedofeatures suggests the occurrence in the past of periglacial processes unrelated to permafrost (Van Vliet-Lanoë, 1998), the presence of which would have forced much stronger cryoturbation and very different features in the soil and is linked to more rigid conditions, possibly unmet here since the LGM. In fact, considering the stability through time of frost-related pedofeatures (Van Vliet-Lanoë et al., 1984), their absence in the two buried soil units suggests that frost acted in the area only during the most recent cold phase corresponding to the LIA, after the accumulation of the parent material of the uppermost soil unit. Since most of the pedogenetic factors identified by Jenny (1941) and the related soil-forming processes do not show dramatic changes over time, as seen above, this occurrence is probably more related to fluctuations in the climate. A climatic trend toward cooler conditions seems also confirmed by the general decrease in expression of pedogenetic processes from the bottom to the top of the pedosequence. This trend has been recently suggested from multi-proxy models of insolation at middle latitudes on alpine scale (Mauri et al., 2015). The supposed duration for each phase of soil formation, probably lasting several millennia to centuries, also needs to be taken into consideration. It is clear how time alone is not able to explain the differences in pedogenesis. In fact, both factors contributed in synergy to the development of soil formation processes (Boardman, 1985; Birkeland, 1999). We believe that in this case, while no simple comparison can be done between climate and time, the former seems to play the main role. The rapid succession of environmental changes in the Holocene represents the limiting factor in 58 59 286 the development of pedogenesis. Time in this case cannot be the primary factor driving the 60

expression of pedogenesis, since the different units are formed too suddenly because of the 287 288 continuous climate shifts.

1 2

3

4 5

6 7

8 9

289 Considering the strong similarities in soil formation conditions between the three units, the effect of different cold periods on each is very noticeable. The abrupt truncation of the bottom unit 290 could possibly correspond to the initial part of the Neoglacial period, often associated with a sharp 291 10 11 292 increase in denudation processes (Arnaud et al., 2012). Denudation is in turn related to vegetation 12 loss events often indirectly caused by the passage to cold and unstable climate phases (Bertolini et 13 293 14 al., 2004; Nicolussi et al., 2005; Magny et al., 2009a; Compostella et al., 2014). Slope instability 15 294 16 ₁₇ 295 events responsible for the deposition of the two upper units are also a typical result of denudation 18 296 processes, where erosion and deposition often occur consecutively on the same topographic 19 20 297 surface (Giraudi et al., 2011; Compostella et al., 2014). The same appears to happen for the 21 ²² 298 truncation of the second unit dated to the IACE (Magny et al., 2009b). For sake of clarity we need to 23 consider that the anthropogenic contribution to the deposition and development of these units is 24 299 25 not to be underestimated. Multiple fire events very likely connected to forest clearance practices 26 300 27 ₂₈ 301 started in the area since the Mesolithic (Castelletti et al., 2012b). Fire events greatly enhanced the 29 302 effect of washout and solifluction on the slopes, mobilising the colluvial material that forms the two 30 31 303 upper soil units. Human contribution to slope instability is in this case guite important, enhancing 32 33 304 ongoing processes in synergy with the effect of climate variations. Later, also the 34 zoogeomorphological effect due to the introduction of herding may have contributed to accelerate 35 305 36 ongoing denudation and rill erosion. 37 306

38 ₃₉ 307 The different setting of the uppermost unit, where frost features represent the effect of cold 40 308 conditions in place of truncations, can be ultimately regarded as a distinct process attributed 41 ⁴² 309 specifically to the LIA. Neoglacial cold events appear to have mainly impacted the soil through 43 ⁴⁴ 310 slope instability and processes of removal/addition of material, but no features directly related to 45 freezing and ice formation are found at the top of the buried units. In this regard, while it is true 46 311 47 that no actual surface A horizon is currently present on both units, it must be noted that the new 48 312 49 ₅₀ 313 surfaces produced by truncation were probably exposed to the weather for a non-insignificant 51 314 length of time. On the intermediate unit this was enough to allow the establishment of a fireplace 52 ⁵³ 315 on top of the former topographic surface - or at least not far from it – which does not exhibit any 54 55 316 visible frost feature. On the contrary, anthropogenic features as fireplaces are able to record frost-56 related pedofeatures (Cremaschi et al., 2015). The LIA has instead triggered in the soil a variety of 57 317 58 stable features related to intermittent freezing cycles. Such clear difference might suggest that 59 318 60 319 other climate dynamics were in place during the cold phases preceding the LIA (for instance, the Page 11 of 55

Progress in Physical Geography

IACE). In this perspective, it might be plausible to characterise the LIA as a colder or drier period 320 than the previous ones: lower temperatures in comparison with the other Holocene cold periods 321 322 would have allowed more widespread episodes of seasonal frost. Holocene temperature anomalies reconstructed in the Southern Alps by Furlanetto et al. (2018) support this hypothesis suggesting a 323 moderate shift towards lower temperatures in the LIA compared to other Holocene climatic phases. 324 325 Moreover, a recent assessment of post-LGM permafrost distribution in the Mediterranean region 13 326 suggests a widespread occurrence of soil frost in the LIA (Oliva et al., 2018). Similarly, a lessened amount of precipitation would have reduced the snow cover, well below the current thickness and 15 327 ₁₇ 328 down to only a few tens of centimetres (Zhang, 2005), weakening the thermal isolation of the soil below and allowing frost to take hold (Edwards et al., 2007b and references therein). A consequent 329 330 shift downwards of the freezing front would plausibly have left more visible and stable features in ²² 331 the soils, while in less rigid and wetter phases they would only have suffered the consequences of more snow thawing upslope, especially a higher water discharge rate and in turn the activation of 24 332 slope movements. The relationship between precipitation and slope processes is well studied in the 26 333 ₂₈ 334 Alps: today, where climate conditions are more severe lower rainfall thresholds are needed to 335 trigger slope movements (Guzzetti et al., 2007). Considering the enhanced possibility of slope instability in cold environments, the absence of truncations in the upper soil unit confirms stable 336 ³³ 337 slope conditions and further supports a possible dry phase. While it is very difficult to assess past precipitation amount, reconstructed temperatures from proxy data in the Alps seem to favour this 35 338 idea (for comparison, see Badino et al., 2018; Furlanetto et al., 2018). Similar conditions have also 37 339 ₃₉ 340 been very recently postulated for the Northern Apennines (Regattieri et al., 2014; Mariani et al., 41 341 2019). The occurrence of other evidence confirming the climatic conditions in Mediterranean ⁴² 342 mountain ranges during the LIA confirms that soils and pedofeatures can reflect regional climatic 43 ⁴⁴ 343 conditions and they are not only triggered by local conditions and surface processes. The effect of 45 forest clearance must be taken into account when discussing temperature in the topsoil. In fact, the 46 344 47 presence of a forest cover greatly mitigates the effect of air temperature on the soil, with the 48 345 49 50 346 canopy protecting the lower air strata and producing a warmer microclimate that reaches 51 347 temperatures below zero with more difficulty (Körner. 2003). On the other hand, the canopy effect 52 ⁵³ 348 also prevents part of the snow accumulation, reducing its isolating power. In this area, the 54 55 349 continuous presence since the Mesolithic of clearance events by fire and the more recent 56 establishment of pasturelands (Castelletti et al., 2012b) probably prevented for long periods of time 57 350 58 59 351 the reestablishment of a closed forest, leaving more open vegetation in which both these effects 60 352 were probably greatly reduced.

VI. Conclusions

This study reconstructs climatic fluctuations throughout the Holocene on the basis of a soil polysequence the pedogenetic processes that occurred in a high mountain range. Our study shows new evidence regarding the importance of the LIA in the Alps as one of the main cold intervals after the LGM. While it is difficult to make assumptions based on indirect archives, it is plausible to infer, based on the evidence found in this study, that during the LIA the intensity of frost action 13 359 might have been stronger compared to other Holocene cold episodes. An increase in ice formation 15 360 ₁₇ 361 could in turn be related to the occurrence of drier/colder conditions weakening snow deposition on the soil surface and favouring overall freezing conditions.

While soil archives are considered a low-mid resolution resource in palaeoclimatic studies ²² 364 (Yaalon, 1990), in this case the reconstruction of pedogenesis was the only reliable tool for recording cold intervals that occurred after the LGM in a non-glaciated area and their influence on 24 365 surface processes. The study of soils and specifically micromorphology discloses important 26 366 ₂₈ 367 information on past climate, where evidence of processes triggered by specific climatic and environmental conditions (in this case atmospheric temperature) can be observed and put inside their proper placement in time (sensu Cremaschi et al., 2018). In environments where human ³³ 370 actions started tuning surface processes earlier than expected in the Mid-Late Holocene, as suggested by recent studies (ArchaeoGLOBE Project, 2019), soil evidence also helps in 35 371 disentangling natural and anthropogenic factors shaping the landscape in human-settled contexts. 37 372 ₃₉ 373 The absence of deposits and landforms allowing the formation and conservation of soils and palaeosols would indeed render many of such reconstructions quite arduous, if not implausible.

1 2 3	76	References
3 4 3	577	Allison RJ (1996) Slope and slope processes. Progress in Physical Geography 20(4): 453-465.
5 63	78	Angelucci D, Cremaschi M, Negrino F and Pelfini M (1992) Il sito mesolitico di Dosso Gavia - Val di
7 8 3	79	Gavia (Sondrio - Italia): evoluzione ambientale e popolamento umano durante l'Olocene antico
9 10 3	80	nelle Alpi Centrali. Preistoria Alpina 28: 19–32.
11 11 12	81	ArchaeoGLOBE Project (2019) Archaeological assessment reveals Earth's early transformation
12	82	through land use. Science 365: 897–902.
14 15 3	83	Arnaud F, Révillon S, Debret M, Revel M, Chapron E, Jacob J, Giguet-Covex C, Poulenard J and
16 17 3	84	Magny M (2012) Lake Bourget regional erosion patterns reconstruction reveals Holocene NW
18 19 3	85	European Alps soil evolution and palaeohydrology. Quaternary Science Reviews 51: 81-92.
²⁰ 21 3	86	Badino F, Ravazzi C, Vallè F, Pini R, Aceti A, Brunetti M, Champvillair E, Maggi V, Maspero F, Perego
22 3	87	R and Orombelli G (2018) 8800 years of high-altitude vegetation and climate history at the Rutor
23 24 3	88	Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise and glacier
25 26 3	89	contraction. Quaternary Science Reviews 185: 41–68.
27 28 3	90	Baroni C and Orombelli G (1996) The Alpine "Iceman" and Holocene Climatic Change. Quaternary
29 30 3	91	Research 46(1): 78 – 83.
31 32	92	Barry RG (1992) Mountain weather and climate. London: Routledge.
33 3 34	93	Bertolini G, Casagli N, Ermini L and Malaguti C (2004) Radiocarbon data on Lateglacial and
35 3	94	Holocene landslides in the Northern Apennines. Natural Hazards 3: 645–662.
30 37 3	95	Bini A, Buoncristiani JF, Coutterand S, Ellwanger D, Felber M, Florineth D, Graf HR, Keller O,
38 39 3	96	Schlüchter C and Schoeneich P (2009) La Svizzera durante l'ultimo massimo glaciale (LGM),
40 41 3	97	1:500 ' 000. Ufficio federale di topografia swisstopo, Wabern.
42 43	98	Birkeland PW (1999) Soils and Geomorphology. New York: Oxford University Press.
44 3 45	99	Boardman J (1985) Comparison of Soils in Midwestern United States and Western Europe with the
46 4	00	Interglacial Record. Quaternary Research 23(1): 62-75.
47 48 4	01	Boeckli L, Brenning A, Grube S and Noetzli J (2012) Permafrost distribution in the European Alps:
49 50 4	02	calculation and evaluation of an index map and summary statistics. The Cryosphere 6: 807-820.
51 52 4	03	Bollati I, Cerrato R, Crosa Lenz B, Vezzola L, Giaccone E, Viani C, Zanoner T, Azzoni RS, Masseroli A,
⁵³ 4 54	04	Pellegrini M, Scapozza C, Zerboni A and Guglielmin M (2018) Geomorphological map of the Val
55 4 56	05	Viola Pass (Italy-Switzerland). <i>Geografia Fisica e Dinamica Quaternaria</i> DOI
57 4	06	10.4461/GFDQ.2018.41.2
59 4 60	07	Bradley RS (ed) (2015) Palaeoclimatology (third edition). London: Academic Press.

1	
2 408	Butler DR (1995) Zoogeomorphology: Animals as Geomorphic Agents. Cambridge, UK: Cambridge
4 409	University Press.
6 410	Butler DR (2012) The impact of climate change on patterns of zoogeomorphological influence:
7 8 411	examples from the Rocky Mountains of the Western U.S.A. Geomorphology 157-158: 183–191.
9 10 412	Butler DR (2018) Zoogeomorphology in the Anthropocene. <i>Geomorphology</i> 303: 146–154.
¹¹ 413	Calderoni G, Guglielmin M and Tellini C (1998) Radiocarbon dating and postglacial evolution, upper
13 414	Valtellina and Livignese area (Sondrio, Central Italian Alps). Permafrost and Periglacial Processes
15 415	9: 275 - 284.
16 17 416	Carturan L, Baroni C, Carton A, Cazorzi F, Fontana GD, Delpero C, Salvatore MC, Seppi R and
18 19 417	Zanoner T (2014) Reconstructing Fluctuations of La Mare Glacier (Eastern Italian Alps) in the Late
²⁰ 418 21	Holocene. Geografiska Annaler: Series A, Physical Geography 96: 287–306.
²² 419	Castelletti L, Caimi R and Tremari M (2012a) Ricerche archeologiche di superficie in Val Cavargna.
24 420	In: Castelletti L and Motella de Carlo S (eds) Il fuoco e la montagna. Archeologia del paesaggio
25 26 421	dal Neolitico all'età moderna in Alta Val Cavargna. Como: Università degli Studi dell'Insubria, pp.
27 28 422	79-88.
²⁹ 30 423	Castelletti L, Martinelli E, Motella de Carlo S and Procacci G (2012b) Archeologia del fuoco in Val
³¹ 424	Cavargna. In: Castelletti L and Motella de Carlo S (eds) Il fuoco e la montagna. Archeologia del
33 425 34	paesaggio dal Neolitico all'età moderna in Alta Val Cavargna. Como: Università degli Studi
35 426	dell'Insubria, pp. 137-185.
37 427	Castelletti L and Tremari M (2012) Edifici e tracce insediative in Val Cavargna. In: Castelletti L and
38 39 428	Motella de Carlo S (eds) Il fuoco e la montagna. Archeologia del paesaggio dal Neolitico all'età
⁴⁰ 429 41	<i>moderna in Alta Val Cavargna</i> . Como: Università degli Studi dell'Insubria, pp. 89-110.
⁴² 430 43	Ceriani M and Carelli M (2000) Carta delle precipitazioni massime, medie e minime del territorio
44 431 45	alpino della Regione Lombardia. Milano: Servizio Geologico, Ufficio Rischi Geologici Regione
46 432	Lombardia.
48 433	Colucci RR, Boccali C, Zebre M and Guglielmin M (2016) Rock glaciers, protalus ramparts and
49 50 434	pronival ramparts in the south-eastern Alps. <i>Geomorphology</i> 269: 112–121.
51 52 435	Compostella C, Trombino L and Caccianiga M (2012) Late Holocene soil evolution and treeline
⁵³ 436 54	fluctuations in the Northern Apennines. Quaternary International 289: 46–59.
55 437 56	Compostella C, Mariani GS and Trombino L (2014) Holocene environmental history at the treeline
57 438	in the Northern Apennines, Italy: A micromorphological approach. The Holocene 24(4): 393–404.
59 439	Cornell RM and Schwertmann U (2003) The Iron Oxides. Weinheim: Wiley.
50	

