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In the last twenty years modulation spaces, introduced by 
H. G. Feichtinger in 1983, have been successfully addressed 
to the study of signal analysis, PDE’s, pseudodifferential 
operators, quantum mechanics, by hundreds of contributions. 
In 2011 M. de Gosson showed that the time-frequency 
representation Short-time Fourier Transform (STFT), which 
is the tool to define modulation spaces, can be replaced by 
the Wigner distribution. This idea was further generalized to 
τ -Wigner representations in [11].
In this paper time-frequency representations are viewed as 
images of symplectic matrices via metaplectic operators. This 
new perspective highlights that the protagonists of time-
frequency analysis are metaplectic operators and symplectic 
matrices A ∈ Sp(2d, R). We find conditions on A for 
which the related symplectic time-frequency representation 
WA can replace the STFT and give equivalent norms for 
weighted modulation spaces. In particular, we study the case 
of covariant matrices A, i.e., their corresponding WA are 
members of the Cohen class.
Finally, we show that symplectic time-frequency representa-
tions WA can be efficiently employed in the study of 
Schrödinger equations. In fact, modulation spaces and WA
representations are the frame for a new definition of wave 
front set, providing a sharp result for propagation of micro-
singularities in the case of the quadratic Hamiltonians. This 
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new approach may have further applications in quantum 
mechanics and PDE’s.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

Modulation spaces were originally introduced in 1983 by H. G. Feichtinger in the 
pioneering work [13]. During the last twenty years hundreds of contributions have been 
written on the topic, showing that they are appropriate spaces for a variety of fields, such 
as signal analysis, PDE’s, pseudodifferential operators, quantum mechanics (a short non-
exhaustive list of books and papers is [3,4,9,10,17,19,24–27,30,32]). The key-tool for their 
definition is given by the time-frequency representation short-time Fourier transform 
(STFT) of tempered distributions f ∈ S ′(Rd) with respect to the Schwartz window 
function g ∈ S(Rd), defined as

Vgf(x, ξ) =
∫
Rd

f(y) g(y − x) e−2πiyξ dy, (x, ξ) ∈ R2d. (1)

Given indices 0 < p, q ≤ ∞, the modulation space Mp,q(Rd) consists of all tempered 
distributions f ∈ S ′(Rd) such that

Vgf ∈ Lp,q(R2d)

(mixed-norm space) with ‖f‖Mp,q � ‖Vgf‖Lp,q(R2d). For p = q the notation Mp,p(Rd) is 
shortened to Mp(Rd) and we write f ∈ Mp

vs(R
d) if Vgf ∈ Lp

vs(R
2d) with the weight 

vs(x, ξ) := (1 + |(x, ξ)|2)s/2. For the main properties of these spaces, including the 
weighted versions, we refer to Section 2 below.

In the realm of time-frequency representations another protagonist is given by the 
(cross-)Wigner distribution, introduced by Wigner in 1932 [31] in Quantum Mechanics 
and, later, applied to many different environments such as PDE’s and signal analysis. 
Namely, given a window function g ∈ S(Rd), a tempered distribution f , the (cross-)
Wigner distribution W (f, g) is given by

W (f, g)(x, ξ) =
∫
Rd

f(x + t

2)g(x− t

2)e−2πitξ dt, (x, ξ) ∈ R2d. (2)

If f = g we simply write Wf = W (f, f) and call Wf the Wigner distribution of f .
In 2011 M. de Gosson [17] proved that in the definition of modulation spaces the 

STFT could be replaced by the cross-Wigner distribution. Hence
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‖f‖Mp,q � ‖W (f, g)‖Lp,q(R2d). (3)

In our previous work [11] this idea was further generalized to τ -Wigner representations 
Wτ (f, g), with f, g as above,

Wτ (f, g)(x, ξ) =
∫
Rd

e−2πitξf(x + τt)g(x− (1 − τ)t)dt, τ ∈ R (4)

(for f = g we obtain the τ -Wigner distribution Wτf := Wτ (f, f); for τ = 1/2 we 
recapture the Wigner case). In fact, we showed that

‖f‖Mp,q � ‖Wτ (f, g)‖Lp,q(R2d), (5)

for τ ∈ R \ {0, 1}, whereas for τ = 0 or τ = 1, so-called Rihaczek distributions, 
the previous characterization does not hold. The key observation was to interpret the 
time-frequency representations above as images of symplectic matrices by metaplectic 
operators (defined as in the textbooks [14,17]). In fact, for any of them we can find a 
symplectic matrix A ∈ Sp(2d, R) such that the metaplectic operator μ(A) applied to 
(f ⊗ ḡ)(x, ξ) := f(x)ḡ(ξ) coincides with it (for a suitable choice of the phase factor in 
the definition of μ(A)). For example, consider the symplectic matrix A = Aτ , with

Aτ =

⎛⎜⎜⎜⎝
(1 − τ)Id×d τId×d 0d×d 0d×d

0d×d 0d×d τId×d −(1 − τ)Id×d

0d×d 0d×d Id×d Id×d

−Id×d Id×d 0d×d 0d×d

⎞⎟⎟⎟⎠ ∈ Sp(2d,R), (6)

then

μ(Aτ )(f ⊗ ḡ) = Wτ (f, g), τ ∈ R.

