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Abstract

Knowing solar activity and its variations over time is fundamental for understanding the
evolution of the star itself, as well as the consequences that these variations can have on the
Earth’s climate. Given the scientific interest in these topics, several proxies, mostly linked
to cosmic rays, have been identified and analyzed in this thesis. Some of them have been
measured at the Monte dei Cappuccini underground Laboratory by the Cosmogeophysics
group of the University of Torino, of which I was a member during my Ph.D., while others
were studied thanks to collaborations with other research groups.

The collaboration with the Large Volume Detector (LVD) experiment in the Gran
Sasso Laboratories (Italy) allowed me to study the longest underground muon flux ever
recorded. Atmospheric muons originate from the decay of short-lived mesons, secondary
particles produced by the interaction between high-energy cosmic rays and the atmo-
sphere. Their flux carries information about the stratosphere, as the temperature of the
latter modulates its intensity. A comprehensive investigation of this 24-year-long series
allowed envisaging it as a high-time-resolution integrated proxy of lower-stratospheric
temperatures. By using advanced spectral analysis methods, in addition to the well-
known annual cycle, it was possible to detect two multiannual variations in the muon
flux, including a decadal modulation linked to solar activity. The amplitudes of the mul-
tiannual variations are significantly larger than those expected based on the temperature
modulations. Such differences may be due to the known difficulties of the adopted tem-
perature dataset (ERA-Interim) in representing long-term variability scales, leading to an
artificial attenuation of such long-term modulations.

The collaboration with the Pierre Auger Observatory in Malargüe (Argentina) gave
me the opportunity to analyze the so-called scaler data, which represents a low threshold
rate of cosmic rays measured on the ground, known to be affected by solar modulation.
Several long-term components have been detected in the record, the most powerful of
which have periods ranging from a decade down to a few days. In-depth investigations
have been carried out to understand the phenomena at the origin of these variabilities.
Furthermore, to study the daily variation of the Auger scalers, the short-term components
have also been analysed, detecting the presence of periodic variability with periods down
to a few hours.

The modulation of cosmic rays due to solar activity directly affects the production of
cosmogenic radionuclides in extraterrestrial materials, such as meteorites. Therefore, the
measurement of the activity of such radioisotopes represents a valuable proxy for solar
activity. With a large-volume HPGe-NaI(Tl) spectrometer located at the Monte dei Cap-
puccini Underground Laboratory in Torino (Italy), the gamma activity of the Cavezzo
meteorite (L5 anomalous chondrite) felt on January 1st, 2020, was measured. Thanks to
the high efficiency, selectivity, and low background of the spectrometer, fifteen cosmogenic
radioisotopes were detected, with half-lives down to a few days. The HPGe dead layer
thickness and detection efficiency were estimated using Geant4-based simulations, allow-
ing to define the activity of each of the revealed radionuclides. The use of a particular
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coincidence between the HPGe and NaI(Tl) detectors allowed the detection of the low
activity of 44Ti and 60Co. The high 22Na/26Al ratio measured in the Cavezzo meteorite
reflects the low activity of the Sun at the beginning of 2020 and is consistent with the
expected value for L chondrites.

Thanks to the collaboration with the OSIRIS-Rex mission of NASA, the Monte dei
Cappuccini Underground Laboratory will also carry out the activity measurement of the
sample taken from the surface of the asteroid Bennu. This gamma-activity measurement
will make it possible to detect the cosmogenic radionuclides present in the extraterrestrial
material and to determine the cosmic-ray exposure age of the latter. Given the estimated
composition and density of the sample, the best geometry of the container that will host
the specimen during the measurement has been determined as a function of the expected
sample mass. The optimal container shape is the one for which the gamma detection
efficiency is maximum. The production rates of 26Al and 22Na have been estimated, and
the counting error as a function of the measurement time was determined by Geant4-based
simulations.

Finally, during my Ph.D. I developed a Bayesian Long Short-Term Memory model
for predicting upcoming solar cycles using the most famous proxy for solar activity: the
number of sunspots. The temporal evolution of sunspot activity for Solar Cycle 25 has
been forecasted, together with a rigorous estimation of the uncertainty. Because of the
underlying complexity of the dynamo mechanism in the solar interior at the origin of
the solar cycle phenomenon, the predictions offered by state-of-the-art machine learning
algorithms represent valuable tools for understanding the solar cycle progression. In
particular, Bayesian deep learning is particularly compelling thanks to recent advances in
the field providing improvements in the accuracy and uncertainty quantification compared
to classical techniques. The uncertainty of the predicted cycle was obtained by including
both the model uncertainty and the error propagation of the sunspot number time series.
The forecasted peak amplitude is lower than that of the preceding cycle. Solar Cycle 25
will reach its maximum in the middle of the year 2024, while the next solar minimum is
expected in 2030 and will be as deep as the previous one.
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Chapter 1

Solar evidence in the muon flux
(LVD experiment)

Showers of secondary cosmic rays, composed of photons, electrons, positrons, hadrons,
muons, and neutrinos, originate through successive interactions between high-energy cos-
mic rays and atmospheric atoms and molecules. The hadronic and electromagnetic com-
ponents extinguish as the atmospheric depth increases, and only muons and neutrinos,
the longest-living particles, can reach the ground.

The atmosphere is the vehicle of showers development, and its state rules both the
intensity and propagation of the latter. Pressure and temperature are the atmospheric pa-
rameters that most influence shower production. Depending on the nature of the shower
components, the way these parameters influence their rate and distribution changes, as
well as the atmospheric layers that most influence their production. A change in pres-
sure at the ground, corresponding to a change in the overburden matter, substantially
modifies the electromagnetic component, minimally affecting the muonic one, which is
more penetrating and which content is sensitive to temperature changes. Since muons of
higher energy originate from the decay of unstable mesons (namely pions and kaons) in
the early stages of the cascade, their production is influenced mainly by the state of the
higher levels of the atmosphere (lower stratosphere). The intensity of the muon flux de-
pends on the density of the portion of the atmosphere in which the mesons propagate: the
higher the atmospheric temperature, the lower the air density, the lower the probability
of mesons interacting before decaying, and the greater the likelihood of producing muons.
Therefore, the muon flux can be considered a high-time-resolution integrated proxy of
lower-stratospheric temperatures. Thanks to their small cross-section, low energy loss,
and long lifetime, high energy (above ∼ 1 TeV) muons can penetrate the ground and
reach great depths.

This chapter shows the investigation conducted on the 24-year-long series of the muon
flux recorded underground at the Gran Sasso Laboratory (Italy) with the Large Volume
Detector (LVD). Using advanced spectral methods, namely the singular spectrum analysis
(SSA) and the wavelet transform coherence (WTC), the significant components of the LVD
muon-flux series and the effective temperature, a parameter commonly used to describe
the temperature-driven variations of the atmospheric muons, have been extracted and
compared.

The results of such analyses have been published [see Ref. 1].
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1.1 Cosmic rays

Cosmic rays (CRs) originate as primary cosmic rays produced in various astrophysical
processes outside the Earth’s atmosphere. More specifically, they originate from the Sun,
from outside of the Solar System in our galaxy, and from distant galaxies, and they move
through space at a nearly relativistic speed. About 99% of primary cosmic rays are nuclei
of well-known atoms, about 1% are solitary electrons, while a small portion is composed
of positrons and antiprotons. Regarding the first ones, about the 90% is represented by
simple protons, the 9% are alpha particles (helium nuclei), while about the 1% are heavier
elements. Their energy distribution peaks at 300 MeV and CRs with extreme energies
are extremely rare.

Depending on their origin, they can be classified into three types:

• solar cosmic rays (SCR), which are high-energy particles (mostly protons), with
energies below 106 keV, produced in the solar corona and ejected from the Sun by
flares and coronal mass ejections (CMEs);

• galactic cosmic rays (GCR), i.e., high-energy particles originating outside our Solar
System, with energies comprised between 106 and 1014 keV;

• extragalactic cosmic rays (ECR), with energies higher than 1014 keV, originating
from beyond the Milky Way galaxy (usually included in the GCR).

The flux of incoming cosmic rays at the upper atmosphere depends on the Earth’s
magnetic field, the solar wind, and the particles’ energies. Direct measurements of the
cosmic ray flux have been possible since the launch of the first satellites in the late 1950s.
They can be performed in space by particle detectors installed on satellites or at high
altitudes by balloon-borne instruments. Currently, most operating experiments for high-
energy CRs are ground-based, allowing for indirect measurement of the primary flux by
looking at secondary cosmic rays, the latter produced by the interaction between primary
cosmic rays and atmospheric molecules. Figure 1.1 shows a schematic representation of
the components of an extensive air shower, composed of photons, electrons, positrons,
hadrons, muons, and neutrinos.

Among them, muons make up more than half of the cosmic radiation at sea level.
Thanks to their small cross-section, low energy loss, and long lifetime, muons with energy
higher than ∼ 1 TeV can penetrate deep underground. Underground muons are exploited
for a variety of physics analyses, such as for the measurement of the flux, composition, and
anisotropies of the GCR [see, e.g., Refs. 2–5], as well as for the validation and calibration
of deep detectors. Furthermore, their measurement is of great importance since they
are also one of the unavoidable backgrounds in underground laboratories for experiments
searching for rare events.
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1.2 The Large Volume Detector

The LVD is a neutrino telescope conceived to detect neutrinos from core-collapse super-
nova explosions in the galaxy [6]. Figure 1.2 shows a frontal view of the detector sited in
the INFN Gran Sasso Laboratory (LNGS) (42.4275◦N, 13.5333◦E) under 1400 m of rock,
at a minimal depth of 3100 m water equivalent. It consists of an array of 840 counters,
1.5 m3 each, which hold, in total, 1000 tons of liquid scintillator. In each counter, the
1.2 tons of scintillator are viewed by three photomultipliers (PMTs) and the start of data
collection is determined by the coincidence of the three signals in any counter. When this
occurs, the amplitude and time of detection of the PMT signals are acquired, and to make
sure to observe the neutrino burst associated with a gravitational collapse in the Milky
Way, a dedicated machine-learning software has been developed for the data acquisition
to maximize the detector observation time, allowing the number of active counters to vary
over time. The energy resolution of the counters, at 10 MeV, is σ/E∼ 20%, while the
time of occurrence of each event is measured with a relative accuracy of 12.5 ns and an
absolute one of 100 ns.

From the viewpoint of the PMT power supply, trigger, and data acquisition, the array
is divided into three sectors called towers. Each sector operates independently from the
others and includes 280 counters sharing the same low-voltage power supplies. Moreover,
for each tower, counters are organized into 35 modules of eight sharing the same high-
voltage divider, the same charge digitizer board, and the same position in the array. This
modularity allows LVD to achieve a duty cycle close to 100%, which is essential in the
search for the sporadic and unpredictable events of interest. A schematic representation
of the LVD counters distribution is shown in Fig. 1.3, with the three towers highlighted
in different colors.

The minimum energy, at the surface, for a muon to reach the detector is 1.3 TeV,
and its passage through the LVD array can be easily recognised by analysing the time
characteristics and amplitude of the induced signal. Only 1 per million cosmic ray muons
at sea level have enough energy to penetrate down to the LNGS depth.

The LVD has been continuously taking data for a quarter century, since June 1992,
allowing obtaining the longest muon flux time series ever recorded, which is described and
shown in the following section.

1.3 Muon data and effective temperature

The LVD muon-flux time series includes 5.48×107 muons registered over 8402 days, from
January 1994 to December 2017, corresponding to almost 96% of the total live time. The
series comprises a few short gaps (of the order of days), as well as longer ones, which
happened in 1996 (67 d) and in 2002 (24 d). To obtain a homogeneous series, required
for the analysis methods used in the following (see Section 1.4), all the gaps have been
filled with a gap-filling procedure based on autoregressive (AR) models, with order defined
through the Akaike criterion [7].

Figure 1.4a shows the daily muon flux in terms of relative deviations from the average
value, which is I0

µ = 3.35 ± 0.0005stat± 0.03sys× 10−4 m−2 s−1. The shaded red bars
represent the statistical uncertainties, while the filled data are highlighted in green.

1https://web.bo.infn.it/lvd/
2https://www.lngs.infn.it/it/lvd

https://web.bo.infn.it/lvd/
https://www.lngs.infn.it/it/lvd
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Figure 1.2: Frontal view of the LVD detector located at the LNGS. Picture taken from the LVD
website1.

Figure 1.3: Schematic distribution of the LVD counters. Picture taken from LNGS web site2.



Figure 1.4: Percentage variation of the daily muon flux (panel a) and daily effective temperature (panel
b). Shaded-colored bars represent the statistical uncertainties. The green intervals in the muon flux
(panel a) represent gaps in the series which have been filled by using autoregressive models with order
estimate through the Akaike criterion.

It has been known since the 1950s that the intensity of atmospheric muons is highly
correlated with temperature changes in the upper stratosphere [8, 9]. If the temperature
gets higher, the air density gets lower, and the probability of interaction between mesons
and atmospheric particles is reduced, thus resulting in a higher muon rate.

To account for the fact that muons are not produced over a fixed level in the atmo-
sphere, neither with fixed energy or direction, the so-called effective temperature Teff has
been introduced in those kinds of studies. The effective temperature, which can be inter-
preted as the temperature of an ideal isothermal atmosphere that should reproduce the
observed muon intensity, is defined as the weighted average of the temperature over 37
discrete pressure levels in the 1-1000 hPa range. The weights account for the physics of
production, propagation, and decay of mesons (pions and kaons), so that larger weights
are expected for pressure levels at which the probability of mesons decaying in muons
is high. Furthermore, the weights are site-dependent, i.e., they depend on the product
between the energy required for the muon to reach the underground detector of interest
and its direction of arrival. A detailed description of their estimation for the atmospheric
muons detected by the LVD is shown in Ref.[10].

The effective temperature is calculated as:

Teff =
∑N

n=1 ∆XnT (Xn)W (Xn)∑N
n=1 ∆XnW (Xn)

(1.1)

where the index n runs over N = 37 pressure levels. T(Xn), W(Xn), and ∆Xn are the
temperature, weight, and thickness of the level Xn, respectively. The temperature data
T(Xn) are an interpolation of the ERA-Interim reanalysis dataset to the LVD location
from the original 0.7◦× 0.7◦ provided by the European Center for Medium-range Weather
Forecast (ECMWF) [11]. The provided dataset consists of one value each 6 h (4 values
per day) over 37 discrete pressure levels in the 1-1000 hPa range. The daily series is
obtained by averaging the four values per day, and their variance (typically 0.5 K) is used
to estimate the uncertainty of the mean value.
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Figure 1.4b shows the percentage variation of the daily effective temperature, where
T0

eff = 220.3 ± 0.5 K is the mean value.
An effective temperature coefficient αT is defined as:

∆Iµ

I0
µ

=
∫ ∞

0
dXα(X)∆T (X)

T 0
eff

= αT
∆Teff

T 0
eff

(1.2)

where ∆Iµ/I0
µ and ∆Teff/T0

eff represent the relative deviations from the mean daily
muon intensity I0

µ and mean daily temperature T0
eff, respectively. The value of αT is 0.94

± 0.02, obtained with a linear regression.
To better focus on the long-term variability and to avoid redundancy due to high-

frequency oscillations, both the muon and effective temperature daily series have been
rebinned in 5 days. The coefficient of correlation between daily muon flux and effective
temperature is r = 0.56 (pvalue<10−5), while the one between the 5-d rebinned series is,
as expected, higher and equal to r = 0.72 (pvalue<10−5).

The 5-d rebinned muon flux and effective temperature time series will be introduced
in the next section, together with a detailed description of the methods used to define
their spectral content.

1.4 Spectral Analysis

The harmonic analysis of the LVD muon series, as well as that of the effective temperature,
has been previously performed [10] by using a classical Fourier-like approach, namely, the
Lomb-Scargle method. However, this method is no longer the most appropriate tool in the
presence of possible non-sinusoidal variations and for series with highly dynamic power
ranges (i.e., including strong and weak spectral components). Therefore, the following
advanced spectral methods have been used, which are suitable to efficiently extract and
compare the deterministic components of the series under consideration.

1.4.1 Methods

The Wavelet Transform Coherence (WTC) method [12, 13] allows for multivariate anal-
ysis of time series. The main advantage of this approach is related to the evolutionary
characteristic of the wavelet method, allowing for efficient detection of the amplitude mod-
ulation of the different variability components, as well as short-term events. An accurate
time resolution at high frequencies and an accurate period resolution at low frequencies
characterize these methods (see Appendix A).

The WTC is used to give a general view of the spectral features in common between
the muon and the effective temperature time series and to estimate their coherence over
a broad range of periods, from days to decades.

To deepen the analysis, the Singular Spectrum Analysis (SSA) [14–16] is applied to
both series separately. The SSA is an advanced spectral technique that allows signal
extraction from noise. With the use of data-adaptive filters, it is designed to separate a
time series into statistically independent components that can be classified as oscillatory
patterns or noise. The identified periodic components can be modulated in amplitude
and phase.



A recursive procedure based on a Monte Carlo test (MC-SSA) [17] is designed to
identify the significant components present in the series. Namely, at a given confidence
level (c.l.), a set of null hypotheses are iteratively tested, starting from the simplest
one, representing pure noise, up to more complex ones, obtained by superimposing on
the noise different combinations of spectral components. To represent the noise, an AR
process of order 1 [AR(1)] has been assumed, since it describes well the bias towards low
frequencies, present in many time series, and it represents a suitable compromise between
the excessive simplicity of white noise [see, e.g., Ref. 15] and higher-order AR processes,
which are themselves capable of oscillatory behavior. Considering the time resolution of
the series rebinned 5 days, the choice of AR(1) noise is consistent with the findings of the
careful analysis of the noise given in Ref.[10].

The rejection of a null hypothesis is achieved by comparing the SSA spectrum of
the analysed series with the Monte Carlo band, obtained by applying the SSA to the
ensemble of 10000 surrogate series generated from the considered model of the series (null
hypothesis). Finally, the model which explains the series, and allows the identification of
the significant components at a given confidence level, is the one that cannot be rejected.
More details about this technique are given in Appendix B.

1.4.2 Results

The WTC method applied to the 5-d rebinned muon flux and effective temperature time
series gives the spectrum illustrated in Fig. 1.5c. Areas with a strong (weak) correlation
are represented by the color red (blue). The cone of influence (COI), highlighting regions
influenced by edge effects, is represented by the semitransparent area. The black curves
delimit the area in which the coherence is significant at 95% c.l., while the black arrows
show the relative phase relation: rightward for in-phase, leftward for anti-phase.

The broad red/yellow band surrounded by the black curve, extending over the entire
time range between periods of ∼160 to 640 d, indicates the highly significant correlation
between the two series on the annual period, as expected. Rightward arrows indicate a
full coherence between the two series, hence the superimposed black rightward arrows over
the entire annual range indicate that the two series are also fully coherent, i.e., in-phase.

Two other high-correlated bands are present in correspondence with periods of ∼4
y (with larger coherence from about 2008) and ∼10 y. For the latter, the red/yellow
band lies outside the COI, thus indicating that the WTC method is not suitable to drive
conclusions on such a long-term component. This limitation does not affect the SSA
method.

Furthermore, elongated power spots are evident at the 30-d scale along the whole
period spanned by the series, corresponding to a coherent behavior of the two series. This
feature appears to be localized in winter months, thus suggesting that sudden atmospheric
phenomena characterizing the stratosphere [18] may be imprinted in the muon flux.

The SSA is applied separately to the muon flux and effective temperature 5-d rebinned
series. The adopted window width is defined as W = M ·∆t, where M is the window length
and ∆t is the sampling interval. After having tested the robustness of the results for a
wide range of M values, the M parameter has been finally set equal to 400. The iterative
steps of the Monte Carlo test are shown in Table 1.1, where the null hypothesis and the
significant components revealed at 99% c.l., together with their period and variance, are
listed for both the muon flux and the effective temperature time series.
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Figure 1.5: Percentage variation of the 5-d rebinned muon flux (panel a) and effective temperature
(panel b). Shaded red and blue bars represent the statistical uncertainties of the 5-d rebinned muon and
effective temperature time series, respectively. Panel c shows the wavelet transform coherence of the two
series. Black curves delimit the area where the coherence is significant at 95% c.l.. Areas with a stronger
(weaker) correlation are represented by the red (blue) color and the relative phase relation is shown by
the black arrows: rightward for in-phase and leftward for anti-phase. The cone of influence is represented
by the semitransparent area at the bottom.



MUON FLUX
Null hypothesis Significant Period (y) Variance (%)components
AR(1) 1,2 1 41.3
AR(1) + RCs(1,2) 3 Trend (∼11 y) ∼3
AR(1) + RCs(1,2,3) 4,5,6 ∼4 6.35
AR(1) + RCs(1,2,3,4,5,6) 9,10 ∼1 1.4
AR(1) + RCs(1,2,3,4,5,6,9,10) 7,8 0.5 1.6
AR(1) + RCs(1,2,3,4,5,6,7,8,9,10) 11,12 ∼1 1.3
AR(1) + RCs(1,2,3,4,5,6,7,8,9,10,11,12) - - -

EFFECTIVE TEMPERATURE
Null hypothesis Significant Period (y) Variance (%)components
AR(1) 1,2 1 67.8
AR(1) + RCs(1,2) 3,4 0.5 3.2
AR(1) + RCs(1,2,3,4) - - -

Table 1.1: Iterative steps of the MC-SSA of the muon flux and effective temperature time series. The
null hypothesis and the significant component revealed with a 99 % c.l. at each step are shown, together
with the period and variance of the latter. The last null hypothesis for both series is the one that cannot
be rejected, for which no more significant components are detected.

The spectra of the muon flux and effective temperature series, corresponding to the
non-rejectable null hypothesis, are shown in terms of power vs period in Figs. 1.6a and
1.6b, respectively. The Monte Carlo bands are represented by the grey bars, while the
red and blue dots represent the significant components revealed in the two series with a
99% c.l.. The empty dots represent the spectral components that can be parametrized as
red noise.

Regarding the muon flux, the significant components revealed with the MC-SSA, which
power exceeds the corresponding Monte Carlo bands (red dots in Fig. 1.6a), are a decadal
trend and variability modes with 4-, 1-, and 0.5-y periods. The model that describes the
muon flux series at 99% c.l. is given by the empirical orthogonal functions (EOFs) 1-12,
describing ∼55% of the total signal variance (see Table 1.1), and the AR(1) noise.

In the case of the effective temperature, only two components are significant, with
periods of 1 and 0.5 y (blue dots in Fig. 1.6b), which sum describes about 70% of the
total signal variance (see Table 1.1). The model describing the effective temperature series
at 99% c.l. is given by the EOFs 1-4, superposed to the AR(1) noise.

Figure 1.7 shows the reconstruction of all the significant components of the muon flux
(red curves) and effective temperature (blue curve) series revealed by the MC-SSA. The
annual and semiannual components are the dominant ones and they are the main cause of
the high correlation (r = 0.72) between the two series. In fact, the correlation between the
annual/semiannual detrended series is much smaller and equal to r = 0.42 (pvalue<10−5).

The semiannual component describes the asymmetry of the annual modulation due to
the larger temperature variability during winter seasons, plausibly related to the occur-
rence of sudden warming events. The asymmetry is present for the whole duration of the
series, as shown in Fig. 1.8. Panel a shows the muon flux rebinned series (shaded red
curve) superimposed by the SSA reconstructed yearly oscillation (red curve) and the latter
summed to the half-year component (black curve). Panel c shows the same comparison
in a shorter time interval, to better appreciate the asymmetry caused by the semiannual
periodicity. Similarly, panel b shows the effective temperature rebinned series (shaded
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Figure 1.6: (a) MC-SSA spectra of the muon flux and (b) effective temperature series (99% c.l.). The
Monte Carlo ensemble size is 10000. The significant spectral components are highlighted in red and blue
for the muon and effective temperature, respectively. The empty dots indicate the spectral components
that can be parametrized as red noise.

Figure 1.7: The significant MC-SSA components of the muon flux (red curves) and effective temperature
(blue curves) series. The decadal component is obtained by using a larger window length (M = 800).