Page 15 of 55

1

- ² 440 Cremaschi M and Rodolfi G (1991) *Il suolo Pedologia nelle scienze della Terra e nella valutazione* ³ 441 *del territorio*. Roma: La Nuova Italia Scientifica.
- Gremaschi M, Mercuri AM, Torri P, Florenzano A, Pizzi C, Marchesini M and Zerboni A (2016)
 Climate change versus land management in the Po Plain (Northern Italy) during the Bronze Age:
 New insights from the VP/VG sequence of the Terramara Santa Rosa di Poviglio. *Quaternary* Science Reviews 136: 153–172.
- Cremaschi M and Nicosia C (2012) Sub-Boreal aggradation along the Apennine margin of the
 Central Po Plain: geomorphological and geoarchaeological aspects. *Geomorphologie* 2: 155–174.
- Cremaschi M, Trombino L and Zerboni A (2018) Palaeosoils and relict soils, a systematic review. In:
 Stoops G, Marcelino V and Mees F (eds) *Interpretation of Micromorphological Features of Soils and Regoliths. Second edition.* Amsterdam: Elsevier, pp. 863–894.
- Cremaschi M, Zerboni A, Nicosia C, Negrino F, Rodnight H and Spötl C (2015) Age, soil-forming
 processes, and archaeology of the loess deposits at the Apennine margin of the Po Plain
 (northern Italy). New insights from the Ghiardo area. *Quaternary International* 376: 173-188
- 454 Cremonese E, Gruber S, Phillips M, Pogliotti P, Boeckli L, Noetzli J, Suter C, Bodin X, Crepaz A,
 455 Kellerer-Pirklbauer A, Lang K, Letey S, Mair V, Morra di Cella U, Ravanel L, Scapozza C, Seppi R
 and Zischg A (2011) Brief Communication: "An inventory of permafrost evidence for the
 European Alps". *The Cryosphere* 5: 651-657.
- Crosta GB, Frattini P and Agliardi F (2013) Deep seated gravitational slope deformations in the European Alps. *Tectonophysics* 605: 13–33.
- Crouvi O, Amit R, Enzel Y, Porat N and Sandler A (2008) Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. *Quaternary Research* 70: 275–282.
- ⁴² 462 Deline P and Orombelli G (2005) Glacier fluctuations in the western Alps during the Neoglacial, as
 ⁴⁴ 463 indicated by the Miage morainic amphitheatre (Mont Blanc massif, Italy). *Boreas* 34: 456-467.
- 46 464 Duchaufour P (1977) *Précis de pédologie*. Paris: Masson.
- 48 465 Duchaufour P (1983) Pédologie. 1. Pédogenèse et classification. Paris: Masson.
- ⁴⁹₅₀ 466 Dumanski JA and St-Arnaud RJ (1966) A micropedological study of eluviated horizons. *Canadian* ⁵¹₅₂ 467 *Journal of Soil Science* 46: 287–292.
- Edwards TL, Crucifix M and Harrison SP (2007a) Using the past to constrain the future: how the
 palaeorecord can improve estimates of global warming. *Progress in Physical Geography* 31(5):
 481–500.
- Edwards AC, Scalenghe R and Freppaz M (2007b) Changes in the seasonal snow cover of alpine
 regions and its effect on soil processes: A review. *Quaternary International* 162–163: 172–181.

473

Federici PR (2005) Aspetti e problemi della glaciazione pleistocenica nelle Alpi Apuane. Istituto 3 474 Italiano di Speleologia Mem. 18(2): 19–32. 4 5 475 Federici PR, Ribolini A and Spagnolo M (2017) Glacial history of the Maritime Alps from the last 6 7 Glacial maximum to Little Ice Age. In: Hughes PD and Woodward JC (eds) Quaternary glaciation 476 8 9 in Mediterranean Mountains. London: Geological Society, Special Publications 433, pp. 137–159. 477 10 ¹¹ 478 Fedoroff N (1997) Clay illuviation in Red Mediterranean soils. Catena 28: 171–189. 12 13 479 Fischer P, Hilgers A, Protze J, Kels H, Lehmkuhl F and Gerlach R (2012) Formation and 14 geochronology of Last Interglacial to Lower Weichselian loess/palaeosol sequences - case 15 480 16 17 481 studies from the Lower Rhine Embayment, Germany. Quaternary Science Journal 61(1): 48-63. 18 Food and Agriculture Organization (FAO) (2006) Guidelines for Soil Description. 4th Edition. Rome: 482 19 20 483 FAO. 21 ²² 484 Food and Agriculture Organization (FAO) (2014) World reference base for soil resource 2014. World 23 Soil Resources Reports. N° 106. FAO, Rome: FAO. 24 485 25 Furlanetto G, Ravazzi C, Pini R, Vallè F, Brunetti M, Comolli R, Novellino MD, Garozzo L and Maggi V 26 486 27 ₂₈ 487 (2018) Holocene vegetation history and quantitative climate reconstructions in a high-elevation 29 488 oceanic district of the Italian Alps. Evidence for a middle to late Holocene precipitation increase. 30 31 489 Quaternary Science Reviews 200: 212–236. 32 ³³ 490 Gazzolo T and Pinna M (1973) La nevosità in Italia nel quarantennio 1921-1960. Rome: Istituto 34 35 491 Poligrafico dello Stato. 36 Giraudi C, Bodrato G, Ricci Lucchi M, Cipriani M, Villa IM, Giaccio B and Zuppi GM (2011) Middle 37 492 38 ₃₉ 493 and Late Pleistocene Glaciations in the Campo Felice basin (Central Apennines - Italy). 494 494 Quaternary Research 75: 219 - 230. ⁴² 495 Grandi G (2012) Popolazione, attività minerarie e siderurgiche, uso dei boschi e carbonaie tra il XV e 43 ⁴⁴ 496 il XIX secolo in Val Cavargna. In: Castelletti L and Motella de Carlo S (eds) Il fuoco e la montagna. 45 Archeologia del paesaggio dal Neolitico all'età moderna in Alta Val Cavargna. Como: Università 46 497 47 degli Studi dell'Insubria, pp. 21-36. 48 498 49 ₅₀ 499 Grosjean M, Suter PJ, Trachsel M and Wanner H (2007) Ice-borne prehistoric finds in the Swiss Alps 51 500 reflect Holocene glacier fluctuations. Journal of Quaternary Science 22(3): 203–207. 52 ⁵³ 501 Guzzetti F, Peruccacci S, Rossi M and Stark CP (2007) Rainfall thresholds for the initiation of 54 55 502 landslidesin central and southern Europe. Meteorology and Atmospheric Physics 98: 239–267. 56 Henry HAL (2007) Soil freeze-thaw cycle experiments: Trends, methodological weaknesses and 57 503 58 59 504 suggested improvements. Soil Biology and Biochemistry 39: 977–986. 60

Page 17 of 55

2 505	Hughes PD, Woodward JC, van Calsteren PC and Thomas LE (2011) The glacial history of the Dinaric
4 506	Alps, Montenegro. Quaternary Science Reviews 30(23–24): 3393–3412.
6 507	Jenny H (1941) Factors of Soil Formation. New York: McGraw-Hill.
7 8 508	Knight J and Harrison S (2009) Periglacial and paraglacial environments: a view from the past into
9 10 ⁵⁰⁹	the future. In: Knight J and Harrison S (eds) Periglacial and Paraglacial Processes and
¹¹ 510 12	Environments. London: Geological Society, Special Publications, 320, pp. 1-4.
13 511	Körner C (2003) Alpine Plant Life. Second Edition. Berlin: Springer.
15 512	Kuhlemann J, Gachev E, Gikov A, Nedkov S, Krumrei I and Kubik P (2013) Glaciation in the Rila
16 17 513	mountains (Bulgaria) during the Last Glacial Maximum, <i>Quaternary International</i> 293: 51–62.
18 19 514	Kullman L and Öberg L (2009) Post - Little Ice Age tree line rise and climate warming in the
²⁰ 515 21	Swedish Scandes: a landscape ecological perspective. Journal of Ecology 97: 415–429.
²² 516	Kutzbach JE (1976) The nature of climate and climatic variations. Quaternary Research 6: 471–480.
24 517	Loso MG, Doak DF and Anderson RS (2014) Lichenometric dating of Little Ice Age glacier moraines.
26 518	Geografiska Annaler: Series A, Physical Geography 96: 21–41.
27 28 519	Magny M, Vannière B, Zanchetta G, Fouache E, Touchais G, Petrika L, Coussot C, Walter-Simonnet
29 30 520	AV and Arnaud F (2009a) Possible complexity of the climatic event around 4300–3800 cal. BP in
³¹ 521 32	the central and western Mediterranean. The Holocene 19: 823–833.
³³ 522 34	Magny M, Peyron O, Gauthier E, Roueche Y, Bordon A, Billaud Y, Chapron E, Marguet A, Pétrequin P
35 523	and Vannière B (2009b) Quantitative reconstruction of climatic variations during the Bronze and
36	and variations during the bronze and
36 37 524	early Iron ages based on pollen and lake-level data in the NW Alps, France. Quaternary
36 37 524 38 39 525	early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary</i> International 200(1-2): 102–110.
36 37 524 38 39 525 40 41 526	 early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt.
36 37 524 38 39 525 40 41 526 42 527 43	 early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. <i>Journal of Maps</i>
36 37 524 38 39 525 40 526 41 526 42 527 43 44 528	 and valinere B (2005b) Quantitative reconstruction of climate valiations during the Biolize and early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. <i>Journal of Maps</i> 14(2): 392-401. DOI: 10.1080/17445647.2018.1480976
36 37 524 38 39 525 40 526 41 526 42 527 43 44 528 45 46 529 47	 and valinere B (2005b) Quantitative reconstruction of climate valiations during the Biolize and early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. <i>Journal of Maps</i> 14(2): 392-401. DOI: 10.1080/17445647.2018.1480976 Mariani GS, Compostella C and Trombino L (2019) Complex climate-induced changes in soil
36 37 524 38 39 525 40 526 41 526 42 527 43 44 528 45 46 529 47 48 530	 early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary</i> <i>International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. <i>Journal of Maps</i> 14(2): 392-401. DOI: 10.1080/17445647.2018.1480976 Mariani GS, Compostella C and Trombino L (2019) Complex climate-induced changes in soil development as markers for the Little Ice Age in the Northern Apennines (Italy). <i>Catena</i> 181.
36 37 524 38 39 525 40 526 41 526 42 527 43 527 44 528 45 46 529 47 48 530 49 50 531	 and valuations during the biolize and early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. <i>Journal of Maps</i> 14(2): 392-401. DOI: 10.1080/17445647.2018.1480976 Mariani GS, Compostella C and Trombino L (2019) Complex climate-induced changes in soil development as markers for the Little Ice Age in the Northern Apennines (Italy). <i>Catena</i> 181. DOI: 10.1016/j.catena.2019.104074
36 37 524 38 39 525 40 526 41 526 42 527 43 528 44 528 45 529 47 48 530 49 50 531 51 532	 and valuative b (20050) Quantitative reconstruction of climate valuations during the bronze and early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. <i>Journal of Maps</i> 14(2): 392-401. DOI: 10.1080/17445647.2018.1480976 Mariani GS, Compostella C and Trombino L (2019) Complex climate-induced changes in soil development as markers for the Little Ice Age in the Northern Apennines (Italy). <i>Catena</i> 181. DOI: 10.1016/j.catena.2019.104074 Mauri A, Davis BAS, Collins PM and Kaplan JO (2015) The climate of Europe during the Holocene: a
36 37 524 38 39 525 40 526 41 526 42 527 43 527 44 528 45 529 47 48 530 49 50 531 51 532 53 533 54	 and valifier B (2005) (Quantitative reconstruction of climate valitations during the Biolize and early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. <i>Journal of Maps</i> 14(2): 392-401. DOI: 10.1080/17445647.2018.1480976 Mariani GS, Compostella C and Trombino L (2019) Complex climate-induced changes in soil development as markers for the Little Ice Age in the Northern Apennines (Italy). <i>Catena</i> 181. DOI: 10.1016/j.catena.2019.104074 Mauri A, Davis BAS, Collins PM and Kaplan JO (2015) The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. <i>Quaternary Science Reviews</i>
36 37 38 39 40 525 40 526 40 526 40 526 40 526 40 527 43 42 527 43 45 46 50 51 52 53 53 53 53 55 534	 and valinete b (2005b) Quantitative reconstruction of climate valiations during the biolize and early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. <i>Journal of Maps</i> 14(2): 392-401. DOI: 10.1080/17445647.2018.1480976 Mariani GS, Compostella C and Trombino L (2019) Complex climate-induced changes in soil development as markers for the Little Ice Age in the Northern Apennines (Italy). <i>Catena</i> 181. DOI: 10.1016/j.catena.2019.104074 Mauri A, Davis BAS, Collins PM and Kaplan JO (2015) The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. <i>Quaternary Science Reviews</i> 112: 109–127.
36 37 524 38 525 40 526 41 526 42 527 43 527 44 528 45 529 47 530 48 530 49 531 51 532 53 533 54 55 57 535	 and valuate b (2005) Quantitative reconstruction of cliniate valuations during the bronze and early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. <i>Journal of Maps</i> 14(2): 392-401. DOI: 10.1080/17445647.2018.1480976 Mariani GS, Compostella C and Trombino L (2019) Complex climate-induced changes in soil development as markers for the Little Ice Age in the Northern Apennines (Italy). <i>Catena</i> 181. DOI: 10.1016/j.catena.2019.104074 Mauri A, Davis BAS, Collins PM and Kaplan JO (2015) The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. <i>Quaternary Science Reviews</i> 112: 109–127. Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van
36 37 524 38 525 40 526 41 526 42 527 43 527 44 528 46 529 47 48 48 530 49 531 51 532 53 533 54 53 55 534 56 57 58 59 59 536	 and valide b (2003b) Qualitative reconstruction of calidate validations during the biolize and early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. <i>Journal of Maps</i> 14(2): 392-401. DOI: 10.1080/17445647.2018.1480976 Mariani GS, Compostella C and Trombino L (2019) Complex climate-induced changes in soil development as markers for the Little Ice Age in the Northern Apennines (Italy). <i>Catena</i> 181. DOI: 10.1016/j.catena.2019.104074 Mauri A, Davis BAS, Collins PM and Kaplan JO (2015) The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. <i>Quaternary Science Reviews</i> 112: 109–127. Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K and Lee-Thorp J (2004) Holocene climate variability. <i>Quaternary Research</i>
36 37 524 38 525 40 526 41 526 42 527 43 527 44 528 46 529 47 48 40 531 51 532 53 533 54 53 55 534 56 535 59 536 60 537	 and valinicite b (2005b) Quantitative reconstruction of chinate valiations during the biolize and early Iron ages based on pollen and lake-level data in the NW Alps, France. <i>Quaternary International</i> 200(1-2): 102–110. Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt. Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. <i>Journal of Maps</i> 14(2): 392-401. DOI: 10.1080/17445647.2018.1480976 Mariani GS, Compostella C and Trombino L (2019) Complex climate-induced changes in soil development as markers for the Little Ice Age in the Northern Apennines (Italy). <i>Catena</i> 181. DOI: 10.1016/j.catena.2019.104074 Mauri A, Davis BAS, Collins PM and Kaplan JO (2015) The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. <i>Quaternary Science Reviews</i> 112: 109–127. Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K and Lee-Thorp J (2004) Holocene climate variability. <i>Quaternary Research</i> 62(3): 243–255.

