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taught me as a young man that “In life, the easy things are not worth pursuing”. To my
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CHAPTER 0

INTRODUCTION

Spinors are geometric multilinear vectors in a vector space V which under the full rota-

tion of the coordinate system around an arbitrary axis change signs of their coefficients.

Formally, the space of spinors is defined as a fundamental representation of the associated

Clifford algebra acting on a vector space V or as a spin representation of an orthogonal

Lie algebra. Currently, spinors play a major role as a tool in detecting parity changes when

looking for hidden symmetries (supersymmetries) of spaces in mathematics and physics.

At the beginning of the twentieth century, Dirac defined the space of Dirac spinors, which

can be used to construct spinor bundles. Those are rank 2k complex vector bundles whose

fibres are representation for Spin groups. A few years later, the concept of algebraic spinors

as square roots of vector bundles on complex manifolds was introduced by Chevalley and

Cartan, who described their algebraic and geometric properties in [14]. We study certain

Abelian varieties obtained as quotients V/Γ satisfying the condition that the spaces of endo-

morphisms of their covering is isomorphic to a suitable Clifford algebras of some quadratic

complex vector space (or the complexification of a real quadratic space).

In the first chapter, we describe Abelian varieties with a principal polarization (denoted

as PPAV) and summarize their useful properties. This is background material, and we focus

on the comprehensive presentation of the results that we use later.

In Chapter 2, we define complex Clifford algebras and spinor modules as well as their

matrix representations. We describe properties of Clifford algebras and describe the (p, q)-

grade involutions and their connection with the (p, q)-Hermitian form for any real Clifford

algebra Cq(V ) and its complexification Cq(V ). Our approach gives us some geometric in-

sight and is computationally friendly. We use these involutions later to define polarizations

on Abelian varieties. We also present some results on spinor modules and their relations to
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half spinor modules.

In Chapter 3 we present our original work. We define spinor Abelian varieties, which

we denote as S∆, associated with the complex Clifford algebra Cq(V ) for a complex spinor

space ∆, where ∆ is a space of spinors for the Clifford algebra as well as a covering space

for our spinor Abelian variety.

Our results show that spinor Abelian varieties have interesting properties that differ-

entiate them from other PPAVs. First we prove in Proposition 3.2.8 that for any spinor

Abelian variety, its dual variety Pic0(S∆) is also a spinor Abelian variety.We describe

some intrinsic properties of spinor Abelian varieties coming from understanding of their

endomorphism structure. For example, Lemma 3.3.1 (Losing your hat lemma) intrinsi-

cally links Clifford multiplication, the representations of the associated Clifford algebra,

and the analytic representations of S∆. In Proposition 3.3.2 we describe the endomorphism

structure for a spinor Abelian variety S∆ with Clifford multiplication and compare it to the

integral subring Cq(V )Z of the Clifford algebra Cq(V ). We conclude this chapter with the

following decomposition theorem of spinor Abelian varieties.

Theorem 3.3.5 A spinor Abelian variety S∆ is fully decomposable, as a spinor Abelian

variety, as a product of 2k elliptic curves Ei of j-invariant 1728.

As an immediate consequence, we can state thatE×2k

i is itself a spinor Abelian variety with

Clifford multiplication on E×2k

i by Cq(V )Z induced from Clifford multiplication on S∆.

In Chapter 4 we construct two important examples of spinor Abelian varieties: the Dirac

spinor Abelian variety S∆2k
and the minimal left ideal PPAV denoted Sp,q for a Clifford al-

gebra of signature (p, q). The important benefit of working with the Dirac spinor Abelian

variety (as a complex torus) is that intrinsic properties (such as Clifford multiplication) can

be geometrically interpreted, due to the full decomposition of S∆2k
into a product of 2k

copies of suitable elliptic curves Ei. Hence, various actions can be studied on the compo-

nents. In particular, in Proposition 4.1.11 we prove that Dirac spinor Abelian varieties S∆2k

2



decompose as direct sums of half spinor Abelian varieties, S∆2k
= S+

∆2k
⊕ S−

∆2k
, and the

even Clifford algebra (C+
2k)Z acts diagonally on each component. Note that in Appendix

A we provide an alternative construction of Dirac spinor Abelian varieties by constructing

spinor tori from the tensor products of divison algebras.

The second example in this chapter is the construction of minimal left ideal spinor

Abelian varieties. In this case, the Clifford multiplication on Sp,q is given by an action

on equivalence classes that are given by an equivalence on the minimal left ideal. Viewing

Clifford multiplication in this manner avoids having to work with large matrices when p+q

is large.

In Chapter 5 we study actions on 2-torsion points of our Dirac spinor Abelian varieties

S∆2k
and analyze combinatorial properties of the Clifford multiplication on this group. We

provide a table summarizing the Clifford actions in low dimensions in Appendix B.

We start Chapter 6 by asking the following question: does there exist a curve such that

its Jacobian is fully decomposable as a PPAV and isomorphic to the product of elliptic

curves? To answer the question, we construct a nodal elliptic chain curve, each with j-

invariant 1728, and prove the following.

Proposition 6.1.1: There exists a class of stable nodal curves of compact type (i.e. with

a tree structure) of genus 2k, which we denote C∆, such that the irreducible components

are elliptic curves, {Ej} ∼= E1728, and we have the Jacobian decomposition J(C∆) ∼=∏2k

i=1E1728.

The above nodal curves of genus 2k constructed by transversal gluing of elliptic com-

ponents at the points of order 2 fixed by Clifford multiplication result in curves whose

generalized Jacobian is in an isomorphism class of some spinor tori S∆. Hence Jaco-

bians of these curves have all the symmetries given by the multiplicative generators, and

actions here permute the irreducible components based on the symmetries of the lattice

Γ2k acting on S∆. Moreover, we are able to extend the Clifford actions to the product of
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Picard groups of the components Pic0(E1) × · · · × Pic0(E2k) (and as a consequence to

Picd(E1)× · · · × Picd(E2k).

0.1 List of Symbols

• V - a vector space.

• (V, q) or (V,Q)- a quadratic vector space with a form q or Q.

• H - a Hermitian form on V .

• E - the symplectic form, imaginary part of H on V , E = imH .

• R(n)-the matrix algebra of n by n real matrices

• C(n)-the matrix algebra of n by n real matrices

• C(2k) - the matrix algebra of 2k × 2k complex matrices.

• Cq(V )- the Clifford algebra of quadratic vector space V with a quadratic form q.

• Cq(V ) -the complexification of Cq(V ).

• Cq(V )Z -the integral subring of Cq(V ).

• Γ - a discrete lattice in V .

• V/Γ - a quotient torus of V by a discrete lattice in Γ.

• Γq(V ) - the Clifford group of the Clifford algebra Cq(V ).

• Γ̂q(V ) - the finite group of the multiplicative generators Clifford algebra Cq(V ).

• u⋆p,q -the (p, q) grade involution.

• u†p,q -the (p, q) Hermitian conjugation.

• ∆ -a unitary spinor module for the Clifford algebra Cq(V ).
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• Rp,q -the real Clifford algebra of signature p, q.

• Cp,q - the complexification Rp,q of the quadratic space Rp+q of signature (p, q).

• C2k = R0,2k ⊗ C.

• ∆2k := C2k - the space of Dirac spinors for the Clifford algebra C2k.

• ∆±- the space of Half spinor modules associated with ∆.

• S∆- the spinor Abelian variety associated to the spinor module ∆ .

• T0S∆ - the covering space of S∆.

• ρ̂ : Cq(V )Z → End(S∆) - Clifford multiplication on our spinor torus S∆.

• JS∆
2 - the group of 2-torsion points for S∆.

• Pic(S∆) - the variety of line bundles on S∆.

• L∆ - the principal polarization for S∆.

• Pic0(S∆) - the group of degree 0 line bundles, vanishing c1(L∆).

• L∆ - the principal polarization for S∆.

• S∆2k
- the Dirac spinor Abelian variety.

• E1728-any elliptic curve of j-invariant 1728

• E×2k

i - the product of 2k of the elliptic curves, Ei =
C

Z⊕ i · Z
.

• Ĥ - the Hermitian form on the covering space of E×2k .

• Cp,qf
H - the minimal left ideal on the Clifford algebra Cp,q induced from the Hermi-

tian idempotent fH .

• Z[i]p,qfH the full rank lattice of Cp,qf
H .
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• Zp,q-the restriction of Rp,q to integral coefficients.

• Sp,q - the minimal left ideal spinor Abelian variety associated to Cp,qf
H .

• C∆ - a nodal curve of compact type of genus 2k.

• Pic0(C∆) - the Picard group of line bundles of degree zero on the curve C∆.
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CHAPTER 1

BACKGROUND MATERIAL AND INTRODUCTORY EXAMPLES

In this section we introduce Principally Polarized Abelian Varieties (abbreviated as PPAVs)

and describe their properties following known results.

1.1 Definitions and introductory concepts on Abelian varieties

We start by providing background definitions. This introductory section follows presenta-

tions in [8], [25], [33],[53]. For this manuscript we only consider vector spaces over K = C

or R of finite dimension.

Definition 1.1.1. Let V be a finite dimensional complex vector space. A Hermitian metric

(or a positive definite Hermitian form) H is a complex bi-additive map, H : V × V → C,

with the following properties.

1. H is complex linear in the first argument.

2. H has conjugate symmetry, that is, H(v, w) = H(w, v) for all v, w ∈ V .

3. H is a positive definite real valued quadratic form on V , when H(v, v) ≥ 0 and

H(v, v) ∈ R for all v ∈ V .

A finite dimensional complex vector space V with a Hermitian metric H is called a Her-

mitian (or unitary) vector space.

Note that the above conjugate antisymmetry implies that H is complex anti linear in

the second argument. It is easy to see that the imaginary part for this Hermitian form H on

V , which we denote as E, i.e. E = im H , is a real skew symmetric form on V .

Definition 1.1.2. Let V be a finite dimensional complex vector space. A lattice Γ in V is a

discrete subgroup such that the quotient V/Γ is compact. That is, Γ is a free Abelian group
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of full rank, i.e. rk Γ = dimR V . The quotient V/Γ of the complex vector space V by the

lattice Γ is a called complex torus.

We are interested in the above type of Abelian varieties, i.e. complex tori with a polar-

ization. Now we define polarizations on a complex torus V/Γ using a Hermitian form on

the underlying vector space.

Definition 1.1.3. A complex torus V/Γ is an Abelian variety if there exists a positive defi-

nite Hermitian formH on V such that the imaginary part of the Hermitian formE = im H

is integral on the lattice Γ ⊂ V . Then the pair (V/Γ, H) is called a polarized Abelian va-

riety.

Remark 1.1.4. 1. One may also define a polarization on V/Γ as a first Chern class c1(L) =

H of a positive definite line bundleL ∈ PicH(V/Γ), relating the positive definite Hermitian

form on V with our polarization.

2. Alternatively, we can define a polarization as an alternating form E : Γ × Γ → Z

acting on the lattice Γ such that it gives an extension to real scalars, i.e. Γ ⊗ R = V ,

which is defined as E : V × V → R, where E(iv, iw) = E(v, w) and E(iv, v) > 0. These

conditions are known as the Riemann relations, and when Riemann relations are satisfied

by an alternating (1, 1) form E, we obtain a related polarization on the Abelian variety.

Summarizing the above, we have the following equivalent categorizations of polariza-

tions on V/Γ:

1. Given by a positive definite Hermitian form H , such that im H = E is integral on

the lattice Γ, that, is E : Γ× Γ → Z.

2. Given by an alternating form E : Γ × Γ → Z, whose R bilinear extension to VR ×

VR → R satisfies E(iv, iw) = E(v, w), and E(iv, v) > 0.

3. Given by a positive definite line bundle L on V/Γ, such that its first Chern class is

represented by the positive definite Hermitian form H or integral on Γ, or equiva-

lently the skew-symmetric form E which satisfies the Riemann relations.
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We only consider V of finite dimension. Since our Γ is always of even rank (say = 2g for

some integer g), we may consider it as a Z-module. Hence, the skew symmetric form E

giving us our polarization can be defined in some basis γ1, . . . , γ2g as a skew-symmetric

matrix, E =

 0g×g D

−D 0g×g

 , where the diagonal matrix D = diag (d1, . . . , dg) ∈

Zg
≥0, and where the entries are ordered by the relation di|di+1. This way the sequence

(d1, . . . , dg) is unique and defines a skew-symmetric form up to an isomorphism. Therefore

the sequence D is called the type of polarization.

Definition 1.1.5. Let V be a finite dimensional complex vector space. An Abelian variety

V/Γ with the polarization form E is said to be principally polarized if the polarization

type of E is given by D = Ig×g. Equivalently, V/Γ is a principally polarized Abelian

variety if det(E) = 1, for the form E defining the polarization of our Abelian variety.

An Abelian variety with a principal polarization is called a principally polarized Abelian

variety, which we denote PPAV hereafter.

Lemma 1.1.6. Elliptic curves are PPAVs of dimension one over C.

Proof. Since every elliptic curve E is analytically isomorphic to a complex torus C/Γ,

where the lattice Γ has a basis of the form 1, τ where τ is a vector in the Siegel upper half

plane H1 ⊂ C. Hence we can consider our elliptic curve as the quotient Eτ =
C

Z⊕ τZ
,

where the principal polarization is given by H(v, w) =
v · w̄
imτ

, defining a principal polar-

ization, hence making Eτ a one dimensional PPAV.

Definition 1.1.7. An elliptic curve is said to have complex multiplication if its endomor-

phism ring End(E) is strictly greater that Z. If an elliptic curve E has complex multipli-

cation, then τ ∈ Q(
√
−d), where d ∈ Z and d > 0.

For elliptic curves with complex multiplication, the endomorphism ring is a subring

of the associated quadratic number ring End(E) ⊂ Q(
√
−d). When τ = i, the elliptic

curve is defined by the lattice spanned by 1 and i, the square lattice of dimension one. We
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denote this elliptic curve by Ei =
C

Z⊕ i · Z
. This elliptic curve has the Gaussians as its

endomorphism ring, End(Ei) = Z[i], and its automorphism group is the multiplicative

group generated by i ∈ C, Aut(Ei) ∼= ⟨i⟩ = {±1,±i}. Now since Ei has an automor-

phism group of order 4, elliptic curves in this isomorphism class are of j-invariant 1728.

Moreover, the Weierstrass cubic equation that defines Ei in P2 can be written in the form

y2z = x3 − xz2. This isomorphism class has j-invariant 1728 (see also [53]).

Remark 1.1.8. Note that from now on, when we speak of the elliptic curve generated by

the square lattice generated by 1, i, we denote it as Ei. We denote curves of j-invariant

1728, in the same isomorphism class of Ei, as E1728.

The Moduli space Ag

To classify the PPAVs defined in the previous section, we consider the Siegel upper half

space Hg = {τ ∈ Cg×g : τ t = τ ; im(τ) > 0}, where for each τ ∈ Hg we can associate the

lattice Γτ = Zg ⊕ τZg. Hence the quotient Aτ = Cg/Γτ gives us the underlying torus. The

canonically chosen symplectic form on Γτ extends naturally to an R-alternating (1, 1) form

E satisfying the Riemann conditions as in Remark 1.1.4, and moreover, E is a principal

polarization. Thus Aτ is a PPAV for a chosen τ ∈ Hg. Hence, the Siegel upper half space

may be viewed as a parameter space of period matrices for a PPAV of dimension g.

Now we consider Sp(2g,Z) as the symplectic group, i.e. integral matrices that preserve

the symplectic form on the lattice Γτ . This group acts via the modular action on the Siegel

upper half plane, γ · τ = (τ · c + d)−1(τ · a + b), where γ =

 a b

c d

 ∈ Sp(2g,Z).

It is known that via this action two lattices are isomorphic if one can be transformed into

the other by a Sp(2g,Z) action. It turns out that the quotient is in a natural one-to-one

correspondence with the isomorphism classes of PPAV of complex dimension g, which we

denote Ag. Now Ag is naturally a quasi-projective variety of dimension
(g + 1)(g)

2
, and

Hg/Sp(2g,Z) ∼= Ag is indeed an isomorphism (see [8], [27]).
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From the analytical perspective, for any τ ∈ Hg, the Riemann theta function is a map

θ : Hg×Cg → C defined by the Fourier series θτ (z) =
∑

n∈Zg exp(π ·intτ ·n+2π ·int ·z),

where this series converges absolutely and uniformly on compact sets of Hg(see [47] for

more on the Riemann theta function). The function θτ is an even function, hence θτ (−z) =

θτ (z). For a fixed τ ∈ Hg, the zero locus of the theta function, Z(θτ ) = {z ∈ Cg : θτ (z) =

0}, projected to Aτ gives us a divisor invariant under shifts by the lattice Γτ = Zg ⊕ τZg.

This gives us the following definition.

Definition 1.1.9. The zero locus of the theta function, Z(θτ ) = {z ∈ Cg : θτ (z) = 0},

projected to Aτ gives us a divisor invariant under shifts by the lattice Γτ = Zg ⊕ τZg. This

divisor gives a well-defined subvariety, Θτ ⊂ Cg

Zg ⊕ τZg
=: Aτ , defining the symmetric

theta divisor of our PPAV Aτ .

Example 1.1.10. Following the construction in [36][37], we consider complex elliptic

curves E1, . . . , En. We can view each curve as a complex torus given by the quotient

Ej =
C

Z⊕ zj · Z
. Hence on the product E1 × · · · × En the period matrix can be repre-

sented as the diagonal matrix τ = diag(z1, . . . , zn) ∈ Hn, where each complex number

zj complex analytically defines our elliptic curve Ej . Hence we can establish a canonical

isomorphism between E1 × · · · × En and the complex torus
Cn

(In, τ) · Z2n
=

Cn

Zn ⊕ τ · Zn
,

together with the canonical polarization on the product Abelian variety E1 × · · · × En

given by L0 = p∗1OE1 ⊗ · · · ⊗ p∗nOEn , where pj : E1 × · · · × En → Ej is the pro-

jection to the jth coordinate map. The first Chern class of the canonical line bundle is

c1(L0) =

 0 I

−I 0

 , thus defining a principal polarization on E1 × · · · × En.

Symmetric theta divisors and 2-torsion points

We begin this section with the definition of a symmetric line bundle.

Definition 1.1.11. A line bundle Lτ ∈ Pic(Aτ ) is a symmetric line bundle if it satisfies

[−1]∗Lτ = Lτ , where [−1]∗ : Pic(Aτ ) → Pic(Aτ ) is the pull back of the involution
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[−1] : x 7→ −x, for all x ∈ Aτ . The associated theta divisor Θτ of a symmetric line bundle

Lτ is called a symmetric theta divisor for a given PPAV Aτ ∈ Ag.

Note that for a given theta divisor Θτ , the even property of the associated Riemann theta

function gives us the symmetry property Θτ = −Θτ ; that is, the associated theta divisor is

a symmetric theta divisor (for details see [26], [27]).

Definition 1.1.12. We define Aτ [n] = {p ∈ Aτ : n · p = 0} as the set of n-torsion points

on our Abelian variety Aτ . This can also be thought of as the kernel of the multiplication

by n endomorphism, which we denote by [n].

Note that the set of 2-torsion points Aτ [2] in Aτ can be naturally identified, as a sym-

plectic vector space, with F2g
2 . Here we view elements as [ ϵδ ] = [ (ϵ1,...,ϵg)(δ1,...,δg)

], where [ ϵδ ] can

be seen as the vector (ϵ1, . . . , ϵg, δ1, . . . , δg)t ∈ F2g
2 and with ϵi, δj ∈ F2. This identification

comes from the group isomorphism ϕ : F2g
2

∼=−→ Aτ [2], where [ ϵδ ] 7→ τ ·ϵ+δ
2

. Due to this

identification, elements of F2g
2 are known as period characteristics.

Now we introduce the concept of symmetric translates for bundles.

Definition 1.1.13. The symmetric translates of the line bundle Lτ that defines our polar-

ization are the line bundles L 1
2
(ϵτ+δ), where 1

2
(ϵτ + δ) ∈ Aτ [2] as above. The associated

symmetric theta divisor for each symmetric translate is denoted by t∗1
2
(ϵτ+δ)

Θ = Θ 1
2
(ϵτ+δ),

where tx is the translation morphism associated to any point x ∈ Aτ .

Note that there are a total of 22g unique symmetric theta divisors, one for each 2-torsion

point ϵ ∈ Aτ [2]. These symmetric theta divisors Θϵ, however, have the same Chern class.

Thus for a fixed polarization there are 22g non-isomorphic representatives for the Chern

class c1(Lτ ) = H (see [8], [27]).

Definition 1.1.14. The set of symmetric theta divisors on the torus Aτ is defined as

SymTh(Aτ ) = {Θ 1
2
(ϵτ+δ) :

1

2
(ϵτ + δ) ∈ Aτ [2]}.
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The associated symmetric theta divisor to the origin 0 ∈ Aτ [2] is the one that defines the

principal polarization, i.e. Θ0 = Θτ .

We note here that we have a total of 22g symmetric theta divisors and they are in one-

to-one correspondence with the set PicH(Aτ )s = {L ∈ Pic(Aτ ) : [−1]∗L = L, c1(Lτ ) =

H}. The bijection is established via Θ 1
2
(ϵτ+δ) 7→ L 1

2
(ϵτ+δ) = OAτ (Θ 1

2
(ϵτ+δ)). Hence for all

2-torsion points, we can translate line bundles of the form L 1
2
(ϵτ+δ) = OAτ (Θ 1

2
(ϵτ+δ)). Now

PicHs (Aτ ) is a torsor over Aτ [2]. Here the affine action is given by Aτ [2] × PicHs (Aτ ) →

PicHs (Aτ ), ϵ · L = t∗ϵL (see for details [22], [26], [27]).

Jacobians and theta characteristics

This introductory section is based on [8], [22], [28]. Let C be a smooth complex irre-

ducible projective curve of genus g and J(C) its Jacobian variety. Then following known

classical results, we can consider J(C) as a PPAV, as well as a projective variety. Then

J(C) considered as a PPAV has an associated symmetric theta divisor Θτ ⊂ J(C) that

defines an ample symmetric line bundle Lτ whose first Chern class c1(L) = H is given

by the Hermitian form on H0(C, ωC)
∗ that defines the principal polarization induced from

the intersection symplectic form on the canonical symplectic basis on the lattice H1(C,Z).

Therefore, the symmetric theta divisor Θτ can be analytically viewed as the zero locus of

the Riemann theta function. On the other hand, from the algebraic geometry point of view,

J(C) is defined as the algebraic group Pic0(C) = {[L] ∈ Pic(C) : deg(L) = 0}. The

groups J(C) and Pic0(C) are isomorphic by the Abel-Jacobi map α : Pic0(C) → J(C)

given by [D =
∑

i Pi − Qi] 7→ (
∑

i

∫ Qi

Pi
ω1 . . . ,

∑
i

∫ Qi

Pi
ωg) mod H1(C,Z). The sym-

metric theta divisor can be described algebraically as follows: for a fixed line bundle

L ∈ Pic0(C), consider ΘL = {M ∈ J(C) : h0(M ⊗ L) > 0} as the corresponding

algebraic theta divisor. Also, J(C) = Pic0(C) has a canonical identification with Picd(C)

for any d ∈ N. This bijection is done by choosing a line bundle Ld ∈ Picd(C) and, for

any M ∈ Pic0(C), using the map M 7→ M ⊗ Ld, which actually defines a non-canonical
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isomorphism [Ld] : J(C)
∼=−→ Picd(C).

When d = g, we have the option of viewing the Jacobian as Picg−1(C) or Pic0(C)

via the above isomorphism. Considering J(C) as Picg−1(C), we have a natural choice of

theta divisor given by the Brill-Noether locus variety Wg−1 = {L ∈ Picg−1(C) : h0(L) ≥

1} ⊂ Picg−1(C). This gives us a useful description of symmetric theta divisors on J(C).

The Brill-Noether locus W 0
g−1 is the natural polarization Θ ⊂ Picg−1(C), and by what is

known as the Riemann-Kempf theorem, we can define the Brill-Noether locus as points of

the theta divisor with multiplicity greater than r + 1.

We now recall a definition of another sublocus of Picg−1(C), the sublocus of line bun-

dles that are square roots of the canonical bundle ωC .

Definition 1.1.15. A theta characteristic on a smooth complex irreducible projective curve

C of genus g and J(C) is a a square root of the canonical line bundle, that is, a line bundle

κ ∈ Picg−1(C) such that κ⊗2 ∼= ωC . We denote the set of all theta characteristics as

Th(C) = {κ ∈ Picg−1(C) : κ⊗2 ∼= ωC}. A theta characteristic is even (respectively odd)

according to the parity of its global sections: if h0(κ) ≡ 0 mod 2 (respectively h0(κ) ≡ 1

mod 2). An even theta characteristic with global sections is a vanishing theta null.

Note, using a counting argument, that every curve C of genus g possesses 22g theta

characteristics, where #Thodd(C) = 2g−1(2g − 1) and #Theven(C) = 2g−1(2g + 1). Each

theta characteristic κ ∈ Th(C) corresponds to a symmetric theta divisor Θκ.

When we view the Jacobian as Pic0(C), the symmetric theta divisor obtained by the

theta characteristic κ ∈ Th(C) is given by Θκ = {M ∈ Pic0(C) : h0(M ⊗ κ) > 0}.

The set of theta characteristics is an affine space (which can also be thought of as a torsor)

over Pic0(C)[2] = {L ∈ Pic0(C) : L⊗2 ∼= OC}. That is, if we take any two different

characteristics κ, κ′ ∈ Th(C), they differ by some 2-torsion point on Pic0(C). In this

case the transitive action Pic0(C)[2] × Th(C) → Th(C) is given by (L, κ) 7→ L ⊗ κ

where (L ⊗ κ)⊗2 ∼= L⊗2 ⊗ κ⊗2 ∼= OC ⊗ ωC
∼= ωC , which implies κ ⊗ L ∈ Th(C) for

all L ∈ Pic0(C)[2]. Thus for a fixed theta characteristic κ ∈ Th(C), the restriction of the
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isomorphism [κ] : Pic0(C)[2]
∼=−→ Picg−1(C) to Th(C) defines a non canonical bijection,

allowing us to describe Th(C) in terms of points of order 2, via Th(C) = {L ⊗ κ : L ∈

Pic0(C)[2]}.

1.2 Endomorphisms on Abelian varieties

In this section we briefly summarize useful facts on Abelian varieties and their endomor-

phisms (for more background on the topics covered in this sections, see [8], [21]). In this

section we let A = V/Γ where V is a complex vector space of dimension g, Γ is full rank

lattice that defines A as a complex torus, and L is its polarization.

Definition 1.2.1. A homomorphism of A to itself as a homomorphism of complex Lie

groups is an endomorphism. Any endomorphism whose kernel is a finite group is called

an isogeny.

Note that the endomorphisms ofA in the above definition are equivalent to holomorphic

maps from A to itself that are compatible with the group structure of A, and send the origin

to itself; moreover, an endomorphism f is an isogeny if im(f) = A.

Definition 1.2.2. For any Abelian variety A, End(A) is the ring of endomorphisms of the

polarized Abelian variety A.

The endomorphism ring End(A) is itself a unital associative ring with multiplication

defined by composition and addition is given pointwise. Any endomorphism f ∈ End(A)

is given by a C linear map from V to itself, such that its restriction to the lattice Γ is

contained in the lattice. This prompts the following definition.

Definition 1.2.3. LetA be a polarized Abelian variety with the endomorphism ringEnd(A).

End(A) induces two injective ring homomorphisms: τa : End(A) → EndC(V ) ∼= C(dimV )

given by τa(f) = fa, and τr : End(A) → EndZ(Γ) ∼= Z(2 · dimV ) given by τr(f) = fr.

τa is called the analytic representation, and τr the rational representation.
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An endomorphism f ∈ End(A) and both representations are related by the equation

τa(f)
∣∣
Γ
= τr(f); moreover, as we see in the above definition, the analytic and rational

representations can give us matrix representations of the endomorphism ring End(A).

Definition 1.2.4. An automorphism of Abelian varieties is an isomorphism of complex

Algebraic groups f : A→ A such that f ∗L = L. The set of automorphisms forms a group,

denoted Aut(A).

For polarized Abelian varieties it is well known that the automorphism group is finite

(see [8]), and generally this group can be through of as the group of units of the endomor-

phism ring End(A).

Remark 1.2.5. Note that a polarization viewed as a line bundle L on our Abelian variety

A = V/Γ induces an isogeny between the Abelian variety and its dual variety viewed as

Pic0(V/Γ). The isogeny is given by x 7→ t∗xL ⊗ L−1, and when the induced map is an

isomorphism, our polarization L is a principal polarization.

In [8] we see that for polarized Abelian varieties A = V/Γ, Aut(A) is a finite group.

Having certain automorphisms can provide us with information about how the PPAV A

decomposes as a product of elliptic curves.

Proposition 1.2.6. Suppose that f ∈ Aut(A) is an automorphism of order d ≥ 3 with

τa(f) = ζd·idV , where ζd is a d-th root of unity. Then d ∈ {3, 4, 6}, andA ∼= E×· · ·×E =:

E× dimV , where E denotes the elliptic curve admitting automorphisms of order d.

Proof: See [8].

Hence one can conclude that if, for some f ∈ Aut(A), the matrix representation that

defines τa(f) in C(dimV ) is of the form i · IdimV ∈ C(dimV ), then A fully decomposes

as a product of elliptic curves of j-invariant 1728, that is, isomorphic to E(i) =
C

Z⊕ iZ
.

16



CHAPTER 2

CLIFFORD ALGEBRAS AND SPINOR MODULES

In this chapter we focus on real Clifford algebras Cq(V ) for a real vector space V and their

complexifications Cq(V ), their spinor modules, and associated Hermitian and Euclidean

structures. We start by recalling useful definitions and then discussing some of the known

constructions and facts. We also prove several useful properties in the context of Clifford

algebras.

2.1 Quadratic vector spaces and associated structures

We begin with the definition of a quadratic vector space over the field K. In our case K = R

or C unless specified otherwise.

Definition 2.1.1. Let V be an n-dimensional K vector space with a nondegenerate sym-

metric bilinear form Q. We define the quadratic form q in terms of the bilinear form Q, via

q(v) = Q(v, v) for any v ∈ V . Such a vector space is known as a quadratic space and is

denoted (V, q).

We define for real and complex vector spaces their Euclidean and Hermitian structures.

Definition 2.1.2. 1. Let V be a real vector space. A Euclidean structure on V is a

nondegenerate, symmetric, positive definite bilinear form ⟨ , ⟩ on V . A vector space

V with a Euclidean structure ⟨ , ⟩ is called a Euclidean space, usually denoted by

(V, ⟨, ⟩). The real number ⟨v, w⟩ is the Euclidean inner product for vectors v, w ∈ V.

2. Let V be a complex vector space. A Hermitian structure on V is a nondegenerate,

‘Hermitian symmetric’ formH linear in the first argument on V . By ‘Hermitian sym-

metric’ we mean that the Hermitian form satisfies the property H(z, w) = H(w, z)

for all z, w ∈ V .

17



3. A vector space V with a Hermitian structure H is called Hermitian vector space,

usually denoted by (V,H). The complex form defines the Hermitian inner product

H(z, w) for vectors z, w ∈ V (and is usually not positive definite). When H(z, w) is

positive definite on V , then (V,H) is a finite-dimensional Hilbert space.

Remark 2.1.3. For any real quadratic vector space V over R, we denote its complexi-

fication by VC = V ⊗R C, where the associated quadratic form (respectively Hermitian

structure) is obtained by extending the real scalars to complex scalars. For instance, when

given a Euclidean structure on a real vector space V by the dot product ⟨ , ⟩, the associated

Hermitian structure on the complexified space V ⊗C can be defined by H(v, w) = ⟨v, w̄⟩.

The complexification of any real quadratic form is obtained by the parallelogram identity.

For K = C, any finite-dimensional Hermitian quadratic space is unitarily isomorphic to Cn

with basis v1, . . . , vn orthogonal with respect to ⟨ , ⟩. Then for any nondegenerate quadratic

form Q we can reorganize the basis in such a way that Q(vi) > 0 for i = 1, 2, . . . , p, i.e.

for the first p basis vectors, and Q(vi) < 0 for the remaining ones ([45]).

Definition 2.1.4. Let (V,Q) be a quadratic space of dimension p + q = n. We say Q is

of signature (p, q) if for any orthonormal basis, with respects to the associated symmetric

bi-linear form that defines Q, v1, . . . , vp+q, we have Q(vi) = 1 for i = 1, 2, . . . , p and

Q(vi) = −1 for i = p+ 1, . . . , p+ q.

Definition 2.1.5. For the Euclidean space Rn with a quadratic form Q of signature (p, q)

such that p+q = n, defined by the formQp,q(x) =
∑p

j=1(x
j)2−

∑q
j=1(x

j)2, the associated

quadratic space is denoted by Rp,q with the associated Clifford algebra defined as Rp,q, with

complexification Cp,q = Rp,q ⊗R C (see the next section for definitions).

2.2 The Clifford algebra of a quadratic vector space

In this section we define the Clifford algebra associated to a quadratic vector space (V,Q)

where (p, q) is the signature. From now on we write (V, q), where q now symbolizes the
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quadratic form on V (and the number q is also the negative signature of the form). While

this may be confusing, this is a standard notation used in the case of Clifford algebras.

Definition 2.2.1. Let (V, q) be a quadratic vector space over R, where the form q is of

signature (p,q). Let V ⊗ be the tensor algebra associated to (V, q). We define the ideal

generated by q as Iq = ⟨v ⊗ v − q(v)1V : v ∈ V ⟩. The Clifford algebra associated to

the quadratic vector space (V, q) is the quotient Cq(V ) = V ⊗/Iq. For any real quadratic

space (V, q), we denote by Cq(V ) the natural complexification of the Clifford algebra; that

is, Cq(V ) = Cq(V )⊗R C.

We denote the k-th graded component of any element u ∈ Cq(V ) in Clifford algebra

by ⟨u⟩k =
∑

I⊂[n]:|I|=k uIvI , where I = (j1, . . . , jk) with 1 ≤ j1 < · · · < jk ≤ n

and [n] = {1, 2, . . . , n}, uI ∈ C, and vI is the Clifford product of basis elements of the

form vj1 ....vjk . Thus the Clifford algebra Cq(V ) is a Z2-graded super algebra; that is,

Cq(V ) = C+
q (V )⊕C−

q (V ) where C+
q (V ) is the even subalgebra consisting of elements of

an even bi-degree and C−
q (V ) is the odd part associated to the Z2 grading.

We now define several important subgroups of Cq(V ) that we use in this paper.

