
Secure Generic Remote Workflow Execution with TEEs
Lorenzo Brescia
University of Turin

Turin, Italy
lorenzo.brescia@unito.it

Marco Aldinucci
University of Turin

Turin, Italy
marco.aldinucci@unito.it

ABSTRACT
In scientific environments, the frequent need to process substantial
volumes of data poses a common challenge. Individuals tasked with
executing these computations frequently encounter a deficit in local
computational resources, leading them to opt for the facilities of a
Cloud Service Provider (CSP) for data processing. However, the data
subjected to these calculations may be subject to confidentiality
constraints. This paper introduces a proof-of-concept framework
that leverages Gramine LibOS and Intel SGX, enabling the pro-
tection of generic remote workflow computations through SGX
enclaves as Trusted Execution Environments (TEEs). The frame-
work entails the delineation of user and CSP behavior and has been
implemented using Bash scripts. Furthermore, an infrastructure has
been designed for the Data Center Attestation Primitives (DCAP)
remote attestation mechanism, wherein the user gains trust in the
proper instantiation of the enclave within the CSP. To assess the
framework efficacy, it has been tested on two distinct workflows,
one trivial and the other involving real-world bioinformatics appli-
cations for processing DNA data. The performance study revealed
that the framework incurred an acceptable overhead, ranging from
a factor of x1.4 to x1.8 compared to unsafe execution practice.

CCS CONCEPTS
• Security and privacy → Security in hardware.

KEYWORDS
Trusted Execution Environment, Workflow, Intel SGX, Gramine,
Privacy-Preserving, Confidential Computing

ACM Reference Format:
Lorenzo Brescia and Marco Aldinucci. 2024. Secure Generic Remote Work-
flow Execution with TEEs. In Workflows in Distributed Environments (WiDE
’24), April 22, 2024, Athens, Greece. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3642978.3652834

1 INTRODUCTION
The increasingly complex nature of scientific research demands
the processing of massive volumes of data, a task widely facili-
tated by Cloud Service Provider (CSP). However, the security of
sensitive data within the cloud perimeter remains a critical con-
cern. Although encryption safeguards data during transmission
and at rest, CSPs may intentionally or unintentionally alter data

This work is licensed under a Creative Commons Attribution International 4.0 
License.
WiDE ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0546-5/24/04.
https://doi.org/10.1145/3642978.3652834

during computations, potentially compromising its integrity and
confidentiality. To address this challenge, various secure remote
computation approaches have emerged, including Fully Homomor-
phic Encryption (FHE) [8], differential privacy [5] and Trusted
Execution Environments (TEEs). FHE presents a method where
computations can be securely executed directly on encrypted data,
offering a high degree of security. However, its real-world applica-
bility is hindered by the substantial increase in execution time [15].
Another approach, differential privacy, introduces noise to data
to enhance privacy preservation. Nevertheless, this method often
results in less accurate models in machine learning context [2], ren-
dering it less suitable as a generic method of ensuring data privacy.
Conversely, TEEs prove effective in guaranteeing privacy across
diverse contexts without imposing an overhead that compromises
viability.

This paper presents a proof-of-concept framework that lever-
ages on Intel Software Guard Extensions (SGX) TEE and Gramine
Library Operating System (LibOS) to establish a secure communica-
tion channel between the user and the CSP’s TEE, enabling generic
remote workflow computation on confidential data without expos-
ing it to the cloud infrastructure. The design involves specifying
the behavior of:

• the user who wants to execute a workflow remotely within
a cloud infrastructure.

• the CSP that performs the computation.
• the communication between the two parties

The implementation was done with Bash scripts, assuming the user
could connect to the CSP through an Secure SHell (SSH) connection.
The framework’s efficacy was evaluated through the execution of
two distinct workflows: a straightforward implementation utilizing
C and Python code and a real-world application involvingDNA anal-
ysis through scripts trim_galore1 and bowtie2. A potential concern
associated with the use of TEEs stems from the perceived overhead
introduced to ensure the confidentiality and integrity of computa-
tions. However, performance evaluations have demonstrated that,
under optimal conditions, these concerns are alleviated. The com-
putational overhead observed in such scenarios ranges from x1.4 to
x1.8 compared to execution on hardware lacking trusted features.