- ² 538 McKeague JA, Brydon JE and Miles NM (1971) Differentiation of forms of extractable iron and
 ³ aluminium in soils. Soil Science Society of America Proceedings 35: 33–38.
- Mehra OP and Jackson ML (1960) Iron oxide removal from soils and clays by a dithionite-citrate
 system buffered with sodium bicarbonate. *Clays and Clay Minerals* 7: 317–327.
- ⁹ 542 Munsell Color® (1994) *Munsell soil color charts*. New Windsor, NY: Munsell Color.

36

- Murphy CP (1986) Thin Section Preparation of Soils and Sediments. Herts, UK: AB Academic
 Publishers.
- Nicholson SE (1988) Land surface atmosphere interaction: physical processes and surface changes
 and their impact. *Progress in Physical Geography* 12(1): 36-65.
- ¹⁸₁₉ 547 Nicolussi K (2013) Die historischen Vorstöße und Hochstände des Vernagtferners 1600-1850 AD.
 ²⁰₂₁ 548 Zeitschrift für Gletscherkunde und Glazialgeologie 45-46: 9–23.
- Nicolussi K, Kauffman M, Patzelt G, van der Plicht J and Thurner A (2005) Holocene tree-line
 variability in the Kauner valley, central Eastern Alps, indicated by dendrochronological analysis of
 living trees and subfossil logs. *Vegetation History and Archaeobotany* 14: 221–234.
- Oliva M, Zebre M, Guglielmin M, Hughes PD, Ciner A, Vieira G, Bodin X, Andrés N, Colucci RR,
 Garcia-Hernandez C, Mora C, Nofre J, Palacios D, Perez-Alberti A, Ribolini A, Ruiz-Fernandez J,
 Sarikaya MA, Serrano E, Urdea P, Valcarcel M, Woodward JC and Yildirim C (2018) Permafrost
 conditions in the Mediterranean region since the Last Glaciation. *Earth Science Reviews* 185:
 397 436.
- Pelfini M, Leonelli G, Trombino L, Zerboni A, Bollati I, Merlini A, Smiraglia C and Diolaiuti C (2014)
 New data on glacier fluctuations during the climatic transition at ~4,000 cal. year BP from a
 buried log in the Forni Glacier forefield (Italian Alps). *Rend. Fis. Acc. Lincei* 25: 427–437.
- Plunkett G and Swindles GT (2008) Determining the Sun's influence on Lateglacial and Holocene
 climates: a focus on climate response to centennial-scale solar forcing at 2800 cal. BP.
 Quaternary Science Reviews 27(1–2): 175–184.
- Porter SC and Orombelli G (1985) Glacier contraction during the middle Holocene in the western
 Italian Alps: Evidence and implications. *Geology* 13(4): 296–298.
- Regattieri E, Zanchetta G, Drysdale RN, Isola I, Hellstrom JC and Dallai L (2014) Lateglacial to
 Holocene trace element record (Ba, Mg, Sr) from Corchia Cave (Apuan Alps, central Italy):
 paleoenvironmental implications. *Journal of Quaternary Science* 29(4): 381-392.
- 57 568 Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL,
 58 59 569 Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann
 ⁶⁰ 570 DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA,

Page 19 of 55

1	
2 571	Scott EM, Southon JR, Staff RA, Turney CSM and van der Plicht J (2013) IntCal13 and Marine13
3 4 572	radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4): 1869–1887.
5 6 573	Schwertmann U (1973) Use of oxalate for Fe extraction from soils. Canadian Journal of Soil Science
7 8 574	53: 244–246.
9 10 575	Sevink J and de Waal RW (2010) Soil and humus development in drift sands. In: Fanta J and Siepel
¹¹ 576	H (eds) Inland Drift Sand Landscapes. Zeist, Netherlands: KNVV Publishing, pp. 107–134.
13 577	Soil Survey Staff (2014) Keys to Soil Taxonomy. 12th ed. Washington, DC: USDA-Natural Resources
14 15 578	Conservation Service.
16 17 579	Spalla MI, Di Paola S, Gosso G, Siletto GB and Bistacchi A (2002) Mapping tectono-metamorphic
18 19 ⁵⁸⁰	histories in the Lake Como basement (Southern Alps, Italy). Memorie di Scienze Geologiche 54:
²⁰ 581	149-167.
²² 582	Stoops G (2003) Guidelines for analysis and description of soil and regolith thin sections. Madison,
25 24 583	Wisconsin: Soil Science Society of America.
25 26 584	Stoops G, Marcelino V and Mees F (eds) (2018) Interpretation of Micromorphological Features of
27 28 585	Soils and Regoliths. Second edition. Amsterdam: Elsevier.
29 30 586	Van Ranst E, Wilson MA and Righi D (2018) Spodic materials. In: Stoops G, Marcelino V and Mees F
³¹ 587	(eds) Interpretation of Micromorphological Features of Soils and Regoliths. Second edition.
33 588	Amsterdam: Elsevier, pp. 633–662.
35 589	Van Vliet-Lanoë B (1987) Dynamique périglaciaire actuelle et passée. Apport de l'étude
36 37 590	micromorphologique et de l'expérimentation. Bulletin A.F.E.Q. 2: 113–132.
38 39 591	Van Vliet-Lanoë B (1998) Frost and soils: implications for palaeosols, palaeoclimates and
40 41 592	stratigraphy. Catena 34: 157–183.
42 43	Van Vliet-Lanoë B, Coutard JP and Pissart A (1984) Structures caused by repeated freezing and
44 594	thawing in various loamy sediments. A comparison of active, fossil and experimental data. Earth
46 595	Surface Processes and Landforms 9: 553–565.
47 48 596	Van Vliet-Lanoë B and Fox CA (2018) Frost action. In: Stoops G, Marcelino V and Mees F (eds)
49 50 597	Interpretation of Micromorphological Features of Soils and Regoliths. Second edition. Amsterdam:
⁵¹ 52 598	Elsevier, pp. 575–603.
⁵³ 599 54	Vepraskas MJ, Lindbo DL and Stolt MH (2018) Redoximorphic Features. In: Stoops G, Marcelino V
55 600	and Mees F (eds) Interpretation of Micromorphological Features of Soils and Regoliths. Second
57 601	edition. Amsterdam: Elsevier, pp. 425–446.
58 59 602	Wanner H, Solomina O, Grosjean M, Ritz SP and Jetel M (2011) Structure and origin of Holocene
⁶⁰ 603	cold events. Quaternary Science Reviews 30: 3109–3123.

Waroszewski J, Egli M, Brandová D, Christl M, Kabala C, Malkiewicz M, Kierczak J, Glina B and Jezierski P (2018) Identifying slope processes over time and their imprint in soils of medium -high mountains of Central Europe (the Karkonosze Mountains, Poland). Earth Surface Processes

Yaalon DH (1990) The relevance of soils and paleosols in interpreting past and ongoing climatic changes. Palaeogeography Palaeoclimatology Palaeoecology 82: 63 - 64.

and Landforms 43: 1195-1212.

13 610 Zanchetta G, Regattieri E, Isola I, Drysdale RN, Bini M, Baneschi I and Hellstrom JC (2016) The so-called "4.2 event" in the Central Mediterranean and its climatic teleconnections. Alpine 15 611 ₁₇ 612 Mediterranean Quaternary 29(1): 5 - 17.

Zerboni A, Trombino L and Cremaschi M (2011) Micromorphological approach to polycyclic pedogenesis on the Messak Settafet plateau (central Sahara): Formative processes and ²² 615 palaeoenvironmental significance. Geomorphology 125: 319-335.

- Zerboni A, Trombino L, Frigerio C, Livio F, Berlusconi A, Michetti AM, Rodnight H and Spötl C (2015) 24 616 The loess-palaeosol sequence at Monte Netto: a record of climate change in the Upper 26 617 ₂₈ 618 Pleistocene of the central Po Plain, northern Italy. Journal of Soils and Sediments 15: 1329–1350.
- Zerboni A and Nicoll K (2018) Enhanced zoogeomorphological processes in North Africa in the human-impacted landscapes of the Anthropocene. Geomorphology 331: 22-35.

³³ 621 Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Reviews of Geophysics 43: RG4002. J.C.M 35 622

7

623 Captions

3 624 Figure 1. (A) Hillshade of the central sector of Southern Alps indicating the location of the study 4 5 area (the inset indicates its position in northern Italy). (B) Satellite view of the study area (source: 625 6 Google Earth[™]); the star indicates the position of the soil profile. 626 8

9 Figure 2. (A) General view of the study area during the opening of the test trench. In the 627 10 11 foreground the high portion of the DSGSD is visible to the right; the DSGSD is broken 628 12 13 629 downslope to the left by a morphological trench associated with a counterscarp. In the 14 background the peak of Mt. Pizzo di Gino and its southern slope are visible to the left. (B) 15 630 16 ₁₇ 631 Picture of the investigated polycyclic soil sequence indicating the position of soil horizons and 18 samples for analyses (squares: blocks for thin sections; triangles: samples for chemical-physical 632 19 20 633 analyses; dots: samples for radiocarbon dating). 21

²² 634 Figure 3. Results of chemical-physical analyses: on the left, curves of grain size distribution (after 23 H₂O₂ and HCl treatments); on the right, chemical determinations of Fe content. Key: Fe(o): 24 635 25 amorphous iron; Fe(d): free iron; Fe(t): total iron. 26 636

27 ₂₈ 637 Figure 4. Micromorphological features of the investigated soil horizons: a) well developed yellowish 29 ---30⁶³⁸ fabric devoid of iso-oriented features in the intermediate unit (2Bs horizon; 2x, PPL); b) depleted 31 639 soil mass in the lower unit (3Et horizon; 2x, PPL); c) microlaminated clay coatings in the eluvial 32 ³³ 640 horizon of the lower unit (3Et horizon; 10x, PPL); d) same as c), in XPL. 34

35 641 Figure 5. Frost related features of the investigated soil horizons: a) horizontal planar voids in the 36 upper unit (A2 horizon; 4x, PPL); b) groups of circular vesicles in the upper unit (A2 horizon; 10x, 37 642 38 ₃₉ 643 PPL); c) horizontal iso-oriented mica fragments in the fabric of the upper unit (Bw horizon, 10x; 41 644 XPL); d) passage features produced by beetle larvae around undisturbed planar voids (A2 ⁴² 645 horizon; 4x, PPL). 43

Table 1. Field and chemical properties of the described soil sequence. 46 647

47 Table 2. Micromorphological descriptions of soil thin sections. G: gravel size; VCS: very coarse sand 48 648 49 ₅₀ 649 size; CS: coarse sand size; MS: medium sand size; FS: fine sand size; VFS: very fine sand size; S: 51 silt size. Abundance: very dominant - >70%; dominant - 50-70%; frequent - 30-50%; common -650 52 ⁵³ 651 15-30%; few -5-15%; very few -<5%; weak.: weakly; mod.: moderately; str.: strongly. 54

55 652 Table 3. Summary of microscopic properties of investigated soil horizons (full micromorphological 56 data are in Supplementary Materials). Frost related pedofeatures in *italics*. 57 653

58 59 60

⁴⁴ 646 45

420x292mm (300 x 300 DPI)

420x292mm (300 x 300 DPI)

2	Horizon	Texture	Colour	Mottles	Fe(o) (g/kg)	Fe(d) (g/kg)	Fe(t) (g/kg)
3	0	Silty loam	10YR 3/2		9.67	23.14	43.03
4	A1	silty loam	10YR 3/2	10 YR 6/6	11.18	24.20	39.17
5	A2	silty clay	10YR 2/1		12.06	25.05	35.51
6 7	Bw	silty loam	10YR 6/8		15.86	38.02	55.66
/ Q	2E	silty clay	10YR 5/4		8.16	28.26	44.88
9	2Bs	silty sand	10YR 5/6		7.36	22.00	47.02
10	2BC	silty sand	10YR 6/4		4.90	21.47	40.06
11				10YR 6/8,			
12	3Et	silty clay	10YR 6/1	5Y 5/8	3.44	17.55	30.61
13	3Bs	silty clay	10YR 5/8		11.53	32.37	52.27
14 15	3C	silty sand	10YR 4/2		5.00	11.59	43.30

Horizon	Microstructure	Aggregates	Porosity
A1 A2	Crumb Granular	Dominant weak. separated crumbs, FS to VFS; dominant weak. separated granular peds inside crumbs. SS Dominant weak. separated granular peds, SS	Common complex packing voids, MS to SS; very few linear planes locally horizontally oriented, MS to SS; very fee channels, VCS to CS; very few vughs, M to FS: : verv few vesicles. FS to VFS Very few complex packing voids, FS to VFS; few linear planes horizontally oriented, MS to VFS; few channels, CS FS; very few vughs, MS to FS; very few vesicles, FS to VFS
Bw	Channel	Dominant weak. separated granular peds, SS	Common channels, CS to FS; few vugh MS to FS
2E	Channel	No visible aggregates	Few channels, CS to FS; very few vughs MS to FS
Fireplace	Channel	Few weak. separated granular peds, SS	Common channels, CS to FS; few vugh MS to FS
3Et	Complex, vughy/spongy	No visible aggregates	Very few channels, CS to FS; few vughs CS to FS
3Bs	Channel	Frequent weak. separated granular peds. SS	Few channels, CS to MS; few vughs, M to FS; very few complex packing voids,