Definition 2.2.2. We denote by Cq(V )∗ the group of invertible elements of the Clifford

algebra. The Clifford group is the subgroup of Cq(V )∗ that preserves V under the adjoint

action; that is, Γq(V ) = {g ∈ Cq(V )∗ : gvg−1 ∈ V }. If we restrict the Clifford group to

the even invertible elements, we have what is called the special Clifford group Γ+
q (V ) =

Γq(V ) ∩C+
q (V )∗. The subgroup of Γq(V ) generated by elements v ∈ V with q(v) = ±1 is

called the Pin group. That is, Pin(V, q) = {v1 · · · vk ∈ Γq(V ) : q(vj) = ±1}. The Spin

group is the subgroup of the Pin group generated by elements of an even grade, defined as

Spin(V, q) = {v1 · · · v2m ∈ Pin(V, q)}. Lastly, choosing an orthonormal basis, e1, . . . , en,

for the vector space V we denote the finite subgroup of the multiplicative generators of

Cq(V ) as Γ̂q(V ) = {±eI : I ⊂ [n]}.

Remark 2.2.3. We refer to the groups Γq(V ), Pin(V, q), Spin(V, q), and Γ̂q(V ) as the
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Spin groups for the Clifford algebra Cq(V ) for the remainder of the manuscript.

For the complexification Cq(V ) we have the following definition.

Definition 2.2.4. For the complexification Cq(V ), we define the Spin groups by Γq(VC),

Spin(VC), and Pin(VC), along with its multiplicative group of generators Γ̂c
q(V ).

The complexified Spin groups contain the original Spin groups of Cq(V ). Moreover,

we can view the multiplicative group of generators Γ̂c
q(V ) as the group Γ̂q(V )×⟨i⟩. This is

because if we view the generators of the algebra as a real basis, we have the generators 1, eI ,

along with i, ieI for the imaginary generators, where we generate −1 and −i by products

between the generators.

Definition 2.2.5. For real Clifford algebras Cq(V ) we have three main involutions:

The grade involution: û =
∑

k(−1)k⟨u⟩k, where ⟨u⟩k is the k-th graded component of u.

The reversion anti- involution ũ reverses the orientation of the basis elements that make

up the element u ∈ Cq(V ).

The Clifford involution, or Clifford conjugation: u∗ = ˜̂u = ˆ̃u is the composition of the

grade involution and the reversion anti-involutions.

Upon the complexification Cq(V ), Clifford Hermitian conjugation † is given by com-

posing the Clifford involution with complex conjugation inherited from the complex vector

space V ⊗ C = V C.

Lemma 2.2.6. The Hermitian conjugate has the property that (u†)† = u, and it is conjugate

linear in the sense that (λu+ µv)† = λ̄u† + µ̄v†, for λ, µ ∈ C, u, v ∈ Cq(V ).

Proof: See [41], [55], or [56].

Lemma 2.2.7. The following are the multiplicative properties of the grade involution, re-

version anti-involution, Clifford conjugation, and Hermitian conjugation on the Clifford

algebra Cq(V ) and its complexification.

• û · v = û · v̂
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• ũ · v = ṽ · ũ

• (u · v)∗ = v∗ · u∗

• (u · v)† = v† · u†

Proof: See [40], [44], [55], or [56].

Definition 2.2.8. On Cq(V ) we define the trace operation as the projection of an element

u ∈ Cq(V ) onto the zeroth graded component: we have Trace(u) = ⟨u⟩0.

Now we provide the following proposition for Clifford algebras of signatures (n, 0) and

(0, n) (also see [44], [45], [55], [56] for related results).

Proposition 2.2.9. 1. Consider a real Clifford algebra with the signature (n, 0) and

with the Euclidean form ⟨u,w⟩ = Trace(w̃ · u). Then Cq(V ) is a Euclidean space

isomorphic to R2n with the standard Euclidean form. Consider the complexification

Cq(V ) with a Hermitian form ⟨u,w⟩ = Tr( ˜̄w ·u). Then Cq(V ) is a Hermitian vector

space isomorphic to C2n with the standard Hermitian form.

2. Consider a real Clifford algebra with signature (0, n) and with the Euclidean form

⟨u,w⟩ = Trace(u∗ · w). Then Cq(V ) is a Euclidean space isomorphic to R2n with

the standard Euclidean form. Consider the complexification Cq(V ) with a Hermitian

form ⟨u,w⟩ = Trace(u† · w) . Then Cq(V ) is a Hermitian vector space isomorphic

to C2n with the standard Hermitian form.

Proof: See [45], [55].

For the positive definite Clifford algebras, the Hermitian inner product defined above

satisfies the equality ⟨g, v · h⟩ = ⟨v · g, h⟩ for all g, h ∈ Cq(V ) and v ∈ VC (see [55], [56]).

Hence for Cq(V ) we have defined the structure of a unitary Clifford module over Cq(V ).

We now consider real Clifford algebras of quadratic Euclidean spaces of the form Rp,q

and their complexifications.
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Clifford algebras for the quadratic spaces Rp,q and their complexifications

Proposition 2.2.10. For quadratic spaces Rp,q we have the following isomorphisms on the

associated even subalgebras of the Clifford algebra Rp,q: R+
p,q

∼= Rp,q−1 when q ≥ 1,

R+
p,q

∼= Rq,p−1 when p ≥ 1, and lastly R+
p,q

∼= R+
q,p.

Proof : See [51].

For matrix algebras we have the following classification isomorphisms, by Cartan.

Theorem 2.2.11. Rp,q has the following minimal representations over R, C, and H:

i) Rp,q
∼= R(2n

2 ) if q − p = 0, 6 mod 8.

ii) Rp,q
∼= C(2n−1

2 ) if q − p = 1, 5 mod 8.

iii) Rp,q
∼= H(2

n−2
2 ) if q − p = 2, 4 mod 8.

iv) Rp,q
∼= H(2

n−3
2 )⊕H(2

n−3
2 ) if q − p = 3 mod 8.

v) Rp,q
∼= R(2n−1

2 )⊕ R(2n−1
2 ) if q − p = 7 mod 8.

Proof : See [5], [29], [40].

Additionally, for complex Clifford algebras we have the following classification iso-

morphism as matrix algebras (not as Z2 modules); see [23], [56] for details.

Proposition 2.2.12. The Clifford algebra Cn := C0,n has the following isomorphisms as

associative unital algebras.

• Cn+2
∼= Cn ⊗C C(2)

• C2m
∼= C(2m)

• C2n+1
∼= C(2m)⊕ C(2m)

In the next section we show how to construct Euclidean and Hermitian structures iso-

morphic to the canonical models in Cp+q and Rp,q for the Clifford algebras of quadratic

spaces that are not of signature (0, n) or (n, 0) .
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2.3 Euclidean and Hermitian structures for Clifford algebras Rp,q and Cp,q

Consider Clifford algebras of the form C0,n. We can obtain Hermitian forms via the matrix

isomorphisms given in proposition 2.2.12. With respect to our matrix representations, we

have ρ(u†) = ρ(u)†ij = ρ(u)ji, where ρ(u)ji is the conjugate transpose of the representative

matrix ρ(u)ij ∈ C(2k). We can also define Hermitian products with respect to the matrix

representations via ⟨u, v⟩ = tr(ρ(u)† · ρ(v)) = tr(ρ(u)ji · ρ(v)ij) (see [55], [56]). In

Proposition 2.2.9, the Euclidean and Hermitian structures given were dependent on the

Clifford conjugate and Hermitian conjugate as defined to generate inverses for elements

on the canonical basis. When we have mixed signatures, this is no longer the case; and in

order to define a Euclidean structure on Rp,q, and ultimately a Hermitian structure on Cp,q,

we modify the grade involution given in Definition 2.2.5. (See [55], [56] for the motivation

for this modification.)

Definition 2.3.1. Consider Clifford algebras with signatures (p, q). Then the basis gener-

ators eI all have an strictly increasing sequence in which all the p generators go first and

q go after: we can define Ip as the subsequence of the positive definite elements in I , while

Iq is the subsequence of negative definite elements, giving us I = Ip ∪ Iq.

Definition 2.3.2. Consider a real Clifford algebra of the form Rp,q. We define the map

ϵp,q : Rp,q → Rp,q on generators eI by ϵp,q(eI) = (−1)teI , where t = #{p+1, ...., p+q}∩I .

The map ϵp,q is clearly an involution on Rp,q, which we call the (p, q)-grade involution. We

compose the (p, q) grade involution with reversion to obtain what we call the (p, q)-Clifford

conjugation involution, which we denote as e∗p,qI = ϵp,q(eĨ) for any generator eI of Rp,q or

Cp,q. Consider Cp,q and compose (p, q)-Clifford conjugation with the extension of complex

conjugation. We obtain what we call (p, q)-Hermitian conjugation, which we denote u†p,q

for any u ∈ Cp,q.

Note that Hermitian (p, q) conjugation is itself an anti-automorphism which gives us
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(uv)†p,q = v†p,qu†p,q . For the Clifford algebras Cp,q, we define the (p, q)-Hermitian conju-

gate of an element u = u0+
∑

I⊂[n] uIeI ∈ Cp,q, with uI ∈ C, as u†p,q = ū0+
∑

I⊂[n] ūIe
†p,q
I .

Now we can prove a lemma about the (p, q)-conjugation on basis generators.

Lemma 2.3.3. For any element eI in the canonical basis of Rp,q or Cp,q, its (p, q)-

conjugation defines the inverse of this element. That is e∗p,qI = e−1
I . Considering Cp,q as a

2p+q+1 dimensional R vector space, the Hermitian (p, q)-conjugation defines an inverse to

any element of the canonical basis of the form eI or ieI .

Proof. Fix a signature (p, q). For any basis element eI , where I = (i1, . . . , ik) and I is

an increasing sequence of the form 1 ≤ i1 ≤ · · · ≤ ik ≤ p + q, we have the element

reversion ẽI given by the decreasing sequence Ĩ = (ik, . . . , i1). Hence we have e∗p,qI · eI =

ϵp,q(eĨ) · eI = (−1)|Iq |eĨ · eI = (−1)|Iq |e2ik · · · e
2
i1

. For the product e2ik · · · e
2
i1

, the only non-

negative generators are in the set Iq, and hence we have e∗p,qI · eI = (−1)|Iq |(−1)|Iq | = 1.

Then e∗p,qI = e−1
I ; and since our choice of I as well as our signature (p, q) are arbitrary,

(p, q)-conjugation defines the inverse for any basis element of any Clifford algebra Rp,q.

For the complexification, it is clear that e†p,qI = e
∗p,q
I , hence e†p,qI = e−1

I . Now for real basis

generators of the form ieI , we have (i·eI)†p,q ·i·eI = ī·ϵp,q(eĨ)·i·eI = |i|2 ·(−1)|Iq |eĨ ·eI =

|i|2(−1)|Iq |(−1)|Iq | = 1. Then since our choice of (p, q) and I were arbitrary, we can

conclude that Hermitian (p, q)-conjugation defines an inverse to any real basis element of

the form eI or imaginary basis element of the form ieI on the complexfication Cp,q.

Note that by applying the above lemma we can write the (p, q)-Hermitian conjugate of

a generic element as u†p,q = ū0 +
∑

I ūIe
∗p,q
I (see also [45], [55], [56] for the motivation

for this proposition).

Now we state and prove the following convenient proposition that lets us use the trace

of certain maps to define a Hermitian structure on Clifford algebras.

Proposition 2.3.4. On Cp,q, the bilinear map ηp,q(u, v) = Trace(v†p,q ·u) defines a Hermi-

tian structure, and its restriction to Rp,q defines a Euclidean structure. Moreover, for any
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u, v ∈ Cp,q, the Hermitian form on Cp,q is given by ηp,q(u, v) = u0v̄0 +
∑

I⊂[n] uI v̄I , and

it establishes an isomorphism with the canonical standard model on C2p+q
after a proper

basis identification. Restricting to the real case, Rp,q ⊂ Cp,q, we obtain the Euclidean

structure on Rp,q isomorphic to the canonical Euclidean standard model in R2p+q
.

Proof. We can represent any elements u, v ∈ Cp,q in the form

u = u0 +
∑
i

uiei +

p+q−1∑
j=2

∑
I:|I|=j

uIeI

+ u12...p+qe12...p+q,

v = v0 +
∑
i

viei +

p+q−1∑
j=2

∑
I:|I|=j

vIeI

+ v12...p+qe12...p+q,

where the index I ⊂ {1, 2, 3, . . . , p + q} is an increasing sequence of size j ∈ N with

1 < j ≤ p+ q − 1; this means for I = (i1, . . . , ij) where 1 ≤ i1 < · · · < ij ≤ p+ q.

In this case, for any element v ∈ Cp,q, we have the (p, q)-Hermitian conjugate given by

v†p,q = v̄0 +
∑

i v̄ie
∗p,q
i +

∑p+q−1
j=2

∑
I:|I|=j v̄Ie

∗p,q
I + v̄12...p+qe

∗p,q
12...p+q. Now for any two

elements u, v ∈ Cp,q we obtain the following:

Trace(v†p,q · u) =

Trace{(v̄0 +
∑
i

v̄ie
∗p,q
i +

p+q−1∑
j=2

∑
I:|I|=j

v̄Ie
∗p,q
I + v̄12...p+qe

∗p,q
12...p+q) · (u0 +

∑
i

uiei+

p+q−1∑
j=2

∑
I:|I|=j

uIeI + u12...p+qe12...p+q)} =

= Trace{v̄0u0 +
p+q−1∑
i ̸=j

∑
I,J :I|I|=i,|J |=j

v̄IuJe
∗p,q
I eJ+

p+q−1∑
i=j

∑
I,J :I|I|=i

v̄IuIe
∗p,q
I eI + v̄12...p+qu12...p+qe

∗p,q
12...p+q · e12...p+q}.

Consider I ̸= J . The increasing sequences I and J do not match, implying that e∗p,qI ·eJ
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is not of grade zero, since e∗p,qI is clearly not the inverse of eJ . Hence Trace(e∗p,qI · eJ) = 0

when I ̸= J . Using this fact along with Lemma 2.3.3 we have the following:

Trace(v†p,q · u) =

= v̄0u0Trace(1) +

p+q−1∑
i ̸=j

∑
I,J :I|I|=i,|J |=j

v̄IuJTrace(e
∗p,q
I eJ)

+

p+q−1∑
i=j

∑
I,J :I|I|=i

v̄IuITrace(e
∗p,q
I eI) + v̄12...p+qu12...p+qTrace(e

∗p,q
12...p+q · e12...p+q)

= v̄0u0Trace(1) +

p+q−1∑
i ̸=j

∑
I,J :I|I|=i,|J |=j

v̄IuJTrace(e
∗p,q
I eJ)

+

p+q−1∑
i=j

∑
I,J :I|I|=i

v̄IuITrace(1) + v̄12...p+qu12...2kTrace(1)

= v̄0u0 +

p+q−1∑
i=j

∑
I,J :I|I|=i

v̄IuI + v̄12...p+qu12...p+q.

Note that the canonical standard model C2p+q has the exact same Hermitian form as η(u, v) =

Trace(v†p,q · u) on Cp,q after a proper identification of basis generators between the two

as complex vector spaces given by {eI : I is an increasing sequence in {1, . . . , p + q}} 7→

{el : 1 ≤ l ≤ 2p+q}.

Hence the form given by Trace(v†p,q ·u) defines a positive definite Hermitian structure

on Cp.q. When we restrict our scalars to reals, Rp,q ⊂ Cp,q, the complex conjugate gives us

ui1...ik = ui1...ik on the real scalars. Then when we restrict the Hermitian metric to Rp,q, we

get the following:

Trace(v†p,q · u) =

= v0u0 +

p+q−1∑
i=j

∑
I,J :I|I|=i

vIuI + v12...p+qu12...p+q.

This clearly gives an isomorphism to the standard model of the Euclidean structure
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on R2p+q by applying the same canonical assignment as for the vectors of the real basis:

{eI : I is an increasing sequence in {1, . . . , p+ q}} 7→ {el : 1 ≤ l ≤ 2p+q}. Thus with the

same canonical assignments we establish an isometry as Hermitian (respectively Euclidean)

spaces of Cp,q (respectively Rp,q) with C2p+q (respectively R2p+q ).

2.4 Spinor modules for Clifford algebras

In this section we introduce the concept of a unitary spinor module for the Clifford algebra

Cq(V ).

2.4.1 Abstract unitary spinor modules for quadratic vector spaces

In this section we consider a real quadratic space (V, q) and its complex Clifford algebra

Cq(V ). We begin by fixing an involution on the Clifford algebra Cq(V ).

Definition 2.4.1. We define a conjugate antilinear involution on the complex Clifford al-

gebra Cq(V ) to be any involution ∗ satisfying the following properties:

1. (u · v)∗ = v∗ · u∗, for any u, v ∈ Cq(V ), and

2. (cu)∗ = c̄u∗, for any u ∈ Cq(V ) and c ∈ C.

We note that the Hermitian conjugates given in Definitions 2.2.5 and 2.3.2 are conjugate

antilinear involutions.

If, additionally, ∗ defines inverses for any choice of C basis, then the finite multiplicative

group of complex generators Γ̂c
q(V ), which we define as the multiplicative group generated

by real and imaginary basis generators of Cq(V ), comfortably sits inside the infinite group

Pinc(V ) = {x ∈ Γ(V ⊗C) : x∗x = 1}, for self-conjugate generators of the Clifford group

(see [45] for more on these groups). Thus ∗ involution, chosen a priori, defines what we

call a unitary spinor module.
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Definition 2.4.2. For the complex Clifford algebra Cq(V ), a unitary spinor module with

respect to the antilinear involution ∗ is a Hermitian super vector space (∆, H) with an

isomorphism of algebras

ρ : Cq(V )
∼=−→ End(∆),

such that for any g ∈ Cq(V ), we have ρ(g∗) = ρ(g)∗.

The involution ∗ on End(∆), coming from the antilinear involution on the Clifford

algebra Cq(V ), is the adjoint operation determined by our unique Hermitian metric H . The

following proposition shows that if we have any spinor module, that is, a complex vector

space ∆ such Cq(V ) ∼= End(∆), then we can define a Hermitian metric on the complex

space.

Proposition 2.4.3. Any spinor module ∆ admits a Hermitian metric, unique up to positive

scalars, for which it becomes a unitary spinor module.

Proof: See ([45], p.78).

Note that in the case of unitary spinor modules ∆, the restriction of the unitary algebra

isomorphism to the Spin groups preserves the Hermitian inner product H on ∆. That is,

ρ∗gH = H for any element g belonging to one of the Spin groups.

Remark 2.4.4. For positive definite signatures (real Euclidean spaces), classically ∗ is

defined as complex conjugation extended to Cq(V ) from V ⊗C composed with the reversion

anti-automorphism.
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2.4.2 Dirac spinor spaces for the Clifford algebra C0,2k

We begin by interpreting in the following definition the isomorphisms between complex

Clifford algebras and the matrix algebras as in Proposition 2.2.12 as canonical spinor space

structures for the Clifford algebra C2k := C0,2k.

Definition 2.4.5. The space of Dirac spinors, denoted ∆2k = C2k , is a spinor module for

the complex vector space C2k, with the associated Clifford algebra C2k.

Note that for the above defined spinor space ∆2k we have the following natural iso-

morphism: ρ2k : C2k

∼=−→ End(∆2k) ∼= C(2k). The matrix representations come from the

canonical algebra isomorphism C2k
∼= C(2)⊗R · · · ⊗R C(2) ∼= C(2k) (see [23, p.13]). The

isomorphism stems from an inductive process generated by the isomorphism C2
∼= C(2),

given by the associations e1 ∼= E1 :=

[
i 0

0 −i

]
, e2 ∼= E2 :=

[
0 i

i 0

]
, and e12 ∼= E12 :=[

0 −1

1 0

]
. With the representative matrices E1, E2, and iE12 = B =

[
0 −i

i 0

]
, along

with the 2 × 2 identity I , we can construct matrix representations for all generators of the

complex Clifford algebras C2k.

Proposition 2.4.6. Consider I, E1, E2, B as above. Then for all C2k we have an isomor-

phism with C(2k) given explicitly by the following k-Kronecker product identification:

• e2j−1

∼=−→ I⊗k−j ⊗ E1 ⊗B⊗j−1 for j = 1, ..., k.

• e2j
∼=−→ I⊗k−j ⊗ E2 ⊗B⊗j−1 , for j = 1, ..., k.

Proof: See [23, p.13].

Note that the classical space of Dirac spinors ∆2k can be thought of as the canonical

model for spinor spaces. This is because ∆2k admits the Clifford multiplication defined

by the left matrix action using the canonical matrix representations via the canonical iso-

morphisms of the Clifford algebra C2k with its matrix algebra. Moreover, in this case

the Hermitian form on ∆2k follows the canonical model given by the standard Hermitian
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form H(u, v) =
∑2k

i=1 v̄iui, defined for any u, v ∈ ∆2k. However, for our construction of

Abelian varieties from spinors described in later sections, we use non-canonical examples

of spinor spaces, such as minimal left ideals.

Half spinor modules

See [5], [17], [23], [29], [51] for more information on half spinors. For our analysis of half

spinor modules we continue to work with the space of Dirac spinors ∆2k for the Clifford

algebra C2k. If we restrict our consideration to the even subalgebra C+
2k, we still have the

isomorphism C+
2k

∼= C2k−1. Now, since C2k−1 is actually of odd dimension, it is isomorphic

to C(2k−1) ⊕ C(2k−1). Hence C+
2k

∼= C(2k−1) ⊕ C(2k−1). Moreover, each of the two

isomorphic components is itself isomorphic to the complex Clifford algebra C2k−2; that is,

C2k−2
∼= C(2k−1). Defining these matrix representations by ρ2k−2 : C2k−2

∼=−→ C(2k−1), we

can view the even subalgebra C+
2k acting on ∆2k = C2k as C2k−2 acting isomorphically on

each half spinor module ∆2k−2 = ∆±
2k = C2k−1 via the representations of the generators.

That is, we can generate our actions on ∆2k via ρ(ek) = (ρ2k−2(ek), ρ2k−2(ek)) for k =

1, . . . , 2k − 2, and for e2k−1 we have ρ(e2k−1) = (iB⊗k−1,−i · B⊗k−1). This action on

the half spinor decomposition ∆+ ⊕∆− of our spinor space ∆2k is what we often refer to

as the diagonal action. Hence for half spinor spaces the action of the even algebra can be

thought of as isomorphic actions on each component by the next lower even-dimensional

Clifford algebra C2k−2.
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CHAPTER 3

SPINOR ABELIAN VARIETIES AND CLIFFORD MULTIPLICATION

In this chapter we apply the notion of Clifford multiplication to principally polarized Abelian

varieties, and we construct certain new Abelian varieties that we call spinor tori admitting

Clifford multiplication.

3.1 The spinor torus and Clifford multiplication

In this section and for the remainder of this thesis, when we consider a unitary spinor mod-

ule ∆ for an even-dimensional complexified Clifford algebra Cq(V ) as defined in 2.4.2, we

assume that ∆ is a Hermitian vector space with a positive definite Hermitian form defined

on it; that is, ∆ is a complex finite-dimensional Hilbert space (see Chapter 2 for back-

ground). Also, as is well known (see [45]), for unitary spinor modules the representations

of Spin groups are unitary, and so they preserve the positive definite Hermitian inner prod-

uct. This means that we have ρ∗gH(ϕ, ψ) := H(ρgϕ, ρgψ) = H(ϕ, ψ) for any ϕ, ψ ∈ ∆

and g ∈ Pin(V ), Spin(V ), or Γ̂c
q(V ). We want to show that, if ∆ has a full rank lattice,

denoted by Γ∆, then the quotient is a torus with additional structure of interest.

We introduce the following description of the spinor torus ∆/Γ∆.

Definition 3.1.1. Consider an even-dimensional complexified Clifford algebra Cq(V ). We

define the quotient of its unitary spinor module ∆ with a full rank lattice Γ∆ ⊂ ∆ as the

associated spinor torus, which we denote as S∆ = ∆/Γ∆.

Remark 3.1.2. For odd-dimensional vector spaces, with dimC V = 2k + 1, we can obtain

spaces of spinors of the form ∆+⊕∆−, using the representations ρ : Cq(V )
∼=−→ End(∆+)⊕

End(∆−). Note that in this case ∆+ and ∆− are of the same dimension 2k, and are known

as half spinor spaces. Since these half spinor spaces are just spinor spaces for a Clifford
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algebra Cq(V ) for some vector space of complex dimension 2k, we mainly deal with even-

dimensional cases for V .

We can view the spinor torus S∆ as a complex torus whose covering space T0S∆ = ∆

is a unitary spinor module associated to a Clifford algebra Cq(V ) of some quadratic vector

space. Hence T0S∆ satisfies the property that its space of endomorphisms is isomorphic as a

complex algebra to the associated Clifford algebra; that is, Cq(V ) ∼= End(T0S∆). We need

all of the above to define Clifford multiplication on a spinor torus properly, as a reduction

of the isomorphism between the Clifford algebra and the space of endomorphisms.

Definition 3.1.3. We define Cq(V )Z as the full rank lattice associated with the complexified

Clifford algebra Cq(V )Z, when we view Cq(V ) as a dimension 22k complex vector space

Any element h ∈ Cq(V )Z may be refered to as a lattice element of Cq(V ). It should

also be noted that Cq(V )Z as a full rank lattice is an Abelian subgroup under addition, and

multiplication in the algebra is closed and distributes across additions; that is, Cq(V )Z is

itself a subring of the Clifford algebra Cq(V ). We can view the integral subring Cq(V )Z

in a few equivalent but different ways. If we view Cq(V ) ⊂ Cq(V ) as the real form of the

complex Clifford algebra and restrict its scalars to Z-linear combinations, we have a full

rank lattice inCq(V ). We can then Z-tensor this lattice with the Gaussian ring Z[i] to obtain

its extension as a lattice (or integral subring) onto Cq(V ); that is, Cq(V )Z = Cq(V )Z⊗ZZ[i].

Another approach is to choose a complex basis for Cq(V ), say eI ⊗1 for a given basis eI in

the real form Cq(V ), allowing us to view Cq(V ) as a dimension 22k complex vector space.

Viewing Cq(V ) as a real vector space, we have the real and imaginary basis eI ⊗ 1, eI ⊗ i.

We can then define Cq(V )Z as the Z-module of elements with respect to eI ⊗ 1, eI ⊗ i.

Both approaches do require us to define a basis. The third approach just takes into account

that the real quadratic vector space (V, q) is a Z-module under the operation of addition.

We denote this Z-module, or its full rank lattice, as VZ. We then denote its tensor algebra

(as Z tensors) by V ⊗Z
Z . Taking its quotient with the two-sided ideal obtained by restricting
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the quadratic form on V to VZ, which we denote IZq , we obtain the integral Clifford algebra

Cq(V )Z = (VZ)
⊗Z/IZq . We then extend this natural construction by taking a Z tensor with

the Gaussians to define the lattice Cq(V )Z. We now define Clifford multiplication on our

spinor torus as the restriction of the algebra isomorphism to this full rank lattice.

Definition 3.1.4. Clifford multiplication on the spinor torus S∆ is given as a descension

of the unitary representation isomorphism ρ : Cq(V )
∼=−→ End(∆) to a Z-module homo-

morphism ρ̂ : Cq(V )Z → End(S∆). Clifford multiplication on our spinor torus S∆ is

then defined as the endomorphisms on S∆ associated to the full rank lattice Cq(V )Z of the

Clifford algebra Cq(V ).

We remark that the full rank lattice Γ∆ is the full rank lattice of ∆ chosen so that when

we restrict the isomorphism to ρ, the Clifford multiplication action of any h ∈ Cq(V )Z

preserves the lattice Γ∆. Thus this choice of lattice does depend on both ρ and ∆ in a way

that allows our isomorphism to descend. We may use the term lattice actions to refer to

Clifford multiplication on S∆. Also, the lattice actions on S∆ restricted to the multiplicative

group of generators Γ̂c
q(V ) ⊂ Cq(V )Z give us a finite group action on the spinor torus S∆.

The above definition of Clifford multiplication on our spinor tori S∆ using endomorphisms

of Cq(V )Z requires a closer look. When we define a basis, we can consider our full rank

lattice as a direct sum Cq(V )Z = Cq(V )Z ⊕ i · Cq(V )Z, where Cq(V )Z is the integral

subring of the real Clifford algebra, Cq(V ), pre-complexification. In Figure 3.1 we provide

a diagram for clarification of what we mean by the integral subring Cq(V )Z ⊂ Cq(V ).

This means that we interpret the Clifford multiplication on our spinor torus as either

restrictions of Cq(V ) to Cq(V )Z, or as a direct sum of real and imaginary Z-submodules

of Cq(V )Z, denoted Cq(V )Z and iCq(V )Z respectively. Note that Clifford multiplication

as defined preserves the full rank lattice Γ∆ ⊂ ∆, and the restriction to the integral Spin

groups preserves the Hermitian metric on ∆ and the full rank lattice in our spinor torus

S∆. Note that some of our restrictions needed to define Clifford actions and the structure

of our spinor Abelian variety S∆ may be dropped in other situations. For instance, when
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real part of Cq(V ) imaginary part of Cq(V )

Cq(V )

Cq(V )Z

Cq(V ) iCq(V )

Cq(V )Z iCq(V )Z

Figure 3.1: Cq(V )Z as a lattice on Cq(V ) and its structure in relation to Cq(V )

we consider a spinor Abelian variety, we have the lattice actions given by Cq(V )Z. Thus it

is immediate that we also have real Clifford actions on S∆ and Cq(V )Z ⊂ Cq(V )Z.

We may look for a spinor Abelian variety satisfying the property that it has onlyCq(V )Z

actions but not Cq(V )Z actions. This is equivalent to stating that the imaginary part of

Cq(V )Z does not preserve the lattice Γ∆. But since this lattice would be preserved by

Cq(V ) actions, it is only multiplication by i that is the problem (as it would not preserve

the lattice). More specifically, restricting Clifford multiplication to onlyCq(V )Z ⊂ Cq(V )Z

is equivalent to saying that i · Γ∆ ̸⊂ Γ∆, but Cq(V )Z · Γ∆ ⊂ Γ∆. Hence, this additional

restriction on our varieties requires its own definition.

Definition 3.1.5. A spinor torus S∆ that admits only Cq(V )Z multiplication but does not

have lattice actions given by the complexification Cq(V )Z is defined as a strictly real spinor

torus and denoted SR
∆. On a strictly real spinor torus, Clifford multiplication comes from

the restriction ρR : Cq(V )Z → End(SR
∆), where ∆R is still a unitary vector space for the

real Clifford algebra Cq(V ) and not its complexification.

Remark 3.1.6. Although we do not provide examples of strictly real spinor tori, we do want

to bring attention to their structure and potential existence. The way we construct strictly

real spinor tori is to begin with a real spinor module ∆R and define a complex structure

J : ∆R → ∆R, making ∆R a complex vector space with a full rank lattice preserved by

Clifford multiplication.
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From the preceding discussion, for any spinor torus S∆ we have i ·Γ∆ ⊂ Γ∆; hence any

of the generators eI ∈ Γq(V ) of order 2 or 4 acting on S∆ also has a complex action, given

by i · eI , which is of order 4 or 2 respectively. We now turn our attention to the polarization

induced on the spinor torus and some intrisic properties of S∆.

3.2 Spinor Abelian varieties and some elementary properties

In this section we work with spinor tori S∆ as defined in the previous section that have the

additional structure of being principally polarized. We introduce the following definition.

Definition 3.2.1. Let S∆ be a spinor torus with Clifford multiplication such that the positive

definite Hermitian form H on ∆ defines a principal polarization for S∆. Then S∆ is called

a spinor Abelian variety.

Now we look at the lattice actions on S∆. We start with the following lemma that

provides a description of the lattice actions Cq(V )Z on S∆ in terms of the translation holo-

morphisms tx : S∆ → S∆, given by txy = x+ y for all x, y ∈ S∆.

Lemma 3.2.2. For any lattice element h ∈ Cq(V )Z and λ̄ ∈ S∆, there exists an element

µ̄ ∈ S∆ such that Clifford multiplication by h on S∆ is represented by translation by µ̄;

that is, ρh(λ̄) = tµ̄(λ̄).

Proof. Fix an element λ̄ ∈ S∆ and a lattice point h ∈ Cq(V )Z. We now can define µ̄λ̄,h =

ρh(λ̄)− λ̄ ∈ S∆. Clearly µ̄λ̄,h is an element in S∆, as S∆ is by definition a complex Abelian

Lie group with group operation given by addition. Hence, we can compute tµ̄λ̄,h
(λ̄) =

λ̄+ (ρh(λ̄)− λ̄) = (λ̄− λ̄) + ρh(λ̄) = ρh(λ̄).

As a consequence of the above lemma we can formulate the following definition.

Definition 3.2.3. Consider any λ̄ ∈ S∆ and lattice point h ∈ Cq(V )Z. We define Mλ̄,h ∈

S∆ as the translation element associated with the action ρh(λ̄) if tMλ̄,h
(λ̄) = ρh(λ̄).
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The above means that we can consider Clifford multiplication endomorphisms on our

spinor torus in terms of translations. The following proposition provides some insight into

the translation elements given by generators of the Clifford algebra acting on S∆.

Proposition 3.2.4. Consider a spinor Abelian variety S∆. Then for any λ̄ ∈ S∆ and

generator eI ∈ Γq(V ) of order 4, we have a system of translation elements M,N ∈ S∆

satisfying λ̄−1 =
1

2
(M +N) such that



ρeI (λ̄) = tM(λ̄)

ρ2eI (λ̄) = tM+N(λ̄)

ρ3eI (λ̄) = tN(λ̄)

ρ4eI (λ̄) = t0(λ̄).

Proof. Fix any generator eI ∈ Γq(V ) of order 4 and λ̄ ∈ S∆ . Then by Lemma 3.2.2 we

have ρeI (λ̄) = λ̄ +M for some translation element M ∈ S∆ associated with the lattice

action by eI and the element λ̄. By repeating this process we get ρ2eI (λ̄) = −λ̄, as well

as the equation ρ2eI (λ̄) = (λ̄ +M) + N for some translation element N ∈ S∆ associated

with the lattice action by eI and the element λ̄ + M . Using the above two translation

equations, we can write λ̄ + M + N = −λ̄. Now, solving for −λ̄ = λ̄−1, we get the

equation λ̄−1 =
1

2
(M + N). By composing the action with itself for a third time, we get

ρ3eI (λ̄) = −ρeI (λ̄) = −(M + λ̄). Moreover, we also have ρ3eI (λ̄) = (λ̄ +M + N) + O

for some translation element O ∈ S∆ associated with the lattice action by eI and the

element λ̄+M +N . Setting both equations for ρ3eI (λ̄) together and solving for λ̄−1 yields

the equation λ̄−1 = M +
1

2
(N + O). When we substitute this expression for λ̄−1 with

λ̄−1 =
1

2
(M + N), we get the equality O = −M . Hence we obtain ρeI (λ̄) = λ̄ +M +

N +O = λ̄+M +N −M = λ̄+N = tN(λ̄). Note that we also have e4I = 1. Therefore

ρ4eI (λ̄) = id(λ̄) = t0(λ̄).
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It follows from the above proposition that for any generator, we need two associated

translation constants M and N (associated with eI and λ̄) to generate all orders of Clifford

multiplication of λ̄ ∈ S∆ by a given lattice point eI ∈ Γq(V ) in terms of the associated

translation. This prompts the following definition.

