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Abstract
Environmental signals, acquired, e.g., by remote sensing, often present large gaps 
of missing observations in space and time. In this work, we present an innovative 
approach to identify the main variability patterns, in space–time data, when data 
may be affected by complex missing data structures. We formalize the problem 
in the framework of functional data analysis, proposing an innovative method of 
functional principal component analysis (fPCA) for incomplete space–time data. 
The functional nature of the proposed method permits to borrow information from 
measurements observed at nearby spatio-temporal locations. The resulting func-
tional principal components are smooth fields over the considered spatio-temporal 
domain, and can lead to interesting insights in the spatio-temporal dynamic of the 
phenomenon under study. Moreover, they can be used to provide a reconstruction 
of the missing entries, also under severe missing data patterns. The proposed model 
combines a weighted rank-one approximation of the data matrix with a roughness 
penalty. We show that the estimation problem can be solved using a majorize–mini-
mization approach, and provide a numerically efficient algorithm for its solution. 
Thanks to a discretization based on finite elements in space and B-splines in time, 
the proposed method can handle multidimensional spatial domains with complex 
shapes, such as water bodies with complicated shorelines, or curved spatial regions 
with complex orography. As shown by simulation studies, the proposed space–time 
fPCA is superior to alternative techniques for Principal Component Analysis with 
missing data. We further highlight the potentiality of the proposed method for envi-
ronmental problems, by applying space–time fPCA to the study of the lake water 
surface temperature (LWST) of Lake Victoria, in Central Africa, starting from sat-
ellite measurements with large gaps. LWST is considered one of the fundamental 
indicators of how climate change is affecting the environment, and is recognized as 
an essential climate variable.
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1  Introduction

In environmental and ecological sciences, it is fundamental to analyze signals 
acquired across space and time, using remote sensing or other measuring devices. 
However, such signals are often only partially observed, over the spatio-temporal 
domain, and may present complex missing data patterns. Air pollution datasets, 
for instance, often display a high percentage of missing values, due to faults in the 
measuring devices. Satellite remote sensing data, that can be used to explore veg-
etation indices or surface temperature over lands, seas or lakes, are often affected 
by large gaps, in space and time, which might be caused, e.g., by ice coverage, 
presence of clouds or other meteorological conditions. Figure 1 offers an exam-
ple in this sense. We here display the spatio-temporal profile of the water surface 
temperature of Lake Victoria, in Central Africa. These data, analyzed, for exam-
ple, by Gong et al. (2018) and Gong et al. (2021), are provided by the ARC-Lake 
database  (see, e.g., MacCallum and Merchant 2011). Although the data consist 
of monthly averaged measurements, values may be missing for many consecutive 
months, on large portions of the lake.

In this work, we investigate the main patterns of variability in spatio-temporal 
signals, which may be affected by complex missing data structures, such as those 
highlighted above. We do so in the framework of principal component analysis 
(PCA). In this respect, it should be noted that the presence of missing data may 
challenge or invalidate standard approaches to PCA. For this reason, alterna-
tive strategies have been explored in the literature, to perform PCA with miss-
ing data, relying on iterative procedures, which combine PCA with missing data 
imputation. These iterative PCA techniques are motivated by the results of, e.g., 
Gabriel and Zamir (1979) and Kiers (1997), in the context of a weighted low-rank 
approximation. For example, the Data INterpolating Empirical Orthogonal Func-
tion (DINEOF) method  (Beckers and Rixen 2003) updates its reconstruction of 
the missing entries by Singular Value Decomposition on the imputed data, until 
convergence. An analogous technique is proposed by Josse et al. (2011) and Josse 
and Husson (2012), who describe a regularized iterative PCA algorithm, which 
reduces the possibility of overfit. These approaches are extensively employed in 
environmental and ecological applications, where satellite remote sensing data 
are of interest  (see, e.g., Hilborn and Costa 2018; Wang and Liu 2014; Alvera-
Azcárate et  al. 2007, 2005). DINEOF is arguably the most popular approach in 
these fields. However, these techniques work on a multivariate assumption, and 
do not take advantage of the spatio-temporal nature of the phenomena under 
study.

Here, we propose an innovative PCA method for incomplete spatio-temporal 
signals. To appropriately borrow information from measurements observed at 
nearby spatio-temporal locations, we formalize the problem of PCA in a Func-
tional Data Analysis framework (Ramsay and Silverman 2005; Ferraty 2006; 
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Kokoszka and Reimherr 2017). Functional PCA approaches for space–time data 
are considered, for instance, in  Li and Guan (2014), where a method based on 
Poisson maximum likelihood is proposed to provide an estimation of the covari-
ance function for the spatio-temporal data generation process, from which prin-
cipal components are extracted by means of an eigenvalue decomposition. In Liu 
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Fig. 1   Monthly averaged satellite measurements of Lake Water Surface Temperature (LWST), Lake 
Victoria, Central Africa. Top left: map of Lake Victoria. Top right and center: LWST in the months of 
August 1996, May 2003, and March 2011. Bottom: LWST at the 5 spatial locations in the lake, indicated 
by color markers in the map in the top-left panel
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et al. (2017), the authors develop a technique for the functional principal compo-
nent analysis of spatially correlated functional data, which is then used as curve 
reconstruction method in the context of partially observed functional data.

Our proposal of functional principal component analysis (fPCA) originates 
from a different literature, based on penalized rank-one approximations of the 
data matrix (see, e.g., Huang et al. 2008). In particular, we consider an estimation 
functional that combines a weighted rank-one approximation of the data matrix 
with roughness penalties based on partial differential operators over space and 
time. The obtained functional principal components are smooth fields over the 
considered spatio-temporal domain. They are easy to interpret and can lead to 
interesting insights in the spatio-temporal dynamics of the phenomenon under 
study. Moreover, they can be used to provide a reconstruction of the missing 
entries, also under severe missing data patterns.

To minimize the considered fPCA estimation functional, we develop an 
appropriate Majorization-Minimization algorithm  (see, e.g., Lange 2016). This 
approach is used in a variety of statistical methods, such as multidimensional 
scaling  (Heiser 1987) and correspondence analysis  (Heiser 1987). In particular, 
the popular expectation-maximization method, widely used in all areas of sta-
tistics, is a special case of the majorization—minimization approach (Lange and 
Zhou 2022). An interesting property of these optimization approaches is that 
they guarantee convergence to a local optimum  (Wu 1983). For the proposed 
fPCA problem, we show that the estimation functional of fPCA with incomplete 
space–time data can be majorized by the estimation functional of fPCA with fully 
observed space–time data. Moreover, the latter estimation problem can be seen as 
an extension to space–time settings of the fPCA approaches considered by  Lila 
et al. (2016) and Arnone et al. (2023) over space-only domains. We discretize the 
estimation problem using B-splines over the temporal domain, and finite elements 
defined over a triangulation of the spatial domain. This enables the methodology 
to deal with data observed over spatial domains with complex shapes, such as 
water bodies with complicated shorelines, or curved spatial regions with complex 
orography. The proposed fPCA is a new addition to the class of Physics-Informed 
Spatial and Functional Data Analysis methods, reviewed in Sangalli (2021), and 
is implemented in the R/C++ library fdaPDE (Arnone et al. 2023).

