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Abstract: Natural or artificial light allows us to see and analyze matter with our eyes, which are the 

first tools used in several experiments. In geosciences, particularly in mineralogy, light is used for 

optical microscopy observations. Reflected and transmitted light applied to the study of ore deposits 

can be useful to discriminate between gangue from precious phases. Knowledge of the structural 

and morphological characteristics, combined with the quantitative evaluation of mineral abun-

dance, is fundamental for determining the grade of ore deposits. The accuracy and reliability of the 

information are closely linked to the ability of the mineralogist, who more and more often uses 

Scanning Electron technology and automated mineralogy systems to validate the observations or 

solve complex mineralogy. While highly accurate, these methods are often prohibitively expensive. 

The use of image analysis using standard algorithms and artificial intelligence, available as open 

source, and commercial packages (such as ImageJ, Fiji or MATLAB), can provide advantages in fast, 

cost-effective, and robust mineral analysis. Recently, the application of neural networks provided 

increasingly effective image analysis and, among the different types of neural networks available 

today, the self-organizing maps of Kohonen (SOM) seem to be among the most promising, given 

their capacity to receive many images as inputs and reduce them to a low number of neuronal out-

puts that represent all the input characteristics in a lower-dimensional space. In this work, we will 

show the preliminary results of a new method based on SOM and the combined use of images ac-

quired in transmitted and reflected light to reconstruct false 3D surfaces, which were able to show 

the presence of intergrow between gangue phases and precious minerals. 

Keywords: optical microscopy; neural network; ore minerals; geomaterials; mining industry; image 

analysis 

 

1. Introduction 

Optical microscopy (OM) was among the first techniques applied to study geological 

materials [1] and is commonly used for rock sample observations. The progress made in 

sample preparation and the advances reached in the optic field, combined with the inven-

tion of the Nicol prism in 1828 and the improved understanding of the polarized light 

potential [2–10], resulted in the widespread use of advanced microscopes (polarized light 

microscopes), making use of thin slices of rocks (up to 30 μm thick), allowing accurate 

discrimination of rocks and minerals under Transmitted Light Microscopy (TLM). 

Growth of this technique resulted in the development of modern petrography devoted to 

the observation of opaque and non-opaque minerals with the application of increasingly 

refined techniques and methods for the analysis of morphological and textural features of 

the rocks, up to modern techniques for modal analysis and advanced techniques for cal-

culating the grain size distribution (GSD) [2–9]. 

Citation: Santoro, L.; Lezzerini, M.; 

Aquino, A.; Domenighini, G.; 

Pagnotta, S. A Novel Method for 

Evaluation of Ore Minerals Based on 

Optical Microscopy and Image  

Analysis: Preliminary Results.  

Minerals 2022, 12, 1348. 

https://doi.org/10.3390/min12111348 

Academic Editor(s): François R. 

Doucet, Marc Constantin and  

Christophe Germay 

Received: 28 September 2022 

Accepted: 20 October 2022 

Published: 25 October 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: ©  2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Minerals 2022, 12, 1348 2 of 16 
 

 

Together with TLM, Reflected Light Microscopy (RLM) on opaque minerals was ap-

plied in the second half of the nineteenth century for metal and meteorite studies [10–13]. 

Until a few years ago, RLM was the primary technique used to observe and study ore 

minerals [14–20], but in the last 20 years, it has been integrated and/or replaced by modern 

and expensive automated mineralogy (AM) systems, used for both opaque and non-

opaque minerals, that take advantage of the analytical potential of the Scanning Electron 

Microscopy (SEM) combined with Energy Dispersive X-ray Spectroscopy (EDX) [21–27]. 

AM Systems, such as QEMSCAN® , MLA, Mineralogic, and TIMA-X [2,28–30], allow ob-

taining very high-resolution micro-photos and use automated image analysis (IA) tools to 

quantify the mineral phases and obtain statistical information on grain and particle sizes, 

morphology, texture, liberation degree, etc., by rastering electron beams and X-rays on 

specimen surfaces [31–33]. Accurate mineralogic information is crucial to the mining in-

dustry, as it serves to optimize hydro- and pyro-metallurgic processing [34]. Additionally, 

in recent years, Laser-Induced Breakdown Spectroscopy (LIBS) has had a very rapid de-

velopment in the field of applied mineralogy [35]. LIBS is a highly accurate atomic spec-

troscopy technique based on the use of a high-power laser which focuses on a small spot 

of the sample to generate ionization of a micro-volume of material. The plasma light is 

thus generated through a spectrometer. The proposed approaches for the use of LIBS in 

the field of mineralogy can be divided into two main categories: low speed, automatic on 

a low-speed laser (Hz < 20) [36–40], and high speed, with laser with speeds up to kHz [41–

43]. 

Although AM systems are valuable methods in mineral deposit studies, their accu-

racy and amount of information that can be acquired on a single sample and their use are 

often limited to a selected number of samples because of their prohibitive costs. 

IA is the extraction of meaningful information, for diagnostic purposes, directly from 

the digital image of an object. This research area was first established in the 1950s by MIT 

laboratories as a branch of artificial intelligence and robotics [44]. Thanks to technological 

advancement and the wide availability of increasingly powerful and low-cost computers, 

different algorithms developed for IA are now applied to many sectors, from industry to 

pure research. These also include the industry of optical microscopy [11–18,45–51]. 

The current IA systems range from simple image thresholding to artificial intelli-

gence capable of segmenting peculiar image features and helping their identification and 

quantification [52]. Among the methods used for image segmentation, the most promising 

seems to be the application of self-organized maps [50–54]; given several input images 

greater than three, containing different features of an object, this method allows reducing 

this dimension to a few output images containing a representative grouping of these fea-

tures. 