Similarly, for A = AST, where

AST =

⎛⎜⎜⎜⎝
Id×d −Id×d 0d×d 0d×d

0d×d 0d×d Id×d Id×d

0d×d 0d×d 0d×d −Id×d

−Id×d 0d×d 0d×d 0d×d

⎞⎟⎟⎟⎠ , (7)

we recapture the STFT:

μ(AST)(f ⊗ ḡ) = Vgf.

This suggests a change of perspective: time-frequency representations can be viewed 
as images of metaplectic operators. Hence symplectic matrices and metaplectic operators 
may become the real protagonists in the framework of time-frequency analysis.
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In this paper we show that symplectic matrices A ∈ Sp(2d, R) are successfully 
employed to both recapture and find new time-frequency representations that we call
A-Wigner distributions:

WA(f, g) = μ(A)(f ⊗ ḡ).

For f = g we simply write WAf := WA(f, f). The definition of the metaplectic operator 
μ(A) depends on the choice of a multiplicative phase factor, which we omit for simplicity.

The properties of μ(A) are similar to those of the Wigner distribution, concerning 
in particular continuity on L2(Rd) (Proposition 2.3), fundamental identity for WAf̂

(Proposition 2.7) and Moyal identity (Proposition 2.9). Moreover, by using boundedness 
results for metaplectic operators on modulation spaces (Theorem 2.13, Corollary 2.14) 
we may easily deduce the estimates

‖WA(f, g)‖Mp
vs

� ‖f‖Mp‖g‖Mp
vs

+ ‖g‖Mp‖f‖Mp
vs
, (8)

and under the assumption 0 < p ≤ 2 (Theorem 2.16)

f ∈ Mp
vs(R

d) ⇔ WAf ∈ Mp
vs(R

2d), (9)

which extends several results in literature, see [10] and reference therein.
More challenging issue is to discuss the equivalence of norms for modulation spaces, 

that is, for a fixed non-zero window function g ∈ S(Rd),

‖f‖Mp,q � ‖WA(f, g)‖Lp,q , 0 < p, q ≤ ∞, (10)

in particular for p = q, allowing the presence of weights vs:

‖f‖Mp
vs

� ‖WA(f, g)‖Lp
vs
, 0 < p ≤ ∞. (11)

Namely, we would like to extend in our context the characterizations of modulation 
spaces (3), (5).

In this perspective it is clear that we have to limit attention to subclasses of Sp(2d, R). 
As a first attempt, it is natural to consider the covariant matrices A:

WA(π(z)f, π(z)g) = TzWA(f, g), f, g ∈ S(Rd), z ∈ R2d;

here for z = (z1, z2), the operator π(z) = π(z1, z2) = Mz2Tz1 is the time-frequency shift, 
composition of the modulation Mz2 and translation Tz1 defined by

Mz2f(t) = e2πiz2tf(t), Tz1f(t) = f(z1 − t), t, z1, z2 ∈ Rd.

The covariance property of A is equivalent to being a member of the Cohen class for 
the related A-Wigner distribution (cf. [5,6,10,19]). In fact, we show (see Theorem 2.11):
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WA(f, g) = W (f, g) ∗ σA, f, g ∈ S(Rd),

where

σA = F−1(e−πiζ·BAζ) ∈ S ′(R2d), (12)

and BA is a symmetric 2d ×2d matrix that can be computed explicitly from the covariant 
matrix A, cf. (60) in the sequel. The Cohen class will play a role for applications to 
Schrödinger equations; though, it presents two drawbacks when looking at (10), (11). 
On one hand, it is too restrictive, since A = AST in (7) is not covariant, that is the 
short-time Fourier transform is excluded. On the other hand, the matrix A = Aτ in (6)
is covariant for all τ ∈ R, in particular for the forbidden Rihaczek cases τ = 0, 1 for 
which (10), (11) fail. This suggests the introduction of the new class of shift-invertible
matrices A ∈ Sp(2d, R) with related distributions WA satisfying (Definition 2.19)

|WA(π(w)f, g)| = |TEA(w)WA(f, g)|, f, g ∈ L2(Rd), w ∈ R2d, (13)

for some EA ∈ GL(2d, R), with

TEA(w)WA(f, g)(z) = WA(f, g)(z − EAw), w, z ∈ R2d. (14)

We prove that the shift-invertible distribution WA satisfies (11) and

f ∈ Mp
vs(R

d) ⇔ WAf ∈ Lp
vs(R

2d). (15)

This provides a general characterization of the modulation spaces Mp
vs , see Theorem 2.22

and Corollary 2.23 for precise statements and bounds on the values of p. Note that 
the matrix A = AST in (7) is shift-invertible, recapturing in this way the standard 
definition of modulation spaces. As far as the τ -Wigner matrix A = Aτ concerns, it is 
shift-invertible for τ ∈ R \ {0, 1}. This can be read as an explanation of the anomaly of 
the Rihaczek distributions.