2 BACKGROUND
2.1 Intel SGX
Intel SGX represents an augmentation of the instruction set archi-
tecture of Intel CPUs, originated in 2016. This extension permits
the establishment of a TEE denoted as enclave. In general, a TEE
is characterized by a set of security guarantees [16] encompassing
confidentiality (preventing unauthorized data access to any form

1https://github.com/FelixKrueger/TrimGalore
2https://github.com/BenLangmead/bowtie2

8

https://orcid.org/0009-0005-1147-496X
https://orcid.org/0000-0001-8788-0829
https://doi.org/10.1145/3642978.3652834
https://doi.org/10.1145/3642978.3652834
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3642978.3652834&domain=pdf&date_stamp=2024-04-22


WiDE ’24, April 22, 2024, Athens, Greece Brescia et al.

of software, including the operating system/hypervisor), integrity
(precluding undetected alterations of code), resilience against spe-
cific classes of physical attacks and the provision of mechanisms
for remote attestation. SGX enclaves embody these security fea-
tures and leverage on Data Center Attestation Primitives (DCAP)
as the attestation mechanism [17]. Notably, the utilization of DCAP
obviates the necessity for runtime interactions with Intel servers,
disassociating the execution capability from the availability and re-
liability of Intel public services, in contrast with Enhanced privacy
ID (EPID) [9] scheme that introduces a runtime dependency with
an Intel Attestation Verification Service.

The evolution of SGX technology has manifested notable im-
provements, such as the creation of large enclaves, with SGX v2
accommodating up to 512GB as opposed to the 128MB capacity
of SGX v1 [6] and the Enclave Dynamic Memory Management
(EDMM) [11]. The utilization of EDMM alleviates the necessity to
predefine the size of the enclave in advance. This innovative feature
empowers the enclave to dynamically manage memory, allocating
it as needed while concurrently upholding security guarantees. In
scenarios where this feature is not employed, the enclave’s memory
must be predetermined and allocated in its entirety before the start
of execution, theoretically leading to slowdowns.

Lastly, despite the perceived security of the enclave, it is impera-
tive to acknowledge the perpetual emergence of novel and insidious
cyber threats, mitigated through the deployment of a multitude of
corresponding solutions [7].

2.2 Gramine
Gramine [19], formerly Graphene [18], serves as a LibOS that facil-
itates the execution of unmodified Linux applications within SGX
enclaves. The alternative SGX execution approach would involve
the challenging task of recoding the application using the Intel
Software Development Kit (SDK), an endeavor that is impractical
for large applications. Gramine streamlines this process, requiring
only a declarative compilation of a manifest containing execution
parameters, such as number of threads, filesystem mounting con-
figuration, enclave dimension and other crucial specifications.

A distinctive feature of Gramine is the capability to designate
specific files for integrity verification using hash functions. Fur-
thermore, Gramine allows to specify which files (or folders) are
to be maintained confidential. After the remote attestation phase,
wherein the user gains trust regarding the instantiation of the
application inside the enclave, occurs a phase of secret provision-
ing, where the user securely transmits an arbitrary symmetric key
through a secure Transport Layer Security (TLS) channel. Subse-
quently, this key is employed within the enclave to process confi-
dential files.

2.3 Workflow
A scientific workflow is a description of a procedure aimed to
accomplishing a specific objective, articulated in terms of tasks
and their interdependencies [10]. In this paper, emphasis is placed
on workflows characterized by constrained expressive capabilities.
Specifically, Figure 1 shows these workflows that are detailed as
sequential processes of 𝑁 steps where each step generates outputs

that serve as inputs for the subsequent step. The culminating out-
come of the computational process is derived at the completion of
the final step 𝑁 . The deliberate selection of this specific category
of workflow was made with the goal of concentrating on the as-
sessment of the efficiency and the implications of trusted execution
in a distributed environment.

Figure 1: High-level workflow’s representation

2.4 Related Works
Previous studies have been conducted to achieve trusted execution
on remote machines. Hybrid Secured Flow (HySec-Flow) [20] is
a framework for developing large-scale genome computing tasks
using SGX. This has included the design of a task scheduler to inte-
grate secure and non-secure containers into the workflow process.
Privacy-preserving Federated Learning (PPFL) [12] utilize ARM
TrustZone TEEs client-side for local training and Intel SGX TEEs
server-side for secure aggregation. SecDATAVIEW [13] is a Big
Data Workflow Management Systems (BDWMS) that employs Intel
SGX and AMD Secure Encrypted Virtualization (SEV) TEEs [1] to
protect large-scale data analytics workflows in the cloud. Never-
theless, all of these works focuses on domain-specific applications.
This paper aims to establish the foundation for an investigation of
generic workflow execution within an untrusted CSP.