Figure 1.8: Panel a shows the muon flux rebinned series (shaded red curve) superimposed by the annual
SSA reconstructed components (red curve) and the sum of the annual and semiannual components (black
curve). Panel c shows a section of the series in panel a, where the asymmetry in the yearly oscillation
due to the half-year component is clearly visible. Panel b shows the effective temperature rebinned series
(shaded blue curve) superimposed by its annual SSA reconstructed components (blue curve) and the sum
of the annual and semiannual components (black curve). Panel d shows a section of the series in panel
b within the same time range as panel c. Also here, the asymmetry in the yearly oscillation due to the
half-year component is clearly visible.
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Figure 1.9: Muon flux (red curve) and temperature (blue curve) daily series with the 24-y datasets folded
onto a 1-y period. The statistical uncertainties are represented by the light gray bars. The superposed
heavy red and heavy blue curves correspond to the singular spectrum analysis (SSA) denoised signal,
similarly folded onto a 1-y period, for the muon-flux and effective-temperature series, respectively.

blue curve) superimposed by its SSA reconstructed yearly oscillation (blue curve) and the
sum of annual and semiannual components (black curve). Panel d shows a section of the
series shown in panel b, within the same time interval as panel c. Also in this case the
asymmetry caused by the semiannual variability is clearly visible.

Such asymmetry is clearly visible also in Fig. 1.9, where the muon flux and effective
temperature daily series are shown after folding the 24-year-long dataset onto a 1-y period,
with statistical uncertainties represented by the light gray bars. The superimposed thicker
curves correspond to the yearly oscillations extracted with the SSA similarly folded.

The SSA-based description of the annual oscillation of the two series, more appropriate
than the classical sinusoidal one, allowed an accurate determination of the amplitude and
position of the maxima and minima on a year-by-year basis, capturing such asymmetry
well.

The multiannual components revealed in the muon record do not have counterparts
in the effective temperature series. This discrepancy was not expected, since the effective
temperature is introduced to represent the muon flux variability. Only a faint indication
of the presence of a 4-y component in the effective temperature series is found by applying
the MC-SSA to the monthly series and decreasing the confidence level to 95%.

A deep investigation into this discrepancy has been made and will be discussed in the
following sections.

1.5 Multiannual variability

As discussed in the previous section, the muon flux’s spectral content differs from that
of the effective temperature. Multiannual periodic components, in addition to the annual
and semiannual dominant cycles, are present in the muon flux series but not in the effective



Figure 1.10: Trends revealed by MC-SSA of the monthly atmospheric temperature time series at
different pressure levels.

temperature record. This discrepancy is unexpected since the muon flux should reflect
temperature variations.

The origin of such variability modes has been deeply investigated by applying the MC-
SSA to the monthly raw-temperature time series at several atmospheric levels, ranging
from 1 to 1000 hPa, with data extending from 1979 to 2017. Raw temperature data have
been taken from the ECMWF dataset. Table 1.2 shows the result of the MC-SSA per-
formed on the raw-temperature time series over 21 of the 37 atmospheric levels. For each
level, expressed in pressure (hPa), the percentage variance of the total signal described
by each significant component detected using a window of width W=15 y (M=180; ∆t=1
month) at 99% c.l. (unless otherwise specified) is shown. The dominant variability mode
in each layer is the annual oscillation. A 4-months periodic component is detected mainly
in the stratosphere, while a 6-months oscillation is present in all the layers. Several com-
ponents with periods in the 2-5 years range are also detected. A decadal modulation is
observed only between 175 hPa and 300 hPa.

The MC-SSA of the raw-temperature time series also reveals a long-term trend in
all layers, which shows the well-known temperature increase in the troposphere and the
temperature decrease in the stratosphere. Some of these trends are shown in Fig. 1.10,
where the slope change around the tropopause is well visible. The amplitude of the
reconstructed trends is in agreement with other findings [see, e.g., Ref. 19]. A decreasing
trend is observed up to 125 hPa, no significant trends variations are revealed at 150 and
175 hPa, and an increasing trend is observed from 200 hPa down to the lowest layer (see
also the last column of Table 1.2).
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Figure 1.11: The 4-y component revealed by the MC-SSA in the muon flux (red curve, panel a) and
in the raw-temperature series at 100 hPa (b), 70 hPa (c), and 50 hPa (d). Panel a also shows the 5-d
rebinned muon series (black curve).

1.5.1 The 4-year component

The MC-SSA performed on the raw-temperature time series layer by layer allows to reveal
the presence in the low stratosphere of a periodic component similar to the 4-y oscillation
observed in the muon flux. At 100 hPa this component reaches its maximum amplitude,
which decreases with altitude in the stratosphere and moving towards the troposphere.
Figure 1.11 shows the reconstruction of such periodic components at 100 (panel b), 70
(panel c), and 50 hPa (panel d) together with the one found in the muon flux (red curve
in panel a). This comparison shows a shape agreement, especially in the last portion of
the records.

The same cannot be said about the amplitude. Considering equation 1.2, the ∆Iµ/I0
µ ∼

1.2% observed between the last maximum and minimum of the 4-y muon flux oscillation
should correspond to ∆Teff/T0

eff ∼1.26%, that is to a ∆Teff ∼ 2.8 K. The 50-, 70-, and
100-hPa layers contribute to the effective temperature for 10.5%, 11.24%, and 9.87%, and
show, in the same interval, temperature variations of ∼ 0.63 K, ∼ 0.83 K, and ∼ 1.11 K,
respectively. Therefore, they contribute to a total variation ∆ T50−70−100hP a

eff of:

∆T 50−70−100hP a
eff ≈ (0.63 · 0.105) + (0.83 · 0.1124) + (1.11 · 0.0987) ≃ 0.27K (1.3)

describing only about 1/10 of the expected ∆Teff.
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Figure 1.12: The decadal component revealed by MC-SSA in the 5-d muon flux series (red curve) and
in the raw-temperature series at 175 (blue curve) and 200 hPa (blue dotted curve).

1.5.2 The decadal component

The raw-temperature time series show a decadal modulation which appears at ∼175 hPa
and vanishes downward (see Table 1.2).

The decadal variability at 175 hPa is fully described by the decadal oscillation, while at
other layers, such as 200 hPa, an additional trend is needed to describe such a variability
mode. It is thus possible that such a trend is also present in the muon series, although it
is not detectable due to the limited length of the series.

Moreover, the lack of a muon trend is plausible, since it results from the integration
of production at different layers, with higher weights at the tropopause, where the slope
change in the temperature trend is observed.

Figure 1.12 shows the comparison between the muon decadal component (red curve)
and the temperature decadal variability at 175 hPa (blue curve). The blue dotted curve
represents the long-term temperature component at 200 hPa, obtained as the sum of the
decadal and trend ones, whose agreement with the decadal modulation of the muon series
is improved compared to considering only the decadal variability.

A good shape agreement is visible among the reconstructed decadal oscillations but,
similarly to the case of the 4-y component, a discrepancy regarding the amplitude is
present. The ∆Iµ/I0

µ ∼1% of the muon decadal modulation should correspond to a ∆Teff ∼
2.3 K. The 175- and 200-hPa layers contribute to the effective temperature for 5.1% and
4.2%, respectively. Therefore, the temperature variations of ∼ 0.5 K and ∼ 1.1 K observed
in the decadal modulation at 175 and 200 hPa contribute to a total variation ∆ T175−200hP a

eff
of:

∆T 175−200hP a
eff ≈ (0.5 · 0.051) + (1.1 · 0.042) ≃ 0.07K (1.4)

which describes only 1/30 of the expected ∆Teff, a value which is too low considering that
at such levels the temperature decadal variation reaches its maximum amplitude.

This discrepancy (together with the one discussed for the 4-y component) may high-
light known difficulties of the adopted reanalysis dataset in describing long-term variations



in stratospheric layers [11, 20]. A possible attenuation of long-term wave- and transport-
driven modulations may result due to changes in the assimilated global observing system
and the presence of time-varying biases in models and observations. A further contribution
to the dampening of decadal-scale temperature variations may be due to the assumption
of a constant value of solar irradiance in the underlying atmospheric model.

1.5.3 Multiannual components over the Gran Sasso region

The multiannual components discussed in previous sections refer to the Gran Sasso area.
To put the findings in a larger-scale perspective, the geographical distribution of tem-
perature over the Northern Hemisphere is considered by analysing temperature maps at
different heights in the atmosphere. The pressure levels of interest have been chosen
among three atmospheric regions: the stratosphere (50 and 70 hPa), the upper tropo-
sphere–lower stratosphere (100, 175, and 250 hPa), and the troposphere (500 hPa). To
reveal the presence and the intensity of the 4-y and decadal oscillations at such levels,
differences in temperature between maxima and minima for each periodicity have been
calculated.

Figure 1.13 shows the geographical distribution of such differences over a large part
of the Northern Hemisphere. The periods related to maxima and minima are based on
the SSA oscillations shown in Fig. 1.11 and 1.12 for the 4-y and the decadal component,
respectively. In the layers suggested by the SSA (100 hPa for the 4-y and 175–200 hPa for
the decadal oscillation) local maxima are present, as indicated by the red features in Fig.
1.13, left panel. The 4-y component is also present at 70 and 50 hPa, as shown in Figs.
1.11c and 1.11d, though the amplitude revealed by the SSA in these layers is smaller,
possibly due to the dominance of the annual cycle at these heights (see next section).
The decadal cycle is only present at 175–200 hPa and rapidly disappears above and below
this layer (Fig. 1.13, right panel).

This analysis confirms the results obtained by the SSA performed on the raw tem-
perature time series at different atmospheric levels over the Gran Sasso region and also
shows that both cycles are not due to local phenomena, with the 4-y variation extending
to several parts of Western Europe and the decadal variation being present at large scales
throughout the Northern Hemisphere (Europe, North America, Atlantic Ocean, and high
latitudes).
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Figure 1.13: Geographical distribution of temperature differences between years of maximum and
minimum signal of the 4-y (left) and decadal (right) periodicity. Data are reported for pressure levels
ranging from 50 to 500 hPa and for a large fraction of the Northern Hemisphere. The position of the
LNGS is indicated with a black cross. The Land’s borders are delimited by white curves.



1.5.4 Multiannual components and annual cycle

As previously discussed, the multiannual components revealed in the muon flux are related
to temperature variability between 100 and 200 hPa. To explain the reason behind this,
it has been hypothesized that the emergence of such multiannual components may be
related to a dampening of the dominant annual modulation at these layers.

Figure 1.14a shows the correlation coefficient between the daily series of the muon flux
and the raw temperature in the 37 atmospheric levels. Two maxima, centered at ∼ 30
and 225 hPa (dashed blue lines), are present, together with a local minimum near the
tropopause, between 100 and ∼200 hPa (range delimited by the red lines). A similar
behaviour was found in Ref.[21].

The observed profile is most likely driven by the dominant annual cycle since its
variance gets lower in correspondence with the local minimum of the correlation (see
Table 1.2). That is a plausible conjecture, given the dominant role of transport processes
within this layer, dampening the annual radiative modulation. To prove this hypothesis,
the annual modulation of the temperature at different atmospheric layers, reconstructed
with the MC-SSA, was examined. This is shown in Fig. 1.15, where it is clearly visible
that the amplitude decreases by a factor ∼ 4 from 10 to 100-200 hPa, and then increases
again moving towards lower levels.

The correlation between the annual components of the muon flux and the temperature
as a function of the pressure level is shown in Fig. 1.14b (blue curve), together with the
percentage of the total variance described by the annual component detected in each raw-
temperature series (red curve). A correlation minimum is observed around the tropopause,
thus demonstrating that the minimum observed in the correlation between the muon flux
and the raw temperature series (Fig. 1.14a) is, in fact, related to the annual cycle.
However, the high correlation at 175 and 200 hPa, reaching values comparable to the
ones at 30 hPa, is in contrast with the behaviour observed in Fig. 1.14a. This can be
explained by looking at the variance curve in Fig. 1.14b. Although the correlation at
175 and 200 hPa is good, the variance of the annual temperature component reaches its
minimum value at such pressure levels. Moreover, the amplitude of the annual component
assumes the minimum value in correspondence with these levels (see Fig. 1.15).

Finally, Fig. 1.14c shows the correlation between the temperature and muon flux time
series after detrending them with the corresponding annual cycles reconstructed with
the MC-SSA. The fact that, in this case, there is no minimum around the tropopause
confirms that the minimum observed in Fig. 1.14a is due to the weakening of the annual
temperature cycle.

It is possible to conclude that, thanks to the attenuation of the dominant annual cycle
at these levels, the weaker 4- and 10-y components emerge in both the temperature and
the muon series.
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Figure 1.14: (a) Correlation coefficient between muon and temperature daily data from 1 to 1000 hPa.
The red lines identify the 100 and 175 hPa levels, while the dashed blue lines mark the two correlation
maxima. (b) Correlation coefficient between the annual components of the temperature and muon series
(blue curve) and percentage of the total variance of the annual temperature component (dashed red curve)
from 1 to 1000 hPa. (c) Correlation coefficient between temperature and muon series after detrending
them with the corresponding annual cycle reconstructed with the MC-SSA.

Figure 1.15: Amplitude of the annual cycle reconstructed by the MC-SSA for the raw-temperature time
series from 1 to 1000 hPa.



1.5.5 Decadal muon component and solar activity

The decadal oscillation revealed in the muon flux series may suggest a relation with the
decadal solar cycle (Schwabe cycle). Cosmic rays with energies below tens of gigaelectron-
volt are known to be anticorrelated with the 11-y solar cycle, while the muons generated
by them do not have enough energy to reach the LVD underground detector. The geo-
magnetic cutoff at the location of the latter prevents such low-energy cosmic rays from
even reaching the atmosphere and even if low-energy atmospheric neutrinos interacting
with the rock surrounding LVD can generate additional muons, their number would be
so small to explain the observed modulation. Therefore, such modulation can be related
to the decadal stratospheric temperature induced by the solar cycle.

Several complex mechanisms, both direct and indirect, can lead to an impact on the
stratospheric temperature due to the Schwabe cycle. Because of their complexity, the
decadal temperature modulation imprinted by the 11-y solar cycle can be found only
at specific layers and regions in the atmosphere. Several studies have identified an 11-y
signal in the Northern Arctic region temperatures at ∼10 hPa due to direct changes in
the heating, extending to midlatitudes and then connecting to a region at 100 to 20 hPa
at low and midlatitudes due to indirect changes in the global Brewer-Dobson atmospheric
circulation [22, 23]. Because of these two regions of influence, the temperature in the Gran
Sasso region is expected to show an imprint of the 11-y cycle in the low stratosphere. This
is confirmed by the results obtained by applying the MC-SSA to the raw-temperature time
series at different layers, which allowed detecting a decadal variation at ∼175-300 hPa (see
Table 1.2), with the maximum amplitude reached at 175 hPa.

A recent analysis of 10-y of data from the Borexino experiment [24], also situated in
the LNGS, revealed the presence of a decadal modulation of the muon flux. Although the
precision in determining a decadal modulation within the 10-y covered by the Borexino
data is limited (due to the presence of only one cycle), such a decadal trend is consistent
with the one found in the LVD muon data.

In Fig. 1.16, a comparison between the LVD (panel a) and the Borexino (panel b)
decadal muon trends is shown. Panel c shows the decadal variation in the raw-temperature
series at 175 (blue curve) and 200 hPa (dotted blue curve), which shape is in agreement
with the decadal muon modulation.

Both the temperature and muon flux decadal variabilities reproduce the 11-y solar
cycle, described by the sunspot number (SN) time series shown in Fig. 1.16e, although
a phase misalignment is visible between temperature and sunspots, with temperature
maxima and minima anticipating those in the sunspot series.

A better agreement is found by looking at the 11-y solar modulation of geomagnetic
activity recorded by the Ap index (see Fig. 1.16d), whose maxima are observed in the
descending phases of the 11-y sunspot cycles. Geomagnetic activity can influence strato-
spheric temperature by regulating the impact of energetic particle precipitation on atmo-
spheric chemistry. Consequent temperature variations can depend directly or indirectly
on the considered region [25, 26] and, as a consequence, the indirect correlation between
the Ap index and our measurements is not unexpected. Moreover, the quasi-biennial
oscillation was found to amplify the effect of the 11-y cycle and geomagnetic activity on
the stratosphere, modifying the original solar signal imprinted in the latter.

Those terrestrial effects arise the complexity in the interpretation of the origin of the
decadal muon cycle, which will need further and deeper analyses to be understood.
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Figure 1.16: (a) MC-SSA decadal muon flux component from the Large Volume Detector (LVD)
data, (b) Borexino muon-flux variation data, (c) the MC-SSA decadal components detected in the raw-
temperature series at 175 and 200 hPa (decadal plus trend components, dotted curve), (d) monthly mean
Ap index (with superimposed running mean), and (e) total sunspot number.



1.6 Conclusions

The spectral analysis of the 24-y muon flux time series observed underground by the
LVD in the Gran Sasso Laboratory, performed with the MC-SSA and WTC methods,
revealed the presence, in addition to the well-known annual periodicity, of two multiannual
components, with periods of ∼ 4 and 10 y. Neither of the latter has been detected in the
effective temperature time series.

Applying the MC-SSA on the raw-temperature time series from the ERA-Interim
reanalysed dataset, a 4-y oscillation was detected near the tropopause, at ∼100 hPa,
while a decadal modulation was observed at 175-200 hPa. Such weaker oscillations emerge
thanks to the dampening of the dominant annual cycle at these levels, which are affected
by high-frequency variability related to transport and wave processes.

Such long-scale modulations exhibit a much larger amplitude than would be expected
based on temperature variations. These long-term temperature variations make such a
small contribution to the effective temperature, due to their small amplitude, that they are
not significant in the spectrum of the latter. All these results may represent difficulties of
the adopted reanalysis dataset to correctly represent stratospheric temperature variability,
due to a possible attenuation of long-term modulations.

In turn, the intensity of muons measured underground is very sensitive to temperature
variabilities in the lower stratosphere, thus suggesting that variations in the muon flux
may represent an additional unbiased integrated proxy of local stratospheric temperature
with a high time resolution.



Chapter 2

Solar evidence in the scaler data
(Auger experiment)

Changes in the interplanetary medium related to solar activity variations and transient
events modify the magnetic deflections of high-energy particles, thus changing the CR
flux in the Earth’s atmosphere. The standard detectors for measuring these effects are
neutron monitors, but also different detection systems, such as muon telescopes and par-
ticle counters from high-energy experiments. Among the latter, there is the Pierre Auger
Observatory, located in Malargüe, Argentina. It is composed of an array of 1660 water-
Cherenkov surface detector stations, covering 3000 km2, constantly measuring the rate
of particles, as well as of a Fluorescence Detector, composed of 24 telescopes grouped in
units of six at four different locations, designed to measure the ultraviolet light emitted
by excited nitrogen when an extensive air shower passes through the atmosphere.

The rate of particles in all the surface detectors of the array can be measured using
a counting trigger, the so-called scaler mode. The Auger scaler rate corresponds to the
number of particles depositing an amount of energy within the range [15-100] MeV and
can be used to study solar effects on the cosmic-ray rate on scales from minutes to years.
These energy depositions arise from showers of primary cosmic rays with energies from
10 GeV to a few TeV.

The spectral analysis conducted over the scaler data sampled every 48 hours is here
presented. Using the SSA method described in the previous chapter, several long-term
components were detected and extracted from the noise, the most powerful of which have
periods ranging from about 10 y, down to a few days. The presence of these significant
components has also been proven by the CWT analysis of the record.

Finally, the short-term components were also analysed by applying the same spectral
techniques to shorter intervals of the series with data sampled every fifteen minutes. A
daily oscillation, characterized by a double-peaked shape becoming less regular during
the solar cycle maxima, has been observed. A high-frequency component has also been
detected, the period of which changes from solar minimum to maximum.
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2.1 The Pierre Auger Observatory

The Pierre Auger Observatory [27] is located in Malargüe, Argentina (69.3◦ W, 35.3◦

S, 1400 m a.s.l.1) and covers an area of 3000 km2. It was conceived to measure the
flux, direction-of-arrival distribution, and mass composition of CRs at the highest ener-
gies (above 1015 keV) with high statistical significance over the whole sky. Due to the
extremely low flux of particles at these high energies, a large detection area is required.
The Observatory uses two different detectors to combine two detection techniques: the
Fluorescence Detector (FD), observing the fluorescence light produced by the secondary
particles as they propagate in the atmosphere, and the Surface Detector (SD), directly
measuring the particles reaching the ground.

The FD [28] consists of 24 telescopes, grouped in units of six at four different locations,
operating only on moonless and clear-weather nights, resulting in an operational average
duty cycle of 13% of the total time. It is designed to measure the ultraviolet light emitted
by excited nitrogen when an extensive air shower passes through the atmosphere.

The SD [27] is an array of more than 1600 water-Cherenkov detectors in a triangular
grid with a 1500 m spacing, each consisting of a polyethylene tank (10 m2 of area) contain-
ing 12 tonnes of high-purity water in a 1.2 m high sealed diffusive-reflective liner, providing
a total of about 16000 m2 of collection area for the full SD array. The Cherenkov light
generated by the passage of charged particles through the water volume in each detector
is recorded by three photomultipliers (PMTs) symmetrically placed on the top of each
tank. For data acquisition, six channels with 10 bit flash analogue-to-digital converters
(FADC), with a sampling frequency of 40 MHz, are used, as well as a GPS system for
timing.

Figure 2.1, taken from Ref.[29], shows the layout of the Pierre Auger Observatory.
The black squares represent the four locations where the FD’s telescopes are placed, with
gray lines indicating their field of view, while the orange dots mark the position of the
Cherenkov detectors.

The detectors are sensitive to charged particles, such as µ± and e±, which essentially
dominate the extensive air shower at ground level, as well as high energy photons, as
these convert in e+e− pairs in the water volume.

At the operating gain of the surface detectors, a correspondence of 1 FADC ≈ 5 MeV
is observed between the pulse amplitude in FADC counts and the energy deposited by a
particle in the detector.

2.1.1 The Auger scaler data

The recording of low threshold rates (scalers) with all the surface detectors of the array,
known as single particle technique [30], is useful for the detection of transient events such
as Gamma Ray Bursts (GRBs) [31, 32], expected to produce a coherent increase in the
counting rates, as well as to give insight to the rates of low-energy CRs influenced by solar
modulation. This data has also been employed in studies of Forbush decreases [29, 33],

1above sea level
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Figure 2.1: Map of the Pierre Auger Observatory at Malargüe, Argentina. The orange dots represent
the positions of the surface detectors, with a 1.5 km spacing between nearest neighbors. The black squares
indicate the four buildings where the FD’s telescopes are placed, with gray lines indicating the field of
view of the six telescopes at each location. This picture was taken from Ref.[29].



which are rapid reductions in the observed GCR intensity due to coronal mass ejections
(CMEs).

The Auger scaler rates record the counting rates of signals within the range [3-20]
FADC counts above baseline, corresponding approximately to the energy range [15-100]
MeV, resulting in an average count rate of ∼ 1.8×108 counts per minute. Data are sent
and stored every second from each detector.

Scaler rates are affected by several factors, such as atmospheric conditions, intrinsi-
cally non-constant rate of low energy particles, and eventual instrumental instabilities.
Therefore, before looking for transient events and studying long-term solar modulations,
the Auger scaler rates must be treated and corrected. A detailed description of all the
cuts and corrections applied can be found in Ref. [34].

Some of the applied corrections are due to:

• identification of bad stations;

• removing station outliers, corresponding to very high count rates in a single second
without other stations being affected as well;

• removing stations without three properly working PMTs;

• pressure correction;

• large excesses due to lightning events.

For each station, the rate measured within a specific time interval is given by the
arithmetic mean over all the seconds in the considered interval not removed by one of the
correction criteria discussed before. Finally, the scaler rate value associated with such a
time interval is obtained by averaging over all the stations.