Definition 3.2.5. For any generator eI ∈ Γq(V ) and element λ̄ ∈ S∆, we define the trans-

lation elements M,N that define all orders of Clifford multiplication on λ̄ by a lattice point

eI ∈ Γq(V ) as the Clifford translation elements M,N associated to multiplication by the

lattice point eI .

Definition 3.2.6. For the spinor Abelian varieties we denote the group of two torsion points

by JS∆
2 .

In the case of the 2-torsion points, we have the following corollary.

Corollary 3.2.7. Consider a 2-torsion point ϵ ∈ JS∆
2 ⊂ S∆. Then the actions by generators

eI ∈ Γq(V ) of any order greater than one yields one translation element M which is itself

a 2-torsion point.

Proof. Fix any generator eI ∈ Γq(V ) of any order greater than one. Also fix a 2-torsion

point ϵ ∈ JS∆
2 ⊂ S∆ as in the previous proposition, satisfying the equation ϵ−1 =

1

2
(M +

N) for the translation elements M and N associated with the action of eI . For 2-torsion

points we have ϵ−1 = ϵ. Hence we get the equation 2ϵ = 0 =M +N . Then it follows that

the second translation element associated with the action of eI on ϵ isM−1. To prove thatM

is itself a 2-torsion point, we use the linearity property associated with the endomorphism

ρeI : S∆ → S∆ where by Lemma 3.2.2 we have 2 ·ρeI (ϵ) = 2(ϵ+M). Using the bilinearity

property, we also have the equation 2 · ρeI (ϵ) = ρeI (2 · ϵ) = ρeI (0) = 0. Hence we obtain

the equation 2 · (ϵ + M) = 0, which immediately implies 2ϵ + 2M = 0. Therefore

2M = 0, forcing M to be a 2-torsion point on S∆. Moreover, it immediately follows that

N =M−1 =M .
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At this time, we can conclude that Γ̂c
q(V ) actions on JS∆

2 can be described in terms of

the induced translation morphisms. We quickly remark that by the nature of the 2-torsion

points, any action by a lattice point in (Cq(V ))Z reduces to an action by a generator in

Γ̂c
q(V ). To summarize these facts, Table 3.1 provides the dimension counts for the spaces

associated with our spinor torus S∆, as well as the total number of 2-torsion points. In

the last column, we calculate the ratio of the number of 2-torsion points over dimC Cq(V ).

(Recall that in dimension 1, #J2 = 4.)

dimC ∆ dimC V dimC Cq(V ) #JS∆
2

#JS∆
2

dimC Cq(V )
2 2 4 16 4
4 4 16 256 16
8 6 64 65, 536 1, 024
16 8 256 4, 294, 967, 296 16, 777, 216
...

...
...

...
...

2k 2k 4k 2(2
k+1) 2(2

k+1−2k)

Table 3.1: Dimensional counts

We now extend these properties into the dual Abelian variety of S∆, defined as Pic0(S∆) =

{L ∈ Pic(S∆) : c1(L) = 0} (see [8] for more on the dual lattice). We start with the fol-

lowing proposition.

Proposition 3.2.8. For any spinor Abelian variety S∆, the group Pic0(S∆) of line bundles

with a vanishing first Chern class is also a spinor Abelian variety.

Proof. Let S∆ be a spinor Abelian variety for the Clifford algebra Cq(V )Z. Then S∆ is a

PPAV with Clifford multiplication given by Cq(V )Z → End(S∆). One can also define the

principal polarization of S∆ as a positive definite line bundle L∆ ∈ PicH(S∆) = {L ∈

Pic(S∆) : c1(L) = H} whose first Chern class is c1(L) = H , where H is the positive

definite Hermitian form on ∆. Then the principal polarization L∆ defines an isomorphism

between S∆ and Pic0(S∆) defined by ϕL∆
: S∆

∼=−→ Pic0(S∆), where ϕL∆
(λ̄) = t∗

λ̄
L∆ ⊗

L−1
∆ for any λ̄ ∈ S∆, and t∗

λ̄
: Pic(S∆) → Pic(S∆) is the pullback of the line bundles

in the Picard variety along the translation morphism tλ̄ : S∆ → S∆ (see [8], [21], [28]).

38



Via this isomorphism, we can easily conclude that Pic0(S∆) is a PPAV, where the required

polarization on Pic0(S∆) is given by the inverse isomorphism ϕ−1
L∆

: Pic0(S∆) → S∆,

and the principal polarization is defined by (ϕ−1
L∆

)∗L∆ . Now, to show that Pic0(S∆) is a

spinor Abelian variety, we need to properly define Clifford multiplication on it. We first

state that by the surjectivity of the isomorphism ϕL∆
: S∆

∼=−→ Pic0(S∆), we have for

every class M ∈ Pic0(S∆) a class µ̂ ∈ S∆ such that ϕL∆
(µ̂) = t∗µ̄L∆ ⊗ L−1

∆ = M .

Hence we have the equation ϕ−1
L∆

(M) = µ̄. By using the inverse of the isomorphism

induced by the above polarization, we can extend Clifford multiplication onto Pic0(S∆)

via ρ∗ : Cq(V )Z → End(Pic0(S∆)), where ρ∗ = AdϕL∆
◦ ρ̂. That is, for any lattice point

h ∈ Cq(V )Z we have the following diagram:

S∆ S∆

Pic0(S∆) Pic0(S∆).

ρ̂h

ϕL∆
ϕ−1
L∆

ρ∗h

This means that for any line bundle M ∈ Pic0(S∆), we have ρ∗h(M) = ϕL∆
◦ ρ ◦ ϕ−1

L∆
(M).

With the induced Clifford multiplication on Pic0(S∆), we conclude that Pic0(S∆) is a

PPAV with Clifford multiplication on the underlying dual torus, hence a spinor Abelian

variety.

Now, considering Pic0(S∆) as a spinor Abelian variety, we have the immediate conse-

quence that the principal polarization on S∆ is preserved by the integral Spin groups.

Corollary 3.2.9. On the dual spinor Abelian variety Pic0(S∆), consider anyL ∈ Pic0(S∆)

and any generator eI ∈ Γq(V ) of order 4. Then we have a system of translation line bundles
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LM , LN ∈ Pic0(S∆) satisfying (L∨)⊗2 = LM ⊗ LN such that



ρ∗eI (L) = L⊗ LM

(ρ∗eI )
2(L) = L⊗ LM ⊗ LN

(ρ∗eI )
3(L) = L⊗ LN

(ρ∗eI )
4(L) = L⊗OS∆

∼= L

Hence any generator of order 4 acting on a line bundle Lλ̄ ∈ Pic0(S∆) generates the

Clifford system of line bundles {LM , LM ⊗ LN , LN ,OS∆
}.

Proof. Fix a generator of order four eI ∈ Γ̂q(V ) and a line bundle in the Picard group

L ∈ Pic0(S∆) such that under the isomorphism ϕL∆
induced by the principal polarization

L∆, the preimage of this line bundle is in some class λ̄ ∈ S∆ such that ϕL∆
(λ̄) = L.

Hence by Propositions 3.2.8 and 3.2.4 Clifford multiplication can be defined as ρ∗eI (L) =

ϕL∆
◦ ρeI ◦ ϕ−1

L∆
(L). Then we have

ρ∗eI (L) = ϕL∆
◦ ρeI (λ̄) = ϕL∆

(λ̄+M) = ϕL∆
(λ̄)⊗ ϕL∆

(M) = L⊗ LM ,

where we define LM := ϕL∆
(M). Now, composing this action with itself, we obtain

(ρ∗eI )
2(L) = ϕL∆

◦ ρ2eI ◦ ϕ
−1
L∆

(L) = ϕL∆
◦ ρ2eI (λ̄) = ϕL∆

(−λ̄) = L∨. Considering this same

action from a different perspective, we obtain

(ρ∗eI )
2(L) = ρ∗eI (L⊗M) =

ϕL∆
◦ ρeI (λ̄+M) = ϕL∆

(λ̄+M +N) = ϕL∆
(λ̄)⊗ϕL∆

(M)⊗ϕL∆
(N) = L⊗LM ⊗LN ,

where we define LN := ϕL∆
(N). Considering both of the above expressions for (ρ∗eI )

2(L),

we obtain the equation L ⊗ LM ⊗ LN
∼= L∨. This gives us the line bundle equation

(L∨)⊗2 = LM ⊗ LN . Continuing this process, we get

(ρ∗eI )
3(L) = ϕL∆

◦ ρ3eI ◦ ϕ
−1
L∆

(L) = ϕL∆
◦ ρ3eI (λ̄) = ϕL∆

(−(λ̄+M)) = L∨ ⊗M∨.
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Once again, if we view this same action from a different perspective, we obtain

(ρ∗eI )
3(L) = ρ∗eI (L⊗ LM ⊗ LN) = ϕL∆

◦ ρeI (λ̄+M +N) =

ϕL∆
(λ̄+M +N +O) = ϕL∆

(λ̄)⊗ϕL∆
(M)⊗ϕL∆

(N)⊗ϕL∆
(O) = L⊗LM ⊗LN ⊗LO,

where we define LO := ϕL∆
(O). Considering both expressions for (ρ∗eI )

3(L), we obtain

the equation L⊗LM ⊗LN ⊗LO
∼= L∨ ⊗L∨

M . Hence we have (L∨)⊗2 ∼= L⊗2
M ⊗LN ⊗LO.

Now taking both expressions for (L∨)⊗2, we get L⊗2 ⊗ LN ⊗ LO
∼= LM ⊗ LN . Thus we

have LO
∼= L∨

M , providing us with the conclusion

(ρ∗eI )
3(L) ∼= L⊗ LM ⊗ LN ⊗ LO

∼= L⊗ LM ⊗ LN ⊗ L∨
M

∼= L⊗ LN .

Continuing this procedure, one can easily deduce that (ρ∗eI )
4(L) ∼= L ⊗ OS∆

∼= L. Since

our choice of a line bundle and a generator of order 4 were completely arbitrary, we con-

clude that for any generator of order 4, the Clifford system of line bundles {LM , LM ⊗

LN , LN ,OS∆
} is associated to each subsequent action on L.

From the preceding discussion we see that LM , LN , LO) depend on L and the endomor-

phisms associated to the generator eI , hence these equations are dependent on the choice

of generator eI and L ∈ Pic0(S∆) consequently, we introduce the following definition.

Definition 3.2.10. For any generator eI ∈ Γq(V ) and any line bundle L ∈ Pic0(S∆), we

define the translation bundles LM , LN (i.e., as above, line bundles defining all orders of

Clifford multiplication on L by a lattice point eI ∈ Γq(V )) as the Clifford line bundles

associated to multiplication by a lattice point eI .

Now we extend this property for points of order 2 onto Pic0(S∆)2 .

Corollary 3.2.11. Consider the subgroup of line bundles of order 2 Pic0(S∆)2 = {L ∈

Pic0(S∆) : L⊗2 ∼= OS∆
}. Then the actions by any generator eI ∈ Γq(V ) of any order
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greater than one yields one Clifford translation bundle LM , which is itself a line bundle of

order 2.

Proof. Choose a generator eI ∈ Γq(V ) of any order greater than one. Choose a line bundle

of order 2, i.e. L ∈ Pic0(S∆)2. Now by Corollary 3.2.9, we can write (L∨)⊗2 ∼= LM ⊗

LN for the Clifford translation line bundles LM , LN associated with the action of eI on

L. Since L ∈ Pic0(S∆)2 we have L∨ = L, and hence we can immediately deduce that

(L∨)⊗2 ∼= L⊗2 ∼= OS∆
∼= LM ⊗ LN . Therefore we have LN

∼= L∨
M . Taking the induced

representation of L ⊗ L, we get ρ∗(L⊗2) = ϕL∆
◦ ρeI ◦ ϕ−1

L∆
(L ⊗ L) = ϕL∆

◦ ρeI (2λ̄) =

ϕL∆
(2ρeI (λ)) = ϕL∆

(λ̄)⊗2 = (L ⊗M)⊗2 = L⊗2 ⊗ L⊗2
M

∼= OS∆
⊗ L⊗2

M
∼= L⊗2

M . But also,

since L ∈ Pic0(S∆)2, we have L⊗2 ∼= OS∆
, so that ρ∗eI (L

⊗2) ∼= ρ∗eI (OS∆
) ∼= OS∆

. Now

by setting both expressions for ρ∗(L⊗2) equal to one another, we obtain L⊗2
M

∼= OS∆
. This

forcesM to be a line bundle of order 2. Moreover, LN = L∨
M . Hence LN = LM . Therefore

we conclude that each action by a Clifford generator only generates one Clifford translation

bundle LM , which is itself a line bundle of order 2.

At this stage, we can extend Clifford multiplication, and hence the group action by

Γ̂c
q(V ), to the set of symmetric theta divisors, as well as to the set of symmetric line bundles

of our spinor Abelian variety, by proving the following corollary.

Corollary 3.2.12. The Clifford multiplication as the group action Γ̂q(V ) on JS∆
2 extends to

the set of symmetric theta translates of our spinor Abelian variety Sym(S∆). Equivalently,

we have an extension onto the set of symmetric line bundles PicHs (S∆) via the extension of

the Clifford multiplication on Pic0(S∆).

Proof. The Clifford multiplication on our spinor Abelian variety extends to actions on the

symmetric theta translates (as described in Chapter 1). These actions are totally parame-

terized by the 2-torsion points JS∆
2 ⊂ S∆. This follows from the fact that the restriction

of lattice actions to JS∆
2 defines translations on JS∆

2 , where we can describe the pullback
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action on Sym(S∆) in terms of the induced translation endomorphism on JS∆
2 . By Corol-

lary 3.2.7, we conclude that for any lattice action with the associated translation constant

on each of the 2-torsion points ϵ ∈ JS∆
2 with the translation element given by M ϵ

g , the

group action by g induces the translation τg : JS∆
2 → JS∆

2 , where τg(ϵ) = ϵ + M ϵ
g .

By this construction we can extend our group action on the set of 2-torsion points onto

the set of symmetric theta translates Sym(S∆) in the following way: for any 2-torsion

point ϵ ∈ JS∆
2 that parametrizes the symmetric theta translate Θ∆

ϵ ∈ Sym(S∆), we set

ρ̂∗gΘ
∆
ϵ = Θ∆

ρg(ϵ)
= Θ∆

ϵ+Mϵ
g

∼= τ ∗ϵ+Mϵ
g
Θ∆ (where the symmetric theta divisor Θ∆

ϵ is one of the

22g symmetric theta translates of the principal polarization divisor Θ∆ via by t∗ϵτ+η).

Note that we can similarly view these Clifford actions as extensions of the Clifford

group actions on Pic0s(S∆), parameterizing the set of symmetric line bundles PicHs (S∆)

(see also [8] for a similar approach). If we consider a symmetric line bundleL ∈ PicHs (S∆),

the bijection between Pic0s(S∆) and PicHs (S∆) is established via [L] : Pic0s(S∆) →

PicHs (S∆) given by N
[L]−→ N ⊗ L. Under this bijection, for any element given by

[L](N) ∈ PicHs (S∆), the group action of Γ̂q(V ) on PicHs (S∆) is given by the extension

of the action of Γ̂q(V ) on Pic0s(S∆), established in Corollary 3.2.11, given by ρ∗g[L](N) =

[L](N ⊗ M) = L ⊗ (N ⊗ M), with M ⊗ N ∈ Pic0s(S∆). This gives us the Clifford

multiplication on the set of symmetric line bundles.

Now, since any symmetric theta divisor Θ∆
ϵ is one of the 22g symmetric theta translates

of the principal polarization divisor Θ∆, we can consider the Clifford multiplication by a

lattice element g ∈ Γq(V ) as the following composition: ρ̂∗gΘ
∆
ϵ = t∗Mg

Θ∆
ϵ
∼= t∗Mϵ

g
◦ t∗ϵΘ∆.

We have the following corollary as an immediate consequence related to the Clifford

actions on the symmetric theta divisor defining the principal polarization on our tori S∆.

Corollary 3.2.13. The symmetric theta divisor Θ∆ that defines our symmetric polarization

on S∆ is fixed under Clifford multiplication by lattice elements.

Proof. The fixed symmetric theta divisor Θ∆ on S∆ giving us the polarization is defined as
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the zero locus of the Riemann theta function θz(τ), and thus it corresponds to the charac-

teristic [ 00 ]. Hence Θ∆ can be considered as the origin 0 ∈ JS∆
2 . It can be easily checked

that all Clifford lattice actions on JS∆
2 actually fix the origin, since for any x ∈ S∆ we

have ρg(0) = ρg(x − x) = ρg(x) + ρg(−x) = ρg(x) − ρg(x) = 0. As a consequence, the

associated action on Θ∆ fixes Θ∆ as well.

Note that we plan to use the above result in Chapter 5, when we concentrate on specific

spinor Abelian varieties and the combinatorial properties of their Clifford multiplication on

the group of 2-torsion points.

3.3 The endomorphism structure of spinor Abelian varieties

In this section we examine the endomorphism ring of our spinor Abelian variety S∆ of

dimension 2k. The following lemma examines the relationship between the analytic rep-

resentations, Clifford multiplication, and the spinor representations, through what we call

the “losing your hat lemma”.

Lemma 3.3.1 (Losing your hat lemma). For the spinor Abelian variety S∆, the analytic

representation τa : End(S∆) → EndC(∆) satisfies the property τa(ρ̂(h)) = ρ(h) for any

h ∈ Cq(V )Z.

Proof. For any spinor Abelian variety, Clifford multiplication ρ̂ : Cq(V )Z → End(S∆)

is the ring homomorphism obtained by the restriction of the isomorphism ρ : Cq(V )
∼=−→

End(∆). Now if we fix an element h ∈ Cq(V )Z, the endomorphism ρ̂(h) ∈ End(S∆) can

be viewed as the restriction ρ
∣∣
Cq(V )Z

(h) ∈ End(S∆). Thus it is clear that the spinor repre-

sentation ρ defines Clifford multiplication on S∆ by any lattice element h ∈ Cq(V )Z. Then

we can view the analytic endomorphism τa : End(S∆) → End(∆) for any endomorphism

of the form ρ̂(h), for a lattice element h ∈ Cq(V )Z, as τa(ρ̂(h)) = ρ(h). This is because
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for any endomorphism ρ̂(h) ∈ End(S∆), there is an endomorphism ρ(h) ∈ End(∆) that

defines it.

Thus for Clifford multiplication ρ̂, composing it with the analytic representation τa

gives us ρ, losing the hat on Clifford multiplication and providing us with the following

commutative diagram.

End(S∆)

Cq(V )Z End(∆)

τaρ̂

τa◦ρ̂=ρ

.

With this lemma we are able to prove the following.

Proposition 3.3.2. For a spinor Abelian variety S∆ with Clifford multiplication given by

Cq(V )Z- lattice actions, we have the ring isomorphism Cq(V )Z ∼= End(S∆).

Proof. For spinor Abelian varieties we have Clifford multiplication given by the ring ho-

momorphism ρ̂ : Cq(V )Z → End(S∆). Now suppose that for h, g ∈ Cq(V ), ρ̂(h) = ρ̂(g).

Extending this equality via the analytic representation, we have τa(ρ̂(h)) = τa(ρ̂(g)).

Then by Lemma 3.3.1, this equality implies that ρ(h) = ρ(g) in End(∆). Now since

End(∆) ∼= Cq(V ), we can take inverses to conclude that h = g, and hence ρ̂ is an

injective ring homomorphism. To prove surjectivity, choose an arbitrary endomorphism

f ∈ End(S∆). Taking its analytic representation gives us τa(f) ∈ End(∆). Now since

we have the isomorphism Cq(V ) ∼= End(∆), there exists an element g ∈ Cq(V ) such that

ρ(g) = τa(f). Moreover, the analytic representation τa(f) when restricted to the full rank

lattice Γ∆ coincides with the rational representation; that is, τr(f) = τa(f)
∣∣
Γ∆

. Thus we

have τa(f)
∣∣
Γ∆

∈ EndZ(Γ∆), implying that τa(f) preserves the full rank lattice Γ∆ ⊂ ∆.

Then ρ(g) is identified with an element in the Clifford algebra with integral coefficients,

and so we have g ∈ Cq(V )Z. Thus since our choice of endomorphism was arbitrary, we
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have that for any f ∈ End(S∆) there exists an element g ∈ Cq(V )Z such that ρ̂(g) = f ,

implying that ρ̂ is an isomorphism.

From this proposition, we have the understanding that for any endomorphism of S∆

there exists a lattice element that defines it. Therefore all we need to know, in order to

understand the structure of the endomorphism ring of our spinor Abelian variety, is to un-

derstand the structure of the integral subring Cq(V )Z. We also have the following corollary.

Corollary 3.3.3. For our spinor Abelian variety S∆ we have Aut(S∆) ∼= Γ̂c
q(V ).

Proof. Note that Aut(S∆) is the group of units of End(S∆), and that by Proposition 3.3.2

we have Cq(V )Z ∼= End(S∆). Then to find the automorphism group of S∆, we just need

to restrict our attention to the units of the integral subring Cq(V )Z, which are all of the

generators eI that generate the real algebra Cq(V ), and their imaginary generators ieI .

These generators form the multiplicative group of generators of Cq(V ), denoted Γ̂c
q(V ).

This group is isomorphic to the multiplicative group of generators of Cq(V ). Hence we

have Γ̂c
q(V ) ∼= Aut(S∆).

From Proposition 3.3.2 and Corollary 3.3.3, we have a good understanding of the endo-

morphism ring and automorphism group of our spinor Abelian variety S∆. Hence we can

think of S∆ as a spinor space for the lattice Cq(V )Z, since End(S∆) ∼= Cq(V )Z. Know-

ing the structure of Cq(V )Z and the multiplicative group of generators provides us with

knowledge about the endomorphisms and automorphisms of S∆.

Remark 3.3.4. Another way to see that the multiplicative generators are automorphisms

comes from the fact that they preserve the polarization, since they are a subgroup of the

Pinc(V ) group, which we know (see [45], [51]) preserves the Hermitian form on our

spinor module.

With respect to intrinsic properties of our spinor Abelian varieties, we can now prove

the following decomposition theorem.
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Theorem 3.3.5. A spinor Abelian variety S∆ is fully decomposable, as a spinor Abelian

variety, as a product of 2k elliptic curves Ei of j-invariant 1728.

Proof. Let S∆ be a spinor Abelian variety of dimension 2k. By Lemma 3.3.1 and Proposi-

tion 3.3.2 we have the following commutative diagram:

Cq(V )Z End(S∆)

Cq(V ) End(∆).

ρ̂

inc τa

ρ

From Corollary 3.3.3 we have the isomorphism Aut(S∆) ∼= Γc
q(V ). Hence for the au-

tomorphism of order four ρ̂(i) ∈ Aut(S∆), we have τa(ρ̂(i)) = ρ(inc(i)), where inc :

Cq(V )Z ↪→ Cq(V ) is the inclusion homomorphism. Thus we have τa(ρ̂(i)) = ρ(inc(i)) =

ρ(i) = i · ρ(1) = i · id∆. We have shown that in S∆ we have an automorphism of order 4

whose analytic representation is i · id∆, and so by Proposition 1.2.6 we have the isomor-

phism S∆
∼= E×2k

i := Ei × . . .× Ei︸ ︷︷ ︸
2k times

as polarized PPAVs, where Ei is the elliptic curve that

admits automorphisms of order 4; thus it must be of j-invariant 1728. So we have shown

that S∆ is fully decomposable as an Abelian variety. We still have to show that it is fully

decomposable as a spinor Abelian variety. Defining the isomorphism f : S∆

∼=−→ E×2k

i ,

we can extend Clifford multiplication via Adf : End(S∆) → End(E×2k

i ), where g 7→

Adf (g) = f ◦ g ◦ f−1. Composing Clifford multiplication with the adjoint conjugation

extends Clifford multiplication from S∆ on E×2k

i , by ρf : Cq(V )Z → End(E×2k

i ), given

by ρf (h) = Adf (ρ̂(h)) = f ◦ ρ̂(h) ◦ f−1 for a given lattice element h ∈ Cq(V )Z. That is,

for any h ∈ Cq(V )Z we have the following commutative diagram:

S∆ S∆

E×2k

i E×2k

i .

ρ̂h

ff−1

ρfh

This shows that we can naturally extend Clifford multiplication onto E×2k

i , making E×2k

i a

47



spinor Abelian variety. Hence we have shown that S∆ is fully decomposable not only as a

PPAV, but also as a spinor Abelian variety.

From Proposition 3.3.5 we have the intrinsic property of S∆ that all spinor Abelian

varieties with Clifford multiplication ρ̂ : Cq(V )Z → End(S∆) are fully decomposable, as

spinor Abelian varieties, to the product of 2k elliptic curves of j-invariant 1728. We now

have the following immediate corollary when viewing E×2k as a spinor Abelian variety.

Corollary 3.3.6. For the spinor Abelian variety E×2k

i , its endomorphism ring is isom-

rophic to the integral subring Cq(V )Z, and its group of automorphisms is isomorphic to

the multiplicative group of generators of Cq(V ). That is, End(E×2k

ı ) ∼= Cq(V )Z and

Aut(E×2k

i ) ∼= Γ̂c
q(V ).

Proof. This corollary immediately follows from Propositions 3.3.2 and 3.3.5 and Corollary

3.3.3.

We conclude this section with some insight into what Clifford multiplication ρf :

Cq(V )Z → End(E×2k) looks like. First notice that any isomorphism f : S∆

∼=−→ E×2k

i

will have components f(γ) = (f 1(γ), . . . , f 2k(γ)) where f j : S∆ → Ei is a morphism

from our spinor torus onto the j-th copy of the elliptic curve Ei. Now with the isomor-

phism f in mind, we have for any point ν ∈ E×2k

i an element γν ∈ S∆ with the property

that f(γν) = ν ∈ E×2k . Then for any h ∈ Cq(V )Z we can define Clifford multiplication

on ν = (ν1, . . . , ν2k) ∈ E×2k

i as follows:

ρfh(ν) = ρfh(ν1, . . . , ν2k)

= f ◦ ρ̂(h) ◦ f−1(ν1, . . . , ν2k)

= f(ρ(h)(γν)) = (f 1(ρ̂(h)(γν)), . . . , f 2k(ρ̂(h)(γν))).
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The question now becomes, how can we define the endomorphism ρhf in terms of compo-

nent maps or morphisms on each of the elliptic curve components Ei? First we define,

for each component, νhj = f j(ρ̂(h)(γν)), while keeping in mind the bijective relation be-

tween γ ∈ S∆ and ν ∈ E×2k

i . Now for each component we define the induced Clifford

morphism σh
j : Ei → Ei, which acts on j-th component of the product as νj ∈ Ei as

σh
j (νj) = νhj . It is from these induced Clifford morphisms that we define Clifford multipli-

cation ρf (h) ∈ End(E×2k

i ) in terms of components, where we have ρf (h) = (σh
1 , . . . , σ

h
2k
).

Figure 3.2 illustrates how we view the extension of Clifford multiplication by a lattice ele-

ment g ∈ Cq(V )Z on the product E×2k

i .

× × ×

× × ×

ρfg

E
σg(1)
i E

σg(2)
i E

σg(2k)
i

E1
i E2

i E2k

i

Figure 3.2: Induced lattice Clifford actions on E×2k

i

where σg(j) denotes the induced Clifford morphism acting on the j-th elliptic curve Ei

Now, it is tempting to think that these morphisms σh
j : Ei → Ei are endomorphisms

on the elliptic curves, but this may not always be the case, as we shall see in the following

counterexample.

Example 3.3.7. Suppose that on Ei × Ei we multiply by the generator e12 of the complex

Clifford algebra C2, whose Dirac spinor space is ∆2 = C2. As we saw in Chapter 2, the

matrix representation for this generator is given by the matrix E2 =

[
0 i

i 0

]
. Establishing

the isomorphism f :
C2

Z2 ⊕ iZ2
→ Ei × Ei, given by f(ν1e1 + ν2e2 + Γ∆2) = (ν1, ν2),

and choosing the point ([ i
3
], [2

5
]), we see via a simple diagram chase that ρf (e2)([ i3 ], [

2
5
]) =

([2i
5
], [2

3
]) ∈ Ei×Ei. Focusing on the first component, the induced Clifford map on the first

element gives us σe2
1 ([ i

3
]) = [2i

5
] = [ i

3
] + [ i

15
]. But we can easily see that this translation
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cannot come from any endomorphism induced from an element Z[i] = End(Ei), and hence

the induced Clifford map in this example is just a morphism in Ei.

From the previous counterexample we find that Clifford multiplication on E×2k

i is itself

an endomorphism (or even an automorphism), but the components that define Clifford

multiplication and act on each of the components are just morphisms. They do not have

the structure of endomorphisms on the components themselves, but in the bigger picture

contribute to the construction of an endomorphism on the product E×2k

i .
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CHAPTER 4

EXAMPLES AND CONSTRUCTIONS OF SPINOR ABELIAN VARIETIES

In this chapter we construct some concrete examples of spinor Abelian varieties. We begin

with the canonical example, the Dirac spinor Abelian variety, and show its relation to the

Clifford algebra C0,n =: Cn (which can be viewed as the complexification of the Euclidean

Clifford algebra R0,n, where all the generators are negative definite). In this chapter we

assume all underlying spaces are of even dimension (unless otherwise specified).

4.1 Dirac spinor Abelian varieties

In this section we consider the space of Dirac spinors ∆2k = C2k for the Clifford algebra

C2k. We begin by defining a canonical lattice for these spinor spaces. For convenience we

choose the standard basis e1, ..., e2k , for C2k and e1, ..., e2k for ∆2k.

Definition 4.1.1. The space of Dirac spinors ∆2k = C2k has the natural square lattice

denoted by ∆Z
2k = Z2k ⊕ i · Z2k .

The square lattice ∆Z
2k is clearly a lattice of full rank with respect to ∆2k, allowing us

to interpret the corresponding quotient as a complex torus.

Proposition 4.1.2. Consider the space of Dirac spinors ∆2k = C2k with the square lattice

∆Z
2k = Z2k ⊕ i ·Z2k . Then the quotient S∆2k

= ∆2k/∆
Z
2k is a complex torus that is a spinor

Abelian variety.

Proof. For the complex torus S∆2k
, we can choose the standard basis e1, . . . , e2k for ∆2k,

and the symplectic basis e1, . . . , e2k , ie1, . . . , ie2k such that we can write the full rank lat-

tice in the space of Dirac spinors ∆2k in terms of a period matrix Π = (I2k , i · I2k), where

∆Z
2k = Π · Z2k+1 , and where we clearly have i · I2k in the Siegel upper half space H2k of
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PPAVs (defined in chapter one). Thus we can conclude that S∆2k
is a complex polarized

Abelian variety of type D = I2k , that is a PPAV (see [21], [25] for more on the polar-

ization and period matrices). As we saw in Proposition 2.4.6, we can generate the matrix

representations of basis elements for C2k recursively via the formulas below:

• e2j−1

∼=−→ I⊗k−j ⊗ E1 ⊗B⊗j−1 for j = 1, . . . , k.

• e2j
∼=−→ I⊗k−j ⊗ E2 ⊗B⊗j−1 for j = 1, . . . , k.

It is clear that in this situation all unitary matrices ρ(ej) are composed of columns with all

zeros as entries except for one component where each entry is either ±i or ±1. Hence the

Clifford multiplication by any generator of C2k preserves the lattice ∆Z
2k, as well as all Z

linear combinations of the matrices and the products that represent all elements in (C2k)Z.

Therefore, Clifford multiplication considered on our PPAV S∆ is given by restricting the

canonical Dirac representations ρ2k : C2k → End(∆2k) to the integral subring action given

by ρ̂2k : (C2k)Z → End(S∆2k
). Hence we conclude that S∆2k

is a PPAV with Clifford

multiplication on its underlying spinor torus, that is, a Spinor Abelian variety.

In light of the above proposition, we make the following definition.

Definition 4.1.3. We define the spinor Abelian variety S∆2k
as the Dirac spinor Abelian

variety.

Now since C2k
∼= C(2k), it is immediate that the restriction to the integral subring

has the isomorphism (C2k)Z ∼= Z[i](2k); hence we can view Clifford multiplication on the

Dirac spinor Abelian variety as left actions by 2k × 2k Gaussian matrices. The Hermitian
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form H on ∆2k that defines our principal polarization is given by

H(v, w) = E(iv, w) + iE(v, w)

=
∑

i re(vi)re(wi) + im(vi)im(wi) + i ·
∑

i im(vi)re(wi)− re(vi)im(wi)

=
∑

i(re(vi) + i · im(vi))(re(wi)− i · im(wi))

=
∑

i viw̄i,

for all v, w ∈ ∆2k, where E is the imaginary part of the canonical Hermitian form H that

is integral on the lattice, defined by E(v, w) =
∑

i im(vi)re(wi) − re(vi)im(wi) for any

v, w ∈ ∆Z
2k ⊗ R, with respect to the R basis ej = ej ⊗ 1, iej = ej ⊗ i. Note that for

the Dirac spinor Abelian variety S∆2k
, the covering space ∆2k is a unitary spinor module

for the Clifford algebra C2k (see [23]). Hence the actions by the integral Spin groups

Γ2k ∩ (C2k)Z = ΓZ
2k, Pin(2k) ∩ (C2k)Z = PinZ(2k), Spin(2k) ∩ (C2k)Z = SpinZ(2k),

and Γc
2k preserve the canonical polarization on S∆2k

.

Dirac spinor Abelian varieties as fully decomposable products of elliptic curves

In this section we show that S∆2k
can be fully decomposed as a product of 2k elliptic

curves of the form Ei =
C

Z⊕ iZ
with j-invariant 1728. In this section we are showing the

full decomposition of the Dirac spinor Abelian variety after a suitable choice of basis has

been made. Although this was generally proven by Theorem 3.3.5 our aim is to focus on

how Clifford multiplication extends via our matrix representation to the product of Elliptic

curves. We start by considering the product of 2k curves, E×2k

i = Ei × · · · ×Ei, where the

j-invariant of the components is equal to 1728.

Lemma 4.1.4. The Abelian variety E×2k

i as above has a polarization given by the Hermi-

tian form Ĥ =
∑

iH
i, where for all i we considerH i the canonical Hermitian form for the

elliptic curve Ei, given by H(v, w) = v · w̄ for v, w ∈ C. That is, we attach a copy of the

Hermitian form on every copy of Ei (in the coordinates of each curve), and then we sum

them all up. In fact, the Hermitian form Ĥ form is the Hermitian form (or an isomorphic
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copy) defined by the canonical polarization.