3 METHODS
To securely execute a workflow characterized as in Section 2.3, the
establishment of a comprehensivemanagement framework is imper-
ative. This frameworkmust adeptly address the safeguarding of data
in transit, at rest, and during execution within an untrusted cloud
environment. In particular, critical aspects necessitating meticulous
attention include:

• Encryption of input data requiring confidentiality and de-
cryption of results when confidentiality constraints are ab-
sent, such as within the user’s local environment.

• Provision of required information to enable the untrusted
cloud to execute the workflow steps, especially to build the
proper Gramine manifest.

• Implementation of remote attestation mechanisms.
• Prudent management of data movement, ensuring security
throughout transitions between workflow steps.

• Definition of a standardized file system structure harmoniz-
ing between user and untrusted CSP to facilitate execution
compatibility with Gramine.

9



Secure Generic Remote Workflow Execution with TEEs WiDE ’24, April 22, 2024, Athens, Greece

3.1 Design remote DCAP attestation
infrastructure

The attestation mechanism operates by generating a structure
known as quote, which serves as the fingerprint of the enclave.
This quote is signed through a hierarchical chain of certificate keys,
with the trusted root situated in Intel. The quote is generated within
the SGX hardware located in the CSP and transmitted to the user.
Equipped with knowledge about how the enclave is constructed,
the user can discern whether it has undergone proper initializa-
tion or if there are signs of malicious activity. In the latter case,
the computation is promptly aborted. Conversely, in the former
scenario, the user’s attestation service completes the attestation
process by starting the secret provisioning. During this phase, the
user transmits an arbitrary key to the remote enclave. This key is
employed for encrypting files to be kept confidential during the
workflow computation and it is exclusively used within the SGX
processor for internal decryption purposes.

Figure 2 illustrates the attestation infrastructure employing the
DCAP scheme. Multiple entities collaborate to facilitate the attesta-
tion process:
Cloud Provisioning Certification Caching Service (PCCS) Re-

sponsible for retrieving certificates from Intel services and
maintaining an updated cache containing the necessary in-
formation for the hardware to generate a verifiable quote.

Intel Provisioning Certification Service (PCS) Manages the
distribution of the appropriate certificates to the Cloud PCCS,
ensuring the availability of the required certificates.

CSP (with SGX enabled) The environment in which the Gramine-
enclaved application is executed.

User The entity where the attestation service is executed to gain
assurance that the code will be executed securely within the
remote enclave.

Figure 2: High-level overview of a DCAP infrastructure

The deployment phase gathers essential information, primarily
certificates, to generate the quote accurately. This phase is a one-
time requirement within the machine where the Gramine-enclaved
application will be executed, i.e., in the CSP. To accomplish this,
the Intel Provisioning Certification Key (PCK) ID Retrieval tool
facilitates the provisioning of all required hardware data to the
PCCS (D1). The PCCS then interfaces with Intel’s external service

PCS to obtain the necessary certificates (D2), subsequently storing
them in its local cache (D3). The gathered information is utilized
to accurately sign the quote, ensuring that the user can verify it
during the runtime phase, that is the stage where the actual remote
attestation takes place. The Gramine-enclaved application gener-
ates the quote by contacting the PCCS (R1) and dispatches (R2) it
to the user, that through the user attestation service, retrieves (R4)
information from its local cache. If local cache is empty, the attes-
tation service first contacts the PCCS (R3) to obtain the necessary
information. Subsequently, the user employs this information to
verify the quote (R5). Upon successful verification, the user gains
assurance that the application is instantiated within a SGX enclave,
initiating the secret provisioning phase wherein an arbitrary key
is transmitted to the CSP. It is used to keep confidential files until
they are processed within the SGX processor.