Because the stations are deployed on different altitudes and have different ages and
PMT gains, the scaler rate is not identical between stations. To compensate for these
differences, the corrected scaler rate Γ(c)

i of a station i is scaled to a known reference value
⟨Γi⟩, obtaining the so-called relative scaler rate ri(t) as follows:

ri(t) = Γ(c)
i (t)
⟨Γi⟩

(2.1)

The chosen reference value is the mean count rate for 2013, which is roughly in the
middle of the dataset. The idea behind this scaling is that the relative response of the
stations to changes in the physical rate is more uniform than the absolute count rate [see
Ref. 34]. Furthermore, it is a way to make the response of the whole SD array independent
of the number of currently working stations.

Figure 2.2 shows the time series resulting from the mean of the relative scaler rate
ri(t) over all the stations. In particular, panel a shows the relative scaler rate sampled
every 12 hours, where some gaps are present due to the applied corrections. The largest
gaps are highlighted in green.

The series has been gap-filled with an AR technique [7], for which the missing data are
replaced with estimates extrapolated from forward and reverse AR fits of the remaining
samples. The maximum number of samples used in the estimation and the order of the
AR model have been chosen as the ones leading to the most accurate reconstruction
of some artificial gaps randomly introduced in the series (not corresponding to already
present gaps in the record). Finally, the gap-filled points are given by the average of 100
gap-filling estimates, for each of which the optimal parameters for the AR model have
been defined, being the set of artificial gaps randomly generated each time.
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Figure 2.2: Relative scaler rates series, ranging from January 1st, 2006, to March 19th, 2022. The rate
contains all corrections from Ref [35]. Panel a shows the series sampled every 12 hours. Some gaps are
present in the series, which have been filled thanks to a gap-filling procedure based on an AR model. The
largest gaps are highlighted in green. The scaler rate in panel b was obtained by resampling the original
series every 48 hours after having gap-filled the series in panel a.

The filled series spans from January 1st, 2006 up to the 19th of March 2022 for a total
of 11844 values. A decadal modulation, as well as an annual oscillation, are visible in
the series. Two Forbush decreases, one occurring in December 2006 and one in the mid
of June 2015, are also visible, both leading, as expected, to an intense reduction of the
Auger scaler rate.

2.2 Spectral analysis

To reveal the significant periodic components in the relative scaler rate, an accurate
spectral analysis has been performed on the series. The MC-SSA advanced spectral
method, already introduced in Section 1.4.1 (see Appendix B for further detail), has been
used to define and reconstruct the Auger scaler’s significant components.

Furthermore, the spectral content has been confirmed by performing the Continuous
Wavelet Transform (CWT) [12, 36]. The CWT method gives an evolutionary analysis of
the series in the time-scale plane and allows studying non-stationary features of the signal,
such as changes in periodicity, isolated events, trends, and intermittency (see Appendix
A).

Both long- and short-term components have been extracted from the series and their
origin has been investigated.



2.2.1 Long-term components

To extract the long-term oscillations present in the scaler rate record, the MC-SSA has
been applyed to a resampled version of the series to reduce computational time while
maintaining a good time resolution. More in detail, starting from the gap-filled version of
the 12-hour-sampled series, a 48-hour-sampled one has been obtained, thus reducing the
length of the series under analysis to a quarter of the initial one. Such a series is shown
in Fig. 2.2b.

The adopted window length was set equal to M = 450, and, being ∆t = 48 h, the
window width W is about 2.5 years. The initial null hypothesis is a red noise, represented
by a first-order autoregressive process AR(1).

The most powerful significant components revealed with the MC-SSA with a 99% c.l.
are a decadal trend, an annual oscillation, and variability modes with ∼186-, ∼27- and
13.5-d periods. Figure 2.3 shows the reconstructed significant components (panels a-e),
with the percentage of variance described by each (magenta values), and the SN time
series sampled every 2 days (panel f). Similar periodicities have been found in neutron
monitor data and in several solar indices [37–39].

Decadal variability - The decadal modulation, shown in Fig. 2.3a, is linked to
the 11-y solar cycle and describes most of the signal variance, representing ∼65% of the
latter. In Fig. 2.4a, this component is directly compared with the decadal one (red curve)
revealed by MC-SSA in the SN time series (light red curve) by using the same window
length M chosen for the Auger scaler data. Such a series has the same sampling interval
as the scaler rates and was obtained by resampling the daily data available from the World
Data Center (WDC) - Sunspot Index and Long-term Solar Observations (SILSO)2, Royal
Observatory of Belgium, Brussels [40]. The anticorrelation between the two series is
visible.

A delay in the scaler’s response to this long-term modulation is not unexpected. The
time lag between GCR intensity and solar variability, particularly regarding long-term
modulations, has been discussed in several papers [see, e.g., Refs. 38, 41, 42]. Such a
delay is related to the polarity state of the heliosphere (positive, A > 0, or negative, A <
0). A higher delay is usually observed during odd cycles [38, 41, 42] and negative polarity
states [42].

Solar cycle 24 showed an unusual polar field reversal, which has been analysed by sev-
eral authors [43–45]. Following Ref.[43], the southern solar hemisphere reversed polarity
in mid-2013, changing from a negative to a positive polarity state. In the northern solar
hemisphere, the reversal in the field started as early as June 2012 and was followed by a
period of almost zero field strength lasting until the end of 2014, before rising. The total
time interval required for the polar field reversal in both hemispheres lasted from June
2012 to November 2014, as shown by the vertical gray bar in Fig. 2.4a.

In the region of positive polarity state (A > 0), the maximum observed in the decadal
modulation of the scaler rate is almost in phase with the minimum observed in the decadal
solar cycle. This is not true for the negative polarity state region, where a lag of about
eight months in the Auger scaler’s response is observed, lag that decreases in time, reach-
ing a value of about three months for the local scaler’s maximum around 2013. The
deep minimum observed around 2015 is mainly due to the intense Forbush decrease that
occurred in correspondence with such a period (see Fig. 2.2), also causing the apparent
higher delay in the GCR response to the solar activity maximum at the beginning of 2014.

2http://www.sidc.be/silso/

http://www.sidc.be/silso/
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Figure 2.3: The significant MC-SSA components of the relative scaler rate series with decadal (a),
annual (b), ∼186-d (c), ∼27-d (d), and 13.5-d (e) periods. The variance described by each component is
also shown (magenta values). The SN time series sampled every 2 days is shown in panel f.



Figure 2.4: (a) Comparison between the decadal trend revealed in the Auger scaler rate (black curve)
and the SN series sampled every 2 days (shaded red curve), superimposed by the decadal modulation
revealed in the latter by MC-SSA (red curve). An anticorrelation among the decadal trends is clearly
visible. The shaded gray bar represents the time interval from the beginning to the end of the polarity
state (A) reversal for Solar Cycle 24. Panel b shows the 27-d oscillation revealed in the SN time series.
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Figure 2.5: Comparison between the Auger scaler’s annual modulation (black curve) revealed with
MC-SSA and the TSI (green curve) at the top of the atmosphere measured by NASA’s SORCE mission.
The time interval shown is the one for which data are available for both the scaler rate and the TSI
datasets.

The annual variability - The annual oscillation shows minima at the beginning of
each year (December-January) and maxima in the middle (June-July). The origin of this
component is due to the Earth’s revolution around the Sun. When the Earth is at peri-
helion, the intensity of the GCR flux is reduced, and vice versa at the aphelion. Figure
2.5 shows the comparison between the annual component revealed by the MC-SSA in the
Auger scaler rate and the total solar irradiance (TSI) measured by the Total Irradiance
Monitor (TIM), launched in January 2003 aboard the NASA SOlar Radiation and Cli-
mate Experiment (SORCE), and representing the spatially and spectrally integrated solar
radiation incident at the top of Earth’s atmosphere3 [46, 47]. It represents the average
daily power per unit area of solar irradiance across a spherical surface surrounding the Sun
with a radius equal to the Earth-Sun distance. The latter is a result of NASA’s SORCE
mission, which provided an invaluable data record about solar irradiance and the impact
of the Sun’s energy on Earth’s weather, climate, and life [48]. The dotted horizontal line
in Fig. 2.5 represents the mean TSI value, equal to ∼ 1360.5 W/m2.

Since the physical distance of the Earth from the Sun varies during the year, the TSI
at the top of the Earth’s atmosphere is ∼6.5% higher (∼ 88 W/m2) in January (when
the Earth is at perihelion) than in July, when the Earth is at the farthest point from the
Sun. Although few missing data are present in the TSI record, the anti-phase with the
annual oscillation of the scaler rate is visible.

The 186-d (Rieger-type) variability - The ∼186-d variability shown in Fig. 2.3c
is the known Rieger-type periodicity [49], which can be found in several indicators of
solar magnetic activity [see, e.g., Refs. 50–54]. The Rieger-type modulation was initially
attributed to the 154-days periodicity found by Rieger et al. [49] in the gamma-ray flares
observed by the Solar Maximum Mission (SMM) near the maximum of Solar Cycle 21.
The analysis of different indicators of solar magnetic activity during the past few cycles,
namely, X-ray flares [50, 55–57], sunspot group numbers [51, 52, 58–60], 10.7 cm radio
flux and SN [61], occurrence rates of solar flare energetic electrons [62], type II, III, and
IV radio bursts [54, 63], as well as microwave [57] and proton [53] flares, confirmed the
existence of such a periodicity.

3https://disc.gsfc.nasa.gov/datacollection/SOR3TSID_019.html, Accessed 05/03/2022

https://disc.gsfc.nasa.gov/datacollection/SOR3TSID_019.html


The physical reason for the occurrence of the Rieger-type periodicity is not completely
clear, and several different mechanisms have been suggested to explain the enigmatic
features of this component [see, e.g., Refs. 64–69].

The long-term appearance of this periodicity has been studied, revealing that the
associated period may vary from about 130 to 190 days [58, 60, 64, 70]. This component
was found to be strong in some cycles and weak or lacking in others. Moreover, its period
is cycle-dependent. As found in Ref.[70], the solar cycle strength is related to the value
of the Rieger-type period: the stronger the solar cycle, the shorter the period.

Monthly variability - The monthly component shown in Fig. 2.3d, with a period
of about 27 days, is caused by the combination of solar rotation and an inhomogeneous
distribution of long-lived solar active regions, such as sunspots, CMEs, coronal holes, and
co-rotating interaction regions [71]. It is linked to the longitudinal asymmetry of the
electromagnetic conditions in the heliosphere during one solar rotation.

Due to the solar differential rotation, the rotational period is of about 25 days at the
near-equatorial region and reaches values around 38 days near the poles. The rotation
period at the equator is known as sidereal rotation period, which should not be confused
with the synodic rotation period of about 26 days, which is the time for a fixed feature
on the Sun to rotate to the same apparent position as viewed from Earth. In literature,
Carrington rotation is often used to define a synodic rotation period of about 27 days,
corresponding to a latitude of 26◦.

This variability has already been found in several neutron monitor data [see, e.g., Refs.
38, 39, 72, 73] and has also been detected in the SN time series, as shown in Fig. 2.4b.

The amplitude of the 27-d periodic component in the Auger scaler rate reaches its
maximum value around solar activity maximum. Furthermore, a higher variability is
observed until the beginning of 2018, i.e., for the whole duration of the descending phase
of the cycle, most probably because of more robust solar activities in the form of more
intense solar flares and CMEs. Ref.[74] shows that as the CMEs go down during the rising
phase of solar cycles, the 27-d period modulation too is lower, and this is in agreement
with the intensity of the monthly component revealed in Auger scaler data (see Fig. 2.3d).

The 13.5-d variability - The 13.5-d periodic component shown in Fig. 2.3e is
associated with both solar active longitudes and tilted dipole structure. It has been found
in neutron monitor data and in several solar indices as shown in Ref.[39]. The MC-SSA
shows the possible presence of such a component in the SN data, although its power is
smaller compared to the other components, and further analyses are needed to confirm
its presence.

As discussed in Ref.[74], the 13.5-d period is observed to be more prominent during
the declining phase of solar cycles, for the same reasons previously discussed for the 27-d
component, and this is in agreement with the variability observed in the reconstructed
half-monthly component. As visible in Fig. 2.3e, a higher variability is observed between
2015 and 2019, and around 2008 as well, i.e., in correspondence with solar cycles’ declining
phases.

All the long-term components revealed by MC-SSA have been confirmed by the CWT
spectral analysis. Figure 2.6b shows the continuous wavelet spectrum of the Auger scaler
rate (panel a), where areas with a high (low) power are represented by the color red
(blue). The black curves enclose regions with a confidence level greater than 90% against
the null hypothesis of a red-noise process. The COI, delimiting regions influenced by edge
effects, is represented by the white curve. Figure 2.6c shows the Global Wavelet Spectrum
(GWS) (black curve), obtained by time-averaging the CWT spectrum over each period,
and the corresponding significance levels (red curve).
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Figure 2.6: Continuous Wavelet power spectrum (panel b) of the Auger scaler rate sampled every 48
hours (panel a) and Global Wavelet Spectrum (panel c). The black curves in panel b enclose regions with
a confidence level greater than 90% against a red-noise process null hypothesis, while the COI, indicating
regions influenced by edge effects, is represented by the white curve.

The decadal modulation shows the highest power, although it lies outside the COI due
to the limited length of the series. The annual periodicity is also detected, showing higher
and significant power in correspondence with the time intervals in which its amplitude is
larger. The monthly oscillation is highly significant between 2012 and 2017, while it shows
a lower power elsewhere. This result is in agreement with that found by the MC-SSA (Fig.
2.3d), i.e., the reconstructed monthly component has higher variability in correspondence
with the high-power regions detected in the wavelet spectrum. Furthermore, a peak
in the GWS between 8 and 16 days of period is observed, corresponding to the 13.5-
d significant component previously discussed. A peak in correspondence with 186-d of
period is observed in the GWS (Fig. 2.6c), although it is not significant due to the
limitations of the method in detecting peaks showing a large difference in amplitude and
close to each other.



2.2.2 Short-term components

To analyse short-term variabilities in Auger scalers, the CWT power spectrum has been
estimated for data recorded in the same month (June) of four different years with a
sampling interval of 15 minutes. Furthermore, the MC-SSA has been applied on each
record to confirm the results obtained with the CWT method and to extract the significant
periodic components from the noise. Small gaps in all the series have been filled with the
AR model previously described, while large gaps, usually present at the beginning and/or
at the end of the records, have not been filled. Two of the series under analysis, those
relating to 2010 and 2020, shown in Figs. 2.7a and 2.10a, respectively, correspond to
solar minima. The other two, relating to 2012 and 2014, correspond to solar maxima and
are shown in Figs. 2.8a and 2.9a, respectively. For a direct comparison of the records,
the same range has been used on the y-axis. It is possible to notice that the signals
recorded during solar minima show a more regular pattern to those revealed during the
solar maximum.

The CWT power spectra of the records show, with a 99% c.l., the presence of daily and
half-daily significant components. During solar minimum (2010 and 2020), these compo-
nents exhibit high power throughout the signals (see Figs. 2.7b and 2.10b). Additionally,
an intermittent high-power signal is observed in correspondence with a period of about 8
hours.

Regarding the years 2012 and 2014 (see Figs. 2.8b and 2.9b), the results are different
compared to the previous two cases. The 12-h components lose power in several intervals
of the records. The 8-h component revealed in the previous two records is not present
in these, although high-power sporadic regions are present around 5 hours of period.
Moreover, in June 2014, the 24-h modulation also loses power in several intervals of the
signal.

With a window length M=200 (W ≃ 2 d), the significant components of all four records
have been detected with the MC-SSA method with a 99% c.l. against the null hypothesis
of a red noise process. Figure 2.11 shows the reconstructed significant components of the
four records, together with the variance described by each (magenta values). The first
row shows the reconstructed daily components revealed in each series combined with a
trend, while the second row shows those with a 12-h period. The half-daily component
detected in June 2012 shows a smaller amplitude and describes a lower variance than
those extracted in the other three records. The third row in Fig. 2.11 shows the high-
frequency significant component detected in the records, also referred to as intra-daily
oscillations, describing a lower variance compared to the daily and half-daily ones, and
which period shows a variation from one solar minimum to the following. In 2010 and
2020 (solar minima), such a component shows a period of about 8 hours, while, during
solar maxima (2012 and 2014), the period is slightly smaller, between 5 and 6 hours, thus
confirming the results obtained with the CWT analysis (see Figs. 2.7b, 2.8b, 2.9b, and
2.10b).
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Figure 2.7: (a) Auger scaler rate relative to June 2010, with data sampled every 15 minutes. Panel b
shows the wavelet power spectrum of the record. The black curves enclose regions with a confidence level
greater than 99% against a red-noise process null hypothesis. The white curve represents the COI, which
indicates the area in the time-scale plane influenced by edge effects.

Figure 2.8: (a) Auger scaler rate relative to June 2012, with data sampled every 15 minutes. Panel b
shows the wavelet power spectrum of the record. The black curves enclose regions with a confidence level
greater than 99% against a red-noise process null hypothesis. The white curve represents the COI, which
indicates the area in the time-scale plane influenced by edge effects.



Figure 2.9: (a) Auger scaler rate relative to June 2014, with data sampled every 15 minutes. Panel b
shows the wavelet power spectrum of the record. The black curves enclose regions with a confidence level
greater than 99% against a red-noise process null hypothesis. The white curve represents the COI, which
indicates the area in the time-scale plane influenced by edge effects.

Figure 2.10: (a) Auger scaler rate relative to June 2020, with data sampled every 15 minutes. Panel
b shows the wavelet power spectrum of the record. The black curves enclose regions with a confidence
level greater than 99% against a red-noise process null hypothesis. The white curve represents the COI,
which indicates the area in the time-scale plane influenced by edge effects.
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The sum of all the significant components, i.e., the de-noised version of the signals,
are shown in Fig. 2.12, together with the total variance (magenta values). The half-daily
component is responsible for the double-peaked shape observed in all the records, except
in June 2012, where this signal showed a lower amplitude (see Fig. 2.11).

The long-term behaviour of the daily variation has been discussed in Ref.[34] by com-
paring the daily profiles across the 15-year-long Auger scaler record. The monthly Auger
scaler rates are shown in the left panel of Fig. 2.13, taken from Ref.[34], where each
month was normalized by rescaling it with the mean scaler rate of the respective month,
allowing to emphasize the shape of the daily signal instead of highlighting the long-term
modulations. A seasonal variation of the 24-h signal is visible, with the peak’s time of
occurrence showing a shift of approximately three hours over a year. In January (aus-
tral summer), the daily signal maximum is at about 14:00 UTC (11:00 a.m. local time),
whereas in austral winter, the maximum occurs at 17:00 UTC. During the solar maximum
between 2012 and 2014, the observed seasonal variation was less regular due to a higher
rate of transient events.

The right panel of Fig. 2.13 compares the average daily profile of June 2018 (black
curve) with the profiles of two individual days of the same month, the latter rescaled with
their average rate, to enable the comparison of the shapes themselves. It is visible that
the amplitudes and detail of the diurnal variations are distinctively different.

Such results highlight the abilities of the Auger scaler rates in resolving structures
on hourly scales with high statistics. The phenomena at the origin of these short-term
fluctuations need further investigation. Since the Auger data have already been corrected
for pressure [34, 35], a correlation with the latter is not expected, while a possible link
with other factors, such as temperature, is currently being studied.
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Figure 2.13: Picture taken from Ref.[34]. The left panel shows the monthly average values, where each
month was normalized separately to emphasize the shape rather than the long-term decadal trend. On
the right, the average daily shape of the observed diurnal pattern of the scaler rate is shown for June
2018 (black curve), together with two single days of the same month as examples of the variations in this
daily pattern (red and blue curves).

2.3 Conclusions

By use of the MC-SSA, several long-term components have been detected in the 16-year-
long Auger scaler rate record sampled every 48 hours with a 99% c.l. against the null
hypothesis of a red noise process. The presence of these periodic components was also
confirmed by the CWT analysis.

A dominant decadal modulation, describing most of the signal variance, has been
detected, revealing an anticorrelation with the 11-y solar cycle. This component shows
a delay of a few months with respect to the decadal solar cycle in correspondence with
periods of negative polarity state of the heliosphere.

An annual oscillation, showing maxima in correspondence with austral winters and
minima during austral summers, is also present, the origin of which is linked to the
Earth-Sun distance variation during the year.

Periodic oscillations with periods of about 186, 27, and 13.5 days have been detected.
The first one is the known Rieger-type periodicity, which has been detected in several
neutron monitor data, as well as in many solar indices, and which period is inversely
proportional to the solar cycle strength. The 27-d modulation is caused by the combina-
tion of an inhomogeneous distribution of long-lived solar active regions and solar rotation.
The 27-d oscillation in the Auger scaler shows a higher variability in correspondence with
both the maximum and the descending phase of Solar Cycle 24. In correspondence with
solar cycles’ declining phases, more intense solar flares and CMEs usually occur, thus
possibly explaining the observed intensity of the monthly component. As the CMEs go
down during the rising phase of solar cycles, the 27-d modulation is lower during these
periods. This periodicity has also been found in the SN time series. The 13.5-d periodic
component is associated with both solar active longitudes and tilted dipole structure,
and it has been found in neutron monitor data and several solar indices as well. This
component is observed to be more prominent during the declining phase of solar cycles,
presenting a higher variability between 2015 and 2019, and around 2008 as well. This is
probably due to the same causes discussed for the 27-d component.
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Short-term components have been analysed by estimating the wavelet power spec-
trum of the Auger scaler rate recorded in the same month (June) of four different years
sampled every 15 minutes. The significant periodic components have also been detected
and reconstructed with the MC-SSA with a 99% c.l.. Two of the analysed series are in
correspondence with solar minima (June 2010 and June 2020), while the other two are in
correspondence with the maximum activity of Solar Cycle 24 (June 2012 and June 2014).
It is possible to notice that the signals recorded during the minimum activity of the Sun
show a more regular pattern compared to the others.

Daily and half-daily signals have been detected in all the records. As of June 2014,
the 24-h modulation loses power in several intervals of the record. In June 2012, the 12-h
oscillation, which describes the observed double-peaked daily shape, is much smaller and
explains a lower variance compared to the same component revealed in the other three
records.

A high-frequency significant component has also been revealed, showing a period of
about 8 hours during solar minima, and a shorter period, comprised between 5 and 6
hours, during Solar Cycle 24 maximum.

The phenomena at the origin of these short-term fluctuations are not clearly known,
and a deep investigation is needed to fully understand them. Analysing data recorded in
the same month of different years allowed the detection of possible influences due to solar
activity. By performing the same analyses on data recorded in different months within
the same year, it will be possible to understand the evolution of the daily pattern over
time. However, such results highlight the abilities of the Auger scaler rates in resolving
structures on hourly scales with high statistics.



Chapter 3

Cosmogenic radioisotopes and
meteorites

The concentration of cosmogenic radionuclides in meteorites is a valuable proxy of solar
activity [75]. Besides the dependence on the flux of primary galactic cosmic rays (GCR)
in space during approximately one half-life of the isotope before the meteorite falls to
Earth, where the cosmic ray (CR) irradiation becomes negligible, the production rate of
a radioisotope also depends on the composition of the meteorite, the size of the parent
meteoroid, and the shielding depth. Solar Cosmic Rays (SCR) produce radioisotopes by
spallation reactions only in the outer layers of the meteoroids. Because of the ablation
of surface layers, consisting of the loss of mass due to overheating from friction with
atmospheric molecules and fragmentation caused by aerodynamic pressure exceeding the
crushing strength of the meteoroid, the contribution in isotope production due to SCR is
negligible. Therefore, the abundance of cosmogenic radioisotopes in meteorites can serve
as a proxy for GCR flux variations, and the measurement of radioisotopes with different
half-lives allows these variations to be analysed at different time scales. In particular, the
activity of 22Na, having a half-life of about three years, can unveil the 11-year solar cycle.
On the other side, the measurement of long-lived cosmogenic radioisotopes provides an
independent estimation of the meteoroid size and allows defining the average shielding
conditions of the meteorite during its CR exposure. Furthermore, freshly-fallen meteorites
are of great interest in planetary science as they allow measuring the activity of cosmogenic
radioisotopes with very short half-lives.