Mineral fragments	Organic material	c/f limit, ratio	c/f related distribut
Common weak. weathered micas, CS to VFS,	Very few charcoal	10 µm,	Single
well sorted on FS; few weak. weathered FS	fragments, GS to MS; very	60/40	spaced
quartz and feldspar, MS to VFS; very few mod.	few plant remains (roots),		porphyr
weathered rock fragments, GS to CS	GS to CS		
Few weak. weathered micas locally sub-	Very few charcoal	10 µm,	Double
horizontally oriented, FS to VFS; very few	fragments, CS to FS; very	40/60	spaced
weak. weathered FS quartz and feldspar, FS to	few plant remains (roots),		porphyr
VFS; very few mod. weathered rock	VCS to CS		,
fragments, GS to CS (GS concentration on the			
unner houndary with Δ2)			
Common weak. weathered micas locally sub-	Very few charcoal	10 µm,	Close
horizontally oriented, MS to VFS; few weak.	fragments, CS to FS; very	75/25	porphyr
weathered FS quartz and feldspar, MS to FS;	few plant remains (roots),		
very few mod. weathered rock fragments,	CS to MS		
VCS to CS			
Common weak. weathered micas, MS to VFS;	Very few charcoal	10 µm,	Close
very few weak. weathered FS quartz and	fragments, CS to FS; very	75/25	porphyr
feldspar, MS to FS; very few mod. weathered	few plant remains (roots),		
rock fragments, VCS to CS	CS to MS		
Common weak. weathered micas, MS to VFS;	Frequent charcoal	10 µm,	Close
few weak. weathered FS quartz and feldspar,	fragments, GS to MS; very	75/25	porphyr
MS to FS; very few mod. weathered rock	few plant remains (roots),		
fragments, VCS to CS	CS to MS		
Frequent weak. weathered micas, MS to VFS;	Very few charcoal	10 µm,	Close
few weak. weathered FS guartz and feldspar,	fragments, VCS to MS	80/20	porphyr
CS to FS; few mod. weathered rock fragments.			,
GS to CS			
Common mod. weathered micas, CS to VFS;	Very few charcoal	10 µm,	Single
few weak. weathered FS quartz and feldspar,	fragments, MS to FS	40/60	spaced
MS to VFS; few mod. weathered rock			porphyr
fragments, GS to CS			-

FS material	b-fabric	Pedofeatures
Brown (darker	Undifferentiated.	Very few subangular alteromorphic Fe-Mn
with depth)	dark brown	nodules with sharp boundary, CS to FS; very fe
dotted		rounded typic Fe-Mn nodules with clear
		boundary, FS to SS; very few dense incomplete
		matrix infillings (passage features). GS to VCS
Dark brown	Undifferentiated,	Very few subangular alteromorphic Fe-Mn
dotted	dark brown	nodules with sharp boundary, CS to FS; very fe
		rounded typic Fe-Mn nodules with clear
		boundary, FS to SS; very few dense incomplete
		matrix infillings (passage features), GS to CS
Yellowish	Stipple speckled,	Very few subangular alteromorphic Fe-Mn
brown speckled	brown	nodules with sharp boundary, VCS to FS; very
·		rounded typic Fe-Mn nodules with clear
		boundary, MS to SS; very few dense incomplet
		matrix infillings (nassage features). GS to CS
Grayish brown	Stipple speckled,	Very few subangular alteromorphic Fe-Mn
speckled	grayish brown	nodules with sharp boundary, VCS to FS; very
		rounded typic Fe-Mn nodules with clear
		boundary, MS to SS; very few dense incomplet
Yellowish	Stipple speckled,	matrix infillings (passage features). GS to CS Very few subangular alteromorphic Fe-Mn
brown speckled	brown	nodules with sharp boundary, VCS to FS; very
·		rounded typic Fe-Mn nodules with clear
		boundary, MS to SS; very few dense incomplet
		matrix infillings (nassage features). GS to CS
Gray speckled	Crystallitic, gray	Very few subangular alteromorphic Fe-Mn
		nodules with sharp boundary, VCS to FS; very
		microlaminated typic-crescent dusty clay coat
		VFS to SS; very few fabric hypocoatings
		(compaction) around channels
Reddish brown	Stipple speckled,	Very few subangular alteromorphic Fe-Mn
speckled	reddish brown	nodules with sharp boundary, VCS to MS; very
		few rounded typic Fe-Mn nodules with clear
		boundary. MS to VFS

I	Horizon	Microstr	Aggregates	Porosity
_	1	Country	Dominant	Complex packing voids linear planes
A	41	Crumb	granular	
		Cronular	granular	Channels, linear planes legelly
Д	42	Granular	Dominant	Channels, linear planes locally
			granular	horizontally oriented, vesicles
R	314/	Channel	Dominant	Channels yughs
	JVV	Channel	granular	Channels, vugis
			granular	
2	2E	Channel	None	Channels, vughs
F	ireplace	Channel	Few	Channels, vughs
			granular	
3	BEt	Vughy/s	None	Channels, vughs
		pongy		
3	Bs	Channel	Frequent	Channels, vughs, complex packing
			granular	voids

Mineral fragments	Charcoal fragments	c/f ratio	c/f related distribution	Fine material
Common micas, few quartz and feldspar, very few rock fragments	Very few	60/40	Single spaced porphyric	Brown
Few micas horizontally oriented, very few quartz and feldspar, very few rock fragments	Very few	40/60	Double spaced porphyric	Dark brown
Common micas horizontally oriented, few quartz and feldspar, very few rock fragments	Very few	75/25	Close porphyric	Yellowish brown
Common micas, very few quartz and feldspar, very few rock fragments	Very few	75/25	Close porphyric	Grayish brown
Common micas, few quartz and feldspar, very few rock fragments	Frequent	75/25	Close porphyric	Yellowish brown
Frequent micas, few quartz and feldspar, few rock fragments	Very few	80/20	Close porphyric	Gray
Common micas, few quartz and feldspar, few rock fragments	Very few	40/60	Single spaced porphyric	Reddish brown

http://mc.manuscriptcentral.com/PiPG

b-fabric

Undifferentiated

Undifferentiated

Stipple speckled

Stipple speckled

Stipple speckled

Stipple speckled

Crystallitic

Pedofeatures

Fe-Mn nodules, passage features

Fe-Mn nodules, passage features,

dusty clay coatings

Fe-Mn nodules

1 2

3	
4	
5	
6	
7	
8	
a	
10	
11	
12	
12	
1/	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
25	
26	
20	
28	
20	
30	
31	
37	
32	
34	
35	
36	
37	
38	
30	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

59 60

10 1 Was the Little Ice Age the coolest Holocene climatic period in the Italian central Alps?

3 Abstract

11 2 12

13

14 15

16

17

18 19

20

21

23

24

27

31

Estimations of the relative intensity of different cold periods occurring during of the Late 4 5 Quaternary are difficult tasks, particularly in non-glaciated mountain landscapes, and where high-6 to medium-resolution archives for proxy data are lacking. In this paper, we study a Holocene 7 polycyclic soil sequence in the central Alps (Val Cavargna, Northern Italy)explore an alternative tool 8 - soil micropedology - to estimate climatic parameters (specifically T) changes in non-glaciated, 9 high altitude environments. A Holocene polycyclic soil sequence in the central Alps (Val Cavargna, 22 10 Northern Italy) Wwe investigate this key site was investigated through palaeopedological and 11 micromorphological analyses in order to understand phases of soil development its formation and 24 25 ¹² detect hidden evidence of cold conditions during its formation. Three phases of pedogenesis could 26 13 can be recognized and attributed in time to different periods during of the Holocene. Pedogenetic 14 phases were separated by two truncation and deposition episodess related to the reactivation of 28 29 ¹⁵ slope processes under cold conditions at the onset of the Neoglacial and the Iron Age Cold Epoch 30 16 (IACE) respectively. Robust Micromorphological evidences stress evidence of of frost action on soil 31 32 ¹⁷ revealed by micropedology could can instead relate to pedogenetic processes acting in the Little Ice Age (LIA). The different expression of these three cold periods corresponds to different climatic 33 18 34 ₁₉ conditions, pointing to the LIA as a cooler/drier period in comparison to the preceding ones. 35 36 ²⁰

37 21 Keywords

38 22 Polycyclic palaeosols; Micropedology; Frost pedofeatures; Mid-Late Holocene; Little Ice Age; 39⁻⁻ 40²³ Southern Alps.

1

http://mc.manuscriptcentral.com/PiPG

I. Introduction

One of the most difficult tasks in paleoclimate past climate studies - before the introduction of 28 instrumental measurements - is the estimation_- even relative, of climate parameters and their 14 ²⁹ variation with across time (Edwards et al., 2007a; Bradley, 2015). When records are irregular and 15 ₃₀ limited to shortened time-spans, discontinuous or low in resolution, such as in many continental . 3 17 ³¹ palaeoenvironmental archives, the reconstruction of climatic conditions and their effects on the 18 32 landscape becomes much more challenging (Kutzbach, 1976; Federici, 2005; Giraudi et al., 2011; 19₃₃ Bradley, 2015; Furlanetto et al., 2018). This is especially true when dealing with the effects of cold _0 21 ³⁴ periods in middle latitude and Mediterranean mountain ranges, such as the Alps and Apennines of 22 35 Italy, known as highly dynamic regions (Porter and Orombelli 1985; Baroni and Orombelli 1996; 23 ₃₆ Federici, 2005; Hughes et al., 2011; Kuhlemann et al., 2013; Pelfini et al., 2014; Colucci et al., 2016; 24 25 ³⁷ Bollati et al., 2018). Where extensive landforms and stratigraphic records of Quaternary glacial 26 38 advances are not present, evident traces of cold phases are often hard to study. Poorly visible, 27 ₃₉ 28 buried and hidden signs of cold periods - as much as of the subsequent warm phases - are only 29 ⁴⁰ occasionally embedded and rarely well-preserved in landforms and within (palaeo)soilssols and 30 41 sedimentary records (Angelucci et al., 1992; Calderoni et al., 1998; Fischer et al., 2012; Compostella 31 32 ⁴² et al., 2012, 2014; Waroszewski et al., 2018). In the latter, evidence of cold phases is often 33 43 associated with breaks in the sedimentary succession or with an increased frequency of slope 34 44 processes related to climatic instability (Bertolini et al., 2004; Nicolussi et al., 2005; Magny et al., 35 36 ⁴⁵ 2009a; Arnaud et al., 2012; Cremaschi and Nicosia, 2012; Compostella et al., 2014; Pelfini et al, 2014; 37 46 Mariani et al., 2019). Despite the extensive documentation regarding on the Little Ice Age (LIA) 38 ₄₇ traced in paleoclimate studies (Kullman and Öberg, 2009; Arnaud et al., 2012; Nicolussi, 2013; 39 40 ⁴⁸ Carturan et al., 2014; Loso et al., 2014), many questions are still open, for example its role and 41 49 importance inside the wider frame of the Holocene is less understood. For instance, LIA's the 42 ₅₀ influence of climate variations on non-glaciated mountain landscapes during the LIA is poorly 44⁵¹ known, especially when compared to previous older cold intervals such as the Neoglacial, the 45 52 Lateglacial, and the Last Glacial Maximum (LGM) (e.g., Wanner et al., 2011; Badino et al., 2018; 46 ₅₃ Furlanetto et al., 2018). In the mountain environments of middle latitudes, where glacial and 48 ⁵⁴ periglacial landforms are undetectable or have been vanished/truncated/_erased due to enhanced 49 55 slope_activity (e.g.: Allison, 1996; Giraudi et al., 2011; Compostella et al., 2014; Mariani et al., 2018), 51 56 paraglacial (Knight and Harrison, 2009), or zoogeomorphological processes (e.g., Butler, 1995, 2012), the effects of cold phases are virtually absent from the scientific record.

10 ⁵⁸ In this paper, we studied consider a Holocene polycyclic soil sequence formed in the Mid-11 59 Late Holocene in the Italian Central Alps (Val Cavargna, CO). Our aim is to find records ways to 60 detect hidden evidence of Holocene climatic influence on the evolution of surface processes 14 ⁶¹ (Nicholson, 1988), and to assess whether soils and paleosoils (and their pedofeatures) can really 62 record climatic changes in Alpine environments. The studied considered soil sequence shows clear 17⁶³ traces of the presence of cold conditions during its formation, strong enough to promote soil frost 18 64 and trigger the formation of frost-induced pedofeatures (sensu Van Vliet-Lanoë, 1998; Van Vliet-19₆₅ Lanoë et al., 2018) without the influence of glacial or periglacial processes. No evidence for glacials 21 ⁶⁶ landforms, were found at the study site and in its close not present in the vicinity.___of the study 22 67 site. Using multiple palaeopedological techniques, and in particular micropedology, we were are 68 able to characterize different Holocene cold phases eriods affecting acting on the soil formation. -≄ 25 ⁶⁹ We also stress also suggest interpretations on the relative intensity the impact as a climatic 26 70 parameter of ofdifferent atmospheric temperatures- during the cold periods of the last few 71 millennia.and its impact as a climatic parameter during the last few millennia. We lastly suggest 29 ⁷² offer an alternative qualitative approach to interpret past fluctuations of climatic parameters based 30 73 on their effect on surface processes. 31 32 ⁷⁴

II. The study area

12

13

15

16

20

23

24

27

28

33 75

43

47

50

51

54 55

34 ₇₆ The studied soil sequence is located at Alpe Piazza Vacchera (46°06'32"N, 9°08'33"E), in Val 35 36 ⁷⁷ Cavargna (San Bartolomeo municipality, Italian Central Alps), at an elevation of 1680 m a.s.l. 37 78 (Figures 1 and 2). The bedrock of the studied area is part of belongs to a portion of the Southalpine 38 ₇₉ basement - the tectono-metamorphic unit of the Dervio-Olgiasca Zone (after Spalla et al., 2002) -39 40 ⁸⁰ and consists mainly of garnet-staurolite-bearing schist and minor gneiss with lenses of 41 81 amphibolite. Schists are particularly prone to weathering, especially in areas of pervasive jointing 42 ₈₂ due to tectonic deformation. The study site is currently above the treeline and covered by .5 44 ⁸³ grassland pastures; mean annual rainfall is between 2000-2500 mm/y and mean annual 45 84 temperature between 3.8 and 10.9°C (Ceriani and Carelli, 2000). Snow accumulation is high, 46 ₈₅ estimated between 1-2 m/y, with a residence time higher_greater_than 100 days (Gazzolo and 48 ⁸⁶ Pinna, 1973). The permanent snow line for the Alps varies from N to S and from W to E according 49 87 to factors related to latitude, continentality and slope insulation, but it is generally located between 88 2500-2800 m a.s.l. (Barry, 1992), thus well above the area of study. The area is with no-does not contain unaffected by the presence of permafrost: in this portion of the Alps favourable conditions 52 ⁸⁹ 53 ₉₀ for permafrost isare found only formation can only be met above 2200-2300 m a.s.l. (Boeckli et al.,

12

13

20

10 91 2012), and the first instances of permafrost or related landforms are found in a range of tens? of 11 92 many-kilometres to the North (Cremonese et al., 2011). During the LGM, valley glaciers did not 93 cover the area but at least a few cirque or slope glaciers were present in the highest part of the 14 ⁹⁴ mountainous range region (Bini et al., 2009). Since then, no traces of further glacial influence are 15 ₉₅ found on the slopes or in the valley below (Bini et al., 2009). Periglacial processes are visible as 16 17 ⁹⁶ sparse, possibly inactive solifluction lobes on the surrounding slopes, today highly disturbed by 18 97 zoogeomorphologically induced game trails, causing and related instability, and causing 19 ₉₈ enhanced gully erosion and transportation of soil material in the vicinity of the studied area (e.g., 21 ⁹⁹ Butler, 2018; Zerboni and Nicoll, 2018).

