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Abstract: This work was aimed at developing a prototype system based on multispectral digital
photogrammetry to support tests required by international regulations for new Plant Protection
Products (PPPs). In particular, the goal was to provide a system addressing the challenges of a new
PPP evaluation with a higher degree of objectivity with respect to the current one, which relies on
expert evaluations. The system uses Digital Photogrammetry, which is applied to multispectral
acquisitions and Artificial Intelligence (AI). The goal of this paper is also to simplify the present
screening process, moving it towards more objective and quantitative scores about phytotoxicity. The
implementation of an opportunely trained AI model for phytotoxicity prediction aims to convert
ordinary human visual observations, which are presently provided with a discrete scale (forbidding
a variance analysis), into a continuous variable. The technical design addresses the need for a
reduced dataset for training the AI model and relating discrete observations, as usually performed,
to some proxy variables derived from the photogrammetric multispectral 3D model. To achieve
this task, an appropriate photogrammetric multispectral system was designed. The system operates
in multi-nadiral-view mode over a bench within a greenhouse exploiting an active system for
lighting providing uniform and diffuse illumination. The whole system is intended to reduce the
environmental variability of acquisitions tending to a standard situation. The methodology combines
advanced image processing, image radiometric calibration, and machine learning techniques to
predict the General Phytotoxicity percentage index (PHYGEN), a crucial measure of phytotoxicity.
Results show that the system can generate reliable estimates of PHYGEN, compliant with existing
accuracy standards (even from previous PPPs symptom severity models), using limited training
datasets. The proposed solution addressing this challenge is the adoption of the Logistic Function
with LASSO model regularization that has been shown to overcome the limitations of a small sample
size (typical of new PPP trials). Additionally, it provides the estimate of a numerical continuous
index (a percentage), which makes it possible to tackle the objectivity problem related to human
visual evaluation that is presently based on an ordinal discrete scale. In our opinion, the proposed
prototype system could have significant potential in improving the screening process for new PPPs.
In fact, it works specifically for new PPPs screening and, despite this, it has an accuracy consistent
with the one ordinarily accepted for human visual approaches. Additionally, it provides a higher
degree of objectivity and repeatability.

Keywords: digitalization; plant protection product; diagnostic; computer vision; machine learning

1. Introduction

Researchers in the field of Plant Protection Products (PPPs) need to bridge the gap
between evaluations from traditional human-based approaches and those enabled by Ar-
tificial Intelligence (AI) [1]. Specifically, new PPPs undergo a rigorous safety screening
before market entry. PPP developers must meticulously formulate and dose these PPPs to
avoid harmful phytotoxic effects on crops, thus maintaining selectivity [2]. Traditionally,
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experimenters assess the severity of phytotoxicity through visual observations. The relia-
bility of these assessments depends on low variability among experimenters’ observations
and proper rating scales [3]. In Europe, technicians are required to operate according to
Good Experimental Practice (GEP), which is based on international laws [4]. GEP is a set
of standards that ensures objectivity and precision in scientific experiments. The World
Trade Organization Agreement on Sanitary and Phytosanitary Measures [5] designates
the International Plant Protection Convention (IPPC) as the authority for plant health
standards [6]. The European Union falls under the European and Mediterranean Plant
Protection Organization (EPPO) within IPPC. EPPO is responsible for setting phytosanitary
and PPP standards. EPPO standards address crop selectivity [2] by providing evaluation
methods involving both discrete and continuous values. However, experimenters often
prefer using quantitative ordinal discrete scales due to their practicality [7]. As observed
by Chiang et al. [3], percentage scales with intervals of 10% can reduce rater uncertainty.
That is because 10% is commonly accepted as inter-rater error. This can potentially lead
to inconsistencies with theoretical assumptions in variance analysis [8,9]. Nevertheless,
the selectivity of PPPs is inherently a continuous variable, assumed to be inversely pro-
portional to the percentage of phytotoxicity symptoms and their intensity. According to
EPPO, phytotoxicity symptoms include (i) modifications in the development cycle, (ii) thin-
ning, (iii) modifications in color, (iv) necrosis, (v) deformation, and (vi) effects on quantity
and quality of the yield [2]. General Phytotoxicity (PHYGEN) is an aggregate indicator
that summarizes the above symptoms by defining the percentage of damage to a plant
compared to a perfectly healthy reference plant [10].