In this chapter, the gamma-ray measurement of the Cavezzo L5 anomalous chondrite,
recovered on January 4th, 2020, just three days after the fall observed over Northern
Italy skies by the PRISMA fireball network, is detailed described. The measurement took
place at the Monte dei Cappuccini underground Research Station (Torino, Italy) with
a highly selective HPGe-NaI(Tl) spectrometer. Thanks to the high efficiency and low
background of the apparatus, fifteen cosmogenic radioisotopes have been detected with
half-lives down to a few days. The activity of each radionuclide has been determined after
having estimated the dead layer thickness of the HPGe detector (non-active volume of
the crystal) and the detection efficiency as a function of the energy with Geant4-based
simulations. Moreover, to identify radioisotopes with low gamma activity, a method based
on the detection of coincident events recorded over the HPGe detector and the NaI(Tl)
scintillator has been optimized. Finally, the 22Na/26Al activity ratio was calculated and
compared with the estimated values for L chondrites.

Part of the results discussed in this chapter have been published [see Ref. 76].

52
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3.1 The Cavezzo meteorite: recovery and classification

The PRISMA (Prima Rete Italiana per la Sorveglianza sistematica di Meteore e At-
mosfera) network [77, 78], born in 2016 , was conceived to establish a national fireball
network in Italy and is a partner of the FRIPON (Fireball Recovery and InterPlane-
tary Observation Network) collaboration [79]. The network aims to monitor fireballs and
bolides by using all-sky cameras distributed all over the country, thus achieving systematic
surveillance of the Italian skies. The network has installed almost 70 stations, including
operating ones and those in the installation phase, and each station is equipped with a
CCD camera (6mm diagonal, 1296 x 966 pixels) operated at 30 Hz, coupled with a short
focal lens objective (1.25 mm), to obtain an all-sky field of view. Other similar networks
exist, whose primary objectives are bright meteors and the recovery of meteorites, and the
birth of the PRISMA project marked the beginning of Italian participation in a network
of European observing facilities.

On January 1st, 2020, at 18:26:53 UT, eight PRISMA stations detected a brilliant
fireball in the skies of Northern Italy. Figure 3.1 (taken from Ref.[80]) shows the map
of the PRISMA stations that detected the fireball (white dots) and the images of the
meteor trail seen by each camera. The red line represents the on-ground projection of the
reconstructed trajectory.

The analysis of these observations allowed to determine a meteorite residue was most
likely to have survived the atmospheric transit. The expected strewn field, computed using
a purely ablative model, was confined in an area of about 5 km2 near the municipality of
Cavezzo, Modena [80]. Similar estimates about the atmospheric path of fallen meteorites
are available only for 35 meteorites among all the officially classified ones [79, 80]. The
analysis of the light-curve profile suggested that the object underwent a fragmentation
process during the atmospheric flight at about 30 km height from the ground, so more
than one fragment was expected along the final part of its trajectory.

Three days after the bolide was observed, two meteorite specimens were found within
the predicted area of fall, at coordinates 44◦49′43′′ .7 N 10◦58′19′′ .5 E. The samples are
shown in Fig. 3.2. Specimen F1 weighs 3.12 g, while specimen F2, the largest one, weighs
52.19 g. An evident fusion crust is visible in both samples, covering most of their surface.
Sample F2 also presents a less pronounced secondary fusion crust (darker grey coloration
on one side), which is compatible with exposure related to the fragmentation event during
its atmospheric transit. More details about the fireball data analysis and Cavezzo search
and recovery are reported in Ref.[80].

The analysis for classification and characterization of the Cavezzo meteorite has been
carried out at the Earth Sciences Department and Natural History Museum of the Firenze
University, revealing a discrepancy between the two specimens. The texture, crystal chem-
istry, and modal mineralogy of specimen F2 are typical of an ordinary L chondrite, while
specimen F1 presents anomalous texture, structure, and modal mineralogy compared to
the latter. Specimen F1 also shows different lithological and geochemical characteristics,
oxygen isotopic composition, and rare element patterns. Because of these discrepancies,
the Cavezzo meteorite has been classified as an anomalous L5 chondrite, being the first
of this class. Further details about the analysis of the mineralogy, petrography, and
geochemistry of the Cavezzo meteorite are reported in Ref.[81].



Figure 3.1: Map of the PRISMA stations (white dots) involved in the detection of the brilliant fireball
observed on January 1st, 2020. The red line represents the projection on the ground of the fireball bright
trajectory. White circles enclose the fireball trail seen by each camera. This picture was taken from
Ref.[80].

Figure 3.2: The two specimens of the Cavezzo meteorite. An evident fusion crust is visible in both
samples, covering most of their surface. The biggest specimen (F2) also presents a less pronounced
secondary fusion crust that may be related to fragmentation during its atmospheric transit. A small
portion of their surface does not show any fusion features, probably because of the impact on the ground
[80].
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3.2 Cosmogenic radionuclides in the Cavezzo meteorite

To determine the activities of cosmogenic radionuclides in the Cavezzo meteorite, the F2
sample was measured with a high-efficiency HPGe-NaI(Tl) spectrometer, named GEM90
[82]. The facility is located in the underground Laboratory (70 m.w.e.1) of Monte dei
Cappuccini in Torino, where several meteorites have already been measured in the past
decades [see, e.g., Refs. 82–86]. The detector allows for non-destructive and highly se-
lective measurement of the gamma-activity of the meteorite. The measurement of the
main mass of the Cavezzo meteorite indicated the presence of fifteen cosmogenic isotopes
with half-lives down to a few days, thus confirming the recent fall of the sample. In the
following sections, the experimental setup is described and the list of all the radioisotopes
revealed in the F2 sample is shown.

3.2.1 Experimental apparatus: HPGe-NaI(Tl) (GEM90)

The GEM90 spectrometer consists of a p-type closed-ended coaxial hyperpure germanium
(HPGe) crystal operating in coincidence with an umbrella of NaI(Tl) scintillator. It can
hold samples up to 1 kg of mass. Figure 3.3 shows a schematic representation of the
GEM90 detector.

The HPGe detector has a mass of ∼ 2 kg, is 79.1 mm in height, 77.4 mm in diameter,
and has a volume of 372 cm3. For the 1332.5 keV 60Co gamma-rays, it has a relative
efficiency2 of 95%, a peak-to-Compton ratio of 88, and a resolution (FWHM3) of 1.93
keV. Furthermore, it is surrounded by a 1 mm-thick aluminum crystal.

The NaI(Tl) scintillator, surrounding the Ge detector, has a detecting mass of 55 kg,
a total volume of 15000 cm3, and a resolution at 662 keV (gamma-ray of 137Cs) equal to
8.5%. It is composed of an annular ring and a cylindrical plug sealing the cavity. The
annular ring has a mass of 51 kg, is 229 mm high, has a diameter of 305 mm, and a cavity
of 12.4 cm hosting the HPGe crystal. The plug has a mass of ∼4 kg, is 100 mm high, and
has a diameter of 120 mm.

To record signals, the NaI annular ring (or annulus) is coupled with six photomulti-
pliers (PMTs) placed on its upper surface, whereas the cylindrical plug is equipped with
only one PMT.

Nitrogen is continuously flushed inside the cavity to minimize the contribution of the
ambient radon and its decay products, prevent humidity, and avoid condensation on the
cold parts (including electronics).

Although the natural shielding of the rock under which the Laboratory is located
provides a cosmic µ-rate 30 times less than at the surface level, a passive Pb-Cd-Cu shield
(200-1-40 mm in thickness, respectively) surrounds the spectrometer to further reduce
the incoming radiation from the environment, thus considerably reducing the background
counts.

1meter water equivalent
2Photopeak efficiency relative to that of a standard 3 in. × 3 in. cylindrical NaI(Tl) scintillation crystal, for

the 1332.5 keV gamma rays of a 60Co source on-axis at a distance of 25 cm from the detector.
3Full Width at Half Maximum



Figure 3.3: Schematic representation of the GEM90 detector.

An isolated dewar containing up to 30 liters of liquid nitrogen (N2) is held in thermal
contact with the detector, keeping the latter at a low temperature. This process inhibits
the thermal generation of electron/hole pairs and the resulting leakage current that would
interfere with detecting gamma energy deposition.

The GEM90 multi-parametric acquisition system allows for independently recording
the signals from HPGe and NaI(Tl), which are stored together with their timestamps [84,
87], allowing to post-process the data and to detect events in coincidence between Ge and
NaI (see Section 3.3).

The gamma-activity of the Cavezzo meteorite was determined by measuring the biggest
sample (F2) with the GEM90 detector. Figure 3.4 shows the F2 specimen located on the
top of the Ge crystal, surrounded by the NaI(Tl) annulus. The six PMTs on the top of
the NaI annulus are also visible.

3.2.2 Gamma-spectrometry measurement

The gamma-activity measurement of the F2 specimen lasted ∼ 45 days and started about
three weeks after the sample was recovered. The counted gamma-ray spectrum in normal
mode (HPGe alone) is shown in Fig. 3.5, where some peaks are highlighted and associated
with the related cosmogenic radionuclide (red) or naturally occurring radioisotope (black).
The 238U and 232Th radioisotopes, together with their daughters along the decay chain
in secular equilibrium (e.g., 212Pb, 214Bi, 226Ra, 214Pb, 228Ac, and 208Tl), are just some of
the naturally occurring radionuclides which can be present in both the sample and the
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Figure 3.4: GEM90 HPGe detector surrounded by the NaI(Tl) annulus. The F2 specimen is placed on
top of the germanium crystal. The six PMTs on the top of the NaI annulus are also visible.

Figure 3.5: The Cavezzo meteorite gamma-ray spectrum in normal mode (HPGe alone, ∼ 45 days
counting time). Some peaks are highlighted and associated with the related cosmogenic (red) or naturally
occurring (black) radionuclide.



Nuclide λ (s−1) Main target elements

48V 502.24 × 10−9 Ti, Fe, Ni

51Cr 289.58 × 10−9 Fe, Ni

7Be 150.74 × 10−9 C, O, Mg, Al, Si, S(∗), P(∗), Ca, Ti, Fe, Ni

58Co 113.233 × 10−9 Fe(α), Ni

56Co 103.87 × 10−9 Fe, Ni

56Sc 95.749 × 10−9 Ti, Fe, Ni

57Co 29.515 × 10−9 Fe, Ni

54Mn 25.698 × 10−9 Fe, Ni, Mn

22Na 8.439 × 10−9 Mg, Al, Si, Ca, Ti, Fe, Ni

60Co 4.167 × 10−9 Co(n), Ni

44Ti 366 × 10−12 Ti, Fe, Ni

26Al 30.6 × 10−15 Mg, Al, Si, S(∗), P(∗). Ca, Ti, Fe, Ni

40K 17.566 × 10−18 Ca, Ti, Fe, Ni

Table 3.1: Main target elements for the production of several cosmogenic radionuclides produced in
meteorites [88]. The decay constant λ of each radioisotope is also shown. If production is not obtained
through spallation, the target elements are labeled with (n) for predominance of neutron capture and (α)
for reaction induced by alpha particles. The (*) symbol indicates target elements only relevant in iron
meteorites or the metal phase of stony-iron.

environment. Thanks to the high selectivity and low background of the system, fifteen
cosmogenic radionuclides, with half-lives down to a few days, have been measured. The
most intense peak in Fig. 3.5, at the energy of ∼ 1461 keV, is due to the decay of 40K.
The main target elements of several of the measured radionuclides are listed in table 3.1.
The decay constant λ of each radioisotope, expressed in s−1, is also shown.

Table 3.2 lists all the cosmogenic radioisotopes detected in the F2 sample together
with:

• decay modes and their probability of occurrence (in percentage);

• half-life;

• gamma-ray energy in keV;

• branching ratio (in percentage);

• measured counts per day (cpd) at the date of fall (corrected by the decay factor).
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Nuclide Decay mode Half-life Eγ (keV) BR (%) Counts per day

47Ca β−(100%) 4.5 d 1297.09 75 137 ± 71

52Mn ϵ(68.9%) - β+(31.1%) 5.6 d 1434.06 99.99 50 ± 42

48V ϵ(50.1%) - β+(49.9%) 16.0 d 983.52 99.85 51 ± 7
1312.10 97.5 35 ± 8

51Cr ϵ(100%) 27.7 d 320.08 9.89 25 ± 6

7Be ϵ(100%) 53.2 d 477.60 10.44 31 ± 3

58Co ϵ(85.1%) - β+(14.9%) 70.9 d 810.76 99.44 13 ± 2

56Co ϵ(80.4%) - β+(19.6%) 77.2 d 846.76 99.94 15 ± 2
1238.27 66.41 7 ± 2

46Sc β−(100%) 83.8 d 889.28 99.98 21 ± 2
1120.55 99.97 8 ± 2

57Co ϵ(100%) 271.8 d 122.06 85.49 28 ± 3

54Mn ϵ(100%) 312.2 d 834.85 99.98 195 ± 3

22Na ϵ(9.6%) - β+(90.4%) 2.6 y 1274.54 99.94 130 ± 2

60Co∗ β−(100%) 5.3 y 1173.23 99.85 1.52 ± 0.36
1332.49 99.98 1.54 ± 0.44

44Ti∗ ϵ(100%) 60 y 1157.02⋆ 99.88 4.4 ± 0.8

26Al ϵ(18%) - β+(82%) 717 ky 1129.67 2.5 3 ± 1
1808.65 99.76 64.6 ± 0.9

40K ϵ(10.7%) - β−(89.3%) 1250 My 1460.82 10.55 327 ± 4

Table 3.2: Counting rates of the cosmogenic radionuclides measured in the Cavezzo meteorite (F2
sample), reported to the date of fall. (*) Measured with the coincidence technique. (⋆) Gamma emitted
by its short-lived daughter 44Sc.



All the energy levels, transition energies, and branching ratios are retrieved from the
Decay Data Evaluation Project (DDEP) through the online application Nucléide-Lara4.

Short-lived radionuclides with half-lives up to a few days, such as 47Ca, 52Mn, and
48V, have been detected, thus confirming with no doubt the recent fall of the meteorite
and its link with the New Year’s Eve fireball seen by the PRISMA all-sky cameras.

The measured counting rates of 54Mn, 22Na, 26Al, and 40K radionuclides are determined
within an uncertainty of about 1%, while most of the other radionuclides were counted
with Due to the short half-lives of 47Ca and 52Mn, their abundances had already halved 4
times when the measurement started, leading to rather high uncertainties in the measured
count rates. After a few days of counting, their peaks were totally submerged by the
background, and their activities were finally determined on the partial acquisition of 17
days.

Particular attention must be paid to the detection of 52Mn since two other major lines
originating from its decay, with a branching ratio (BR) greater than 90% and energies
of 744.21 and 935.52 keV, were never detected in any partial spectrum. Although two
full-energy peaks are present close to these energies, their counts can be fully explained by
the activities of naturally occurring radioisotopes 234mPa and 214Bi 5. Furthermore, the
52Mn line at 1434.06 keV suffers from background interference of the 234mPa gamma at
1434.16 keV (BR = 0.00973%). However, by subtracting the expected counts of the latter
from the peak integral, a small positive residue, which could possibly be attributable to
the decay of 52Mn, was obtained. Concerning 47Ca, no background peaks were expected in
the neighboring channels of the spectrum, and its activity was determined with a relative
uncertainty of approximately 50%.

The peaks of 44Ti and 60Co are not visible at all in the normal HPGe spectrum shown
in Fig. 3.5, but thanks to the higher selectivity provided by the coincidence between
HPGe and NaI(Tl) detectors, they have both been detected.

3.3 Coincidence spectrum

Data from the HPGe and NaI(Tl) scintillator are independently recorded by the digital
acquisition chain of the detector [84, 87], allowing obtaining two independent spectra.
Figure 3.6 shows the two-dimensional spectrum, that is, the number of events, as a func-
tion of their energy, recorded in the HPGe detector in coincidence with events on the NaI
scintillator. This is obtained by arranging the time-ordered list of events in a 2D counts
histogram, with Ge channels as x-entries and NaI channels as y-entries.

For instance, the sharp vertical lines at ∼ 1275 and 1809 keV represent the major
gamma-rays of the 22Na and 26Al decays detected on the HPGe in coincidence with the
annihilation radiation detected on the NaI scintillator. Two regions of higher counts in
correspondence of 511 and 1022 keV are visible, which are highlighted by the white circles
in Fig. 3.6 for 26Al. Oblique lines originate from partial energy depositions on both
detectors. The most intense one is due to the major line of 40K and starts from an energy
of ∼ 1461 keV on both axes.

4http://www.lnhb.fr/nuclear-data/module-lara
5Line of 234mPa at 742.81 keV (BR = 0.094%) and 214Bi at 934.06 keV (BR = 3.1%)

http://www.lnhb.fr/nuclear-data/module-lara
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Figure 3.6: Surface representation of the two-dimensional Ge-NaI spectrum, with total Ge and NaI
spectra plotted on the corresponding axes. White circles highlight the two regions of higher counts due
to the coincidence between the annihilation gamma-rays and the 1809 keV line of 26Al.

Given the two-dimensional coincidence spectrum, the normal one, shown in Fig. 3.5,
can be obtained by integrating the two-dimensional spectrum over the whole NaI energy
range, i.e., by integrating over the full range of y-entries. On the other hand, coincidence
spectra are computed by integrating over limited energy ranges.

The coincidence between HPGe and NaI detectors, providing a substantial reduction
of the background level, allows performing event selection and finally measuring 44Ti and
60Co activities.
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Figure 3.7: 44Ti decay scheme.

3.3.1 Coincidence optimization for 44Ti detection

As visible from the decay scheme in Fig. 3.7, 44Ti decays by electron capture (100%) into
44Sc and has a half-life of T1/2= (60.0 ± 1.1) y. Two gamma-rays of ∼ 78 keV (96.4%)
and ∼ 68 keV (93%) or a single gamma-ray of ∼ 146 keV energy (0.092%) are emitted
in correspondence with 44Ti relaxation to the ground state. These low-energy peaks
cannot be accurately revealed since they lie in a spectral region with a high background
level. Therefore, the measurement of 44Ti activity can rely on the decay of its short-lived
daughter 44Sc (T1/2 ≃ 4 h), which is in secular equilibrium with its parent, and that turns
into 44Ca by β+ decay (94.27%) emitting a photon of energy 1157.02 keV (99.88%) (see
Fig. 3.7).

Unfortunately, the gamma-ray line of 44Sc at 1157.02 keV suffers from the interference
of an intense peak at 1155.19 keV originated by the β− decay of the naturally occurring
214Bi radioisotope, which partial decay scheme is shown in Fig. 3.8.

Figure 3.9a shows the normal Ge spectrum in the 44Sc–214Bi peak region, where it is
clear that the 214Bi peak (red curve) totally submerges the signal from 44Sc. Therefore, a
confident estimation of 44Ti activity is not achievable on this spectrum, and to overcome
this issue, the difference between the decay of 44Sc (β+ decay) and 214Bi (β− decay) has
been exploited. The annihilation between a positron emitted by the β+ decay of 44Sc
and one electron within the sample produces two collinear photons of 511 keV energy
simultaneously to the emission of the 1157.02 keV gamma-ray. The coincidence between
the 1157 keV gamma-ray revealed in the Ge detector and the 511 and 1022 keV annihilation
photons detected by NaI(Tl) scintillator can be used as an estimate of 44Ti activity [82].
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Figure 3.8: 214Bi partial decay scheme.



Figure 3.9: Ge total spectrum (panel a) and corresponding Ge coincidence spectrum in the energy
range of 1148–1163 keV obtained using both 511 and 1022 keV windows (panel b). Red and green dashed
lines represent 214Bi peak at 1155.19 keV and 44Sc peak at 1157.02 keV, respectively. The Levemberg-
Marquardt parametric fit for the 214Bi peak in the normal spectrum (red curve) and for the 44Sc peak
in the coincidence spectrum (green curve) are also shown.

The optimal energy windows for NaI(Tl) have to be determined to obtain the coin-
cidence spectrum. Windows as wide as several tens of keV are needed due to the poor
resolution of the NaI scintillator. Furthermore, the choice of the 511 keV window is partic-
ularly tricky due to the 609.3 keV (45.49%) gamma-ray emitted by 214Bi (simultaneously
to the 1155.19 keV gamma-ray). A wrong choice of the width of this window would involve
the partial inclusion of the peak at 609.3 keV, leading to an incorrect estimate of the 44Ti
activity [84, 89].

The energy levels and emitted gammas shown in the partial decay scheme of Fig. 3.8
are the ones most linked to the emission of the interfering peaks of 214Bi (highlighted by
the red circles).

The approach introduced in Ref.[90] has been applied to optimize the choice of the
coincidence windows for the detection of 44Ti. The whole ensemble S of all possible co-
incidence windows, parametrized through their centre c and their half-width w, has been
considered for both 511 and 1022 keV, and the coincidence Ge spectrum for each (c,w) has
been extracted. For each spectrum, the 44Ti and 214Bi counting rates have been computed
through a double peak-fit [84, 91], and the final coincidence window was chosen according
to the following figure of merit:

M = cpm44Ti · (1− cpm214Bi) · SNR44Ti (3.1)
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where SNR44Ti is the 44Ti signal-to-noise ratio, defined as:

SNR44Ti = cpm44Ti
σcpm44Ti

(3.2)

The final coincidence window (c0, w0) is the one that maximizes M, i.e., that simulta-
neously minimizes the 214Bi interference and maximizes the 44Ti signal-to-noise ratio:

(c0, w0) = argmax
(c,w)∈S

[M(c, w)] (3.3)

This optimization algorithm was performed independently for both 511 and 1022 keV
windows. Figure 3.9b shows the sum of the coincidence spectra obtained in these two
cases, where the background level, and consequently the 214Bi signal, has been reduced
by a factor of more than 20 with respect to the normal spectrum (Fig. 3.9a). The peak
in the coincidence spectrum (green curve in Fig. 3.9b) can thus be completely attributed
to the 44Ti activity.

In order to correct for the count loss due to the application of the coincidence windows,
the measured 44Ti activity has been normalized to the ratio between the peak counts in
the coincidence (C) and normal (N) spectra of the 26Al peak at 1808.65 keV [82].

Finally, the estimated count rate of 44Ti was found to be (4.4 ± 0.8) cpd.

3.3.2 Coincidence optimization for 60Co detection

A similar approach as the one described in Section 3.3.1 was applied to measure the
faint activity of 60Co. As visible in Fig. 3.10, this radionuclide decays through the β−

channel by emitting two gamma-rays at 1173.23 keV (γ1) and 1332.49 keV (γ2) from the
de-excitation of the daughter 60Ni. The coincidence spectra were built in two cases: the
γ1 peak detected on the HPGe in coincidence with the γ2 peak detected on the NaI(Tl)
scintillator and vice versa.

Figure 3.11 shows the results of the coincidence window optimization for 60Co de-
tection. In this case, the coincidence windows optimized for the detection of γ1 on the
HPGe detector in coincidence with γ2 on the NaI scintillator, and vice versa, were chosen
according to the following figure of merit:

Q = cpm · SNR (3.4)
(c0, w0) = argmax

(c,w)∈S
[Q(c, w)] (3.5)

In Figs. 3.11a and 3.11c is visible that the peaks related to γ1 and γ2 are not present
in the Ge total spectrum. Conversely, in the coincidence spectra shown in Figs. 3.11b and
3.11c, both peaks are revealed thanks to the significant reduction of the background level
that allows measuring a counting rate of (1.52 ± 0.36) cpd for the γ1 peak and (1.54 ±
0.44) cpd for the γ2 line. For the case of 60Co, both peaks’ counts have been normalized
to their C/N ratio estimated from a coincidence analysis performed on the measurement
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Figure 3.10: 60Co decay scheme.

Figure 3.11: Coincidence window optimization for 60Co detection. (a) Ge normal spectra in the energy
ranges centered at 1173.23 keV (panel a) and 1332.49 keV (panel c). Panel b shows the coincidence
spectrum between the detection of the 1173.23 keV peak on the Ge crystal and the 1332.49 keV peak on
the NaI scintillator. Vice versa for panel d. A fit of the peaks is also shown (red curves). Red dashed
lines are in correspondence with the 1173.23 and 1332.49 keV peaks of 60Co. A two-channel binning is
performed in this case over both spectra.