The block decomposition of the shift-invertible matrix A and the corresponding matrix 
EA in (13), (14) can be explicitly computed, cf. (73) below, and we may characterize 
the relevant subclasses of the distributions WA which are simultaneously covariant and 
shift-invertible (Remark 2.20).

Finally, we address to the more precise equivalence (10) concerning the case of different 
indices p, q. We first reconsider the τ -Wigner case, τ ∈ R \{0, 1}, and extend, with respect 
to [11], the validity of (5) to 0 < p, q < ∞. This example suggests a deeper study of the 
matrices A ∈ Sp(2d, R) such that

μ(A) = F2TL (16)

where F2 is the partial Fourier transform with respect to the second variable and TL

is the L2-normalized change of variables defined by a d × d invertible matrix L, cf. 
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[12]. We characterize the subclass of all the A ∈ Sp(2d, R) which are covariant and 
shift-invertible (see Proposition 2.25 and subsequent remark). Namely, for covariant shift-
invertible matrices A of the form (16) we prove

f ∈ Mp,q(Rd) ⇔ WA(f, g) ∈ Lp,q(R2d) (17)

with equivalence of norms valid also in the weighted cases for 0 < p, q ≤ ∞ (Theo-
rem 2.28).

A further analysis concerns the covariant case (Wigner perturbations, according to 
the terminology of [12]). If A is covariant of the form (16) then

WA(f, g) = W (f, g) ∗ σA f, g ∈ S(Rd), (18)

where σA has now the particular form (see Corollary 3.1). We perform a detailed study 
of such convolution kernel (Lemma 3.1, Proposition 3.3). In particular, we deduce

Wf ∈ Mp,q
(
R2d) ⇔ WAf ∈ Mp,q

(
R2d) , 1 ≤ p, q ≤ ∞

(see Theorem 3.4 for weighted versions of the above equivalence).
Besides providing a characterization for modulation spaces, the introduction of the A-

Wigner distributions is strongly motivated by the applications to Schrödinger equations. 
Let us first recall some classical results for the case of the quadratic Hamiltonians.

Namely, consider ⎧⎨⎩i
∂u

∂t
+ Opw(H)u = 0

u(0, x) = u0(x),
(19)

where Opw(H) is the Weyl quantization of a real quadratic polynomial in R2d:

H(x, ξ) = 1
2xAx + ξBx + 1

2ξCξ (20)

with A, C symmetric and B invertible. We consider the Hamiltonian system{
2πẋ = ∇ξH = Bx + Cξ, x(0) = y

2πξ̇ = −∇xH = −Ax−BT ξ, ξ(0) = η,
(21)

with Hamiltonian matrix

D :=
(

B C
−A −BT

)
∈ sp(d,R)

(sp(d, R) is the symplectic algebra). We have, for t ∈ R, χt = etD ∈ Sp(d, R) and a 
solution to (21) is given by (x, ξ) = χt(y, η).
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The problem (19) is solved by the Schrödinger propagator

u(t, x) = eitOpw(H)u0(x) = μ(χt)u0

for a continuous choice of the phase factor in the definition of μ(χt). If u0 ∈ L2(Rd) then 
u(t, x) ∈ L2(Rd), for every t ∈ R, see for example the textbooks [14,17], whereas in the 
Lebesgue spaces Lp(Rd), p �= 2, the solution u(t, x) does not keep the order of regularity 
of the initial datum u0.

Modulation spaces reveal here their effectiveness, in fact from Theorem 2.13 (see also 
[19] and [10]) we have that u0 ∈ Mp

vs(R
d) implies u(t, ·) ∈ Mp

vs(R
d), for every 0 < p < ∞, 

s ≥ 0.
Returning now to the subject of the present paper, let us recall from the original work 

of Wigner [31] (see also [23]):
The Wigner transform with respect to the space variable x of the solution u(t, x) of 

(19) is given by

Wu(t, z) = Wu0(χ−1
t z), z = (x, ξ) ∈ R2d, t ∈ R. (22)

It is natural to replace the Wigner transform in (22) with more general distributions by 
keeping the action of the classical Hamiltonian flow χt. A general result is easily obtained 
in the framework of the Cohen classes Qσf = Wf ∗ σ, for any σ ∈ S ′(R2d). Namely, 
assuming u ∈ S(Rd), we have (Theorem 4.2)

Qσ(u(t, ·))(z) = Qσt
(u0)(χ−1

t z), z = (x, ξ) ∈ R2d, t ∈ R, (23)

where σt(z) = σ(χtz). Note that in (23) the Cohen class Qσt
in the right-hand side 

depends on the time t. We may as well keep Qσ(u0) for a fixed σ in the right, and 
transfer the dependence on t to the left. The classical Wigner case in (22) corresponds 
to the choice σ = δ for which σt(z) = δ(χtz) = δ, for every z ∈ R2d.