Proof. Consider each elliptic curve as the quotient Ei =
C

Z⊕ iZ
. Then for each i, on the

covering space C for each Ei we have the positive definite Hermitian form H : C × C →

C given by H(v, w) = v · w̄, such that the imaginary form E(v, w) = imH(v, w) =

re(w)im(v)− re(v)im(w) satisfies the following:

1. E(iv, iw) = E(v, w)

2. E(iv, v) ≥ 0

3. E restricted to the lattice Z⊕ iZ provides us with integral values.

This means that the form E defines a principal polarization on each curve Ei. Using this

construction, we obtain the principal polarization on each copy of the product E×2k

i to-

gether with the associated positive definite Hermitian form on each component of E×2k

i .

Now consider the sum of the componentwise Hermitian forms as Ĥ : C×2k × C×2k → C,

given by Ĥ((v1, . . . , v2k), (w1, . . . , w2k)) =
∑2k

j=1H
j(vj, wj), where Hj is just the stan-

dard Hermitian formH on the j-th component, that is on the Elliptic curveEi in the product

variety, and use it to obtain the following well-defined Hermitian form on the space of Dirac

spinors:

Ĥ((v1, . . . , v2k), (w1, . . . , w2k)) =
2k∑
j=1

vj · w̄j.

If we consider only the imaginary part of Ĥ , we get

Ê = imĤ((v1, . . . , v2k), (w1, . . . , w2k)) =
2k∑
j=1

(re(wj)im(vj)− re(vj)im(wj)).

Using Ê, we define a polarization on the product E×2k

i (since Ê satisfies all three Riemann

polarization identities on each component, all three are satisfied also on the sum of those

components). Now on this product of elliptic curves, the first Chern class of the canonical
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polarization on E×2k

i , given by the line bundle L0 = p∗1OEi
(0)⊗ · · · ⊗ p∗

2k
OEi

(0), gives us

the matrix

E =

 0 I2k

−I2k 0


(see Example 1.10 in this thesis or [8], [36]). Hence with respect to this matrix and a

suitable choice for our basis, our polarization defines the alternating form EL0(v, w) =∑2k

j=1(re(wj)im(vj)− re(vj)im(vj)), for v, w ∈ C2k . One can immediately see that

H(z, w) = EL0(iz, w) + iEL0(z, w) =
2k∑
j=1

zjw̄j = Ĥ((v1, . . . , v2k), (w1, . . . , w2k)).

Hence we have shown that Ĥ is actually the Hermitian metric induced from the canonical

polarization on E×2k

i . Moreover, since in this case det

 0 I2k

−I2k 0

 = 1, the canonical

polarization is also a principal polarization on E×2k

i .

We now establish an isomorphism between our Dirac spinor Abelian varieties and the

decomposable product of elliptic curves of j-invariant 1728.

Proposition 4.1.5. For all natural numbers k, the Dirac spinor Abelian variety S∆2k
is

isomorphic to E×2k

i as a spinor Abelian variety.

Proof. Using Lemma 4.1.4, we obtain the principal canonical polarization on E×2k

i using

the product Hermitian metric

Ĥ((v1, . . . , v2k), (w1, . . . , w2k)) = H(v1, w1) + · · ·+H(v2k , w2k) =
2k∑
j=1

vjw̄j,

for (v1, . . . , v2k), (w1, . . . , w2k) ∈ C2k . Thus, the canonical principal polarization on E×2k

i

yields the same standard Hermitian form as the canonical polarization on S∆2k
. To establish
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our isomorphism, we start by defining the component map π : S∆2k
→ E×2k

i where π(x̄) =

(x̄1, . . . , x̄2k) and x̄ ∈ S∆2k
is the equivalence class in the Dirac spinor Abelian variety, and

where x̄j is the projection of x̄ onto the j-th component on E×2k

i . π is clearly a surjective

homomorphism at the group level. Moreover, since kerπ = {0̄ ∈ S∆} is trivial, we obtain

the isomorphism of the complex tori: S∆2k
∼= E×2k

i .

Considering the canonical components, we can extend the map π to the covering spaces

via the analytic representation of π, ∆2k
τa(π)−−−→ C2k to get

π∗Ĥ(v, w) = Ĥ(π(v), π(w))

= Ĥ((v1, . . . , v2k), (w1, . . . , w2k))

= H(v1, w1) + · · ·+H(v2k , w2k)

for (v1, . . . , v2k) and (w1, . . . , w2k) in C2k . Now we can write
∑2k

j=1 vj · w̄j = H(v, w)

for v, w ∈ ∆2k. Hence π∗Ĥ = H , and thus our polarizations are preserved, and we have

obtained an isomorphism of PPAVs.

Notice that we can extend the Clifford multiplication ρ̂2k : (C2k)Z → End(S∆2k
) onto

E×2k

i by composing it with the isomorphism π : S∆2k

∼=−→ E×2k

i , thereby obtaining Clifford

multiplication on E×2k

i given by ρπ2k : (C2k)Z → End(E×2k

i ), where for a given element in

the lattice g ∈ (C2k)Z, we have

(ρπ2k(g)(x̄1, . . . , x̄2k) = Adπ(ρg)(x̄1, . . . , x̄2k) := π(ρ̂2k(g)(π
−1(x̄1, . . . , x̄2k))).

Hence for any lattice element g ∈ (C2k)Z, we have the following commutative diagram:

S∆2k
S∆2k

E×2k

i E×2k

i .

ˆρ2k(g)

ππ−1

ρπg

Note that here ρπg : E2k

i → E2k

i is the induced Clifford action on the product Abelian
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variety E×2k

i which mirrors the matrix multiplication action on S∆2k
. Thus the Clifford

multiplication by (C2k)Z, as extended above, extends further to E×2k

i via the isomorphism

π. Therefore we have shown that E×2k

i is a spinor Abelian variety isomorphic to the Dirac

spinor Abelian variety.

The above actions on underlining varieties can be understood as follows: for any basis

generator eµ of the complex Clifford algebra C2k, the induced Clifford action ρπeµ : E2k

i →

E2k

i can be viewed as a permutation σeµ ∈ S2k of order 1, 2, or 4 (along with someAut(Ei)

action on each permuted component). Then the Aut(Ei) action on the i-th component can

be thought of as multiplication by ikj , where kj ∈ {0, 1, 2, 3}. Thus, for each eµ ∈ Γ2k, we

can identify ρeµ with elements σeµ × (ik1 , . . . , ik2k ) ∈ S2k × Aut(E1728)
×2k . This comes

from the structure of the matrix representations of C2k acting on the Dirac spinors, and from

the fact that S∆2k
and E×2k

i are isomorphically matched via the component map. Hence

the matrix actions representing the basis elements of the Clifford algebra swap components

and/or multiply them by a multiple of i (depending on which column has the non-zero

entry on the matrix representation). Therefore, on an arbitrary generator eµ ∈ (C2k)Z

and (x̄1, . . . , x̄2k) ∈ E2k

i , we can view the induced Clifford action as ρπeµ(x1, . . . , x2k) =

(ik1xσeµ (1), . . . , i
2kxσeµ (2

k)). This induced Clifford permutation is illustrated in Figure 4.1

below.

× × ×

× × ×

ρπeµ

E
σeµ (1)

i
ik1−→ E

σeµ (1)

i E
σeµ (2)

i
ik2−→ E

σeµ (2)

i E
σeµ (2

k)

i
i
k
2k−−→ E

σeµ (2
k)

i

E1
i E2

i E2k

i

Figure 4.1: Clifford multiplication by a generator on E×2k

i . The upper index defines the
component the copy Ei is on the decomposition and ikj is the associated automorphism on
the components once they have been permuted.

Note that as is the case for any unitary spinor module, the actions of the integral Spin
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groups PinZ(2k), SpinZ(2k), and Γ̂2k preserve the canonical polarization on E×2k

i , where

Clifford multiplication by the integral Spin groups can all be viewed as automorphisms that

preserve the principal polarization.

Example 4.1.6 (Dirac spinor Abelian surfaces). For dimension two Dirac spinors, we have

the Dirac spinor Abelian surfaces, where the Clifford actions on S∆2 =
C2

Z2 ⊕ i · Z2
are

given by the isomorphism C2
∼= C(2) defined by the following associations:

ρe1 =

[
i 0

0 −i

]
, ρe2 =

[
0 i

i 0

]
, and ρe12 =

[
0 −1

1 0

]
.

Since all Dirac spinor Abelian varieties are fully decomposable as products of elliptic

curves, we can consider the decomposition of the Abelian surface given by the projection

π : S∆2

∼=−→ Ei × Ei, where we have π(x̄) = (x̄1, x̄2), x̄ = x̄1e1 + x̄2 = y1e1 + y2e2 + Γ∆2

and y1, y2 ∈ C are representatives of those classes modulo the rank four lattice Γ∆2 . Then

the Clifford multiplication on the Dirac spinor Abelian surface S∆2 is given by the follow-

ing ρ̂ : (C2)Z → End(S∆2), and it does not change the initial automorphisms ρ(e1), ρ(e2),

and ρ(e12), as all of those left matrix actions preserve the lattice Γ∆2 . Note that the actions

given by (C2)Z can be represented as matrices in Z[i](2). However, we can also view them

in terms of integral matrices in Z(4) with respect to the Z basis e1, e2, ie1, ie2. The identifi-

cation between the 2× 2 Gaussian matrices that act on S∆2 via Clifford multiplication and

the integral 4× 4 matrices that preserve the lattice Γ∆2 is done via the rational representa-

tion τr : End(S∆2) → EndZ(Γ∆2). Hence the images of our multiplicative generators via

the rational representation are as follows:

τr(ρe1) =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

, τr(ρe2) =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

, and τr(ρe12) =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

.

Now we can extend the Clifford multiplication to the full decomposition Ei × Ei and

we obtain ρπ : (C2)Z → End(Ei×Ei), where on the multiplicative generators Γ̂2 we have

the following actions on any (x̄, ȳ) ∈ Ei × Ei:
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• ρπe1(x̄, ȳ) = (i · x̄,−i · ȳ)

• ρπe2(x̄, ȳ) = (i · ȳ, i · x̄)

• ρπe12(x̄, ȳ) = (−ȳ, x̄)

• ρπie1(x̄, ȳ) = (−x̄, ȳ)

• ρπie2(x̄, ȳ) = (−ȳ,−x̄)

• ρπie12(x̄, ȳ) = (−i · ȳ, i · x̄)

• ρπi (x̄, ȳ) = (i · x̄, i · ȳ).

By looking at the induced Clifford actions on Ei × Ei, we can conclude that the action

by any generator in Γ̂c
2 is representable by a subcollection of elements in ⟨i⟩×2 ×S2 acting

on Ei × Ei, where ⟨i⟩ = {1,−1, i,−i} and S2 is the symmetry group of two elements

which acts on Ei × Ei componentwise (either switching them or keeping them the same).

For example, we have ρπe1
∼= ((i,−i), id).

4.1.1 Half spinors and Clifford multiplication on Dirac half spinor Abelian varieties

As in Section 2.4, we consider the space of Dirac spinors for the Clifford algebra C2k as

the direct sum ∆2k = ∆+
2k ⊕∆−

2k with respect to the multiplication by the even subalgebra

C+
2k. If we restrict our attention to the even integral subalgebra (C+

2k)Z on the full rank

lattice ∆Z
2k, we can decompose it into ∆Z

2k = (∆+
2k)

Z ⊕ (∆−
2k)

Z, where the integral subring

(C+
2k)Z acts on the full rank lattice as the lattice actions (C2k−2)Z (on each component via

the diagonal action). Hence, restricting our attention to the half spinor space ∆+
2k, which

is itself a spinor space for the Clifford algebra C2k−2, we have the Dirac spinor Abelian

variety S∆2k−2
, which is isomorphic to S+

∆2k
= S∆+

2k
. This means that if we quotient

each half spinor space with its full rank half spinor lattice (which is just the quotient of a

Dirac spinor space along with the square lattice for dimension 2k−1), we get the half spinor
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Abelian variety decomposition of S∆2k
viewed as the direct sum S∆2k

= S+
∆2k

⊕ S−
∆2k

.

Here Clifford multiplication on the direct sum of half Dirac spinor Abelian varieties is

given by restricting Clifford multiplication to (C+
2k)Z, which is isomorphic to (C2k−1)Z

acting diagonally on our half Dirac spinor Abelian varieties. As a consequence we have the

following.

Proposition 4.1.7. Dirac spinor Abelian varieties S∆2k
decompose as direct sums of half

spinor abelian varieties; that is, S∆2k
= S+

∆2k
⊕ S−

∆2k
where each component is isomor-

phic as a Dirac spinor Abelian variety to S∆2k−2
. The even Clifford algebra (C+

2k)Z acts

diagonally on each component as (C2k−2)Z acting on S∆2k−2
.

We conclude this analysis in Chapter 5 by examining the properties of 2-torsion points

and Clifford multiplication on our Dirac spinor Abelian varieties.

4.2 Minimal left ideal spinor Abelian varieties

In this section we construct examples of spinor Abelian varieties by using minimal left

ideals in Cp,q constructed by Hermitian idempotents. We start by characterizing some

useful left ideals in the real Clifford algebras Rp,q that are of interest to us (see [55], [56]

for more on these minimal left ideals).

4.2.1 Minimal left ideals for Clifford algebras Rp,q and their complexifications

Definition 4.2.1. A left ideal I ⊂ Rp,q that does not contain any other nontrivial ideals is

a minimal left ideal. For Rp,q, any minimal left ideal is of the form Rp,q · f , where f is a

primitive idempotent element in Rp,q.

We see that Rp,q · f is clearly a left Rp,q-module, where the module multiplication is

given by u · (v · f) = (u · v) · f , for all u ∈ Rp,q and v · f ∈ Rp,q · f .

We quote here the following useful classification theorem for minimal left ideals on

Rp,q (see [41] for the proof and more on this construction).
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Theorem 4.2.2. A minimal left ideal in Rp,q is of type Rp,q·f , where f =
1 + eI1

2
· · · 1 + eIk

2

is a primitive idempotent in Rp,q and {eI1 , . . . , eIk} is a set of commuting elements of the

canonical basis such that e2Ii = 1 for all i = 1, . . . , k = q − rq−p. Moreover, the above

generators form a multiplicative group of order 2q−rq−p . The numbers ri are called the

Randon-Hurwitz numbers, given by the recurrence formula rq−p subject to the conditions:

r0 = 0, r1 = 1, r2 = 2, r3 = 2, rj = 3 where 4 ≤ j ≤ 7, ri+8 = ri + 4 for i ≥ 0,

r−1 = −1, and r−i = 1− i+ ri−2 for i ≥ 2.

Note that the algebra of endomorphisms of the above minimal left ideal is isomorphic

to the real matrix algebra of real dimensions matching those of Theorem 2.2.11. Then to

consider the complexification of these quadratic Clifford algebras, Cp,q = Rp,q ⊗ C , we

can define Hermitian idempotents in the following manner.

Definition 4.2.3. A Hermitian idempotent is a primitive idempotent f ∈ Cp,q such that f is

a Hermitian element, an element in Cp,q that remains invariant under hermitian conjuga-

tion, which generates a minimal left ideal Cp,q · f .

In this case, for Cp,q we have a suitable standard choice for a Hermitian idempotent (see

[55] and [56] for details) which we describe below.

Definition 4.2.4. For the Clifford algebra Cp,q, we define the element

fH =
1

2k
(1 + ime1)

∏[n
2
]−1

k=1 (1 + ilke2k · e2k+1) ∈ Cp,q where

m =

 0 p ̸= 0

1 p = 0

and

lk =

 0 p = 2k

1 p ̸= 2k.

The element fH satisfies the properties (fH)2 = fH and (fH)† = fH . Thus fH is a

primitive Hermitian idempotent of the Clifford algebra Cp,q.
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Note that the above Hermitian idempotent can be written in its expanded form as

fH = 1 + ime1 + il1e23 + · · ·+ ilke2k−2,2k−1 + · · ·+ ia·l1····lke1...2k−1.

Definition 4.2.5. We denote Cp,qf
H as the minimal left ideal generated by the Hermitian

idempotent fH .

The minimal left ideal Cp,q · fH is also a left Cp,q module which yields the minimal

representations Cp,q
∼= End(Cp,q · fH), making Cp,q · fH also a complex spinor space for

Cp,q.

Lemma 4.2.6. Consider the Clifford algebra Cp,q, with p + q = 2k or 2k + 1. Then for a

Hermitian idempotent fH , the generators of fH form a multiplicative group of order 2k.

Proof. Consider Cp,q with p+ q = 2k or 2k + 1. Choose our Hermitian idempotent fH =

1

2k
(1 + ime1)

∏k−1
k=1(1 + ilke2k · e2k+1). Then the generators of fH modulo complex units

(±i,±1) form a set of elements of order k+1, i.e. S = {1, e1, e23, e45, . . . , e2k−2,2k−1}, and

all k generators commute with each other and satisfy the property that (ibke2j−2,2j−1)
2 = 1.

The Clifford products of the generators in S give us a total of 2k distinct elements (in

the sense that zero products
(
k
0

)
= 1 correspond to the generator 1, while

(
k
1

)
= k are the

products given by e1, e23, . . . e2k−2,2k−1). All other products give us the following remaining

elements (where indices are specifying the generators multiplied to obtain them):

e123, e145, . . . , e1,2k−2,2k−1, e2345, . . . , e2k−4,2k−3,2k−2,2k−1 . . . , e123...2k−1.

Therefore, we obtain a total of
∑k

n=0

(
k
n

)
= 2k products when multiplying various genera-

tors in the set S, and moding out by complex units ⟨i⟩ allow us to order these elements in an

increasing sequence and avoid counting products more than once. We denote this set of all

products by P (S) (which is a set of order 2k). Now we denote a generic element of P (S) by

eµ, where the index µ satisfies the property µ = {b1, (c2, c3), . . . , (c2l, c2l+1)}, b1 ∈ {∅, 1}
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and all pairs (c2l, c2l+1) are nonintersecting pairs in the set {(2, 3), (4, 5), . . . , (2k−2, 2k−

1)} for l ≤ k.

This way, for any two elements eµ, eη ∈ P (S), the equation eµ · eη = eµ+η is satisfied,

where we defined addition of the indices µ, η by the symmetric difference operation µ+η =

µ ∪ η \ µ ∩ η and for 0 ≤ r, l ≤ k we can define µ ∪ η as

{c1, (c2, c3), . . . , (c2l, c2l+1), d1, (d2, d3), . . . , (d2r, d2r+1)}.

If we assume the intersection is nonempty, we have µ∩η = {k1, (k2, k3), . . . , (k2s, k2s+1)}.

Hence µ + η = {r1, (r2, r3), . . . , (r2(l+r−s), r2(l+r−s)+1)}, where µ + η is composed of

nonintersecting pairs of elements in P (S) (where the product modulo units is contained in

P (S)).

Definition 4.2.7. Let Cp,qf
H be the minimal left ideal in Cp,q. Then we call elements fH

and eα ·fH a basis for the ideal (where each basis element can be viewed as an equivalence

class given by the equivalence relation eµ ·fH ∼ ikeη ·fH if and only if eµ ·fH = ikeη ·fH ,

where k ∈ {0, 1, 2, 3}).

Lemma 4.2.8. Let p + q = 2k or p + q = 2k + 1. For any chosen basis fH , eηf
H in the

minimal left ideal Cp,qf
H , we have the property that eµ ·eηfH ̸= ±fH where eµfH , eηf

H ∈

Cp,qf
H are any two distinct basis elements.

Proof. Consider fH and eµfH (where µ in an increasing sequence) as basis elements for

Cp,qf
H . Choose an element eηfH (where η is also an increasing sequence) such that µ ̸= η.

Notice that if eα · fH = iafH , where a = 0, 1, 2, 3, then according to Lemma 4.2.6 eη must

be in the multiplicative subgroup P (S), generated by S = {1, e1, e23, e45, . . . , e2k−2,2k−1}.

That is, eα must be a product of generators that generate our Hermitian idempotent fH ,

modulo {±1,±i}. Since Cp,qf
H is a minimal left ideal of dimension 2k, each of the

2k basis elements are of the form eµf
H where eµ · fH ∼ eη · fH if and only if eµ ·

fH = eη · fH . Note that Cp,qf
H is a complex vector space of dimension 2k, and so

63



each class of type eµfH is in an equivalence class not equal to the class [fH ]. But we

have the property that eµ · eα /∈ P (S) for eα ∈ P (S), and for that basis element we

have eµ · fH =
1

2k
(eµ + imeµ · e1)

∏k−1
k=1(1 + ilke2k · e2k+1). Hence we have found a

new generating set of this Hermitian idempotent, modulo complex units, which we denote

Seµ = {eµ, eµ+{1}, . . . , eµ+{2k−2,2k−1}}. Note that the set Seµ does not contain any of the

same generators as S, so that the multiplicative group modulo complex units, P (Seµ), has

no generator in common with the group P (S) for fH , i.e. P (S) ∩ P (Seµ) = ∅. Since our

choice of eµfH was arbitrary, the above must be true for all generators of our canonical

basis for Cp,qf
H . Therefore, if we choose two distinct elements eµfH and eηfH from our

canonical basis, different from fH , then it is clear that
µ ∪ η
µ ∩ η

= {i1, . . . , ik} ≠ ∅. Hence

ei1,...,ikf
H has no generators in common with fH , and so P (Sei1,...,ik

) ∩ P (S) = ∅. Thus it

is immediate that eµeηfH ̸= fH , proving our lemma.

Lemma 4.2.9. For the Hermitian idempotent fH in Cp,q, the following equations are sat-

isfied for any eµ in the canonical basis of Cp,q, where eµfH ̸= imfH for m = 0, 1, 2, 3:

• Trace(fH) =
1

2k
,

• Trace(eµfH) = 0, and

• Trace(fHeµf
H) = 0.

Proof. As above, let fH =
1

2k
(1 + ime1)

∏[n
2
]−1

k=1 (1 + ilke2k · e2k+1) be the Hermitian

idempotent in Cp,q. Then we can write it in the expanded form

fH =
1

2k
(1 + ime1 + il1e23 + · · ·+ ilk−1e2k−2,2k−1 + · · ·+ ia·l1···k−1e123...2k−1),

where ili1 ...lik = ili1 · · · ilik ∈ {±1,±i}. From this last equation we can conclude that

Trace(fH) =
1

2k
. Now consider eµfH . We showed that for each eµfH in the canonical

basis such that eµfH ̸= imfH , the products of eµ with any other of the 2k generators of the

Hermitian idempotent fH are not equal to a generator of fH (see Lemma 4.2.8). Hence we
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can write the expanded form as follows:

eµf
H =

1

2k
(eµ + imeµ · e1)

[n
2
]−1∏

k=1

(1 + ilke2k · e2k+1)

=
1

2k
(eµ+i

meµ·e1+il1eµ·e23+· · ·+ime1+ilk−1eµ·e2k−2,2k−1+· · ·+ia·l1···lk−1eµ·e123...2k−1).

Now using the fact that eµ is not a generator of fH , all products eµ · eα, where eα is a

generator of the idempotent fH , have the property that eµ · eα ̸= ±1. Since the expanded

product of eµfH has no degree zero components, we conclude that Trace(eµfH) = 0.

Lastly, consider the expanded form for fHeµf
H :

=
1

2k
(1 + ime1 + il1e23 + · · ·+ ime1 + ilk−1e2k−2,2k−1 + · · ·+ ia·l1···lk−1e123...2k−1)

·( 1
2k

(eµ+i
meµ ·e1+il1eµ ·e23+· · ·+ime1+ilk−1eµ ·e2k−2,2k−1+· · ·+ia·l1···lk−1eµ ·e123...2k−1))

=
1

4
(eµ + imeµ · e1 + · · ·+ iml1...lk−1eµe12...2k−1 + ime1eµ + · · ·

+i2ml1...lk−1e1eµe1 + · · ·+ i2(ml1...lk−1)e12...2k−1eµe12...2k−1).

Using Lemma 4.2.9, we can see that all components of the expanded product are of nonzero

degree. Thus, we conclude that Trace(fHeµf
H) = 0.

Starting from this point, we are working with signatures of even dimension p+ q = 2k.

Then for our minimal left ideal in the Clifford algebra Cp,q, dimC Cp,qf
H = 2k. We can

choose a basis of all 2k distinct classes for the minimal left ideal Cp,qf
H denoted by fH ,

eI1f
H , . . . , eI

2k−1
fH for Cp,qf

H and express a generic element ufH in this left ideal as the
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sum u = u0f
H +

∑2k−1

i=1 uIieIif
H , and the (p, q) Hermitian conjugate of this element as

u†p,q = (u0f
H)†p,q +

∑2k−1

i=1 (uIieIif
H)†p,q

= ū0(f
H)†p,q +

∑2k−1

i=1 ūIi(f
H)†p,qe

†p,q
Ii
fH

= ū0f
H +

∑2k−1

i=1 ūIif
He

†p,q
Ii
.

Lemma 4.2.10. Define η : Cp,qf
H × Cp,qf

H → C by

η(u · fH , v · fH) = 2kTrace((v · fH)†p,q · u · fH).

Then η is a Hermitian form on the minimal left ideal Cp,qf
H in Cp,q isomorphic to the

standard model (C2k , H), where H is the standard canonical Hermitian form on C2k (after

a proper orthonormal basis identification). Moreover, basis elements of the form eIj · fH

are orthonormal with respect to η.

Proof. Fix a basis fH , eI1f
H , . . . , eI

2k−1
fH for the ideal Cp,qf

H . Fix two arbitrary ele-

ments u ·fH = u0f
H +

∑2k−1

i=1 uIieIif
H and v ·fH = v0f

H +
∑2k−1

i=1 vIieIif
H . Considering

the product (v · fH)†p,q · u · fH , we get (fH)†p,qv†p,qufH = fHv†p,qu · fH . Using the result

from Chapter 2 that e−1
I = e

†p,q
I , we can write the expanded form of the product as

fHv†p,qu · fH = (fH{v̄0 +
∑2k−1

i=1 e
†p,q
Ii
v̄Ii} · {u0 +

∑2k−1

i=1 uIieIi}fH)

= (fH{v̄0u0 +
∑2k−1

i=1 v̄0uIieIi +
∑2k−1

i=1 u0v̄Iie
−1
Ii

+
∑2k−1

i=1 v̄IiuIie
−1
Ii
eIi}fH) + fH{

∑2k−1
i ̸=j v̄IiuIje

−1
Ii
eIj}fH .

For the components where i = j in the expanded sum, we have e−1
Ii

· eIi = 1 = eIi ·

e−1
Ii

. For the components where i ̸= j, some of the indices do not cancel, and so e−1
Ii

·

eIj = ±eIi+j
where eIi+j

is not of degree zero. Then it is of the form ±ej1,...,jr , where

(j1, . . . , jr) =
Ii ∪ Ij
Ii ∩ Ij

(following the notation on indices introduced before). Thus for

different basis elements we have e−1
Ii

·eIj ̸= ±imfH (see Lemma 4.2.8). As a consequence,

we get the following equations:
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fHv†p,qu · fH = (fH{v̄0u0 +
2k−1∑
i=1

v̄0uIieIi +
2k−1∑
i=1

u0v̄Iie
−1
Ii

+
2k−1∑
i=1

v̄IiuIi}fH) + fH{
2k−1∑
i ̸=j

}v̄IiuIjeIi+j
}fH

= v̄0u0(f
H)2 +

2k−1∑
i=1

v̄0uIif
HeIif

H +
2k−1∑
i=1

u0v̄Iif
He−1

Ii
fH

+
2k−1∑
i=1

v̄IiuIi(f
H)2 +

2k−1∑
i ̸=j

v̄IiuIjf
HeIi+j

fH

= v̄0u0f
H +

2k−1∑
i=1

v̄0uIif
HeIif

H +
2k−1∑
i=1

u0v̄Iif
He−1

Ii
fH

+
2k−1∑
i=1

v̄IiuIif
H +

2k−1∑
i ̸=j

v̄IiuIjf
HeIi+j

fH .

Now let us take the trace operation on the above product. We obtain the following results

on each component (see Lemma 4.2.9):

• Trace(v̄0u0fH) = v̄0u0Trace(f
H) =

1

2k
v̄0u0

• Trace(
∑2k−1

i=1 v̄0uIif
HeIif

H) =
∑2k−1

i=1 v̄0uIiTrace(f
HeIif

H) = 0

• Trace(
∑2k−1

i=1 u0v̄Iif
He−1

Ii
fH) =

∑2k−1
i=1 u0v̄IiTrace(f

He−1
Ii
fH) = 0

• Trace(
∑2k−1

i=1 v̄IiuIif
H) =

∑2k−1
i=1 v̄IiuIiTrace(f

H) =
1

2k
∑2k−1

i=1 v̄IiuIi

• Trace(
∑2k−1

i ̸=j v̄IiuIjf
HeIi+j

fH) =
∑2k−1

i ̸=j v̄IiuIjTrace(f
HeIi+j

fH) = 0

Hence can conclude that Trace((v · fH)†p,q · ufH) =
1

2k
∑2k−1

i=0 v̄iui. Now modifying this

result by multiplying by the factor of 2k, we get the following equation:

η(u · fH , v · fH) = 2k · Trace((vḟH)†p,q · u · fH) =
2k−1∑
i=0

v̄iui.
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Thus we conclude that η is a complex bilinear form on Cp,qf
H , and it is isomorphic to the

canonical model (which we denotedH) on C2k . This isomorphism can easily be established

once we identify the basis 1, eI1f
H , . . . , eI

2k
fH on Cp,qf

H with e1, . . . , e2k on C2k . Then

if f : Cp,qf
H

∼=−→ C2k is this isomorphism, we have the corresponding Hermitian forms

identified via f ∗H = η. Since η is a complex bilinear form on Cp,qf
H isomorphic to H ,

we conclude that η satisfies the property of being a positive definite Hermitian form on

Cp,qf
H .

To summarize, we have that for any basis of the form fH , eI1f
H , . . . , eI

2k−1
fH , where

the eIj are canonical basis generators of Cp,q, the following statements hold:

1. η(fH , fH) = 2kTrace((fH)†fH) = 2kTrace((fH)2) = 2kTrace(fH). Hence by

Lemma 4.2.9 we have η(fH , fH) = 2k(
1

2k
) = 1.

2. For i = j, η(eIif
H , eIif

H) = 2kTrace((eIif
H)† · eIifH)

= 2kTrace((fH)†e−1
Ii

· eIifH)

= 2kTrace((fH)2) = 2k(
1

2k
) = 1.

3. For i ̸= j, η(eIif
H , eIjf

H) = 2kTrace((eIif
H)†p,q · eIjfH)

= 2kTrace((fH)†e−1
Ii

· eIjfH).

Hence applying Lemma 4.2.9 we get 2kTrace((fH)†p,qe−1
Ii

· eIjfH) = 0.

4. By Lemma 4.2.9 we get η(fH , eIjf
H) = 2kTrace((eIif

H)†p,q · eIjfH) = 0.

Thus we have shown that the basis is orthonormal with respect to η.

Note that the above result confirms that the basis elements eIjf
H form a Hermitian

orthonormal basis on Cp,qf
H and can be identified isometrically with the Hermitian or-

thonormal basis on ∆2k = C2k .
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Remark 4.2.11. The spinor module Cp,qf
H yields minimal complex representations (uni-

tary for the Clifford Spin groups) for Cp,q, where elements of the form eIkf
H can be repre-

sented as matrices all but one of whose columns consist of all zeros, and where the nonzero

column has only one nonzero entry. Moreover, the basis elements fH and eIkf
H form a

basis of column vectors for these matrix representations of the Clifford algebra Cp,q of

C(2k).

Now we look at the Hermitian form η on Cp,qf
H . Its imaginary part E = im(η) has

the following description, as a corollary to Lemma 4.2.10.

Corollary 4.2.12. Consider Cp,qf
H . The nondegenerate R-linear alternating form defined

by

Ep,q : Cp,qf
H × Cp,qf

H → R,

where Ep,q(U, V ) = 2kTrace{re(V )†p,q · im(U) + im(V )†p,q · re(U)}, is the imaginary

part of the Hermitian form η on Cp,qf
H . Moreover, Ep,q is isomorphic to the real skew-

symmetric bilinear form canonically identified with the real skew-symmetric form E =

im(H) for the standard Hermitian form H on the space of Dirac spinors ∆2k = C2k via a

vector space isomorphism F : Cp,qf
H

∼=−→ ∆2k. Hence Ep,q is an R skew-symmetric form

satisfying the Riemann bilinear relations on Cp,qf
H .

Proof. Begin by considering U, V ∈ Cp,qf
H , where U = u0f

H +
∑2k−1

i=1 uieIif
H and

V = v0f
H +

∑2k−1

i=1 vieIif
H in a minimal left ideal basis fH , eI1f

H , . . . , eI
2k−1

fH . Taking

the (p, q)-Hermitian conjugation, we get U †p,q = ū0f
H +

∑2k−1

i=1 ūif
He−1

Ii
and V †p,q =

v̄0f
H +

∑2k−1

i=1 v̄if
He−1

Ii
. Since ui, vi ∈ C, we can rewrite the elements U, V, U †p,q , V †p,q in

terms of real and imaginary components by splitting up the complex scalars. Hence, for a

given element U ∈ Cp,qf
H , we have the following:

• Re(U) = re(u0)f
H +

∑2k−1

i=1 re(ui)eIif
H ,

• Im(U) = im(u0)f
H +

∑2k−1

i=1 im(ui)eIif
H ,
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• Re(U)†p,q = re(u0)f
H +

∑2k−1

i=1 re(ui)f
He−1

Ii
,

• Im(U)†p,q = −im(u0)f
H −

∑2k−1

i=1 im(ui)f
He−1

Ii
.

We can write U, V, U †p,q , V †p,q as a sum of their real and imaginary components. This

means that for any U, V ∈ Cp,qf
H , we have

• U = Re(U) + i · Im(U), V = Re(V ) + i · Im(V ),

• U †p,q = Re(U)†p,q + i · Im(U)†p,q , V †p,q = Re(V )†p,q + i · Im(V )†p,q .

Now, when we take the Trace of the product V †p,q · U , we get

Trace(V †p,q · U)

= Trace{(Re(V )†p,q + i · Im(V )†p,q) · (Re(U) + i · Im(U))}

= Trace{Re(V )†p,qRe(U)− Im(V )†p,qIm(U)}

+i · Trace{Re(V )†p,qIm(U) + Im(V )†p,qRe(U)}

= Re(Trace(V †p,q · U) + iIm(Trace(V †p,q · U).