Simulation studies demonstrate the good performances of the proposed fPCA 
for incomplete space–time data, and its advantages over state-of-the-art tech-
niques for PCA with missing data. These simulation studies consider different 
incomplete data settings, including sparse data and data with large gaps in space 
and time, as in the case of the considered application to the study of water surface 
temperature of Lake Victoria.

The paper is organized as follow. Section 2 introduces the proposed fPCA for 
incomplete spatio-temporal data. Section  3 describes the discretization of the 
estimation problem. Section  4 details the Majorize-Minimization algorithm for 
the minimization of the proposed estimation functional. Section  5 reports the 
simulation studies, that compare the proposal to popular approaches for PCA with 
missing data. Section 6 illustrates the application to the study of the surface water 
temperature of Lake Victoria. Some concluding remarks are drawn in Sect.  7. 
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All proofs are deferred to Appendix 1 and 2. Appendix 3 contains some further 
simulations.

2 � Mathematical framework

In this section we introduce the fPCA problem for incomplete space–time data. 
In Sect. 2.1 we give the theoretical definition of functional principal component 
analysis, for a random field defined over a spatio-temporal domain. In Sect. 2.2 
we introduce the fPCA estimation problem for incomplete space–time data.

2.1 � Functional principal component analysis of a random field 
on a spatio‑temporal domain

Let D be a bounded and possibly non-convex subset of ℝd , with d = 2, 3 , and let 
T ⊂ ℝ be a time interval. Introduce the space of square-integrable functions on 
the spatio-temporal domain D × T

with inner product ⟨f , g⟩D×T = ∫
D×T

f (p, t)g(p, t)dpdt . Consider a random field X  
taking values in L2(D × T) , with mean � = �[X] , and assume it has a finite sec-
ond moment, i.e., ∫

D×T
�[X2] < ∞ , and a square integrable covariance function 

K
(
(p1, t1), (p2, t2)

)
 . Define the covariance operator V ∶ L2(D × T) → L2(D × T) 

as Vf = ∫
D
∫
T
K(⋅, (p, t))f (p, t)dpdt . Thanks to Mercer’s Lemma  (Riesz and Nagy 

2012), there exists an orthonormal sequence {fk}k of eigenfunctions and a non-
increasing sequence {�k}k of eigenvalues such that the following eigenvalue problem 
holds

Moreover we can express K((p1, t1), (p2, t2)) =
∑∞

k=1
�kfk(p1, t1)fk(p2, t2) and 

X(p, t) = �(p, t) +
∑∞

k=1
s[k]fk(p, t) , where {s[k]}k is a sequence of zero-mean uncorre-

lated random variables, with s[k] = ∫
D×T

(X − �)(p, t)fk(p, t) . The functions {fk}k are 
named Principal Component (PC) functions, whereas the random variables {s[k]}k 
are named Principal Component scores. PC functions {fk}k identify the strongest 
modes of variation in the random field X  . In fact, it can be shown that f1 is such that

and subsequent PCs fk , with k > 1 , solve the same problem with the additional con-
straint ⟨fk, fh⟩L2(D×T) = 0 , for h = 1,… , k − 1 , i.e., fk must be orthogonal to all the 
previous PCs.

L2(D × T) =

{
f ∶ D × T → ℝ ∶

(

∫
D×T

f (p, t)2
) 1

2

< ∞

}

(Vfk)(p, t) = �kfk(p, t) ∀(p, t) ∈ D × T , k ∈ ℕ.

f1 = argmax
f∶‖f‖

L2(D×T)=1

Var
�
⟨X − �, f ⟩L2(D×T)

�
,
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Another characterization of the PCs goes under the name of best M-basis 
approximation property: for any positive integer M, the first M PCs satisfy

where �kh denotes the Kronecker delta, i.e., �kh = 1 if and only if k = h , and �kh = 0 
otherwise.

2.2 � fPCA estimation problem for incomplete space–time data

Assume L realizations x1, x2,… , xL of the random field X  were available, observed 
continuously over the spatio-temporal domain D × T , and without noise. We could 
then compute the sample covariance operator V̂ and obtain the first M PCs from its 
(numerical) spectral decomposition.

In real-world applications, however, we never observe realizations of the random 
field X  continuously over D × T and without noise, but only their noisy measure-
ments, at some spatio-temporal locations. Specifically, let p1,… , pn , be n locations in 
the spatial domain D , and t1,… , tm , be m time instants in T. Denote by xlij the noisy 
measurement of the l-th statistical unit xl at the spatio-temporal location (pi, tj) . In the 
Functional Data Analysis community, a common approach to solve the fPCA problem, 
starting from the noisy and discrete measurements of the statistical units, consists in 
first obtaining smooth representatives of x1, x2,… , xL , by appropriate smoothing pro-
cedures, and then computing the resulting sample covariance operator, with its spec-
tral decomposition. However, such a pre-smoothing approach may fail in the context 
of missing data, especially in the presence of complex missing data patterns, as high-
lighted in Palummo et al. (2023).

We here follow a different approach that starts from the characterization of the 
PCs given in Eq. (1). Specifically, for l = 1,… , L , let Ol be the set of all index pairs 
(i, j) where xlij is not missing. Assume, for simplicity of exposition, that the data have 
already been centered around the mean, at each spatio-temporal location. Then, the 
sample version of the objective functional in Eq. (1), for M = 1 , is given by

The estimation of the infinite-dimensional PC function f, starting from the discrete 
measurements xlij , through minimization of (2), is though an ill-posed problem, 
unless a proper regularization is introduced. To this end, we add to the objective 
functional (2) a proper regularizing term, which seeks smoothness in the PC func-
tion f. In particular, following the approach presented by Bernardi et al. (2017) in 
the context of spatio-temporal smoothing, we consider the space–time roughness 
penalty

(1)
{fk}

M
k=1

= argmin

⟨fk, fh⟩L2(D×T) = �kh,

h = 1,… , k

�

�

∫
D×T

�
X − � −

M�

r=1

�

∫
D×T

Xfr

�
fk

�2�

(2)
L∑

l=1

∑

(i,j)∈Ol

[
xlij − slf (pi, tj)

]2
.
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where Δf =
∑d

h=1

�2f

�p2
h

 denotes the Laplacian of f, while 𝜆D > 0 and 𝜆T > 0 are two 
smoothness parameters, which control the roughness of the PC function in space 
and time. Therefore, we propose to estimate the first PC function f1 ∶ D × T → ℝ 
and the corresponding PC scores vector s1 ∈ ℝ

L by solving the following minimiza-
tion problem

where ℍ ⊂ L2(D × T) is a proper space of functions where the objective functional 
is well-posed (see, e.g., Arnone 2018). As discussed in Sect. 4.1, the first term of the 
objective functional in Eq.  (4) corresponds to a weighted rank-one approximation 
of the data matrix, and encourages the PC function f to capture the strongest mode 
of variation in the observed data. The second term controls the smoothness of f in 
space and time. Moreover, the term s⊤s is justified by invariance considerations on 
the objective functional, similar to what was done in Huang et al. (2008), while the 
normalization constraint ‖s‖2 = 1 is set to make the representation unique. Subse-
quent PCs are estimated by solving the same estimation problem, but where missing 
entries have been imputed, as detailed in Sect. 4.2.