Willing to give a precise functional setting to (23) in the framework of modulation 
spaces, we limit attention to Cohen distributions generated by covariant matrices A ∈
Sp(2d, R), Qσu = WAu = Wu ∗σA, with kernel σA given by (12). The identity (23) then 
reads (Proposition 4.4):

Qσ(u(t, ·))(z) = WA(u(t, ·))(z) = WAt
(u0)(χ−1

t z), (24)

where At ∈ Sp(2d, R) is covariant for all t ∈ R, with Cohen kernel

σAt
(z) = F−1 (e−πiζ·BAtζ

)
(z),

BAt
= (χ−1

t )TBAχ
−1
t ,

BA as in (12), cf. (60). Taking then u0 ∈ Mp
vs(R

d), 1 ≤ p ≤ 2, s ≥ 0, we have from (9), 
cf. Corollary 2.14:
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WA(u(t, ·)) ∈ Mp
vs(R

2d), WAt
u0 ∈ Mp

vs(R
2d), t ∈ R, (25)

and each one of these conditions is equivalent to the assumption u0 ∈ Mp
vs(R

d). Willing 
to have instead

WA(u(t, ·)) ∈ Lp
vs(R

2d), WAt
u0 ∈ Lp

vs(R
2d), t ∈ R, (26)

we are led to assume that the matrix A is also shift-invertible. In Proposition 4.5 we shall 
prove that A is shift-invertible if and only if At is shift-invertible, for any fixed t �= 0. 
Hence in this case the conditions (26) are equivalent to u0 ∈ Mp

vs(R
d). As an example, 

we shall test these results on the free particle.
The property of regularity (26) is the starting point for a proceeding in localization 

similar to that in [11]. Namely, cf. Definition 4.6, for a covariant and shift-invertible A
we define for f ∈ L2(Rd) the generalized Wigner wave front set WFp,s

A (f), 1 ≤ p ≤ 2, 
s ≥ 0, by setting z0 = (x0, ξ0) /∈ WFp,s

A (f), z0 �= 0, if there exists a conic neighborhood
Γz0 ⊂ R2d such that

∫
Γz0

〈z〉ps|WAf(z)|p dz < ∞. (27)

We have from (15) that WFp,s
A (f) = ∅ if and only if f ∈ Mp

vs(R
d), cf. Proposition 4.7. 

For the standard Wigner transform the notation WFp,s
A1/2

(f), cf. (6), will be shortened to 
WFp,s(f). From (24) and (26) we deduce the following propagation of micro-singularities 
for the solutions of (19), cf. Theorem 4.8:

WFp,s
A (u(t, ·)) = χt(WFp,s

At
(u0)), (28)

in particular for the standard Wigner transform

WFp,s(u(t, ·)) = χt(WFp,s(u0)). (29)

We address to the forthcoming second part of [11] for a detailed study of WFp,s
A with 

applications to Fourier integral operators and Schrödinger equations of more general 
type. We limit here to the following warning and remarks. First, we cannot extend to 
the Wigner wave front set all the properties of the classical wave front set of Hörmander, 
cf. [21] or its global version [20]. In fact, the inclusion of the wave front set of the solutions 
in the characteristic manifold, for a homogeneous linear partial differential equation, is 
false for the Wigner wave front. This depends on the existence of the ghost frequencies, 
see the final comments in [11]. On the other hand, the whole Wigner wave front, including 
its ghost part, is exactly preserved by the Schrödinger propagator, as clarified by (28)
and (29).
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2. Time-frequency analysis tools

Notations. We set t2 = t · t, t ∈ Rd, and xy = x · y is the scalar product on Rd. 
The space S(Rd) denotes the Schwartz class whereas S ′(Rd) the space of temperate 
distributions. The brackets 〈f, g〉 denote the extension to S ′(Rd) × S(Rd) of the inner 
product 〈f, g〉 =

∫
f(t)g(t)dt on L2(Rd) (conjugate-linear in the second component). The 

reflection operator I is given by If(t) = f(−t). The Fourier transform is normalized to 
be

f̂(ξ) = Ff(ξ) =
∫
Rd

f(t)e−2πitξdt.