Following the study of Lee and Rhodes [55], we used a contrast-enhancing method 

based on kernel convolution. Furthermore, to increase the feature space, we added the 

entropy [56], the standard deviation [57], and the pixel range [58] of the ore minerals im-

ages acquired by RLM, increasing the number of input images. Among the most useful 

analytical methods in RLM for ore minerals is the reflectivity index (R%), which is the 

quantity of light reflected by an opaque mineral relative to an incident natural or artificial 

light source. In this work, we tested a method based on a calibration line built on three 

reference materials: white (R% = 100), gray (R% = 50), and black (R% = 0). The correlation 

between the luminance value (L*) in the color space L* a* b* was defined, and its coeffi-

cients were used to recalculate the R% of the minerals present in the thin section micro-

photo. Among the most evident problems with the automatic calculation of reflectivity in 

RLM is that some minerals, although non-opaque, often have very high reflectivity due to 

their structure, internal reflections, and the presence of opaque minerals trapped inside 

them. If these problems are not well understood, they can lead to misinterpretations. Good 

operators know how to overcome these issues, but if not properly trained, an automatic 

system could read these reflectivities as belonging to opaque minerals. Our method pro-

vides a valuable tool to quickly understand and detect this type of problem, guiding the 
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operator to discard these outliers and to consider only those values coming from truly 

opaque minerals. We have implemented a method based on a pseudo-3D surface (P3DS) 

of the minerals, which is helpful to immediately visualizing the portions of the image that 

are occupied by opaque and non-opaque minerals and those portions of the image occu-

pied by non-opaque minerals overlapping the opaque minerals. 

The current work aimed to develop a method that could also be good for those ap-

proaching the world of IA for the first time, maintaining a certain degree of comprehen-

sibility of the physical relationship between the input and output of the neural network. 

In recent approaches proposed, such as in Koh et al. [8], understanding the relationship 

between input and output of the convolutional network (CNN) is more difficult for oper-

ators who are not specifically trained on the subject. In this work, we present the results 

of an experimental combination of images obtained by reflected and transmitted light ob-

servation on ore minerals with image analysis algorithms. Furthermore, the combination 

of reflected light and transmitted light to obtain a pseudo-surface (P3Ds) has never been 

used by other authors. 

2. Materials and Methods 

For this work, we selected a thin section of a rock sample containing magnetite 

(Fe3O4) and goethite (FeOOH) in a quartz-rich (SiO2) and tourmaline ((Na+, K+, Ca2+)(Li+, 

Mg2+, Fe2+, Al3+, Ti4+, Mn2+)3(Al3+, Cr3+, Fe3+, V3+)6(BO3)3[Si6O18](OH)4) gangue (Figure 1). The 

observations were carried out using a polarizing microscope (Axio Plan, Zeiss, Germany) 

equipped with a d65 illuminator capable of using both transmitted and reflected light. 

The micro-photos were taken with a 14 Mpx USB CCD camera microscope (HD200VP-

UM, AmScope, USA), coupled to the microscope using a 0.5× lens placed on the trinocular 

head, orthogonally to the observation plane. For the observation, we decided to use a low-

magnification objective, 2.5× (Plan-Neofluar), to obtain a comprehensive overview of the 

sample and greater representativeness of the sample features. As a result, we have a mi-

cro-photo at 5× (2.5×/0.5×). The metric calibration of the images was performed using a 

calibration slide with a step of 0.1mm per division. 

SEM-EDS analyses were performed to validate the results by point analyses, X-ray 

and high-resolution quantitative maps of the selected area. The analyses were collected at 

University of Torino, using a SEM JEOL IT300LV, EDS Oxford Instruments Inca Energy 

200, X-act SDD detector. Working conditions were E = 20 kV, I probe = 6 nA, EDS process 

time = 1105 counts/s, dwell time 10 µs, 4 frames (X-ray maps), dwell time 1 ms, multispec-

tral quantitative maps were processed by the Quantmap and Autophase map tool (Aztec 

Suite, v.3.3, Oxford Instrument, Abington, UK). A greyscale phase map was also acquired 

using the same analytical conditions as reported above and processed by the Feature tool 

(Aztec Suite, v. 3.3). 

  
(a) (b) 

Figure 1. Micro-photo of the thin section of the selected rock section: (a) reflected light; (b) transmit-

ted light with crossed Nicols. The long side of the image measures 2.7 mm, and each micro-photo 

has the same scale. 
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For the analysis, a live script in Matlab environment (version R2020a, MathWorks, 

USA) has been developed. It combines the functions of some proprietary packages (ANN 

Tool) with original code written within our research group. The script is divided into four 

parts: (i) acquisition and balancing of images in reflected and transmitted light; (ii) data 

augmentation; (iii) spatial reduction and SOM segmentation; (iv) production of outputs 

and data extraction from segments. 

2.1. White and Dark Calibration 

For the white balance and the correction of the electronic noise of the CCD camera, 

two photos were taken: the first one was acquired with the shutter of the camera closed 

(dark), and the second one by placing a standard white (BaSO4 pellet) as a reference under 

the objective of the microscope. Subsequently, these images were used to correct all the 

acquired photos, keeping constant the shooting parameters and the microscope settings. 

For the correction of the micro-photos, we used the following Equation (1): 

𝐼𝑐𝑜𝑟𝑟 =
(𝐼𝑥,𝑦 − 𝐵𝑙𝑥,𝑦)

(𝑊ℎ𝑥,𝑦 − 𝐵𝑙𝑥,𝑦)
 (1) 

where Icorr is the intensity of all the pixels of the corrected image, Ix,y is the intensity of each 

pixel of the original image, Blx,y is the intensity of each pixel in the dark image (for elec-

tronic noise), and Whx,y is the intensity of each pixel of the white reference image. 

2.2. Color Spaces and Features Extraction 

Images acquired in the RGB (Red, Green, and Blue) color space were subsequently 

transformed into the HSV (Hue, Saturation and Value) and L * a * b * (CIE 1976- lumi-

nance, and color opponent value a* and b*) color spaces and decomposed into individual 

grayscale images, resulting in a total of 9 images (3 for RGB, 3 for HSV and 3 for L* a* b*). 