3.2 Design user party
Gramine is a LibOS that needs a manifest in which the mounting of
the file system seen by the process must be specified. Accordingly,
a structured and predefined file system structure has been estab-
lished to fulfill this requirement, as shown in Figure 3a. For each
workflow step, a corresponding configuration file, denoted as conf,
is supplied. This file delineates the step type and identifies the code
file to be executed, if applicable. The input/ directory is bifurcated
into the enc/ and plain/ subfolders. The latter accommodates unen-
crypted files for which confidentiality is unnecessary. Also, the enc/
directory contains plaintext files. However, they are intended for
encryption before transmission to the CSP. Upon arrival at the CSP,
they remain encrypted and are exclusively decrypted within the
SGX processor, with the key exchanged after the remote attestation
during the secret provisioning. Furthermore, a dedicated results/
folder is designated to store the outcomes generated by the CSP at
each workflow step. Lastly, within the ssl/ folder are located:

• The executable attestation_service, facilitating the remote
attestation process and the secret provisioning phase.

• The provisioning_key, deployed for the encryption of files
within the local machine before transmission to the CSP.
This key is subsequently utilized by the CSP for transpar-
ent decryption of files specified as encrypted within the
Gramine manifest. Additionally, the same key is employed
for decrypting the output.

• The user certificate (usr.crt), issued to the CSP during the
attestation phase, enabling the CSP to authenticate the user
party.

3.3 Design CSP party
Figure 3b illustrates the file system design of the CSP where are
exemplified some applications compatible with Gramine, such as
C and Python. Within each of these application-specific folders,
there is a makefile.template that is used such a Makefile to build the
Gramine manifest necessary to the execution. Although a Makefile
could be directly employed, the template file is specifically crafted to
afford users the flexibility of potentially specifying certain execution
options in the future, such as the enclave size. This design choice
aims to enhance the adaptability and customization of the execution
environment for user adopting the framework. Within the same

10



WiDE ’24, April 22, 2024, Athens, Greece Brescia et al.

Figure 3: Design of the framework parties. (a) Design of the
user File System; (b) Design of the CSP File System.

directory is provided the manifest.template, necessary to obtain
the proper Gramine manifest because each application requires its
distinct libraries and correctly configured environment variables.
Hence, in order to prepare any application for the execution in a
generic user workflow, it is crucial to configure the CSP to launch
the respective application within the Gramine LibOS. Although this
taskmay be straightforward for certain application classes that have
undergone extensive testing in Gramine, the challenge escalates
when dealing with entirely generic applications, exemplified by the
bioinformatics ones.

Furthermore, an identical file system structure to that of the user
is predefined, encompassing inputs (input/enc/ and input/plain/ ) and
outputs (results/ ). This uniformity between user and CSP, simplifies
the file mounting process within the Gramine manifest, streamlin-
ing the integration of files in the same paths. It is imperative to
note that this represents the initial folder structure. Throughout the
execution of the workflow, the pertinent input files and source code
are dynamically loaded into this structure from the user machine.

Finally the ssl/ subdirectory encompasses the ca.crt certificate
essential for validating the certificate transmitted by the user during
remote attestation.

3.4 Framework implementation
The implementation of the framework has been realized using
Bash script and is publicly accessible and open source3. An implicit
assumption made throughout the preceding sections is that the
user possesses the capability to access the CSP through SSH. In
the subsequent discourse, the term ‘send’ refers specifically to the
execution of the 𝑠𝑐𝑝 command, enabling the secure transfer of
files between machines with SSH access. Algorithm 1 shows the
pseudocode of user workflow management described as a set of
folders denoted as stepX/ (where 𝑋 ∈ 1, 2, . . . , 𝑁 ). For each of these
folders, four subtasks are executed:

(1) prepare_step.sh is in charge of encrypting all files in the
input/enc/ user folder using the dedicated Gramine tool and
the ssl/provisioning_key. Subsequently, it sends all inputs
(including those intended to remain plain in input/plain/ )
and, eventually, the source code to the CSP.

3https://github.com/lorenzobrescia/POC-Secure-WF-SGX

(2) enclave_step.sh is responsible for the whole attestation and
secret provisioning processes, executing the code within the
SGX enclave of the Gramine LibOS. Outputs are generated
and stored in the results/ CSP folder.

(3) write_back_step.sh manages the retrieval of output data
from the results/ folder of the CSP to the user machine’s
results/ folder. Additionally, all copied files are decrypted in
the same folder.

(4) next_step.sh facilitates the movement of files from the re-
sults/ folder of step 𝑋 to the input/enc/ folder of step 𝑋 + 1.
If it is the last step the entire workflow execution concludes.