The symplectic matrix

J =
(

0d×d Id×d

−Id×d 0d×d

)
, (30)

(here Id, 0d are the d × d identity matrix and null matrix, respectively) enters the 
definition of the standard symplectic form σ(z, z′) = Jz · z′. They allow to introduce the 
symplectic Fourier transform:

Fσa(z) =
∫

R2d

e−2πiσ(z,z′)a(z′) dz′. (31)

The Fourier transform and symplectic Fourier transform are related by

Fσa(z) = Fa(Jz) = F(a ◦ J)(z), a ∈ S(R2d). (32)

For the study of perturbations of the Wigner distribution we will use the Ambiguity 
Function Amb (f) defined as

Amb (f) (x, ξ) = Fσ(Wf)(x, ξ) =
∫
Rd

f
(
y + x

2

)
f
(
y − x

2

)
e−2πiyξdy. (33)

We denote by GL(2d, R) the linear group of 2d ×2d invertible matrices; for a complex-
valued function F on R2d and L ∈ GL(2d, R) we define

TLF (x, y) =
√

|detL|F (L(x, y)), (x, y) ∈ R2d, (34)

with the convention

L(x, y) = L

(
x

y

)
, (x, y) ∈ R2d.
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For 1 ≤ p ≤ ∞, the spaces 
∞mn

p
m′n′ are the Banach spaces of sequences {am′,n′,m,n}

such that

‖am′,n′,m,n‖�∞mn�
p

m′n′ := sup
m,n∈Zd

⎛⎝ ∑
m′,n′∈Zd

|am′,n′,m,n|p
⎞⎠1/p

< ∞

(with obvious changes when p = ∞).

2.1. Modulation spaces

In this paper v is a continuous, positive, submultiplicative weight function on Rd, 
i.e., v(z1 + z2) ≤ v(z1)v(z2), for all z1, z2 ∈ Rd. A weight function m is in Mv(Rd) if 
m is a positive, continuous weight function on Rd and it is v-moderate: m(z1 + z2) ≤
Cv(z1)m(z2) for all z1, z2 ∈ Rd.

In the following we will work with weights on R2d of the type

vs(z) = 〈z〉s = (1 + |z|2)s/2, z ∈ R2d, (35)

for s < 0, vs is v|s|-moderate.
For weight functions m1, m2 on Rd, we will use the notation

(m1 ⊗m2)(x, ξ) = m1(x)m2(ξ), x, ξ ∈ Rd,

and similarly for weights m1, m2 on R2d. In particular, we shall use the weight functions 
on R4d:

(vs ⊗ 1)(z, ζ) = (1 + |z|2)s/2, (1 ⊗ vs)(z, ζ) = (1 + |ζ|2)s/2, z, ζ ∈ R2d. (36)

The modulation spaces, introduced by Feichtinger in [13] and extended to the quasi-
Banach setting Galperin and Samarah [16], are now available in many textbooks, see 
e.g. [3,10,19].

Fix a non-zero window g in the Schwartz class S(Rd). Consider a weight function 
m ∈ Mv and indices 0 < p, q ≤ ∞. The modulation space Mp,q

m (Rd) is the subspace of 
tempered distributions f ∈ S ′(Rd) with

‖f‖Mp,q
m

= ‖Vgf‖Lp,q
m

=

⎛⎜⎝∫
Rd

⎛⎝∫
Rd

|Vgf(x, ξ)|pm(x, ξ)pdx

⎞⎠
q
p

dξ

⎞⎟⎠
1
q

< ∞ (37)

(natural changes with p = ∞ or q = ∞). We write Mp
m(Rd) for Mp,p

m (Rd) and Mp,q(Rd)
if m ≡ 1.
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For 1 ≤ p, q ≤ ∞, the space Mp,q(Rd) is a Banach space whose definition is indepen-
dent of the choice of the window g: different non-zero window functions in S(Rd) yield 
equivalent norms. The window class can be extended to the modulation space M1

v (Rd)
(Feichtinger algebra). The modulation space M∞,1(Rd) coincides with the Sjöstrand’s 
class in [26].

We recall their inclusion properties:

S(Rd) ⊆ Mp1,q1
m (Rd) ⊆ Mp2,q2

m (Rd) ⊆ S ′(Rd), p1 ≤ p2, q1 ≤ q2. (38)

Denoting by Mp,q
m (Rd) the closure of S(Rd) in the Mp,q

m -norm, we observe

Mp,q
m (Rd) ⊆ Mp,q

m (Rd), 0 < p, q ≤ ∞,

and

Mp,q
m (Rd) = Mp,q

m (Rd), 0 < p, q < ∞.