The estimation problem (4) presents various challenging aspects. First of all, it is an 
infinite-dimensional estimation problem, involving the infinite-dimensional unknown 
f, and it does not enjoy a closed form solution. This calls for an appropriate numeri-
cal discretization that will be presented in Sect. 3. Second, it is non-convex in (s, f ) . 
This requires the development of an appropriate iterative scheme, that will be detailed 
in Sect.  4. In this respect, the presence of missing data raises another complication. 
Indeed, the iterative approaches formerly considered for fPCA for fully observed data 
by, e.g., Zou et al. (2006), Huang et al. (2008), Lila et al. (2016), Arnone et al. (2023), 
and explored in Stefanucci et al. (2018) in the context of partially observed functional 
data, may instead be inadequate in the presence of complex missing data patterns, 
which requires the more complex iterative scheme proposed in Sect. 4.

3 � Discretization of the infinite dimensional problem

We here present a numerical discretization of the functional in Eq. (4) which allows us 
to consider spatial domains with complex shapes, such as water bodies with compli-
cated shorelines or curved spatial regions with complex orography. This discretisation 
is based on finite elements in space and splines in time.

(3)P�D,�T
(f ) = �D ∫T ∫D

(Δf )2 + �T ∫
D
∫T

(�2f
�t2

)2

,

(4)
argmin
s∈ℝL,f∈ℍ

L�

l=1

�

(i,j)∈Ol

�
xlij − slf (pi, tj)

�2
+ s

⊤
sP𝜆D,𝜆T

(f )

Subject to ‖s‖2 = 1
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3.1 � Spatio‑temporal basis system

Let T  be a triangulation of the spatial domain of interest D , i.e., a finite union of 
non-overlapping triangles approximating D (Hjelle and Dæhlen 2006). The left 
panel of Fig. 2 shows an example. We define, on such triangulation, the space of 
finite element functions Vr

T
(D) as the space of continuous functions which are poly-

nomials of degree r, once restricted to any triangle in T  ; see, e.g. Ciarlet (2002), 
Quarteroni (2017). For simplicity, in this work, we consider the case of linear finite 
elements ( r = 1 ). Let �1, �2,… , �ND

 be the nodes of the triangulation that, for lin-
ear elements, coincide with the vertices of the triangles in T  . Therefore, we can 
introduce a basis system �1(p),�2(p),… ,�ND

(p) for Vr
T
(D) , where each basis func-

tion is Lagrangian, that is, �k(�h) = 1 if and only if k = h , and �k(�h) = 0 otherwise. 
The left panel of Fig. 2 shows a linear finite element basis, defined over a triangu-
lation of Lake Victoria. Let � = (𝜓1,𝜓2,… ,𝜓ND

)⊤ be the ND-vector of finite ele-
ment basis. Any function v ∈ Vr

T
(D) can be written as a finite linear combination of 

these basis, i.e., v(p) = v⊤�(p) . An interesting property of Lagrangian elements is 
v = (v(�1), v(�2),… , v(�ND

))⊤.
For the time dimension, we adopt a set of NT cubic B-spline basis functions 

�1(t),�2(t),… ,�NT
(t) , defined over the time interval T; see, e.g. De Boor (1978). 

The right panel of Fig. 2 shows such a basis system.
Finally, we represent the spatio-temporal PC function f (p, t) over D × T  as

where {ckh}kh are the coefficients of the expansion of f with respect to the considered 
spatio-temporal basis.

(5)f (p, t) =

ND∑

k=1

NT∑

h=1

ckh�k(p)�h(t).

Fig. 2   Left: linear finite element basis function �(p) defined over a triangulation of the Lake Victoria. 
Right: cubic B-spline basis functions {�

k
(t)}

k
 over a time interval T 
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3.2 � Discretization of the differential penalty

Define the n × ND matrix Ψ = [Ψ]ik = �k(pi) of the evaluation of the ND finite ele-
ment basis at the n spatial locations, and the ND × ND matrices

Moreover, define the m × NT matrix Φ = [Φ]jk = �k(tj) of the evaluation of the NT 
spline basis functions at the m temporal locations, and the NT × NT matrices

Let ⊗ be the Kronecker tensor product between matrices, and set Ψ̃ = Ψ⊗Φ . More-
over, introduce the vector c = (c11, c12,… , cNDNT

)⊤ of the expansion coefficients of 
f in (5). Set P = 𝜆D(R

⊤
1
R−1
0
R1 ⊗ Rt) + 𝜆T (Pt ⊗ R0) . Following the approach in Ber-

nardi et al. (2017), we can discretize the differential penalty in Eq. (3) by

4 � Iterative solution of the estimation problem

In this section, we propose an iterative procedure, in the family of majorize–minimiza-
tion (MM) algorithms (see, e.g., Lange 2004; Lange and Zhou 2022), which permits 
the efficient numerical solution of the estimation problem (4), and hence the identifi-
cation of the principal component, and corresponding scores, from a set of partially 
observed space–time data.

4.1 � Data loss

Before introducing the MM algorithm that solves Eq.  (4), we highlight that the first 
term in it, i.e., the data loss term, can be interpreted as a weighted rank-one approxima-
tion of the data matrix. To this end, let X be the L × nm data matrix, whose l-th row 
contains the noisy measurements of the l-th statistical units, at the nm spatio-temporal 
locations, i.e., (xl11, xl12,… , xlnm) . Denote by W the binary matrix L × nm , whose l-th 
row (wl11,wl12,… ,wlnm) has wlij = 1 if and only if (i, j) ∈ Ol , that is, when the datum 
xlij is observed and wlij = 0 otherwise. Denote instead by WC the binary matrix L × nm 
with zeros indicating observed values and ones indicating missing observations. 
Finally, let ‖ ⋅ ‖F be the Frobenious norm, and ∗ be the Hadamard (or element-wise) 
product between matrices. Then, the data loss term in Eq. (4) can be written as

R0 = [R0]kh = ∫
D

𝜓k𝜓h R1 = [R1]kh = ∫
D

∇𝜓⊤
k
∇𝜓h.

Rt = [Rt]kh = ∫T

�k�h Pt = [Pt]kh = ∫T

d2�k

dt2

d2�h

dt2
.