Imaging sensors have already been demonstrated to improve precision and objectivity
in the detection of pathological symptoms [7,11]. Some spectral properties of plants, as
recorded through multispectral sensors [12], are recognized as indicators of photosynthetic
efficiency [13,14]. Various methods, including multi-view approaches [15–17], can be
used to create 3D models of plants [11]. Spectral and geometric features of plants can be
used to virtually reproduce the plant appearance, as observed by an experimenter during
assessment. When working with three-dimensional and multispectral data, a summary is
necessary to obtain an accurate estimate of PHYGEN, like a direct human-based evaluation
approach. Machine learning (ML) models from artificial intelligence (AI) can synthesize
vast amounts of digital information in a robust and reasonable manner when guided by
expert (low variation) experimenter annotations [12]. Open platforms offer large labeled
training datasets, allowing users to customize ML algorithms to their requirements [18,19].
Convolutional Neural Networks (CNNs) were found to be the most accurate method
for symptom classification [20,21] while working with image-based data. CNNs were
shown to be capable of rating EPPO symptoms, specifically “modifications in color”, at
both leaf and canopy levels [22]. Gómez-Zamanillo et al. [23] proposed a method for
assessing PHYGEN by classifying the most common symptoms. Their study demonstrated
the effectiveness of CNNs as feature extractors for predicting PHYGEN rates or similar
measures. The study utilized CNN to identify and classify color-related phytotoxicity
symptoms from RGB images. Severity estimates were determined by assigning arbitrary
weights to the detected symptoms. Rather, they relied on expert experimenters to quantify
weights without optimizing scores. Currently, no CNN-based model has been proposed
to generate a reasonable estimate of PHYGEN based on a comprehensive analysis of all
symptoms. Weight optimization is highly appreciated as it is expected to enhance the
accuracy of estimates and provide insights into the significance of each symptom in the
toxicological mechanism of PPPs. Further challenges associated with the deployment of
CNNs for plant disease detection and scoring are reported in Barbedo et al. [24,25]. In
particular, these include (i) sensitivity of deductions to environmental and sensor-related
issues, (ii) capability of generalization of the model, and (iii) training dataset quality. It
is important to note that the quality of the training dataset is highly significant as it must
be properly calibrated for the specific type of PPP being tested. Therefore, pre-trained
networks relying on training datasets generated for different symptoms from different PPPs
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should not be used to test new PPPs. It is worth noting that, in order for CNN training to
be robust and accurate enough, it requires huge training datasets consisting of thousands
of images. Table 1 shows some of the methods proposed in the literature for the estimation
of PHYGEN, enhancing their suitability for new PPPs PHYGEN prediction.

Table 1. Related works.

Paper Method Accuracy 1 Suitability 2

Human raters
Depending on the rater,

the recommended maximum error is
10% [3]

Traditional method

Ali et al. [26] Image processing Not reported Involving only biomass estimation, no AI
involved, and no monitorable stability

Chu et al. [27] Shallow CNN 80% Destructive and only spectral signature
involved

Ghosal et al. [22] CNN From 50% to 90%
depending on rater Not phytotoxicity-specific, destructive

Gómez-Zamanillo et al. [23] CNN 93.26% Not suitable for new PPPs because the amount
of training data required

1 It indicates the accuracy of phytotoxicity severity with respect to human raters. 2 For new PPPs PHYGEN screening.

Typical trials for new PPPs usually involve only a few hundred plants. This may not
provide a sufficient dataset for robust training, testing, and deployment of a new CNN. It
is noteworthy that CNNs maintain their efficacy when symptoms of phytotoxicity are well-
documented and recognized within the training dataset. This specificity is a true challenge
in ML optimization for the newer PPP-related trials since the explored symptomatology
may not be cataloged.

This work emphasizes that symptoms of phytotoxicity resulting from new PPPs can
be unique due to their novelty, making them unpredictable. Therefore, screening trials are
necessary. The proposed method involves a PHYGEN evaluation via a CV ML system for
new PPPs operating in a greenhouse environment that overcome such limitations.

The system is specifically designed to address three key challenges in adopting AI, and
specifically CV ML for new PPPs screening: small amount of training data, stability, and
accuracy. Moreover, the model prediction suitability for ANOVA testing is also discussed.

The presented method requires only a small training sample with respect to CNN algo-
rithms because it relies on a single linear regression and a logistic function. It takes a small
training sample from the available study population, effectively addressing issues of under-
representation of training datasets [24], which is typical when testing new PPP phytotoxicity.

