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Abstract. In this paper we propose a novel approach to process align-
ment which leverages on contextual information captured by way of re-
sponsibilities. On the one hand, responsibilities may justify deviations.
In these cases, we consider deviations as correct behaviors rather than
errors. On the other hand, responsibilities can either be met or neglected
in the execution trace. Thus, we prefer alignments where neglected re-
sponsibilities are minimized.
The paper proposes a formal framework for responsibilities in a process
model, including the definition of cost functions to determine optimal
alignments. It also outlines a branch-and-bound algorithm for their com-
putation.

Keywords: Process Alignment · Responsibilities · Responsibility Align-
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1 Introduction

Trace alignment is a fundamental activity of conformance checking in process
mining [11]. It aims at relating an intended behavior, described by way of a
process model, and an actual execution trace recorded in an event log. Trace
alignment highlights where the actual trace deviates from the process model,
and provides insights for further investigations such as performance analysis [1],
model repair [11], diagnosis and such like.

Many consolidated approaches (see [11] for an overview) focus on trace align-
ment from the control flow perspective. These approaches try to match a logged
trace with a sequence of activities from a process model by scanning both step-
wise, looking for mismatches. In the classical approaches, all mismatches have the
same weight, and an optimal alignment is one that minimizes them. More recent
works consider additional aspects besides the control flow, such as contextual
information to weight the impact of a mismatch on the alignment considering
when the mismatch occurs [2,9]. Other works show the importance of considering
additional perspectives besides the control flow, such as data access [4,15] and
temporal aspects on the occurrence of the events [12,5]. In general, the idea is
that when additional information is available, leveraging on it in conformance
checking leads to more realistic and informative alignments.
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In this paper we focus on responsibilities, through which organizations gain
the flexibility that a prescriptive representation of a process cannot enjoy. Via
responsibilities, in fact, organizations are capable of incorporating (internal or
external) regulations, laws, policies, refine objectives and such like.

Responsibilities are captured in different ways within a business organiza-
tion. RACI matrices, for instance, specify which roles are directly responsible
for the completion of what tasks. In the Business Motivation Model (BMM) by
OMG [16] responsibilities are assigned to Organizational Unit. Note that this
applies not only to simple tasks, but also every Business Process (or complex
task) must be under the responsibility of some Organizational Unit.

Responsibilities, thus, are an integral part of business organizations, but so
far conformance checking techniques, and trace alignment in particular, have ne-
glected their informative power. Responsibilities, in fact, give us useful insights
on when an activity should, or should not, be performed. Consider, for instance,
a buying and selling process. An employee is not only responsible for sending a
payment confirmation after a payment, but (s)he is also responsible for sending
the confirmation only if the payment occurred. Therefore, if in an actual execu-
tion both payment and payment confirmation are missing, only the first should
be considered as an anomaly. Standard approaches considering the activities mis-
matches would instead count both as non-compliant behaviors. This is also due
to the nature of process models, which is often more prescriptive than strictly
required. Complementing such a model with responsibilities would allow us to
understand that a mismatch in an alignment is not necessarily a misbehavior in
the process execution, but an acceptable alternative.

In this paper we propose: i) a formalism for responsibility representation
which supports the specification of declarative orderings among activities; ii) an
alignment strategy that accounts for mismatches with the process model as well
as responsibilities that are either satisfied or neglected; iii) we outline an algo-
rithm to compute all the optimal alignments.

In Section 2 we introduce the responsibility relations and their formalization.
Section 3 formalizes the concept of process model extended with the responsibil-
ities. Process and responsibilities alignments are presented in Section 4. Related
work in Section 5 and Conclusions in Section 6 end the paper.

2 Responsibilities: Definition and Evaluation in a Trace

The term responsibility is associated with multiple shades of meaning [18]. In
this paper, as well as in BMM and other business models, responsibility refers to
an actor’s duty to perform a task in a given context, or role responsibility in the
terminology by Vincent [18]. Formally, we represent a responsibility relation as
R(x,u,v) where x is a role, u is a context condition, and v is the duty assigned to
x. Intuitively, R(x,u,v) states that any actor playing role x will be receptive to
the need of bringing about v if u holds, and hence it will be answerable about v
in that specific context. That is, it would be possible to ask x an account about
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her involvement in the achievement, or not, of duty v. Condition u and duty v
can both be simple activities or temporal patterns on activities executions.