Alongside these primary scripts, additional scripts have been devel-
oped to facilitate the cleanup procedures between the execution of
different steps.

Algorithm 1 Workflow management algorithm

for 𝑖 = 1 to 𝑁 do ⊲ 𝑁 number of steps
./𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑠𝑡𝑒𝑝.𝑠ℎ 𝑖

./𝑒𝑛𝑐𝑙𝑎𝑣𝑒_𝑠𝑡𝑒𝑝.𝑠ℎ 𝑖

./𝑤𝑟𝑖𝑡𝑒_𝑏𝑎𝑐𝑘_𝑠𝑡𝑒𝑝.𝑠ℎ 𝑖

if 𝑖 <= 𝑁 then
./𝑛𝑒𝑥𝑡_𝑠𝑡𝑒𝑝.𝑠ℎ 𝑖 ⊲ Not if is last step

end if
end for

4 RESULTS
In order to assess the feasibility of safeguarding complete work-
flows, the framework has been applied on two distinct examples.
The first example (Section 4.1) pertains to a trivial scenario, while
the second (Section 4.2) involves a real-world application in the
realm of biological computation of DNA. In both cases, the exper-
iment configuration is reported in Table 1, where User and CSP
machine are hosted within High-Performance Computing Center
for Artificial Intelligence at the University of Turin.4

4.1 Workflow: C, Python
The workflow comprises two distinct steps. In the initial step, C
code is executed to assess the strength of passwords stored in a ded-
icated file. Ratings, ranging from 1 to 10, are assigned to passwords,
considering key evaluation metrics such as length, character set,
entropy, predictability, and commonness [3]. Notably, a separate
file containing the 10.000 most common passwords (e.g., ‘querty’)
is employed for reference, and unlike the password file, it is devoid
of any confidentiality constraints. The second step in the workflow
involves a Python script that processes the generated password rat-
ings and plots an overview histogram illustrating the security levels
adopted. Figure 4 shows the execution time of the entire workflow
across various configurations. Observably, Gramine as LibOS intro-
duces negligible overhead when compared to native execution. The
predominant source of overhead in this context derives from the uti-
lization of SGX. Remarkably, the initialization time for SGX exceeds
the overall execution time for both native and Gramine-Direct exe-
cutions, across both workflow steps. Furthermore, EDMM avoids
4https://hpc4ai.unito.it

11



Secure Generic Remote Workflow Execution with TEEs WiDE ’24, April 22, 2024, Athens, Greece

Table 1: Experiment configurations

User Machine CSP machine

Operating system Ubuntu 22.04.2 LTS Rocky Linux 9.2 Blue Onyx
Kernel 5.15.0 6.5.1
CPU Intel Xeon Processor (Skylake, IBRS) Intel Xeon Gold 6346 CPU 3.10GHz
RAM 8G 395G

the need to predefine the enclave size in the Gramine manifest
file. This flexibility enables a less constrained configuration of the
steps. However, it is noteworthy that the current implementation of
EDMM in Gramine-SGX, although offering improvements in initial-
ization time compared to Gramine-SGX without EDMM, introduces
a notable extension of execution time. Nevertheless, the incurred
SGX overhead, fluctuating within a range of x2 to x5 in comparison
to the native execution scenario, may be considered acceptable for
gaining privacy-preserving guarantees of SGX enclaves.

Figure 4: Meanwith standard deviation on 10 execution times
of different steps in various configurations: Native (without
Gramine and SGX), Direct (with Gramine and not SGX), SGX
(with Gramine and SGX), EDMM (with Gramine, SGX, and
EDMM). SGX init indicates the time spent by SGX to build
up the required enclave before the execution.

4.2 Workflow: trim_galore, bowtie2
This workflow encompasses the initial two steps of the Next Gener-
ation Sequencing (NGS) variant calling pipeline, fully transitioned
into a cloud-High Performance Computing (HPC) [14]. The focal
point of this workflow involves the analysis and sequencing of
human genetic variation, dealing with sensitive DNA data. This
real-world application seamlessly integrates with the established
framework. The first step involves the execution of trim_galore,
which utilizes sensitive data as input and generates output for the
subsequent bowtie2 step. In addition to utilizing data previously
generated by trim, bowtie2 necessitates the human genome hg38,
which, being non-sensitive information, does not require the secu-
rity guarantees offered by an enclave.