The system was found to reduce the impact of environmental and sensor-related factors on
plant symptom detection, increasing the stability of plant pictures and measures. This is achieved
through proper platform calibration techniques and a multi-view image capture approach that
allows for the monitoring of errors of the geometrical and radiometric measures used to train
and test the model. Model stability was tested using cross-validation. The results confirmed
the robustness of the method regardless of the sample adopted. The accuracy of the model’s
prediction was compared to the precision of human raters as described in the literature (10%) [3]
and to the state-of-the-art (SOTA) model for PHYGEN of non-new PPPs (6.74%) [23]. It was
not possible to find a direct comparison of a model predicting PHYGEN for new PPPs by CV
ML in the literature. Therefore, the accuracy must be considered satisfactory if it is higher than
the precision of human raters, and it is expected to be lower than that of CNN models with
a greater amount of training data. The methodology also addresses the challenge of adopting
discrete quantitative scales in the ML training step. It has been shown to improve the prediction of
PHYGEN as a continuous scale variable, starting from quantitative ordinal discrete values, such as
those obtained from ordinary approaches. Furthermore, as the PHYGEN estimates are now on a
continuous scale, the ANOVA test can be more appropriately utilized, resolving the cumbersome
lack of adaptation to the statistical theory that is often observed in the field of PPP screening.
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2. Materials and Methods
2.1. Hardware Platform

A platform was developed and integrated into a greenhouse structure for multispectral
photogrammetric data acquisition. The integration was achieved using a framework consisting
of two 10-m-long aluminum extruded profiles affixed to the roof and walls of the greenhouse. To
enable the sensing system to move along the Y-axis, two parallel linear rail guides were mounted
on these profiles. In addition, a 6-m-long aluminum support was installed perpendicular to
the initial rails. This support incorporates a linear guide rail, which enables camera movement
along the X-axis. Adjustments along the Z-axis were made possible by altering the brackets on
the Y-axis rails. The proximity of the sensing system to the bench, where the pots were situated,
was adjustable within a range of 1.1 to 1.5 m. The camera’s position along the 6-m rail could be
adjusted using fixing brackets, as shown in Figure 1.
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Figure 1. Platform and sensing system (top) and only the sensing system (bottom). 
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Camera movement along the Y-axis in the greenhouse was controlled by a DC motor
that operates through a pulley system. This system works similarly to a bridge crane that
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moves the imaging compound automatically with a speed of about 0.08 m/s along the
Y-axis. The motion was manually activated and stopped.

The whole moving platform was made of (i) one MAPIR Survey3W (PeauProductions,
San Diego, CA, USA) camera (S3) multispectral camera, (ii) two Light-Emitting Diode
(LED) panels (GODOX FL150R) (Godox, Shenzhen, Guangdong, China) each measuring
1.2 × 0.3 m, and (iii) a 6-m LED strip emitting with a peak at 850 nm that encircles the
GODOX FL150R panels to ensure that adequate Near-Infrared (NIR) radiation reaches the
plants. Panels (the entire imaging system) ran parallelly to the bench hosting the pots to be
imaged to ensure uniform illumination.

Furthermore, shading curtains were installed on the walls and ceiling of the green-
house to reduce exterior light contribution during data collection.

A preliminary test was conducted to ensure the consistency of the spectrum provided
by LEDs through its comparison with the reflectance spectrum acquired by an RS-5400
Spectroradiometer (Spectral Evolution, Haverhill, MA, USA). The acquisition was per-
formed using calibrated panels of the RS-5400 instrument (Figure 2a) in lighting conditions
replicating the operational environment.
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Figure 2. (a) Spectral signature of the reference panel, lighted with the tested LEDs and measured
using the RS-5400 Spectro-radiometer. (b) Reflectivity of the MAPIR calibration panels corresponding
to the different grayscale levels (yellow, light-green, blue, and violet colors in the graph) provided
by the factory. The dark green line shows the filter sensitivity of MAPIR for the different bands.
(c) Transmissivity of the S3 camera filter.

The S3 camera was used for image capture, as detailed in Table 2. A white balance
setting was employed during acquisition to increase the intensity of the Red and NIR bands,
resulting in a reduction of green band sensitivity.

Table 2. S3 and system integration specifics.

Specification Details

Focal Length 3.37 mm
Aperture f/2.8 (fixed)

Lens Distortion <1%
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Table 2. Cont.

Specification Details

Focal Length Fixed
Hyper-focal Distance 81.5 cm

Sensor Size 3000 × 4000 pixels
Pixel Physical Size 1.55 µm

Bands Green, Red, and NIR (Figure 2c)
Camera Shift (Y-axis) 20.3 cm per shot

Frames per second ~1/3
Horizontal Footprint 1 202–276 cm

Vertical Footprint 1 152–207 cm
1 at a 1.1–1.5 m distance.