Our proposal is to leverage on responsibilities, and the fact that they can be
neglected, as a preference criterion on alignments. In fact, in the real execution
of a process, an actor can either meet or neglect her responsibilities. Our goal is
to use these events as contextual information for trace alignment, relying on the
assumption that role players will act so to be aligned as much as possible with
their responsibilities. Let us consider an example inspired by [14].

Example (Alignments and Responsibilities). In a Fine Management Process, a
fine is first sent (Send-Fine) to the offender, then the offender can either ap-
peal to the judge (Appeal-Judge), or pay (Pay), in which case a receipt is pro-
duced by an employee (Send-Receipt). Only two model runs are possible: E1 =
〈Send-Fine, Appeal-Judge〉 and E2 = 〈Send-Fine, Pay, Send-Receipt〉. Let us
consider the observed execution trace: T = 〈Send-Fine〉. The possible align-
ments with trace T are the following, where � represents mismatches (i.e.,
moves where either the log trace or the model move one step).

A1 =
Send-Fine �
Send-Fine Appeal-Judge A2 =

Send-Fine � �
Send-Fine Pay Send-Receipt

Classical approaches would conclude that the model execution E1 is closer
to the trace because in A1 there is one mismatch, while in A2 there are two. Let
us now assume that the model is complemented with an explicit representation
of responsibilities, and that the employee is (always) responsible for producing a
receipt only after the payment of the fine, and only in case it occurs. Assessing
the two alignments against such a responsibility allows us to observe that the lack
of Send-Receipt in A2 is actually correct, justified by the fact that the payment
did not occur. Therefore, it should not be considered a mismatch and the two
alignments can be considered as equivalent in terms of number of mismatches.

Responsibilities provide, in a declarative manner, the expected context of
an activity, which is precious for interpreting a logged trace in a way that goes
beyond the syntactic distance between strings. Accordingly, we define the cost of
an alignment as depending both on the responsibilities that are neglected, and
the found mismatches as follows: a neglected responsibility amounts to a cost
accumulated by the alignment; a mismatch justified by responsibilities (as for
Send-Receipt in our example) does not contribute to the cost of an alignment,
while other mismatches are considered as misbehavior and contribute to the cost.

To express context conditions and duties in a responsibility relation we rely
on precedence logic defined in [17] and summarized in the following.

Precedence Logic. Given a responsibility R(x,u,v), we denote the conditions u and
v as precedence logic expressions [17], defined over the set of symbols Σ∪{0,>};
here, Σ is a set of activity symbols, 0 means false, and > means true. Precedence
logic is an event-based linear temporal logic, obtained from propositional logic
augmented with the temporal operator (·) before. Such an operator is used to ex-
press minimal ordering requirements between events. For instance, a ·b expresses
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the requirement for event a to occur some time before the occurrence of event
b (need not be strictly before). Besides the before operator, the logic includes
the ∨ (choice) and the ∧ (interleaving) operators (capturing that two conditions
need to be satisfied but there is no temporal requirements between them). Given
a workflow u expressed in precedence logic, the residual of u against an event
e, denoted as u/e, defines the evolution of u after the occurrence of event e.
The residual operator is defined by rules (a – h) below, defined in [7,17]. Here,
u is a given workflow, e is an event or >, its complement ē represents the non-
occurrence of e, and Γu represents the set of literals in u and their complements
(e.g., Γa·b = {a, ā, b, b̄}). The residual u/e is defined as:

(a) 0/e
.
= 0 (b) >/e .

= >
(c) (u1 ∧ u2)/e

.
= ((u1/e) ∧ (u2/e)) (d) (u1 ∨ u2)/e

.
= ((u1/e) ∨ (u2/e))

(e) (e · u1)/e
.
= u1 if e /∈ Γu1

(f) (u1/e)
.
= u1 if e /∈ Γu1

(g) (e′ · u1)/e
.
= 0 if e ∈ Γu1 (h) (ē · u1)/e

.
= 0

Since 0 amounts to false, and > to true, the residual operator can be used for
assessing whether a workflow expression u is satisfied by a given sequence of
events σ = 〈σ1, . . . , σm〉 in Σ. Specifically, we denote as u/σ the expression
(((u/σ1)/σ2) . . .)/σm. When u/σ leads to >, σ is a possible execution run of u.
When u/σ leads to 0 σ represents a trace not compliant with u. According to
[17], it is assumed that i) the events in σ are non-repeating (timestamps can be
used to differentiate multiple instances of the same event [17]), and ii) an event
e and its complement ē are mutually exclusive in every sequence σ.