For each image acquired as described, additional images of the entropy filter, standard 

deviation filter, and the range filter, respectively in Figure 2a–f, were added; the last step 

(i.e., the inclusion of filter-derived images) was pivotal to add further accurate infor-

mation on the features of the original acquired photo. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 2. The filtered micro-photo both reflected and transmitted light. Entropy (a), standard devi-

ation (b), and range (c) represent filtering of reflected light micro-photo. Entropy (d), standard de-

viation (e), and range (f) represent filtering of transmitted light micro-photo. The long side of the 

image is 2.7 mm. 
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Moreover, a kernel-based filter, Kernfilt1(Figure 3a) and Kernfilt2 (Figure 3b), was 

further used to enhance the contrast at the edges of the grains (Figure 3). The kernel filter 

is obtained from the convolution of a kernel of 3 × 3 pixels, whose central pixel alone has 

a gray value of 127.5, while all the contour pixels have 0 value. The kernel is convolved 

with each image pixel, increasing its contrast without saturating towards the values clos-

est to white [56]. The filter obtained on the reflected light (Figure 3a) and transmitted light 

(Figure 3b) returns an image with grey shades that are substantially like the original one 

but with enhanced contrast (Figure 3). 

  
(a) (b) 

Figure 3. The images derived from filtering with a 3 × 3 pixel kernel whose value of the central pixel 

is 127.5, while the contour pixels all have a value of 0. On the left (a) is the result of the convolution 

with the image in reflected light, while on the right (b), we observe the result obtained on the trans-

mitted light. 

2.3. Self-Organized Maps 

Artificial neural networks are mathematical modeling of the behavior of biological 

neural networks [45–54]. These are fewer complex algorithms than biological functioning 

but are well suited to modeling and solving various problems related to computer vision, 

chemometry, engineering, etc. [50–54]. Several types of artificial neural networks exist and 

can be applied for different purposes. In the current work, the image segmentation on the 

micro-photos was carried out using Kohonen’s Self-Organized Maps (SOM), an algorithm 

based on competitive learning [45–47]. The algorithm calculates the Euclidean distance 

between the target sample and all the weight vectors of the network. The neuron with the 

weight vector whose distance is closest to 0 is called the Best Matching Unit (BMU). The 

weights of the BMU and neurons close to it in the SOM lattice are updated and brought 

closer to the input vector. This updating process decreases with and as a function of the 

distance of the neurons from the BMU. It was originally developed to reduce the dimen-

sionality of samples by grouping standard features into clusters and to produce a set of 

new features with a dimensional space (R) reduced to the number of neurons the operator 

decided to use based on his knowledge of the analyzed sample. In our case, the input 

space consisted of 25 two-dimensional images (R25), while the output space was set to 4 

(R4) after several tests. The computational time for a single image processing is approxi-

mately 5′:35″ with a Ryzen 7 processor and 32 Gb RAM. The SOM segmentation output 

results in four binary images (0 = black and 1 = white), to which it is possible to apply 

morphological operators to determine the grain size distribution directly. Working on im-

ages where the components of the valuable minerals were already discriminated from the 

gangue allows a more accurate evaluation of the valuable mineral areas compared to the 

outputs obtained by working through the segmentation of a single image in which all the 

mineral components are mixed. A modal analysis was carried out for each segment based 

on morphological operators. After a few tests, several particulate area classes with a di-

ameter equal to 100 were chosen by application of this analytical setting it was able to 

obtain eight parameters: (i) area; (ii) major axis; (iii) minor axis; (iv) eccentricity; (v) orien-

tation; (vi) Euler number; (vii) equivalent diameter; (viii) perimeter. 
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2.4. The Pseudo-3D Surface 

An opaque mineral will undoubtedly be black in transmitted light because there is 

no way for light to pass through it. In polarized transmitted light, on the other hand, even 

non-opaque minerals show a certain intensity of reflected light on their own, but also due 

to internal reflections caused by anisotropy. These internal reflection effects are not pre-

sent in a few cases, and the non-opaque mineral or the porosity is black in the reflected 

light. To overcome this reading difficulty in reflected light images and optimize the seg-

mentation, we have implemented a method capable of simultaneously mapping minerals 

that exclusively transmit light and those that reflect it on the same surface. Among these, 

some reflect and partially transmit light. The method we have identified involves the con-

struction of a three-dimensional surface whose z-axis provides information on which are 

the minerals that entirely transmit light, those that transmit/reflect it partially, and those 

that reflect it. To obtain a pseudo-3D surface (P3DS), we have added in addition to the 

two-dimensional information (x, y) a different z-axis which is the Euclidean distance be-

tween the intensity in a grayscale of the image acquired by reflected light and the one in 

transmitted light (Figure 4). In this way, when the CCD captures the light coming exclu-

sively from an opaque mineral, the distance between the focal plane of the sample and the 

CCD detector will be shorter. Hence, the resulting difference will be equal to the intensity 

of the reflected light, and vice versa; if the light comes entirely from a non-opaque mineral, 

a long-distance beyond the focal plane of the reflected light will result and the Euclidean 

distance will be equivalent to the value of the intensity of the transmitted light, in shades 

of gray (Figure 5). 

 

Figure 4. Conceptual scheme of z-axis calculation for pseudo-surface. 

Following the diagram in Figure 4, the z-axis was obtained from the following For-

mula (2): 

𝑑 = √(𝑇𝑙 − 𝑅𝑙)
2 (2) 

where d is the Euclidean distance between the value (in shades of gray) of the transmitted 

light and the reflected light, Tl is the transmitted light, and Rl is the reflected light. The 

obtained values were then multiplied by the image metric scale calibration factor and used 

to determine the z-axis of the reconstructed pseudo-3D surface. In this way, the Euclidean 

distance d (a.u.) is reported in millimeters (mm). 
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Figure 5. Mapping of each pixel’s Euclidean distance between reflected and transmitted light. 

Brighter pixels indicate opaque minerals, while less bright pixels indicate non-opaque or partially 

opaque minerals. Situations, where non-opaque minerals cover opaque minerals (they show a 

dimmed brightness) are noticeable. 