For m, w ∈ Mv(Rd), the Wiener amalgam spaces W (FLp
m, Lq

w)(Rd) can be viewed 
as images under Fourier transform of the modulation spaces. Namely, for p, q ∈ (0, ∞], 
f ∈ S ′(Rd) belongs to W (FLp

m, Lq
w)(Rd) if

‖f‖W (FLp
m,Lq

w)(Rd) :=

⎛⎜⎝∫
Rd

⎛⎝∫
Rd

|Vgf(x, ξ)|p m(ξ)pdξ

⎞⎠q/p

w(x)qdx

⎞⎟⎠
1/q

< ∞

(obvious modifications for p = ∞ or q = ∞). Using the fundamental identity of time-
frequency analysis [10, formula (1.31)]

Vgf(x, ξ) = e−2πixξVĝ f̂(ξ,−x), (39)

we can deduce

|Vgf(x, ξ)| = |Vĝ f̂(ξ,−x)| = |F(f̂ Tξ ĝ)(−x)|

so that

‖f‖Mp,q
m⊗w

=

⎛⎝∫
Rd

‖f̂ Tξ ĝ‖qFLp
v
m(ξ) dξ

⎞⎠1/q

= ‖f̂‖W (FLp
m,Lq

w).

The above equality of norms yields

F(Mp,q
v⊗w) = W (FLp

v, L
q
w). (40)
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2.2. The metaplectic representation

Recall the symplectic group

Sp(d,R) =
{
A ∈ GL(2d,R) : ATJA = J

}
, (41)

where AT denotes the transpose of A and the symplectic matrix J is defined in (30). In 
the sequel, we shall also refer to symplectic matrices in double dimension, induced from 
the standard symplectic form on R4d:

Sp(2d,R) =
{
A ∈ GL(4d,R) : ATJA = J

}
, (42)

where J is the one in (30) with 0d×d replaced by 02d×2d and Id×d replaced by I2d×2d.
The metaplectic representation μ is a unitary representation of the (double cover of 

the) symplectic group Sp(d, R) on L2(Rd). The symplectic algebra sp(d, R) is the set of 
all 2d × 2d real matrices A such that etA ∈ Sp(d, R) for all t ∈ R.

For some elements of Sp(d, R) the metaplectic representation can be computed ex-
plicitly. Namely, using the notations in [17,18], for f ∈ L2(Rd), C real symmetric d × d

matrix (CT = C) we have, up to a phase factor s (that is, |s| = 1),

μ(J)f = Ff ; (43)

for

VC :=
(
Id×d 0
C Id×d

)
,

up to a phase factor

μ (VC) f(x) = eiπCx·xf(x). (44)

Special instances of metaplectic operators also called rescaling operators. They are 
metaplectic operators μ(DL) associated with the symplectic matrix DL constructed as 
follows. For any L ∈ GL(d, R),

DL =
(

L−1 0d×d

0d×d LT

)
∈ Sp(d,R). (45)

Then, up to a phase factor,

μ(DL)F (x) =
√

|detL|F (Lx) = TLF (x), F ∈ L2(Rd). (46)

The metaplectic operators posses a group structure called the metaplectic group.
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Proposition 2.1. The metaplectic group is generated by the operators μ(J), μ(DL) and 
μ(VC).

In the paper we shall work both with the symplectic group Sp(d, R) of 2d ×2d matrices 
and Sp(2d, R) of 4d × 4d ones. In particular, the matrix A ∈ Sp(2d, R) is assumed to 
have the 4 × 4 block decomposition of 2d × 2d matrices:

A =
(
A B
C D

)
(47)

with the decompositions of the 2d × 2d sub-blocks as follows:

A =
(
A11 A12
A21 A22

)
, B =

(
B11 B12
B21 B22

)
, C =

(
C11 C12
C21 C22

)
, D =

(
D11 D12
D21 D22

)
.

(48)

Definition 2.2. For a 4d × 4d symplectic matrix A ∈ Sp(2d, R) we define the time-
frequency representation A-Wigner by

WA(f, g) = μ(A)(f ⊗ ḡ), f, g ∈ L2(Rd). (49)

We set WAf := WA(f, f).

2.2.1. Properties of WA (f, g)
In what follows we list all the elementary properties enjoyed by the A-Wigner distri-

bution. The continuity of WA was shown in [11]:

Proposition 2.3. Assume A ∈ Sp(2d, R). Then,

(1) If f, g ∈ L2(Rd), then WA(f, g) ∈ L2(R2d) and the mapping WA : L2(Rd) ×
L2(Rd) → L2(R2d) is continuous.

(2) If f, g ∈ S(R2d), then WA(f, g) ∈ S(R2d) and the mapping WA : S(Rd) × S(Rd) →
S(R2d) is continuous.

(3) If f, g ∈ S ′(Rd), then WA(f, g) ∈ S ′(R2d) and the mapping WA : S ′(Rd) ×S ′(Rd) →
S ′(R2d) is continuous.