Evaluate Responsibilities in a Trace. Relying on precedence logic gives us two
advantages: 1) generality, since we can model both contexts and duties as work-
flows, and 2) semantics, since we can assess the state of a responsibility against
a log trace relying on the residual operator. Specifically, we can assess the state
of R(x,u,v) as either i) active, ii) discharged iii) neglected, or iv) satisfied, given
an execution trace σ = 〈σ1, . . . , σm〉 of events over Σ. Formally, let us denote as
〈σ1, . . . , σi〉 a prefix of σ events with 1 ≤ i ≤ m,

– R(x,u,v) is active at step i (s.t. i < m), if u/〈σ1, . . . , σi〉 = > and v/〈σ1, . . . , σi〉
is neither > nor 0;

– R(x,u,v) is discharged at step i if u/〈σ1, . . . , σi〉 = 0 (the residual of v is
irrelevant);

– R(x,u,v) is satisfied at step i if u/〈σ1, . . . , σi〉 = > and v/〈σ1, . . . , σi〉 = >;
– R(x,u,v) is neglected at step i if u/〈σ1, . . . , σi〉 = > and v/〈σ1, . . . , σi〉 = 0,

or at step m (the end of the execution) when u/σ = > and v/σ is not >.

Intuitively, when the responsibility is active there is an expectation on x to
bring about v since the context condition u holds. When the responsibility is
discharged, instead, the context condition does not hold (and cannot hold along
the given σ), and hence no expectation about v can be made. The responsibility
is satisfied along σ when both u and v progress to >. Finally, a responsibility
is neglected either when, at any execution step, the context condition u holds
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and the duty v does not, or when, at the end of the trace, u holds and v has not
progressed to >, that is, the expectation created with u has not been met.

Example (Responsibilities). Let us consider a set Σ of activity symbols {p, sf, sr}
standing respectively for Pay, Send-Fine and Send-Receipt. Consider a responsi-
bility relation R(x,>, p · sr) expressing that the receipt has to be sent only after
the payment. Let us consider the execution 〈sf, sr〉 and apply the residual with
respect to it. First, since sf /∈ Γp·sr, rule (e) applies: p · sr/sf = p · sr. Then, rule
(g) applies to p · sr/sr since sr ∈ Γsr, bringing the responsibility to be neglected.

3 Process Model with Responsibilities

In our approach a process model accounts both for the control flow, and for
responsibility relations assigned to roles taking part to the process. We distin-
guish the two parts, defining a Process Net, specified as a labeled Petri Net in
Definition 1; and complementing it with a set of responsibilities annotating it.

We define a process net as an extension of the process model given in [9] by
including a set of roles and assigning them to the activities. A role can be seen
as a participant to the process and defined in terms of its function or skills.

Definition 1 (Process Net). A Process Net is a Labeled Petri Net defined as
a tuple N = 〈P, T, F,m0,mf , Σ, λ, Z, ζ〉, where P is the set of places, T is the set
of transitions (with P ∩T = ∅), F is the flow relation F ⊆ (P ×T )∪(T ×P ), m0

is the initial marking, mf is the final marking, Σ is the set of activity symbols,
λ : T → Σ ∪ {τ} labels every transition by an activity or as silent, Z is the set
of roles, and ζ : Σ → Z assigns a role to every activity in Σ.

A process net N sets the scope of responsibility relations, since it specifies
both the roles Z and the activities Σ over which a responsibility is defined.
Responsibilities are defined at design time, and relying on precedence logic allows
us to specify that a responsibility be active when a precise execution path occurs.
For instance, given a process net N and the activities a, b, c, d ∈ Σ, and a role
x ∈ Z, to specify that an actor playing role x is responsible for activity d only
if activities a, b, and c (in the order but possibly interleaved with other events)
occur, one can specify the responsibility relation R(x, a · b · c, d). Instead, to
specify that the responsibility is activated when the three activities occur in any
order one can use the relation R(x, a ∧ b ∧ c, d).

We expect that each responsibility is consistently defined with the process
model it refers to. In other terms, both the context and the duty conditions are
assumed to be (sub)workflows that can be generated by at least one model run.
Therefore, there is always at least a way to satisfy a responsibility.