Multiplying the imaginary part by the constant 2k yields the desired description for η and

provides us with the formula for the imaginary part of the Hermitian form η on Cp,qf
H

as Ep,q(U, V ) = im(η) = 2kTrace{Re(V )†p,qIm(U) + Im(V )†p,qRe(U)}. In order to

establish that E(U, V ) is a real skew-symmetric bilinear form on Cp,qf
H , we must show

that after a proper identification of basis elements, this form is isomorphic to E = imH on

∆2k (which is a skew-symmetric bilinear form that defines the standard Hermitian structure

on ∆2k). By expanding Ep,q, we get

Ep,q(U, V ) = 2kTrace(re(V )†p,q im(U) + im(V )†p,qre(U))
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= 2kTrace{(re(v0)fH +
2k−1∑
i=1

re(vi)f
He−1

Ii
) · (im(u0)f

H +
2k−1∑
j=1

im(ui)eIif
H)}

+2kTrace{(−im(v0)f
H −

∑2k−1

i=1 im(vi)f
He−1

Ii
) · (re(u0)fH +

∑2k−1

j=1 re(ui)eIif
H}

= 2kTrace{re(v0)im(v0)(f
H)2 +

∑
j=1

re(v0)im(uj)f
HeIjf

H

+
∑

i im(u0)re(vi)f
He−1

Ii
fH +

∑
i

∑
j re(vi)im(uj)f

He−1
Ii
eIjf

H}

−2kTrace{im(v0)re(u0)(f
H)2 +

∑
j=1 im(v0)re(uj)f

HeIjf
H

+
∑

i im(vi)re(u0)f
He−1

Ii
fH +

∑
i

∑
j im(vi)re(uj)f

He−1
Ii
eIjf

H}

= 2kTrace{re(v0)im(v0)f
H +

∑
j=1

re(v0)im(uj)f
HeIjf

H

+
∑

i im(u0)re(vi)f
He−1

Ii
fH +

∑
i

∑
j re(vi)im(uj)f

He−1
Ii
eIjf

H}

−2kTrace{im(v0)re(u0)f
H +

∑
j=1 im(v0)re(uj)f

HeIjf
H

+
∑

i im(vi)re(u0)f
He−1

Ii
fH +

∑
i

∑
j im(vi)re(uj)f

He−1
Ii
eIjf

H}.

Now by splitting up the double sum case into the cases i = j and i ̸= j, and distributing

the Trace operator, we get

E(U, V ) = 2k{re(v0)im(v0)Trace(f
H) +

∑
j=1

re(v0)im(uj)Trace(f
HeIjf

H)

+
∑
i

im(u0)re(vi)Trace(f
He−1

Ii
fH) +

∑
i=j

re(vi)im(ui)Trace(f
H)

+
∑
i ̸=j

re(vi)im(uj)Trace(f
He−1

Ii
eIjf

H)}

−2k{im(v0)re(u0)Trace(f
H) +

∑
j=1

im(v0)re(uj)Trace(f
HeIjf

H)

+
∑
i

im(vi)re(u0)Trace(f
He−1

Ii
fH) +

∑
i=j

im(vi)re(ui)Trace(f
H)
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+
∑
i ̸=j

im(vi)re(uj)Trace(f
He−1

Ii
eIjf

H)}.

Following Lemma 4.2.9, we use the facts that Trace(fH) =
1

2k
, T race(eµf

H) = 0, and

Trace(fHeµf
H) = 0 to conclude that

Ep,q(U, V ) = 2k{re(v0)im(v0)(
1

2k
) +

2k−1∑
i=1

re(vi)im(ui)(
1

2k
)} − 2k{im(v0)re(u0)(

1

2k
)

+
∑
i=j

im(vi)re(ui)(
1

2k
)}

= {re(v0)im(v0)− im(v0)re(u0)}+
2k−1∑
i=1

{re(vi)im(ui)− im(vi)re(ui)}.

Thus we conclude that Ep,q(U, V ) defines an R bilinear form isomorphic to the skew-

symmetric R bilinear form imH for the canonical Hermitian metric H on the space of

Dirac spinors ∆2k after the canonical identification of the basis elements given by the fol-

lowing {1, eI1fH , . . . , eI
2k−1

fH} 7→ {e1, . . . , e2k}. In this way we have established the C-

vector space isomorphism F : Cp,qf
H

∼=−→ ∆2k. Now, one can easily see that Ep,q is equal

to the pullback of the metric of E = imH in ∆2k; that is, F ∗E = Ep,q. From this canoni-

cal identification we conclude that Ep,q carries the property of being a skew-symmetric R

bilinear form on Cp,qf
H that satisfies the Riemann bilinear relations.

The above choice of the Hermitian form η and its alternating bilinear form Ep,q that

satisfies the Riemann relations, as well as the polarization properties, aids us in defining

polarizations for our constructed spinor tori.

4.2.2 The construction of the minimal left ideal spinor varieties of signature (p, q)

We begin this section by constructing a spinor torus on the complexification of the real

Clifford algebra of a quadratic space with signature (p, q), where p+ q = 2k.

For any signature (p, q) with (p, q) ̸= (1, 1), we define the Hermitian idempotent fH on the
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complexified Clifford algebra Cp,q as stated in Definition 4.2.4. We now define a full rank

lattice for Cp,qf
H by restricting the scalars to the ring of Gaussian integers Z[i], which we

denote Z[i]p,qfH = {
∑

α⊂[n](mα + inα) · eαfH : mα, nα ∈ Z}.

Lemma 4.2.13. Z[i]p,qfH is a free Z module of our minimal left ideal Cp,q ·fH of full rank,

and hence a full rank lattice. Moreover, Z[i]p,qfH is a Z[i]p,q module, as well as a Zp,q

module.

Proof. When we restrict our minimal left ideal Cp,qf
H to the Gaussian integers Z[i]p,qfH ,

we are clearly left with a free Z-submodule of Cp,qf
H . Where the operation is just addition

in the Clifford algebra restricted to Z[i]p,qfH . Moreover, this free Z module is of rank 2k+1

(the dimension as a Z module), with the integral basis fH , ifH , eI1f
H , . . . , eI

2k−1
fH , ieI1f

H , . . . , ieI
2k−1

fH .

Hence Z[i]p,q · fH is a full rank lattice of Cp,q · fH . Moreover, Z[i]p,qfH is also a Zp,q mod-

ule with the action given by u · v · fH = (u · v) · fH , for u ∈ Zp,q and v · fH ∈ Z[i]p,qfH .

Lastly, since Z[i]p,q is an integral subring closed under ring multiplication, Z[i]p,q · fH also

inherits the structure of a Z[i]p,q module.

We use Lemma 4.2.13 to prove the following proposition.

Proposition 4.2.14. The quotient of the minimal left ideal Cp,q · fH by its full rank lattice

Z[i]p,q · fH , which we denote Sp,q =
Cp,qf

H

Z[i]p,qfH
, is a spinor Abelian variety of dimension

2k, with Clifford multiplication given by the module action ρ̂ : Z[i]p,q → End(Sp,q), or

ρ̂ : Zp,q → End(Sp,q).

Proof. From Lemma 4.2.13, we have shown that Z[i]p,qfH is a lattice of full rank for the

complex vector space Cp,qf
H , and so the quotient Sp,q =

Cp,qf
H

Z[i]p,qfH
is a complex torus

of rank 2k. The covering space T0Sp,q = Cp,qf
H is a minimal left ideal for the Clifford

algebra Cp,q, and hence we have the isomorphism ρ : Cp,q

∼=−→ End(Cp,qf
H), where the

Clifford action is given by ρ(g) · u · fH = (g · u)fH (see [90], [91]). When we restrict this

isomorphism to the full rank lattice Z[i]p,q ⊂ Cp,q, we obtain Clifford multiplication on Sp,q,

given by ρ : Z[i]p,q → End(Sp,q) , where for any x ∈ Z[i]p,q, we have ρ(x)ūfH = (x·ū)fH .
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From Lemma 4.2.13, we have established that the full rank lattice Z[i]p,qfH is a Z[i]p,q

module; thus (x · u)fH is a class in Sp,q, and Clifford multiplication by Z[i]p,q defines an

endomorphism in Sp,q.

Therefore Sp,q is a dimension 2k spinor torus for the Clifford algebra Cp,q. From Propo-

sition 4.2.12, we have a skew-symmetric real bilinear form Ep,q on Cp,qf
H that satisfies the

Riemann bilinear relations (see Remark 1.1.4), given as the imaginary part of the positive

define Hermitian form η given in Proposition 4.2.10. We now show that Ep,q satisfies the

remaining principal polarization conditions.

1. By Proposition 4.2.12, for two lattice elements U, V ∈ Z[i]fH we have

E(U, V ) = 2kTrace(re(V )†im(U)+im(V )†re(U)) = {re(v0)im(v0)−im(v0)re(u0)}+∑2k−1
i=1 {re(vi)im(ui) − im(vi)re(ui)}, where the definition of U, V ∈ Z[i]p,qfH

forces that re(ui), im(ui), re(vi), im(vi) ∈ Z. Hence we have E(U, V ) ∈ Z for

any two lattice elements U, V ∈ Z[i]p,q, so that E is integral in the full rank lattice.

2. On the covering space of our spinor torus T0Sp,q = Cp,qf
H , we have the real basis

eIf
H , ieIf

H , where fH = e∅f
H , and where the matrix that defines the bilinear form

Ep,q is defined by the following relations:

• Starting from the fact that η is Hermitian, we have η(eIfH , eJf
H) = 1 if I = J ,

zero otherwise, on the fixed basis of Cp,qf
H . Examining the case where I = J ,

by the construction of Ep,q as the imaginary part of η we have η(eIfH , eIf
H) =

re(η(eIf
H , eIf

H))+iEp,q(eIf
H , eIf

H) = 1+0, forcingEp,q(eIf
H , eJf

H) = 0

for all strictly real basis elements.

• For the Hermitian form η we have η(ieIfH , eJf
H) = iη(eIf

H , eJf
H) = i · δJI .

Taking into consideration that Ep,q is the imaginary part of η, it immediately

follows that Ep,q(ieIf
H , eJf

H) = δJI .

• Similarly, for the Hermitian form η we have η(eIfH , ieJf
H) = −iη(eIfH , eJf

H) =

−i·δJI . Then on the imaginary partEp,q it immediately follows thatEp,q(ieIf
H , eJf

H) =
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−δJI .

• Lastly, for the Hermitian form η we have η(ieIfH , ieJf
H) = īiη(eIf

H , eJf
H) =

δJI , so it is immediately clear that Ep,q(ieIf
H , ieJf

H) = 0.

Hence with respect to the basis eIfH , ieIf
H , the imaginary part Ep,q of the Hermitian

form η defines the matrix E =

 0 I2k

−I2k 0

 , which clearly has determinant one.

Therefore, according to the Riemann relations, Ep,q defines a principal polarization on

Sp,q. Thus Sp,q is a spinor Abelian variety.

The proposition above motivates the following definition.

Definition 4.2.15. We define Sp,q as a minimal left ideal spinor Abelian variety for signa-

ture (p, q) associated to the Clifford algebra Cp,q.

With the above constructions, for any signature (p, q), we can construct spinor Abelian

varieties Sp,q. The benefits to using the minimal left ideal spinor Abelian varieties, as op-

posed to the Dirac spinor Abelian variety, is that Clifford multiplication acts on equivalence

classes; and once the nature of these classes is well understood, it is much easier compu-

tationally to work with them, as opposed to large matrices for higher-dimensional Clifford

algebras. We conclude this section with an example.

Example 4.2.16. Consider the Clifford algebra C2,2. Let our Hermitian idempotent be

given by fH =
1 + e1

2

1 + e23
2

=
1 + e1 + e23 + e123

4
. Then for the minimal left ideal

C2,2f
H we choose the basis elements fH , e2 · fH , e4 · fH , e24 · fH , with the following C

basis equivalences:

• fH = e1f
H = e23f

H = e123f
H .

• e2fH = −e12fH = e3f
H = −e13fH .

• e4fH = −e14fH = e234f
H = −e1234fH .
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• e24fH = e124f
H = e34f

H = e134f
H .

In this case, on the spinor Abelian variety S2,2, we consider the Clifford multiplica-

tion ρ̂ : (C2,2)Z → End(S2,2) given by the restriction of the representation ρ : C2,2 →

End(C2,2f
H), where we have the following multiplication table for Γ̂2,2 actions (automor-

phisms) on S2,2 with respect to their actions on the basis elements fH , e2f
H , e4f

H , e24f
H:

Γ̂2,2 actions on S2,2 fH e2f
H e4f

H e24f
H

e1 fH −e2fH −e4fH e24f
H

e2 e2f
H fH e24f

H e4f
H

e3 e2f
H −fH e24f

H -e4fH

e4 e4f
H −e24fH −fH e2f

H

e12 −e2fH fH e24f
H −e4fH

e13 −e2fH −fH e24f
H e4f

H

e14 −e4fH −e24fH −fH -e2fH

e23 fH −e2fH e4f
H −e24fH

e24 e24f
H −e4fH −e2fH fH

e34 e24f
H e4f

H −e2fH −fH

e123 fH e2f
H −e4fH -e24fH

e124 e24f
H e4f

H e2f
H fH

e134 e24f
H −e4fH e2f

H −fH

e234 e4f
H e24f

H −fH -e2fH

e1234 −e4fH e24f
H −fH e2f

H

Note that the complex multiplicative generators ieI just multiply entries in the table

above by i. Since the Clifford multiplication preserves the full rank lattice Z[i]2,2fH , the

analytic representation of the Clifford endomorphisms is just the lift of Clifford multiplica-

tion to the minimal left ideal C2,2f
H , while the rational representation τr : End(S2,2) →

EndZ(Z[i]2,2fH) just restricts the Clifford endomorphism on S2,2 to the full rank lattice

Z[i]2,2fH . With respect to the integral basis fH , e2f
H , e4f

H , e24f
H , ifH , ie2f

H , ie4f
H , ie24f

H ,
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we can view τr(ρ̂) : (C2,2)Z → Z(8) via the isomorphism EndZ(Z[i]2,2fH) ∼= Z(8). For

example, we can represent τr(ρ̂)(e1) by the following 8× 8 integral matrix:

τr(ρ̂(e1)) =



1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1



∈ Z(8).
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CHAPTER 5

COMBINATORIAL PROPERTIES OF CLIFFORD MULTIPLICATION ON THE

2-TORSION POINTS OF S∆2k

5.1 The multiplicative group of generators acting on the 2-torsion points of S∆2k

In this chapter we analyze combinatorial properties of Clifford multiplication on our Dirac

toric spinor Abelian varieties S∆2k
.

Definition 5.1.1. For k ∈ N, k ≥ 1, we denote the 2-torsion points of the Abelian variety

S∆2k
as J

S∆2k
2 = {x ∈ S∆2k

: 2 · x = 0}.

As we saw in Chapter 4, for the Dirac spinor Abelian variety, Clifford multiplication

comes from the Clifford algebra (C2k)Z, and we denote the group of multiplicative gener-

ators that define our automorphism structure in S∆2k
by Γ̂2k. We have the following result.

Lemma 5.1.2. The set of 2-torsion points on our spinor Abelian variety S∆2k
is of order

2(2
k+1).

Proof. Any element of J
S∆2k
2 is represented as a 2k-vector of points in the 4-element set of

the 2-torsion points on the square elliptic curve
C

Z⊕ iZ
, which we denote here as J

S∆0
2 ={

0,
1

2
,
i

2
,
1 + i

2

}
⊂ S∆2k

. Then to specify an element v⃗ ∈ J
S∆2k
2 , we must choose from

among 4 points for each of the 2k components of v⃗. Thus we have

#J
S∆2k
2 = 4(2

k) = (22)2
k

= 22·2
k

= 2(2
k+1).

Clifford multiplication by the matrices ρ(eµ), for eµ ∈ Γ̂2k, does not always give us

different automorphisms on J
S∆2k
2 . The reason is as follows: as we saw in the proof of
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Lemma 5.1.2, each of the 2k entries of a 2-torsion point on our canonical spinor Abelian

variety is one of the four elements v0 = 0, v1 = 1
2
, v2 = i

2
, v3 = 1+i

2
∈ J

S∆0
2 . These four

2-torsion points obey the following relations:

1. 2 · vn = 0 = v0 for n = 0, 1, 2, 3

2. v0 + vn = vn for n = 0, 1, 2, 3

3. v1 + v2 = v3

4. v1 + v3 = v2

5. v2 + v3 = v1

6. −vn = vn,−i · vn = i · vn for n = 0, 1, 2, 3

7. i · i · vn = vn for n = 0, 1, 2, 3.

Looking at the components of our 2-torsion points, it is immediately clear that not

all Clifford actions are distinct when we apply them to J
S∆2k
2 , since multiplication by −1

on each component is the same as multiplication by 1, and multiplication by −i on each

component is the same as multiplication by i. As a consequence of these relations we have

the following lemma.

Lemma 5.1.3. On the 2-torsion points J
S∆2k
2 ⊂ S∆2k

, the integral Clifford multiplication

descends to (C2k)F2 multiplication, where the integral scalars on the linear combination of

generators take the values of either 0 or 1, that is (C2k)F2 = {
∑

I⊂[n] aIeI : aI ∈ {0, 1}}.

Proof. Multiplication by i on J
S∆0
2 ⊂ C

Z⊕ iZ
is clearly an involution that fixes v0 and

v3. Thus, viewing J
S∆2k
2 as J

S∆2k
2 = {


va1
...

va
2k

 : al ∈ {0, 1, 2, 3} for 1 ≤ l ≤ 2k}, we

see that i · i · val = val on each of the 2k components of our 2-torsion points on S∆2k
.
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Moreover, integral multiplication on J
S∆2k
2 reduces to F2 multiplication, since 2m · vn = 0

and (2m + 1) · vn = vn for m ∈ N and n = 0, 1, 2, 3, from the symmetry relations on

the 2-torsion points on
C

Z⊕ iZ
. From this we get that Clifford multiplication on our set

of 2-torsion points descends to F2 linear combinations of elements in the canonical basis.

Thus multiplication by (C2k)Z on J
S∆2k
2 is equivalent to (C2k)F2 multiplication.

We are now ready to compute the number of unique Clifford actions given by our mul-

tiplicative group of generators Γ̂2k on our 2-torsion points J
S∆2k
2 .

Theorem 5.1.4. The 22k basis generators of the Clifford algebra C2k give us a total of 2k+1

unique involutions on J
S∆2k
2 .

Proof. From Lemma 5.1.3, it follows that Clifford multiplication by a generic element in

(C2k)Z descends to an F2 linear combination of the canonical generators eµ and ieµ (where

µ is an increasing subsequence of {1, . . . , 2k}). From Proposition 2.4.6 we see that the

vector generators e1, . . . , e2k of our Clifford algebra are given by matrix representations

which can be constructed by taking k-Kronecker products of combinations of the matrices

E1, E2, B, I ∈ C(2) defined in Subsection 2.4.2.

By taking products of the k-Kronecker product combinations of these matrices, we

obtain the 22k generators eµ of C2k.

Using the following notation Ta1,...,a2k =


va1
...

va
2k

 to denote an element of J
S∆2k
2 ,

where val ∈ J
S∆0
2 for 1 ≤ l ≤ 2k, we get the relations on J

S∆2
2 by our generating matrices

E1, E2, B, I .

I · Tab = iE1 · Tab = Tab

iE2 · Tab = iB · Tab = Tba
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Defining an equivalence relation ∼ on Γ̂2 by eµ ∼ eν if and only if ρ(eµ) · Tab =

ρ(eν) · Tab for all Tab ∈ J
S∆2
2 , we get the following equivalences from our generating

matrices:

I ∼ iE1

iE2 ∼ iB

iI ∼ E1

E2 ∼ B

Thus the representation matrices on J
S∆2
2 that act uniquely are generated by I and E2,

as well as by iI and iE2. From these equivalences it follows that for the even vector

generators, given by e2j
∼=−→ I⊗k−j ⊗ E2 ⊗ B⊗j−1 for j = 1, . . . , k, the representative

matrices as they pertain to acting on J
S∆2k
2 are equivalent to I⊗k−j ⊗ B⊗j . While for the

odd vector generators, given by e2j−1

∼=−→ I⊗k−j⊗E1⊗B⊗j−1 for j = 1, . . . , k, we have the

equivalent matrices i · (I⊗k−j+1⊗B⊗j−1) on J
S∆2k
2 . Now since the rest of the 22k canonical

generators of the Clifford algebra C2k are products of the 2k vector generators e1, . . . , e2k,

their representative matrices are products of I⊗k−j⊗B⊗j and i·(I⊗k−j+1⊗B⊗j−1) on J
S∆2k
2 .

Using properties of Kronecker products of matrices of the same dimensions, we conclude

that the products of the generators as they act on J
S∆2k
2 all are of the form C1 ⊗ · · · ⊗Ck or

iC1⊗· · ·⊗Ck, where eachCj is a string of matrix products of Is orBs. Noting thatB2 = I2

acting on J
S∆2k
2 , we have that each component Cj is one of two options: I2 or B. Hence

there are a total of 2k resulting products of the form C1⊗· · ·⊗Ck, and 2k resulting products

of the form i · (C1 ⊗ · · · ⊗Ck). Hence on J
S∆2k
2 we have a total of 2k + 2k = 2 · 2k = 2k+1

unique involutions acting on the group of 2-torsion points (where we include the identity

in this count) induced from our 22k canonical generators of our Clifford algebra C2k.

We remark here on notation for what follows in order to define relations with matrix

representations of Γ̂2k and Γ̂2k+2:
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• Since a sequence µ might be an increasing subsequence of both {1, . . . , 2k + 2} and

{1, . . . , 2k}, we write
k
eµ for the associated element of Γ̂2k, and

k+1
e µ for the associated

element of Γ̂2k+2.

• If µ and ν are sequences from {1, . . . , 2k}, we denote the concatenation of µ and

ν (that is, µ followed by ν) by µ ⌢ ν. For example, if µ = 2 and ν = 467, then

µ⌢ ν = 2467.

• If µ is a sequence in {1, . . . , 2k} and n is a natural number, we denote by µ + 2

(respectively µ − 2) the sequence formed by replacing each n ∈ µ with n + 2 (re-

spectively n− 2).

With the newly defined notation the following lemma provides a description of these ele-

ments in terms of their matrix Kronecker products.

Lemma 5.1.5. The representations of the vector generators
k+1
e 1, . . . ,

k+1
e 2k+2 for Γ̂2k+2 are

formed from the representatives of the vector generators
k
e1, . . . ,

k
e2k for Γ̂2k as follows:

ρ(
k+1
e i) =

 I2k ⊗ Ei if i = 1 or 2
k
ei−2 ⊗B if i = 3, 4, . . . , or 2k + 2

where I2k denotes the 2k × 2k identity matrix.
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Proof. By Proposition 2.4.6, we have

ρ(
k+1
e 1) = I

⊗(k+1)−1
2 ⊗ E1 ⊗B⊗1−1 = I⊗k

2 ⊗ E1 = I2k ⊗ E1

ρ(
k+1
e 2) = I

⊗(k+1)−1
2 ⊗ E2 ⊗B⊗1−1 = I⊗k

2 ⊗ E2 = I2k ⊗ E2

ρ(
k+1
e 3) = I

⊗(k+1)−2
2 ⊗ E1 ⊗B⊗2−1 = (I⊗k−1

2 ⊗ E1)⊗B = ρ(
k
e1)⊗B

ρ(
k+1
e 4) = I

⊗(k+1)−2
2 ⊗ E2 ⊗B⊗2−1 = (I⊗k−1

2 ⊗ E2)⊗B = ρ(
k
e2)⊗B

ρ(
k+1
e 5) = I

⊗(k+1)−3
2 ⊗ E1 ⊗B⊗3−1 = (I⊗k−2

2 ⊗ E1 ⊗B)⊗B = ρ(
k
e3)⊗B

ρ(
k+1
e 6) = I

⊗(k+1)−3
2 ⊗ E2 ⊗B⊗3−1 = (I⊗k−2

2 ⊗ E2 ⊗B)⊗B = ρ(
k
e4)⊗B

...

ρ(
k+1
e 2j−1) = I⊗k+1−j

2 ⊗ E1 ⊗B⊗j−1 = (I⊗k+1−j
2 ⊗ E1 ⊗B⊗j−2)⊗B

= ρ(
k
e2j−3)⊗B

ρ(
k+1
e 2j) = I⊗k+1−j

2 ⊗ E2 ⊗B⊗j−1 = (I⊗k+1−j
2 ⊗ E2 ⊗B⊗j−2)⊗B

= ρ(
k
e2j−2)⊗B

...

ρ(
k+1
e 2(k+1)−1) = I

⊗k+1−(k+1)
2 ⊗ E1 ⊗B⊗k+1−1 = E1 ⊗B⊗k = (E1 ⊗B⊗k−1)⊗B

= ρ(
k
e2k−1)⊗B

ρ(
k+1
e 2(k+1)) = I

⊗k+1−(k+1)
2 ⊗ E2 ⊗B⊗k+1−1 = E2 ⊗B⊗k = (E2 ⊗B⊗k−1)⊗B

= ρ(
k
e2k)⊗B

We generalize the equivalence relation ∼, defined on Γ̂2 in the proof of Theorem 5.1.4,

to Γ̂2k for any k:

Definition 5.1.6. Let k ∈ N, k ≥ 1. For
k
eµ,

k
eη∈ Γ̂2k, define

k
eµ∼

k
eη if for all v⃗ ∈ J

S∆2k
2 ,

k
eµ ·v⃗ =

k
eη ·v⃗.

If
k
eµ∈ Γ̂2k, we denote by [

k
eµ] the equivalence class of

k
eµ under the relation ∼.

83



Since Γ̂2k is a group of order 22k+1 which acts on the set J
S∆2k
2 , we define the quotient

by this action in the following manner:

Definition 5.1.7. We define the group of cosets by the Clifford multiplication action on the

2-torsion points as
Γ̂2k

J
S∆2k
2

= {[keµ] :
k
eµ∈ Γ̂2k}.

Remark 5.1.8. As we saw by Theorem 5.1.4, this group has a total of 2k+1 classes; that

is,

∣∣∣∣∣ Γ̂2k

J
S∆2k
2

∣∣∣∣∣ = 2k+1. What we must note here is that the generators of the quotient group

are being viewed as operators on J
S∆2k
2 , and not necessarily as multiplicative generators

from a Clifford algebra setting. Moreover, this group is commutative, since all negatives

are equivalent to their positives when quotiented-out by our relation ∼ on J
S∆2k
2 .

Lemma 5.1.9. Suppose µ = {i1, . . . , ip} is an increasing subsequence of {1, . . . , 2k + 2}.

Set µ = µ \ {1, 2}, and denote by µ − 2 the set obtained by subtracting 2 from every

element in the increasing subsequence µ\{1, 2}. That is, if µ\{1, 2} = (i1, . . . , ik), where

3 ≤ i1 < · · · < ik ≤ 2k+2, then µ−2 = (i1−2, . . . , ik−2). Then we have the following:

1. If 1, 2 ̸∈ µ, then ρ(
k+1
e µ) =

 ρ(
k
eµ−2)⊗ I2 if |µ| is even

ρ(
k
eµ−2)⊗B if |µ| is odd

2. If 1 ∈ µ and 2 ̸∈ µ, then ρ(
k+1
e µ) =

 ρ(
k+1
e 1) · (ρ(

k
eµ−2)⊗B) if |µ| is even

ρ(
k+1
e 1) · (ρ(

k
eµ−2)⊗ I2) if |µ| is odd

3. If 1 ̸∈ µ and 2 ∈ µ, then ρ(
k+1
e µ) =

 ρ(
k+1
e 2) · (ρ(

k
eµ−2)⊗B) if |µ| is even

ρ(
k+1
e 2) · (ρ(

k
eµ−2)⊗ I2) if |µ| is odd

4. If 1, 2 ∈ µ, then ρ(
k+1
e µ) =

 ρ(
k+1
e 12) · (ρ(

k
eµ−2)⊗ I2) if |µ| is even

ρ(
k+1
e 12) · (ρ(

k
eµ−2)⊗B) if |µ| is odd
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Proof. For (1): suppose 1, 2 ̸∈ µ. Then

ρ(
k+1
e µ) = ρ(

k+1
e i1) · · · ρ(

k+1
e ip)

= (ρ(
k
ei1−2)⊗B) · · · (ρ(keip−2)⊗B) (by Lemma 5.1.5)

= (ρ(
k
ei1−2) · · · ρ(

k
eip−2))⊗Bp

= ρ(
k
eµ−2)⊗B|µ|

= ρ(
k
eµ−2)⊗B|µ| (as 1, 2 ̸∈ {i1, . . . , ip})

=

 ρ(
k
eµ−2)⊗ I2 if |µ| is even

ρ(
k
eµ−2)⊗B if |µ| is odd

For (2): suppose 1 ∈ µ and 2 ̸∈ µ. Then

ρ(
k+1
e µ) = ρ(

k+1
e 1)ρ(

k+1
e i2) · · · ρ(

k+1
e ip)

= ρ(
k+1
e 1) · (ρ(

k
ei2−2)⊗B) · · · (ρ(keip−2)⊗B) (by Theorem 5.1.5)

= ρ(
k+1
e 1) · [(ρ(

k
ei2−2) · · · ρ(

k
eip−2))⊗Bp−1]

=

 ρ(
k+1
e 1) · (ρ(

k
eµ−2)⊗B) if |µ| is even

ρ(
k+1
e 1) · (ρ(

k
eµ−2)⊗ I2) if |µ| is odd

For (3): suppose 1 ̸∈ µ and 2 ∈ µ. Then

ρ(
k+1
e µ) = ρ(

k+1
e 2)ρ(

k+1
e i2) · · · ρ(

k+1
e ip)

= ρ(
k+1
e 2) · (ρ(

k
ei2−2)⊗B) · · · (ρ(keip−2)⊗B) (by Theorem 5.1.5)

= ρ(
k+1
e 2) · [(ρ(

k
ei2−2) · · · ρ(

k
eip−2))⊗Bp−1]

=

 ρ(
k+1
e 2) · (ρ(

k
eµ−2)⊗B) if |µ| is even

ρ(
k+1
e 2) · (ρ(

k
eµ−2)⊗ I2) if |µ| is odd
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For (4): suppose 1, 2 ∈ µ. Then

ρ(
k+1
e µ) = ρ(

k+1
e 12)ρ(

k+1
e i3) · · · ρ(

k+1
e ip)

= ρ(
k+1
e 12) · (ρ(

k
ei3−2)⊗B) · · · (ρ(keip−2)⊗B) (by Theorem 5.1.5)

= ρ(
k+1
e 12) · [(ρ(

k
ei3−2) · · · ρ(

k
eip−2))⊗Bp−2]

=

 ρ(
k+1
e 12) · (ρ(

k
eµ−2)⊗ I2) if |µ| is even

ρ(
k+1
e 12) · (ρ(

k
eµ−2)⊗B) if |µ| is odd

With a general understanding of what these matrix representations look like and how

their negatives are quotiented away when acting on 2-torsion points, we turn our interest

toward the general shape of the matrices.

Definition 5.1.10. For M = (mij) ∈ C(n), define the shape of M to be Sh(M) = (sij)

where for 1 ≤ i, j ≤ n,

sij =

 1 if mij ̸= 0

0 if mij = 0

That is, Sh(M) is the matrix obtained from M by replacing every non-zero entry in M with

a 1.

Recall that a permutation matrix is an n × n matrix (for some n ∈ N, n > 0) with

exactly one 1 in each row and each column, and zeros elsewhere. Any permutation matrix

P ∈ C(n) is the result of permuting the rows of the n × n identity matrix In accord-

ing to some permutation σ on {1, . . . , n}, and the result of applying P to an n-vector

v⃗ ∈ Cn is to permute the entries of v⃗ according to the permutation σ. The product of

permutation matrices, being equivalent to the composition of permutations on {1, . . . , n},

is another permutation matrix. Also, observe that the Kronecker product of permutation

matrices is again a permutation matrix. It is easy to check that if both Sh(M) and Sh(N)

are permutation matrices, then (i) Sh(M ·N) = Sh(M) · Sh(N) if M,N ∈ C(n), and (ii)

86



Sh(M ⊗N) = Sh(M)⊗ Sh(N).

Lemma 5.1.11. For any k ∈ N, k ≥ 1, Sh(ρ(
k
e1)), Sh(ρ(

k
e2)), and Sh(ρ(

k
e12)) are 2k × 2k

permutation matrices.

Proof. Let’s fix k. By inspection, Sh(E1),Sh(E2), and Sh(E12) are 2 × 2 permutation

matrices, and Sh(I2k−1) is a 2k−1 × 2k−1 permutation matrix. By Lemma 5.1.5, ρ(
k
e1) =

I2k−1 ⊗ E1, so that Sh(ρ(
k
e1)) = Sh(I2k−1 ⊗ E1) = Sh(I2k−1) ⊗ Sh(E1) is a 2k × 2k

permutation matrix. Similarly, Sh(ρ(
k
e2)) = Sh(I2k−1 ⊗ E2) = Sh(I2k−1) ⊗ Sh(E2) is a

2k × 2k permutation matrix. Then Sh(ρ(
k
e12)) = Sh(ρ(

k
e1) · ρ(

k
e2)) = Sh(ρ(

k
e1)) · Sh(ρ(

k
e2))

is a 2k × 2k permutation matrix.

Proposition 5.1.12. For all k ∈ N, k ≥ 1, and all eµ ∈ Γ̂2k, Sh(ρ(eµ)) is a 2k × 2k

permutation matrix.

Proof. It is sufficient to prove the proposition for all positive
k
eµ∈ Γ̂2k – that is, all

k
eµ for

which µ is an increasing subsequence of {1, . . . , 2k} – since it is clear here that Sh(ρ(
k
eµ

)) = Sh(ρ(− k
eµ)).

By inspection, the claim holds for each
1
eµ∈ Γ̂2. Suppose it holds for some k ≥ 1, and

let
k+1
e µ ∈ Γ̂2k+2. Let µ denotes µ \ {1, 2}. We know from Lemma 5.1.9 that ρ(

k+1
e µ) has

been formed from the element ρ(
k
eµ−2) of Γ̂2k in one of eight ways, by tensoring ρ(

k
eµ−2)

by either I2 or B and then possibly matrix-multiplying on the left by ρ(
k+1
e 1), ρ(

k+1
e 2),

or ρ(
k+1
e 12). Both I2 and B have the shapes of permutation matrices; Sh(ρ(

k
eµ−2)) is a

permutation matrix by the induction hypothesis; and ρ(
k+1
e 1), ρ(

k+1
e 2), and ρ(

k+1
e 12) have

the shapes of permutation matrices by Lemma 5.1.11. In all cases, ρ(
k+1
e µ) has the same

dimensions as either ρ(
k
eµ−2)⊗ I2 or ρ(

k
eµ−2)⊗B, namely (2k · 2)× (2k · 2) = 2k+1× 2k+1,

and Sh(ρ(
k+1
e µ)) is a permutation matrix.

The next three lemmas describe the effect of matrix multiplying on the left by the

representation of either
k
e1,

k
e2, or

k
e12 (for some k ∈ N, k ≥ 1). Recall that the presence of

negative signs in matrices acting on 2-torsion points has no effect on the action. That is, if
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M ∈ C2k is a complex matrix acting on J
S∆2k
2 and M ′ is a matrix obtained by replacing

some or all of the entries mij in M with −mij , then M · v⃗ =M ′ · v⃗ for all v⃗ ∈ J
S∆2k
2 .

Lemma 5.1.13. Let M be any 2k × 2k matrix. The effect of matrix multiplying M on the

left by ρ(
k
e1) is to multiply each entry mij of M by either i or −i.

Proof. Fix k ∈ N, k ≥ 1, and let M ∈ C(2k). Note that it is sufficient to show that ρ(
k
e1)

has the following form:

(⋆)



±i

±i
. . .