(6)𝜆D ∫T ∫D

(Δf )2 + 𝜆T ∫
D
∫T

(𝜕2f
𝜕t2

)2

≈ c⊤Pc.
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where s = (s1, s2,… , sL) ∈ ℝ
L is the scores vector, and f nm = (f (p1, t1) , f (p2, t1) , 

… , f (pn, tm))⊤ ∈ ℝ
nm is the vector of the evaluations of the PC function f at the nm 

spatio-temporal data locations, i.e., f nm = Ψ̃c . The formulation on the right-hand 
side of (7) is not uncommon in multivariate analysis, where the associated mini-
mization problem is usually formalized as an approximation problem of the data 
matrix X by another matrix of lower rank (see, e.g., Gabriel and Zamir 1979). For 
the unweighted case, i.e., in the special case where the data are fully observed and 
W is a matrix of all ones, the Eckart–Young–Mirsky theorem  (Eckart and Young 
1936) guarantees that the best rank-M matrix, with M ≥ 1 , approximating X is pro-
vided by its Singular Value Decomposition (SVD). For a general weight matrix W, 
even if binary, there is no analytic solution, and the problem is solved by resorting 
to iterative methods, such as, for instance, Non-linear Iterative Partial Least Squares 
(NIPALS) (Wold 1966) or Criss-Cross regression (Gabriel and Zamir 1979).

4.2 � Majorize‑minimization scheme

Thanks to Eqs. (6) and (7), we can rewrite the objective functional in (4) as

where Tr[⋅] denotes the matrix trace operator. Now, define the L × NDNT matrix 
U = sc⊤ . Noting that sf⊤

nm
= UΨ̃⊤ , we can further rewrite (8) as a functional of U as

At this point, we show that (9) can be minimized in U by an appropriate major-
ize–minimization (MM) scheme. An MM procedure seeks to minimize an objec-
tive function h ∶ 𝕌 → ℝ , where � denotes some parameter space, by iterative 
minimization of a simpler function, whose optimization is more computationally 
tractable. In particular, starting from an initial guess U0 , an MM algorithm builds 
a sequence U1,U2,…Us in � , which converges to a local optimum of the objective 
functional h(⋅) (see, e.g. Wu 1983). For each iteration index s ≥ 0 , Us+1 is selected 
as the minimizer of a function g(U|Us) , which is taken to be a majorization of h(⋅) 
at Us , that is, such that g(U|Us) ≥ h(U) for all U ≠ Us , with the additional condi-
tion h(Us) = g(Us|Us) . Under this update rule, an MM procedure forces h(U) to 
decrease, as we have

The next result shows that a majorizing functional for the objective h(U) in (9) cor-
responds to the estimation functional of a fPCA on completely observed space–time 
data.

(7)
L�

l=1

�

(i,j)∈Ol

�
xlij − slf (pi, tj)

�2
= ‖W ∗ (X − sf⊤

nm
)‖2

F
,

(8)‖W ∗ (X − sf⊤
nm
)‖2

F
+ s⊤sc⊤Pc = ‖W ∗ (X − s(Ψ̃c)⊤)‖2

F
+ Tr[sc⊤Pcs⊤]

(9)h(U) = ‖W ∗ (X − UΨ̃⊤)‖2
F
+ Tr[UPU⊤].

h(Us+1) ≤ g(Us+1|Us) ≤ g(Us|Us) = h(Us).
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Proposition 1  The functional in Eq. (9) is majorized by

where � ∈ ℝ is a constant not depending on U, and Ys = W ∗ X +WC ∗ UsΨ̃⊤ is 
the data matrix obtained by imputing the missing observations in X with the recon-
structed signal Us , provided by the PCs estimated at the s-th iteration.

The proof is reported in Appendix 1. According to Proposition 1, at each iteration 
of the MM procedure, we have to solve the following minimization problem.

This is an fPCA problem for completely observed spatio-temporal functional data, 
which extends, to the space–time setting, the models presented in Lila et al. (2016) 
and Arnone et al. (2023). Section 4.3 details the numerical algorithm to solve (11) 
and extract the first M functional principal components from the imputed data Ys . 
Once the PCs of Ys are estimated, the reconstructed signal Us is updated, and the 
minimization problem (11) is repeated in Ys+1 , until convergence.

In the fPCA approaches for fully observed data, described in Lila et al. (2016), 
Arnone et al. (2023), Huang et al. (2008), the first M principal components are com-
puted one at a time, solving problems similar to (11), on residualized data matri-
ces, as detailed in Sect. 4.3, without any need for the MM algorithm proposed here. 
However, the missing data scenario here considered is much more challenging. 
Indeed, in this setting, we have to recursively apply the MM procedure, and repeat 
the estimation of all the first M PCs, at each iteration of the MM algorithm, from the 
imputed data Ys , using as a starting point U0 the reconstructed signal Us , obtained 
at convergence of the previous M − 1 PCs. This recursive procedure permits to 
improve the quality of the M-th estimated PC, and the overall signal reconstruction, 
while preserving the same quality of estimation on the first M − 1 PCs.

4.3 � Minimization of the majorizing functional

We solve the estimation problem (11) by an iterative two-step algorithm, where we 
alternate the estimation of s given c , and the estimation of c given s . This iterative 
scheme is based on the following results.

Proposition 2  (Estimation of s given c ) Given c ∈ ℝ
NDNT , there exists a unique esti-

mator ŝ ∈ ℝ
L , with ‖ŝ‖2 = 1 , which solves (11). Moreover,

(10)g(U�Us) = ‖(W ∗ X +WC ∗ UsΨ̃⊤) − UΨ̃⊤‖2
F
+ Tr[UPU⊤] + 𝜁

(11)
argmin

s∈ℝ� ,c∈ℝNDNT

‖Ys − s(Ψ̃c)⊤‖2
F
+ Tr[sc⊤Pcs⊤]

subject to ‖s‖2 = 1

(12)ŝ =
YsΨ̃c

‖YsΨ̃c‖2
.
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Proposition 3  (Estimation of c given s ) Given s ∈ ℝ
L , with ‖s‖2 = 1 , there exists a 

unique estimator ĉ ∈ ℝ
NDNT which solves (11). Moreover,

The proofs of Propositions  2 and  3 are reported in Appendix 2. Proposition 2 high-
lights that the problem of estimating the scoring vector ŝ is equivalent to that of find-
ing the scores, given the loadings, in multivariate PCA. Proposition 3 shows that the 
problem of estimating ĉ , given the scores, corresponds to the problem of estimating 
a smooth field, starting from noisy observations at the spatio-temporal data locations 
(pi, tj).

It is worth noting that the problem (11) is nonconvex in (s, f ) . However, Proposi-
tion 2 states the uniqueness of the minimizer ŝ , given c , while Proposition 3 guarantees 
the uniqueness of the minimizer ĉ , given s . This implies that the objective in Eq. (11) is 
non-decreasing under the update rule of the proposed algorithm.

Subsequent principal components of the complete data matrix Ys are computed by 
solving the estimation problem in Eq. (11) on the residual matrix Ys − sf⊤

nm
.

4.4 � Selection of the optimal smoothing parameters

The presence of the pair of smoothing parameters, �D and �T , in the penalty term, 
allows for a further degree of flexibility of the modeling, as we can select the optimal 
level of smoothing, in space and time, of the PC functions. The accurate selection of 
these smoothing parameters is crucial to achieve optimal results. Too high values of 
the smoothing parameters can lead to oversmoothed solutions, leaving meaningful pat-
terns in the residuals. In contrast, a too low value causes the estimated PCs to also fit 
the noise.