22100 Human frequentation activity in Val Cavargna is known since the Mesolithic, with the 23<mark>1</mark>01 establishment and abandonment of sporadic settlements in the upper part of the valley. 24 25¹⁰² Subsequent occasional occupation of the area with evidence of widespread forest fires took place 26103 multiple times from the Neolithic to the Middle Ages (Castelletti et al., 2012a). The systematic 27₁₀₄ 28 exploitation of the area, resulting in an increase in human pressure on the landscape, dates back 29¹⁰⁵ mainly to post-medieval times (Castelletti and Tremari, 2012). Documented instances of forest 30106 clearance in the upper valley appear since the XVI century CE, with a change in land use for 31 32¹⁰⁷ charcoal production (Grandi, 2012). At this time, large portions of deforested land - between 1400-33108 1800 m a.s.l. - were converted to pasture lands (Castelletti et al., 2012b). Near the studied section, 34109 the first establishment of a small cattle farm and trail can be loosely attributed to the same period. 35 36¹¹⁰

37111 **III. Materials and methods**

38₁₁₂ To investigate the soil in the field we dug a trench along the western slope of Mount Pianchette -39 40¹¹³ Pizzo di Gino, in correspondence of a natural filled trench forming a small terrace on a deep-seated **41**114 gravitational slope deformation (DSGSD). This landform represents large to extremely large mass 42₁₁₅ movements generally affecting the entire length of high-relief valley flanks, extending up to 200-43¹¹⁵ 44¹¹⁶ 300 m in depth, which can frequently extend beyond the slope ridge (Crosta et al., 2013). Soil 45117 descriptions and horizon designations were carried out according to the guidelines of FAO (2006); 46₁₁₈ 47 colour definition followed the Munsell Color® (1994) nomenclature. The diagnostic horizons of 48¹¹⁹ buried palaeosols in the sequence were defined according to the international classification 49120 systems (FAO, 2014; Soil Survey Staff, 2014; Zerboni et al., 2011, 2015). Soil samples for chemical-50 51¹²¹ physical analyses were collected for each horizon. Particle size distribution was determined using 52¹²² laser diffraction (Malvern Mastersizer MS-2000) after H₂O₂ and HCl treatments, according to the 53₁₂₃ procedure described in Crouvi et al. (2008). The total amount of Fe and Al in the samples was 54

4

57 58 59

55

56

60

http://mc.manuscriptcentral.com/PiPG

determined by complete dissolution in a mixture of HF, HCl, HNO₃ and HClO₄, followed by measurement of the solubilised ions using an ICP-ES (Jobin-Yvon JV24). Dithionite- (Mehra and Jackson, 1960) and oxalate-extractable (McKeague et al., 1971; Schwertmann, 1973) fractions of Fe and Al oxyhydroxides, representing a quantification for free and amorphous Fe and Al forms respectively, were also measured with the same instrument. The Activity Ratio between oxalateand dithionite-extractable iron (Fe(o)/Fe(d)) was also calculated. Analytical data are reported in Table 1 and summarized in Figure 3.

19
20
21Thin sections were produced from undisturbed samples taken from relevant soil horizons
after impregnation with polyester resin according to the method described in Murphy (1986).22.133Slides were examined with an Olympus BX41 petrographic microscope, under plane-polarized light
(PPL), cross-polarized light (XPL), and oblique incident light (OIL). The terminology of Stoops (2003)
was used to describe thin sections, whereas micromorphological interpretation was mainly based
on the concepts reported in Stoops et al. (2018).

IV. Results

33141

54 55

34142 Along the slope of Mt. Pianchette and Mt. Pizzo di Gino, inside the morphological trench formed 35 36¹⁴³ by a detachment niche of a DSGSD, are present a series of shallow depressions allowed several 37144 events of accumulation of poorly sorted sediments after colluvial phenomena and slope processes, 38₁₄₅ later weathered into soils.filled with sediments deposited through colluvial slope processes that 39 40¹⁴⁶ were subsequently weathered and reorganized into soils. In the uppermost depression, several soil **41**147 horizons were identified (Table 1), consisting of three different soil units on successively deposed 42₁₄₈ parent materials (Figure 2). The uppermost unit corresponds to the extant soil, down to a depth of 43 44¹⁴⁹ about 49 cm. It is an organic temperate mountain soil differentiated in thicker organic A horizons **45**150 sometimes alternated with thinner levels of rubified soil material containing dark mottles. The same 46₁₅₁ 47 material is also present at the bottom of the unit as a mineral Bw horizon. The passage-boundary between this unit and the intermediate one is marked by an erosional surface bearing a residual 48¹⁵² **49**153 lens of macroscopic charcoal fragments, several centimetres thick, identified as the remains of a 50 51¹⁵⁴ fireplace. Dating from two charcoal samples taken from this lens gave a result of 2730±43 (RC-369) 52¹⁵⁵ and 2683±42 (RC-370) years uncal BP (2926-2756 years cal BP and 2863-2747 years cal BP 53₁₅₆ respectively). The intermediate unit is a buried palaeosol divided into three main horizons: an

http://mc.manuscriptcentral.com/PiPG

24

54 55

10¹⁵⁷ eluvial 2E horizon occupies the upper position above a rubified 2Bs horizon; below them is found a 111158 mineral 2BC horizon with common reddish mottles. The lowermost soil unit, starting at a depth of 12 159 13 75 cm, is quite similar to the previous one, but pedofeatures are better expressed. A whitish eluvial 14160 3Et horizon, in which are still present reddish mottles comparable to those of the level above it, 15₁₆₁ forms the upper portion of the unit, followed by a weathered rubified 3Bs horizon. Below the latter, 16 17¹⁶² a 3C horizon marks the passage_boundary to the bedrock at about 130 cm below the current 1**8**163 surface. Charcoal fragments from the 3Bs horizon of this unit were dated to 6850±20 years uncal 19₁₆₄ BP (UGAMS-38048, 7721-7621 years cal BP).

20 21¹⁶⁵ Grain size analytical data from a selection of soil samples shows where units differ and 22166 where instead similarities emerge (Figure 3). The A2 horizon of the top unit differs stands out from 23<mark>|</mark> 23₁₆₇ the others, showing a bimodal distribution of grain size classes: the main mode is represented by 24 25¹⁶⁸ silt, while a secondary mode is instead shifted towards medium/coarse sand. Its much broader 26169 selection distribution also indicates a poor selection of grains. Horizons from the other two units 27₁₇₀ 28 show instead very similar categories. In particular, the E horizons share almost the same bell curve 29¹⁷¹ weakly skewed to the left and centred on coarse silt. All B horizons (Bw, 2Bs and 3Bs) also share a 30172 similar trend with a better selected mode at into the fine sand and a higher skewness towards the 31 32¹⁷³ finer fractions that are more expressed in the bottom unit. Total iron content in the soil sequence 33174 amounts to 3-5.5% of the total mass in all soil horizons, with concentrations in the B horizons of 34175 the top and bottom units (Figure 3; Table 1). Eluvial horizons show lower concentrations of Fe, with 35 36¹⁷⁶ the 3Et horizon being the scarcest in total iron content (3.06%). The intermediate unit is also low in 37177 iron content, with only a slight increase of total iron in the 2B horizon. Free iron measured as Fe-38₁₇₈ dithionite peaks in the Bw and 3B horizons and shows the lowest concentration at the bottom of 39 40¹⁷⁹ the sequence (11.6 g/kg in the 3C horizon); generally, free iron accounts for 47-71% of total iron **41**180 content. The Activity Ratio is mostly between 0.35 and 0.5 for all horizons, with the exception of E 42₁₈₁ horizons where it reaches the lowest values (below 0.3). 43 44¹⁸²

The observation of thin sections reveals the general composition and fabric of the soil units 45183 (Table 2). The micromass of all investigated horizons shows a dominance of coarse mineral material 46₁₈₄ 47 (mainly micas, then quartz and feldspar) with the fine material either compactly filling the 48¹⁸⁵ remaining space in B horizons (Figure 4a), or weakly aggregating in granular peds in E horizons 49186 (Figure 4b). Fine charcoal is always present; coarser fragments can be found in the A1 and 3Et 50 51¹⁸⁷ horizons as well as in the charcoal-bearing lens at the top of the 2E horizon. The 3Et horizon shows 52¹⁸⁸ microlaminated clay coatings (Figure 4c, d) inside a groundmass with marked differences from the 53₁₈₉ B horizons: the fine material bears a greyish colour and no visible aggregation is present. The A1

10¹⁹⁰ and A2 horizons are locally arranged in a pattern of horizontal planar voids (isoband fabric, sensu 11191 Dumanski and St-Arnaud, 1966), not visible in the deeper parts of the soil sequence (Figure 5a). 12 13¹⁹² This pattern is randomly distributed in the two horizons as large centimetric patches sharing the 14193 same features: a net of partially interconnected straight or slightly curved planar voids up to a 15₁₉₄ millimetre long and less than 100 µm thick that separate lenses of soil material up to 1 mm thick. 16 17¹⁹⁵ Vesicles are often associated to-with soil lenses (Figure 5b) and the pattern itself. Clusters of **18**196 parallel-oriented coarse fragments (Figure 5c) are visible in the Bw horizon. All these features are 19197 usually undisturbed by the presence of bioturbation otherwise found in many instances in the soil 21¹⁹⁸ mass in the form of passage features (Figure 5d).

V. Discussion

20

2*2*199

30205

47

55

23₂₀₀ 24 25²⁰¹ In the following parts we reconstruct the evolution of the investigated soil sequence discussing the 26202 main pedogenetic processes involved in its formation. We then highlight the occurrence of 27₂₀₃ 28 pedofeatures in the different soil units that record allow the reconstruction of past temperature 29²⁰⁴ shifts in the area.

31 32²⁰⁶ 5.1. Soil forming processes and chronology

33207 The characterization of pedogenesis in the three units shows evidence of similar soil formation 34208 processes in different periods of time, thus confirming the existence of a soil polysequence 35 36²⁰⁹ (Cremaschi and Rodolfi, 1991). The very similar grain sizes of the different horizons imply that each 37210 soil unit was formed by deposition over the previous surface - exposed by truncation - of the same 38211 type of sediments removed from above by short-range (tens to hundreds of metres) slope 39 40²12 41213 transportation? movements. Each soil unit shares the combined presence of an E/B horizon series, with the E substituted by a moderately depleted A2 horizon in the uppermost unit. The formation 42₂₁₄ of clay and Fe oxyhydroxides in the soil mass is accompanied by their translocation downwards 43²¹⁵ 44²¹⁵ from the eluvial horizons into the lower rubified B horizons, or even below in older soil units, as in 45216 the case of the clay coatings found inside that crossed the boundary into the 3Et horizon. Particle 46₂₁₇ translocation is also supported by the highlighted by the shift from the 2Bs to the 3Et horizon, 48²¹⁸ which hints to clay depletion from the second unit and illuviation into the unit one below. -. An and **49**219 by the enrichment in fine material is also clearly visible in the 3Bs horizon. The low activity ratio also 50 51 51 weakly shows highlights this trend showing a relative depletion in the amorphous iron forms, easier to mobilise, in E horizons. The three units show different degrees of the same pedogenetic 52221 53222 processes (pedoplasmation, soil formation by weathering and translocation of clay minerals and Fe 54

Commented [RA1]: The discussion is too long and you lose focus. If you can shorten it a bit and make it tighter, it will be great .

All in the light of your main conclusion " Our study show new evidence regarding the importance of the LIA in the Alps as one of the main cold intervals after the LGM"

Commented [a2]: Secondo me qui non c'è nulla da fare..

54 55

oxyhydroxides; Duchaufour, 1983), decreasing in strength of expression upwards. In fact, although the bottom unit looks the most developed in a well-defined series of horizons, Fe oxyhydroxides do not change sensibly markedly along the units, showing again uniformity in weathering.
Pedogenesis is in any case only moderately developed, and the accumulation of Fe in the B horizons appears to be not only a result of in-situ weathering-alone, but also of translocation from the overlying horizons and younger parent materials (Duchaufour, 1977; Cornell and Schwertmann, 2003).

19230 Pedogenesis occurred under warm/temperate climate phases with the presence of 20 21²³¹ continuous vegetation (Duchaufour, 1983) that and promoted the accumulation of microlaminated 22232 clay coatings by illuviation into the unit below (e.g. Fedoroff, 1997; Compostella et al., 2014). The 23₂₃₃ 24 25²³⁴ microstructure of E horizons and the presence of red mottles in B horizons (Table 3) suggest an incipient podsolization process (Duchaufour, 1983; Van Ranst et al., 2018), likely supported helped 26235 by local conditions of seasonally -periodical water saturation (Duchaufour, 1983; Sevink and de 27₂₃₆ 28 Waal, 2010; Vepraskas et al., 2018). The identification of wood species from charcoal fragments 29²87 found in various soil horizons shows the dominance of silver fir (Abies alba) open forest throughout 30<mark>2</mark>38 the soil sequence; reconstructions of the vegetation history of the area point to the presence of an 31 32²³⁹ 32 open forest indicating under moderately warm conditions (Castelletti et al., 2012b). At the current 33240 surface and towards the top of the intermediate unit, charcoal assemblages suggest a sparsely 34241 forested heathland, revealing colder phases of forest retreat or anthropogenic pressure (Castelletti 35 36²⁴² et al., 2012b).

37243 38₂₄₄ Radiocarbon dating stresses helps in placing the formation of the various soil units within the Holocene, showing how the soil sequence has in fact experienced more than one warm climate 39 40²⁴⁵ phase. The development of the bottom unit, dated to 7721-7621 years cal BP, can be very clearly **41**246 attributed to the Early-Middle Holocene (Mayewski et al., 2004; Arnaud et al., 2012; Grosjean et al., 42₂₄₇ 2007), during a warm period preceding the cold event at 4.2 ka cal BP (e.g., Zanchetta et al., 2016), 43 44²⁴⁸ possibly the Atlantic Warm Period (AWP) or the Late Neolithic Thermal Maximum (LNTM). In this 45249 longer period of pedogenesis, potentially lasting a few thousands of years, the soil had the time to 46₂₅₀ 47 develop pedofeatures under a rapidly warming phaseclimate. Afterwards, the warm and stable phase responsible for the formation of the intermediate unit should occur after the Middle/Late 48251 49252 Holocene transition, when several warm fluctuations occurred (Mayewski et al., 2004; Deline and 50 253 51 Orombelli, 2005): the longest phase takes place during the Bronze Age, loosely between 3800 and 2800 years BP (e.g., Arnaud et al., 2012 and references therein), and can be confirmed by dating 52254 53,55 from the truncation of the unit indicated by the residual fireplace (2926-2756 and 2863-2747 years

10²⁵⁶ cal BP). It is therefore possible that this pedogenesis took place in a period not much longer than a 11257 thousand years. The truncation points to the transition passage from a warm period to the next 12 258 13 cold phase (Plunkett and Swindles, 2008; Magny et al., 2009b; Wanner et a., 2011; Regattieri et al., 14259 2014; Cremaschi et al., 2016) corresponding to the Iron Age Cold Epoch (IACE). This cold stage 15₂₆₀ probably witnesses both the truncation of the intermediate unit due to enhanced slope processes 16 17²⁶¹ and the deposition of the parent material composing the top one. The last phase of pedogenesis 18262 probably started since the Roman Warm Period (RWP) onwards to present time, covering less than 19263 2000 years of duration in a fluctuating climate. 20 21²⁶⁴

22265 5.2. Are frost-related pedofeatures a proxy for past temperatures?