2.2. Experimental Design

An experiment was conducted to assess the reliability of the system and the pro-
cessing workflow with respect to EPPO standards. The selectivity of a herbicide with an
unknown mode of action was tested in a controlled environment greenhouse following
EPPO standards [2,28–30]. This allowed uniform growing conditions to be maintained
throughout the greenhouse. Forty-four pots, each 40 × 30 cm, were sown with oilseed rape
(OSR) and treated with the experimental product before emergence. The treatments were
applied using an automatic spray chamber. To ensure a balanced set of PHYGEN, different
concentrations of the herbicide, including a control group, were used to cover a range of
phytotoxicity intensities. Visual and digital evaluations were carried out simultaneously.
The PHYGEN assessment values were recorded as Day After Treatment (DAA) in Table 3.

Table 3. PHYGEN observations.

DAA 1 0% 13% 38% 63% 88%

3 11 9 8 7 9
7 5 4 15 10 10
14 15 14 9 6 0

TOT 31 27 32 23 19
1 Days After Application.

Only five discrete PHYGEN values were retained for scoring: 0%, 13%, 38%, 63%, and
88%. This emphasizes the nature of the data generated by the visual assessment and the
extreme use of the discrete quantitative scale. It is important to note that all five values were
assigned during the three assessments, except on the last day, when the highest value (88%)
was not observed. This resulted in an imperfectly balanced distribution of PHYGEN over
time. The interval between consecutive discrete values was 25%, except for the interval
between 0% and 13%. The 0% value may be unreliable for treated pots due to the inevitable
effect of herbicides, even for resistant crops. The true value in the range between 0% and
13% is difficult to detect, even for expert experimenters upon visual inspection, and is
usually interpreted as having no effect on the harvest. Despite this, 0% values were always
recorded, as assessed by the experimenters.

2.3. Data Processing

The workflow starts with planning the image acquisition of the experimental
plants. Then, the images are used to retrieve the multispectral 3D reconstruction of the
plants. The parameters of the observed plants are extracted by the 3D model. Finally,
the ML model is trained on the extracted parameters and validated. The workflow is
summarized in Figure 3.
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Figure 3. General workflow of the suggested method.

2.3.1. Planning the Acquisition

The camera movements were planned to capture stereoscopic images using a local
Euclidean coordinate system, hereinafter called Coordinate Reference System (CRS), having
the origin located at the lower left corner of the bench hosting plants.

Image block bundle adjustment was intended to refine both position and attitude
image Exterior Orientation (EO) parameters, using nominal coordinates of the focal point
position and a nadiral orientation as an initial solution during the adjustment.

Nominal values for image focal point position (X0, Y0, Z0) were determined assuming (i) X0 as
the horizontal distance between adjacent strips; (ii) Y0 was computed by considering the speed of
the camera shifts along the bars, and (iii) Z0 was set to a fixed value, which is discussed in the next
paragraph. The camera was positioned with the longer side (4000 pixels) aligned across the track.

The nominal Z0 value was determined based on two conditions. First, the resulting image
footprint must be consistent with the expected target size of plants. Second, targets should
be visible at the smallest distance longer than the hyper-focal distance (0.815 m for S3). This
condition ensures the maximum obtainable resolution, known as Ground Sampling Distance
(GSD), which maximizes the efficiency and quality of tie point recognition. It is important to
note that GSD is proportional to the physical pixel size according to Equation (1),

GSD = δ
H
f

(1)

where H is the camera-to-target distance, f is the camera focal length, and δ is the physical
pixel size. As the height of the assessed plants can vary greatly during the same acquisition,
H can range from 0.815 to 1.500, resulting in a ground sample distance (GSD) that varies
between 0.37 and 0.69 mm·pixel−1. When planning an acquisition, it is important to ensure
that the coarser GSD (which depends on H) is smaller than the smallest feature that needs
to be recognized.

Tie point recognition depends on both the forward and side overlap among images.
The forward overlap is determined by the baseline (B), which is the distance between
consecutive focal points along the same strip. On the other hand, the side overlap is
determined by the distance between two adjacent strips.

The platform is designed to operate with a strip distance equal to the baseline (0.2 m),
resulting in 95% forward overlap.

In digital photogrammetry, it is widely acknowledged that the Z coordinate of target
points is the most critical to estimate accurately. Its precision can be evaluated using
Equation (2) [31–33],

σz =
H2

B f
σx (2)
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where H is the camera-target distance, σx is the precision of parallax measures in the image
domain (assumed to be half the physical pixel size, i.e., 1.685 µm for S3), B is the baseline, f is
the sensor focal length, and σz is the estimated precision of the Z coordinate of the target point.