We select the optimal pair of smoothing parameters by K-fold cross validation. Spe-
cifically, let O be the set {(i, j, l) ∶ (i, j) ∈ Ol, l = 1,… , L} , i.e., the set of all index tri-
plets for which xlij is observed. We random permute the set O , and partition it in K 
non-overlapping folds. For each k = 1,… ,K , let Ok be the k-th fold, and define the 
L × nm binary matrix W−k as the matrix having, on the l-th row, wlij = 1 if and only if 
(i, j, l) ∈ O⧵Ok , and wlij = 0 otherwise. Therefore, we define the training set X−k as the 
matrix W−k ∗ X . Similarly, letting Wk be the L × nm binary matrix having, on the l-th 
row, wlij = 1 if and only if (i, j, l) ∈ O

k , and wlij = 0 otherwise, we define the valida-
tion set Xk as Wk ∗ X . Finally, for each pair of smoothing parameters, we calculate the 
scores matrix Sk = [sk

1
,… , sk

M
] and the loadings matrix Fk

nm
= [(f k

1
)nm,… , (f k

M
)nm] on 

the training set X−k , and we select the pair of parameters (�D, �T ) that minimizes the 
reconstruction error over the validation set Xk , averaged over the K folds:

As commented by Hastie et al. (2009) in more classical settings, a too high value 
of the number of folds K might lead to an approximately unbiased estimate for the 

ĉ = (Ψ̃⊤Ψ̃ + P)−1Ψ̃⊤Ys⊤s.

(13)CV(𝜆D, 𝜆T ) =
1

K

K�

k=1

�
1

�Ok�
‖Wk ∗ (Xk − Sk(Fk

nm
)⊤)‖2

F

�
.



567

1 3

Environmental and Ecological Statistics (2024) 31:555–582	

reconstruction error, having high variance. On the contrary, a too low value of K 
might lead to an estimated error with low variance, but high bias. To avoid these two 
opposite suboptimal solutions, in this work we set K = 10 , following the general 
recommendation in Hastie et al. (2009).

4.5 � Selection of the optimal number of principal components

Determining the appropriate number of principal components that characterize the 
data is a critical aspect of Principal Component Analysis, when used for dimension-
ality reduction. In this work, we select the number of principal components on the 
basis of the total explained variance, following a standard elbow approach. Specifi-
cally, we use the notion of adjusted total variance of the computed principal compo-
nents, proposed by Zou et al. (2006), and detailed in Lila et al. (2016) for the mod-
eling framework here considered.

5 � Simulation studies

In this section, we assess the performances of the proposed fPCA approach for 
incomplete functional data, compared to other methods for PCA in presence of 
missing observations, and under different missing data settings.

5.1 � Data generation

We consider the spatio-temporal domain D × T  , with D = [0, 1]2 , and T = [0, 1] . 
We consider 3 orthonormal cosinusoidal functions f1(p, t), f2(p, t), f3(p, t) on D × T  
of the form cos(��p1) cos(��p2) cos(��t) , for p = (p1, p2)

⊤ ∈ D and t ∈ T  , where 
(�, �, �) are set to (1, 1, 2), (1, 3, 2) and (4, 2, 3) for f1, f2 and f3 , respectively. Based 
on these functions, which shall play the role of the principal components, we gener-
ate L = 50 fields as

with scores si
l
∼ N(0, �2

i
) and 𝜎1 > 𝜎2 > 𝜎3 , setting �1 = 0.4 , �2 = 0.3 and �3 = 0.2 . 

The L functions are evaluated on a regular grid of 15 × 15 points over the spatial 
domain [0, 1]2 and at 15 equidistant time points over the temporal domain [0,  1]. 
Finally, data are obtained adding to each xl(pi, tj) uncorrelated Gaussian errors 
�l(pi, tj) with zero mean and standard deviation equal to 10% of the range of the data, 
obtaining the following noisy and discrete measurements of the L statistical units,

for l = 1,… , L , i = 1,… , n , and j = 1,… ,m . This leads to the L × nm complete 
data matrix X. To simulate the presence of missing observations, we consider 

xl(p, t) = s1
l
f1(p, t) + s2

l
f2(p, t) + s3

l
f3(p, t) l = 1,… ,L

xlij = s1
l
f1(pi, tj) + s2

l
f2(pi, tj) + s3

l
f3(pi, tj) + �l(pi, tj),
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two different missing data settings: an independent censoring in space and time, 
obtained as in the censoring scheme (a) of Arnone et al. (2022); a dependent censor-
ing in space and time, in which data might be missing for large regions of the spatio-
temporal domain, obtained as in the censoring scheme (d) of Arnone et al. (2022). 

t = 0.03 t = 0.31

−2

0

2

0.00 0.25 0.50 0.75 1.00
T

t = 0.58 t = 0.91

Fig. 3   Independent censoring in space and time. Left: visualization in space of one sampled signal, at 
4 time instants. Right: visualization in time of the same signal, at 5 spatial locations. Data are sparsely 
observed over the spatio-temporal domain

t = 0.03 t = 0.31

−2

0

2

4

0.00 0.25 0.50 0.75 1.00
T

t = 0.58 t = 0.91

Fig. 4   Dependent censoring in space and time. Left: visualization in space of one sampled signal, at 4 
time instants. Right: visualization in time of the same signal, at 5 spatial locations. Data display large 
gaps in space and time
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Figure 3 shows the profile of a sparsely observed space–time signal, resulting from 
an independent censoring in space and time. Figure 4 instead depicts the same data 
subject to dependent censoring in space and time.

Data generation is repeated 100 times, sampling different scores and errors, and 
simulating different missing data profiles. The proportion of missing observations is 
set to 50% for both the considered missing data scenarios. 

5.2 � Competing methods

We compare the following competing methods for the Principal Component 
Analysis of incomplete data.

•	 PPCA: the Probabilistic PCA approach  (Tipping and Bishop 1999), as imple-
mented by the R package pcaMethods  (Stacklies et al. 2007), followed by a 
multivariate PCA.

•	 DINEOF: the Data INterpolating Empirical Orthogonal Function (DINEOF) 
method  (Beckers and Rixen 2003), as implemented in the R package 
sinkr (Taylor 2022), followed by a multivariate PCA.

•	 IPPCA: the multivariate Iterative Penalized PCA approach  (Josse and Husson 
2012), provided by the R package missMDA (Josse and Husson 2016), followed 
by a multivariate PCA.

•	 fPCA: the proposed fPCA approach for incomplete functional data, implemented 
in the R package fdaPDE (Arnone et al. 2023). We use as nodes of the triangu-
lation the 15 × 15 grid of observations, and consider 15 equidistant nodes over 
the time domain [0,  1]. The optimal pair of smoothing parameters is selected 
using the K-fold cross validation approach detailed in Sect. 4.4.