±i


(with zeros off the main diagonal). By Lemma 5.1.5, ρ(

k
e1) = I2k−1 ⊗ E1 = I2k−1 ⊗ i 0

0 −i

, which clearly is a 2k × 2k matrix of the form (⋆).

Lemma 5.1.14. Let M be any 2k × 2k matrix. The effect of matrix multiplying M on the

left by ρ(
k
e2) is to replace each entry mij of M by imij , and then to interchange rows 1 and

2, 3 and 4, . . . , and 2k − 1 and 2k.

Proof. Fix k ∈ N, k ≥ 1, and let M ∈ C(2k). Note that it is sufficient to show that ρ(
k
e2)

has the following form:

(⋆)



0 i

i 0

0 i

i 0

. . .

0 i

i 0


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(with zeros other than the entries shown). By Lemma 5.1.5, ρ(
k
e2) = I2k−1 ⊗E2 = I2k−1 ⊗ 0 i

i 0

, which clearly is a 2k × 2k matrix of the form (⋆).

Lemma 5.1.15. Let M be any 2k × 2k matrix. The effect of matrix multiplying M on the

left by ρ(
k
e12) is to replace each entry mij of M by mij or −mij , and then to interchange

rows 1 and 2, 3 and 4, . . . , and 2k − 1 and 2k.

Proof. Fix k ∈ N, k ≥ 1, and let M ∈ C(2k). Note that it is sufficient to show that ρ(
k
e12)

has the following form:

(⋆)



0 ±1

±1 0

0 ±1

±1 0

. . .

0 ±1

±1 0


(with zeros other than the entries shown). Using properties of the Kronecker product and

Lemma 5.1.5, we have the following ρ(
k
e12) = ρ(

k
e1) ·ρ(

k
e2) = (I2k−1 ⊗E1) · (I2k−1 ⊗E2) =

(I2k−1 · I2k−1)⊗ (E1 · E2) = I2k−1 ⊗

 0 −1

1 0

, which clearly is a 2k × 2k matrix of the

form (⋆).

In the following lemma, we show that the elements eµ ∈ Γ̂2k are divided into two

different types: real (with all non-zero entries in ρ(eµ) being ±1), or imaginary (with all

non-zero entries in ρ(eµ) being ±i).

Lemma 5.1.16. Let
k
eµ∈ Γ̂2k for some k ∈ N, k ≥ 1. Then either each non-zero entry in

ρ(
k
eµ) is in {−1, 1}, or each non-zero entry in ρ(

k
eµ) is in {i,−i}.
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Proof. We prove this by induction on k. The base case (k = 1) holds by inspection.

Suppose it holds for some k ≥ 1. Let
k+1
e µ ∈ Γ̂2k+2. As in Lemma 5.1.9, set µ = µ\{1, 2}.

By induction hypothesis, ρ(
k
eµ−2) either has all non-zero entries in {−1, 1} or has all non-

zero entries in {−i, i}. Also, |µ| is either even or odd; so there are four main cases to

consider. We present here the case for when ρ(
k
eµ−2) has all non-zero entries in {−1, 1}

and |µ| is even; the other three cases are similar and are left to the reader. By Lemma 5.1.9,

within this case there are four subcases, depending on which of 1 and/or 2 are elements of

the permutation µ.

If 1, 2 ̸∈ µ, then ρ(
k+1
e µ) = ρ(

k
eµ−2)⊗ I2; and Kronecker multiplying by I2 results in a

matrix all of whose non-zero entries are still in {−1, 1}.

If 1 ∈ µ and 2 ̸∈ µ, then ρ(
k+1
e µ) = ρ(

k+1
e 1) · (ρ(

k
eµ−2) ⊗ B). Kronecker multiplying

by B results in a matrix all of whose non-zero entries are in {−i, i}. By Lemma 5.1.13,

ρ(
k+1
e 1) · (ρ(

k
eµ−2)⊗B) is a matrix all of whose non-zero entries are in {−1, 1}.

If 1 ̸∈ µ and 2 ∈ µ, then ρ(
k+1
e µ) = ρ(

k+1
e 2) · (ρ(

k
eµ−2) ⊗ B). Kronecker multiplying

by B results in a matrix all of whose non-zero entries are in {−i, i}. By Lemma 5.1.14,

ρ(
k+1
e 2) · (ρ(

k
eµ−2)⊗B) is a matrix all of whose non-zero entries are in {−1, 1}.

If 1, 2 ∈ µ, then ρ(
k+1
e µ) = ρ(

k+1
e 12) · (ρ(

k
eµ−2) ⊗ I2). Kronecker multiplying by I2

results in a matrix all of whose non-zero entries are in {−1, 1}. By Lemma 5.1.15, ρ(
k+1
e 12)·

(ρ(
k
eµ−2)⊗ I2) is a matrix all of whose non-zero entries are in {−1, 1}.

Then we have that when ρ(
k
eµ−2) has all non-zero entries in {−1, 1} and |µ| is even, all

of the non-zero entries in ρ(
k+1
e µ) are in {−1, 1}.

Similarly, the reader may check the induction step for the three main remaining cases.

In all cases, either ρ(
k+1
e µ) has all of its non-zero entries in {−1, 1}, or it has all of its

non-zero entries in {−i, i}.

Observe that if P, P ′ are distinct 2k×2k permutation matrices, then there is a v⃗ ∈ J
S∆2k
2

such that P v⃗ ̸= P ′v⃗. By this and Lemma 5.1.16, we have:
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Lemma 5.1.17. Any two elements of a given equivalence class mod ∼ have the same shape.

□

Next we show that all representations in a given equivalence class have the same type,

either real or complex.

Lemma 5.1.18. Any two elements of a given equivalence class mod ∼ have the same kind

of non-zero entries: either all matrices in the class have non-zero entries in {1,−1}, or all

matrices in the class have non-zero entries in {i,−i}. That is, within a given class, either

all ρ(
k
eµ) have real type, or all ρ(

k
eµ) have complex type.

Proof. Suppose by contradiction that for some
k
eµ,

k
eη∈ Γ̂2k with

k
eµ∼

k
eη, ρ(

k
eµ) had real type

while ρ(
k
eη) had complex type. Set v⃗ to be the constant v1 = 1

2
vector in J

S∆2k
2 . Then

ρ(
k
eµ) · v⃗ = v⃗, but ρ(

k
eη) · v⃗ = iSh(ρ(

k
eη)) · v⃗ = iSh(ρ(

k
eµ)) · v⃗ = iv⃗, which is the constant

v2 = i
2

vector; but this is a contradiction since ρ(
k
eµ) and ρ(

k
eη) should act identically on

v⃗.

Observe that each strictly increasing subsequence µ ⊆ {1, . . . , 2k+2} can be obtained

from a strictly increasing subsequence ν ⊆ {3, . . . , 2k + 2} by prepending either ∅, 1,

2, or 12 to ν. Each such sequence ν, in turn, can be obtained from a strictly increasing

subsequence η ⊆ {1, . . . , 2k} by adding 2 to each element of η. We denote by η + 2 the

increasing sequence {n+ 2 : n ∈ η}.

This means that we have the following four bijections:

1. A bijection between strictly increasing subsequences of {1, . . . , 2k} and strictly in-

creasing subsequences of {1, . . . , 2k + 2} that contain neither 1 nor 2;

2. A bijection between strictly increasing subsequences of {1, . . . , 2k} and strictly in-

creasing subsequences of {1, . . . , 2k + 2} that contain 1 but not 2;

3. A bijection between strictly increasing subsequences of {1, . . . , 2k} and strictly in-

creasing subsequences of {1, . . . , 2k + 2} that contain 2 but not 1; and
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4. A bijection between strictly increasing subsequences of {1, . . . , 2k} and strictly in-

creasing subsequences of {1, . . . , 2k + 2} that contain both 1 and 2.

For example: consider the sequence µ = 46 ⊆ {1, 2, 3, 4, 5, 6}. (For ease of notation,

we are writing sequences without angle brackets or commas, so that, for example, ⟨4, 6⟩ is

denoted simply as 46.) The four subsequences of {1, 2, 3, 4, 5, 6, 7, 8} that are formed from

µ in this way are ∅⌢ 68 = 68, 1⌢ 68 = 168, 2⌢ 68 = 268, and 12⌢ 68 = 1268.

This means that we have the corresponding four bijections between Γ̂2k and subsets of

Γ̂2k+2:

1. A bijection between Γ̂2k and {eµ ∈ Γ̂2k+2 : 1, 2 ̸∈ µ};

2. A bijection between Γ̂2k and {eµ ∈ Γ̂2k+2 : 1 ∈ µ, 2 ̸∈ µ};

3. A bijection between Γ̂2k and {eµ ∈ Γ̂2k+2 : 1 ̸∈ µ, 2 ∈ µ}; and

4. A bijection between Γ̂2k and {eµ ∈ Γ̂2k+2 : 1, 2 ∈ µ}.

Since these four subsets of Γ̂2k+2 are all disjoint and since their union is all of Γ̂2k+2,

we have (again) that |Γ̂2k+2| = 4|Γ̂2k|.

Lemma 5.1.19. Let
k
eµ∈ Γ̂2k, and denote µ′ = µ + 2. There are exactly four elements of

Γ̂2k+2 that correspond to the increasing sequences ∅⌢ µ′, 1⌢ µ′, 2⌢ µ′, and 12⌢ µ′:

k+1
e

∅⌢µ′
=

k+1
e ∅

k+1
e µ′ ,

k+1
e

1
⌢

µ′
=

k+1
e 1

k+1
e µ′ ,

k+1
e

2
⌢

µ′
=

k+1
e 2

k+1
e µ′ , and

k+1
e

12
⌢

µ′
=

k+1
e 12

k+1
e µ′ .

Also, ρ(
k+1
e µ′) =

 ρ(
k
eµ)⊗ I2 if |µ| is even

ρ(
k
eµ)⊗B if |µ| is odd
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Proof. The first claim follows from the preceding discussion. For the second claim: we

have defined µ′ as µ + 2, so 1, 2 ̸∈ µ′. Then in this case (µ′ \ {1, 2}) − 2 = µ′ − 2 =

(µ+ 2)− 2 = µ. Then by Lemma 5.1.9,

ρ(
k+1
e µ′) =

 ρ(
k
e(µ′\{1,2})−2)⊗ I2 if |µ′| is even

ρ(
k
e(µ′\{1,2})−2)⊗B if |µ′| is odd

=

 ρ(
k
eµ)⊗ I2 if |µ′| is even

ρ(
k
eµ)⊗B if |µ′| is odd

=

 ρ(
k
eµ)⊗ I2 if |µ| is even

ρ(
k
eµ)⊗B if |µ| is odd

Lemma 5.1.20. Let
k
eµ∈ Γ̂2k. The four generators

k+1
e

∅⌢µ′
,
k+1
e

1
⌢

µ′
,
k+1
e

2
⌢

µ′
, and

k+1
e

12
⌢

µ′

have matrix representations that represent two new shapes in Γ̂2k+2, each occurring in real

and complex types.

Proof. Let
k
eµ∈ Γ̂2k. Suppose that each non-zero entry in ρ(

k
eµ) is in {1,−1} – that is, that

ρ(
k
eµ) is of real type – and that |µ| is even. This is the first of four cases; the remaining three

(depending on whether the type of ρ(
k
eµ) is real or complex, and whether the length of the

sequence µ is even or odd) are similar to the first and are left to the reader.

Since we have assumed |µ| is even and each non-zero entry in ρ(
k
eµ) is in {1,−1},

by Lemma 5.1.19, ρ(
k+1
e

∅⌢µ′
) = ρ(

k
eµ) ⊗ I2; and this is a matrix in which each non-zero

entry of ρ(
k
eµ) has been replaced by a matrix equivalent mod ∼ to

 1 0

0 1

. Also by

Lemma 5.1.19, ρ(
k+1
e

1
⌢

µ′
) = ρ(

k+1
e 1)(ρ(

k
eµ)⊗ I2). By Lemma 5.1.13, the resulting matrix

is one in which each non-zero entry of ρ(
k
eµ) has been replaced by a matrix equivalent

mod ∼ to

 i 0

0 −i

. Therefore ρ(
k+1
e

∅⌢µ′
) has the same shape as ρ(

k+1
e

1
⌢

µ′
), but the
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first of these matrices has real type while the second has complex type. Next: by Lemma

5.1.19, ρ(
k+1
e

2
⌢

µ′
) = ρ(

k+1
e 2)(ρ(

k
eµ) ⊗ I2). By Lemma 5.1.14, the resulting matrix is one

in which every non-zero entry of ρ(
k
eµ) has been replaced by a matrix equivalent mod ∼ to 0 i

i 0

. Finally, by Lemma 5.1.19, ρ(
k+1
e

12
⌢

µ′
) = ρ(

k+1
e 12)(ρ(

k
eµ) ⊗ I2). By Lemma

5.1.15, the resulting matrix is one in which every non-zero entry of ρ(
k
eµ) has been replaced

by a matrix equivalent mod ∼ to

 0 −1

1 0

. Therefore ρ(
k+1
e

2
⌢

µ′
) has the same shape

as ρ(
k+1
e

12
⌢

µ′
), but the first of these matrices has complex type while the second has real

type.

The three remaining cases are handled similarly, using Lemmas 5.1.19, 5.1.13, 5.1.14,

and 5.1.15.

The following theorem proves that matrix representations of elements of Γ̂2k with the

same shape provide us with the same equivalence classes in Γ̂2k+2 with respect to action on

the 2-torsion points.

Theorem 5.1.21. Let
k
eµ,

k
eη∈ Γ̂2k for some k ∈ N, k ≥ 1. Then

k
eµ and

k
eη give rise to

the same four equivalence classes mod ∼ in Γ̂2k+2 if and only if they have the same shape.

That is, {[
k+1
e

∅⌢µ′

]
,

[
k+1
e

1
⌢

µ′

]
,

[
k+1
e

2
⌢

µ′

]
,

[
k+1
e

12
⌢

µ′

]}

=

{[
k+1
e

∅⌢η′

]
,

[
k+1
e

1
⌢

η′

]
,

[
k+1
e

2
⌢

η′

]
,

[
k+1
e

12
⌢

η′

]}
if and only if Sh(ρ(

k
eµ)) = Sh(ρ(

k
eη)).

Moreover, the sets
{[

k+1
e

∅⌢µ′

]
,

[
k+1
e

1
⌢

µ′

]
,

[
k+1
e

2
⌢

µ′

]
,

[
k+1
e

12
⌢

µ′

]}
and{[

k+1
e

∅⌢η′

]
,

[
k+1
e

1
⌢

η′

]
,

[
k+1
e

2
⌢

η′

]
,

[
k+1
e

12
⌢

η′

]}
are disjoint if Sh(ρ(

k
eµ)) ̸= Sh(ρ(

k
eη)).

Proof. Let
k
eµ∈ Γ̂2k. We begin by making some observations about the matrix representa-

tions of the four elements
k+1
e

∅⌢µ′
,
k+1
e

1
⌢

µ′
,
k+1
e

2
⌢

µ′
, and

k+1
e

12
⌢

µ′
of Γ̂2k+2 that arise from
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k
eµ, as in Lemma 5.1.19.

First consider
k+1
e

∅⌢µ′
. By Lemma 5.1.19,

ρ(
k+1
e

∅⌢µ′
) = ρ(

k+1
e µ) =

 ρ(
k
eµ)⊗ I2 if |µ| is even

ρ(
k
eµ)⊗B if |µ| is odd

Taking the Kronecker product of ρ(
k
eµ) with I2 on the right replaces each nonzero entry

of ρ(
k
eµ) with a block equivalent mod ∼ to either

 1 0

0 1

 (if ρ(
k
eµ) is of real type) or

 i 0

0 i

 (if ρ(
k
eµ) is of complex type). Taking the Kronecker product of ρ(

k
eµ) with B

on the right replaces each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to either 0 i

i 0

 (if ρ(
k
eµ) is of real type) or

 0 1

1 0

 (if ρ(
k
eµ) is of complex type). All of the

zero entries of ρ(
k
eµ) get replaced by

 0 0

0 0

 in forming ρ(
k+1
e µ′), in either case.

That is: in forming the matrix representation of
k+1
e

∅⌢µ′
=

k+1
e µ′ from that of

k
eµ, all

of the zero entries of ρ(
k
eµ) get replaced by a block equivalent to

 0 0

0 0

, and all of the
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nonzero entries of ρ(
k
eµ) get replaced by a block equivalent mod ∼ to:



 1 0

0 1

 , if ρ(
k
eµ) is of real type and |µ| is even,

 i 0

0 i

 , if ρ(
k
eµ) is of complex type and |µ| is even,

 0 i

i 0

 , if ρ(
k
eµ) is of real type and |µ| is odd,

 0 1

1 0

 , if ρ(
k
eµ) is of complex type and |µ| is odd.

Next consider
k+1
e

1
⌢

µ′
. By Lemma 5.1.19,

ρ(
k+1
e

1
⌢

µ′
) = ρ(

k+1
e 1) · ρ(

k+1
e µ′) =

 ρ(
k+1
e 1) · (ρ(

k
eµ)⊗ I2) if |µ| is even

ρ(
k+1
e 1) · (ρ(

k
eµ)⊗B) if |µ| is odd

By Lemma 5.1.13, we have that in forming ρ(
k+1
e

1
⌢

µ′
) from ρ(

k
eµ), all of the zero entries

of ρ(
k
eµ) get replaced by a block equivalent to

 0 0

0 0

, and all of the nonzero entries of

96



ρ(
k
eµ) get replaced by a block equivalent mod ∼ to:



 i 0

0 i

 , if ρ(
k
eµ) is of real type and |µ| is even,

 1 0

0 1

 , if ρ(
k
eµ) is of complex type and |µ| is even,

 0 1

1 0

 , if ρ(
k
eµ) is of real type and |µ| is odd,

 0 i

i 0

 , if ρ(
k
eµ) is of complex type and |µ| is odd.

Next consider
k+1
e

2
⌢

µ′
. By Lemma 5.1.19,

ρ(
k+1
e

2
⌢

µ′
) = ρ(

k+1
e 2) · ρ(

k+1
e µ′) =

 ρ(
k+1
e 2) · (ρ(

k
eµ)⊗ I2) if |µ| is even

ρ(
k+1
e 2) · (ρ(

k
eµ)⊗B) if |µ| is odd

By Lemma 5.1.14, we have that in forming ρ(
k+1
e

2
⌢

µ′
) from ρ(

k
eµ), all of the zero entries

of ρ(
k
eµ) get replaced by a block equivalent to

 0 0

0 0

, and all of the nonzero entries of
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ρ(
k
eµ) get replaced by a block equivalent mod ∼ to:



 0 i

i 0

 , if ρ(
k
eµ) is of real type and |µ| is even,

 0 1

1 0

 , if ρ(
k
eµ) is of complex type and |µ| is even,

 1 0

0 1

 , if ρ(
k
eµ) is of real type and |µ| is odd,

 i 0

0 i

 , if ρ(
k
eµ) is of complex type and |µ| is odd.

Next consider
k+1
e

12
⌢

µ′
. By Lemma 5.1.19,

ρ(
k+1
e

12
⌢

µ′
) = ρ(

k+1
e 12) · ρ(

k+1
e µ′) =

 ρ(
k+1
e 12) · (ρ(

k
eµ)⊗ I2) if |µ| is even

ρ(
k+1
e 12) · (ρ(

k
eµ)⊗B) if |µ| is odd

By Lemma 5.1.15, we have that in forming ρ(
k+1
e

12
⌢

µ′
) from ρ(

k
eµ), all of the zero entries

of ρ(
k
eµ) get replaced by a block equivalent to

 0 0

0 0

, and all of the nonzero entries of
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ρ(
k
eµ) get replaced by a block equivalent mod ∼ to:



 0 1

1 0

 , if ρ(
k
eµ) is of real type and |µ| is even,

 0 i

i 0

 , if ρ(
k
eµ) is of complex type and |µ| is even,

 i 0

0 i

 , if ρ(
k
eµ) is of real type and |µ| is odd,

 1 0

0 1

 , if ρ(
k
eµ) is of complex type and |µ| is odd.

Next, observe that if
k
eµ,

k
eη∈ Γ̂2k and their matrix representations have the same shape

and the same type, then they act identically on elements of J
S∆2k
2 and so are equivalent

mod ∼. For what follows, if e ∈ Γ̂2k, denote by [e] the equivalence class of e under ∼

(indistinguishability mod J
S∆2k
2 ).

For the forward direction: suppose
k
eµ,

k
eη∈ Γ̂2k and Sh(ρ(

k
eµ)) ̸= Sh(ρ(

k
eη)). Then we

can find some 1 ≤ i, j ≤ 2k such that ρ(
k
eµ) has a 0 in the (i, j)th entry, but ρ(

k
eµ) has a

non-zero value in the (i, j)th entry. Then we claim that
k+1
e

∅⌢µ′
is not equivalent mod ∼ to

any of
k+1
e

∅⌢η′
,
k+1
e

1
⌢

η′
,
k+1
e

2
⌢

η′
, or

k+1
e

12
⌢

η′
.

To prove the claim: note by Lemma 5.1.19 that in forming ρ(
k+1
e

∅⌢µ′
), we take the

Kronecker product of ρ(
k
eµ) with either I2 or B. ρ(

k+1
e

∅⌢µ′
) is formed in this way as well.

Also, by Lemmas 5.1.13, 5.1.14, and 5.1.15, in forming any of ρ(
k+1
e

1
⌢

η′
), ρ(

k+1
e

2
⌢

η′
), or

ρ(
k+1
e

12
⌢

η′
), we first take the Kronecker product with I2 or B, and then scalar multiply by

i and/or interchange adjacent rows (1 and 2, 3 and 4, etc.). This means that ρ(
k+1
e

∅⌢µ′
) has a

2×2 block of zeros in the location corresponding to where ρ(
k+1
e

∅⌢η′
), ρ(

k+1
e

1
⌢

η′
), ρ(

k+1
e

2
⌢

η′
),
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and ρ(
k+1
e

12
⌢

η′
) have a block equivalent mod ∼ to either

 1 0

0 1

,

 0 1

1 0

,

 i 0

0 i

,

or

 0 i

i 0

. Then Sh(ρ(
k+1
e

∅⌢µ′
)) will be different from any of the shapes of ρ(

k+1
e

∅⌢η′
),

ρ(
k+1
e

1
⌢

η′
), ρ(

k+1
e

2
⌢

η′
), and ρ(

k+1
e

12
⌢

η′
), so that

k+1
e

∅⌢µ′
will not be equivalent mod ∼ to

any of the elements arising from
k
eη.

For the backward direction: suppose
k
eµ,

k
eη∈ Γ̂2k with Sh(ρ(

k
eµ)) = Sh(ρ(

k
eη)). If ρ(

k
eµ)

and ρ(
k
eη) had the same type (real or complex) and |µ| and |η| had the same parity (even or

odd), then we would have [
k
eµ] = [

k
eη], so that the conclusion would hold by Lemma 5.1.19.

Then we need only consider cases where the types (real or complex) of ρ(
k+1
e µ) and ρ(

k+1
e η)

are different, and/or where the parities of |µ| and |η| are different.

Case 1: Suppose ρ(
k
eµ) is of real type, ρ(

k
eη) has complex type, and both |µ| and |η|

are even. We show that in this case
[
ρ(

k+1
e

∅⌢µ′
)

]
=

[
ρ(

k+1
e

1
⌢

η′
)

]
,
[
ρ(

k+1
e

1
⌢

µ′
)

]
=[

ρ(
k+1
e

∅⌢η′
)

]
,
[
ρ(

k+1
e

2
⌢

µ′
)

]
=

[
ρ(

k+1
e

12
⌢

η′
)

]
, and

[
ρ(

k+1
e

12
⌢

µ′
)

]
=

[
ρ(

k+1
e

2
⌢

η′
)

]
.

We have that ρ(
k+1
e

∅⌢µ′
) is a matrix in which all zero entries of ρ(

k
eµ) have been replaced

by

 0 0

0 0

, and all nonzero entries have been replaced by a block equivalent mod ∼ to

 1 0

0 1

. Also, ρ(
k+1
e

1
⌢

η′
) is a matrix in which all nonzero entries of ρ(

k
eη) have been

replaced by a block equivalent mod ∼ to

 1 0

0 1

. But since Sh(ρ(
k
eµ)) = Sh(ρ(

k
eη)), the

nonzero entries of ρ(
k
eµ) and ρ(

k
eη) are in the same places, so that in fact ρ(

k+1
e

1
⌢

η′
) is a

matrix in which all nonzero entries of ρ(
k
eµ) have been replaced by a block equivalent mod

∼ to

 1 0

0 1

. Therefore
k+1
e

∅⌢µ′
∼ k+1

e
1
⌢

η′
, and so

[
k+1
e

∅⌢µ′

]
=

[
k+1
e

1
⌢

η′

]
.

ρ(
k+1
e

1
⌢

µ′
) is a matrix in which all zeros of ρ(

k
eµ) have been replaced by 2 × 2 zero
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blocks and each nonzero entry has been replaced by a block equivalent mod ∼ to

 i 0

0 i

.

Also, ρ(
k+1
e

∅⌢η′
) is a matrix in which zeros in ρ(

k
eη) have been replaced by 2×2 zero blocks

and each nonzero entry has been replaced by a block equivalent mod ∼ to

 i 0

0 i

. Since

Sh(ρ(
k
eµ)) = Sh(ρ(

k
eη)), we have

k+1
e

1
⌢

µ′
∼ k+1

e
∅⌢η′

, so that
[
k+1
e

1
⌢

µ′

]
=

[
k+1
e

∅⌢η′

]
.

ρ(
k+1
e

2
⌢

µ′
) is a matrix in which all zeros of ρ(

k
eµ) have been replaced by 2 × 2 zero

blocks and each nonzero entry has been replaced by a block equivalent mod ∼ to

 0 i

i 0

.

Also, ρ(
k+1
e

12
⌢

η′
ρ) is a matrix in which zeros in ρ(

k
eη) have been replaced by 2 × 2 zero

blocks and each nonzero entry in ρ(
k
eη) has been replaced by a block equivalent mod

∼ to

 0 i

i 0

. Since Sh(ρ(
k
eµ)) = Sh(ρ(

k
eη)), we have

k+1
e

2
⌢

µ′
∼ k+1

e
12
⌢

η′
, so that

[
k+1
e

2
⌢

µ′

]
=

[
k+1
e

12
⌢

η′

]
.

Finally, ρ(
k+1
e

12
⌢

µ′
) is a matrix in which all zeros of ρ(

k
eµ) have been replaced by 2× 2

zero blocks and each nonzero entry has been replaced by a block equivalent mod ∼ to 0 1

1 0

. Also, ρ(
k+1
e

2
⌢

η′
) is a matrix in which zeros in ρ(

k
eη) have been replaced by

2× 2 zero blocks and each nonzero entry in ρ(
k
eη) has been replaced by a block equivalent

mod ∼ to

 0 1

1 0

. Since Sh(ρ(
k
eµ)) = Sh(ρ(

k
eη)), we have

k+1
e

12
⌢

µ′
∼ k+1

e
2
⌢

η′
, so that

[
k+1
e

12
⌢

µ′

]
=

[
k+1
e

2
⌢

η′

]
.

This completes Case 1.

Cases 2 through 6 are similar, and follow from the characterization of representations of

the elements
k+1
e

∅⌢µ′
,
k+1
e

1
⌢

µ′
,
k+1
e

2
⌢

µ′
, and

k+1
e

12
⌢

µ′
found at the beginning of the present

proof.
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Case 2: Suppose ρ(
k
eµ) has real type, ρ(

k
eη) has complex type, |µ| is even, and |η| is odd.

In this case one can show:

(i)
k+1
e

∅⌢µ′
∼ k+1

e
12
⌢

η′
, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 1 0

0 1

.

(ii)
k+1
e

1
⌢

µ′
∼ k+1

e
2
⌢

η′
, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 i 0

0 i

.

(iii)
k+1
e

2
⌢

µ′
∼ k+1

e
1
⌢

η′
, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 0 i

i 0

 .
(iv)

k+1
e

12
⌢

µ′
∼ k+1

e
∅⌢η′

, and the representations of both of these generators are the

result of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 0 1

1 0

 .
Case 3: Suppose ρ(

k
eµ) has real type, ρ(

k
eη) has complex type, |µ| is odd, and |η| is even.

In this case one can show:

(i)
k+1
e

∅⌢µ′
∼ k+1

e
12
⌢

η′
, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 0 i

i 0

.

(ii)
k+1
e

1
⌢

µ′
∼ k+1

e
2
⌢

η′
, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 0 1

1 0

.

(iii)
k+1
e

2
⌢

µ′
∼ k+1

e
1
⌢

η′
, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 1 0

0 1

 .
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(iv)
k+1
e

12
⌢

µ′
∼ k+1

e
∅⌢η′

, and the representations of both of these generators are the

result of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 i 0

0 i

 .
Case 4: Suppose ρ(

k
eµ) has real type, ρ(

k
eη) has complex type, and both |µ| and |η| are

odd. In this case one can show:

(i)
k+1
e

∅⌢µ′
∼ k+1

e
1
⌢

η′
, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 0 i

i 0

.

(ii)
k+1
e

1
⌢

µ′
∼ k+1

e
∅⌢η′

, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 0 1

1 0

.

(iii)
k+1
e

2
⌢

µ′
∼ k+1

e
12
⌢

η′
, and the representations of both of these generators are the

result of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 1 0

0 1

 .
(iv)

k+1
e

12
⌢

µ′
∼ k+1

e
2
⌢

η′
, and the representations of both of these generators are the

result of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 i 0

0 i

 .
Case 5: Suppose both ρ(

k
eµ) and ρ(

k
eη) have real type, |µ| is even, and |η| odd. In this

case one can show:

(i)
k+1
e

∅⌢µ′
∼ k+1

e
2
⌢

η′
, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 1 0

0 1

.

(ii)
k+1
e

1
⌢

µ′
∼ k+1

e
12
⌢

η′
, and the representations of both of these generators are the

result of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 i 0

0 i

.
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(iii)
k+1
e

2
⌢

µ′
∼ k+1

e
∅⌢η′

, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 0 i

i 0

 .
(iv)

k+1
e

12
⌢

µ′
∼ k+1

e
1
⌢

η′
, and the representations of both of these generators are the

result of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 0 1

1 0

 .
Case 6: Suppose both ρ(

k
eµ) and ρ(

k
eη) have complex type, |µ| is even, and |η| odd. In

this case one can show:

(i)
k+1
e

∅⌢µ′
∼ k+1

e
2
⌢

η′
, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 i 0

0 i

.

(ii)
k+1
e

1
⌢

µ′
∼ k+1

e
12
⌢

η′
, and the representations of both of these generators are the

result of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 1 0

0 1

.

(iii)
k+1
e

2
⌢

µ′
∼ k+1

e
∅⌢η′

, and the representations of both of these generators are the result

of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 0 1

1 0

 .
(iv)

k+1
e

12
⌢

µ′
∼ k+1

e
1
⌢

η′
, and the representations of both of these generators are the

result of replacing each nonzero entry of ρ(
k
eµ) with a block equivalent mod ∼ to

 0 i

i 0

 .
Thus in all cases where Sh(ρ(

k
eµ)) = Sh(ρ(

k
eη)), we have

{[
k+1
e

∅⌢µ′

]
,

[
k+1
e

1
⌢

µ′

]
,

[
k+1
e

2
⌢

µ′

]
,

[
k+1
e

12
⌢

µ′

]}

=

{[
k+1
e

∅⌢η′

]
,

[
k+1
e

1
⌢

η′

]
,

[
k+1
e

2
⌢

η′

]
,

[
k+1
e

12
⌢

η′

]}
.
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We now show that the sets J :=

{[
k+1
e

∅⌢µ′

]
,

[
k+1
e

1
⌢

µ′

]
,

[
k+1
e

2
⌢

µ′

]
,

[
k+1
e

12
⌢

µ′

]}
and

J ′ :=

{[
k+1
e

∅⌢η′

]
,

[
k+1
e

1
⌢

η′

]
,

[
k+1
e

2
⌢

η′

]
,

[
k+1
e

12
⌢

η′

]}
are disjoint if Sh(ρ(

k
eµ)) ̸= Sh(ρ(

k
eη

)).

Suppose
k
eµ,

k
eη∈ Γ̂2k and Sh(ρ(

k
eµ)) ̸= Sh(ρ(

k
eη)), and suppose by way of contradiction

that J ∩ J ′ ̸= ∅. We show that a contradiction arises if
k+1
e

∅⌢µ′
∼ k+1

e
12
⌢

η′
; the other

cases are similar and are left to the reader.

k+1
e

∅⌢µ′
∼ k+1

e
12
⌢

η′

=⇒ k+1
e µ′ ∼ k+1

e 12
k+1
e η′

=⇒ k+1
e 1

k+1
e µ′ ∼ k+1

e 1
k+1
e 12

k+1
e η′ (multiplying on both sides by

k+1
e 1)

=⇒ k+1
e 1

k+1
e µ′ ∼ k+1

e 1
k+1
e 1

k+1
e 2

k+1
e η′

=⇒ k+1
e 1

k+1
e µ′ ∼ k+1

e 2
k+1
e η′

=⇒ k+1
e

1
⌢

µ′
∼ k+1

e
2
⌢

η′
;

also

k+1
e µ′ ∼ k+1

e 12
k+1
e η′

=⇒ k+1
e 12

k+1
e µ′ ∼ k+1

e 12
k+1
e 12

k+1
e η′ (multiplying on both sides by

k+1
e 12)

=⇒ k+1
e 12

k+1
e µ′ ∼ k+1

e η′

=⇒ k+1
e

12
⌢

µ′
∼ k+1

e η′ ;

and finally
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k+1
e µ′ ∼ k+1

e 12
k+1
e η′

=⇒ k+1
e 2

k+1
e µ′ ∼ k+1

e 2
k+1
e 12

k+1
e η′ (multiplying on both sides by

k+1
e 2)

=⇒ k+1
e 2

k+1
e µ′ ∼ k+1

e 1
k+1
e η′

=⇒ k+1
e

2
⌢

µ′
∼ k+1

e
1
⌢

η′
.

But then we would have J = J ′, which we have already shown is not the case when

Sh(ρ(
k
eµ)) ̸= Sh(ρ(

k
eη)).

We are now ready to prove the structure theorem for Clifford multiplication on 2-torsion

points on the Dirac spinor Abelian variety.

Theorem 5.1.22. The following hold, for all k ∈ N, n ≥ 1:

1. Each equivalence class mod ∼ in Γ̂2k has the same size: 2k−1.

2. There are a total of 2k+1 equivalence classes mod ∼: 2k real equivalence classes and

2k complex equivalence classes.

3. There are 2k distinct shapes occurring among the equivalence classes mod ∼ in Γ̂2k,

and each one occurs in two classes: a complex class and a real class.