CHAPTER 3. COSMOGENIC RADIOISOTOPES AND METEORITES 67

of the activity of a 60Co standard, which activity was known (see Section 3.4.1). Since
the two peaks have very similar BRs (see Table 3.2), and the detector efficiency does
not vary significantly over this energy range, similar counts were expected. Therefore,
their measured counts are consistent, and this is a countercheck of the accuracy of the
coincidence optimization method and count loss normalization adopted.

3.4 Cosmogenic radionuclides activity

To deduce the activity of the cosmogenic radionuclides detected in the Cavezzo meteorite,
it is necessary to estimate the detection efficiency ηd as a function of the peak energy Eγ,
defined as the ratio between the number of counts (photons) observed by the detector
and the number of photons emitted by a source. Given the measured counts, the activity
of each radioisotope, e.g., the number of decays per minute (dpm), can thus be estimated
as follows:

dpm = cpm
ηd

(3.6)

The measured counts depend on the activity of the source, the source-to-detector
distance, the materials between the emitting source and the detector, and the detec-
tor geometry itself. Except for low-energy photons, an incident gamma-ray photon can
completely pass through the detector without interacting, that is, before undergoing a
significant interaction and losing its energy. Furthermore, many of the gamma-rays may
deposit only a fraction of their energy in the detector. The efficiency is determined only
by the photons interacting one or more times in the detector and depositing all their
energy. Therefore, the efficiency will be substantially less than 100%.

Another effect influencing the detection efficiency is the dead layer (DL) thickness of
the HPGe detector, corresponding to the undepleted detector region, close to the outer
surface, doped with lithium atoms to get a semiconductor junction. The DL thickness of
GEM90 has a nominal value of 0.7 mm but, as a consequence of years of usage and thermal
cycles of the apparatus, it can increase due to the lithium atoms continuously diffusing
inside the germanium crystal, enlarging the insensitive volume of the latter. Therefore, it
is not reliable to use the dead layer thickness provided by the manufacturer and its actual
value should be estimated.

In the following sections, the DL thickness estimation and the simulations carried out
to determine the detection efficiency values for each of the radionuclides detected, as well
as the activity of the latter, are described in detail.



Standard Energy (keV) cpm

26Al

1129.67 0.40 ± 0.01
1808.65 8.86 ± 0.02

1808.65 - 511∗ 0.26 ± 0.01
2938.32 0.051 ± 0.002

40K 1460.82 74.05 ± 0.07
1460.82 - 511∗ 0.59 ± 0.03

60Co
1173.23 1314 ± 9
1332.49 1207 ± 13
2505.69 66 ± 2

Table 3.3: Results of the measurements of the 26Al, 40K, and 60Co standards. The counts per minute
(cpm) of the considered peaks are shown with their uncertainties. The result on single-escape peaks of
the main lines of 26Al and 40K (∗) are also reported.

3.4.1 Dead layer thickness estimation

As already discussed, to estimate the detection efficiency as a function of the energy, the
actual DL thickness of the HPGe detector must be determined. Since the actual thickness
of the DL cannot be measured directly, its value has been deduced by comparing the
measurements of standards (whose activities are known) with the results of simulations.

Table 3.3 summarizes the results of the measurements of three standards: 26Al, 40K,
and 60Co. Since the activity of each sample is known, these measurements have been
simulated by increasing the DL thickness from its nominal value (0.7 mm) up to 10 mm,
with a step of 0.3 mm. For this purpose, the Monte Carlo simulation toolkit Geant46 [92–
94] was used. It was developed by the Geant collaboration at CERN and is currently used
in several research areas, including high-energy, nuclear and accelerator physics, as well
as medical and space science studies. It provides an extensive library of virtual classes to
implement for the specific case study, allowing the simulation of the passage of particles
through matter.

The geometry and composition of both the apparatus and the sample must be defined.
Geant4 already provides a comprehensive library of materials, and specific mixtures of
elements, and compounds can also be defined by providing the desired density and the
mass/mole fractions.

The left panel of Fig. 3.12 illustrates a schematic representation of the 26Al (panel
a), 40K (panel b), and 60Co (panel c) standards, with the darker blue or grey areas
representing the active regions. On the right, the snapshots of the Geant4 simulations of
the 26Al (panel a), 40K (panel b), and 60Co (panel c) standards activity are shown, with
the samples placed over the end cap window of the HPGe detector.

The results of a such procedure are shown in Figs. 3.13, 3.14, and 3.15, for 26Al, 40K,
and 60Co, respectively. For each peak, the DL thickness is estimated as the intersection
of the simulated values (red curve) with the experimental results (black horizontal line).
The red lines plot the 2nd-degree polynomial fit of the difference between measured and
simulated counts as a function of the DL thickness, while the red bands mark the 68%
confidence intervals of each fit. The vertical dashed black lines indicate the intersection
intervals with the experimental result. The DL range shown for 60Co in Fig. 3.15 is shorter
compared to the other two standards simply because, for all the peaks, the simulated cpm

6Geant4 version 10.2 patch-2 (Geant4.web.cern.ch)

Geant4.web.cern.ch
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had already reached a value lower than the measured one for a DL value smaller than 5
mm.

Figure 3.16 shows the final estimate of the GEM90 DL thickness (red horizontal line),
equal to (3.29 ± 0.06) mm, obtained as the weighted mean of the DL values estimated with
the simulation performed over the 26Al (blue), 40K (orange), and 60Co (green) standards.

It should be emphasized that the DL thickness obtained does not correspond exactly
to the actual thickness of the outer contact layer of the Ge crystal, but has to be addressed
as an equivalent dead layer thickness, also taking into account possible inaccuracies in the
modeling of the HPGe geometry and allowing a fine-tuning of the simulation. For example,
the size of the tip and bullet radius of the Ge crystal hole are not precisely known (only
their nominal values are given), thus affecting the determination of the active volume.
Furthermore, the simulation only takes into account the energy deposition within the
active volume, while the charge collection process is not modeled.

To validate the estimated DL, the measurement of the Dhajala meteorite, an H3/4
chondrite fallen in 1976 in India [95] has been simulated. This step also verified that
the self-absorption of the sample, which is directly proportional to the sample density of
the emitting source and mainly affects low-energy gamma-rays, was correctly taken into
account in the simulations.

This meteorite specimen was counted at the underground Laboratory of Monte dei
Cappuccini in Torino, [82, 83]. It has a volume of 245 cm3, a mass of 706 g (ρ = 2.88
g cm−3), and a roughly squared form, which was modeled as a parallelepiped of sides
7.0/6.5/5.4 cm. Its composition was obtained from Ref.[96] and normalized to 100%,
neglecting elements under 1% of mass fraction.

With the Geant4 toolkit, the Dhajala spectrum was simulated 100 times. Figure 3.17a
shows a snapshot of the activity simulation of Dhajala, with the meteorite placed above the
end cap window of the HPGe detector. Table 3.4 shows the comparison between measured
and simulated counts of the 26Al peaks (including full-energy, single escape, and sum ones)
with their uncertainties. The simulated counts and uncertainties are obtained as the
mean and standard deviation of the 100 simulated peak counts, respectively. An overall
agreement is observed, except for the 1808.65 keV peak where, however, the observed
discrepancy is small (3% ).



(c)

(a)

(b)

Figure 3.12: (Left column) Schematic representation of the 26Al (panel a), 40K (panel b), and 60Co
(panel c) standards, with the darker blue or grey areas representing the active regions. (Right column)
Snapshots of the Geant4 simulations of the 26Al (panel a), 40K (panel b), and 60Co (panel c) standards
activity. The samples are placed over the end cap window of the HPGe detector.
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Figure 3.13: Difference (∆) between 26Al standard simulated and measured counts as a function of the
DL thickness of the Ge crystal. The red lines plot the 2nd-degree polynomial fit and the red bands mark
the 68% confidence intervals of the fit. The vertical dashed black lines indicate the intersection intervals
with ∆ = 0, represented by the horizontal black line.

Figure 3.14: Difference (∆) between 40K standard simulated and measured counts as a function of the
DL thickness of the Ge crystal. The red lines plot the 2nd-degree polynomial fit and the red bands mark
the 68% confidence intervals of the fit. The vertical dashed black lines indicate the intersection intervals
with ∆ = 0, represented by the horizontal black line.

Figure 3.15: Difference (∆) between 60Co standard simulated and measured counts as a function of
the DL thickness of the Ge crystal. The red lines plot the 2nd-degree polynomial fit and the red bands
mark the 68% confidence intervals of the fit. The vertical dashed black lines indicate the intersection
intervals with ∆ = 0, represented by the horizontal black line. The DL range is limited up to 5 mm,
since, in all three cases, the polynomial fit has already reached a value lower than ∆ = 0.



Figure 3.16: Dead layer estimates with associated uncertainties for 26Al, 40K, and 60Co standards in
blue, orange, and green, respectively. The red horizontal line is the weighted mean value and the shaded
red bar represents its uncertainty.

Energy measured cpd simulated cpd
1129.67 15.1 ± 0.7 16.0 ± 0.8
1808.65 434.3 ± 0.6 450 ± 4

1808.65 - 511 11.5 ± 0.6 13.2 ± 0.8
2938.32 1.6 ± 0.1 1.3 ± 0.2

Table 3.4: Comparison between measured and simulated cpd of 26Al peaks with their uncertainties for
the Dhajala meteorite.
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(a) (b)

Figure 3.17: Snapshot of the Geant4 simulation of Dhajala (panel a) and Cavezzo (panel b) activity.
Both meteorites are placed over the end cap window of the HPGe detector.

3.4.2 Detection efficiency simulations and radioisotopes activity

To deduce the activity of each radionuclide detected in the Cavezzo meteorite, it is nec-
essary to estimate the detection efficiency, which was obtained by simulating the mea-
surement of the Cavezzo meteorite with the Geant4 toolkit. The meteorite has a roughly
cubic form, which has been modeled as a cube of 2.5 cm sides with a bulk density of
3.322 g cm−3 [80]. Its bulk composition was measured at the Earth Sciences Department
and Natural History Museum of the Firenze University, revealing the presence of fourteen
elements. Since the density of the Cavezzo meteorite is higher than the Dhajala one, a
higher self-absorption is expected for Cavezzo.

Figure 3.17b shows a snapshot of the activity simulation of Cavezzo, with the meteorite
placed above the end cap window of the HPGe detector.

One million decays have been simulated 100 times for each of the revealed radioiso-
topes. Each time, the DL thickness was defined as (3.29 + x · 0.06) mm, where x is a
pseudo-random value from a gaussian distribution of null mean and standard deviation
equal to one. The net counts have been calculated as the mean of the 100 runs. Fi-
nally, the detection efficiency ηd has been estimated following equation 3.6. Examples of
such a simulation are shown in Fig. 3.18, where the blue histograms, fitted with gaus-
sian distributions (black curves), represent the statistics of the peak’s integral counts.
The mean net counts and uncertainties are represented by the vertical red lines and the
shaded red bars, respectively, corresponding to ηd = (4.30 ± 0.02) % for 57Co, ηd = (3.19
± 0.03) % for 58Co, ηd = (1.83 ± 0.01) % for 22Na, and ηd = (1.53 ± 0.02) % for 26Al.
The efficiency decreases as the peak energy increases, as expected. High-energy incident
gamma-ray photons can pass through the whole detector without interacting. Further-
more, conversely to low-energy photons, they may deposit only a fraction of their energy
in the detector, not contributing to the peak efficiency, which incorporates only those
gamma-ray photons that deposit all their energy by interacting one or more times in the
detector. The low values obtained for the detection efficiency also take into account that
not all the gamma-rays emitted by the source are directed toward the detector.



Figure 3.18: Results of the detection efficiency simulation of the 57Co line at 122.06 keV, the 58Co line
at 810.76 keV, the 22Na line at 1274.54 keV, and the 26Al line at 1808.65 keV. The blue histograms show
the distribution of the efficiency obtained by running 100 times the decay simulation. The mean values
are shown by the vertical red line and the shaded red bars represent the associated uncertainties.
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Figure 3.19: Estimated values for the 22Na/26Al activity ratio of H (red curve) and L (green curve)
chondrites, with uncertainties represented by the shaded colored areas, and measured values for H (red),
L (green), and LL (magenta) chondrites felt within the last five solar cycles [97–126]. The uncertainty as-
sociated with each measured value is represented by the vertical bars. The black dot shows the 22Na/26Al
activity ratio calculated for the Cavezzo meteorite.

3.5 The 22Na⁄26Al ratio as a proxy of decadal GCR variations

Due to the half-live of 22Na of about 2.6 y, the activity of such radionuclide reflects the
decadal GCR flux variation due to solar activity. In stony meteorites, 22Na and 26Al are
produced by the same target elements (see Table 3.1) through spallation. Therefore, the
ratio between these GCR-induced activities is independent of the size of the meteoroid
and the depth. Moreover, being the 26Al activity insensitive to decadal variations of the
GCR flux, due to its half-life of 717 ky, the 22Na/26Al activity ratio can be used as a
direct indicator of the latter. By analysing this ratio in stony meteorites felt during the
last five Solar Cycles (from 19 to 24), it has been found that GCR intensity decreased by
nearly 20% from solar minima to solar maxima.

The expected values for the 22Na/26Al activity ratio can be calculated through the SN
series by applying the opposite oscillation of the SN to the mean value of the ratio. Given
the reversed SN series:

SNrev[i] = max(SN)− SN [i] (3.7)
where i ranges from 1 to the length of the SN series, the expected 22Na/26Al activity ratio
can be estimated as follows: 22Na

26Al

[n] =
22Na

26Al

 · S[n]
S

(3.8)

where:

S[n] =
n∑

i=1
SNrev[i]e−λ(tn−ti) (3.9)



is a support series, which depends on the decay constant λ of 22Na, S is the mean value
of the latter, and their ratio is multiplied for the mean 22Na/26Al activity ratio expected
for the chondrite of interest.

Figure 3.19 shows the 22Na/26Al activity ratio expected for H (red curve) and L (green
curve) chondrites, together with measured values of several H (red), L (green), and LL
(magenta) chondrites, with relative uncertainties [97–126]. In the bottom panel, the SN
[40] time series is shown, indicating a phase difference of about two years between the
sunspot minimum and the 22Na/26Al ratio peak. This delay is due to the fact that the
activity of a radionuclide is influenced by the GCR flux of the previous 2-3 half-lives.

The high 22Na/26Al ratio measured in the Cavezzo meteorite, equal to 1.69 ± 0.03
(black dot in Fig. 3.19) reflects the low activity of the Sun around 2018-2020 and is
consistent with the expected value for L chondrites.

3.6 Conclusions

Cavezzo is the first meteorite recovered by the Italian PRISMA all-sky camera network,
felt on January 1st, 2020, in Northern Italy and classified as an L5 anomalous chondrite.
The high efficiency and selectivity of the gamma-ray spectrometer used to measure the
gamma activity of the Cavezzo meteorite made it possible to reveal also numerous cos-
mogenic radionuclides with half-lives down to a few days, thus confirming the recent fall
of the sample.

The faint activities of 44Ti and 60Co have been measured thanks to the coincidence
optimization between the HPGe and the NaI(Tl) detectors. The optimization of the
coincidence window made it possible to almost completely remove the interfering signal
due to the naturally occurring 214Bi, thus enabling the estimation of a 44Ti counting rate
of (4.4 ± 0.8) cpd. With a similar approach, the background level has been reduced,
thus allowing the detection of the 1173 and 1332 keV peaks of 60Co, which normalized
counts turned out to be equal to (1.52 ± 0.36) cpd and (1.54 ± 0.44) cpd, respectively. In
general, this optimization technique can be used whenever the coincidence between any
pair of events is useful to detect the presence of a given radionuclide.

The detection efficiency as a function of the energy was estimated using Monte Carlo
simulations performed with the Geant4 toolkit. The equivalent DL thickness was esti-
mated by simulating the activity of three different standards. The comparison between
measured and simulated counts, obtained by varying the DL thickness value from 0.7 mm
(nominal value) up to 10 mm, made it possible to obtain an estimate of this parameter
equal to (3.29 ± 0.06) mm.

The measurement of the Dhajala meteorite (H3/4 chondrite fell in 1976 in India) was
simulated to validate the estimated DL value and to verify the correct modeling of the
sample’s self-absorption. The overall agreement between the measured and simulated
counts for the main peaks of 26Al provided validation of the simulation.

The detection efficiency as a function of the energy has been evaluated by performing
Monte Carlo simulations of the Cavezzo measurement with the Geant4 toolkit.

Finally, the 22Na/26Al ratio has been estimated and compared to the expected value.
The high value, equal to 1.69 ± 0.03, reflects the low activity of the Sun during the
beginning of 2020 and is consistent with the expected value for L chondrites.



Chapter 4

Cosmogenic radioisotopes in Bennu
asteroid (OSIRIS-REx mission)

Asteroids are geologic remnants from the early Solar System that can help answer the most
relevant question in planetary science: which are the sources of Earth’s organic materials
and water, which may have influenced the origin and evolution of life? Understanding
whether these materials were already present on Earth during its early planetary formation
or whether they were delivered there at a later stage is also a matter of great interest.

Answering these questions is the main purpose of NASA’s Origins, Spectral Interpre-
tation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission.
The spacecraft was launched on September 2016 and reached its target asteroid (101955)
Bennu two years later. In October 2020, it collected several grams of surface material,
which will be returned to Earth in late 2023. Bennu was discovered by the Lincoln
Near-Earth Asteroid Research (LINEAR) during a near-Earth asteroids (NEA) survey on
September 11th, 1999. It is a B-type asteroid, a carbonaceous asteroid characterized by
a blue spectral appearance, probably formed at least 700 million years ago from a much
larger, carbon-rich asteroid in the Main Asteroid Belt. It is also classified as a near-Earth
object (NEO), specifically an Apollo asteroid, and considered a potentially hazardous
object (PHO), as it makes close approaches to Earth every six years. The carbonaceous
asteroids are considered to be minimally altered since the formation of the Solar System
and to preserve material from the early Solar System rich in volatile compounds and
organic molecules. The availability of carbonaceous material, representing the basis of
organic molecules necessary for life, was a determining factor that led to the choice of the
asteroid Bennu as the target of the OSIRIS-REx mission.

The Monte dei Cappuccini Underground Laboratory in Torino has been chosen by
NASA to carry out the radioactivity measurement of the sample, with the aim of detecting
the cosmogenic radionuclides present in the extraterrestrial material and determining the
cosmic-ray exposure age of the latter by comparing the measured activity of 26Al with the
expected saturation trend. With the Cosmogeophysic group of the University of Torino,
we estimated the production rates of 26Al and 22Na, expected to be present in the sample,
and determined the counting error as a function of the measurement time by Geant4-
based simulations. To estimate the counting error, the dead layer thickness of the HPGe
detector that will be used for the measurement has been estimated, as well as the gamma
detection efficiency. Moreover, a cylindrical container will host the specimen during the
measurement, and the best shape of the latter has been determined as a function of the
expected sample mass. The ultimate purpose of such preliminary analyses is to define
the optimal conditions necessary to minimize the counting error and perform the most
precise measurement possible.
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4.1 The OSIRIS-REx mission

The primary goal of the OSIRIS-REx1 mission is the collection of pristine carbonaceous
regolith from the asteroid (101955) Bennu. As carbonaceous asteroids like Bennu are
believed to preserve material from the early Solar System, in-depth analysis conducted on
the sample will help understand what role primitive asteroids played in both the origin of
life on Earth and in the formation of planets [127]. In Fig. 4.1, a mosaic image of asteroid
Bennu composed of 12 PolyCam images collected by the OSIRIS-REx spacecraft from a
range of 15 miles is shown2.

The OSIRIS-REx spacecraft was launched on September 8th, 2016, on an outbound-
cruise trajectory that resulted in a rendezvous with Bennu in November 2018. Several
instruments on the spacecraft allowed for measuring the physical, geological, and chemical
properties of Bennu, assessing its resource potential, and refining estimates of its proba-
bility of impacting the Earth [128]. These data, providing an extensive global data set of
Bennu, have been used to find a suitable sampling site.

Figure 4.1: Mosaic image of the asteroid Bennu composed of 12 PolyCam images collected by the
OSIRIS-REx spacecraft from a range of 15 miles. Picture taken from the NASA website.

On October 20th, 2020, the spacecraft left orbit and descended towards the surface of
Bennu for sample collection [129], storing (250 ± 101) grams of material with its Touch
And Go Sample Acquisition Mechanism (TAGSAM) [130], consisting of a circular sample
collection device connected to the spacecraft by means of an articulated arm that can
be extended for several meters. TAGSAM had penetrated 48.8 cm into the subsurface,
collecting much more sample mass than the mission’s requirement of 60 g [127, 131].

The spacecraft left the asteroid in 2021 and will return the sample to the Utah Test
and Training Range (UTTR) on September 2023, whose gamma activity will be measured
at the Monte dei Cappuccini Underground Laboratory in Torino.

The following sections discuss the experimental setup that will be used to measure
the gamma activity of the sample, as well as the procedure adopted for estimating the
precision in determining the activity of some of the radionuclides expected to be present
in the extraterrestrial sample.

1https://www.nasa.gov/OSIRIS-REx
2Picture taken from the NASA website (https://www.nasa.gov/image-feature/goddard/2018/

OSIRIS-REx-debuts-new-bennu-images)

https://www.nasa.gov/OSIRIS-REx
https://www.nasa.gov/image-feature/goddard/2018/OSIRIS-REx-debuts-new-bennu-images
https://www.nasa.gov/image-feature/goddard/2018/OSIRIS-REx-debuts-new-bennu-images
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4.2 Experimental apparatus: HPGe-NaI(Tl) (GEM150)

The Monte dei Cappuccini underground Laboratory hosts two HPGe-NaI(Tl) spectrom-
eters: the GEM90, described in Section 3.2.1, and the GEM150, which schematic repre-
sentation is shown in Fig. 4.2. The latter is the most performing one and consists of a
p-type closed-ended coaxial HPGe crystal operating in coincidence with an umbrella of
NaI(Tl) scintillator. It can hold samples up to ∼ 1.5 kg of mass.

The HPGe detector has a mass of ∼ 3 kg, a volume of 570 cm3, a diameter of 91 mm,
and is 88.4 mm in height. For the 1332.5 keV 60Co gamma-rays, it has a relative efficiency
of ∼150%, a resolution (FWHM) of 1.85 keV, and a peak-to-Compton ratio of 104.

The NaI(Tl) scintillator has a detecting mass of 86 kg, a total volume of 24000 cm3,
and a resolution at 662 keV (gamma-ray of 137Cs) equal to 10%. It consists of an annular
ring and a cylindrical plug to seal the cavity from above. The ring has a mass of 81 kg, is
300 mm high, has a diameter of 335 mm, and has a cavity of 13.5 cm in which the HPGe
is located. The cylindrical plug has a mass of 5 kg, is 100 mm high, and is 125 mm in
diameter.

The NaI annulus is coupled with six PMTs placed on its upper surface, while the
cylindrical plug is equipped with only one PMT. The system is provided with a nitrogen
flushing system to minimize the contribution of the ambient radon and its decay products,
as well as to prevent humidity and avoid condensation.

A passive Pb-Cd-Cu shield (200-1-50 mm in thickness, respectively) surrounds the
spectrometer to further reduce the incoming radiation from the surrounding environment.
The dewar, in thermal contact with the detector, contains up to 60 liters of liquid N2.

Figure 4.2: Schematic representation of the GEM150 detector.



Standard Energy [keV] cpm

26Al

1129.67 0.53 ± 0.01
1808.65 12.9 ± 0.02

1808.65 - 511∗ 0.32 ± 0.01
2938.32 0.073 ± 0.001

60Co
1173.23 1924 ± 1
1332.49 1779 ± 1
2505.69 150.7 ± 0.4

Table 4.1: Results of the measurements of the 26Al and 60Co standards on GEM150. The counts per
minute (cpm) of each considered peak are shown with their uncertainties. The results on single-escape
peaks of the main lines of 26Al are also reported.