5.3 � Performance measures

Let (f̂ nm)k and ŝk be the estimates of the k-th PC and corresponding scores. To com-
pare the quality of the estimates produced by the considered methods, we consider 
the Root Mean Square Error (RMSE) of the PCs, evaluated at the spatio-temporal 
data locations, i.e.,

where f̂kij denotes the evaluation of the estimated k-th PC (f̂ nm)k , at the spatio-tem-
poral location (pi, tj) . Moreover, we compute the RMSE on the scores as 
1√
L
‖sk − ŝk‖2.
We also evaluate the performances of the methods in reconstructing the original 

data. Let Ŝ = [ŝ1, ŝ2,… , ŝM] and F̂nm = [(f̂ nm)1, (f̂ nm)2,… , (f̂ nm)M] be the computed 
scores and loadings matrices, and define the reconstructed signal as X̂ = X̄ + ŜF̂⊤

nm
 . 

(14)RMSE((f̂ nm)k) =

√√√√
n∑

i=1

m∑

j=1

(fk(pi, tj) − f̂kij)
2

nm
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We define the signal reconstruction error as 1√
Lnm

‖X − X̂‖F , where X is the matrix of 
fully observed data.

Finally, we assess the accuracy of the methods in reconstructing the space 
spanned by the principal components, considering the principal angle between the 
space spanned by the true principal components and the estimated ones, computed 
with the command subspace of the R package pracma (Borchers 2022).

5.4 � Results

We here compare the results obtained by the various methods using M = 3 princi-
pal components. The data are indeed generated using 3 orthonormal functions, as 
detailed in Sect. 5.1. Moreover, all the considered methods correctly select M = 3 
components, following an elbow analysis of the total explained variance. Fig-
ure  5 reports some visualizations of the true first PC, and its estimates provided 
by PPCA, DINEOF, IPPCA and the proposed fPCA, in the most challenging sce-
nario of dependent censoring in space and time, as illustrated in Fig. 4. Figure 10 
in Appendix 3 reports instead the estimates provided by the various methods in the 
independent censoring scenario. The panels in the center and right column display 
the spatial profile of the estimated first PC, at a fixed time step. We observe that 
all methodologies are able to capture the overall spatial profile of the true principal 
component, with fPCA producing the smoothest results. The bottom-left panel on 
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Fig. 5   Dependent censoring in space and time, first PC. Top-left: spatial profile of the true first PC, at a 
fixed time step. Center and right panels: spatial profile of the estimated first PC, at the same time step. 
Bottom-left: temporal profile of the true and estimated first PC, at a fixed spatial location



571

1 3

Environmental and Ecological Statistics (2024) 31:555–582	

the same figure shows instead the temporal profile of the true and estimated first PC, 
at a fixed spatial location. We note that the proposed fPCA is able to correctly follow 
the smooth behavior of the true PC function, while PPCA, DINEOF, and IPPCA, 
which do not account for any temporal correlation in the data, produce an irregular 
and less accurate estimate.

Figures 6 and 7 show the boxplots of the considered performance measures, for the 
estimates obtained by the various competing methods, across the 100 simulation repeti-
tions. The boxplots show that the proposed fPCA performs equally or better than the 
competitors, along all performance measures. In particular, it produces the best results 
in terms of signal reconstruction as well as space reconstruction, both for sparsely 
observed data and for data presenting large gaps in space–time. In particular, in the 
simulation considered with sparsely observed data, the signal reconstruction error of 
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Fig. 6   Independent censoring in space and time: boxplots of the errors for Probabilistic PCA (PPCA), 
Data INterpolating Empirical Orthogonal Function (DINEOF), multivariate Iterative Penalized PCA 
(IPPCA) and the proposed functional PCA (fPCA). Top: RMSE on the three PCs. Center: RMSE on 
scores of the three PCs. Bottom: signal reconstruction error and space reconstruction error
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the proposed approach is, on average, 83% smaller than that of PPCA and 35% smaller 
than that of DINEOF and IPPCA. For the most challenging scenario of space–time 
dependent censoring, fPCA was able to reduce the average reconstruction error of 28% 
when compared to IPPCA and DINEOF, and to reduce the space reconstruction error 
of approximately 45% . We point out that we here reported the performances in the sig-
nal reconstruction over the whole space–time grid. However, the ordering of the meth-
ods is the same when considering the RMSE computed over the missing locations only.

6 � Application to Lake Victoria satellite data

Lakes possess a remarkable ability to stabilize short-term temperature fluctuations, 
while accentuating long-term variations. Notably, the Lake Surface Water Tem-
perature (LSWT) is internationally acknowledged as an Essential Climate Variable 
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(ECV), serving as a surrogate indicator for climate change and representing an 
important indicator of lake hydrology and biogeochemistry. Furthermore, ecologists 
are also interested in understanding the spatial and temporal patterns of LSWT, to 
gain deeper insights into the dynamics of the environmental system.

With the aim of establishing a comprehensive long-term record of lakes’ physical 
conditions, several satellite temperature data products have been developed. Among 
these, the ARC-Lake database  (MacCallum and Merchant 2011) offers an array 
of satellite-derived LSWT datasets, encompassing thousands of lakes worldwide. 
ARC-Lake is a project funded by the European Space Agency (ESA) and devel-
oped by the Earth Observation and Space Research Division at the University of 
Reading. The ESA’s Earth Observing missions, including the series of (Advanced) 
Along Track Scanning Radiometers, (A)ATSRs, hold the potential to serve as highly 
accurate sources of information concerning LSWTs on a systematic global scale. 
However, due to technical challenges and specific meteorological conditions, such 
as the presence of atmospheric clouds, ice covering, and snow, the recorded data 
contain a significant number of missing observations. Accurate LSWT reconstruc-
tions are crucial in many applied fields, such as climate monitoring and numerical 
weather prediction. Concerning the latter, for instance, the increasing spatial resolu-
tion of weather simulations implies that it is no longer possible to neglect the pres-
ence of inland water bodies, nor it suffices to provide coarse approximations of their 
behavior.

In this section, we apply the proposed fPCA model to investigate the main spa-
tio-temporal patterns in the surface temperature of Lake Victoria, starting from the 
noisy and incomplete observations shown in Fig. 1, considering its complex shore-
line and the spatio-temporal correlation in the data. Using the estimated smooth 
principal components, we can provide a reconstruction of the temperature field over 
the lake, which results in being more accurate than those provided by other signal 
reconstruction techniques.

6.1 � Lake surface temperature data

We consider the monthly averaged LSWT of Lake Victoria, in Central Africa. Spe-
cifically, each datum is an average of the surface temperature over a lake patch of 
0.05◦ latitude by 0.05◦ longitude, and considering a month of observations (day-
time). The resulting value is assigned to the center of the pixel, resulting in a grid of 
n = 2180 equidistant spatial locations over the lake surface. The observation period 
goes from January 1996 to December 2011, for a total of 202 observations per spa-
tial location (one per month). The considered data display a proportion of missing 
data equal to 45.2% , with non-trivial observation patterns, as highlighted in Fig. 1.