Proposition 2.4 (Interchanging f and g). For A ∈ Sp(2d, R) with block decomposition 
(47) and f, g ∈ L2 (Rd

)
. Then

WA(g, f) = WÃ(f̄ , ḡ),

where Ã =
(
AL BL
CL DL

)
and
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L =
(

0d×d Id×d

Id×d 0d×d

)
. (50)

Precisely, using the sub-block decomposition (48), we obtain AL =
(
A12 A11
A22 A21

)
and 

similarly for the other block matrices B, C, D.

Proof. Consider the matrix L defined in (50) and observe that LT = L−1 = L. The 
symplectic matrix DL in (45) becomes

DL =
(

L−1 0d×d

0d×d LT

)
=

(
L 0d×d

0d×d L

)
.

With our choice of L,

μ(DL)(g ⊗ f̄)(x, y) = (g ⊗ f̄)(y, x) = f̄ ⊗ g(x, y).

This let us factorize WA(g, f) as follows:

WA(g, f)(x, y) = μ(A)(g ⊗ f̄)(x, y) = μ(AD−1
L DL)(g ⊗ f̄)(x, y) = μ(ADL)(f̄ ⊗ g)(x, y),

and the claim easily follows by observing that ADL = Ã. �
We now limit ourselves to matrices A ∈ Sp(2d, R) such that

μ(A) = F2TL (51)

where F2 is the partial Fourier transform with respect to the second variables y defined 
by

F2F (x, ξ) =
∫
Rd

e−2πiy·ξF (x, y) dy, F ∈ L2(R2d). (52)

and the change of coordinates TL is defined in (34). The following fact was established 
in [12, Proposition 3.3]:

Proposition 2.5. For f, g ∈ L2 (Rd
)
, μ(A) of the form (51) with

L =
(
L11 L12
L21 L22

)
,

then

WA (g, f) (x, ω) = WB (f, g) (x, ω),
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with μ(B) = F2TL̃, with

L̃ =
(
L21 −L22
L11 −L12

)
.

More generally,

Proposition 2.6. For A ∈ Sp(2d, R), we have

WA(g, f) = WB(f, g),

for a suitable B ∈ Sp(2d, R).

Proof. We use Proposition 2.1, and observe that μ(J)f = μ(J−1)f̄ , μ(VC)f = μ(V−C)f̄
and μ(DL)f = μ(DL)f̄ . This gives the claim. �

What follows can be viewed as a generalization of the fundamental identity of time-
frequency analysis for the STFT, cf. [10, (1.31)].

Proposition 2.7 (Fundamental identity of time-frequency analysis). For A ∈ Sp(2d, R)
with block decomposition (47) and f, g ∈ L2 (Rd

)
, then

WA
(
f̂ , ĝ

)
= WÃ (f, g) ,

where Ã =
(
BL AL
DL CL

)
and

L =
(
I 0
0 −I

)
(53)

Proof. Using the reflection operators Ig(t) = g(−t), we can write

f̂ ⊗ ĝ = f̂ ⊗ Î ˆ̄g = FTL (f ⊗ ḡ)

where L is defined in (53). Hence,

WA(f̂ , ĝ) = μ(A)(f̂ ⊗ ĝ) = μ(A)FTL (f ⊗ ḡ) = μ(AJDL)(f ⊗ ḡ).

The conclusion is a simple computation. �
Proposition 2.8 (Fourier transform of WA). Let A ∈ Sp(2d, R) and f, g ∈ L2 (Rd

)
. 

Then,
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FWA (f, g) = WÃ (f, g) , (54)

where Ã = (AT )−1J .

Proof. Since, up to a phase factor, Fμ(A) = μ(JA), the result follows from the sym-
plectic group property (41). �
Proposition 2.9 (Moyal’s Identity). Let A ∈ Sp(2d, R) and f1, f2, g1, g2 ∈ L2 (Rd

)
. Then,

〈WA (f1, g1) ,WA (f2, g2)〉L2(R2d) = 〈f1, f2〉L2(Rd)〈g1, g2〉L2(Rd), (55)

in particular, for f1 = f2 = f , g1 = g2 = g,

〈WA (f, g) ,WA (f, g)〉L2(R2d) = ‖f‖2
L2(Rd)‖g‖2

L2(Rd).