2.5. Calibration Curve and Reflectivity 

According to Craig et al. [19], the reflectivity (R%) is given by the ratio between the 

intensity of the reflected light at certain wavelength, multiplied by 100, and then divided 

by the intensity of the light incident on the sample (in our case, 100%) as in the following 

Equation (3). 

R% =
𝐼𝑅𝑙 ∙ 100

𝐼𝐼𝑙
 (3) 

where IRl was the intensity of the reflected light, and IIl was the intensity of incident light. 

The optical microscope we used is not equipped with a device for directly measuring 

the reflectivity of opaque minerals; hence, considering all the problems relating to the op-

tical path, it was necessary to use an alternative method to obtain reliable results. Since 

we used the integral intensity of the luminance (a.u.) to measure the intensity of reflectiv-

ity, we substitute it in Formula (3) to obtain the reflectance values of the minerals present 

in the thin section. 

Building a calibration curve based on three reference materials with reflectivity val-

ues (R%) of 100, 50, and 0, we assumed that the integral intensity of luminance in the color 

space L* a * b * was directly correlated to R% (Figure 6). The slope coefficients (0.0013) and 

the intercept (0.9514) of the calibration line were used to recalculate the R% value of each 

segment obtained from the SOM neural network. Finally, we compared the results with 

the original Craig et al. [19] Equation (3). We established the correlation between the R% 

value of analyzed minerals and their luminance (a.u.) integral intensity, and the correla-

tion coefficient R2 was equal to 1. Since the luminance value of an image is always affected 

by the individual luminance values within an image, we multiplied single pixels of each 

segment by its values of d and in our calibration curve before performing the calculations 

with the Craig et al. Equation (3), to mitigate this influence. 

Given the generic equation of the line y = mx + q, we add a parameter k = d (Euclidean 

distance) which normalizes the luminance value to the only light reflected by the opaque 

minerals, discarding or attenuating the light transmitted by the semi-opaque or non-

opaque minerals. 
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Figure 6. Calibration curve of reflectivity (R%). 

3. SEM Validation 

SEM observation in backscattered electrons (SEM-BSE) on the area observed in opti-

cal microscopy, allowed the discrimination of goethite and magnetite minerals (bright 

grey in Figure 7a) and quartz and tourmaline (dark grey in Figure 7a). An autophase map 

was used to better discriminate the gangue phases by false color image (Figure 7b). 

 

Figure 7. SEM maps of the selected area. (a) BSE montage map (4 frames 70×); (b) phase map in false 

color; (c) quantitative EDS map of Fe; (d) quantitative EDS map of Si; (e) quantitative EDS map of 

Al (same area but the images are all upside down). 

From the Fe map in Figure 7c, it is possible to observe the texture of the magnetite 

which is replaced by goethite along fractures and grain boundaries. A series of 
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measurement points were carried out in a selected area to define the chemical composition 

of the mineralogical phases identified (Figure 8 and Table 1). 

 

Figure 8. Position of the EDS analysis points in the selected area. 

Table 1. Concentration of major elements (SEM-EDS). 

Element 

Goethite Magnetite Quartz Tourmaline 

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 

wt% 

O 25.82 26.07 29.24 29.45 53.3 34.91 35.17 

Al 0.6 0.55 0.56   13.39 13.46 

Na   0.16   1.3 1.18 

Mg      4.31 5.27 

Si 1.2 1.28 1.56 0.83 46.69 16.63 16.96 

P 0.76 0.68      

Ca 0.09  0.45 0.22  1.56 1.7 

Ti      0.25 0.57 

Fe 53.32 53.98 68.12 69.5  19.61 19.15 

Sr  0.24      

Total 81.78 82.8 100 100 99.99 91.95 93.46 

4. Results and Discussion 

The segmentation carried out with the SOM method allowed us to highlight the im-

age’s characteristics quickly and quantify their percentage relative to the total area of the 

image. Figure 9 displays a pseudo-color image of the segmentation obtained using the 

SOM neural network. Through this first step, it was possible to estimate the percentage of 

area occupied by each segment regarding the analyzed image total area. Green and brown 

segments (respectively segments 1 and 2, Figure 10) represent only a tiny area of the image 

(16% green and 19% brown), while blue and cyan segments (respectively segments 3 and 

4 in Figure 10) represents most of the image area (32% cyan and 34% blue). Segment 1 

(green) refers to the opaque minerals (magnetite and goethite) present in the section. Seg-

ment 2 (brown) shows quartz minerals. Segment 3 (blue) shows the occurrence of tour-

maline minerals. Finally, segment 4 (cyan) refers to mixed phases. At the used magnifica-

tion scale, the neural network has not been able to resolve the different mineral features 

present, whether they are opaque, semi-opaque, or non-opaque. This issue is also since 

the information derived from the images acquired with a CCD camera (at any color space 
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considered) (i.e., RGB, HSV, L* a* b*) are mutually influenced, and the only truly decor-

related information corresponds to those related to the mineral contact edges and textures 

present. Using different color spaces allowed us to segment well the areas where an 

opaque mineral is present from those where the opaque mineral is intergrown with a non-

opaque mineral and those where only a non-opaque mineral is present. Other types of 

information should be added further to distinguish the different minerals present within 

these areas (e.g., information on the reflectance/absorbance spectrum). Although this may 

seem a severe limitation of the current method, this is not the case, as, for most industrial 

applications to whom our work is addressed, preliminary investigations only need broad 

information on the degree of release of the mineral from its gangue. Image analyses at 

higher magnification can be carried out to overcome this issue if needed. 

At the used magnification scale, the analytical method applied was successful in 

clearly discriminating massive opaque minerals (magnetite and goethite) from gangue 

(quartz and tourmaline); a small portion of the areas (segment 4, 32%) displays the occur-

rence of opaque minerals disseminated in quartz or tourmaline. 