4. There are exactly as many
k
eµ in a given class with even-length µ as with odd-length

µ. That is, for each equivalence class [
k
eµ] mod ∼ in Γ̂2k, |{keη∈ [

k
eµ] : |η| is even}| =

|{keη∈ [
k
eµ] : |η| is odd}|.

Proof. We prove the theorem by induction on k. By inspection, it is true for k = 1.

Suppose properties (1) through (4) above hold for some k ≥ 1. Consider an equivalence

class E = [
k+1
e µ] ⊆ Γ̂2k+2, for some representative

k+1
e µ ∈ Γ̂2k+2.
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By Theorem 5.1.21, two elements of Γ̂2k give rise to the same four equivalence classes

mod ∼ if and only if they have the same shape. So, to count the number of generators in E,

we count the number of
k
eη∈ Γ̂2k whose representations have the same shape as that of

k
eµ,

where (by Lemma 5.1.19)
k
eµ is the element of Γ̂2k such that

k+1
e µ is either

k+1
e

∅⌢µ′
,
k+1
e

1
⌢

µ′
,

k+1
e

2
⌢

µ′
, or

k+1
e

12
⌢

µ′
. By part (1) of the induction hypotheses, the number of

k
eη∈ Γ̂2k for

which ρ(
k
eη) has the same shape as ρ(

k
eµ) is 2k−1 + 2k−1: 2k−1 generators that are in the

same class mod ∼ as eµ (and so whose representations have the same type of non-zero

entries (purely real or purely complex)), and another 2k−1 generators in a class E ′ mod ∼

in which every e has a representation with the same shape as ρ(eµ) but the opposite kind of

non-zero entries (purely real rather than purely complex, or vice versa).

So, we have that the size of the equivalence class E ⊆ Γ̂2k is 2k−1 + 2k−1 = 2k =

2(k+1)−1. Thus condition (1) continues to hold in Γ̂2k+2.

By the induction hypothesis, there are 2k+1 equivalence classes mod ∼ in Γ̂2k. By

Lemma 5.1.20, from each equivalence class mod ∼ in Γ̂2k come four new equivalence

classes – a real and a complex class for each of two new shapes. However, the real and

complex classes of each of the two new shapes will generate the same new equivalence

classes mod ∼ in Γ̂2k+2. Thus to count the number of equivalence classes mod ∼ in Γ̂2k,

we take 4 times the number of shapes occurring in representations of generators in Γ̂2k,

which by induction hypothesis was 2k; so the number of equivalence classes mod ∼ in

Γ̂2k+2 is 4 · 2k = 22 · 2k = 22+k = 2(k+1)+1. Thus condition (2) continues to hold in Γ̂2k+2.

Suppose E = [
k
eµ] and E ′ = [

k
eη] are, respectively, the real and complex equivalence

classes in Γ̂2k with some shape P = Sh(ρ(
k
eµ)) = Sh(ρ(

k
eη)). By Lemmas 5.1.20 and

5.1.21, the same four new equivalence classes, representing two new shapes (one real and

one complex class for each), are obtained from E and E ′. Thus to count the number of

shapes among equivalence classes in Γ̂2k+2, we take 2 times the number of shapes occurring

among classes in Γ̂2k: 2 · 2k = 2k+1. Thus condition (3) continues to hold in Γ̂2k+2.

Finally, condition (4) continues to hold: let
k
eµ∈ Γ̂2k. If |µ| was even, then |∅⌢ µ′| and
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|12 ⌢ µ′| are even while |1 ⌢ µ′| and |2 ⌢ µ′| are odd; while if |µ| was odd, then |1 ⌢ µ′|

and |2⌢ µ′| are even while |∅⌢ µ′| and |12⌢ µ′| are odd.

Remark 5.1.23. For examples and computations of the Clifford actions on the group of

2-torsion points in low dimensions, including tables and diagrams, please see Appendix 2.
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CHAPTER 6

SPINOR JACOBIANS ON NODAL ELLIPTIC CHAIN CURVES OF GENUS 2k

In this chapter we focus our study on Jacobians of curves that admit Clifford multiplica-

tion. We have shown already that Abelian varieties admitting Clifford multiplication are

quite special, as they have to be fully decomposable as PPAVs. Here we describe certain

types of curves of genus g = 2k such that their Jacobians are PPAVs and they are fully

decomposable as a product of elliptic curves with j-invariant equal to 1728. To construct

our examples, we consider nodal curves that are in the boundary of the compactification of

the moduli Mg of stable algebraic curves (or Riemann surfaces) with genus g = 2k. We

also explain how to extend Clifford multiplication to some other Jacobian varieties.

6.1 Elliptic Chain curves

In this section we introduce the motivation behind constructing curves that generate spinor

Jacobians. We first provide some important definitions and propositions that serve here as

motivations.

Definition 6.1.1. A nodal curve is a complete algebraic curve such that every one of its

points is either smooth or locally complex analytically isomorphic to the origin in the locus

with equation zw = 0 in C2.

The type of nodal curves we are interested in are nodal curves of compact type.

Definition 6.1.2. Let C be a nodal curve of genus g satisfying the following equivalent

conditions:

1. The Jacobian of C, J(C), is compact.

2. The sum of the geometric genera of the components is g.
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3. The dual graph of C is a tree.

Then C is called a nodal curve of compact type.

From [1] we see that if C is of compact type then each of its irreducible components

C1, ..., Cr are smooth and no two components meet at more than one point. For nodal

curves of compact type we have the following proposition.

Proposition 6.1.3. Let C be a nodal curve of compact type with irreducible components

C1, . . . , Ck. Then J(C) ∼=
∏k

i=1 J(Ci).

Proof : See [1], [11].

We now define a specific type of nodal curve of compact type.

Remark 6.1.4. For our nodal curve of compact type C we can identify the Jacobian J(C)

with Pic0(C), the isomorphism classes of line bundles of multi-degree zero, that is, line

bundles L ∈ Pic(C) that are of degree zero when we restrict to each irreducible compo-

nent: J(C) = {L ∈ Pic(C) : deg(L
∣∣
Cj
) = 0 for all irreducible components C1, . . . , Cr}.

Definition 6.1.5. A chain curve C is a nodal curve of compact type with irreducible com-

ponents C1, . . . , Cr and nodes P1, . . . , Pr, such that:

• Ci ∩ Ci+1 = Pi for i = 1, . . . , r − 1, and

• Ci ∩ Cj = ∅ if |i− j| > 1.

Here we are interested in chain curves with elliptic components. Hence we propose the

following definition.

Definition 6.1.6. An elliptic chain curve is a nodal curve of compact type C with irre-

ducible components E1, . . . , Er and nodes P1, . . . , Pr, such that:

• Ei ∩ Ei+1 = Pi for i = 1, . . . , r − 1, and

• Ei ∩ Ej = ∅ if |i− j| > 1,
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where the Ei are all smooth elliptic curves.

It follows from Proposition 6.1.3 above that elliptic chain curves have Jacobians that

are products of their elliptic component curves; that is, J(C) ∼=
∏k

i=1 J(Ei) ∼=
∏k

i=1Ei.

6.2 Comments on the curve construction

We consider nodal curves that admit Clifford multiplication.

Definition 6.2.1. For a nodal curve of compact type C, we call its Jacobian J(C) a spinor

Jacobian if J(C) admits Clifford multiplication on its endomorphism ring; that is, J(C) is

a spinor Abelian variety.

Note here that by Theorem 3.3.5 any spinor variety S∆ is fully decomposable as the

product of 2k elliptic curves with irreducible elliptic components of j-invariant 1728, where

Clifford multiplication extends naturally to the product of component curves. Hence we

look for an elliptic chain curve. Observe that in order for the restriction to each component

to hold the curve invariant, we need the action to fix the nodes on our special elliptic chain

curve (i.e. the nodes are invariant); thus not every choice for nodes works here.

Therefore we are interested only in elliptic chain curves, with components isomorphic

to E1728. Now provide a construction of such a curve.

6.3 Construction of an elliptic chain curves with desired properties

In this section, we construct elliptic chain curves that admit Clifford multiplication. We

start by carefully constructing nodal curves of genus g = 2 with the required properties for

existence of Clifford multiplication. Then we generalize our process to certain other nodal

curves.
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Constructing elliptic chain curves of genus 2 admitting Clifford multiplication

In order to construct a curve of compact type such that our Jacobian is a PPAV with Clifford

multiplication, we glue together two identical elliptic curves E and E ′ isomorphic to E1728

(which we can think of as Ei). The points we identify together are the points of order two

v0 = 0 and v3 = 1
2
+ i

2
on each curve (again when viewing our elliptic components as an-

alytic tori). Note that multiplication by i on each curve is well-defined on each component

and the two points are fixed points for this action. We construct our elliptic chain curve of

genus 2, denoted as C∆2 , by gluing E with E ′ at the points v0 on E with v3 on the second

curve E ′ in a transversal way that can be described as follows:

Let z be the local complex parameter at v0 on the curve E, and let w be the local

parameter at v3 on the curve E ′ (considered in C2), chosen in such a way that w = j ·

z − 1
2
+ i

2
(as in the quaternions H = C ⊕ jC). Then the local complex tangent lines are

perpendicular in the local neighbourhood of 0 in C2 with coordinates z, w, satisfying the

local equation zw = 0. Then in local coordinates z, w we have a well-defined action of H

(where multiplication by j permutes the components).

Hence the resulting elliptic chain curve C∆2 =
E ⊔ E ′

∼
(where ∼ is the equivalence

of glued points) gives a nodal curve of genus 2 with a single node with two irreducible

components E,E ′ . This gluing construction at well-chosen points allows for quaternion

multiplication by i, j, k on C∆2 . See Figure 6.1 for the visualization of this gluing process.

E

E
′

Figure 6.1: g = 2 curve C∆

As before, for this new nodal curve is of compact type, we have the following isomor-

phism: J(C∆2)
∼= E ×E

′ (see [1], [10], or [11]). Figure 6.2 represents the Jacobian of the
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new nodal curve.

×

E E
′

Figure 6.2: J(C∆) for C∆ of genus 2.

Remark 6.3.1. Note that the tangent space considered at the chosen nodal point on each

component of our curve is actually isomorphic to C . Then the span generated by the

two transversal tangent spaces at each node can be considered as a complex vector space

C ⊕ C · j ∼= H in the usual way. Note that the two tangent spaces can be thought of as a

reducible variety C ∪ C · j that is spanning a copy of the quaternions H.

We now generalize the above results to nodal curves of higher genus.

The construction of genus 2k nodal curves of compact type C∆

We now extend our construction from genus 2 to genus 2k. In the genus 2 case, we con-

structed the elliptic chain curve C∆ by gluing two isomorpic copies of E1728 at the points

v0 ∈ E and v3 ∈ E
′ . Now, we glue two isomorphic copies of the nodal curve C∆2 (of

compact type) to obtain an elliptic chain curve of genus 4. Now we glue two copies of C∆2

at the points v3 on the first copy of C∆2 and v0 on the second copy C ′
∆2

(that were not used

in the previous step to construct each of the C∆2’s ) in a transversal way (as before), as

follows (see Figure 6.3 below for a visualization):

let z be the local complex parameter at v0 on the elliptic component of the second copy

of the curveC ′
∆2

, and letw = j ·(z− 1
2
+ i

2
) be the local parameter at v3 on the component on

the first curve C∆2 w = j · z (as in the quaternions H). The local complex tangent lines are

transversal in the local neighbourhood of the gluing point in C2 satisfying the equation of
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the form zw = 0. The resulting elliptic chain curve C∆4 = C∆2

⊔
C

′
∆2

is a nodal curve of

compact type of genus 4 with 3 nodes at the identification points (where the middle point is

the last one glued). The four irreducible components, which we denote E1, E2, E3, E4, are

all isomorphic toE1728; and, similarly as before, the Jacobian J(C∆) ∼= E1×E2×E3×E4.

E1

E2
E3

E4

Figure 6.3: Genus 4 nodal elliptic chain curve C∆ of compact type

Notice that one of the end components of the curve C∆4 has a point v3 (or v0) that

was not glued in the process to any other component. Therefore, we can continue this

gluing process by gluing two copies of C∆4 at points v3 on one copy with v0 on the other

to get a nodal curve of genus 8, C∆8 . Continuing this procedure, we can construct the

desired elliptic chain curve of genus 2k, which we denote C∆. Each C∆ is a nodal curve of

compact type, constructed inductively by gluing two copies of the elliptic chain curve via

the procedure described above at the points v0 ∈ C
′
∆

2k−1
and v3 ∈ C∆

2k−1
from the previous

step. This way we obtain the elliptic chain curve C∆ = C∆
2k−1

⊔
C∆

2k−1
.

We conclude that the nodal curve C∆ is of compact type with Jacobian isomorphic to

the product of E1728; that is, J(C∆) ∼=
∏2k

j=1E1728, which is the desired curve.

Remark 6.3.2. We can construct our nodal curve C∆, by analyzing the normalization

sequence as we did for curves of genus 2. That is, consider 2k elliptic curves E1, . . . , E2k

all isomorphic to E1728. By gluing consecutive elliptic components one by one at v0 on one

curve with v3 on the next, we create 2k − 1 nodes, with v0 free on the first component and
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E1

E2
E3

E4

E2k−1
E2k

Figure 6.4: Genus 2k nodal elliptic chain curve C∆ of compact type

v3 on the last glued component (i.e. at all 2k − 2 middle components we have the points v0

and v3 on each curve). The resulting elliptic chain curve C∆ is a nodal curve of compact

type with irreducible components {Ej}, with Ej
∼= E1728 for all j = 1, . . . , 2k.

We now summarize properties of C∆ constructed above:

1. C∆ is a genus 2k elliptic chain curve glued at 2k−1 nodes, where all nodes are in-

variant under multiplication by i; hence under diagonal Clifford actions the curve

remains invariant. Hence Clifford multiplication is consistent, since all components

are isomorphic to each other and multiplication by i leaves the curve invariant at the

nodes.

2. For our C∆, we have J(C∆) ∼=
∏2k

j=1 J(Ej) ∼=
∏2k

j=1Ej , where Ej are isomprphic

elliptic curves with j-invariant equal to 1728.

In the next section we consider possible Clifford multiplications on the Jacobians of

our elliptic chain curves.
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6.4 Clifford actions on the Jacobian J(C∆) of C∆: the canonical cases

In this section we make use of two important properties of our elliptic chain curve C∆.

Firstly, J(C∆), being fully decomposable as a product of elliptic curves, it is isomorphic to

a spinor Abelian variety that fully decomposes as the same product. Secondly, since J(C∆)

has isomorphic components and the gluing nodes are fixed under multiplication by i, we

can extend Clifford multiplication to J(C∆) as desired.

To illustrate it consider C∆ constructed by gluing 2k components Ei. In this case

J(C∆) ∼= E×2k

i . We also know from Proposition 4.1.5 that the Dirac spinor Abelian

variety S∆2k
has the decomposition S∆2k

∼= E×2k

i . Hence we can define both maps

g : J(C∆)
∼=−→ E×2k

i and f : S∆2k

∼=−→ E×2k

i to be the component map isomorphism de-

fined (as in Chapter 4). Hence we get the following commutative diagram:

E×2k

i

S∆2k
J(C∆)

g−1f

g−1◦f

This gives us an isomorphism g−1 ◦ f : S∆2k

∼=−→ J(C∆), and by using it we can extend

Clifford multiplication from the Dirac spinor Abelian variety model to ρg−1◦f : (C2k)Z →

End(J(C∆)) , where ρg−1◦f = Adg−1◦f ◦ ρ̂. By defining F = g−1 ◦ f , for any lattice

element h ∈ (C2k)Z we get the following commutative diagram:

S∆2k
S∆2k

J(C∆) J(C∆).

ρ̂h

FF−1

ρFh

Thus we have successfully extended Clifford multiplication to the Jacobian of our el-

liptic chain curve C∆. We can now extend Clifford multiplication more generally to our

nodal curve C∆.
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Clifford actions on J(C∆) for C∆ constructed by gluing isomorphic elliptic components

In this section, as before, our elliptic chain curve C∆ has 2k irreducible transversal elliptic

components E1
1728, . . . , E

2k

1728, where each Ej
1728 is the elliptic curve of j-invariant 1728.

We can represent the curve as C∆ = E1
1728

⊔
· · ·

⊔
E2k

1728. The gluing points used in the

construction are the invariant 2-torsion points for the multiplication by i ∈ ⟨i⟩ on each

component. Since each elliptic component is in the same isomorphism class, for each

index i we write the isomorphism θi : E1728

∼=−→ Ei. Hence we obtain the isomorphism of

the products θ :
∏2k

j=1E1728

∼=−→ E×2k

i . Using this map θ we can extend the isomorphism

between the Jacobian and the product of the components g : J(C∆)
∼=−→

∏2k

j=1E1728 via

composition to the isomorphism θ ◦ g : J(C∆)
∼=−→ E×2k

i . Using this we can once again

extend Clifford multiplication from S∆2k
onto the Jacobian J(C∆) as below. For a given

element h ∈ (C2k)Z we have the following commutative diagram:

S∆2k
S∆2k

E2k

i E2k

i

∏2k

j=1E
j
1728

∏2k

j=1E
j
1728

J(C∆) J(C∆).

ρ̂h

ff−1

ρfh

θθ−1

ρθh

g−1g

ρgh

Hence, by applying the above diagram, we have shown that we can extend Clifford

multiplication from the integral subring (C2k)Z associated with the Dirac spinor Abelian

variety S∆2k
onto J(C∆) by ρg : (C2k)Z → End(J(C∆)), where for a given element

h ∈ (C2k)Z we have ρg(h) = g−1 ◦ θ ◦ f ◦ ρ̂(h) ◦ f−1 ◦ θ−1 ◦ g.

An alternative approach to extending Clifford multiplication onto J(C∆) is to use a

spinor Abelian variety S∆ that fully decomposes into the product E1
1728 × · · · × E2k

1728,

where S∆ is a spinor Abelian variety with Clifford multiplication coming from Cq(V )Z.
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We can then define the decomposition isomorphism by f : S∆

∼=−→
∏2k

j=1E
j
1728, where now

for a given element h ∈ Cq(V )Z we have the following commutative diagram showing how

Clifford multiplication extends onto J(C∆):

S∆ S∆

∏2k

j=1E
j
1728

∏2k

j=1E
j
1728

J(C∆) J(C∆).

ρ̂h

ff−1

ρfh

g−1g

ρgh

This means that we can extend Clifford multiplication from the integral subring Cq(V )Z

associated with the spinor Abelian variety S∆ onto the Jacobian of our elliptic chain curve

J(C∆) via ρg : Cq(V )Z → End(J(C∆)), where for a given element h ∈ (C2k)Z we have

ρg(h) = g−1◦f ◦ ρ̂h◦f−1◦g. Via these two processes and the isomorphisms defined above,

the Jacobian of our nodal curve J(C∆) is a spinor Jacobian, with the induced multiplication

coming from S∆ or S∆2k
.

6.5 Clifford multiplication on Picd(C∆)

In this section we focus on extending Clifford multiplication to certain Picard varieties.

We focus on the moduli space of isomorphism classes of line bundles of degree d on every

irreducible component onC∆, which we denote Pic(d,d,...,d)(C∆). Just as on J(C), line bun-

dles of degree (d, d, . . . , d) over our elliptic chain nodal curve are completely determined

by their restrictions to each elliptic component. Since C∆ is of compact type, we have the

canonical isomorphism γd : Pic
(d,d,...d)(C∆)

∼=−→ Picd(E1
1728)×· · ·×Picd(E2k

1728), given by

restricting the line bundle to each component (see [11]). On the other hand, it is well known

(see [10], [11]) that we also have a noncanonical isomorphism given by fixing a line bun-

dle N ∈ Pic(d,d,...,d)(C∆) that defines the isomorphism [N ] : J(C∆)
∼=−→ Pic(d,d,...,d)(C∆),

where L 7→ [N ](L) = L⊗N by taking a line bundle L of degree (0, 0, ...0) in the J(C∆) =
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Pic(0,,...0)(C∆) to a line bundle L⊗N in Pic(d,d,...,d)(C∆). Hence with these noncanonical

isomorphisms we extend Clifford multiplication in various ways onto Pic(d,...,d)(C∆), via

ρ[N ] : Cq(V )Z → End(Pic(d,...,d)(C∆)), where ρ[N ] = [N ] ◦ ρg ◦ [N ]−1.

What follows is that we can noncanonically extend Clifford multiplication onto the

moduli space Pic(d,...,d)(C∆) (by extending in different ways the Clifford multiplication on

the spinor Abelian variety S∆ associated with the spinor Jacobian J(C∆) ).

We summarize the results in this chapter in the following theorem.

Theorem 6.5.1. For the nodal curve C∆ of genus 2k obtained by gluing transversally 2k

isomorphic copies of the elliptic curve of j-invariant 1728 at the 2-torsion points v0 = 0

and v3 =
1 + i

2
as described above, we have the following:

1. The generalized Jacobian of C∆, J(C∆), is fully decomposable and isomorphic to

the product of the 2k isomorphic elliptic components E1728.

2. The Jacobian J(C∆) is in the same isomorphism class as a spinor Abelian variety

that decomposes into the same 2k isomorphic copies {Ei
1728}2

k

j=1.

3. Clifford multiplication can be extended isomorphically from the associated spinor

Abelian variety S∆ onto the generalized Jacobian J(C∆), making J(C∆) a spinor

Jacobian variety.

4. Clifford multiplication can be extended in different ways from J(C∆) to Picard vari-

eties Pic(d,...,d)(C∆) = {L ∈ Pic(C∆) : deg(L|Ej
) = d} for any d ∈ Z.
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APPENDIX A

SPINOR TORI AND TENSOR PRODUCTS OF DIVISION ALGEBRAS

(For more background information on this section, see [18], [20], [23], [51].) In this ap-

pendix we identify the tensor products B1,p,q = C ⊗ H⊗p ⊗ O⊗q as spinor spaces for the

adjoint algebras BL
1,p,q = C ⊗ H⊗p

L ⊗ O⊗q
L and BA

1,p,q = C ⊗R H⊗p
A ⊗ O⊗q

A . The adjoint

algebra actions on these tensor spaces are isomorphic processes to the actions of Clifford

algebras on the spaces of Dirac spinors. We have not yet viewed these spaces of spinors as

tori; and, more importantly, the process of taking these actions mirrors (although may not

be identical to) the process of Clifford multiplication on our spinor tori (i.e. spinor Abelian

varieties with additional structure). We begin by constructing general tori with left actions.

A.1 Complex tori arising from tensor products of division algebras of the form B1,p,q

As a consequence of Hurwitz’s theorem, we know that the only normed division algebras

over R are R,C,H, and O (where H are the quaternions and O the octonions). These

algebras are of dimension 1, 2, 4, and 8, respectively, over the real numbers. We denote the

tensor product of division algebras of the form C⊗H⊗p⊗O⊗q as B1,p,q (By ⊗ we mean ⊗R).

As a complex vector space, B1,p,q has complex dimension 4p · 8q = 22p+3q. Additionally,

we can view B1,p,q as the complexification of the real tensor algebra B0,p,q = H⊗p ⊗O⊗q.

Example A.1.1. The classical examples considered in particle physics: the Pauli algebra

B1,1,0 = C ⊗ H, the complexified octonions B1,0,1 = C ⊗ O, and the product of all three

B1,1,1 = C ⊗ H ⊗ O. These three number systems are of complex dimensions 4, 8, and 32

respectively.

We use the integral subalgebras of these tensor algebras to construct a complex torus.
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Definition A.1.2. For any tensor product of division algebras B1,p,q we denote BZ
1,p.q as the

integral subring of B1,p,q given by restricting the complex scalars to integral scalars.

Note that the integral subring BZ
1,p,q can also be viewed as the restriction from the ring C

on the first tensor components to the Gaussians Z[i], together with restricting every copy of

the quaternions and octonions to their integral subrings, denoted HZ and OZ. This allows

us to view BZ
1,p,q as Z[i]⊗Z HZ ⊗Z OZ. Since BZ

1,p,q is an integral subring of B1,p,q, we have

that (BZ,+) is a free Z module, that is, an Abelian group. We can also define this integral

subring as a direct sum of the real and imaginary integral basis of BZ
1,p,q = BZ

0,p,q ⊕ i ·BZ
0,p,q,

where BZ
0,p,q = H⊗p

Z ⊗Z O⊗q
Z . The rank of this Z module is 2 · 4p · 8q = 22p+3q+1. We

conclude that the integral subring BZ
1,p,q is a full rank lattice of the complex vector space of

B1,p,q, providing us with the following proposition.

Proposition A.1.3. The quotient T (B1,p,q) =
B1,p,q

BZ
1,p,q

is a complex torus associated to the

Abelian tensor algebra B1,p,q of complex dimension 22p+3q.

In order to define natural actions on T (B1,p,q) we start by defining the adjoint algebra

of actions on B1,p,q .

Definition A.1.4. The adjoint algebra of left multiplication maps on B1,p,q is defined as

BL
1,p,q = {La : a ∈ B1,p,q} where La(b) = a · b, for a, b ∈ B1,p,q. Similarly, we define BR

1,p,q

as the right adjoint algebra. The adjoint algebra of left and right multiplication maps is

defined as BA
1,p,q = {Ax,y : x, y ∈ B1,p,q}, where Ax,y(a) = Rx ◦Ly(a) = (y · a) · x for any

a, x, y ∈ B1,p,q.

Hence the left adjoint algebra, viewed as a tensor algebra, is given by BL
1,p,q = CL ⊗

H⊗p
L ⊗ O⊗q

L , where the actions are considered componentwise on the tensor product of

division algebras B1,p,q. The same holds true for BA
1,p,q = CA⊗H⊗p

A ⊗O⊗q
A acting on B1,p,q.

In [28], [32], [41], and [51], we see that we have following isomorphism for the adjoint

algebras of actions on the complex numbers, quaternions, and octonions:
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1. CL
∼= CR

∼= CA
∼= C

2. HL
∼= HR

∼= H

3. HA
∼= H⊗H ∼= R(4)

4. OL
∼= OR

∼= OA
∼= R(8)

5. C⊗H ∼= C(2)

Hence it is easy to see that we just have two distinct adjoint algebras of actions on B1,p,q,

BL
1,p,q and BA

1,p,q.

We can obtain actions on our complex torus T (B1,p,q) by restricting adjoint maps on

BL
1,p,q,BA

1,p,q to their integral subalgebras (BL
1,p,q)Z, (BA

1,p,q)Z, viewed as tensor products over

Z by Z[i]⊗Z (HL
Z)

⊗p ⊗Z (OL
Z)

⊗q and Z[i]⊗Z (HA
Z )

⊗p ⊗Z (OA
Z )

⊗q respectively. This action

clearly preserves the integral subring, that is the full rank lattice, BZ
1,p,q since it is just a

left action on the integral subring. It is immediate that these actions preserve our torus

T (B1,p,q), since they preserve a full rank lattice. Hence we have the following.

Proposition A.1.5. The complex torus T (B1,p,q) has (BM
1,p,q)Z actions (where M is either

L or A).

A.2 T (B1,p,q) as Dirac spinor tori with isomorphic Clifford multiplication processes

To show that T (B1,p,q) can be viewed as a Dirac spinor torus, we examine the adjoint

algebras BL
1,p,q and BA

1,p,q as matrix algebras as we break them down into the even and odd

cases for p.

1. BL
1,2u,q = C⊗H⊗2u

L ⊗O⊗q
L = C⊗ (HL ⊗HL)

⊗u ⊗O⊗q
L

∼= C⊗ (H⊗H)⊗u ⊗O⊗q
L

∼=

C⊗R(4)⊗u⊗R(8)⊗q ∼= C⊗R(4u)⊗R(8q) = C⊗R(22u)⊗R(23q) ∼= C⊗R(22u+3q) ∼=

C(22u+3q).
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2. BL
1,2u+1,q = C ⊗ HL ⊗ H⊗2u

L ⊗ O⊗q
L = C ⊗ H ⊗ (HL ⊗ HL)

⊗u ⊗ O⊗q
L

∼= C ⊗ H ⊗

(H⊗H)⊗u⊗O⊗q
L

∼= C⊗H⊗R(4)⊗u⊗R(8)⊗q ∼= C(2)⊗R(4u)⊗R(8q) = C(2)⊗

R(22u)⊗R(23q) ∼= C(2)⊗R(22u+3q) ∼= C⊗R(2)⊗R(22u+3q) ∼= C⊗R(22u+3q+1) ∼=

C(22u+3q+1).

3. BA
1,2u,q = C⊗H⊗2u

A ⊗O⊗q
A

∼= C⊗ (H⊗H)⊗2u⊗O⊗q
L

∼= C⊗ (R(4))⊗2u⊗R(8)⊗q ∼=

C⊗ R(16u)⊗ R(8q) ∼= C⊗ R(24u+3q) ∼= C(24u+3q).

4. BA
1,2u+1,q = C ⊗ H⊗2u+1

A ⊗ O⊗q
A

∼= C ⊗ HA ⊗ (H ⊗ H)⊗2u ⊗ O⊗q
L

∼= C ⊗ R(4) ⊗

(R(4))⊗2u⊗R(8)⊗q ∼= C⊗R(4)⊗R(16u)⊗R(8q) ∼= C⊗R(24u+3q+2) ∼= C(24u+3q+2).

Hence all of our adjoint algebras BM
1,p,q are isomorphic to a single copy of a complex

matrix algebra of dimension a power of 2. Now, using our matrix representations of Dirac

spinors C2k
∼= C(2k) for any k ∈ N, we can establish the following isomorphisms of our

adjoint algebras with the following complex Clifford algebras:

1. BL
1,2u,q

∼= C(22u+3q) ∼= C4u+6q.

2. BL
1,2u+1,q

∼= C(22u+3q+1) ∼= C4u+6q+2.

3. BA
1,2u,q

∼= C(24u+3q) ∼= C8u+6q.

4. BA
1,2u+1,q

∼= C(24u+3q+2) ∼= C8u+6q+4.

Viewing B1,p,q as the covering space of our complex torus T (B1,p,q), with the established

isomorphisms as above, we can see that the adjoint algebras that act on the covering space

B1,p,q are complex Clifford algebras of varying dimensions. Using the isomorphisms estab-

lished above, we can view the B1,p,q as spaces of Dirac spinors, and the actions on B1,p,q as

Clifford multiplication on ∆4u+6q,∆4u+6q+2,∆8u+6q, or ∆8u+6q+4, depending on whether

BL
1,2u,q or BA

1,2u,q is acting on B1,2u,q, or BL
1,2u+1,q or BA

1,2u+1,q is acting on B1,2u+1,q.

Restricting our adjoint algebras to their integral subalgebras, we get the following iso-

morphisms of free Z-modules.

124



Remark A.2.1. For the following isomorphisms, we view the tensor products as ⊗ = ⊗Z;

hence we can work with Gaussian matrices or integral matrices (we differentiate between

them via the isomorphism Z[i] ∼= Z(2)).

1. (BL
1,2u,q)Z = Z[i] ⊗ (HZ

L)
⊗2u ⊗ (OZ

L)
⊗q = Z[i] ⊗ (HZ

L ⊗ HZ
L)

⊗u ⊗ (OZ
L)

⊗q ∼= Z[i] ⊗

(HZ ⊗ HZ)
⊗u ⊗ (OZ

L)
⊗q ∼= Z[i] ⊗ Z(4)⊗u ⊗ Z(8)⊗q ∼= Z[i] ⊗ Z(4u) ⊗ Z(8q) =

Z[i]⊗ Z(22u)⊗ Z(23q) ∼= Z[i]⊗ Z(22u+3q) ∼= Z[i](22u+3q) ∼= Z(22u+3q+1).

2. (BL
1,2u+1,q)Z = Z[i] ⊗ HZ

L ⊗ (HZ
L)

⊗2u ⊗ (OZ
L)

⊗q = Z[i] ⊗ HZ ⊗ (HZ ⊗ HZ)
⊗u ⊗

(OZ
L)

⊗q ∼= Z[i]⊗HZ ⊗ (HZ ⊗HZ)
⊗u ⊗ (OZ

L)
⊗q ∼= Z[i]⊗HZ ⊗ Z(4)⊗u ⊗ Z(8)⊗q ∼=

Z[1](2) ⊗ Z(4u) ⊗ Z(8q) = Z[1](2) ⊗ Z(22u) ⊗ Z(23q) ∼= Z[i](2) ⊗ Z(22u+3q) ∼=

Z[i]⊗ Z(2)⊗ Z(22u+3q) ∼= Z[i]⊗ Z(22u+3q+1) ∼= Z[i](22u+3q+1) ∼= Z(22u+3q+2).

3. (BA
1,2u,q)Z = Z[i]⊗ (HZ

A)
⊗2u ⊗ (OZ

A)
⊗q ∼= Z[i]⊗ (HZ ⊗HZ)

⊗2u ⊗ (OZ
L)

⊗q ∼= Z[i]⊗

(Z(4))⊗2u ⊗Z(8)⊗q ∼= Z[i]⊗Z(16u)⊗Z(8q) ∼= Z[i]⊗Z(24u+3q) ∼= Z[i](24u+3q) ∼=

Z(24u+3q+1).

4. (BA
1,2u+1,q)Z = Z[i]⊗(HZ

A)
⊗2u+1⊗(OZ

A)
⊗q ∼= Z[1]⊗HZ

A⊗(HZ⊗HZ)
⊗2u⊗(OZ

L)
⊗q ∼=

Z[i] ⊗ Z(4) ⊗ (Z(4))⊗2u ⊗ Z(8)⊗q ∼= Z[i] ⊗ Z(4) ⊗ Z(16u) ⊗ Z(8q) ∼= Z[i] ⊗

Z(24u+3q+2) ∼= Z[i](24u+3q+2) ∼= Z(24u+3q+3).

Therefore, using the above free Z-module isomorphisms, we can identify the actions

of the integral adjoint subalgebras with the integral subalgebras of the complex Clifford

algebras defined above.

1. (BL
1,2u,q)Z

∼= Z[i](22u+3q) ∼= (C4u+6q)Z

2. (BL
1,2u+1,q)Z

∼= Z[i](22u+3q+1) ∼= (C4u+6q+2)Z

3. (BA
1,2u,q)Z

∼= Z[i](24u+3q) ∼= (C8u+6q)Z

4. (BA
1,2u+1,q)Z

∼= Z[i](24u+3q+2) ∼= (C8u+6q+4)Z.
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Hence the restriction to our integral subalgebras of the adjoint algebra actions on T (B1,p,q)

is equivalent to restricting the complex Clifford algebra actions on our covering space of

Dirac spinors to the Dirac spinor tori (of dimension of 24u+3q+2 if p is odd, and of dimension

24u+3q if p is even). This proves the following proposition.

Proposition A.2.2. A complex torus T (B1,p,q) can be viewed as a Dirac spinor torus

S∆4p+6q , where the restriction of the algebra BM
1,p,q actions to its integral subalgebra torus

actions is isomorphic to the restriction of C4p+6q actions to the spinor torus actions given

by (C4p+6q)Z.