Activities are part of the context in which responsibilities hold. For instance,
by accepting an order, an employee becomes responsible for a number of duties.
We “attach” responsibilities to activities, meaning intuitively that a responsi-
bility gets relevant when its corresponding activity is performed. For instance,
R(x, a · b · c, d) can be attached to e, to express that it gets relevant when e is
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executed. The context condition captures that, if e can be reached from more
than one path, the responsibility is activated only by the path where a · b · c
holds. Definition 2 formally define the responsibility labelling of a process net.

Definition 2 (Responsibility Labelling). Let N be a process net, and let Z
and Σ be, respectively, the set of roles and activity symbols in N. A responsibility
labeling over N is a function R : Σ → {R1, . . . ,Rn} where each Ri is a responsi-
bility relation R(xi, ui, vi), such that: xi ∈ Z and ui and vi are precedence logic
expressions over Σ ∪ {0,>}.

A process model is then defined as a pair M = 〈N,R〉 where N is a process
net as in Definition 1, and R is a responsibility labelling as in Definition 2.

4 Flow and Responsibility Alignments

An alignment compares a process execution against an execution trace (i.e., a
log trace). Generally, the objective is to find, among the possible ones, an align-
ment which is optimal w.r.t. a criterion of preference. Intuitively, an alignment
proceeds step-by-step on the model and on the log: at each step, if the activity in
the model and the one in the log match each other, a synchronous move is made,
and both model and log advance one step. Otherwise, either the model moves
and the log does not, or the other way around, the log moves and the model does
not. Usually, to find an optimal matching, a cost function associated with mis-
matches (i.e., asynchronous moves) is defined. So, an optimal alignment is the
one minimizing the cumulative cost of the mismatches. The classical approach
is to minimize the number of asynchronous moves [11].

In our approach, an optimal alignment is determined taking into account
both the alignment between a log trace and a model run, and the involved
responsibilities. We refer to the former as flow alignment and to the latter as
responsibility alignment. Definition 3, adapted from [9], formally introduces the
notion of flow alignment, capturing the alignment between a process net and an
execution trace. The symbol � represents a no-move, and is used for marking
asynchronous moves. More in general, given a process model M = 〈N,R〉, we use
the term model run for the sequence of activity symbols in Σ produced by a full
run of the process net N, where a Petri Net full run is a sequence of firings from
the initial marking to the final one [9]. We also assume the process net N to be
easy sound [11], that is, there exists at least one full run. The term log trace,
instead, refers to an actual execution of a process instance of M, it is therefore
a finite sequence of activity symbols σ ∈ Σ∗ (i.e., the space of sequences defined
over symbols in Σ).

Definition 3 (Flow Alignment). Let σ = 〈σ1, . . . , σm〉 be a log trace in Σ∗,
and N = 〈P, T, F,m0,mf , Σ, λ, Z, ζ〉 a process net, an alignment of σ with the
process net N is a finite sequence ϕ = 〈(σ′1, u′1), . . . , (σ′p, u

′
p)〉 of moves such that:

– each move is either: a synchronous move (a,t) ∈ Σ × T with a = λ(t), a log
move (a,�), or a model move (�, t),
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– dropping the � symbols from the left projection (σ′1, . . . , σ′p) of ϕ, yields σ,
– dropping the � symbols from the right projection (u′1, . . . , u′p) of ϕ, yields a

full run u of N.

To consider the responsibilities in evaluating the optimal alignment, our ap-
proach is to collect all the responsibilities attached to the activities of a model
run (i.e., the responsibilities that should be satisfied along a possible, expected
execution), and assess them against a log trace (to check if indeed they are satis-
fied). The cost of an alignment, thus, takes also into account the cost of neglected
responsibilities. Moreover, the responsibilities collected along a model run give
us a context for assessing whether a model move (i.e., a “skip” on the log side)
actually represents an execution error, or a proper behavior.

Given a flow alignment ϕ, its responsibility set is the set of responsibilities
attached to the activities in the model run given by the right projection of ϕ
(i.e., the model-side projection). In general, a responsibility set can be computed
for any non-empty prefix of ϕ by considering the alignment up to a given step j.

Definition 4 (Responsibility Set). Let ϕ = 〈(σ′1, u′1), . . . , (σ′p, u
′
p)〉 be a flow

alignment between a process model M = 〈N,R〉 and a log trace σ ∈ Σ∗, the
responsibility set Rϕ,j for the alignment ϕ at step j (1 ≤ j ≤ p) is defined as
Rϕ,j = ∪ji=1R(λ(u′i)).