Figure 5a illustrates the execution times for different steps across
various configurations. It may appear that the situation has im-
proved compared to the previous workflow. However, the data
might be misleading without proper contextualization. Specifically,
not accounting for file transfer times, which are irrelevant for evalu-
ating the efficiency of enclaveswithin Gramine, native andGramine-
Direct executions for both steps conclude within seconds. However,
in the case of SGX, the execution time expands by a factor of x20

Figure 5: Meanwith standard deviation on 10 execution times
of different steps in various configurations: Native (without
Gramine and SGX), Direct (with Gramine and not SGX), SGX
(with Gramine and SGX), EDMM (with Gramine, SGX, and
EDMM). File Transfer represents the time spent to move
input data from user to CSP. SGX init indicates the time
spent by SGX to build up the required enclave before the
execution. (a) Small input size. (b) Big input size.

- x22, exacerbated further with the enabling of the EDMM option
that leads to x33 - x200 overheads. This observation raises concerns
about the practicality of utilizing SGX enclaves for workflow ex-
ecution within an untrusted CSP. Nevertheless, Figure 5b depicts
the same execution features in a configuration where the input
size has been significantly augmented. In this scenario, the timing
differentials, between native and SGX configuration narrow to a
factor between x1.4 and x1.8 not considering the data movement
time. The key observation is that with a small workload, the sub-
stantial impact of enclave management time significantly hampers
performance compared to the native case, where the overhead of
SGX initialization and confidential management is absent. It is pos-
sible to notice that there is also an evident increase in file transfer
times due to larger inputs. Remarkably, in the case of trim, the
Gramine LibOS performs even more efficiently than the native case.
Although this may seem counterintuitive, it could be attributed to
more effective resource utilization through virtualization in this
specific scenario.

12



WiDE ’24, April 22, 2024, Athens, Greece Brescia et al.

5 CONCLUSIONS
Experiments conducted using the framework have demonstrated
that, under the right conditions, the overhead ranges between x1.4
and x1.8. It is rational to consider that usersmigrate computations to
a CSP due to limited local resources, justifying the need to increase
input sizes to achieve acceptable time results. Indeed, it would be
illogical for the users to transition to a remote CSP for computation
if they already possess all the required resources locally, enabling
them to conduct the task locally. Furthermore, given the evolving
nature of technologies like SGX and Gramine LibOS, performance
improvements are expected to be realized, gradually mitigating
overhead concerns. The implemented framework, functioning as
a proof-of-concept, underscores the potential for users to define
generic workflows that can be subsequently launched on remote
machines without compromising data confidentiality.

Looking ahead, there is an opportunity to enhance the frame-
work’s flexibility in defining user workflows, with a future focus on
integrating TEEs privacy features into existing Workflow Manage-
ment System (WMS), such as StreamFlow [4]. Moreover, from the
standpoint of cloud-based High-Performance Computing (HPC), it
is pertinent to contemplate potential advancements in performance
assessment facilitated by parallelization techniques such as multi-
threading and multi-processing. Theoretically, the application of
these techniques may serve to subsequently mitigate the runtime
overhead attributable to TEEs.

ACKNOWLEDGMENTS
This work was supported by the Spoke 1 “FutureHPC & BigData”
of ICSC - Centro Nazionale di Ricerca in High-Performance Com-
puting, Big Data and Quantum Computing, funded by European
Union - NextGenerationEU.

REFERENCES
[1] AMD. 2020. Strengthening VM isolation with integrity protection and

more. https://www.amd.com/system/files/techdocs/sev-snp-strengthening-vm-
isolation-with-integrity-protection-and-more.pdf. Accessed: 2024-02.

[2] Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. 2019. Differential
privacy has disparate impact on model accuracy. In ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019).

[3] Katha Chanda. 2016. Password security: an analysis of password strengths
and vulnerabilities. International Journal of Computer Network and Information
Security (2016).

[4] Iacopo Colonnelli, Barbara Cantalupo, Ivan Merelli, and Marco Aldinucci. 2021.
StreamFlow: Cross-Breeding Cloud with HPC. IEEE Transactions on Emerging
Topics in Computing (2021).

[5] Cynthia Dwork. 2006. Differential privacy. In AUTOMATA, LANGUAGES AND
PROGRAMMING, PT 2. SPRINGER-VERLAG BERLIN.