  

(a) (b) 

Figure 9. SOM segmentation image (a): cyan = 32% (mixed phases); brown = 19% (quartz); blue = 

34% (tourmaline); green = 16% (magnetite and goethite). Reflected light image (b) for comparation. 

Long side is 2.7mm. 

The actual SOM segments are two-dimensional images that contain only logical val-

ues (0 and 1), which indicate the presence of a feature. Thus, starting from these images, 

it is possible to use image morphological operators to return information on the areas, 

diameters, perimeters, and axes of the minerals present in each segment. Once the number 

of classes of interest is established, an algorithm can extract these characteristics. For our 

purposes, we decided to report exclusively on the area of the size classes of minerals ex-

pressed in mm2. The histograms of the segmented areas in Figure 10 show how most of 

the mineral grains areas are between 0.1 and 0.2 mm2. Mineral grain sizes greater than 1.6 

mm2 are also present but occur with a mean lower frequency than the total mineral par-

ticulate <1.6 mm2. Segments 2 in Figure 10b, 3 in Figure 10c and 4 in Figure 10d refer to 

semi-opaque, non-opaque, or mixed occurrence of minerals. The SOM segmentation ex-

clusively returns a reduction in the space of the incoming features, maintaining the same 

topologic information. From this, it is difficult to understand whether the segment we 

observe belongs to an opaque, semi-opaque, non-opaque mineral, or a mixture of these. 
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(a) (b) 

  

  

(c) (d) 

Figure 10. Segmented areas and their histograms from the grain size distribution algorithm. (a) Seg 

1 Eq. Area (mm2); (b) Seg 2 Eq. Area (mm2); (c) Seg 3 Eq. Area (mm2); (d) Seg 4 Eq. Area (mm2). 

The P3DS (Figure 11) highlights the roughness characteristics in a 3D space. This 3D 

map was effective in distinguishing between opaque and non-opaque mineral phases. 

Moreover, P3DS allows appreciating even the minor details, which are commonly unde-

tected or misidentified in a traditional 2D micro-photo. For instance, the presence of non-

opaque minerals in tiny areas or spots of 2D image could be detected, and the opaque 
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minerals can be well distinguished from the gangue groundmass (Figure 9). The P3DS 

represents an artificial construction that contains information about spatial topologies and 

the opaque/non-opaque nature of the mineral features represented. When observing the 

Euclidean distance (d) on the z-axis, it must be considered that the Z dimension is overes-

timated due to the different optical paths of the transmitted and reflected light. This over-

estimation is due to the thickness of the thin section slide. Opaque minerals will have 

greater distance (d > 0) values than semi-opaque and non-opaque minerals approaching 

d = 0. In the P3DS image of Figure 9, we observe a large portion of the two-dimensional 

space occupied by non-opaque minerals, representing our gangue (values of d ~0, in blu-

ish color). 

In contrast, the remaining portion of 2D space is occupied by opaque minerals (val-

ues of d~0.2, in ochre-yellowish color), which are the ores, and by opaque minerals inter-

grown with non-opaque gangue or a mixture of these two phases (values of d~0.1, in 

greenish color). The opaque minerals scattered in the gangue, are present as isolated 

spikes on the 3D surface or grouped in modest masses that emerge from the background 

and stand up in reliefs that gently fade towards the bottom gangue. If we look at the edge 

of an area of opaque minerals and compare it to areas with intermediate values of d (ap-

proximately between 0.1 and 0.15, in greenish color), we can observe that these are prob-

ably generated by opaque minerals finely intergrown with a non-opaque mineral. It is 

essential to highlight that this level is not clear in the SOM segmentation, but the modal 

estimation of the grain sizes is statistically representative of the sizes of the mineral pre-

sent. 

 

Figure 11. Pseudo-3D surface of the sample (P3DS). It shows the micro morphology of the surface. 

Taking in accounts the non-homogeneous point by point homogeneity of the reflected light from 

the sample it shows some interesting features. The color bar represents the Euclidean distance (d) 

expressed in mm; on the x and y axes, there are pixel numbers. The 3D reconstruction is specular to 

the original image. The x and y axes are in pixels. 

The contact borders between the different mineral species appear slopes-like due to 

the edge effect that attenuates the reflectance in the transition between an opaque and a 

non-opaque mineral; the greater the difference in reflectance between the observed mate-

rials is, the more this effect is accentuated [59,60]. This effect is difficult to evaluate on a 

two-dimensional image, while it is clear and evident in 3D surface representation. 

Table 2 displays the values of reflectivity (R%) in air. The calculation of R% was ob-

tained after correction with the Euclidean distance values (d) between the luminance of 

the micro-photo in RLM and TLM. 

The results show that segment 1, referring to opaque minerals, has the highest R% 

value. Segment 3, which includes mixing situations between opaque, semi-opaque, and 

non-opaque minerals, has a slightly lower R% than segment 1. On the contrary, segments 

2 and 3, referring to non-opaque minerals, show the lowest values of R%, very close to 0. 

This method allows the operator to bypass the particulate de-agglomeration procedure 
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before carrying out the analysis, which would typically require a grinding step, X-ray 

powder diffraction, and SEM-EDS on particulate to discriminate and identify the relevant 

mineral phases from the gangue. Furthermore, considering the statistical data obtained 

from the segmentation, we can quickly understand that segment 3 must also be consid-

ered in calculating the area occupied by metal ores, even if intergrown with non-opaque 

gangue minerals. 

Table 2. Values of reflectivity (R%) in air obtained after correction by the mean of the Euclidean 

distance d. 