4.2.1 Dead layer thickness estimation

As discussed in Section 3.4.1, since the actual thickness of the DL cannot be directly
measured, its value can be inferred by comparing the measurement of standards with
simulations. Table 4.1 summarizes the results of the measurements of the 26Al and 60Co
standards performed with the GEM150 detector. These measurements have been simu-
lated by increasing the DL thickness from its nominal value (0.7 mm) up to 10 mm for
the 26Al standard and 4.9 mm for the 60Co standard, with a step of 0.3 mm.

The results of this procedure are shown in Figs. 4.3 and 4.4, for 26Al and 60Co,
respectively. For each peak, the DL thickness was estimated as the intersection of the
simulated values (red curve) with the experimental results (black horizontal line). The red
lines plot the 2nd-degree polynomial fit of the difference between measured and simulated
counts as a function of the DL thickness, while the red bands mark the 68% confidence
intervals of each fit. The vertical dashed black lines indicate the intersection intervals
with the experimental result, represented by the horizontal black line.

Figure 4.5 shows the final estimate of the GEM150 DL thickness (red horizontal line),
equal to (2.24 ± 0.05) mm, obtained as the weighted mean of the DL values estimated with
the simulation performed over the 26Al (blue) and 60Co (green) standards. The estimated
DL was then used to simulate the measurement of the Almahata Sitta meteorite, an
achondrite belonging to the ureilite group with anomalous properties fallen in 2008 in
Sudan, which was counted at the Monte dei Cappuccini underground Laboratory [132].
The measured fragment is the largest one and is classified as fragment n°15. It has a mass
of 75.536 g, a density of approximately 3.11 g cm−3, and a roughly semi-ellipsoidal shape.
Its composition was obtained from Ref.[133].

The Almahata Sitta spectrum was simulated 50 times. Table 4.2 shows the comparison
between measured and simulated counts of the 26Al and 22Na main peaks (including full-
energy and sum peaks), obtained as the mean value among the 50 simulations, The
uncertainty is defined as the standard deviation of the 50 simulated peak counts. A good
agreement between measured and simulated cpd is overall observed, thus validating the
estimated detector DL thickness.
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Figure 4.3: Difference (∆) between 26Al standard simulated and measured counts as a function of the
DL thickness of the Ge crystal. The red lines plot the 2nd-degree polynomial fit, and the red bands mark
the 68% confidence intervals of the fit. The vertical dashed black lines indicate the intersection intervals
with ∆ = 0, represented by the horizontal black line.

Figure 4.4: Difference (∆) between 60Co standard simulated and measured counts as a function of the
DL thickness of the Ge crystal. The red lines plot the 2nd-degree polynomial fit, and the red bands mark
the 68% confidence intervals of the fit. The vertical dashed black lines indicate the intersection intervals
with ∆ = 0, represented by the horizontal black line.



Figure 4.5: Dead layer estimates with associated uncertainties for 26Al and 60Co standards in blue and
green, respectively. The red horizontal line is the weighted mean value, and the shaded red bar represents
its uncertainty.

Nuclide Energy measured cpd simulated cpd

26Al
1129.67 5.8 ± 1.4 5.7 ± 0.4
1808.65 144.0 ± 1.4 143.6 ± 1.6

1808.65 + 511 24.3 ± 0.7 22.9 ± 0.8
22Na 1274.54 273.6 ± 1.4 277 ± 2

1274.54 + 511 56.2 ± 1.4 53 ± 1

Table 4.2: Comparison between measured and simulated cpd of 26Al and 22Na full-energy and sum
peaks with their uncertainties for the Almahata Sitta meteorite.
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4.3 Study of the sample container

During its transport from the USA to Italy, the sample will be sealed in a gas-tight
nitrogen-filled container with a pressure plate to keep it from moving during handling.
An external vessel will also be used to further protect the latter.

Such a container will host the sample for its gamma counting and analyses have been
carried out to define its optimal geometry. Due to the symmetry of the HPGe detector,
a cylindrical shape represents the best to be measured. Figure 4.6 shows a section of the
projected container, where the radioactive sample is shown in grey. The blue and green
parts of the figure are made in Teflon and will be in direct contact with the specimen. In
particular, the green lid will be inserted to a depth determined by the amount of sample
allocated for counting. A system comprised of a spring and an upper block has been
designed to provide force to keep the lid in contact with the sample. The height of the
spring block will be selected based on the sample volume. Because of the measurement
cavity of the HPGe-NaI(Tl) detector, the maximum sample container external diameter
allowed is of about 8 cm.

The best dimension of such a container has been estimated through Geant4-based
simulations. Figure 4.7 shows a schematic representation of the simulated cylindrical
container that will host the sample during the measurement. The darker and lighter blue
areas represent the sample and the container, respectively.

The variables in Fig. 4.7 represent:

• the internal diameter D1;

• the external diameter D2 = D1 + 2 mm;

• the internal high L1, that is the maximum high reached by the sample material once
it is completely enclosed in the sealed Teflon container, estimated as:

L1 = m

ρπ(D1
2 )2 (4.1)

where m is the sample mass and ρ the bulk density;

• L2 = L1 + 2 mm.

In the simulations, a typical composition of a CM chondrite has been used, shown
in Table 4.3 [134]. Elements with a weight percentage (wt%) lower than 0.01 have been
neglected. The average bulk density ρ of the sample was estimated to be 1.19 kg m−3

[135].
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Figure 4.8: Snapshot of the Geant4 simulation of Bennu’s sample activity. The cylindrical container is
placed over the end cap window of the HPGe detector.

4.4 Detection efficiency estimate

To deduce the activity of 26Al and 22Na in Bennu’s sample it is necessary to estimate
the detection efficiency ηd with the same approach described in Section 3.4.2. For both
radionuclides, N = 106 decays have been simulated with the Geant4 toolkit. The detection
efficiency is finally estimated as the ratio between the measured peak counts and the
gamma emitted within the N decays simulated. Figure 4.8 shows a snapshot of the
simulation, with the cylindrical sample container placed over the end cap window of the
HPGe detector. Because of the high uncertainty regarding the collected mass, several
simulations have been performed by varying both the sample mass and the cylindrical
contained diameter to define the best configuration (higher detection efficiency) among
all possible cases.

Figure 4.9 shows an example of the simulated activity of 26Al (top panel) and 22Na
(bottom panel) for a sample mass of 20 g distributed in a cylindrical container with D1
= 7 cm. Full energy, single escape, double escape, and sum peaks are present.

Figures 4.10 and 4.11 show the estimated detection efficiency for the 1808.65 keV peak
of 26Al and the 1274.5 keV peak of 22Na, respectively, as a function of the D1 diameter
and sample mass. The detection efficiency is overall higher for the 22Na peak with respect
to the 26Al one, in accordance with the known fact that peaks with lower energies are
more efficiently detected. Some mass-diameter combinations are not permitted since the
corresponding container high L2 is not allowed due to the detector cavity dimension. In
both cases is possible to notice that the efficiency reaches a maximum value around 70
mm of diameter for each mass. A plateau-like distribution is observed for higher diameter
values. Therefore, this value represents the best choice for the diameter D1 since it leads
to the maximum detection efficiency for each possible value of the sample mass within
the considered range.



Figure 4.9: Example of the simulation of the 26Al (top panel) and 22Na (bottom panel) activity. Full
energy, single escape, double escape, and sum peaks are highlighted.
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Figure 4.10: Gamma efficiency of the 1808.65 keV peak of 26Al as a function of the container diameter
and sample mass. Some mass-diameter combinations are not allowed due to the detector cavity dimen-
sions.

Figure 4.11: Gamma efficiency of the 1274.5 keV peak of 22Na as a function of the container diameter and
sample mass. Some mass-diameter combinations are not allowed due to the detector cavity dimensions.



4.5 CR flux parametrization

As already discussed in Chapter 3, the production of cosmogenic nuclides in an asteroid
depends on the body size, its bulk chemical composition, and the SCR and GCR flux
intensity.

SCR particles are emitted during energetic solar events like flares and CMEs, and
consist of 98% protons and 2% alpha particles [136] and a small number of heavier nuclei.

The GCR flux consists of 87% protons, 12% alpha particles, and 1% heavier ions which
are injected into the interstellar medium by supernova explosions and reach relativistic
speed. The GCR energy spectrum is modulated by the interaction of GCR particles with
the solar magnetic field, and this modulation is reflected in the production of cosmogenic
radionuclides.

Suitable mathematical parameterizations of both the SCR and GCR spectra exist.
For SCR particles, the differential flux density as a function of the rigidity ϕ is usually
considered, which for SCR protons is given by:

δJp,SCR

δϕ
= J0,SCR(4π, Ep > 10MeV )e− ϕ

ϕ0 (4.2)

where Jp,SCR is expressed in (protons MV)/(cm2 s), J0,SCR(4π,Ep > 10MeV) is the 4π-
integral flux density of protons with energies Ep above 10 MeV, expressed in protons/(cm2

s), and ϕ0 is the characteristic rigidity in MV units [88]. The rigidity ϕ of a particle is
defined as the relativistic momentum of the latter over its charge.

The energy-differential spectrum of GCR protons at 1 AU (∼ 1.5×108 km) can be
parametrized as:

δJGCR

δE
= JLIS

E(E + 2mc2)
(E + M)(E + M + 2mc2) (4.3)

where JGCR is expressed in protons/(m2 s sr), JLIS is a term representing the local inter-
stellar spectrum (LIS), E is the kinetic energy per nucleon, m is the particle mass, and
M is the solar modulation parameter expressed in MeV units, described in the follow-
ing section. Equation 4.3, known as force-field approximation, is obtained by assuming
azimuthal and spherical symmetry.

There are many expressions for JLIS, mainly differing at low energies. The parame-
terization used in most of the studies on cosmogenic radionuclides is the one introduced
by Castagnoli and Lal [137], which is:

JLIS,CL = 9.9× 108 · (E + 780 · e−2.5×10−4E)−2.65 (4.4)
where E is expressed in MeV per nucleon while JLIS,CL in protons/(m2 sr s MeV) per

nucleon.
Another LIS parametrization is the one discussed by Usoskin et.al. [138], based on an

earlier approach by Burger et.al. [139], equal to:

JLIS,BG = 1.9× 104 · P (E)−2.78

1 + 0.4866P (E)−2.51 (4.5)

where JLIS,BG is expressed in particles/(m2 sr s GeV) per nucleon, E in GeV per nucleon,
and where P (E) is the particle rigidity, given by:
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Figure 4.12: Comparison between the sunspot number (top panel) and the rigidity ϕ (bottom panel)
monthly series. A direct correlation between the two series is observed.

P (E) =
√

E(E + 2mc2) (4.6)
Primary Galactic alpha particles must be considered separately from primary Galactic

protons since they are modulated in different ways. A parametrization for the GCR alpha
particles was introduced by Leya et.al.[140]:

δJα

δE
= 5.5× 107 · Ek(E + 2mαc2)

(E + 700)(E + 2mαc2 + 700)(E + 312500E−2.5 + 700)(1.65+k) (4.7)

where Jα is expressed in particles/(m2 sr s MeV) per nucleon units, E is the energy
in Mev per nucleon, and mα is the mass of the alpha particle (helium nucleus). The
adimensional parameter k in equation 4.7 depends on the modulation parameter for alpha
particles Mα, and is expressed as:

k = 3.572× 10−3 ·Mα − 0.1323 (4.8)

The modulation parameter M does not have a physical meaning, but it is an ad-
hoc parameter used to represent the solar influence on the particle energy spectrum. It
can be interpreted as the mean adiabatic energy loss for a galactic particle entering the
heliosphere, meaning that such a parameter is anticorrelated with the Galactic particle
flux while strongly correlated with solar activity indices. It is calculated as:

M = ϕ
eZ

A
(4.9)

where ϕ is the rigidity, e is the elementary charge, and Z and A are the atomic number
and atomic mass, respectively. As shown in Fig. 4.12, small values of the rigidity ϕ, and
therefore of the modulation parameter, are typical of solar minima, whereas larger values
refer to solar maxima. The rigidity values shown in Fig. 4.12 have been estimated by
Usoskin et.al. [138, 141] using the JLIS,BG parametrization [139].

Figure 4.13 shows the anticorrelation between Castagnoli’s parametrization of the
proton flux and the modulation parameter. It is important to notice that the flux does
not depend on the M parameter when high energies are involved, as high-energy particles
are not significantly affected by solar activity.



Figure 4.13: Castagnoli’s parametrization of the energy-differential spectrum of GCR protons for dif-
ferent values of the modulation parameter M .

4.5.1 Cosmogenic radionuclides production rates: Physical model

As already discussed in Chapter 3, the production of cosmogenic isotopes in celestial
bodies is due to their exposure to both SCR and GCR. In physical models of cosmogenic
nuclide production, the production rate Pi,x of a cosmogenic isotope i at a given depth
due to the interaction of the component x of the CR flux with the asteroid, is calculated
as the sum of the production rates by SCR and GCR:

Pi,x = Pi,SCR,x + Pi,GCR,x (4.10)
More in detail, the total production of the isotope i is given by the sum of all the

significant components of the flux, including both primary protons and alphas, as well as
secondary protons and neutrons produced in the asteroid.

Because of their low energies, the maximum relevant depth for SCR interactions is of
the order of magnitude of 10 g cm−2. Therefore, the SCR-related radionuclide production
is limited to the outer surface of the irradiated object. The production rate of a cosmogenic
nuclide i by irradiation with a SCR proton spectrum can be estimated as follows:

Pi,SCR,p(R, d, cs, cb, J0,SCR, ϕ0) = NA

∑
j

cs,j

Aj

∫
σi,j,p(Ep)δJp,SCR

δEp

(Ep, R, d, cb, J0,SCR, ϕ0)dEp

(4.11)
where NA is the Avogadro’s number, R is the asteroid radius, d is the depth, cs is the

chemical abundances vector of target elements, cb is the bulk chemical composition, Aj

is the mass number of the target element j, σi,j,p is the cross-section of the production
of isotope i by the interaction between the target element j and the SCR protons with
energy Ep, and J0,SCR and ϕ0 are the parameters already introduced in equation 4.2.

Equation 4.11 is related to the physical model for the production rates discussed in
Ref.[142], and it can be considered as the theoretical equation describing the actual physics
of the phenomenon. The main complexity in resolving this equation lies in the definition
of both the cross-section σi,j,p and the flux dependence on the depth, for which many
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empirical and semi-empirical models have been proposed by different authors [see, e.g.,
Refs. 143, 144].

In analogy to equation 4.11, the production rate of a cosmogenic nuclide i by irradiation
with a GCR component x is given by:

Pi,GCR,x(R, d, cs, cb, M) = NA

∑
j

cs,j

Aj

∫
σi,j,x(Ex)δJx,GCR

δEx

(Ex, R, d, cb, M)dEx (4.12)

This method calculates the depth and size-dependent differential spectra δJx,GCR/δEx

with Monte Carlo codes such as HETC within the HERMES code system [145], or LAHET
[146] (both originating from HET [147]) for high-energy protons and neutrons, coupled
with MORSE [148] or MCNP [149] for low-energy neutrons.

The GCR production dominates at high depth, since the maximum relevant depth for
GCR interactions is of the order of magnitude of 100 g cm−2.

Due to Bennu’s CM chondrite-like composition, 26Al and 22Na are two among the
radionuclides expected to be present.

The variation with time of the number of radioactive atoms at a given depth in the
asteroid can be expressed as:

dN

dt
= Pi(t)− A(t) = Pi(t)− λN(t) (4.13)

where Pi is the radionuclide production rate, obtained as the sum of the Pi,x for all
the components x of the CR flux, and A is the element’s activity given by the product of
the decay constant λ and the number of radionuclides.

Due to the long half-life of 26Al, the production rate of this radionuclide can be con-
sidered constant. In this way, equation 4.13 can be solved, leading to:

A(t) = P0(1− e−λt) = P0(1− e− t
τ ) (4.14)

where P0 is the production rate at the time t0=0 when the exposure to CRs started
and at which N(t0)=0. By assuming the secular equilibrium, that is, the balance between
production and destruction of the radioisotope (λ·t ∼ ∞), the activity of 26Al reaches a
value equal to P0 and, with the model previously described, it is also possible to estimate
the activity of 22Na through the 22Na/26Al ratio for the reasons already explained in
section 3.5.

For the asteroid Bennu, the mean 22Na/26Al ratio of equation 3.8 was calculated with
the model described in Ref.[143], obtaining a value of 1.7. The 22Na/26Al ratio has been
reconstructed for the past years, and a value of 2.1 was estimated for October 2020, the
period in which the sample acquisition took place.

Since TAGSAM had penetrated 48.8 cm underground for sample collection, the total
activity of both radionuclides was calculated down to 50 cm in depth. In Fig. 4.14, the
production rate of 26Al (red curve, left panel) and 22Na (red curve, right panel) estimated
with the physical model, is shown, obtained as the sum of the GCR (blue curves) and
SCR (green curves) productions, as described in equation 4.10.

In summary, with the physical model, it was possible to calculate the 26Al activity
by assuming the secular equilibrium, while the 22Na production rate has been indirectly
estimated by using the expected 22Na/26Al ratio.

The following section discusses an alternative semi-empirical method for which the
production rates of 26Al and 22Na by GCR are independently estimated using Geant4-
based simulations. Finally, the total production rates are obtained by combining the
results of both the physical and the semi-empirical methods.



Figure 4.14: Total production rates (red curves) of 26Al (left panel) and 22Na (right panel) obtained
as the sum of GCR (blue curves) and SCR (green curves) productions.

4.5.2 Cosmogenic radionuclides production rates: Geant4 model

The Geant4 toolkit [92–94] has been recently successfully employed in the field of cosmo-
genic radionuclide production [see, e.g., Refs. 140, 150]. Here, the 26Al and 22Na activities
have been estimated by simulating the GCR flux irradiating Bennu’s surface. Bennu has
been modeled as a homogeneous sphere with the typical composition of a CM chondrite
described in Table 4.3. An isotropic GCR flux has been implemented, and both protons
and alpha particles have been considered thanks to their parametrizations (see equations
4.3, 4.4 and 4.7). The isotropic GCR flux on Bennu’s surface was obtained by assuming
a cosine-law angular emission and considering the CRs emitting source as a sphere with
radius Rsource (ideally equal to infinity) concentric to the asteroid.

With the hypothesis of secular equilibrium, by simulating a certain amount of flux
time, the radionuclide activity is directly determined since the number of radionuclides
generated is equal to the number of decays in the same time interval. As discussed
in Refs.[151, 152], once there are enough simulated particles such that the number of
radionuclides produced is directly proportional to the number of particles generated, the
radioactivity As obtained within the simulated time interval can be converted in the
theoretical activity At with the following proportion:

At = As
∆Tt

∆Ts

(4.15)

where ∆Ts and ∆Tt are related to the number of generated particles and represent
the simulated and theoretical time intervals, respectively.

The number of particles per second Nx to simulate was determined by integrating the
flux with the cosine-law over the energies, the source surface S, half the solid angle ω, and
the angle θ between the radial direction and the actual direction of the emitted particle.
Since it is not needful to simulate particles not hitting the asteroid, it is convenient to
limit the emission direction by implementing a maximum value of θ. In this way, Nx can
be calculated as:
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Nuclide M (MeV)
∫ ∞

0 JGCR,pdE Np
∫ ∞

0 JGCR,αdE Nα

26Al 660 1.9 × 103 4.4 × 108 2.3 × 102 5.2 × 108
22Na 309 3.9 × 103 8.9 × 109 3.8 × 103 8.7 × 108

Table 4.4: Number of protons and α particles per second to be simulated, together with the estimated
modulation parameter M and the value of the integral of the corresponding GCR-flux parametrizations.

Nx =
∫ ∞

0

δJGCR,x

δE
dE

∫
S

dS
∫ 2π

0
dω

∫ θmax

0
cosθsinθdθ = 4πR2

sourcesin2θmax

∫ ∞

0

δJGCR,x

δE
dE

(4.16)
With the hypothesis of a spherical concentric source, Bennu’s radius RB can be ex-

pressed as:

RB = Rsource · sinθmax (4.17)
Therefore, Nx can be expressed as:

Nx = 4πR2
B

∫ ∞

0

δJGCR,x

δE
dE (4.18)

Since the activity of each radionuclide is affected by the CR flux for at least the
past three half-lives, it is incorrect to consider the instantaneous GCR flux while solving
equation 4.18. Therefore, an average value of the GCR flux in the past should be con-
sidered. For this purpose, a suitable half-life-dependent modulation parameter has been
determined for each radionuclide as follows:

M [n] =
∑n

i=1 M [i] · e−λ(tn−ti)∑n
i=1 e−λ(tn−ti)

(4.19)

where n is the index representing the month of sampling (October 2020). Following
equation 4.19, the modulation parameter for 22Na has been estimated, being equal to 309
MeV. Regarding 26Al, because of its very long half-life, the modulation parameter series
available (see Fig. 4.12, bottom panel) is too short for the estimate described in equation
4.19, and the value of 660 MeV, estimated in Ref.[140], was considered.

According to Ref.[129], a value of 241 meters has been considered for RB. Finally,
the number of protons Np and alpha particles Nα per second to be simulated is shown in
Table 4.4, together with the estimated value for the integral of the corresponding GCR
flux.

By comparing the results of the two approaches adopted for GCR-induced radioactiv-
ity, similar results are observed [153] and, since the Geant4-based model also accounts for
the secondary particles produced in the extraterrestrial body, the latter has been chosen
and summed to the physical-based model estimate of the SCR flux to calculate the total
flux. Therefore, by combining the production due to the SCR-physical model with the
one obtained from the semi-empirical (simulated) GCR flux, the average activity of 26Al
and 22Na up to 50 cm of depth are equal to:

26Al activity = 33.3dpm

kg
(4.20)

22Na activity = 54.5dpm

kg
(4.21)



For further detail about the adopted procedure, and results regarding other radionu-
clides expected to be present in Bennu’s sample, see Ref.[153].

4.6 Counting error as a function of measurement time

Once the gamma detection efficiency and the expected activity of the radionuclides of
interest are estimated, the counting error as a function of the measurement time can be
calculated. Given the estimated and measured background activity, the latter obtained
by performing gamma activity measurement with no sample on the top of the Ge crystal,
the cpm of each of the 26Al and 22Na emitted peaks as a function of the measurement
time Tm are calculated by simulations of the expected spectrum. This procedure involves
the following steps:

• the background counts are expressed in cpm by scaling them for the measurement
time (153.6 days);

• the 26Al (or 22Na) peak of interest is added to the background counts, knowing that
the expected cpm is given by:

radionuclide activity · sample mass · gamma efficiency (4.22)
• the simulated spectrum is obtained by estimating the counts for each channel equal

to a random value taken from a Poissonian distribution with a mean value equal to:
cpm · Tm (4.23)

Examples of the simulated normal spectra after 200 days of counting, and for a sample
mass of 20 g placed in a contained 7 cm in diameter, are shown in Fig. 4.15. The panel on
top shows the comparison between the measured background (black) and the simulated
(red) normal spectra, the latter including the expected 1808.65 keV peak of 26Al. The
bottom panel shows the same comparison for the 1274.5 keV peak of 22Na.

Peak counts are finally estimated for each of the 1000 spectrum simulations over a
wide measurement time range (from 10 to 200 days). Finally, the counting error, defined
as the relative percentage error, is calculated for each simulation as follows:

relerr(%) = ∆cnts

cnts
· 100 (4.24)

The final counting error corresponds to the mean value over the 1000 simulations and
the associated uncertainty is represented by the standard deviation.

Figure 4.16 shows the counting error as a function of the days of counting and the
sample mass for the detection of the 1808.65 keV energy peak emitted by 26Al. Figure
4.17 shows the same results for the 1274.5 keV peak of 22Na. The dotted horizontal grey
line in both figures highlights the 1% relative error level. The greater the mass of the
sample, the shorter the measurement time required to reach this level.

As expected, the longer the sample is measured, the lowest the error in estimating
the radionuclide activity. Thanks to the higher gamma detection efficiency for 22Na, the
counting error is overall lower compared to 26Al.