It holds R(�) = ∅. As a shortcut, we denote as Rϕ the set Rϕ,p, that is
the set of responsibilities computed considering all the steps in the alignment ϕ.
The responsibilities in Rϕ are actually satisfied or neglected depending on the
activities that are included in the log trace (i.e., log-side projection of ϕ). Thus,
we first extend the notion of residuation of the precedence logic to responsibility
relations, and then to a responsibility set.

Given a responsibility set Rϕ = {R1, . . . ,Rk} with Ri = R(xi,ui,vi), let σ′ =
〈σ′1, . . . , σ′p〉 be the log-side projection of ϕ. Then, the notation Ri/σ

′ is a short-
hand for R(xi,ui/σ′,vi/σ′) and Rϕ/σ′ is a shorthand for {R1/σ

′, . . . ,Rk/σ
′}.

Additionally, the residuation of any expression u with � has no effect on the
expression, namely u/�= u.

Proposition 1. [Consistency] Let Rϕ,j be the responsibility set computed at
step j (1 ≤ j ≤ p) of an alignment ϕ = 〈(σ′1, u′1), . . . , (σ′p, u

′
p)〉, let σ′ be the

projection log-side of ϕ, then for each Ri ∈ Rϕ,j the following conditions hold:

1. if Ri/〈σ′1, . . . , σ′j〉 is satisfied, then also Ri/σ
′ is satisfied;

2. if Ri/〈σ′1, . . . , σ′j〉 is neglected, then also Ri/σ
′ is neglected;

3. if Ri/〈σ′1, . . . , σ′j〉 is discharged, then also Ri/σ
′ is discharged;

4. if Ri/〈σ′1, . . . , σ′j〉 is active, then Ri/σ
′ is either satisfied or neglected.

This proposition, that follows directly from the rewriting rules of the precedence
logic, guarantees a consistent evaluation of the responsibilities against a log
trace. In fact, whenever a responsibility progresses from the active state to either
satisfied, neglected, or discharged, such a second state is final: the state of the
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responsibility can no longer evolve along the same trace. That is, further events
along the trace cannot satisfy a neglected responsibility nor vice versa. At the
same time, a responsibility activated along a log trace must necessarily evolve
to either satisfied or neglected by the end of the same trace.
Example (Responsibility Set). Consider the example in Section 2, the responsibil-
ity set RA1 of alignment A1 will be the union of the responsibilities associated
with the activities Send-Fine and Appeal-Judge, while the set RA2 for A2 is
given by the responsibilities associated to Send-Fine, Pay and Send-Receipt.
The resulting sets will be residuated with respect to the log trace (i.e., activity
Send-Fine) and the cost of the alignment computed as describe in the following.

4.1 Cost functions for optimal alignments.

In general, several alignments of a log trace w.r.t. a model exist. To compare
them and determine the optimal one we define a cost function that considers
both the cost of the mismatches between the model run and the log trace, which
we call Flow Alignment Cost CN,ϕ, and the cost for the neglected responsibilities,
which we call Responsibility Alignment Cost CR,ϕ.

Let us start from the latter one. The responsibility cost CR,ϕ is computed
for a flow alignment ϕ = 〈(σ′1, u′1), . . . , (σ′p, u

′
p)〉 between a process model M =

〈N,R〉 and a log trace σ ∈ Σ∗. The cost CR,ϕ corresponds to the number of
responsibilities that are neglected in ϕ. To compute them, first the responsibility
set Rϕ for ϕ is determined (Definition 4). Then, Rϕ is residuated with respect
to the projection log-side of ϕ. Neglected responsibilities are then those that are
active, but not satisfied at the end of the trace. Note that the approach can be
easily extended to consider different responsibility costs (for instance to capture
that some responsibilities are more important to be satisfied than others).
Example (Responsibility Alignment Cost). Let us consider the fine process sce-
nario, and assume that the employee is responsible for archiving (ar) any sent
fine (sf) after 60 days, independently of whether the offender has appealed to the
judge or paid for the fine; that is, responsibility R(x,sf,ar) is attached to sf. Now,
in both alignments A1 and A2 (see Section 2), the responsibility is activated but,
since it is not satisfied by the end of both alignments, it is marked as neglected
in both cases, thus bringing a cost in both alignments.