Segments R% in Air with Craigh et al. Equation (3) R% in Air with Our Calibration 

seg 1 13.9 15.2 

seg 2 0.4 1.4 

seg 3 10.1 11.3 

seg 4 0.9 1.9 

The values shown in Table 2 must be considered relatively as for two factors: (i) we 

are considering a case in which the incident light is not monochromatic; (ii) there are sev-

eral attenuation factors of the light reflected from the sample that we are not considering 

within our method. Nevertheless, by building a set of reference standards using mono-

chromatic light and building a calibration curve for the optical path from the lamp to the 

sample and from the sample to the detection system, these numbers can be reported to 

values closer to those of reference for opaque minerals [19]. The determination of the area 

and grain size of valuable minerals serves as a guide for the grinding processes of the bulk 

rock. Being aware that most of the valuable minerals fall within a specific size, we can 

address the choice of grinding the rock to that size, hence increasing the degree of libera-

tion of the ores using quick and inexpensive analysis. In the three areas where opaque 

minerals trapped by gangue minerals occur, we observe that the size distribution falls 

mostly between 0.3 and 1.1 mm, with a slightly higher frequency between 0.3 and 0.4 mm. 

Hence, to obtain the maximum degree of liberation of the valuable minerals from the 

gangue, grinding the rock below 0.4 mm will be sufficient. The identification and quanti-

fication of mixed gangue phases, yet at first preliminary observation in thin section, can 

immediately help to identify a likely loss of economically exploitable minerals destined to 

accumulate within tailings and determine, in the first instance, optimization of the pro-

cessing strategies that do not involve further treatment of the waste materials, with con-

siderable economic advantages. Indeed, the methods of AM allow obtaining more precise 

analysis, providing the mineralogy and chemistry of the minerals present and the degree 

of liberation. However, these systems have very high analytical costs, which small com-

panies can hardly afford. Additionally, in some cases, expensive AM methods might 

sometimes be unnecessary due to the low complexity of the deposit mineralogy. 

Although information on the potential liberation of the ores is still essential. Hence, 

using RLM as a quick and cheap method might still represent a significant advantage to 

better address the processing route and benefit further industrial operation. 

5. Conclusions and Recommendations 

Thanks to the new and increasingly refined image analysis methods, optical micros-

copy is still a valid methodology for analyzing ore minerals. These methods allow, with 

good approximations, to model various fundamental parameters for Mineral Liberation 

Analysis (MLA), which is fundamental in mining and metallurgical applications. Using 

simple algorithms of Image Analyses and application of neural networks, we can approx-

imate a calculation of the area occupied by valuable ore minerals in respect to gangue. We 

can establish the grain size distribution for opaque and non-opaque minerals, although 

some errors due to the automatic determination algorithm must be considered. These er-

rors arise because the definition of the edge of the grains and their interior, being a 
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heuristic process based on the operator’s experience, can suffer from a certain degree of 

uncertainty. Without conducting preliminary grinding of the sample, we can determine 

directly from the thin section at which size we should grind the sample to obtain an opti-

mal liberation of ore minerals. 

We are aware that the resolution obtained by an optical microscope is very different 

from that possible with an SEM, which affects our measurement results. However, in this 

work, we have presented a fast and low-cost tool for a preliminary evaluation and imme-

diate identification of some fundamental parameters to consider while studying ore min-

erals for mining industry applications. 

Additional Comments 

This work is a preliminary study that refers to the first three levels of the technology 

readiness level (TRL1–3) and constitutes an experimental proof of concept (TRL3) that 

requires further tests to improve and validate the methodology; laboratory tests (TRL4) 

and application to industry (TRL5) will be further planned and carried out. Additional 

considerations on the hardware and the algorithms used and tested can be made based 

on the results of the tests. 

Future work would be to use higher-magnification objectives on a microscope capa-

ble of mapping areas to obtain more accurate results although the resolution of the optical 

microscope can never be smaller than the diffraction limit of light, even using adaptive 

lenses. Perhaps the future the development of new generation lenses made of metamate-

rials will allow us to go beyond this physical limit. For more precise and accurate results, 

we would like to be able to exploit higher-magnification objectives on a microscope capa-

ble of mapping areas. 

Author Contributions: Conceptualization, S.P. and L.S.; methodology, S.P.; software, S.P.; valida-

tion, L.S., G.D. and A.A.; formal analysis, S.P. and L.S.; investigation, S.P. and L.S.; resources, S.P.; 

data curation, S.P., L.S. and M.L.; writing—original draft preparation, S.P.; writing—review and 

editing, L.S. and M.L.; visualization, M.L., A.A, L.S. and G.D.; supervision, S.P.; project administra-

tion, S.P.; funding acquisition, S.P. and L.S. All authors have read and agreed to the published ver-

sion of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Not applicable. 

Acknowledgments: not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Clarke, A.; Eberhardt, C.; Eberhardt, C.N. Microscopy Techniques for Materials Science; Woodhead Publishing: Boca Raton, FL, 

USA, 2002. 

2. Hrstka, T.; Gottlieb, P.; Skala, R.; Breiter, K.; Motl, D. Automated mineralogy and petrology-applications of TESCAN Integrated 

Mineral Analyzer (TIMA). J. Geosci. 2018, 63, 47–63. 

3. Maloy, A.K.; Treiman, A.H. Evaluation of image classification routines for determining modal mineralogy of rocks from X-ray 

maps. Am. Mineral. 2007, 92, 1781–1788. 

4. Schulz, B.; Sandmann, D.; Gilbricht, S. SEM-based automated mineralogy and its application in geo-and material sciences. Min-

erals 2020, 10, 1004. 

5. Schofield, P.F.; Knight, K.S.; Covey-Crump, S.J.; Cressey, G.; Stretton, I.C. Accurate quantification of the modal mineralogy of 

rocks when image analysis is difficult. Mineral. Mag. 2002, 66, 189–200. 

6. McSween, H.Y., Jr.; McGlynn, I.O.; Rogers, A.D. Determining the modal mineralogy of Martian soils. J. Geophys. Res. Planets 

2010, 115-E00F12. https://doi.org/10.1029/2010JE003582. 

7. Koch, P.-H.; Lund, C.; Rosenkranz, J. Automated drill core mineralogical characterization method for texture classification and 

modal mineralogy estimation for geometallurgy. Miner. Eng. 2019, 136, 99–109. 

8. Koh, E.J.Y.; Amini, E.; McLachlan, G.J.; Beaton, N. Utilising convolutional neural networks to perform fast automated modal 

mineralogy analysis for thin-section optical microscopy. Miner. Eng. 2021, 173, 107230. 