In order to prepare the spatio-temporal water surface temperature data for the 
fPCA model, we split the data in L = 16 statistical units, one per each calendar year 
of observations. Because, fixed a calendar year and a spatial location, we observe its 
temperature once per month, we have m = 12 time instants per statistical unit. This 
leads us to an L × nm data matrix X, in which each row corresponds to a calendar 
year. It should be pointed out that, in the given grid of observations, there are several 
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spatio-temporal locations (pi, tj) for which there is no observation available, for any 
statistical units (i.e., calendar year). These correspond to columns of the data matrix 
X with all missing entries. As discussed in Sect. 6.2, this setting is particularly chal-
lenging and invalidates some of the available state-of-the-art methods.

We point out that, due to the limited temporal range of the considered data, no 
long-term changes over the years are evident in this dataset. Consequently, we can 
treat each calendar year as an independent realization of the same spatio-temporal 
random field X(p, t) , so that the assumptions of the proposed fPCA are met. In pres-
ence of long-term trends, it is instead necessary to first detrend the data, to obtain 
signals exhibiting seasonal behaviors, where each recurrence of the yearly pattern 
can be regarded as an independent realization of the same spatio-temporal random 
field. The proposed fPCA can thus be applied to the detrended data.

6.2 � Data analysis

Before fPCA can be applied, the data matrix X must first be centered around its 
mean. If the noise in the measurements is low, the underlying spatio-temporal signal 
is smooth, and the data matrix X has no columns with all entries missing, then a 
simple point-wise mean is sufficient. However, in the presence of very noisy data, 
with strong local variability, and for a data matrix X having columns with all entries 
missing, it is convenient to compute a smooth mean. This avoids removing much of 
the data variability in the mean, and bypasses the problem raised by spatio-temporal 
locations (pi, tj) for which there is no observation available, for any statistical units. 
To compute a smooth estimate of the mean spatio-temporal temperature field, we 
use the smoothing method described in (Arnone et al. 2022) and implemented in the 
R package fdaPDE (Arnone et al. 2023). The estimate is obtained using the trian-
gulation shown in the left panel of Fig. 2, and forcing high values for the smoothing 
parameters. We then extract the first 8 PCs, from the centred data, using the pro-
posed fPCA approach.

To do so, we use again the triangulation shown in the left panel of Fig. 2, but now 
we select the optimal level of smoothness by K-fold cross validation, as detailed 
in Sect. 4.4, using K = 10 . We then select M = 3 PCs, since the plot of explained 
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variance, given in the left panel of Fig. 8, shows a clear elbow in correspondence of 
M = 3 , with the first 3 PCs accounting for 60% of the total variation in the data, and 
the remaining PCs contributing less than 6% each. Figure 9 contrasts the observed 
LWST data, and the representation of LWST data on the first 3 estimated PCs. The 
top and central panels contrast the observed data (left) and the reconstructions on 

Observed data Representation on first 3 PCs

Aug 1996 Aug 1996

Mar 2011 Mar 2011

297°

298°

299°

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Representation on first 3 PCs Observed data

Fig. 9   Top left: observed LWST in August 1996. Top right: representation on the estimated first 3 PCs of 
LWST in August 1996. Center: same as top panels, for March 2011. Bottom: fPCA representation on the 
estimated first 3 PCs of LWST at the spatial location 3 displayed in the top-left map of Fig. 1
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the first three estimated PCs (right), respectively, in August 1996 and March 2011. 
The bottom panel contrasts instead the observed temporal profile (in gray) and its 
reconstruction based on the first 3 estimated PCs, at the spatial location 3 displayed 
in the top left map of Fig. 1. The accuracy in the reconstruction, using only 3 PCs, is 
remarkable.

It should be pointed out that, among the state-of-the-art competitors presented 
in Sect.  5.2, only DINEOF is applicable for the considered data. Indeed, the R 
packages pcaMethods and missMDA, which implements respectively PPCA 
and IPPCA, do not consent to analyze data matrices X having at least one column 
without any observed entry. Subsequently, we contrast the proposed functional 
Principal Component Analysis (fPCA) with DINEOF, executed through the R 
package sinkr (Taylor 2022). It is noteworthy that sinkr autonomously deter-
mines the most suitable number of Empirical Orthogonal Functions. Through a 
K-fold cross-validation with K = 10 folds, the average signal reconstruction error 
for DINEOF is 0.38, whereas for the proposed fPCA, is 0.29, reflecting a notable 
reduction in error by an average of 25%.

7 � Conclusions

We have presented an innovative method of functional Principal Component 
Analysis of incomplete space–time data. The functional nature of the proposed 
method makes it able to borrow information from measurements observed at 
nearby spatio-temporal locations. This permits an accurate identification of the 
main variability patterns, in space and time, also when data are sparsely observed 
or in the  presence of large spatio-temporal gaps in the signals. The simula-
tion studies in Sect.  5 demonstrate the comparative advantages of the proposed 
method over state-of-the-art PCA techniques for data with missing values, in both 
missing data scenarios. In particular, these studies highlight the superiority of the 
proposed fPCA in terms of signal reconstruction and space reconstruction. The 
ability to accurately reconstruct signals is a highly valuable feature in environ-
mental applications, where signals are often affected by large observational gaps 
in space and time, as illustrated by the application to the study of LSWT of Lake 
Victoria.

Appendix 1: Majorization of the estimation functional

The proof of Proposition 1 is based on the following lemma.

Lemma 1  Let S an n × n real symmetric matrix and �S its maximum eigenvalue, then

Proof  the thesis follows directly from the fact that �S is the maximum of the Ray-
leigh quotient, i.e. e⊤Se ≤ 𝜆Se

⊤e , for any e ∈ ℝ
n (see, e.g., Horn and Johnson 2013). 

Applying the trace operator on both sides of the inequality yields the desired result. 	
� ◻

(A1)Tr[e⊤Se] ≤ 𝜆STr[e
⊤e] ∀e ∈ ℝ

n.
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Proof of Proposition 1  We follow similar arguments as those described in  (Heiser 
1987; Kiers 1997). In particular, we provide a majorization of the functional 
h(U) = ‖W ∗ (X − UΨ⊤)‖2

F
+ Tr[UPU⊤] by majorizing the data loss term 

h̃(U) = ‖W ∗ (X − UΨ⊤)‖2
F
 . In the following, for any n × m matrix A, let vec(A) 

be the nm × 1 vector obtained by stacking the columns of A on top of one another. 
Define DW = Diag(vec(W)) , and rewrite the Hadamard product as a matrix product 
to obtain

The last equality is obtained by recalling that, for any matrix A, Tr[A⊤A] = ‖A‖2
F
 . 

Let Us be the estimate produced by the MM algorithm at the s-th iteration, and set 
e = vec((U − Us)Ψ⊤) . We can sum and subtract UsΨ⊤ to each operand of the vec(⋅) 
operator in Equation (A2) to obtain

Using the bound in Eq. (A1) with S = D2
W

 , we can provide a majorization for the 
functional in Eq. (A3). In particular, because D2

W
 is binary and diagonal, its maxi-

mum eigenvalue �D2
W
 equals 1, so that Tr[e⊤D2

W
e] ≤ Tr[e⊤e] . Therefore

Set g(U|Us) = h̃(Us) + Tr[e⊤e] − 2Tr[vec(X − UsΨ⊤)⊤D2
W
e] + Tr[UPU]⊤ and 

observe that g(U|Us) is a majorization for h(U) at Us . Indeed g(Us|Us) = h(Us) , as 
in this case e = 0 . Moreover, for the previous argument, g(U|Us) ≥ h(U).