The graphs in Figure 4 relate the theoretical (expected) σz with the baseline B while
varying the camera-to-target distance at three reference values. The B interval was consid-
ered to be within the minimum and maximum overlap.
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Figure 4. σz estimates computed by Equation (2). Colored curves refer to different D values.

Equation (2) was used to estimate the actual Z precision from the bundle adjustment
solution and compare it to the expected (theoretical) precision (σz). To enhance the robust-
ness of validation and test for geometrical errors, four metered tapes were placed over
the bench (Figure 5), and at least nine GCPs were manually positioned throughout the
scene for each acquisition date. The GCPs were positioned in a pattern to ensure a uniform
distribution across the image block in both longitude and latitude. The GCPs were at three
different heights: 0 m, 0.35 m, and 0.7 m.
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Figure 5. Metered tapes and GCPs on the bench.

In summary, the only adjustable parameters for planning the acquisition were (i) the Z
position of the camera and (ii) the distance between strips (side overlap). The Z position
was set at 1.5 m from the bench, and the distance between strips (on the X axis) was 20 cm
in all three assessments.
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2.3.2. Bundle Adjustment and Point Cloud Generation

Digital photogrammetry software utilize computer vision algorithms, such as the
Scale-Invariant Feature Transform (SIFT), to automatically identify potential tie points in
images [34–36]. Photogrammetric software may use various algorithms to match these
points across images, including Random Sample Consensus (RANSAC) or other methods,
depending on computational efficiency and accuracy requirements [37]. After matching the
points, software uses bundle adjustment to estimate the spatial locations of the points and
the camera positions. This process takes into account the matched points and the camera’s
Exterior and Interior Orientation (EO/IO) parameters [33,38,39]. This study employed tie
point identification, matching, and bundle adjustment using Agisoft Metashape version
2.1.0 (Agisoft LLC, St. Petersburg, Russia). To support image bundle adjustment, a portion
of the GCPs and initial camera EO/IO parameters were provided [40–42].

As far as IO parameters are concerned, the initial values used to bootstrap adjustment
were the following: (i) focal length as supplied by S3 and (ii) lens distortion parameters = 0,
coordinates of the Principal Point of Autocollimation (PPA) equal to the physical cen-
ter of the image (fiducial point). Sensor array and physical pixel size were set to their
nominal values.

The solution was spatially referenced using GCP coordinates, which are referred to as
a local reference system (CRS). The resulting point cloud associates spectral values from
bands to each point. These values were obtained as the mean value of the image pixels
corresponding to the target points. Bundle adjustment provides estimated camera EO
and IO parameters and their uncertainties, as well as all GCP coordinates estimated by
the model and their corresponding errors. The GCPs involved in the bundle adjustment
allow for the detection of outliers and refinement of the solution by running the bundle
adjustment again after removing the outliers.

To ensure accuracy, the solution was checked by three GCPs, which were not involved
in bundle adjustment. The adjustment solution was considered satisfactory if the difference
between these three GCP values from the model and the reference values was less than or
equal to the expected error (as described in Section 3.1.1).

2.3.3. Products

A digital surface model (DSM) with a GSD inherited from the previous steps was
generated from the point cloud data. The DSM was then utilized to create the final multi-
spectral orthomosaic (MSO) [39]. Both the DSM and MSO are projected in the CRS.

2.3.4. Radiometric Calibration of the Multi-Spectral Orthomosaic

MSO radiometric calibration was performed using an empirical line approach with
reference reflectance values obtained from the S3 calibrated panel provided by the MAPIR
company [43]. The average pixel value from each squared area of the panel having the
same grey level was computed for all the bands of the non-calibrated orthomosaic.

Reference reflectance values from the MAPIR calibration panel were compared with
the averaged ones from the orthomosaic by scatterplot. An Ordinary Least Squares ap-
proach was used to calibrate a linear function modeling the relationship between MSO
Digital Numbers and the correspondent “expected” reflectance values [44]. Calibration
function definition was carried out separately for each band.

The resulting functions were then applied to all the pixels of MSO bands, resulting in
a calibrated (reflectance) version of MSO (Figure 6).

The radiometric calibration accuracy was computed as the Mean Absolute Error (MAE)
between the panel ground truth values and the forecasted values [45] according to Equation (3),

MAE =
∑n

i |yi − xi|
n

(3)

where yi is the expected reflectance value of the i-calibration panel square, xi the estimated
correspondent one, and n the number of observations.
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2.3.5. MSO Classification

A vector format file was generated to map the area of each potted plant. A local coordinate
system (CRS) was adopted. The file contains two essential pieces of information: a unique
identifier for each plant and the date of assessment. The second process involved manually
isolating the plant from the soil in the pot using thresholding, focusing only on the plant pixels.
The soil was identified and masked by applying a bimodal threshold [46] to the green band.
The mask was then refined using a semi-automatic technique [47]. This step produced the final
vegetation mask (VM) (Figure 6), effectively isolating the plants for analysis.