45282

46₂₈₃ 47

48²⁸⁴

49285

50 286 51

52²⁸⁷

53₂₈₈

54 [|] 55

23₂₆₆ The typical pedofeatures found at in the top unit (A1-A2 horizons) relate to specific climate 24 25²⁶⁷ conditions and can be safely attributed to a post-RWP cold of phase on the basis of the above-26268 mentioned chronological framework. The LIA is most likely the coolest coldest climatic phase in 27₂₆₉ 28 that time interval (Wanner et al., 2011; Furlanetto et al., 2018). The pattern of microscopic 28 29²70 horizontal planar voids separating the matrix into?? Dividing homogeneous lenses of soil material 30271 indicates the action of frost on soil horizons (Dumanski and St-Arnaud, 1966). Vesicles are also 31 32²⁷² related to the entrapment of air bubbles in the soil mass during the freezing process (Table 3). As 33273 suggested by Van Vliet-Lanoë (1987, 1998) and Van Vliet-Lanoë et al. (2018), this regular pattern is 34274 connected to the presence of intermittent or seasonal frost episodes localised at the soil surface 35 36²⁷⁵ when the penetration of the freezing front is not very deep. This is expected for temperate 37276 environments, considering that very low air temperatures are needed to freeze the open ground 38277 below the first centimetres (Henry, 2007). Deformation of the soil mass is only limited to sporadic 39 40²⁷⁸ preferential orientations of coarse fragments, also indicating weak freezing conditions (Van Vliet-41279 Lanoë et al., 1984). Nevertheless, the durability of these features to later pedo/bio-turbation (Van 42₂₈₀ Vliet-Lanoë et al., 1984) indicates a certain level of stability compatible with repeated freeze-thaw 43 44²⁸¹ cycles during an extended period.

The weak expression of the above described frost-related pedofeatures suggests the occurrence in the past of periglacial processes unrelated to permafrost (Van Vliet-Lanoë, 1998), the presence of which would have forced much stronger cryoturbation and very different features in the soil and is linked to more rigid conditions, possibly unmet here since the LGM. In fact, considering the stability through time of frost-related pedofeatures (Van Vliet-Lanoë et al., 1984), their absence in the two buried soil units suggests that frost acted in the area only in recent timesduring the most recent cold phase corresponding to the LIA, after the accumulation of the

10²⁸⁹ parent material of the uppermost soil unit. Since most of the pedogenetic factors identified by 11290 Jenny (1941) and the related soil-forming processes do not show dramatic changes over time, as 12 291 13 seen above, this occurrence is probably more related to fluctuations modifications in the climate. A 14292 climatic trend toward cooler conditions seems also confirmed by the general decrease in 15293 expression of pedogenetic processes from the bottom to the top of the pedosequence. This trend 16 17⁹⁴ has been recently suggested from multi-proxy models of insolation at middle latitudes on alpine 18295 scale (Mauri et al., 2015). The supposed duration for each phase of soil formation, probably lasting 19₂₉₆ 20 several millennia to centuries, also needs to be taken into consideration. It is clear how time alone 21²⁹⁷ is not able to explain the differences in pedogenesis. In fact, both factors contributed in synergy to 22298 the development of soil formation processes (Jenny, 1941Boardman, 1985; Birkeland, 1999). We 23₂₉₉ believe that in this case, while no simple comparison can be done between climate and time, the 24 25³⁰⁰ former seems to play the main role. The rapid succession of environmental changes in the 26801 environmental conditions during the Holocene represents the limiting factor in the development of 27₃₀₂ 28 pedogenesis, while In fact, the amount of time, though necessary for soil formation, is more 29³⁰³ relevant as the duration of the climate phases than as a factor itself. Time in this case cannot be the 30304 primary factor driving the expression of pedogenesis, since the different units are formed too 31 32³⁰⁵ suddenly because of the continuous climate shifts.

33806 Considering the strong similarities in soil formation conditions between the three units, the 34307 effect of different cold periods on each is very noticeable. The abrupt truncation of the bottom unit 35 36³⁰⁸ could possibly correspond to the initial part of the Neoglacial period, often associated with a sharp 37309 increase in denudation processes (Arnaud et al., 2012). Denudation is in turn related to vegetation 38₃₁₀ loss events often indirectly caused by the passage to cold and unstable climate phases (Bertolini et 39 40³¹¹ al., 2004; Nicolussi et al., 2005; Magny et al., 2009a; Compostella et al., 2014). Slope instability 41312 events responsible for the deposition of the two upper units are also a typical result of denudation 42₃₁₃ processes, where erosion and deposition often occur consecutively on the same topographic 43 د، 44³¹⁴ surface (Giraudi et al., 2011; Compostella et al., 2014). The same appears to happen for the 45815 truncation of the second unit dated to the IACE (Magny et al., 2009b). For sake of clarity we need to 46₃₁₆ consider that the anthropogenic contribution to the deposition and development of these units is 47 not to be underestimated. Multiple fire events very likely connected to forest clearance practices 48³¹⁷ 49318 started in the area since the Mesolithic (Castelletti et al., 2012b). Fire events greatly enhanced the 50 319 51 effect of washout and solifluction on the slopes, mobilising the colluvial material that forms the two upper soil units. Human contribution to slope instability is in this case quite important, enhancing 52820 53321 ongoing processes in synergy with the effect of climate variations. Later, also the

- 54 55 56 57
- 58
- 59 60

http://mc.manuscriptcentral.com/PiPG

zoogeomorphological effect due to the introduction of herding may have contributed to accelerateongoing denudation and rill erosion.

The different setting of the uppermost unit, where frost features represent the effect of cold conditions in place of truncations, can be ultimately regarded as a distinct process attributed specifically to the LIA. Neoglacial cold events appear to have mainly impacted the soil through slope instability and processes of removal/addition of material, but no features directly related to freezing and ice formation are found on the surfaceat the top of the buried units. In this regard, while it is true that no actual surface A horizon is currently present on both units, it must be noted that the new surfaces produced by truncation were probably exposed to the weather for a noninsignificant length of time. On the intermediate unit this was enough to allow the establishment of a fireplace on top of the former topographic surface - or at least not far from it - which does not exhibit any visible frost feature. On the contrary, anthropogenic features as fireplaces are able to record frost-related pedofeatures (Cremaschi et al., 2015). The LIA has instead triggered in the soil a variety of stable features related to intermittent freezing cycles. Such clear difference might suggest that other climate dynamics were in place during the cold phases preceding the LIA (for instance, the IACE). In this perspective, it might be plausible to characterise the LIA as a colder or drier period than the previous ones: lower temperatures in comparison with the other Holocene cold periods would have allowed more widespread episodes of seasonal frost. Holocene temperature anomalies reconstructed in the Southern Alps by Furlanetto et al. (2018) support this hypothesis suggesting a moderate shift towards lower temperatures in the LIA compared to other Holocene climatic phases. Moreover, a recent assessment of post-LGM permafrost distribution in the Mediterranean region suggests a widespread occurrence of soil frost in the LIA (Oliva et al., 2018). Similarly, a lessened amount of precipitation would have reduced sensibly the snow cover, well below the current thickness and down to only a few tens of centimetres (Zhang, 2005), weakening the thermal isolation of the soil below and allowing frost to take hold (Edwards et al., 2007b and references therein). A consequent shift downwards of the freezing front would plausibly have left more visible and stable features in the soils, while in less rigid and wetter phases they would only have suffered the consequences of more snow thawing upslope, especially a higher water discharge rate and in turn the activation of slope movements. The relationship between precipitations and slope processes is well studied in the Alps: today, where climate conditions are more severe lower rainfall thresholds are needed to trigger slope movements (Guzzetti et al., 2007). Considering the enhanced possibility of slope instability in cold environments, the absence of truncations in the upper soil unit confirms stable slope conditions and further supports a possible

1 2

10³⁵⁵ dry phase. While it is very difficult to assess past precipitation amount?-rates, reconstructed 11356 temperatures from proxy data in the Alps seem to favour this idea (for comparison, see Badino et 12 357 13 al., 2018; Furlanetto et al., 2018). Similar conditions have also been very recently postulated for the 14⁸⁵⁸ Northern Apennines (Regattieri et al., 2014; Mariani et al., 2019). The occurrence of other evidence 15₃₅₉ confirming the climatic conditions in Mediterranean mountain ranges during the LIA confirms that 16 17³⁶⁰ soils and pedofeatures can reflect regional climatic conditions and they are not only triggered by 18861 local conditions and surface processes. The effect of forest clearance must be taken into account 19₃₆₂ when discussing temperature in the topsoil. In fact, the presence of a forest cover greatly mitigates 20 21³⁶³ the effect of air temperature on the soil, with the canopy protecting the lower air strata and 22364 producing a warmer microclimate that reaches temperatures below zero with more difficulty 23₃₆₅ 24 25³⁶⁶ (Körner. 2003). On the other hand, the canopy effect also prevents part of the snow accumulation, reducing its isolating power. In this area, the continuous presence since the Mesolithic of clearance 26867 events by fire and the more recent establishment of pasturelands (Castelletti et al., 2012b) probably 27₃₆₈ 28 29³⁶⁹ prevented for long periods of time the reestablishment of a closed forest, leaving more open vegetations in which both these effects were probably greatly reduced. 30₃₇₀

VI. Conclusions

31 32³⁷¹

35

47

53387

54 55

3372 This study reconstructs climatic fluctuations throughout the Holocene on the basis of a soil 34373 polysequence the pedogenetic processes that occurred in a high mountain range throughout the 35 36³⁷⁴ Holocene. Moreover, we believe oOur study shows highlights it brings new evidence regarding on 37875 the importance of the LIA in the Alps as one of the main cold intervals after the LGM. While it is 38₃₇₆ difficult to make assumptions based on indirect archives, it is plausible to infer, based on the 39 40³⁷⁷ evidence found in this study, that during the LIA the intensity of frost action might have been 41378 stronger compared to other Holocene cold episodes. An increase in ice formation could in turn be 42₃₇₉ related to the occurrence of drier/colder conditions weakening snow deposition on the soil surface 43 44³⁸⁰ and favouring overall freezing conditions.

45381 While soil archives are considered a low-mid resolution resource in palaeoclimatic studies 46₃₈₂ (Yaalon, 1990), in this case the reconstruction of pedogenesis was the only reliable tool for recording cold intervals that occurred after the LGM in a non-glaciated area and their influence on 48³⁸³ **49**384 surface processes. The study of soils and specifically micromorphology discloses important 50 51³⁸⁵ information on past climate, especially under the microscope, where evidence traces of processes triggered by specific climatic and environmental conditions (in this case atmospheric temperature) 52⁸⁸⁶ can be observed and put inside their proper placement in time (sensu Cremaschi et al., 2018). In

10³⁸⁸ environments where human actions started tuning surface processes earlier than expected in the Mid-Late Holocene, as suggested by recent studies (ArchaeoGLOBE Project, 2019), soil evidence ³⁹⁰ 13 also helps in disentangling natural and anthropogenic factors shaping the landscape in human-settled contexts. The absence of such specific deposits and landforms allowing the formation and 15₃₉₂ conservation of soils and palaeosols would indeed render many of such reconstructions quite 17³⁹³ arduous, if not implausible.- Finally, recent studies suggested that human actions started tuning surface processes earlier than expected in the Mid-Late Holocene (ArchaeoGLOBE Project, 2019); in 19₃₉₅ 20 this case, the study of soil also helps detangling natural and anthropogenic factors shaping the landscape in human-settled contexts. 21³⁹⁶ or peer perieview

1		
2		
5 4		
5		
6		
7		
8		
9 10 ³⁹⁷	References	
1 1 ₃₉₈	Allison RJ (1996) Slope and slope processes. Progress in Physical Geography 20(4): 453-465.	
12 ₃₉₉	Angelucci D. Cremaschi M. Negrino F and Pelfini M (1992) Il sito mesolitico di Dosso Gavia - Val di	
13	Gavia (Sondrio - Italia): evoluzione ambientale e popolamento umano durante l'Olocene antico	
15 ₄₀₁	nelle Alpi Centrali. Preistoria Alpina 28: 19–32.	
16	ArchaeoGLOBE Project (2019) Archaeological assessment reveals Earth's early transformation	
17	through land use. Science 365: 897–902.	
19404	Arnaud F. Révillon S. Debret M. Revel M. Chapron E. Jacob J. Giguet-Covex C. Poulenard J and	
20	Magny M (2012) Lake Bourget regional erosion patterns reconstruction reveals Holocene NW	
21 ¹⁰⁰ 2 2 406	European Alps soil evolution and palaeohydrology. <i>Quaternary Science Reviews</i> 51: 81-92.	
23 ₄₀₇	Badino F, Ravazzi C, Vallè F, Pini R, Aceti A, Brunetti M, Champvillair E, Maggi V, Maspero F, Perego	
24 25 ⁴⁰⁸	R and Orombelli G (2018) 8800 years of high-altitude vegetation and climate history at the Rutor	
25 26409	Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise and glacier	
27 ₄₁₀	contraction. <i>Quaternary Science Reviews</i> 185: 41–68.	
28 20 ⁴¹¹	Baroni C and Orombelli G (1996) The Alpine "Iceman" and Holocene Climatic Change. Quaternary	
30 ₄₁₂	Research 46(1): 78 - 83.	
31 22 ⁴¹³	Barry RG (1992) Mountain weather and climate. London: Routledge.	
32 33414	Bertolini G, Casagli N, Ermini L and Malaguti C (2004) Radiocarbon data on Lateglacial and	
34 ₄₁₅	Holocene landslides in the Northern Apennines. <i>Natural Hazards</i> 3: 645–662.	
35 36 ⁴¹⁶	Bini A, Buoncristiani JF, Coutterand S, Ellwanger D, Felber M, Florineth D, Graf HR, Keller O,	
37417	Schlüchter C and Schoeneich P (2009) La Svizzera durante l'ultimo massimo glaciale (LGM),	
38 ₄₁₈	1:500 ' 000. Ufficio federale di topografia swisstopo, Wabern.	
39 40 ⁴¹⁹	Birkeland PW (1999) Soils and Geomorphology. New York: Oxford University Press.	
41420	Boardman J (1985) Comparison of Soils in Midwestern United States and Western Europe with the	
42 ₄₂₁	Interglacial Record. Quaternary Research 23(1): 62-75.	
43 44 ⁴²²	Boeckli L, Brenning A, Grube S and Noetzli J (2012) Permafrost distribution in the European Alps:	
45423	calculation and evaluation of an index map and summary statistics. The Cryosphere 6: 807-820.	
46 ₄₂₄	Bollati I, Cerrato R, Crosa Lenz B, Vezzola L, Giaccone E, Viani C, Zanoner T, Azzoni RS, Masseroli A,	
47 48 ⁴²⁵	Pellegrini M, Scapozza C, Zerboni A and Guglielmin M (2018) Geomorphological map of the Val	
49426	Viola Pass (Italy-Switzerland). <i>Geografia Fisica e Dinamica Quaternaria</i> DOI	
50 51	10.4461/GFDQ.2018.41.2	
52 ⁴²⁸	Bradley RS (ed) (2015) Palaeoclimatology (third edition). London: Academic Press.	
53		
54		
55 56	14	
57		
58		