The second component of our cost function, the flow cost CN,ϕ, calculates
the cost of every mismatch (i.e., either model or log moves) included within a
given alignment. Notably, this calculation takes into account responsibilities as
a sort of context. By using them, in fact, we are able to identify some model
moves as correct, and not as mismatches. To this end, CN,ϕ is computed with
respect to a flow alignment ϕ = 〈(σ′1, u′1), . . . , (σ′p, u

′
p)〉 between a process model

M = 〈N,R〉 and a log trace σ ∈ Σ∗. To compute CN,ϕ, each alignment step
(σ′j , u

′
j) is considered. A step (σ′j , u

′
j) is a mismatch, and hence to be counted as

a cost, when it is either a log move (i.e., the label λ(u′j) assigned to transition
u′j is �), or it is a model move (i.e., σ′j equals �) which is not justified by any
responsibility. A model move is justified by a responsibility if there is at least one
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R(x,u,v) ∈ Rϕ,j which is not neglected at step j, but it would be if the log event
σ′j were substituted by the corresponding model activity λ(u′j). In other words,
executing the activity corresponding to a synchronous move would have lead
an active responsibility R(x,>,v) to progress to neglected i.e., R(x,>,0). This
means that skipping activity λ(u′j) is consistent with at least one responsibility,
and hence � does not represent a misbehavior.

Note that this approach is compatible with other approaches in the literature
where the cost of a mismatch is not necessarily constant nor one (e.g., [9,2]).
Example (Flow Alignment Cost). Let us consider again alignment A2 in Sec-
tion 2, and let us assume that R(x,>, p · sr) is associated with activity Pay to
indicate that, if the expected execution is the one that goes through Pay rather
than Appeal-Judge, then the receipt has to be sent only after and only in case
of a payment. Concerning the Flow Alignment Cost, albeit A2 has two asyn-
chronous model moves, only the first one actually contributes to the flow cost.
The log skip on Send-Receipt (sr), instead, is justified since the occurrence of sr
in the log would lead to the violation of R(x,>, p · sr).

The total cost of an alignment is computed as the weighted sum of the flow
and the responsibility costs.

Definition 5 (Alignment Cost, Optimal Alignment). Let ϕ = 〈(σ′1, u′1),
. . . , (σ′p, u

′
p)〉 be the flow alignment between a process model M = 〈N,R〉 and a

log trace σ ∈ Σ∗, the cost function of the alignment ϕ is

Cϕ = γ · CN,ϕ + δ · CR,ϕ

An alignment between a model M and a log trace σ is optimal if Cϕ is minimal.

Coefficients γ and δ are domain-dependent weights that can be tuned for pe-
nalizing more either neglected responsibilities or asynchronous moves. A greater
weight for δ (responsibility coefficient) prefers asynchronous moves to neglected
responsibilities. On the other hand, a greater weight for γ (flow coefficient),
prefers neglected responsibilities to mismatches, thus the found alignments would
be characterized by as many synchronous moves as possible even though this
could lead to violate responsibilities.

4.2 Computation of the Optimal Alignment

To compute the optimal alignment, many approaches in the literature adopt
A* or branch-and-bound algorithms. The approach we outline in this section
exploits a branch-and-bound strategy, and relies on the Synchronous Product
Net (SN) between the process net and a sequential Petri Net representing the log
trace. Intuitively, the SN combines the two nets representing the synchronous
and asynchronous moves. The SN is built as follows: every model (resp. log)
transition is augmented with the � symbol to represent asynchronous moves.
Synchronous moves are represented with additional transitions, each labeled with
the activity synchronously performed. We rely on the formal definition of SN as
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in [11]. In this setting, an alignment corresponds to a full run in the SN, that
is a firing sequence bringing from the initial marking to a final marking, where
the final markings are those where both the process net and the log trace reach
one of their final markings.

Given in input the SN, it is possible to implement a branch and bound search
strategy which finds the optimal full runs, i.e., those runs having minimal cost
computed according to Definition 5. The idea is as follows. The search space is
given by the set of possible markings of the SN; for each marking, a suitable
data structure keeps i) the marking, ii) the sequence of transitions leading to it
(each transition is an alignment step), iii) the cost of the alignment up to that
point, iv) the set of responsibilities collected along this (partial) alignment. The
algorithm keeps in a queue the frontier of the search, i.e., the markings still to
be considered. The frontier is ordered in a non-decreasing way with respect to
the marking cost, and it is initialized with the initial marking.