We remark here that B1,2u,q can be viewed as a Dirac spinor space for the algebra BA
1,2u,q

isomorphic to the Clifford algebra C8u+6q (as R-algebras), with a space of Dirac spinors

∆8u+6q, which is of the same complex dimension as B1,2u,q. However, when we look at the

actions of BL
1,2u,q on our space of spinors, we see a difference of dimensions. The adjoint

algebra BL
1,2u,q is isomorphic to C4u+6q, which has a smaller space of spinors, ∆4u+6q as

compared with ∆8u+6q. Thus, we can only view the left adjoint actions as a subalgebra

of C8u+6q isomorphic to C4u+6q, where the matrices representing these subalgebras act

diagonally as 2u isomorphic copies of the matrix representations for C4u+6q, when we view

∆8u+6q = 2u∆4u+6q. Descending to the integral actions on the torus T (B1,2u,q), we can

consider (BA
1,2u,q)Z as the full Clifford multiplication actions on S∆8u+6q . We can view the

restriction to (BL
1,2u,q)Z on T (B1,2u,q) as the 2u isomorphic copies of Clifford multiplication

given by (C4u+6q)Z on S∆8u+6q when we view our Dirac spinor tori as S∆8u+6q = 2uS∆4u+6q .

The analysis of B1,2u+1,q as a Dirac spinor space is analogous.

A.3 Examples used in physics

In this section we study three number systems, often used in physics, which are special

cases of our generalization from above. These are the spinor spaces given by tensor prod-

ucts of division algebras of the form B1,1,0 = C⊗H, B1,0,1 = C⊗O, and B1,1,1 = C⊗H⊗O.
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The Pauli algebra Dirac spinor torus

The tensor product B1,1,0 is a well-known algebra called the Pauli algebra. The left adjoint

algebra for this example is isomorphic to the Clifford algebra C2, and the left actions on

B1,1,0 can viewed as the even subalgebra C+
4 acting on the half spinor decomposition ∆4 =

∆+
4 ⊕∆−

4 , where C2 acts on each of the half spinor spaces ∆±
4
∼= ∆2. Hence, we can view

C⊗H as split into two half spinor spaces when we consider BL
1,1,0 as the algebra acting on

it.

The full adjoint algebra of all actions BA
1,1,0 is isomorphic to the Clifford algebra C4.

Thus when we consider the Pauli algebra as a spinor space for BA
1,1,0, we can view it as the

whole space of Dirac spinors ∆4 with the actions isomorphically identified with Clifford

multiplication by C4. When the actions given by the adjoint algebras descend to the integral

sub-rings acting on the complex torus T (C⊗H) =
C⊗H

Z[i]⊗Z ⊗HZ
, we can then consider the

actions of (B1,1,0)Z as the actions of (C+
4 )Z on the spinor torus S∆4 viewed as the direct sum

of the Dirac half spinor tori S±
∆4

(both viewed as copies of the Dirac spinor surface S∆2),

where on each component the actions on the spinor surface S∆2 are given by 2×2 Gaussian

matrix representations of (C2)Z. When we consider the action of the integral subalgebra

(BA
1,1,0)Z on T (C ⊗ H), it is isomorphic to the full integral subalgebra (C4)Z acting on the

spinor torus S∆4 , with the actions given by left multiplication by 4× 4 Gaussian matrices.

The complexified octonion algebra and its associated Dirac spinor torus

Consider B1,0,1 as the complexified octonions, C⊗O. Then the left adjoint algebra BL
1,0,1 is

isomorphic to the adjoint algebra of both actions given by BA
1,0,1. Hence, we only have one

algebra acting on the complexified octonion spinors. Moreover, we have the isomorphism

BL
1,0,1

∼= C6 of Clifford algebras. Hence, the left adjoint algebra acting on the complexified

octonion algebra can be viewed isomorphically to C6 acting on the space of Dirac spinors

∆6 = C8. When the actions given by the adjoint algebra BL
1,0,1 descend to the integral
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subalgebra acting on the complex torus T (C ⊗ O) =
C⊗O

Z[i]⊗Z ⊗OZ
, we can view the

actions on the torus by (B1,0,1)Z as the actions of (C6)Z on the spinor torus S∆6 with the

actions given by left multiplication by 8× 8 Gaussian matrices.

The C⊗H⊗O algebra and its associated Dirac spinor torus

The tensor product B1,1,1 = C ⊗ H ⊗ O (used in a standard model in physics, see [41])

is a spinor space for BL
1,1,1 and BA

1,1,1, where the left adjoint algebra is isomorphic to the

Clifford algebra C8. Hence, we identify the left adjoint actions on the tensor product B1,1,1

as the even Clifford algebra actions on two copies of the half spinor space ∆8 = C16,

where C8 acts on each copy identically (a diagonal action of isomorphic copies of the

matrix representations of C8 in C(16)). In this case, the left adjoint algebra with actions

on B1,1,1 can be considered as acting on half spinor spaces. The full adjoint algebra of all

actions BA
1,1,1 is isomorphic to the Clifford algebra C10, implying that the actions of BA

1,1,1

on B1,1,1 are isomorphic to actions of the full Clifford algebra C10 on the full spinor space

∆10 = C32. The integral subalgebra of the left adjoint algebras acting on the complex

torus T (C⊗H⊗O) =
C⊗H⊗O

Z[i]⊗Z ⊗HZ ⊗Z OZ
is isomorphic to the actions of (C+

10)Z on the

spinor torus S∆10 considered as the direct sum of the Dirac half spinor tori S±
∆10

(viewed as

copies of the Dirac spinor torus S∆8). The actions of the integral subalgebra (BA
1,1,0)Z on

T (C ⊗ H ⊗ O) are isomorphic to the full integral subalgebra (C10)Z acting on the spinor

torus S∆10 with the actions given by left multiplication by 32× 32 Gaussian matrices.
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APPENDIX B

EXAMPLES OF COMPUTATIONS ON 2-TORSION POINTS IN LOW

DIMENSIONS

In this appendix we provide some computations of Clifford multiplication on the group of

2-torsion points in low dimensions and their automorphisms.

B.1 The dimension one case and the 2-torsion points

In dimension one, the Dirac spinor Abelian variety is just the elliptic curve S∆0 = Ei =

C
Z⊕ i · Z

. Now given that C0 = C and (C0)Z ∼= Z[i], our Clifford multiplication actions on

Ei are just End(Ei) = Z[i], and automorphisms are given by Aut(Ei) = ⟨i⟩ = {±1,±i}.

Our 2-torsion points here J
S∆0
2 =: Ei[2] ⊂ Ei are just defined as v0 = 0, v1 = 1

2
, v2 =

1
2
i, v3 = 1

2
+ 1

2
i. We can summarize the lattice action of Clifford multiplication by i on

Ei[2] as in Table B.1.

Ei[2] i action Translation constant τ e1vj
v0 v0 v0
v1 v2 v3
v2 v1 v3
v3 v3 v0

Fixed points v0, v3

Table B.1: Lattice Clifford multiplication by i on Ei[2]

As we can see, the Clifford multiplication action i fixes two points on Ei[2]: the origin

and the point v3 = 1
2
+ 1

2
i. The diagram in Figure B.1 illustrates the i action on the

fundamental parallelogram generated by the lattice ∆Z
0 = Z⊕ i · Z .
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1

i

v0
v1

v2
v3

Figure B.1: The action of i on the 4 points of Ei[2]

Now for torsion points of higher order n > 1, consider the set Ei[n] = {vnj,k : 0 ≤

j, k < n} where, for 0 ≤ j, k < n, vnj,k = j
n
+ k

n
i. (For example, the points of Ei[2] are

v20,0 = v0 = 0 + 0i, v21,0 = v1 = 1
2
+ 0i, v20,1 = v2 = 0 + 1

2
i, and v21,1 = v3 = 1

2
+ 1

2
i.)

Given that our Abelian varieties S∆
2k

are fully decomposable as the products of 2k copies

of Ei, we can use these canonical diagrams in dimension one to establish bijections with

the subgroups J
S∆2k
n in higher order. We conclude this section with the diagram in Figure

B.2 showing the action of i on Ei[6].

1 + 0i

0 + 1i

0
1
6

2
6

3
6

4
6

5
6

1
6
i

2
6
i

3
6
i

4
6
i

5
6
i

Figure B.2: The action of i on the 36 points of Ei[6]
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B.2 2 torsion points on the Dirac spinor surface

For our Dirac spinor surface S∆2 , Clifford multiplication on the 2-torsion points is given

by the generators 1, e1, e2, e12 whose representative matrices are the classic Pauli matrices.

When we restrict our actions to J
S∆2
2 ⊂ S∆2 , we have a total of four classes, represented

by the following four matrices:

1 ∼= I2, [e1] ∼=

 i 0

0 i

 ,

[e2] ∼=

 0 i

i 0

, [e12] ∼=
 0 1

1 0

.
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In Table B.2, we calculate the classes of Clifford multiplication actions on the 16 2-

torsion points in dimension two. We use the component notation vab =

 va

vb

, where

va, vb ∈ Ei[2].

vab ∈ J2 e1 action e2 action e12 action
v00 v00 v00 v00
v01 v02 v20 v10
v02 v01 v10 v20
v03 v03 v30 v30
v10 v20 v02 v01
v11 v22 v22 v11
v12 v21 v12 v21
v13 v23 v32 v31
v20 v10 v01 v02
v21 v12 v21 v12
v22 v11 v11 v22
v23 v13 v31 v32
v30 v30 v03 v03
v31 v32 v23 v13
v32 v31 v13 v23
v33 v33 v33 v33

Fixed points v00, v03, v30, v33 v00, v12, v21, v33 v00, v22, v11, v33

Table B.2: Classes of Clifford multiplication on J
S∆2
2
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Table B.3 describes the Clifford action in terms of translation constants.

vab ∈ J2 Translation constants τ e1vab Translation constants τ e2vab Translation constants τ e12vab

v00 v00 v00 v00
v01 v03 v21 v11
v02 v03 v12 v22
v03 v00 v33 v33
v10 v30 v12 v11
v11 v33 v33 v00
v12 v33 v00 v33
v13 v30 v21 v22
v20 v30 v21 v22
v21 v33 v00 v33
v22 v33 v33 v00
v23 v30 v12 v11
v30 v00 v33 v33
v31 v03 v12 v22
v32 v03 v21 v11
v33 v00 v00 v00

Table B.3: Translation constants of classes of Clifford multiplication on J2
2
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In Table B.4 we list the number of fixed constants for multiplication by each lattice

generator.

τ e1vab #τ e1vab τ e2vab #τ e2vab τ e12vab
#τ e12vab

v00 4 v00 4 v00 4
v03 4 v21 4 v11 4
v30 4 v12 4 v22 4
v33 4 v33 4 v33 4

Table B.4: Points fixed by translation constants for Clifford multiplication classes on J2
2

B.3 2-torsion points on dimension four Dirac spinor Abelian varieties

For dimension four Dirac spinor Abelian varieties S∆4 , the actions given by Clifford mul-

tiplication comes from (C4)Z. On the 2-torsion points we have a total of 8 classes of

Clifford multiplication actions. Note that we do not use the minus signs because on J
S∆4
2 ,

−vabcd = vabcd and i · vabcd = −i · vabcd.
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The 8 classes of Clifford multiplication actions on 2-torsion points in dimension four:

[1] =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, [e1] =



i 0 0 0

0 i 0 0

0 0 i 0

0 0 0 i


,

[e2] =



0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0


, [e3] =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


,

[e4] =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


, [e14] =



0 0 0 i

0 0 i 0

0 i 0 0

i 0 0 0


,

[e24] =



0 0 i 0

0 0 0 i

i 0 0 0

0 i 0 0


, [e34] =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


.
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Table B.5 provides us with the 16 fixed points of the 2-torsion points for each class of

Clifford multiplication in dimension 4 on our square PPAV with an underlying spinor torus.

Clifford Action Fixed points on J
S∆4
2

e1 v0000, v3030, v0003, v3033, v0030, v3300, v0033, v3303
v0300, v0303, v0330, v0333, v3000, v3003, v3330, v3333

e2 v0000, v0012, v0021, v0321, v1200, v1212, v1221, v1233
v2100, v2112, v2121, v2133, v3300, v3312, v3321, v3333

e3 v0000, v0011, v0022, v0033, v1100, v1111, v1122, v1133,
v2200, v2211, v2222, v2233, v3300, v3311, v3322, v3333

e4 v0000, v0011, v0110, v0210, v0220, v0330, v1111, v1221
v1331, v2002, v2112, v2222, v2332, v3003, v3113, v3333

e14 v0000, v3333, v1002, v2001, v1122, v2211, v1212, v2121
v0210, v0120, v1332, v3213, v2331, v3123, v3003, v3030

e24 v0000, v1020, v3333, v2010, v0102, v2211, v0201, v2112
v1122, v1221, v1323, v3132, v2313, v3231, v3030, v0303

e34 v0000, v0101, v3030, v3131, v0202, v3232, v0303, v3333
v1010, v1111, v1212, v1313, v2020, v2121, v2222, v2323

Table B.5: Fixed points of Clifford actions on J
S∆4
2
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We now display our calculation in the following table for all the Clifford actions on the

2-torsion points J
S∆4
2 ⊂ S∆4 . This gives us a total of 256 cases.
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vabcd ∈ J2 e1 action e2 action e3 action e4 action e14 action e24 action e34 action

1. v0000 v0000 v0000 v0000 v0000 v0000 v0000 v0000

2. v0001 v0002 v0020 v0010 v1000 v2000 v0200 v0100

3. v0002 v0001 v0010 v0020 v2000 v1000 v0100 v0200

4. v0003 v0003 v0030 v0030 v3000 v3000 v0300 v0300

5. v0010 v0020 v0002 v0001 v0100 v0200 v2000 v1000

6. v0011 v0022 v0022 v0011 v1100 v2200 v2200 v1100

7. v0012 v0021 v0012 v0021 v2100 v1200 v2100 v1200

8. v0013 v0023 v0032 v0031 v3100 v3200 v2300 v1300

9. v0020 v0010 v0001 v0002 v0200 v0100 v1000 v2000

10. v0021 v0012 v0021 v0012 v1200 v2100 v1200 v2100

11. v0022 v0011 v0011 v0022 v2200 v1100 v1100 v2200

12. v0023 v0013 v0031 v0032 v3200 v3100 v1300 v2300

13. v0030 v0030 v0003 v0003 v0300 v0300 v3000 v3000

14. v0031 v0032 v0023 v0013 v1300 v2300 v3200 v3100

15. v0032 v0031 v0013 v0023 v2300 v1300 v3100 v3200

16. v0033 v0033 v0033 v0033 v3300 v3300 v3300 v3300

17. v0100 v0200 v2000 v1000 v0010 v0020 v0002 v0001

18. v0101 v0202 v2020 v1010 v1010 v2020 v0202 v0101

19. v0102 v0201 v2010 v1020 v2010 v1020 v0102 v0201

20. v0103 v0203 v2030 v1030 v3010 v3020 v0302 v0301

21. v0110 v0220 v2002 v1001 v0110 v0220 v2002 v1001

22. v0111 v0222 v2022 v1011 v1110 v2220 v2202 v1101

23. v0112 v0221 v2012 v1021 v2110 v1220 v2102 v1201

24. v0113 v0223 v2032 v1031 v3110 v3220 v2302 v1301
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vabcd ∈ J2 e1 action e2 action e3 action e4 action e14 action e24 action e34 action

25. v0120 v0210 v2001 v1002 v0210 v0120 v1002 v2001

26. v0121 v0212 v2021 v1012 v1210 v2120 v1202 v2101

27. v0122 v0211 v2011 v1022 v2210 v1120 v1102 v2201

28. v0123 v0213 v2031 v1032 v3210 v3120 v1302 v2301

29. v0130 v0230 v2003 v1003 v0310 v0320 v3002 v3001

30.v0131 v0232 v2023 v1013 v1310 v2320 v3202 v3101

31. v0132 v0231 v2013 v1023 v2310 v1320 v3102 v3201

32. v0133 v0233 v2033 v1033 v3310 v3320 v3302 v3301

33. v0200 v0100 v1000 v2000 v0002 v0001 v0001 v0002

34. v0201 v0102 v1020 v2010 v1020 v2010 v0201 v0102

35. v0202 v0101 v1010 v2020 v2020 v1010 v0101 v0202

36. v0203 v0103 v1030 v2030 v3020 v3010 v0301 v0302

37. v0210 v0120 v1002 v2001 v0120 v0210 v2001 v1002

38. v0211 v0122 v1022 v2011 v1120 v2210 v2201 v1102

39. v0212 v0121 v1012 v2021 v2120 v1210 v2101 v1202

40. v0213 v0123 v1032 v2031 v3120 v3210 v2301 v1302

41. v0220 v0110 v1001 v2002 v0220 v0110 v1001 v2002

42. v0221 v0112 v1021 v2012 v1220 v2110 v1201 v2102

43. v0222 v0111 v1011 v2022 v2220 v1110 v1101 v2202

44. v0223 v0113 v1031 v2032 v3220 v3110 v1301 v2302

45. v0230 v0130 v1003 v2003 v0320 v0310 v3001 v3002

46.v0231 v0132 v1023 v2013 v1320 v2310 v3201 v3102

47. v0232 v0131 v1013 v2023 v2320 v1310 v3101 v3202

48. v0233 v0133 v1033 v2033 v3320 v3310 v3301 v3302
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vabcd ∈ J2 e1 action e2 action e3 action e4 action e14 action e24 action e34 action

49. v0300 v0300 v3000 v3000 v0030 v0030 v0003 v0003

50. v0301 v0302 v3020 v3010 v1030 v2030 v0203 v0103

51. v0302 v0301 v3010 v3020 v2030 v1030 v0103 v0203

52. v0303 v0303 v3030 v3030 v3030 v3030 v0303 v0303

53. v0310 v0320 v3002 v3001 v0130 v0230 v2003 v1003

54. v0311 v0322 v3022 v3011 v1130 v2230 v2203 v1103

55. v0312 v0321 v3012 v3021 v2130 v1230 v2103 v1203

56. v0313 v0323 v3032 v3031 v3130 v3230 v2303 v1303

57. v0320 v0310 v3001 v3002 v0230 v0130 v1003 v2003

58. v0321 v0312 v3021 v3012 v1230 v2130 v1203 v2103

59. v0322 v0311 v3011 v3022 v2230 v1130 v1103 v2203

60. v0323 v0313 v3031 v3032 v3230 v3130 v1303 v2303

61. v0330 v0330 v3003 v3003 v0330 v0330 v3003 v3003

62.v0331 v0332 v3023 v3013 v1330 v2330 v3203 v3103

63. v0332 v0331 v3013 v3023 v2330 v1330 v3103 v3203

64. v0333 v0333 v3033 v3033 v3330 v3330 v3303 v3303

65. v1000 v2000 v0200 v0100 v0001 v0002 v0020 v0010

66. v1001 v2002 v0220 v0110 v1001 v2002 v0220 v0110

67. v1002 v2001 v0210 v0120 v2001 v1002 v0120 v0210

68. v1003 v2003 v0230 v0130 v3001 v3002 v0320 v0310

69. v1010 v2020 v0202 v0101 v0101 v0202 v2020 v1010

70. v1011 v2022 v0222 v0111 v1101 v2202 v2220 v1110

71. v1012 v2021 v0212 v0121 v2101 v1202 v2120 v1210

72. v1013 v2023 v0232 v0131 v3101 v3202 v2320 v1310

73. v1020 v2010 v0201 v0102 v0201 v0102 v1020 v2010
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vabcd ∈ J2 e1 action e2 action e3 action e4 action e14 action e24 action e34 action

74. v1021 v2012 v0221 v0112 v1201 v2102 v1220 v2110

75. v1022 v2011 v0211 v0122 v2201 v1102 v1120 v2210

76. v1023 v2013 v0231 v0132 v3201 v3102 v1320 v2310

77. v1030 v2030 v0203 v0103 v0301 v0302 v3020 v3010

78.v1031 v2032 v0223 v0113 v1301 v2302 v3220 v3110

79. v1032 v2031 v0213 v0123 v2301 v1302 v3120 v3210

80. v1033 v2033 v0233 v0133 v3301 v3302 v3320 v3310

81. v1100 v2200 v2200 v1100 v0011 v0022 v0022 v0011

82. v1101 v2202 v0220 v1110 v1011 v2022 v0222 v0111

83. v1102 v2201 v0210 v1120 v2011 v1022 v0122 v0211

84. v1103 v2203 v0230 v1130 v3011 v3022 v0322 v0311

85. v1110 v2220 v0202 v1101 v0111 v0222 v2022 v1011

86. v1111 v2222 v0222 v1111 v1111 v2222 v2222 v1111

87. v1112 v2221 v0212 v1121 v2111 v1222 v2122 v1211

88. v1113 v2223 v0232 v1131 v3111 v3222 v2322 v1311

89. v1120 v2210 v0201 v1102 v0211 v0122 v1022 v2011

90. v1121 v2212 v0221 v1112 v1211 v2122 v1222 v2111

91. v1122 v2211 v0211 v1122 v2211 v1122 v1122 v2211

92. v1123 v2213 v0231 v1132 v3211 v3122 v1322 v2311

93. v1130 v2230 v0203 v1103 v0311 v0322 v3022 v3011

94.v1131 v2232 v0223 v1113 v1311 v2322 v3222 v3111

95. v1132 v2231 v0213 v1123 v2311 v1322 v3122 v3211

96. v1133 v2233 v0233 v1133 v3311 v3322 v3322 v3311
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vabcd ∈ J2 e1 action e2 action e3 action e4 action e14 action e24 action e34 action

97. v1200 v2100 v1200 v2100 v0021 v0012 v0021 v0012

98. v1201 v2102 v1220 v2110 v1021 v2012 v0221 v0112

99. v1202 v2101 v1210 v2120 v2021 v1012 v0121 v0212

100. v1203 v2103 v1230 v2130 v3021 v3012 v0321 v0312

101. v1210 v2120 v1202 v2101 v0121 v0212 v2021 v1012

102. v1211 v2122 v1222 v2111 v1121 v2212 v2221 v1112

103. v1212 v2121 v1212 v2121 v2121 v1212 v2121 v1212

104. v1213 v2123 v1232 v2131 v3121 v3212 v2321 v1312

105. v1220 v2110 v1201 v2102 v0221 v0112 v1021 v2012

106. v1221 v2112 v1221 v2112 v1221 v2112 v1221 v2112

107. v1222 v2111 v1211 v2122 v2221 v1112 v1121 v2212

108. v1223 v2113 v1231 v2132 v3221 v3112 v1321 v2312

109. v1230 v2130 v1203 v2103 v0321 v0312 v3021 v3012

110.v1231 v2132 v1223 v2113 v1321 v2312 v3221 v3112

111. v1232 v2131 v1213 v2123 v2321 v1312 v3121 v3212

112. v1233 v2133 v1233 v2133 v3321 v3312 v3321 v3312

113. v1300 v2300 v3200 v3100 v0031 v0032 v0023 v0013

114. v1301 v2302 v3220 v3110 v1031 v2032 v0223 v0113

115. v1302 v2301 v3210 v3120 v2031 v1032 v0123 v0213

116. v1303 v2303 v3230 v3130 v3031 v3032 v0323 v0313

117. v1310 v2320 v3202 v3101 v0131 v0232 v2023 v1013

118. v1311 v2322 v3222 v3111 v1131 v2232 v2223 v1113

119. v1312 v2321 v3212 v3121 v2131 v1232 v2123 v1213

120. v1313 v2323 v3232 v3131 v3131 v3232 v2323 v1313

121. v1320 v2310 v3201 v3102 v0231 v0132 v1023 v2013

122. v1321 v2312 v3221 v3112 v1231 v2132 v1223 v2113
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vabcd ∈ J2 e1 action e2 action e3 action e4 action e14 action e24 action e34 action

123. v1322 v2311 v3211 v3122 v2231 v1132 v1123 v2213

124. v1323 v2313 v3231 v3132 v3231 v3132 v1323 v2313

125. v1330 v2330 v3203 v3103 v0331 v0332 v3023 v3013

126.v1331 v2332 v3223 v3113 v1331 v2332 v3223 v3113

127. v1332 v2331 v3213 v3123 v2331 v1332 v3123 v3213

128. v1333 v2333 v3233 v3133 v3331 v3332 v3323 v3313

129. v2000 v1000 v0100 v0200 v0002 v0001 v0010 v0020

130. v2001 v1002 v0120 v0210 v1002 v2001 v0210 v0120

131. v2002 v1001 v0110 v0220 v2002 v1001 v0110 v0220

132. v2003 v1003 v0130 v0230 v3002 v3001 v0310 v0320

133. v2010 v1020 v0102 v0201 v0102 v0201 v2010 v1020

134. v2011 v1022 v0122 v0211 v1102 v2201 v2210 v1120

135. v2012 v1021 v0112 v0221 v2102 v1201 v2110 v1220

136. v2013 v1023 v0132 v0231 v3102 v3201 v2310 v1320

137. v2020 v1010 v0101 v0202 v0202 v0101 v1010 v2020

138. v2021 v1012 v0121 v0212 v1202 v2101 v1210 v2120

139. v2022 v1011 v0111 v0222 v2202 v1101 v1110 v2220

140. v2023 v1013 v0131 v0232 v3202 v3101 v1310 v2320

141. v2030 v1030 v0103 v0203 v0302 v0301 v3010 v3020

142.v2031 v1032 v0123 v0213 v1302 v2301 v3210 v3120

143. v2032 v1031 v0113 v0223 v2302 v1301 v3110 v3220

144. v2033 v1033 v0133 v0233 v3302 v3301 v3310 v3320

145. v2100 v1200 v2100 v1200 v0012 v0021 v0012 v0021

146. v2101 v1202 v2120 v1210 v1012 v2021 v0212 v0121

147. v2102 v1201 v2110 v1220 v2012 v1021 v0112 v0221

148. v2103 v1203 v2130 v1230 v3012 v3021 v0312 v0321
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vabcd ∈ J2 e1 action e2 action e3 action e4 action e14 action e24 action e34 action

149. v2110 v1220 v2102 v1201 v0112 v0221 v2012 v1021

150. v2111 v1222 v2122 v1211 v1112 v2221 v2212 v1121

151. v2112 v1221 v2112 v1221 v2112 v1221 v2112 v1221

152. v2113 v1223 v2132 v1231 v3112 v3221 v2312 v1321

153. v2120 v1210 v2101 v1202 v0212 v0121 v1012 v2021

154. v2121 v1212 v2121 v1212 v1212 v2121 v1212 v2121

155. v2122 v1211 v2111 v1222 v2212 v1121 v1112 v2221

156. v2123 v1213 v2131 v1232 v3212 v3121 v1312 v2321

157. v2130 v1230 v2103 v1203 v0312 v0321 v3012 v3021

158.v2131 v1232 v2123 v1213 v1312 v2321 v3212 v3121

159. v2132 v1231 v2113 v1223 v2312 v1321 v3112 v3221

160. v2133 v1233 v2133 v1233 v3312 v3321 v3312 v3321

161. v2200 v1100 v2100 v2200 v0022 v0011 v0011 v0022

162. v2201 v1102 v2120 v2210 v1022 v2011 v0211 v0122

163. v2202 v1101 v2110 v2220 v2022 v1011 v0111 v0222

164. v2203 v1103 v2130 v2230 v3022 v3011 v0311 v0322

165. v2210 v1120 v2102 v2201 v0122 v0211 v2011 v1022

166. v2211 v1122 v2122 v2211 v1122 v2211 v2211 v1122

167. v2212 v1121 v2112 v2221 v2122 v1211 v2111 v1222

168. v2213 v1123 v2132 v2231 v3122 v3211 v2311 v1322

169. v2220 v1110 v2101 v2202 v0222 v0111 v1011 v2022

170. v2221 v1112 v2121 v2212 v1222 v2111 v1211 v2122

171. v2222 v1111 v2111 v2222 v2222 v1111 v1111 v2222

172. v2223 v1113 v2131 v2232 v3222 v3111 v1311 v2322

173. v2230 v1130 v2103 v2203 v0322 v0311 v3011 v3022

174.v2231 v1132 v2123 v2213 v1322 v2311 v3211 v3122
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vabcd ∈ J2 e1 action e2 action e3 action e4 action e14 action e24 action e34 action

175. v2232 v1131 v2113 v2223 v2322 v1311 v3111 v3222

176. v2233 v1133 v2133 v2233 v3322 v3311 v3311 v3322

177. v2300 v1300 v3100 v3200 v0032 v0031 v0013 v0023

178. v2301 v1302 v3120 v2210 v1032 v2031 v0213 v0123

179. v2302 v1301 v3110 v3220 v2032 v1031 v0113 v0223

180. v2303 v1303 v3130 v3230 v3032 v3031 v0313 v0323

181. v2310 v1320 v3102 v3201 v0132 v0231 v2013 v1023

182. v2311 v1322 v3122 v3211 v1132 v2231 v2213 v1123

183. v2312 v1321 v3112 v3221 v2132 v1231 v2113 v1223

184. v2313 v1323 v3132 v3231 v3132 v3231 v2313 v1323

185. v2320 v1310 v3101 v3202 v0232 v0131 v1013 v2023

186. v2321 v1312 v3121 v3212 v1232 v2131 v1213 v2123

187. v2322 v1311 v3111 v3222 v2232 v1131 v1113 v2223

188. v2323 v1313 v3131 v3232 v3232 v3131 v1313 v2323

189. v2330 v1330 v3103 v3203 v0332 v0331 v3013 v3023

190.v2331 v1332 v3123 v3213 v1332 v2331 v3213 v3123

191. v2332 v1331 v3113 v3223 v2332 v1331 v3113 v3213

192. v2333 v1333 v3133 v3233 v3332 v3331 v3313 v3313

193. v3000 v3000 v0300 v0300 v0003 v0003 v0030 v0030

194. v3001 v3002 v0320 v0310 v1003 v2003 v0230 v0130

195. v3002 v3001 v0310 v0320 v2003 v1003 v0130 v0230

196. v3003 v3003 v0330 v0330 v3003 v3003 v0330 v0330

197. v3010 v3020 v0302 v0301 v0103 v0203 v2030 v1030

198. v3011 v3022 v0322 v0311 v1103 v2203 v2230 v1130

199. v3012 v3021 v0312 v0321 v2103 v1203 v2130 v1230

200. v3013 v3023 v0332 v0331 v3103 v3203 v2330 v1330
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201 . v3020 v3010 v0301 v0302 v0203 v0103 v1030 v2030

202. v3021 v3012 v0321 v0312 v1203 v2103 v1230 v2130

203. v3022 v3011 v0311 v0322 v2203 v1103 v1130 v2230

204. v3023 v3013 v0331 v0332 v3203 v3103 v1330 v2330

205. v3030 v3030 v0303 v0303 v0303 v0303 v3030 v3030

206.v3031 v3032 v0323 v0313 v1303 v2303 v3230 v3130

207. v3032 v3031 v0313 v0323 v2303 v1303 v3130 v3230

208. v3033 v3033 v0333 v0333 v3303 v3303 v3330 v3330

209. v3100 v3200 v2300 v1300 v0013 v0023 v0032 v0031

210. v3101 v3202 v2320 v1310 v1013 v2023 v0232 v0131

211. v3102 v3201 v2310 v1320 v2013 v1023 v0132 v0231

212. v3103 v3203 v2330 v1330 v3013 v3023 v0332 v0331

213. v3110 v3220 v2302 v1301 v0113 v0223 v2032 v1031

214. v3111 v3222 v2322 v1311 v1113 v2223 v2232 v1131

215. v3112 v3221 v2312 v1321 v2113 v1223 v2132 v1231

216. v3113 v3223 v2332 v1331 v3113 v3223 v2332 v1331

217 . v3120 v3210 v2301 v1302 v0213 v0123 v1032 v2031

218. v3121 v3212 v2321 v1312 v1213 v2123 v1232 v2131

219. v3122 v3211 v2311 v1322 v2213 v1123 v1132 v2231

220. v3123 v3213 v2331 v1332 v3213 v3123 v1332 v2331

221. v3130 v3230 v2303 v1303 v0313 v0323 v3032 v3010

222.v3131 v3232 v2323 v1313 v1313 v2323 v3232 v3131

223. v3132 v3231 v2313 v1323 v2313 v1323 v3132 v3231

224. v3133 v3233 v2333 v1333 v3313 v3323 v3332 v3331
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225. v3200 v3100 v1300 v2300 v0023 v0013 v0031 v0032

226. v3201 v3102 v1320 v2310 v1023 v2013 v0231 v0132

227. v3202 v3101 v1310 v2320 v2023 v1013 v0131 v0232

228. v3203 v3103 v1330 v2330 v3023 v3013 v0331 v0332

229. v3210 v3120 v1302 v2301 v0123 v0213 v2031 v1032

230. v3211 v3122 v1322 v2311 v1123 v2213 v2231 v1132

231. v3212 v3121 v1312 v2321 v2123 v1213 v2131 v1232

232. v3213 v3123 v1332 v2331 v3123 v3213 v2331 v1332

233. v3220 v3110 v1301 v2302 v0223 v0113 v1031 v2032

234. v3221 v3112 v1321 v2312 v1223 v2113 v1231 v2132

235. v3222 v3111 v1311 v2322 v2223 v1113 v1131 v2232

236. v3123 v3113 v1331 v2332 v3223 v3113 v1331 v2332

237. v3230 v3130 v1303 v2303 v0323 v0313 v3031 v3032

238.v3231 v3132 v1323 v2313 v1323 v2313 v3231 v3132

239. v3232 v3131 v1313 v2323 v2323 v1313 v3131 v3232

240. v3233 v3133 v1333 v2333 v3323 v3313 v3331 v3332

241. v3300 v3300 v3300 v3300 v0033 v0033 v0033 v0033

242. v3301 v3302 v3320 v3310 v1033 v2033 v0233 v0133

243. v3302 v3301 v3310 v3320 v2033 v1033 v0133 v0233

244. v3303 v3303 v3330 v3330 v3033 v3033 v0333 v0333

245. v3310 v3320 v3302 v3301 v0133 v0233 v2033 v1033

246. v3311 v3322 v3322 v3311 v1133 v2233 v2233 v1133

247. v3312 v3321 v3312 v3321 v2133 v1233 v2133 v1233

248. v3313 v3323 v3332 v3331 v3133 v3233 v2333 v1333

249. v3320 v3310 v3301 v3302 v0233 v0133 v1033 v2033

250. v3321 v3312 v3321 v3312 v1233 v2133 v1233 v2133
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vabcd ∈ J2 e1 action e2 action e3 action e4 action e14 action e24 action e34 action

251. v3322 v3311 v3311 v3322 v2233 v1133 v1133 v2233

252. v3323 v3313 v3331 v3332 v3233 v3133 v1333 v2333

253. v3330 v3330 v3303 v3303 v0333 v0333 v3033 v3033

254.v3331 v3332 v3323 v3313 v1333 v2333 v3233 v3133

255. v3332 v3331 v3313 v3323 v2333 v1333 v3133 v3233

256. v3333 v3333 v3333 v3333 v3333 v3333 v3333 v3333
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