6 7 8 9 10⁴²⁹ Butler DR (1995) Zoogeomorphology: Animals as Geomorphic Agents. Cambridge, UK: Cambridge 11430 University Press. 12 431 13 Butler DR (2012) The impact of climate change on patterns of zoogeomorphological influence: 14432 examples from the Rocky Mountains of the Western U.S.A. Geomorphology 157-158: 183-191. 15₄₃₃ Butler DR (2018) Zoogeomorphology in the Anthropocene. Geomorphology 303: 146-154. 16 17⁴³⁴ Calderoni G, Guglielmin M and Tellini C (1998) Radiocarbon dating and postglacial evolution, upper 18435 Valtellina and Livignese area (Sondrio, Central Italian Alps). Permafrost and Periglacial Processes 19₄₃₆ 9: 275 - 284. 20 21⁴³⁷ Carturan L, Baroni C, Carton A, Cazorzi F, Fontana GD, Delpero C, Salvatore MC, Seppi R and 22438 Zanoner T (2014) Reconstructing Fluctuations of La Mare Glacier (Eastern Italian Alps) in the Late 23₄₃₉ Holocene. Geografiska Annaler: Series A, Physical Geography 96: 287-306. 24 25⁴⁴⁰ Castelletti L, Caimi R and Tremari M (2012a) Ricerche archeologiche di superficie in Val Cavargna. 26441 In: Castelletti L and Motella de Carlo S (eds) Il fuoco e la montagna. Archeologia del paesaggio 27₄₄₂ 28 dal Neolitico all'età moderna in Alta Val Cavargna. Como: Università degli Studi dell'Insubria, pp. 79-88. 29⁴⁴³ 30444 Castelletti L, Martinelli E, Motella de Carlo S and Procacci G (2012b) Archeologia del fuoco in Val 31 32 Cavargna. In: Castelletti L and Motella de Carlo S (eds) Il fuoco e la montagna. Archeologia del paesaggio dal Neolitico all'età moderna in Alta Val Cavargna. Como: Università degli Studi 33446 34447 dell'Insubria, pp. 137-185. 35 36⁴⁴⁸ Castelletti L and Tremari M (2012) Edifici e tracce insediative in Val Cavargna. In: Castelletti L and 37449 Motella de Carlo S (eds) Il fuoco e la montagna. Archeologia del paesaggio dal Neolitico all'età 38₄₅₀ moderna in Alta Val Cavargna. Como: Università degli Studi dell'Insubria, pp. 89-110. 39 40⁴⁵¹ Ceriani M and Carelli M (2000) Carta delle precipitazioni massime, medie e minime del territorio 41452 alpino della Regione Lombardia. Milano: Servizio Geologico, Ufficio Rischi Geologici Regione 42₄₅₃ Lombardia. 43 44⁴⁵⁴ Colucci RR, Boccali C, Zebre M and Guglielmin M (2016) Rock glaciers, protalus ramparts and **45**455 pronival ramparts in the south-eastern Alps. Geomorphology 269: 112-121. 46₄₅₆ Compostella C, Trombino L and Caccianiga M (2012) Late Holocene soil evolution and treeline 47 fluctuations in the Northern Apennines. Quaternary International 289: 46-59. 48⁴⁵⁷ 49458 Compostella C, Mariani GS and Trombino L (2014) Holocene environmental history at the treeline 50 459 51 in the Northern Apennines, Italy: A micromorphological approach. The Holocene 24(4): 393-404. Cornell RM and Schwertmann U (2003) The Iron Oxides. Weinheim: Wiley. 52460 53 54 55 15 56 57 58 59 60

1		
2		
3		
4 5		
6		
7		
8		
9 10461	Cremaschi M and Rodolfi G (1991) Il suolo - Pedologia nelle scienze della Terra e nella valutazione	
11/462	del territorio, Roma: La Nuova Italia Scientifica	
12,63	Cremaschi M. Mercuri AM. Torri P. Elorenzano A. Pizzi C. Marchesini M. and Zerboni A. (2016)	
13 ⁴⁰³	Clients charge versus land representation to De Disin (Northern Italy) during the Drame Acces	
14 ⁴⁶⁴	Climate change versus and management in the Po Plain (Northern Italy) during the Bronze Age.	
16	New insights from the VP/VG sequence of the Terramara Santa Rosa di Povigilo. Quaternary	
17 ⁴⁶⁶	Science Reviews 136: 153–172.	
18 ⁴⁶⁷	Cremaschi M and Nicosia C (2012) Sub-Boreal aggradation along the Apennine margin of the	
19 ₄₆₈ 20	Central Po Plain: geomorphological and geoarchaeological aspects. <i>Geomorphologie</i> 2: 155–174.	
20 21 ⁴⁶⁹	Cremaschi M, Trombino L and Zerboni A (2018) Palaeosoils and relict soils, a systematic review. In:	
<u>22</u> 470	Stoops G, Marcelino V and Mees F (eds) Interpretation of Micromorphological Features of Soils	
23 ₄₇₁	and Regoliths. Second edition. Amsterdam: Elsevier, pp. 863–894.	
24 25 ⁴⁷²	Cremaschi M, Zerboni A, Nicosia C, Negrino F, Rodnight H and Spötl C (2015) Age, soil-forming	
26473	processes, and archaeology of the loess deposits at the Apennine margin of the Po Plain	
27 ₄₇₄	(northern Italy). New insights from the Ghiardo area. <i>Quaternary International</i> 376: 173-188	
28 20 ⁴⁷⁵	Cremonese F. Gruber S. Phillips M. Pogliotti P. Boeckli L. Noetzli J. Suter C. Bodin X. Crepaz A.	
29 ¹⁷⁶ 30176	Kellerer-Pirklhauer A. Lang K. Letev S. Mair V. Morra di Cella II. Bavanel I. Scanozza C. Senni B.	
31,	and Zischa A (2011) Priof Communication: "An inventory of normafrost avidence for the	
32477	and zischig A (2011) Bher communication. An inventory of permanost evidence for the	
33 ⁴⁷⁸	European Aips". The Cryosphere 5: 651-657.	
34479 35	Crosta GB, Frattini P and Agliardi F (2013) Deep seated gravitational slope deformations in the	
36 ⁴⁸⁰	European Alps. <i>Tectonophysics</i> 605: 13–33.	
3 7 481	Crouvi O, Amit R, Enzel Y, Porat N and Sandler A (2008) Sand dunes as a major proximal dust	
38 ₄₈₂	source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Research 70: 275–282.	
40 ⁴⁸³	Deline P and Orombelli G (2005) Glacier fluctuations in the western Alps during the Neoglacial, as	
41 484	indicated by the Miage morainic amphitheatre (Mont Blanc massif, Italy). Boreas 34: 456-467.	
42 ₄₈₅	Duchaufour P (1977) Précis de pédologie. Paris: Masson.	
43 ⊿∕ ⁴⁸⁶	Duchaufour P (1983) Pédologie. 1. Pédogenèse et classification. Paris: Masson.	
45487	Dumanski JA and St-Arnaud RJ (1966) A micropedological study of eluviated horizons. Canadian	
46 ₄₈₈	Journal of Soil Science 46: 287–292.	
47	Edwards TL Crucifix M and Harrison SP (2007a) Using the past to constrain the future: how the	
48 ¹⁰⁵ 49100	palaeorecord can improve estimates of global warming. Progress in Physical Geography 31(5):	
50,01	491 EOO	
51 51		
52 ⁴⁹²	Edwards AC, Scalengne K and Freppaz M (2007b) Changes in the seasonal snow cover of alpine	
54 54	regions and its effect on soil processes: A review. Quaternary International 162–163: 172–181.	
55	16	
56		
57 58		
59		
60		

7 8 9 10⁴⁹⁴ Federici PR (2005) Aspetti e problemi della glaciazione pleistocenica nelle Alpi Apuane. Istituto 11495 Italiano di Speleologia Mem. 18(2): 19-32. 12 496 13 Federici PR, Ribolini A and Spagnolo M (2017) Glacial history of the Maritime Alps from the last 14497 Glacial maximum to Little Ice Age. In: Hughes PD and Woodward JC (eds) Quaternary glaciation 15498 in Mediterranean Mountains. London: Geological Society, Special Publications 433, pp. 137-159. 16 17⁴⁹⁹ Fedoroff N (1997) Clay illuviation in Red Mediterranean soils. Catena 28: 171-189. 18500 Fischer P, Hilgers A, Protze J, Kels H, Lehmkuhl F and Gerlach R (2012) Formation and 19₅₀₁ geochronology of Last Interglacial to Lower Weichselian loess/palaeosol sequences - case 20 21⁵⁰² studies from the Lower Rhine Embayment, Germany. Quaternary Science Journal 61(1): 48-63. 22503 Food and Agriculture Organization (FAO) (2006) Guidelines for Soil Description. 4th Edition. Rome: 23₅₀₄ FAO. 24 25⁵⁰⁵ Food and Agriculture Organization (FAO) (2014) World reference base for soil resource 2014. World 26506 Soil Resources Reports. N° 106. FAO, Rome: FAO. 27₅₀₇ 28 Furlanetto G, Ravazzi C, Pini R, Vallè F, Brunetti M, Comolli R, Novellino MD, Garozzo L and Maggi V (2018) Holocene vegetation history and quantitative climate reconstructions in a high-elevation 2∮⁰⁸ 30509 oceanic district of the Italian Alps. Evidence for a middle to late Holocene precipitation increase. 31 32⁵¹⁰ Quaternary Science Reviews 200: 212-236. Gazzolo T and Pinna M (1973) La nevosità in Italia nel quarantennio 1921-1960. Rome: Istituto 33511 34₅₁₂ Poligrafico dello Stato. 35 36⁵¹³ Giraudi C, Bodrato G, Ricci Lucchi M, Cipriani M, Villa IM, Giaccio B and Zuppi GM (2011) Middle 37514 and Late Pleistocene Glaciations in the Campo Felice basin (Central Apennines - Italy). 38515 Quaternary Research 75: 219 - 230. 39 40⁵¹⁶ Grandi G (2012) Popolazione, attività minerarie e siderurgiche, uso dei boschi e carbonaie tra il XV e **41**517 il XIX secolo in Val Cavargna. In: Castelletti L and Motella de Carlo S (eds) Il fuoco e la montagna. 42₅₁₈ Archeologia del paesaggio dal Neolitico all'età moderna in Alta Val Cavargna. Como: Università 43 44⁵¹⁹ degli Studi dell'Insubria, pp. 21-36. 45520 Grosjean M, Suter PJ, Trachsel M and Wanner H (2007) Ice-borne prehistoric finds in the Swiss Alps 46₅₂₁ 47 reflect Holocene glacier fluctuations. Journal of Quaternary Science 22(3): 203-207. Guzzetti F, Peruccacci S, Rossi M and Stark CP (2007) Rainfall thresholds for the initiation of 48⁵²² 49523 landslidesin central and southern Europe. Meteorology and Atmospheric Physics 98: 239-267. 50 524 Henry HAL (2007) Soil freeze-thaw cycle experiments: Trends, methodological weaknesses and 51² suggested improvements. Soil Biology and Biochemistry 39: 977-986. 52525 53 54 55 17 56 57 58 59 60

1		
2		
3		
4 5		
6		
7		
8		
9 10526	Hughes PD. Woodward JC. van Calsteren PC and Thomas J F (2011) The glacial history of the Dinaric	
10	Alos Montenegro Quaternary Science Reviews 30(23-24): 3393-3412	
12	lenny H (1941) Eactors of Soil Formation New York: McGraw-Hill	
13	Knight Land Harrison S (2000) Devialatial and paraglasial environments: a view from the past into	
14 ²⁹	the future In: Knight L and Harrison S (ods) Periodicial and Paraglacial Processor and	
16	Environments London: Coological Society, Special Publications, 220, pp. 1.4	
17 ³¹	Konistra ML and Bulleman MM (2019) Eastures Balated to Equipal Activity Ja: Stoops C. Marcelina V.	
1892 19-52	and Mass E (add) Interpretation of Misropharmhological Eastures of Soile and Pagalithe Second	
20	adition Amsterdam: Elsevier, pp. 447–470	
21	Körner C (2003) Alnine Plant Life, Second Edition, Berlin: Springer	
23 ₂₂₅	Kuhlemann I. Gashey E. Gikey A. Nedkey S. Krumrei I and Kuhik P. (2012) Clasiation in the Pila	
24	mountains (Rulgaria) during the Last Glacial Maximum Quaternary International 202: 51–62	
25 ³³⁷	Kullesen L and Ökara L (2000). Best – Little Lee Ane tree line rise and elimete warning in the	
20538	Kuliman L and Oberg L (2009) Post - Little Ice Age tree line rise and climate warming in the	
28	Swedish Scandes: a landscape ecological perspective. <i>Journal of Ecology</i> 97: 415–429.	
29 ⁵⁴⁰	Kutzbach JE (1976) The nature of climate and climatic variations. <i>Quaternary Research</i> 6: 471–480.	
30541 31	Loso MG, Doak DF and Anderson RS (2014) Lichenometric dating of Little Ice Age glacier moraines.	
31 ₅₄₂ 32	Geografiska Annaler: Series A, Physical Geography 96: 21–41.	
33 543	Magny M, Vannière B, Zanchetta G, Fouache E, Touchais G, Petrika L, Coussot C, Walter-Simonnet	
34 ₅₄₄	AV and Arnaud F (2009a) Possible complexity of the climatic event around 4300–3800 cal. BP in	
35 36 ⁵⁴⁵	the central and western Mediterranean. <i>The Holocene</i> 19: 823–833.	
37546	Magny M, Peyron O, Gauthier E, Roueche Y, Bordon A, Billaud Y, Chapron E, Marguet A, Pétrequin P	
38 ₅₄₇	and Vannière B (2009b) Quantitative reconstruction of climatic variations during the Bronze and	
40^{548}	early Iron ages based on pollen and lake-level data in the NW Alps, France. Quaternary	
41 549	International 200(1-2): 102–110.	
42 ₅₅₀	Mariani GS, Cremaschi M, Zerboni A, Zuccoli L and Trombino L (2018) Geomorphology of the Mt.	
43 44 ⁵⁵¹	Cusna Ridge (Northern Apennines, Italy): evolution of a Holocene landscape. Journal of Maps	
45552	14(2): 392-401. DOI: 10.1080/17445647.2018.1480976	
46553	Mariani GS, Compostella C and Trombino L (2019) Complex climate-induced changes in soil	
47 4æ ⁵⁴	development as markers for the Little Ice Age in the Northern Apennines (Italy). Catena 181.	
49555	DOI: 10.1016/j.catena.2019.104074	
50	Mauri A, Davis BAS, Collins PM and Kaplan JO (2015) The climate of Europe during the Holocene: a	
51 52 ⁵⁵⁷	gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews	
53 ₅₅₈	112: 109–127.	
54		
55 56	18	
57		
58		
59		
60		