At each step of the search, the algorithm removes the top marking from the
frontier (i.e., the one with the lowest cost). If the top marking is a final marking,
then the cost of the responsibilities that are neglected because not satisfied at
the end of the alignment (and not counted in the previous steps), need to be
added to the alignment cost. Then the cost of the found solution is compared
with the best cost found up to that point and, if it is equally good is added
to the set of optimal solutions while if it is better it replaces the current best.
Otherwise, it is discarded.

On the other hand, if the top marking is not a final marking, the algorithm
computes, for each enabled transition, the reachable markings from this top
marking (the top marking is now visited and will not be visited again in the
future). For each reachable marking, if not yet visited, the algorithm computes
the responsibility set and the cost up to this point, and then the marking is
stored in the frontier in the proper order. The responsibility set is computed
incrementally, by adding to the set of responsibilities collected up to that point,
the responsibilities associated to the last transition. The cost associated with
the marking is computed by combining flow and responsibilities costs as in Def-
inition 5. To compute the flow cost, we count the asynchronous moves along the
current alignment; in case of a model move, a cost is added only if the skip in
the log is not justified by at least one responsibility associated with this marking
(as explained in Section 4.1). On the other side, the responsibility cost counts all
the responsibilities that, associated with this marking, are neglected by a syn-
chronous or model move. It is worth noting that, this cost function is monotone,
in fact, by Proposition 1, there is no case when the cost for a neglected respon-
sibility needs to be reverted since the very same responsibility gets satisfied.

5 Related Work

Several proposals in the literature focus on extending process alignment consid-
ering other perspectives besides the control flow. Among these, several consider
data aspects [4,13,15], time [12], costs and such like. Interestingly, in [14] the
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authors propose a cost function which, similarly to our proposal, combines the
costs from different perspectives.

Approaches focusing on the control flow differentiate the cost of a misalign-
ment based on when it occurs [9,2,8]. In [9] mismatches occurring at the early
stages of an execution have more impact than those occurring at later stages.
Authors in [2] also consider which activities occurred before and after that mis-
match. The proposal in [8], instead, is to favor alignments where the number of
synchronous moves is maximized. This is achieved by defining a cost function
which penalizes log moves only.

Considering the technical aspects, instead, many proposals rely on Petri Nets
and specifically on the Synchronous Product Net. In general, the cheapest path
search techniques rely on Dijkstra- or A∗-based algorithms [9,3]; possibly, prun-
ing techniques are applied to speed up the overall search [9,11]. Approaches
based on planning [2] and SAT algorithms [10] have also been proposed.

To the best of our knowledge, no existing approaches consider the perspective
of responsibilities. In our proposal, we consider it in two ways: as an additional
perspective compared to the control flow and to evaluate model moves. One
similarity with [8], is that we propose a strategy for not counting the cost of
model moves. However, while in [8] model moves are ignored systematically, in
our approach we do not consider a model move as a cost only when performing
the corresponding synchronous move would lead to neglect some responsibilities.

6 Conclusions and Future Work

We presented a novel methodology of process alignment which takes into account
responsibilities (see Section 2) during the search for optimal alignments. The
paper contributes with a formal framework for representing responsibilities and
using them for complementing a process model. A branch and bound algorithm
is also discussed whose implementation is still in progress.

An explicit representation of responsibilities as part of a process model opens
several future directions. First, each alignment found by our algorithm is asso-
ciated with a set of met and unmet responsibilities. In first lieu, these two sets
provide a sort of justification why a specific alignment has been selected as opti-
mal. More generally, however, by considering the set of unmet responsibilities for
a number of log traces, one could reason about possible inefficiencies and flaws in
the process model, enabling a responsibility-driven procedure for re-engineering
a process, where the responsibilities themselves could be redefined. In addition,
role responsibilities designate the actors playing a specific role as “in charge” of
some job, and hence capable of providing accounts about the accomplishment,
or failure, of that job. This permits the creation of accountability relationships
between the actor who is responsible for a job, and another actor who has some
interest in that job (e.g., for her decision process) [6]. By means of accountabil-
ity, problems can be detected and examined with the objective to understand
why the problem has occurred. An interesting future direction, thus, is to com-
plement our responsibility framework with accountability relationships as a way
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for improving both the computation of alignments and their understanding in
the context of a business organization.
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