9. Hoal, K.O.; Stammer, J.G.; Appleby, S.K.; Botha, J.; Ross, J.K.; Botha, P.W. Research in quantitative mineralogy: Examples from 

diverse applications. Miner. Eng. 2009, 22, 402–408. 



Minerals 2022, 12, 1348 15 of 16 
 

 

10. Sorby, H.C. XII. On the microscopical structure of meteorites. Proc. R. Soc. Lond. 1864, 13, 333–334. 

11. Hammond, C. The contribution of Henry Clifton Sorby to the study of reflected light microscopy of iron and steel. Hist. Metall. 

1989, 23, 1–8. 

12. Hardwick, D.A.; Williams, W.M. The birth of metallography- The work of Henry Clifton Sorby (1826–1908). Bull. Can. Inst. Min. 

Metall. 1980, 73, 143–144. 

13. Perrin, L. Henry Clifton Sorby and the beginnings of microscopial metallography. Doctoral dissertation, Oxford University, 

Oxford, UK. 1976. 

14. Ramdohr, P. The Ore Minerals and Their Intergrowths; Elsevier Ltd., Oxford, UK, 2013. 

15. Chryssoulis, S.L.; McMullen, J. Mineralogical investigation of gold ores. Dev. Miner. Process. 2005, 15, 21–71. 

16. Piller, H. Colour measurements in ore-microscopy. Miner. Depos. 1966, 1, 175–192. 

17. Ineson, P.R. Introduction to Practical Ore Microscopy; Routledge, Taylor & Francis Group: London and New York, UK and USA, 

2014. 

18. Bowie, S.H.U.; Taylor, K. A System of Ore Mineral Identification; Geological Survey: London, UK, 1959. 

19. Craig, J.R.; Vaughan, D.J.; Hagni, R.D. Ore Microscopy and Ore Petrography; Wiley: New York, NY, USA, 1981. 

20. Uytenbogaardt, W.; Burke, E.A.J. Tables for Microscopic Identification of Ore Minerals; Courier Corporation, New York, NY, USA, 

1985. 

21. Sánchez-Ramos, S.; Doménech-Carbó, A.; Gimeno-Adelantado, J.V.; Peris-Vicente, J. Analytical and mineralogical studies of 

ore and impurities from a chromite mineral using X-ray analysis, electrochemical and microscopy techniques. Talanta 2008, 74, 

1592–1597. 

22. Kahn, H.; Mano, E.S.; Tassinari, M. Image analysis coupled with a SEM-EDS applied to the characterization of a partially weath-

ered Zn-Pb ore. J. Miner. Mater. Charact. Eng. 2002, 1, 1–9. 

23. Donskoi, E.; Manuel, J.R.; Austin, P.; Poliakov, A.; Peterson, M.J.; Hapugoda, S. Comparative study of iron ore characterisation 

using a scanning electron microscope and optical image analysis. Appl. Earth Sci. 2013, 122, 217–229. 

24. Reyes, F.; Lin, Q.; Udoudo, O.; Dodds, C.; Lee, P.D.; Neethling, S.J. Calibrated X-ray micro-tomography for mineral ore quanti-

fication. Miner. Eng. 2017, 110, 122–130. 

25. Mohanan, S.; Bhoja, S.K.; Kumar, C.R.; Kumar, A.; Venugopalan, T. Estimation of ore mineralogy from analytical analysis of 

iron ore. Min. Metall. Explor. 2015, 32, 97–101. 

26. Gu, Y. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral lib-

eration analyser. J. Miner. Mater. Charact. Eng. 2003, 2, 33–41. 

27. Fandrich, R.; Gu, Y.; Burrows, D.; Moeller, K. Modern SEM-based mineral liberation analysis. Int. J. Miner. Process. 2007, 84, 310–

320. 

28. Gottlieb, P.; Wilkie, G.; Sutherland, D.; Ho-Tun, E.; Suthers, S.; Perera, K.; Jenkins, B.; Spencer, S.; Butcher, A.; Rayner, J. Using 

quantitative electron microscopy for process mineralogy applications. Jom 2000, 52, 24–25. 

29. Pirrie, D.; Butcher, A.R.; Power, M.R.; Gottlieb, P.; Miller, G.L. Rapid quantitative mineral and phase analysis using automated 

scanning electron microscopy (QemSCAN); potential applications in forensic geoscience. Geol. Soc. Lond. Spec. Publ. 2004, 232, 

123–136. 

30. Graham, S.D.; Brough, C.; Cropp, A. An introduction to ZEISS mineralogic mining and the correlation of light microscopy with 

automated mineralogy: A case study using BMS and PGM analysis of samples from a PGE-bearing chromite prospect. In Pro-

ceedings of the Precious Metals’15, Falmouth, UK, 13–14 May 2015; pp. 1–12. 

31. Ayling, B.; Rose, P.; Petty, S.; Zemach, E.; Drakos, P. QEMSCAN (Quantitative evaluation of minerals by scanning electron 

microscopy): Capability and application to fracture characterization in geothermal systems. In Proceedings of the Thirty-Sev-

enth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 30 January–1 February 2012. 

32. Andersen, J.C.Ø .; Rollinson, G.K.; Snook, B.; Herrington, R.; Fairhurst, R.J. Use of QEMSCAN®  for the characterization of Ni-

rich and Ni-poor goethite in laterite ores. Miner. Eng. 2009, 22, 1119–1129. 

33. Donskoi, E.; Manuel, J.; Austin, P.; Poliakov, A.; Peterson, M.; Hapugoda, S. Comparative study of iron ore characterisation by 

optical image analysis and QEMSCAN (TM). In Proceedings of the Iron Ore 2011, Perth, WA, Australia, 11–13 July 2011. 