CHAPTER 4. COSMOGENIC RADIOISOTOPES IN BENNU 95

Figure 4.15: Comparison between the measured background spectrum (black) and a simulated one
(red), the latter including the expected counts for the 1808.65 keV peak of 26Al (top panel) and the
1274.5 keV peak of 22Na (bottom panel).



Figure 4.16: Counting error as a function of the days of counting and the sample mass for the detection
of the 1808.65 keV peak emitted by 26Al. The horizontal grey dotted line highlights the 1% relative error
level.

Figure 4.17: Counting error as a function of the days of counting and the sample mass for the detection
of the 1274.5 keV peak emitted by 22Na. The horizontal grey dotted line highlights the 1% relative error
level.
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4.7 Conclusions

The gamma activity of the sample taken from the surface of the asteroid (101955) Bennu
will be measured at the Monte dei Cappuccini underground Laboratory in Torino with
a high-efficient HPGe-NaI(Tl) spectrometer. This measurement will allow the detection
of the cosmogenic radionuclides present in the extraterrestrial material and the determi-
nation of the cosmic-ray exposure age of the latter. A cylindrical container will host the
specimen during the measurement, the best shape of which was determined as a function
of the expected sample mass using Geant4-based simulations.

The spectrometer’s DL thickness was determined by simulating the activity of stan-
dards, and its estimated value is (2.24 ± 0.05) mm.

The detection efficiencies for the main peaks of 26Al and 22Na were estimated as
a function of the sample mass and the internal diameter of the cylindrical container.
The optimal internal diameter of the container is equal to 7 cm since for this value the
maximum gamma efficiency is obtained for each assumed value of the sample mass.

The production rates of 26Al and 22Na have been estimated by evaluating the total
CR flux with a combination of physical and semi-empirical methods.

Finally, the counting error as a function of the sample mass and measurement time
was estimated for the 1274.5 and 1808.65 keV peaks of 26Al and 22Na, respectively, by
simulations of the expected gamma spectrum. The lower the sample mass, the more
counting days are required to achieve a small counting error.

All the analyses described in this chapter have the ultimate goal of defining the optimal
conditions necessary to carry out the most precise measurement possible, a measurement
that will begin as soon as the sample will arrive at our Laboratory in 2023.



Chapter 5

Solar activity forecast

Forecasting solar activity is crucial nowadays to predict the impact of the Sun on both
Earth’s magnetosphere and terrestrial climate. Predicting upcoming solar cycles allows
anticipating adverse space weather effects on the Earth’s environment, as well as power
systems, satellites, and manned space missions, produced by coronal transients and trav-
eling interplanetary disturbances.

The mechanism behind the origin of the decadal solar cycle is related to an intrin-
sic magnetohydrodynamic (MHD) dynamo process sustained by complex interactions be-
tween the magnetic field in the solar convection zone and plasma flows [154]. This process
implies a decadal cyclic regeneration of the toroidal and poloidal components of the solar
magnetic field [155], also known as the Schwabe cycle, which is also responsible for the
modulation of the frequency of all eruptive phenomena that may directly impact plane-
tary magnetospheres. As a consequence of such a mechanism, sunspots originate in the
solar photosphere due to the buoyant emergence of toroidal flux tubes generated inside
the solar interior. Such temporary phenomena provide the most famous proxy of solar
activity.

Several predictions have been published in the literature using both physical-based
models and neural network approaches [156–178]. Because of the underlying complexity
of such a dynamo mechanism, the predictions offered by state-of-the-art machine learn-
ing algorithms represent valuable tools for understanding the cycle progression and its
forecasting. The latest advances in deep learning techniques provide new prediction mod-
els that allow forecasting the evolution of cosmogeophysical time series. Among them,
Bayesian deep learning is particularly compelling since it provides an improvement in
both uncertainty quantification and accuracy compared to classical techniques.

This chapter describes the forecast of the complete profile of Solar Cycle 25 obtained
by employing a deep learning Long Short-Term Memory (LSTM) model. A rigorous
uncertainty estimation is obtained by applying a Bayesian approach. Furthermore, two
different model validation techniques, namely the Train-Test split and the time series
k-fold cross-validation, have been implemented and compared.

The results are published in Ref.[179].

98
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5.1 Sunspots

Sunspots are temporary phenomena occurring on the solar photosphere, appearing as dark
spots differing from the surrounding area in terms of temperature and magnetic activity.
Although the details of sunspot formation are still under study, it is a well-known fact that
these phenomena originate from a distortion of the lines of force of the solar magnetic field
due to the Sun’s differential rotation. This distortion involves the generation of magnetic
flux tubes in the convective zone of the Sun that are projected across the photosphere
creating magnetic loops. As a consequence, bipolar sunspots are formed in two belts,
one in the northern and one in the southern hemisphere of the Sun, and their number is
correlated with the intensity of solar radiation. Spots of the same hemisphere have the
same polarity, which is opposite to that of those in the opposite hemisphere.

Sunspots initially appear in the form of tiny pores. Within a few days, they develop,
proliferate, widen, and merge together, giving rise to groups of spots, which generally
dissolve within about a month. Their characteristic darkening occurs due to the strong
magnetic field inhibiting convection in the photosphere. Another factor contributing to
this feature is that, although their temperature is between 3000 and 4500 K, their thermal
emissivity is much lower than the surrounding regions, which are even brighter due to their
highest temperature of the order of 5800 K. Therefore, they appear as dark spots. The
central part of a sunspot, corresponding to the darker and colder area, is called umbra,
while the surrounding area (penumbra) is lighted due to its higher temperature of ∼5000
K. The magnetic field reaches its maximum in the middle of the umbra, where the field
lines are usually normal to the surface, while moving towards the penumbra the magnetic
field’s lines are more tilted.

The location of sunspots is not random. At the beginning of each solar cycle, they
originate at mid-latitudes, around 30◦ in both the hemispheres, and, as the cycle proceeds,
they start appearing at lower latitudes, almost reaching the equatorial zone.

The sunspot latitude variation, described by the Spörer’s experimental law, and well-
represented by the butterfly diagram, lasts about 11 years and defines a solar cycle. The
maximum activity of the Sun occurs in the middle of each cycle. Moreover, sunspot
polarities reverse from one solar cycle to the following.

By far, the SN, originally defined by Wolf in the 19th century [180], is the most com-
monly high-resolution index employed to evaluate the variable solar activity over the last
centuries. It originates from a linear combination of telescope-aided visual counts of the
number of sunspots and the number of groups that they form on the visible disk of the
Sun.

Sunspots represent a unique proxy since they constitute the longest quantitative and
homogeneous global indicator of solar activity, having been recorded since 1610, even
though the construction of this series has been subject to periodic revisions since its
formulation.



Figure 5.1: Panel a shows the comparison between the original monthly sunspot number series (black
curve) and the series once the smoothing has been performed (blue curve). Panel b shows the same
comparison over the last three cycles, with relative uncertainties represented as shaded colored bands.

5.2 Data Analysis

5.2.1 Dataset: Sunspot number

The SN dataset is available from the World Data Center (WDC) - Sunspot Index and
Long-term Solar Observations (SILSO)1, Royal Observatory of Belgium, Brussels [40].
This archive is the most authoritative source of SN data, recently recalibrated and revi-
sioned [see Refs. 181, 182], presenting daily values since 1818, monthly means since 1749,
and annual means since 1700.

The revised series has been introduced since July 2015 and is now considered version
2.0 of the SN series, although major revisions are expected in the near future since the
corrections applied in v2.0 were somewhat crude and the counting of sunspot groups is
still a matter of discussion [183].

The SN time series used in this work has been obtained from the SILSO catalogue and
consists of 3273 monthly values from January 1749 to September 2021 (black curve in Fig.
5.1a). Besides the dominant decadal Schwabe cycle, the centennial modulation, known
as Gleissberg cycle, is also visible, including the Dalton minimum (around 1800) and the
Gleissberg one (around 1900). Following Wolf’s numbering scheme of solar cycles, the
1755-1766 cycle is traditionally considered as the 1st one, and all the others are numbered
in order.

1http://www.sidc.be/silso/

http://www.sidc.be/silso/
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5.2.2 Dataset pre-processing

Since the aim of this work is to forecast the next solar cycle and, more in detail, long-
term variations of solar activity (periods higher than 1 y), the monthly SN time series
has been smoothed using the adaptive filter proposed by Mann [184, 185], that results
to be particularly suitable for time series with non-stationary behaviour, among tradi-
tional smoothing methods. A Butterworth low-pass filter was applied in association with
boundary constraints designed to minimize edge effects, which are:

• minimum norm, which tends to minimize the amplitude of the smooth near the
boundaries;

• minimum slope, which tends to minimize the slope of the smooth near the bound-
aries;

• minimum roughness, which seeks the smoothest behaviour near the time series
boundaries by tending to minimize the second derivative of the smooth near the
boundaries.

The constraints among these three that minimize the mean square error (MSE), with
respect to the raw time series, can be chosen as being the most appropriate for the
particular time series and time interval being analysed. The final smoothing S(t) will be
a combination of the three smoothing of the time series T(t), obtained by individually
applying the three constraints previously introduced:

S(t) = w1S1(t) + w2S2(t) + w3S3(t) (5.1)
where the coefficients wi are defined in such a way that the quantity:∑

[S(t)− T (t)] (5.2)
is minimized, subject to the constraints:

3∑
i=1

wi = 1 , wi ∈ [0, 1] (5.3)

An open-source Matlab [186] algorithm2 has been employed for this purpose, which
applies a 10-point Butterworth Infinite Impulse Response (IIR) low-pass filter of specified
cutoff frequency, that was set equal to f0 =1/12 months−1. The rough half-width of the
smoothing window associated with the filter is ∆t=1/f0 = 12 months. The obtained
smoothed time series is shown in Fig. 5.1a (blue curve), and a comparison with the
original series over the last three cycles is shown in Fig. 5.1b, together with the relative
uncertainty bars.

The uncertainty of the smoothed series has been obtained by propagating the error of
the original time series, which is provided with an uncertainty value on each point, by a
Gaussian process regression bootstrapping, a Bayesian non-linear regression method [187,
188]. More in detail, an ensemble of 1000 surrogated time series is generated from the SN
monthly time series and then smoothed with the procedure previously described, and the
standard deviation of this ensemble with respect to the smoothed SN series is used as an
estimation of the uncertainty of the latter.

2http://www.meteo.psu.edu/holocene/public_html/smoothing08/

http://www.meteo.psu.edu/holocene/public_html/smoothing08/


Figure 5.2: (a) Comparison between the original time series (black curve), corresponding to the as-
cending phase of Solar Cycle 24, and ten of the 1000 surrogated time series generated with the gaussian
process regression bootstrapping (red curves). Panel b shows the same comparison after the smoothing
process is performed on each series. The black shaded bands represent data uncertainties.

Figure 5.2 shows an example of the surrogated time series generated with such a
non-linear method. Panel a shows the comparison between the original monthly series
(black curve), corresponding to the ascending phase of Solar Cycle 24, and ten of the
1000 surrogated time series (red curves), while panel b shows the same comparison after
performing the smoothing process on each series. The same ensemble will also be used to
propagate the uncertainty to the forecast on the next cycle (see Section 5.3.3).

5.2.3 Spectral analysis

Before predicting future values of the smoothed SN time series, a spectral analysis has been
performed by Continuous Wavelet Transform (CWT) [12, 36], to detect the deterministic
components of the record. As already introduced in Section 2.2, the CWT method gives
an evolutionary analysis of the series in the time-scale plane and allows to study non-
stationary features of the signal, such as changes in periodicity, isolated events, trends,
and intermittency (see Appendix A for more detail).

Figure 5.3 shows the monthly smoothed series (panel a) together with the relative
CWT power spectrum (panel b), where areas with a high (low) power are colored red
(blue). The black curves enclose regions with a confidence level greater than 99% against
the null hypothesis of a red-noise process, while the COI is represented by the white curve.
Figure 5.3c shows the Global Wavelet Spectrum (GWS) (black curve), obtained by time-
averaging the CWT spectrum over each period, and the corresponding significance levels
(red curve).

Most of the signal variance is described by the decadal modulation. The high power of
such a component, represented by the orange/red bar extended over the entire time range,
shows the well know period modulation, oscillating between about 8 and 12 y, resulting
in a large red band centered around 10-y of period.
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Figure 5.3: Continuous Wavelet power spectrum (panel b) of the SN smoothed time series (panel a) and
Global Wavelet Spectrum (panel c). The black curves in panel b enclose regions with a confidence level
greater than 99% against a red-noise process null hypothesis, while the COI, indicating regions influenced
by edge effects, is represented by the white curve.

A significant amount of spectral power is distributed around 1-y of period, as also
visible in Fig. 5.3c. The power of such component is lower around the Dalton and
Gleissberg minima and gets higher in correspondence with the Schwabe cycle maxima,
as visible in Fig. 5.3b. A less powerful component with a period in the range of 2-3 y is
present, although it is not revealed along the whole interval covered by the series. Because
of the limited length of the record, the Gleissberg centennial modulation is not detected
by the CWT analysis since it lies outside the COI (white curve in Fig. 5.3b).

The results of the CWT analysis are confirmed by the SSA of the series detrended by
the decadal cycle, revealing two interannual cycles with periods of about 1.2 y and 2.7 y,
significant at a 99% c.l.. This result was obtained by using a null hypothesis of red noise
(not shown).

The presence of such oscillations is not unexpected, since the large-scale magnetic field
of the Sun is known to undergo considerable variations on timescales much less than a
solar cycle but longer than a rotation period. In particular, the Sun’s dipole magnetic
moment and open magnetic flux are known to exhibit multiple peaks around frequencies
of 1 y−1. The generating cause of these fluctuations can be assessed to stochastic processes
caused by the periodic emergence of magnetic flux during the solar cycle with a decay time
of about 1 y [see, e.g., Ref. 189], which is determined by differential rotation, meridional
flow and supergranule diffusion [see also the comprehensive review of Ref. 190].

The last three solar cycles show a double-peak shape, the so-called Gnevyshev gap,
believed to be a manifestation of the quasi-biennial oscillation (QBO) [see, e.g., Ref.
191, and references therein], which was found to be a prominent feature during the cycle



maximum phase [192]. Frequencies of a quasi-biennial cycle have been detected in several
indicators [see, e.g., Refs. 193–195].

The presence of oscillations with higher frequency than the decadal cycle allowed to
identify the limits of the predictive method used in forecasting time series with multiple
periodicities.

5.3 Methodology

5.3.1 Long Short-Term Memory Neural Network

An artificial neural network (ANN) is an algorithm which takes inspiration from the
functioning principles of the nervous system of evolved organisms, built by interconnecting
elementary computational units called nodes, units or neurons. There are several types of
ANNs, and they work very well on a large variety of problems. One of their fundamental
characteristics is that knowledge about the specific problem of interest is acquired from
a learning process and is stored in the network parameters.

The elementary unit of an ANN is a formal neuron. Each neuron is connected at least
to another one, and each connection is weighted by a real number describing the degree
of importance of the given connection in the neural network. Another parameter that can
be introduced in the neural network is the bias, which is an additional weight that does
not depend on any input data. This weight is useful to tune the optimal working point
of the neuron, by adjusting the output along with the weighted sum of the inputs to the
neuron.

Neural network neurons are arranged into layers. The most simple network consists of
an input layer and an output one. The network becomes more complex if more layers are
added between the two mentioned before. These further layers are usually called hidden
layers, and ANNs with at least one hidden layer are called deep networks. The hidden
layers performs several computation on the features entered through the input layer and
transfers the result to the output layer.

Each neuron contains an activation function, which is meant to limit the output of the
neuron usually to values in the range [0, 1], or [−1,1], and which is chosen in such a way
to introduce non-linearity in the network. If no activation functions are introduced, each
neuron will only be performing a linear transformation on the inputs using the weights
and biases. All layers will behave the same and the neural network will be just a linear
regression model. The bias can also be seen as a parameter used for shifting the activation
function toward left or right.

Among all the existing classes of ANNs, recurrent neural networks (RNNs) are par-
ticularly suitable to deal with time series forecasting since, differently from traditional
neural networks, inputs and outputs are not assumed to be independent. These networks
are distinguished from others by their memory, which holds information from previous
inputs and outputs to influence the current output.

Long Short-Term Memory (LSTM) neural networks are a special kind of RNNs, firstly
introduced by Hochreiter and Schmidhuber [196] and later modified and improved by
several authors [197, 198].
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The architecture of LSTM networks includes layers, each of which is a set of recurrently
connected subnets called memory blocks, also known as memory cells, which refer to a
single time-steps. An example of three consecutive cells is shown in Fig. 5.4. Each cell
contains three multiplicative units called gates, which are:

• the forget gate, which chooses the information to discard from the cell. The output
from this gate is:

ft = σ(Whf · ht−1 + Wxf · xt + bf ) (5.4)

where σ is the sigmoid activation function, bf is the connection bias, and Whf and
Wxf are the weight associated to ht−1 and xt, respectively.

• the input gate, which decides which values from the input are useful to update the
memory state. The value of it is given by:

it = σ(Whi · ht−1 + Wxi · xt + bi) (5.5)

• the output gate, which determines what to output based on both the current input
and the previous output. The output value from this gate is defined as:

ot = σ(Who · ht−1 + Wxo · xt + bo) (5.6)

By operating with these gates, each LSTM cell internally evaluates what to keep in
and erase from the memory, given the input of its time-step (xt) and the output (ht−1)
and memory (Ct−1) from the previous one, and finally generates its output ht. In Fig.
5.4, C̃t represents a vector of new candidate values, which is estimated as:

C̃t = tanh(WhC · ht−1 + WxC · xt + bC) (5.7)

where tanh is the hyperbolic tangent activation function. This term, together with
the outputs from the forget and input gates, contribute to the new cell state Ct as follows:

Ct = ft · Ct−1 + it · C̃t (5.8)
The internal state Ct, that encodes the network’s memory, is the peculiarity that

makes LSTM networks well-suited to deal with physical time series, typically exhibiting
a certain degree of persistence and/or periodical features.

Finally, the value of ht is given by:

ht = ot · tanh(Ct) (5.9)

and the output yt is defined as:

yt = softmax(Wyh · ht + by) (5.10)
The consistent data flow resulting from this architecture keeps each cell stable (thus,

neither exploding nor vanishing [196].
The LSTM network are trained following the Back Propagation Through Time (BPTT)

algorithm [199], which is the application of the backpropagation training algorithm to re-
current neural network applied to time series. The goal of the backpropagation training
algorithm is to modify the weights of the neural network in order to minimize the error,
that is how far the output was compared to its desired value. Conceptually, BPTT works



Figure 5.4: Section of an LSTM network chain structure. The horizontal green line running through
the top represents the cell’s internal state. The gray circles are pointwise operations while the dark blue
boxes represent the activation functions. Each LSTM module is related to a given time instant.

by unfolding the network over time. The errors are then calculated and accumulated for
each time step and the network is rolled back up. Finally, the weights are updated in
order to reduce the error E, also known as loss function, as follows:

ω ←− ω − η∇ωE (5.11)
where ω represents a generic weight or bias, η is the learning rate, a hyperparameter

that controls how much to change weights and biases to reach a minimum of the error, and
∇ωE is the gradient of the loss function with respect to the parameter ω. This process is
repeated several times till a minimum of the loss function is reached.

When a lot of training data are available, it is advisable to train the network on a
portion of data at a time, usually referred as batch. This training technique is called batch
data processing and the number of data in each batch is called batch size. Each time the
network is fed with a number of samples equal to the batch size, the network weights are
updated. The choice of the batch size is not trivial. A batch size which is too large leads
to few weights’ updates and may not fit into memory, thus taking a long time for the
training process to end. Conversely, if the batch size is too small, the number of weights’
updates can be too large, leading to overfitting the data. Moreover, it is unlikely that a
small number of samples can be a good representation of the entire dataset.

Another important hyperparameter is the number of epochs, which defines the number
of times the entire dataset is passed forward and backward through the neural network
during the training process. Usually, more than one training epoch is used, allowing the
train the network enough until the loss function has been sufficiently minimized.

For a more in-depth description of LSTM neural networks see Refs.[200–202].

5.3.2 Bayesian Neural Network structure and data preparation

Bayesian methods are gaining increasing attention and popularity in the astrophysical
context in the last decade [see the recent review of Ref. 203]. In particular, Bayesian
inference is central to linking astronomical data to nonlinear astrophysical models in the
fields of solar and exoplanetary physics. Their main advantages include the ability to
explicitly incorporate into the model prior knowledge about the parameter of interest and
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Layer (type) Activation function Units Dropout (%)

Input Layer - - -

LSTM tanh [2-200] -

Dropout - - 5

Dense linear [2-200] -

Dropout - - 5

Dense linear N -

Table 5.1: Layers of the developed neural network with corresponding activation functions and hidden
unit ranges. The dropout percentage between each layer is also shown.

to give a description of the latter in probabilistic terms. On the other hand, the frequen-
tist approach, focused on p-values and null hypothesis significance testing, is subject to
common misinterpretation and has been recently criticized, so that likelihood-free meth-
ods are now growing in importance. The Bayesian framework offers several alternative
indices for the p-value. In particular, the Bayesian method can compute the probability of
different effects values given the observed data and some prior expectation, thus resulting
in the so-called posterior distribution, which is a distribution of possible values for the
parameters.

Following the approach described by Gal and Ghahramani [204], a neural network with
dropout applied before every weight layer can be interpreted as a Bayesian approximation
of a probabilistic deep Gaussian process. The dropout applied before each layer randomly
drops out each hidden unit with a certain probability. Dropout is also a technique for
addressing overfitting in neural networks [205].

The structure of the Bayesian neural network developed to forecast the future activity
of the Sun is described in Table 5.1. All the network layers are listed together with their
activation function, number of units, and dropout percentage. Dense layers are densely-
connected neural network layers, generally used to change the dimension of the output
of the previous layer. The model was robust enough with a reasonable range of dropout
probability, which was set equal to 5%, that is, each time, the 5% of the weights between
each pair of layers are randomly dropped out from the network.

Given the dataset D, the model aims to obtain the posterior distribution p(w|D).
Gaussian priors for the weight parameters p(w) have been introduced in the LSTM layer
and all the Dense layers using the Keras initializer RandomNormal [206].

A supervised learning process has been implemented to train this model, that is ex-
amples of input/desired output pairs were presented to the network and the weight coef-
ficients were adjusted to make the predicted and desired outputs as close as possible. The
developed network can predict multiple time steps at a time. More specifically, its goal is
to predict N values of the series given as input the N previous values. All the algorithms
were implemented in Python [207].



Two different model validation techniques have been applied and compared in terms
of performance and final forecast:

• Train-Test split technique, that consists in dividing the dataset into three different
sets: (i) the training-set, used to train the whole network; (ii) the validation-set,
required to diagnose the goodness of the fit during the training process; (iii) the
test-set, used to evaluate if the trained network can generalize well if unknown data
are given as input.

• Time Series k-fold Cross-Validation technique, which is an adaptation of the clas-
sical cross-validation techniques for data where the assumption of independent and
identically distributed samples is not valid.

For the sake of simplicity, the Train-Test split and the Time Series k-fold Cross-
Validation techniques will be referred to as the TT and CV technique, respectively. Sim-
ilarly, the models validated with the two validation techniques will be referred to as the
TT and CV model, respectively.

A schematic representation of the data-split performed by the TT technique is shown
in Fig. 5.5. The training-set length includes about the 88% of the whole series, the
validation-set covers almost two cycles, and the test-set length is equal to N, thus including
the last solar cycle.

The time series splitting for the CV-technique has been implemented from the machine
learning library Scikit-learn [208]. This technique involves splitting the dataset into k
consecutive folds, which are arranged to obtain k pairs of training and test data, referred
as iterations. The training-set of the first iteration is composed of the first fold, while the
test-set is composed of the following one. From one iteration to the next, the training-set
gets bigger and bigger, including each time the test-set of the previous iteration, while the
new test-set remains of the same size. All surplus data are added to the first training-set.