Finally, let z be the vector D2
W
vec(X − UsΨ⊤) , then

Setting 𝜁 = h̃(Us) − ‖W ∗ (X − UsΨ⊤)‖2
F
 , and observing that this quantity is not 

a function of U, we obtain the thesis. 	�  ◻

Appendix 2: Minimization of the majorizing functional

Proof of Proposition 2  We can rewrite the objective function in Equation (11) in vec-
torial form as ‖Ys − s(Ψ̃c)⊤‖2

F
+ s⊤s(c⊤Pc) . Deriving this functional with respect to 

s we get

(A2)
‖W ∗ (X − UΨ⊤)‖2

F
= ‖DW (vec(X) − vec(UΨ⊤))‖2

2

= Tr[vec(X − UΨ⊤)⊤D2
W
vec(X − UΨ⊤)]

(A3)

Tr[vec(X − UΨ⊤)⊤D2
W
vec(X − UΨ⊤)]

= Tr[vec(X − (Us + U − Us)Ψ⊤)⊤D2
W
vec(X − (Us + U − Us)Ψ⊤)]

= h̃(Us) + Tr[e⊤D2
W
e] − 2Tr[vec(X − UsΨ⊤)⊤D2

W
e].

h(U) ≤ h̃(Us) + Tr[e⊤e] − 2Tr[vec(X − UsΨ⊤)⊤D2
W
e] + Tr[UPU⊤].

h̃(Us) + Tr[e⊤e] − 2Tr[z⊤e] = h̃(Us) − ‖z‖2
F
+ Tr[e⊤e − 2z⊤e + z

⊤
z]

= h̃(Us) − ‖z‖2
2
+ Tr[(z − e)⊤(z − e)] = h̃(Us) − ‖z‖2

F
+ ‖z − e‖2

2

= h̃(Us) − ‖W ∗ (X − UsΨ⊤)‖2
F
+ ‖(W ∗ X +WC ∗ UsΨ⊤) − UΨ⊤‖2

F
.
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We can then set to zero the last term in Eq. (B1), thus obtaining

Using the last equality, we obtain the following expression for the estimator ŝ

On the other hand, for fixed c , the objective in Eq.  (11) is convex in s as 
𝜕2

𝜕s2
(‖Ys − s(Ψ̃c)⊤‖2

F
+ s⊤s(c⊤Pc)) = ‖Ψ̃c‖2

2
+ c⊤Pc ≥ 0 . We conclude that the 

expression in Eq.  (B2), for fixed c , is the unique minimizer of the functional in 
Eq. (11). Finally, normalizing the expression in (B2) we recover the expression for ŝ 
in Eq. (12). 	�  ◻

The proof of Proposition 3 is based on the following lemma.

Lemma 2  Minimizing  (11) with respect to c ∈ ℝ
NM , for fixed s ∈ ℝ

L such that 
‖s‖2 = 1 , is equivalent to minimize the following functional

Proof  Consider the objective function in Eq.  (11), and develop the term 
‖Ys − s(Ψ̃c)⊤‖2

F
 to obtain ‖Ys‖2

F
+ ‖s‖2

2
c⊤(Ψ̃⊤Ψ̃)c − 2(Ψ̃c)⊤Ys⊤s . Thus, we can 

rewrite Eq. (4) as

Since ‖s‖2 = 1 and ‖Ys‖2
F
 do not depend on f, we get the thesis. 	�  ◻

Proof of Proposition (3)  Let z = Ys⊤s . By summing and subtracting z⊤z , we can 
rewrite the functional in Eq. (B3) as

Because z⊤z does not depend on c , minimizing (B4) with respect to c , for fixed s , is 
equivalent to minimize ‖z − Ψ̃c‖2

2
+ c⊤Pc . On the other hand, as detailed in  (Ber-

nardi et al. 2017), estimating c as the minimizer of this functional corresponds to fit 
a smooth spatio-temporal field to the vector of noisy observations z , using the differ-
ential penalty in Eq. (3). Moreover, the solution f̂  to this estimation problem is equal 
to (Ψ̃⊤Ψ̃ + P)−1Ψ̃⊤z . Finally, thanks to Proposition 2.1 in Arnone (2018), we have 
the existence and uniqueness of the estimator. 	�  ◻

(B1)
𝜕

𝜕s

�
‖Ys − s(Ψ̃c)⊤‖2

F
+ s⊤s(c⊤Pc)

�
= −2(Ys − s(Ψ̃c)⊤)Ψ̃c + 2s(c⊤Pc).

− 2(Ys − s(Ψ̃c)⊤)Ψ̃c + 2s(c⊤Pc) = 0 ⟺ YsΨ̃c − sc⊤Ψ̃⊤Ψ̃c = s(c⊤Pc)

⟺ s(‖Ψ̃c‖2
2
+ c⊤Pc) = YsΨ̃c.

(B2)ŝ =
YsΨ̃c

‖Ψ̃c‖2
2
+ c⊤Pc

.

(B3)c⊤(Ψ̃⊤Ψ̃)c − 2(Ψ̃c)⊤Ys⊤s + c⊤Pc.

‖Ys‖2
F
+ ‖s‖2

2
c⊤(Ψ̃⊤Ψ̃)c − 2(Ψ̃c)⊤Ys⊤s + ‖s‖2

2
(c⊤Pc).

(B4)‖z − Ψ̃c‖2
2
+ c⊤Pc − z⊤z.
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Appendix 3: Independent censoring simulation

Here we report the plots of the first PC function as estimated by the proposed fPCA 
and the competing methods discussed in Sect. 5.2, under the independent space–time 
censoring illustrated in Fig.  3. The panels in the center and right column display 
the spatial profile of the estimated PC, at a fixed time step. In analogy to what dis-
cussed in Sect. 5.4 of the paper, we observe that all multivariate methodologies are 
not able to produce regular estimates, even when data are sparsely observed over the 
spatio-temporal domain. The proposed fPCA approach, instead, is able to estimate a 
smooth spatial field, thanks to the regularisation induced by the differential penalty. 
The bottom-left panel of the same figure reports the estimated temporal profile of 
the PC function at a fixed spatial locations and for all the considered methods. We 
point out that only fPCA, which properly regularises the estimated field in time, is 
able to capture the smooth behavior of the true PC, while other methodologies pro-
duce less accurate and regular estimates (Fig. 10).
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Fig. 10   Independent censoring in space and time, first PC. Top-left: spatial profile of the true first PC, at 
a fixed time step. Center and right panels: spatial profile of the estimated first PC, at the same time step. 
Bottom-left: temporal profile of the true and estimated first PC, at a fixed spatial location. Plots are pro-
duced using the same spatial location and time instant considered for producing Fig. 5
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