5 6 7 8 9 10⁵⁵⁹ Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van 11₅₆₀ Kreveld S, Holmgren K and Lee-Thorp J (2004) Holocene climate variability. Quaternary Research 12 561 13 62(3): 243-255. 14562 McKeague JA, Brydon JE and Miles NM (1971) Differentiation of forms of extractable iron and 15₅₆₃ aluminium in soils. Soil Science Society of America Proceedings 35: 33-38. 16 17⁵⁶⁴ Mehra OP and Jackson ML (1960) Iron oxide removal from soils and clays by a dithionite-citrate 18565 system buffered with sodium bicarbonate. Clays and Clay Minerals 7: 317-327. 19,66 Munsell Color® (1994) Munsell soil color charts. New Windsor, NY: Munsell Color. 20 21⁵⁶⁷ Murphy CP (1986) Thin Section Preparation of Soils and Sediments. Herts, UK: AB Academic 22568 Publishers. 23₅₆₉ 24 25⁵⁷⁰ Nicholson SE (1988) Land surface atmosphere interaction: physical processes and surface changes and their impact. Progress in Physical Geography 12(1): 36-65. 26571 Nicolussi K (2013) Die historischen Vorstöße und Hochstände des Vernagtferners 1600-1850 AD. 27₅₇₂ 28 Zeitschrift für Gletscherkunde und Glazialgeologie 45-46: 9–23. 2∮⁷³ Nicolussi K, Kauffman M, Patzelt G, van der Plicht J and Thurner A (2005) Holocene tree-line 30574 variability in the Kauner valley, central Eastern Alps, indicated by dendrochronological analysis of 31 32⁵⁷⁵ living trees and subfossil logs. Vegetation History and Archaeobotany 14: 221–234. Oliva M, Zebre M, Guglielmin M, Hughes PD, Ciner A, Vieira G, Bodin X, Andrés N, Colucci RR, 33576 34577 Garcia-Hernandez C, Mora C, Nofre J, Palacios D, Perez-Alberti A, Ribolini A, Ruiz-Fernandez J, 35 36⁵⁷⁸ Sarikaya MA, Serrano E, Urdea P, Valcarcel M, Woodward JC and Yildirim C (2018) Permafrost 37579 conditions in the Mediterranean region since the Last Glaciation. Earth Science Reviews 185: 38580 397 - 436. 39 40⁵⁸¹ Pelfini M, Leonelli G, Trombino L, Zerboni A, Bollati I, Merlini A, Smiraglia C and Diolaiuti C (2014) 41582 New data on glacier fluctuations during the climatic transition at ~4,000 cal. year BP from a 42₅₈₃ buried log in the Forni Glacier forefield (Italian Alps). Rend. Fis. Acc. Lincei 25: 427-437. 43 44⁵⁸⁴ Plunkett G and Swindles GT (2008) Determining the Sun's influence on Lateglacial and Holocene 45585 climates: a focus on climate response to centennial-scale solar forcing at 2800 cal. BP. 46 Quaternary Science Reviews 27(1-2): 175-184. 47 Porter SC and Orombelli G (1985) Glacier contraction during the middle Holocene in the western 48⁵⁸⁷ 49588 Italian Alps: Evidence and implications. Geology 13(4): 296-298. 50 .589 Regattieri E, Zanchetta G, Drysdale RN, Isola I, Hellstrom JC and Dallai L (2014) Lateglacial to 51² 52⁵⁹⁰ Holocene trace element record (Ba, Mg, Sr) from Corchia Cave (Apuan Alps, central Italy): 53-91 paleoenvironmental implications. Journal of Quaternary Science 29(4): 381-392. 54 55 19 56 57 58 59 60

1		
2		
3		
4 5		
6		
7		
8		
9 10592	Reimer PJ. Bard E. Bavliss A. Beck JW. Blackwell PG. Bronk Ramsev C. Buck CE. Cheng H. Edwards RL.	
11593	Friedrich M. Grootes PM. Guilderson TP. Haflidason H. Haidas I. Hatté C. Heaton TJ. Hoffmann	
12_04	DL Hogg AG Hughen KA Kaiser KE Kromer R. Manning SW, Niu M. Peimer PW, Pichards DA	
13	Seett EM, Seett EM, Steff DA, Turrey CSM and use der Diskt I (2012) Interline MW, Neihards DA,	
14995 15-00	scott EM, Southon JR, Stall RA, Turney CSM and Van der Picht J (2013) IntCal13 and Mannets	
16	radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4): 1869–1887.	
17 ⁹⁷	Schwertmann U (1973) Use of oxalate for Fe extraction from soils. Canadian Journal of Soil Science	
185 ⁹⁸	53: 244–246.	
20	Sevink J and de Waai RW (2010) Soli and numus development in drift sands. In: Fanta J and Siepel	
21 ⁶⁰⁰	H (eds) Inland Drift Sand Landscapes. Zeist, Netherlands: KNVV Publishing, pp. 107–134.	
22601	Soil Survey Staff (2014) Keys to Soil Taxonomy. 12th ed. Washington, DC: USDA-Natural Resources	
23 ₆₀₂ 24	Conservation Service.	
25 ⁶⁰³	Spalla MI, Di Paola S, Gosso G, Siletto GB and Bistacchi A (2002) Mapping tectono-metamorphic	
26604	histories in the Lake Como basement (Southern Alps, Italy). Memorie di Scienze Geologiche 54:	
27 ₆₀₅ 28	149-167.	
29 ⁶⁰⁶	Stoops G (2003) Guidelines for analysis and description of soil and regolith thin sections. Madison,	
30 ₆₀₇	Wisconsin: Soil Science Society of America.	
31 32^{608}	Stoops G, Marcelino V and Mees F (eds) (2018) Interpretation of Micromorphological Features of	
33 ⁶⁰⁹	Soils and Regoliths. Second edition. Amsterdam: Elsevier.	
34 ₆₁₀	Van Ranst E, Wilson MA and Righi D (2018) Spodic materials. In: Stoops G, Marcelino V and Mees F	
35_{36}^{611}	(eds) Interpretation of Micromorphological Features of Soils and Regoliths. Second edition.	
37612	Amsterdam: Elsevier, pp. 633–662.	
38 ₆₁₃	Van Vliet-Lanoë B (1987) Dynamique périglaciaire actuelle et passée. Apport de l'étude	
39 40 ⁶¹⁴	micromorphologique et de l'expérimentation. <i>Bulletin A.F.E.Q.</i> 2: 113–132.	
41 615	Van Vliet-Lanoë B (1998) Frost and soils: implications for palaeosols, palaeoclimates and	
42 ₆₁₆	stratigraphy. Catena 34: 157–183.	
43 44 ⁶¹⁷	Van Vliet-Lanoë B, Coutard JP and Pissart A (1984) Structures caused by repeated freezing and	
45618	thawing in various loamy sediments. A comparison of active, fossil and experimental data. Earth	
46 ₆₁₉	Surface Processes and Landforms 9: 553–565.	
47 4g ⁶²⁰	Van Vliet-Lanoë B and Fox CA (2018) Frost action. In: Stoops G, Marcelino V and Mees F (eds)	
49621	Interpretation of Micromorphological Features of Soils and Regoliths. Second edition. Amsterdam:	
50 - 622	Elsevier, pp. 575–603.	
51 52		
52		
54		
55	20	
56		
5/ 58		
59		
60		

5	
6 7	
7 8	
9	
10 ⁶²³	Vepraskas MJ, Lindbo DL and Stolt MH (2018) Redoximorphic Features. In: Stoops G, Marcelino V
11 ₆₂₄	and Mees F (eds) Interpretation of Micromorphological Features of Soils and Regoliths. Second
12 13	edition. Amsterdam: Elsevier, pp. 425–446.
14626	Wanner H, Solomina O, Grosjean M, Ritz SP and Jetel M (2011) Structure and origin of Holocene
15 ₆₂₇	cold events. Quaternary Science Reviews 30: 3109–3123.
16 17 ⁶²⁸	Waroszewski J, Egli M, Brandová D, Christl M, Kabala C, Malkiewicz M, Kierczak J, Glina B and
18629	Jezierski P (2018) Identifying slope processes over time and their imprint in soils of medium -
19 ₆₃₀	high mountains of Central Europe (the Karkonosze Mountains, Poland). Earth Surface Processes
20 21 ⁶³¹	and Landforms 43: 1195–1212.
21 22632	Yaalon DH (1990) The relevance of soils and paleosols in interpreting past and ongoing climatic
23 ₆₃₃	changes. Palaeogeography Palaeoclimatology Palaeoecology 82: 63 – 64.
24 25 ⁶³⁴	Zanchetta G, Regattieri E, Isola I, Drysdale RN, Bini M, Baneschi I and Hellstrom JC (2016) The so-
26635	called "4.2 event " in the Central Mediterranean and its climatic teleconnections. Alpine
27 ₆₃₆	Mediterranean Quaternary 29(1): 5 – 17.
28 29 ⁶³⁷	Zerboni A, Trombino L and Cremaschi M (2011) Micromorphological approach to polycyclic
30638	pedogenesis on the Messak Settafet plateau (central Sahara): Formative processes and
31 32 ⁶³⁹	palaeoenvironmental significance. <i>Geomorphology</i> 125: 319-335.
32 33 ⁶⁴⁰	Zerboni A, Trombino L, Frigerio C, Livio F, Berlusconi A, Michetti AM, Rodnight H and Spötl C (2015)
34 ₆₄₁	The loess-palaeosol sequence at Monte Netto: a record of climate change in the Upper
35 36 ⁶⁴²	Pleistocene of the central Po Plain, northern Italy. Journal of Soils and Sediments 15: 1329–1350.
37643	Zerboni A and Nicoll K (2018) Enhanced zoogeomorphological processes in North Africa in the
38 ₆₄₄	human-impacted landscapes of the Anthropocene. Geomorphology 331: 22-35.
39 40 ⁶⁴⁵	Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview.
4 1 646	Reviews of Geophysics 43: RG4002.
42	
43	
44 45	
46	
47	
48	
49	
50	
51	
53	
54	
55	21
56	
57	
58 50	
60	

2			
3			
<u>م</u>			
5			
с С			
0			
/			
8			
9			
1	¢	4	7
1	16	4	۶
1	ັ	Ì	
1	-6 २	4	ŝ
1	, 16	5	(
1			
1	−6 ∕	5	1
1	ხ 	5	2
1	T		
1	86	5	3
1	q	5	4
2	0		
2	1 ⁶	5	5
2	76	5	е
2	- २		
2	76 1	5	7
2	Գ 6	5	8
2	2		
2	66	5	ŝ
2	76	6	0
2	8		
2	¢	6	1
3	0 5	6	2
3	1		
3	26	6	3
2 2	- 76	6	4
כ כ	ۍ ۸		
с ר	46 r	6	5
3	5 م	b	е
3	6	ſ	
3	76	6	7
3	8	Ь	8
3	9		
4	ď	þ	5
4	16	7	C
4	2	_	
4	ъ २	/	1
۵	£	7	2
т л	7 5~	_	_
4	зо С	1	3
4	<u> </u>	7	4
4	1	_	
4	80	1	2
4	96	7	е
5	0	-	_
5	10	1	1
5	26	7	8
5	3		
5	Δ		
)	Т.		

55

Captions
 Figure 1. (A) Hillshade of the central sector of Southern Alps indicating the location of the study area (the inset indicates its position in northern Italy). (B) Satellite view of the study area (source: Google Earth[™]); the star indicates the position of the soil profile.

Figure 2. (A) General view of the study area during the opening of the test trench. In the foreground the high portion of the DSGSD is visible to the right; the DSGSD is broken downslope to the left by a morphological trench associated with a counterscarp. In the background the peak of Mt. Pizzo di Gino and its southern slope are visible to the left. (B) Picture of the investigated polycyclic soil sequence indicating the position of soil horizons and samples for analyses (squares: blocks for thin sections; triangles: samples for chemical-physical analyses; dots: samples for radiocarbon dating).

Figure 3. Results of chemical-physical analyses: on the left, curves of grain size distribution (after H_2O_2 and HCl treatments); on the right, chemical determinations of Fe content. Key: Fe(o): amorphous iron; Fe(d): free iron; Fe(t): total iron.

Figure 4. Micromorphological features of the investigated soil horizons: a) well developed yellowish
fabric devoid of iso-oriented features in the intermediate unit (2Bs horizon; 2x, PPL); b) depleted
soil mass in the lower unit (3Et horizon; 2x, PPL); c) microlaminated clay coatings in the eluvial
horizon of the lower unit (3Et horizon; 10x, PPL); d) same as c), in XPL.

Figure 5. Frost related features of the investigated soil horizons: a) horizontal planar voids in the upper unit (A2 horizon; 4x, PPL); b) groups of circular vesicles around horizontal planar voids in the upper unit (A2 horizon; 10x, PPL); c) horizontal iso-oriented mica fragments in the fabric of the upper unit (Bw horizon, 10x; XPL); d) passage features produced by <u>earthworms beetle</u> <u>larvae (possibly *Enchytraeidae*: Kooistra and Pulleman, 2018) around undisturbed planar voids (A2 horizon; 4x, PPL).</u>

Table 1. Field and chemical properties of the described soil sequence.

Table 2. Micromorphological descriptions of soil thin sections. G: gravel size; VCS: very coarse sand size; CS: coarse sand size; MS: medium sand size; FS: fine sand size; VFS: very fine sand size; S: silt size. Abundance: very dominant – >70%; dominant – 50–70%; frequent – 30–50%; common – 15–30%; few – 5–15%; very few – <5%; weak.: weakly; mod.: moderately; str.: strongly.

Table 3. Summary of microscopic properties of investigated soil horizons (full micromorphological
 data are in Supplementary Materials). Frost related pedofeatures in *italics*.