2.3.6. Predictors

It is important to note that a PHYGEN estimate, in terms of a continuous variable, is
the main expected outcome of this work. To achieve this task, the VM-derived area was
assumed as a proxy for the Leaf Area Index (LAI). Differently, the mean (µ) and standard
deviation (σ) of the following bands/indices from the calibrated S3 orthomosaic were
computed: (i) Red, Green, and NIR bands, (ii) Normalized Difference Vegetation Index
(NDVI), and (iii) Soil Adjusted Vegetation Index (SAVI).

Additionally, the mean (µ) and standard deviation (σ) of heights of pixels belonging
to VM were obtained by differencing DSM values of pixels within VM and the average of
DSM values of soil pixels.

Finally, the date of acquisition (defined as DAA) was also considered to calibrate the
prediction model.

Predictors Variables meaning
NDVI = ρNIR−ρRED

ρNIR+ρRED
where ρNIR and ρRED are the calibrated reflectance values form MSO (4)

SAVI = 1.5·(ρNIR−ρRED)
(ρNIR+ρRED+0.5) where ρNIR and ρRED are the calibrated reflectance values form MSO (5)

HP = HV − HS where HP is the computed pixel relative average height of the vegetation contained in a pot,
HV is the absolute height of vegetation pixel in a pot, and HS is the average absolute height
of soil level in a pot.

(6)

2.3.7. ML Model

The available dataset is made of 132 multivariate observations (n), each providing
14 different predictors (p). To simplify the model and reduce parameters, the least absolute
shrinkage and selection operator (LASSO) model (7) was used [48]. The PHYGEN variable
(y) originally expressed as a percentage, was transformed into a probability by dividing it
by one hundred. As PHYGEN values range between 0 and 1, a linear regression model is
unsuitable. A logistic function was used to adjust the linear predictions from the LASSO
model to the PHYGEN scale, which is relevant to human vision.

Twelve variables from MSO and DAA were normalized and used as independent vari-
ables. The dataset was split into an 80% training set and a 20% testing set. A K-fold (K = 10)
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strategy was applied to train and cross-validate the model [49]. To ensure a balanced
splitting of observations, a stratified method was used based on PHYGEN values and
acquisition dates. The human visual PHYGEN was fitted using a multivariate regression
model with a L1 regularization term [50] and a least squares adjusting method. The hy-
perparameter λ of L1 was determined through a cross-validation involving 5 subsets of
the training data, each representing a different part of a logarithmic range developing
approximately between 0.003 and 0.67. The trained model outputs were then used as
inputs for a logistic function (LF) (8), which was fitted to the PHYGEN data. The function
parameters were estimated using non-linear least-squares optimization [51,52], with initial
values inferred from the PHYGEN distribution. The optimization aimed to minimize two
error functions in the model, thereby enhancing the accuracy of the PHYGEN prediction:

Model Loss function Model output

LASSO
n
∑

i=1

(
yi − β0 −

p
∑

j=1
β jxij

)2

+ L1 = min; L1 = λ
p
∑

j=1

∣∣∣β j

∣∣∣ β̂ j, β̂0 (7)

LogisticFunction(LF)
n
∑

i=1

(
yi − L

1+e−k(ŷi−y0)

)
= min L̂, k̂, ŷ0 (8)

where yi is the i-PHYGEN observed rate, xij (7) is the observed value of the j-th explaining
variable, β0 (7) is the intercept of the function, β j (7) is the weight corresponding to j-th
variable, and ŷi (8) is the predicted value of the PHYGEN rate computed using weights
estimated values from LASSO (β̂ j, β̂0).

The logistic function (8) has three parameters: L, y0, and k. These correspond to the
higher limit of the function, the inflection point of the sigmoid, and the rate of growth, re-
spectively. The estimated values for L, k, and y0 are, respectively, L̂, k̂, ŷ0, the correspondent
estimated values. Initial values of L̂, k̂, and ŷ0, needed to run the not-linear least squares
were set to 100, 50, and a random value extracted in the range [0, 1], respectively.

3. Results and Discussion
3.1. Measurement Errors

The surveyed 3D coordinates of GCPs were compared to those obtained from the
photogrammetric restitution of the adjusted image block to assess errors associated with
geometric features. To ensure a reasonable level of robustness for the accuracy assessment
despite the low number of surveyed points, a Leave One Out method was used. MAE was
used as an error measure.

