

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Multivariate Time Series Evapotranspiration Forecasting using Machine Learning Techniques

This is the author's manuscript				
Original Citation:				
Availability:				
This version is available http://hdl.handle.net/2318/1887299	since 2023-04-05T18:06:05Z			
Publisher:				
ACM				
Terms of use:				
Open Access				
yone can freely access the full text of works made available as "Open Access". Works made available der a Creative Commons license can be used according to the terms and conditions of said license. Use all other works requires consent of the right holder (author or publisher) if not exempted from copyright				
protection by the applicable law.				

(Article begins on next page)

Multivariate Time Series Evapotranspiration Forecasting using Machine Learning Techniques

UNIVERSITÀ ¹Chalachew Muluken Liyew, ¹Rosa Meo, ²Elvira Di Nardo, and ³Stefano Ferraris DI TORINO ¹Dipartimento di Informatica, Università degli Studi di Torino, Italy; ²Dipartimento di Matematica "G. Peano", Università degli Studi di Torino, Italy; ³DIST. Politecnico di Torino and Università degli Studi di Torino, Italy

INTRODUCTION

- Actual evapotranspiration (AET) is the loss of water by evaporation (from soil and water bodies) and by transpiration from the plants.
- When there is low rainfall and high evapotranspiration, agricultural development depends on irrigation due to water scarcity in the soil.
- To handle the water resource challenges, AET forecasting is an essential tool for farmers and water resource managers. \bullet
- AET can be measured directly from a lysimeter device but it is not always possible.
- AET estimation by FAO-56PM equation is difficult because some features could be missing.
- We designed AET forecasting models by application of Machine Learning models using as inputs the most available meteorological variables.
- This work aims to assess AET forecasting models at a specific site: Cogne (Valle d'Aosta, Italy).

We compared the results of AET forecasting models by application of several Machine Learning (ML) techniques: SARIMAX, LSTM, GRU, CNN, SVM, and RF).

SYSTEMATIC LITERATURE REVIEW

- Five electronic databases (Google scholar, Wiley online library, ACM digital library, Elsevier, and IEEEexplore) have been visited
- We retrieved 1854 papers of which 27 papers are selected using exclusion criteria
- Table 1 shows the most used features in the prediction of ET
- Table 2 shows the most used methods and evaluation parameters.

Table 1: Most used features on the prediction of ET

Fea	# of papers					
Temperature(minim	um)	19				
Relative humidity (15				
Solar radiation (Rs)		13				
Wind speed		10				
Evapotranspiration		7				
Sunshine duration		4				
Table 2: Most used methods and evaluation parameters in prediction of ET						
ML methods	# of papers	Evaluation measures	# of papers			
LSTM	11	RMSE	23			
SVM	9	MAE	17			
ANN and CNN	7	R2	12			
RF	6	MSE	5			
SARIMA	4					
Conclusions Five features have high correlation to AET and are used as inputs to						

MATERIALS AND METHODS

- The dataset is collected from Cogne site, Italy (1.534m altitude, 45° 36'31.47''N7 °21'21.68"*E* of latitude and longitude)
- The missing values existed randomly and were imputed or predicted using a linear regression algorithm.
- Then the dataset was normalized into the [0, 1] interval. • To select the relevant features for the prediction models, we applied correlation, tolerance and VIF methods. The result is a selection of five relevant features.
- They are the inputs for the AET forecasting models: statistical (SARIMAX), classical Machine Learning (SVM and RF), and deep learning (LSTM, GRU, and CNN).
- The performance of the models is measured and compared.

RESULTS

Table 3: Tolerance, and VIF score of independent variable						
Variables	VIF	Tolerance	Re-VIF	Re-Tolerance		
Net solar radiation	10.959	0.091				
Net CO2	3.384	0.296	2.911	0.344		
Sensible heat flux	x 7.150	0.140	3.414	0.293		
Mean temperatur	e 2.366	0.423	1.956	0.511		
RH	2.167	0.461	2.167	0.461		
Wind Speed	1.927	0.519	1.751	0.571		
$T_{1} = \frac{1}{1} = \frac{1}{1$						
	Table 4: Model Performance Measures					
	RMSE	MSE	MAE	R ²		
LSTM (0.0242	0.0006	0.0155	0.8747		
CNN (0.0275	0.0008	0.0169	0.8376		
GRU (0.0264	0.0007	0.0161	0.8512		
SVR (0.0289	0.0008	0.0221	0.8144		
RF (0.0281	0.0008	0.0167	0.8250		
SARIMAX (0.0266	0.0007	0.0153	0.8457		

ML models (with tolerance greater than 0.1 and VIF less than 10).

The deep learning models slightly outperform the statistical and the classical ML methods.

Among the deep learning models, LSTM outperforms the other ones.

The coefficient of determination of the LSTM method is 87.47.

Contact: chalachewmuluken.liyew@unito.it