[6] Muhammad El-Hindi, Tobias Ziegler, Matthias Heinrich, Adrian Lutsch,
Zheguang Zhao, and Carsten Binnig. 2022. Benchmarking the Second Gen-
eration of Intel SGX Hardware. In Proceedings of the 18th International Workshop
on Data Management on New Hardware. Association for Computing Machinery.

[7] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. 2021. Security Vulnera-
bilities of SGX and Countermeasures: A Survey. ACM Comput. Surv. (2021).

[8] Craig Gentry. 2009. A fully homomorphic encryption scheme. Ph. D. Dissertation.
Advisor(s) Boneh, Dan.

[9] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mck-
een. 2016. Intel software guard extensions: EPID provisioning and attestation
services. https://cdrdv2-public.intel.com/671370/ww10-2016-sgx-provisioning-
and-attestation-final.pdf. Accessed: 2024-02.

[10] Bertram Ludäscher, Shawn Bowers, and Timothy McPhillips. 2009. Scientific
Workflows. Springer US, 2507–2511.

[11] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson,
Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel® Software Guard Extensions
(Intel® SGX) Support for Dynamic Memory Management Inside an Enclave. In

Proceedings of the Hardware and Architectural Support for Security and Privacy
2016.

[12] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. 2021. PPFL: privacy-preserving federated learning with trusted
execution environments. In Proceedings of the 19th Annual International Confer-
ence on Mobile Systems, Applications, and Services. Association for Computing
Machinery.

[13] Saeid Mofrad, Ishtiaq Ahmed, Fengwei Zhang, Shiyong Lu, Ping Yang, and Hem-
ing Cui. 2022. Securing Big Data Scientific Workflows via Trusted Heterogeneous
Environments. IEEE Transactions on Dependable and Secure Computing (2022).

[14] AlbertoMulone, Sherine Awad, Davide Chiarugi, andMarco Aldinucci. 2023. Port-
ing the Variant Calling Pipeline for NGS data in cloud-HPC environment. In 2023
IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC).
IEEE.

[15] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can homo-
morphic encryption be practical?. In Proceedings of the 3rd ACM Workshop on
Cloud Computing Security Workshop. Association for Computing Machinery.

[16] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted Execution Environment: What It is, and What It is Not. In 2015 IEEE
Trustcom/BigDataSE/ISPA. IEEE.

[17] Vincent Scarlata, Simon Johnson, James Beaney, and Piotr Żmijewski. 2018. Sup-
porting Third Party Attestation for Intel SGX with Intel Data Center Attestation
Primitives. https://cdrdv2-public.intel.com/671314/intel-sgx-support-for-third-
party-attestation.pdf. Accessed: 2024-02.

[18] Chia-Che Tsai, Kumar SaurabhArora, Nehal Bandi, Bhushan Jain,William Jannen,
Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E.
Porter. 2014. Cooperation and security isolation of library OSes for multi-process
applications. In Proceedings of the Ninth European Conference on Computer Systems.
Association for Computing Machinery.

[19] Chia-Che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: a practical
library OS for unmodified applications on SGX. In Proceedings of the 2017 USENIX
Conference on Usenix Annual Technical Conference. USENIX Association.

[20] Chathura Widanage, Weijie Liu, Jiayu Li, Hongbo Chen, XiaoFeng Wang, Haixu
Tang, and Judy Fox. 2021. HySec-Flow: Privacy-Preserving Genomic Computing
with SGX-based Big-Data Analytics Framework. In 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD). IEEE.

13

https://www.amd.com/system/files/techdocs/sev-snp-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/techdocs/sev-snp-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://cdrdv2-public.intel.com/671370/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://cdrdv2-public.intel.com/671370/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://cdrdv2-public.intel.com/671314/intel-sgx-support-for-third-party-attestation.pdf
https://cdrdv2-public.intel.com/671314/intel-sgx-support-for-third-party-attestation.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Intel sgx
	2.2 Gramine
	2.3 Workflow
	2.4 Related Works

	3 Methods
	3.1 Design remote dcap attestation infrastructure
	3.2 Design user party
	3.3 Design csp party
	3.4 Framework implementation

	4 Results
	4.1 Workflow: C, Python
	4.2 Workflow: trim_galore, bowtie2

	5 Conclusions
	Acknowledgments
	References