Similarly, the accuracy of radiometric calibration was assessed using a Leave One Out
(LOO) approach. An assessment was performed separately for the different dates, and the
corresponding Mean Absolute Percentage Error (MAPE) values were computed. Finally,
MAPE values from the different dates were averaged to define the final reference value for
radiometric calibration accuracy.

3.1.1. Geometric Assessment Errors

Accuracy assessment concerning image block bundle adjustment was achieved at a
single date level. MAE values (for each coordinate) are reported in Table 4.

Table 4. XYZ errors from photogrammetric restitution in mm.

DAA MAEx (mm) MAEy (mm) MAEz (mm)

3 0.57 0.61 0.62
7 0.65 0.7 0.91
14 0.67 0.68 0.89

The retained solution was deemed suitable, assuming that the differences between the
main geometric features of diseased and healthy plants are greater than the reported errors.
A comparison between MAEz with the theoretical accuracy expected for the Z coordinate
measure through photogrammetry (Equation (2)) showed that they were consistent.
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3.1.2. Radiometric Validation

The Mean Absolute Percentage Error (MAE) of the calibration function training sample
(Table 5) was used to estimate the goodness of function fitting.

Table 5. Radiometric Mean Absolute Percentage Error (Rad-MAPE) and ratio with the expected
values obtained for the different bands and grey levels averaged along the three dates.

Band Black (%) Dark Gray (%) Light Gray (%) White (%)

Red 76.7 14.3 19.2 4.1

Green 82.8 47.5 53.2 18.1

NIR 119.6 29.2 20.7 6.2

The higher Rad-MAPE value was found for the green band, which is expected given
the white balancing strategy adopted during image pre-processing (Section 2.1). MAPE
for red and NIR bands was found to be high as well, suggesting further refinements in the
future to improve radiometric calibration.

3.2. ML Model Validation
3.2.1. Stability

The stability of the LASSO and Logistic model coefficients was analyzed. A 10-fold
strategy was performed to generate an estimate for the mean and the standard deviation of
coefficient estimates. Figure 7 and Table 6 show related statistics.
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Table 6. Mean, standard deviation, and coefficient of variation1 values for the coefficients of the
LASSO and logistic functions estimated using the 10-fold strategy.

Model Parameter Mean Std. dev. Coef.Var. 1

LASSO

β DAA −0.099 0.017 0.17
β Rµ 0.2 0.05 0.25

β SAVIµ −0.14 0.7 0.5
β NDVIσ −0.28 0.04 0.14
β Area −0.08 0.01 0.13

λ 0.0028 0.0013 0.46

LF
L 94.53 1.22 <0.1
k 0.06 0.001 <0.1
y0 47.15 0.69 <0.1

1 Coef.Var. is calculated with the absolute value of the mean.

Insights into the stability of the model can be gained by observing the coefficient of
variation (Coef.Var.) of the most influencing parameters as estimated through the 10-fold
strategy. Low values of Coef.Var. across all parameters proved that model stability is ensured.
Bands and spectral indices showed the highest values of Coef.Var. This can be related to
the significant uncertainty of calibrated reflectance, thus confirming the strict correspondence
between measurement errors and the stability of the model (Barbedo et al. [24]).
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3.2.2. Model Performances

Descriptive statistics of accuracy metrics were calculated with respect to the K-adjusted
models used for predicting PHYGEN. MAE and the adjusted coefficient of determination
Adj R2 were calculated for the LASSO model, whereas the coefficient of determination R2

was calculated for the Logistic function trained on LASSO predictions. The adjusted R2

residual degrees of freedom were maintained equal to the number of the LASSO nonzero
coefficients [53]. Table 7 shows the results.

Table 7. Fit evaluation metric statistics.

Model MAE (PHYGEN %) R2 Adj R2

LASSO
Mean 11.77% - 0.89

Std 0.67% - 0.03

LASSO + LF
Mean 10.66% 0.9 -

Std 0.83% 0.03 -

The stacked model predictions ensure a mean absolute error, slightly overcoming the
11% and having a minimum coefficient of determination R2 of about 0.9.

Regarding the main goal of this work, it is worth noting that whatever the approach
used to obtain an estimate of PHYGEN, its accuracy should be consistent with the one
of human evaluation. According to the values reported above, the proposed method is
able to provide PHYGEN scores similar to the one from experts. Our estimated accuracy
(about 11%) is close to the reference threshold ordinarily accepted for PPP tests, which is
10%. Moreover, it presents an R2 value similar to the SOTA model that is trained with a
huge amount of data from already tested PPPs due to its CNN architecture [23]. In contrast,
MAE values for PHYGEN from our model were about double that obtained from SOTA,
which can exploit a huge training set more effectively.