Figure 5.6 shows a representation of such subdivision, where the training- and test-set
of each iteration are shown in blue and red, respectively. The k-fold value was set equal
to ten, therefore, the CV-technique involves the evaluation of the neural network over ten
different pairs of training- and test-set.

Before starting the network training process, the time series must be transformed into
a supervised learning dataset. Since neural networks are less efficient over time series with
a large variability scale, the data are re-scaled within [−1,1]. In this way, the network’s
weights can be assigned in a suitable initialization range, which is a crucial requirement in
a Bayesian approach [209]. The dataset is then framed to increase the number of samples
to be fed to the neural network during the training phase. Each training-, validation- and
test-set is converted into a matrix with N columns and a number of rows corresponding to
the number of samples using a one-step forward moving window of length N. Dealing with
a supervised learning problem, matrices formed by input data and corresponding target
data (desired output) are defined for each set. A schematic representation of such framing
is shown in Fig. 5.7 for a dataset composed of n = 10 values and a moving window of
length N = 3. Because of the goal of the developed network, giving as input N values
of the time series (xi), the network aims to predict the following N values (yi), referred
to as the desired output. Thanks to the framing process, the input and output data are
rearranged into M×N matrices, where M = n − 2N + 1, by moving the windows one step
ahead until the end of the dataset is reached, thus allowing to obtain M input/desired
output pairs.
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Figure 5.5: The dataset splitting into training-, validation-, and test-set for Train-Test validation
technique. The training-set (blue curve) consists of most of the time series (∼ 88%). The validation-set
(green curve) covers about the 8% of the data while the test-set length is equal to N (∼ 4% of the whole
series, red curve).

Figure 5.6: Data splitting scheme for the Time Series 10-fold Cross-validation technique. For each of
the ten iterations, the training- and test-set are shown in blue and red, respectively. Each test-set is
included in the training-set of the next iteration. Each training-set can be interpreted as a superset of
those that came before it.



Figure 5.7: Framing of the dataset using a moving window. Giving as input N values of the time series
(xi), the network aims to predict the following N values (yi). The input and output data are rearranged
into M×N matrices, where M = n − 2N + 1, by moving the windows one step ahead until the end of the
dataset is reached. This framing allows obtaining M input-output pairs with which the network can be
trained.

Regarding the CV model, as a consequence of the network structure, the first N values
of the training- and test-set of each iteration are not predicted but only used as input to
forecast the following N values. The TT model validation-set is fully predicted, since, to
forecast its first N values, the last N values of the training-set are used as input. Similarly,
the last N values of the validation-set are used as input to forecast the whole test-set.

The loss function, which has to be minimized to achieve a well-trained network, is the
Mean Absolute Error (MAE), defined as follows:

MAE =
∑n

i=1|yi,obs − yi,pred|
n

(5.12)

where yi,obs is the number of sunspot observed, yi,pred is the number of sunspots predicted
by the neural network and n is the length of the series.

Before training each model, the batch size and the number of hidden nodes (nodes in
the hidden layers) have been optimized within the range [2-200] and [5-100], respectively.
The chosen parameter combination is the one that gives the lowest MAE after training
the network for some epochs. The Adam algorithm, an extension based on stochastic
gradient descent [210], is chosen to update the weights and optimize the learning rate.

Each model has been trained for fifty epochs. The Keras ModelCheckpoint callback
[206] was used to save each time the best model, corresponding to the specific combination
of weights which led to the lowest MAE among all the epochs of training. More specifically,
the best TT model is the one providing the lowest MAE over the validation-set, while
a best CV model is saved for each iteration and corresponds to the one with the lowest
MAE over the test-set.
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The parameter N was set equal to 130, so the network can predict 130 points in
the future (about 11 y), starting from the previous 130. This configuration was chosen
according to the following observations:

• the network performance degrades for N > 130, indicating the forecast limit of this
approach;

• Solar Cycle 25 started in December 2019 [40] and, given the average duration of
solar cycles, 130 months are enough to predict its remaining part together with the
next solar minimum.

Before forecasting Solar Cycle 25, the model was trained again using all the available
data. Since using the whole series as input does not allow having a validation set available,
which is necessary to avoid overfitting, a crucial point concerns the choice of the number
of epochs for this further training. For this purpose, both the TT and CV models have
been trained on shorter versions of the dataset, and the MAE obtained by predicting
known data has been estimated. More in detail, both methods were trained and tested on
two different datasets, one obtained by cutting the SN time series at the end of cycle 22
and one with values up to cycle 23. Therefore, predicting the future 130 values of these
datasets means predicting cycles 23 and 24, respectively. Future values are forecasted
many times by varying the number of epochs, and the final value of this hyperparameter
is the one for which the MAE is minimized.

5.3.3 Uncertainty estimation

Deep learning tools for regression do not automatically quantify prediction uncertainty.
In the adopted Bayesian approach, probabilistically removing, or dropping out, inputs

to a layer, has the effect of simulating a large number of networks with very different
structures and, in turn, making nodes in the network generally more robust to the inputs,
thus reducing overfitting and improving model performance.

Following the idea of Gal and Ghahramani [204], the model uncertainty has been
estimated using a Monte Carlo dropout (MC dropout): given an input vector x, the
output is forecasted with stochastic dropout at each layer K times, thus obtaining y1,
..., yK . The final prediction is the sample mean and the relative uncertainty can be
approximated by the sample standard deviation. Similarly to Ref.[211], a few hundred
predictions have been found to be enough to obtain a stable estimation, and, finally, the
K value was set equal to 1000.

In addition to the uncertainty term described above, a further contribution related
to the error propagation of the original time series has been introduced. As a first step,
this uncertainty was propagated onto the result of the smoothing by a gaussian process
regression bootstrapping, as described in Section 5.2.2. The ensemble of 1000 surrogated
time series generated for this purpose was fed to the trained neural network, and the
same approach has been used once again to propagate the uncertainty to the N forecasted
values. In this way, the uncertainty of the SN data was propagated to the final prediction.
This error contribution was then summed to the one from the MC dropout that, on the
other hand, represents the model uncertainty.



5.4 Results and discussion

The TT model has been trained on the smoothed monthly SN series, with data ranging
from January 1749 to March 1989 (about 88% of the dataset). While tuning model
hyperparameters, the network skills have been validated over cycles 22 and 23, and its
performance has been finally tested over cycle 24. The MAE obtained by the best TT
model for the test-set prediction, corresponding to the last N values of the series, is equal
to 13.2. About the CV model, the MAEs obtained for test-sets predictions are shown
in Table 5.2. Figure 5.8 shows the CV model forecast of the test-set of each iteration
(green curve). The grey curve represents the previous data, including both the training-
set and the first N values of the test-set (which are never forecasted), while the black curve
represents the desired output. In the bottom panel, the forecast of the TT model test-set
is also shown (red curve), with the associated uncertainty. It’s important to notice that,
because of how the CV technique splits the dataset, the test-set has the same length for
each iteration, equal to 295 values. Therefore, the CV model test-set forecast consists of
M = 295 − 260 + 1 = 36 vectors of 130-point length.

The CV model performance improves as the training-set becomes larger and larger,
that is from the first to the last iteration.

As already discussed in Section 5.3.2, Solar Cycle 25 was forecasted after training the
models using all available data as input for a number of epochs chosen after evaluating the
forecasts of known data. Figure 5.9a shows the comparison between the smoothed cycle
23 (black curve) and the TT model forecast of Solar Cycle 23 (red curve) as a function of
the epochs the network has been trained again using as input all the values up to cycle
22. In Fig. 5.9c, the same comparison for the CV model forecast (green curve) is shown.
Figure 5.9b and 5.9d show the MAE as a function of the number of epochs obtained for
the two models, where the coloured stars highlights the most accurate forecasts. Figure
5.10 shows the same results for the forecast of cycle 24, obtained after training the models
using as input all the values up to cycle 23.

The best forecasts are shown in Fig. 5.11, in red and green for the TT and CV
models, respectively. The associated MAEs are listed in Table 5.3. Forecasts of Solar
Cycle 23 of both models (Figs. 5.11a,c) are less accurate than the ones of cycle 24 (Figs.
5.11b,d), mostly because of the exceptional length of the minimum around 2009 [212].
Cycle’s length, shape, and maximum value are generally well predicted. This is evident
by looking at Table 5.3, where measured and predicted maxima are compared for both
cycles. A good agreement between measured and predicted maxima is present both for
the amplitude and the time of occurrence.

Looking at the forecasted cycles in Fig. 5.11, is possible to notice that the periodicities
of about 1.2 y and 2.7 y (discussed in Section 5.2.3) are not predicted by the two models.
While conducting various tests for the best neural network configuration choice, it has been
made clear that these components are predicted, together with the decadal cycle, only
when overfitting occurs. Furthermore, a good forecast of Solar Cycle 5, which happend
to be anomalous with respect to the others, was found to be another sign of overfitting
(not shown). Although the developed neural network cannot predict these high-frequency
components, solar cycles 23 and 24 are well predicted within the limits of uncertainties
(see Table 5.3).
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Iteration MAE
1 71.2
2 49.9
3 31.0
4 42.7
5 21.1
6 23.0
7 19.8
8 18.5
9 19.9
10 15.6

Table 5.2: Mean absolute error obtained for test-set prediction performed by the best model of each
CV iteration.

Since the number of epochs for which the lowest MAE was obtained in equal to 10 in
almost all the cases, this has been chosen as the number of epochs both models have been
trained again using all the available data before forecasting the Solar Cycle 25.

Solar cycle 25 predictions obtained from TT and CV models are shown in Fig. 5.12 in
red and green, respectively, together with their uncertainty bars and with Solar Cycles 20
to 24. The forecasts are compatible within the error limits. Both models predict the next
solar cycle to be smaller than the previous one, with a peak amplitude some 14% smaller
than the peak of the smoothed Solar Cycle 24. The CV model predicts a peak amplitude
of 110 ± 9 on April 2024 (± 12 months), while the TT model predicted maximum is of
104 ± 7 and will occur on July 2024 (± 7 months). Both models agree that the next
solar minimum will be as deep as the previous one. The minimum predicted by the TT
and CV models will occur on June 2030 (± 8 months) and on August 2030 (± 8 months),
respectively. Solar cycle 25 will thus be a relatively normal cycle, with a mean forecast
duration of (10.6 ± 0.7) y.



Figure 5.8: Forecast of the test-set of each iteration obtained from the CV model (green curve). The
grey curve represents the previous data, including both the training-set and the first N values of the
test-set (which are never forecasted), while the black curve represents the desired output. In the bottom
panel, the forecast of the TT model test-set is also shown (red curve).
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MEAN ABSOLUTE ERROR
Cycle 23 Cycle 24

TT model 19.7 8.4
CV model 17.7 8.3

SOLAR CYCLE MAXIMA
Cycle 23 Cycle 24

Measured

192 ± 4
June 2000 (± 1 month) 122 ± 3

192 ± 5 Mar 2014 (± 2 months)
Oct 2001 (± 1 month)

TT model 186 ± 7 120 ± 7
Aug 2000 (± 5 months) Aug 2013 (± 5 months)

CV model 206 ± 12 99 ± 7
June 2000 (± 6 months) Dec 2013 (± 10 months)

Table 5.3: Performance of the TT and CV models in predicting known cycles. The MAEs obtained for
the forecasts of cycles 23 and 24 are shown. Predicted maxima are compared with the measured ones.
For Solar Cycle 23, the measured double maxima are both reported.

Figure 5.11: Most accurate forecasts of Solar Cycles 23 and 24 performed after training the networks
up to cycles 22 and 23, respectively. Red curves represent the TT model forecasts of Solar Cycles 23 (a)
and 24 (b). Green curves represent the CV model forecasts of Solar Cycles 23 (c) and 24 (d). All the
predictions are shown with the associated uncertainties.
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Figure 5.12: Forecasts of Solar Cycle 25 performed by the TT (red curve) and CV models (green curve)
together with the smoothed series (black curve) from cycle 20 to 24, with relative uncertainties.

5.4.1 Comparison with other predictions and newly measured data

According to a recent review of Ref.[213], predictions of Solar Cycle 25 based on the solar
dynamo framework converge towards a weak or moderate Solar Cycle 25 peaking around
2024-2025. Solar dynamo models driven by observations should represent a standard for
forecasting upcoming solar cycles. However, in the above models, it is often implicitly
assumed that the dynamical memory of the solar dynamo mechanism is short [see, e.g.,
Ref. 214], thus allowing for predictions of only the subsequent sunspot cycle. Even worse,
numerical simulations with stochastic and deterministic non-linear dynamo models hint
at the possibility that it is not even possible to predict the solar cycle using the output
from such models [215]. To complicate the problem, although two main proposals exist
in the literature for the poloidal field generation - the Babcock-Leighton mechanism [216,
217] and the mean-field α effect [155] - most of the dynamo-based prediction models only
consider the former mechanism. As a consequence, the convergence of the physical-based
prediction models is probably somewhat biased by this exclusive choice for the underlying
dynamo mechanism. Because of the above discussion, it is thus reasonable to consider
results obtained from several forecasting techniques not connected with the underlying
physics.
Figure 5.13 shows a comparison of various predictions of Solar Cycle 25 obtained by dif-
ferent groups and based on diverse methodologies, taking only into account those works
that predicted both the time and the amplitude of the peak. In particular, the compari-
son is done with physical-based forecasts [156, 167, 172, 173], precursor technique based
forecasts [174–176], non-linear model based forecasts [157, 177, 178], statistical forecasts
[158–164], spectral methods based forecasts [165, 166], and machine learning/neural net-
work based forecasts [168–171]. It is clear that an agreement between the various forecasts
is still lacking, even among predictions made with the same methodology.
Also included is the prediction made by the Solar Cycle 25 Prediction Panel3, co-chaired by
the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics
and Space Administration (NASA), and the International Space Environmental Services
(ISES), according to which Solar Cycle 25 will reach a peak in July 2025 (± 8 months),
with a maximum smoothed SN of 115± 10, being thus quite similar to Solar Cycle 24.
The amplitudes of Solar Cycle 25 forecasted by the TT and CV models lie within the
middle range of the distribution, and their uncertainties are among the smallest.

3https://www.swpc.noaa.gov/products/solar-cycle-progression

https://www.swpc.noaa.gov/products/solar-cycle-progression
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Figure 5.13: Predictions of Solar Cycle 25 by different groups based on diverse methodologies indicated
in the legend. References are: [174]1, [177]2, [158]3, [159]4, [162]5, [161]6, [168]7, [160]8, [169]9, [175]10,
[167]11, [178]12, [165]13, [166]14, [157]15, [163]16, [170]17, [164]18, [172]19, [173]20, [156]21, [176]22, [171]23,
NOAA-NASA-ISES prediction24.

As discussed in Section 5.2.1, the developed Bayesian networks have been trained using
the SN time series with monthly values from the beginning of 1749 up to September
2021. At the current time, new data have been added to the SILSO dataset, therefore
is possible to directly compare the obtained forecasts with measured data. Figure 5.14
shows the comparison between the smoothed monthly SN time series (magenta curve),
obtained after including new data up to September 2022, and the forecasts of Solar Cycle
25, obtained by the TT model (red curve) and the CV model (green curve), where the
shaded colored bars represent the uncertainties. The smoothed series used to train the
models is also shown (black curve).
A good agreement is present between forecasted and newly measured data, within the
limits of uncertainties. Up to the beginning of 2022, measured data fall within one stan-
dard deviation of both model’s forecasts. After that period, a better agreement is present
between the measured data and the CV model forecast. However, both models fully agree
with measured data within three standard deviations (not shown).



Figure 5.14: Comparison between the forecasts of Solar Cycle 25, obtained by the TT (red curve) and
CV models (green curve), and the smoothed monthly SN time series (magenta curve), obtained after
including new data up to September 2022. The smoothed series used in this work is also shown (black
curve). Data uncertainty, represented by the shaded colored bars, represents ± one standard deviation.

5.4.2 Conclusions

Forecasting solar activity variability is crucial for predicting the impact of the Sun on
both Earth’s magnetosphere (and ionosphere) and terrestrial climate. Several predic-
tions of the amplitude of Solar Cycle 25 have been recently published, obtained using
physical-based models and neural network approaches. The underlying complexity of the
dynamo mechanism at the origin of the cyclic nature of the Sun’s activity is such that
predictions offered by state-of-the-art machine learning algorithms can represent useful
tools for cycle progression understanding and forecasting. Among them, Bayesian deep
learning provides significant improvements in both accuracy and uncertainty quantifica-
tion compared to classical techniques. The forecast of the complete profile of Solar Cycle
25 was obtained by applying a deep neural network model on sunspot number data. A
refined Bayesian approach has been developed to quantify forecast uncertainty. Two dif-
ferent validation techniques have been implemented, showing fully comparable results.
The forecasted Solar Cycle 25 has a peak amplitude of about 14% smaller than cycle 24,
and the maximum activity is expected in the middle of the year 2024. The predicted peak
amplitude lies within the middle range of the predictions found in the recent literature
and is in agreement with the forecast presented by the Solar Cycle Prediction Panel rep-
resenting NOAA, NASA, and ISES. A good agreement was found by comparing predicted
values with newly measured data. The next solar minimum will occur around July 2030
and will be as deep as the previous one, thus suggesting that Solar Cycle 25 will last
(10.6 ± 0.7) y. Following the decreasing trend of the last four solar cycles, speculations
about a new imminent grand minimum, similar to the Maunder one (1645–1715), have
been recently proposed [218, 219].
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Appendix A

Continuous Wavelet Transform
(CWT) and Wavelet Transform
Coherence (WTC)

The Continuous Wavelet Transform (CWT) allows for evolutionary spectral analysis of a
series in the timescale plane [12, 36, 220]. The concept of scale, typical of this method,
represents a time duration that can be properly translated into a Fourier period and hence
into a frequency.
Conceptually, the CWT is a sliding cross-correlation between a finite-length sequence
X(n) and a family of finite-energy, zero-mean waveforms, known as wavelets, defined as:

W X
n (s) ∼ 1√

s

N−1∑
n′ =0

X(n′)Ψ∗
0(

n
′ − n

s
) (A.1)

where Ψ0 is the reference wavelet, commonly known as mother wavelet, s is the scale
factor, and n is the lag. The wavelet power spectrum or scalogram, defined as the absolute
value squared of the wavelet transform, is constructed by varying the wavelet scale s and
translating along the localized time index n. It can be considered as an estimate of the
similarity between the signal and the wavelet functions, giving a measure of the time
series variance at each scale (period) and at each time.
Errors at the beginning and end of the wavelet power spectrum are to be expected when
dealing with time series of finite length. This issue is usually solved by zero-padding
the signal, that is, by adding zeroes at the end of the time series before applying the
wavelet transform. These added zeros constitute a discontinuity in the signal causing a
distortion of the CWT values on both edges from their hypothetical value, i.e., the one
hypothetically expected if the signal had an infinite amount of data.
The cone of influence (COI) is the area in the scalogram potentially affected by these edge
effect artifacts, where the wavelet power spectra are distorted due to the finite length of
the series. The larger the scale, the wider the time intervals adjacent to the edges where
the CWT is disturbed. Within the COI region, the information provided by the scalogram
is an accurate time-frequency representation of the data, while outside of it, information
should be treated as suspect. In practice, the COI is defined as the area in which the
wavelet power caused by a discontinuity at the edge has dropped to e2 of the edge value.
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To study the relative phase of the common oscillations of two signals, the wavelet trans-
form coherence (WTC) represents a suitable method. Following Ref.[221], the WTC of
two time series X(n) and Y (n) is defined as:

R2
n(s) = |S(s−1W XY

n (s))|2
S(s−1|W X

n (s)|2)S(s−1|W Y
n (s)|2) (A.2)

where S is a smoothing operator, W x is the wavelet transform of the time series X(n),
and W XY = W XW Y ∗ is the cross wavelet transform of the two time series. This definition
closely resembles that of a traditional correlation coefficient, and it is useful to think of
wavelet coherence as a localized correlation coefficient in the time-frequency space.
The WTC spectrum in Section 1.4.2 was obtained using the Paul mother wavelet, which is
narrower in time than the generally applied Morlet one, thus producing a better temporal
localization of transient events. The spectrum was calculated using the wavelet coherence
MATLAB package from Ref.[13].



Appendix B

Singular Spectrum Analysis (SSA)
and Monte Carlo test (MC-SSA)

The Singular Spectrum Analysis (SSA) is a non-parametric spectral method that allows to
efficiently extract the deterministic components of a time series from noise [14–16]. It uses
data-adaptive filters to separate the time series into statistically independent components
that can be classified as oscillatory patterns, modulated in amplitude and phase.
The SSA methodology applied on a time series x(n), consists of three basic steps:

• embedding the time series of length N in a vector space of proper dimension M ;

• computing the M ×M lag-covariance matrix CD of the data;

• diagonalizing the matrix CD to extract its eigenvectors Ek and corresponding eigen-
values λk, with k = 1, M .

The lag-covariance matrix CD can be estimated as:

CD = 1
N ′ ·DT ·D (B.1)

where N
′ = N - M + 1 is the embedding dimension, and D is the trajectory matrix,

defined as follows:

D =


x(1) x(2) . . . x(M)
x(2) x(3) . . . x(M + 1)

... ... . . . ...
x(N ′) x(N ′ + 1) . . . x(N)

 (B.2)

The diagonalization of the matrix CD yields the diagonal matrix ΛD = ET
DCDED, where

ΛD = diag(λ1, λ2, λ3, ..., λM), with λ1 > λ2 > λ3 > ... > λM > 0, and ED is the M ×M
matrix having the corresponding eigenvectors Ek, k = 1, M , as its columns.
For each Ek, also known as Empirical Orthogonal Functions (EOFs), the kth principal
component (PC) is constructed, representing a time series of length N

′ obtained by pro-
jecting the original time series on the eigenvector Ek:

Pk(t′) =
M∑

j=1
x(t′ + j)Ek(j) (B.3)
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The corresponding eigenvalue λk describes its variance, which can be interpreted as the
percentage of the time series x(n) described by the kth component.
Given a subset of eigenvalues, it is possible to extract time series of length N by combining
the corresponding PCs. These time series, called Reconstructed Components (RCs),
capture the variability associated with the eigenvalues of interest, and are estimated as
follows:

Rk(t) = 1
Mt

∑
k∈K

Ut∑
j=Lt

Pk(t− j)Ek(j) (B.4)

The values of the normalization factor Mt and the lower and upper bound of summation
Lt and Ut differ between the central part of the time series and its end points [15, 16]:

(Mt, Lt, Ut) =


(1

t
, 1, t) if 1 ≤ t ≤M − 1

( 1
M

, 1, M) if M ≤ t ≤ N
′

( 1
N−t+1 , t−N + M, M) if N

′ + 1 ≤ t ≤ N

(B.5)

To reliably identify the oscillatory components in a series, that is to assess the statistical
significance of the variability modes detected inside the records, a Monte Carlo (MC) re-
cursive method is used [17]. At a given confidence level, a set of models for the analyzed
time series (null hypotheses) are iteratively tested, starting from the simplest one, repre-
senting pure noise, up to more complex ones, which are obtained by including different
combinations of spectral components superimposed on the noise. A Monte Carlo ensem-
ble of surrogate time series is generated from the assumed model, and the SSA is applied
to each surrogate series. Then, data are projected onto the EOFs of the null hypothesis
to test whether it is possible to distinguish the series from the ensemble. The rejection
of a null hypothesis is achieved by comparing the SSA spectrum of the analysed series
with the Monte Carlo band, obtained by applying the SSA to the ensemble of surrogate
series generated from the considered model of the series. Finally, the model explaining the
series, and allowing the identification of the significant components at a given confidence
level, is the one that cannot be rejected.
The AR(1) noise assumption is usually used since a large class of physical processes gen-
erates series with larger power at lower frequencies. This is done to avoid overestimating
the system predictability by underestimating the amplitude of the stochastic component
of the time series [15].
The MC-SSA analyses were performed using the SSA-MTM Toolkit1.

1Freeware SSA-MTM Toolkit at http://www.atmos.ucla.edu/tcd/ssa.

http://www.atmos.ucla.edu/tcd/ssa
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