34. Gu, Y.; Schouwstra, R.P.; Rule, C. The value of automated mineralogy. Miner. Eng. 2014, 58, 100–103. 

35. Harmon, R.S.; Lawley, C.J.M.; Watts, J.; Harraden, C.L.; Somers, A.M.; Hark, R.R. Laser-induced breakdown spectroscopy—An 

emerging analytical tool for mineral exploration. Minerals 2019, 9, 718. 

36. Nikonow, W.; Rammlmair, D.; Meima, J.A.; Schodlok, M.C. Advanced mineral characterization and petrographic analysis by 

μ-EDXRF, LIBS, HSI and hyperspectral data merging. Mineral. Petrol. 2019, 113, 417–431. 

37. Lawley, C.J.M.; Somers, A.M.; Kjarsgaard, B.A. Rapid geochemical imaging of rocks and minerals with handheld laser induced 

breakdown spectroscopy (LIBS). J. Geochem. Explor. 2021, 222, 106694. 

38. El Haddad, J.; de Lima Filho, E.S.; Vanier, F.; Harhira, A.; Padioleau, C.; Sabsabi, M.; Wilkie, G.; Blouin, A. Multiphase mineral 

identification and quantification by laser-induced breakdown spectroscopy. Miner. Eng. 2019, 134, 281–290. 

39. Senesi, G.S.; Capitelli, F. Compositional, mineralogical and structural investigation of meteorites by XRD and LIBS. In Hyper-

sonic Meteoroid Entry Physics; IOP Publishing: Bristol, UK, 2019. DOI: 10.1088/2053-2563/aae894ch5 

40. Haavisto, O.; Kauppinen, T.; Häkkänen, H. Laser-induced breakdown spectroscopy for rapid elemental analysis of drillcore. 

IFAC Proc. Vol. 2013, 46, 87–91. 



Minerals 2022, 12, 1348 16 of 16 
 

 

41. Mohamed, N.; Rifai, K.; Selmani, S.; Constantin, M.; Doucet, F.R.; Ö zcan, L.Ç .; Sabsabi, M.; Vidal, F. Chemical and Mineralogical 

Mapping of Platinum-Group Element Ore Samples Using Laser-Induced Breakdown Spectroscopy and Micro-X-ray Fluores-

cence. Geostand. Geoanal. Res. 2021, 45, 539–550. 

42. Paradis, M.-C.M.; Doucet, F.R.; Rifai, K.; Ö zcan, L.Ç .; Azami, N.; Vidal, F. ECORE: A new fast automated quantitative mineral 

and elemental core scanner. Minerals 2021, 11, 859. 

43. Rifai, K.; Michaud Paradis, M.-C.; Swierczek, Z.; Doucet, F.; Ö zcan, L.; Fayad, A.; Li, J.; Vidal, F. Emergences of new technology 

for ultrafast automated mineral phase identification and quantitative analysis using the CORIOSITY Laser-Induced Breakdown 

Spectroscopy (LIBS) system. Minerals 2020, 10, 918. 

44. Ross, L.; Russ, J.C. The image processing handbook. Microsc. Microanal. 2011, 17, 843. 

45. Kohonen, T. The self-organizing map. Neurocomputing 1998, 21, 1–6. 

46. Kohonen, T. Self-Organization and Associative Memory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. 

47. Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. 

48. Jiang, D.; Yang, Y.; Xia, M. Research on intrusion detection based on an improved SOM neural network. In Proceedings of the 

2009 Fifth International Conference on Information Assurance and Security, Xi’an, China, 18–20 August 2009; pp. 400–403. 

49. Chen, L.-P.; Liu, Y.-G.; Huang, Z.-X.; Shi, Y.-T. An improved SOM algorithm and its application to color feature extraction. 

Neural Comput. Appl. 2014, 24, 1759–1770. 

50. Smits, J.R.M.; Melssen, W.J.; Buydens, L.M.C.; Kateman, G. Using artificial neural networks for solving chemical problems: Part 

I. Multi-layer feed-forward networks. Chemom. Intell. Lab. Syst. 1994, 22, 165–189. 

51. Livingstone, D.J. Artificial Neural Networks: Methods and Applications; Springer: Totowa, NJ, USA, 2008. 

52. Zupan, J. Introduction to artificial neural network (ANN) methods: What they are and how to use them. Acta Chim. Slov. 1994, 

41, 327. 

53. Ng, H.P.; Ong, S.H.; Foong, K.W.C.; Goh, P.S.; Nowinski, W.L. Medical image segmentation using k-means clustering and 

improved watershed algorithm. In Proceedings of the 2006 IEEE Southwest Symposium on Image Analysis and Interpretation, 

Denver, CO, USA, 26–28 March 2006; pp. 61–65. 

54. Akinin, M.V.; Taganov, A.I.; Nikiforov, M.B.; Sokolova, A.V. Image segmentation algorithm based on self-organized Kohonen’s 

neural maps and tree pyramidal segmenter. In Proceedings of the 2015 4th Mediterranean Conference on Embedded Compu-

ting (MECO), Budva, Montenegro, 14–18 June 2015; pp. 168–170. 

55. Lee, Y.-K.; Rhodes, W.T. Nonlinear image processing by a rotating kernel transformation. Opt. Lett. 1990, 15, 1383–1385. 

56. Thum, C. Measurement of the entropy of an image with application to image focusing. Opt. Acta Int. J. Opt. 1984, 31, 203–211. 

57. Chang, D.-C.; Wu, W.-R. Image contrast enhancement based on a histogram transformation of local standard deviation. IEEE 

Trans. Med. Imaging 1998, 17, 518–531. 

58. Ranganath, A.; Senapati, M.R.; Sahu, P.K. Estimating the fractal dimension of images using pixel range calculation technique. 

Vis. Comput. 2021, 37, 635–650. 

59. Wood, B.J.; Strens, R.G.J. Diffuse reflectance spectra and optical properties of some sulphides and related minerals. Mineral. 

Mag. 1979, 43, 509–518. 

60. Poliakov, A.; Donskoi, E. Automated relief-based discrimination of non-opaque minerals in optical image analysis. Miner. Eng. 

2014, 55, 111–124. 