Despite this, we believe that our method is promising and affordable when considering the
actual operational conditions for the estimate of PHYGEN for new and untested PPPs, which
escapes from the field of application of SOTA, basing deductions on a small training set.

3.2.3. Compliance with ANOVA Assumptions

As previously stated, ANOVA, t-tests, and Z-tests cannot be used with ordinal discrete
scale dependent variables [8]. Figure 8 shows both the ordinal discrete data used to test
the model and the continuous ones from the model. This is a great improvement in the
ordinary screening procedures since it enables the possibility of testing group differences
through an ANOVA-based approach that a discrete variable excludes.
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4. Conclusions

The goal of this study was to test the operability and effectiveness of a controllable
simple system based on multispectral digital photogrammetry and AI to support (and
improve) current procedures for new PPP screening. This means that the system must be
able to generate estimates of ordinarily recognized standard parameters (i.e., PHYGEN)
and define the level of phytotoxicity of new PPPs before they enter the market. Basic
requirements concern both compliance with accuracy standards and the robustness of the
model output.

The proposed method can be made operational if proper Geomatics and AI skills are
properly integrated. Geomatic skills are related to proper management of the acquisition
system that involves both geometric (image block bundle adjustment) and radiometric-
related operations needed to prepare the data that the predictors of the PHYGEN have to be
extracted from. Hardware solutions proposed for the system exploit the abovementioned
skills with the aim of reducing environmental and sensor-related issues. This makes
acquired images more similar, partially overcoming one of the biggest problems recognized
for the proper adoption of ML in phytopathometry: image features variability.

A strong constraint introduced by this specific field of study is the lack of a huge
training dataset that cannot be reasonably supplied for new PPPs to be screened. In such
situations, this type of screening is required.

The system operates in an effectively prepared greenhouse and requires significant
infrastructure for the proper movement of the camera and lighting platform.

In this work, we present a simple solution to these requirements. In particular, after
suggesting how to pre-process the data from a photogrammetric and radiometric point of
view, we found some predictors for the model to be trained that are able to exploit both the
geometric and spectral content of acquired data.

The predictors were analyzed and selected. They were used to train an ML algorithm
integrating a LASSO and a logistic function to generate continuous estimates of PHYGEN.
The robustness of the model was tested by conducting the training with a k-fold strategy
and the correspondent statistics analyzed.

The proposed method/system showed stability (robustness), proving to be inde-
pendent of the training sample. The accuracy of PHYGEN prediction from our model is
consistent with the ones from traditional methods. Compared to other AI-based approaches
(i.e., SOTA), it showed slightly higher performances in terms of correlation with expert
scores applied for new PPPs (our model: R2 = 0.9, SOTA: R2 = 0.89).

In contrast, our model was not able to reach SOTA accuracy in PHYGEN scores
prediction (our model: MAE = 10.66%, SOTA: MAE = 6.74%). However, it must be noted
that SOTA is not intended for predictions concerning new PPPs, and the reference values
we reported refer to previously tested PPPs (i.e., providing a huge amount of training data).
A surprising capability of the model was to overcome the discrete nature of expert-based
scores for PHYGEN. In fact, it is able to generate continuous scores of PHYGEN, even if
trained on discrete ones. Their continuous nature provides a high added value since it
makes it possible to test differences among groups using ordinary ANOVA-based methods.

However, some improvements are desirable, mostly in relation to a refinement of the
hardware of the acquisition platform. A better-performing multispectral camera showing a
higher spectral resolution and more rigorous calibration metadata is certainly a first step for
future work. The active system providing controlled lighting can also be improved by using
light sources that are able to generate a wider spectrum. Camera motion can be improved by
using a stepper motor, allowing the possibility to stop the camera during image acquisition,
thus avoiding blurring and reducing geometric deformations. Image processing could be also
enhanced by strengthening automation in vegetation mask calculation from orthomosaic.

The most significant improvement of the model would be to train a CNN with such a
small amount of data. The final activation layer of this CNN should be set to the logistic
function proposed in this work. Further studies must test data augmentation techniques
and such activation layers with MAE loss to predict PHYGEN in similar setups. Regardless
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of the solution, we maintain that the explicability of the model, where the physical meaning
of predictors and their relationships can be somehow recognized, is an added value for
those applications where precise decision making is involved.
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