Proof. We simply use that μ(A) is unitary on L2(R2d):

〈WA (f1, g1) ,WA (f2, g2)〉L2(R2d) = 〈μ(A) (f1 ⊗ ḡ1) , μ(A) (f2 ⊗ ḡ2)〉L2(R2d)

= 〈μ(A)−1μ(A) (f1 ⊗ ḡ1) , (f2 ⊗ ḡ2)〉L2(R2d),

and the claim follows. �
A simple computation shows the following polarization identity:

WA(f + g) = WA(f) + WA(g) + WA(f, g) + WA(g, f). (56)

The Covariance Property of [11, Proposition 4.3] can be generalized and improved as 
follows:

Proposition 2.10 (Covariance Property). Consider A ∈ Sp(2d, R) having block decompo-
sition

A =

⎛⎜⎜⎜⎝
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

⎞⎟⎟⎟⎠
with Aij, i, j = 1, . . . , 4, d × d real matrices. Then the representation WA in (49) is 
covariant, namely

WA(π(z)f, π(z)g) = TzWA(f, g), f, g ∈ S(Rd), z ∈ R2d, (57)

if and only if A is of the form
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A =

⎛⎜⎜⎜⎝
A11 Id×d −A11 A13 A13
A21 −A21 Id×d −AT

11 −AT
11

0d×d 0d×d Id×d Id×d

−Id×d Id×d 0d×d 0d×d

⎞⎟⎟⎟⎠ , (58)

with A13 = AT
13, AT

21 = A21. The result does not depend on the choice of the phase factor 
in the definition of μ(A) and WA in (49).

Proof. The equivalence of (57) and the matrix

A =

⎛⎜⎜⎜⎝
A11 Id×d −A11 A13 A13
A21 −A21 Id×d −AT

11 −AT
11

A31 −A31 A33 A33
A41 −A41 A43 A43

⎞⎟⎟⎟⎠ . (59)

is a straightforward generalization of the proof of [11, Proposition 4.3]. We notice that 
in the last element of the second row of [11, Formula (108)] the entry AT

11 should be 
replaced by −AT

11 as in (59). We then use the matrix-block properties for symplectic 
matrices (see, e.g. [14, Proposition 4.1]) to obtain (58). First, the condition

ABT = BAT

(where A and B are the 2d × 2d blocks in (48)) gives AT
13 = A13. The block property:

ATC = CTA

yields to A31 = 0d×d and AT
21A41 = AT

41A21. From

BTD = DTB

we infer A43 = 0d×d. Condition

ATD − CTB = Id×d

yields to A33 = Id×d and A41 = −Id×d, which, together with AT
21A41 = AT

41A21, gives 
the symmetric property AT

21 = A21. �
Similarly, a matrix A ∈ Sp(2d, R) having the block-decomposition in (58) is called 

covariant.
If we introduce the real symmetric 2d × 2d matrix

BA =
(

A13
1
2Id×d −A11

1Id×d −AT −A21

)
, (60)
2 11
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the covariance property of A can be viewed as Cohen class property as shown below. 
The proof is a straightforward generalization of [11, Theorem 4.6]:

Theorem 2.11. Let A ∈ Sp(2d, R) be of the form (58). Then

WA(f, g) = W (f, g) ∗ σA, f, g ∈ S(Rd), (61)

where

σA = F−1(e−πiζ·BAζ) ∈ S ′(R2d), (62)

and BA defined in (60).

Proposition 2.12. For z = (z1, z2), u = (u1, u2), we have

WA(π(z)f, π(u)g) = M(ζ3,ζ4)T(ζ1,ζ2)WA(f, g) f, g ∈ S(Rd), ζi ∈ R2d, i = 1, . . . , 4,

where

(ζ1, ζ2) = (A11z1 + (I −A11)u1 + A13(z2 − u2), A21(z1 − u1) + (I −AT
11)z2 −AT

11u2)

(ζ3, ζ4) = (A31(z1 − u1) + A33(z2 − u2), A41(z1 − u1) + A43(z2 − u2)). (63)

Proof. Using the intertwining property (see e.g. Formula (1.10) in [10])

π(Aζ) = cAμ(A)π(ζ)μ(A)−1, ζ ∈ R4d

(where cA is a phase factor: |cA| = 1), we calculate

WA(π(z1, z2)f, π(u1, u2)g) = μ(A)[π(z1, u1, z2,−u2)(f ⊗ ḡ)]

= c−1
A π(A(z1, u1, z2,−u2))WA(f, g).

The covariance of WA gives the matrix block-decomposition in (58) so that

π(A(z1, u1, z2,−u2)) = cAT(ζ1,ζ2)M(ζ3,ζ4),

with (ζ1, ζ2) ∈ R2d and (ζ3, ζ4) ∈ R2d in (63). �
Metaplectic operators are bounded on modulation spaces, as shown below.

Theorem 2.13. Assume s ∈ R, A ∈ Sp(d, R). Then the metaplectic operator μ(A) :
S(Rd) → S ′(Rd) extends to a continuous operator on Mp

vs(R
d), 0 < p < ∞, and for 

p = ∞ it extends to a continuous operator on M∞
v (Rd).

s
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Proof. For 1 ≤ p ≤ ∞ the result follows from [10, Theorem 6.1.8], with weight function 
μ(z) = vs(z), s ∈ R, and observing that vs ◦ A � vs since detA �= 0. For 0 < p < 1
we can use similar arguments as in the proof of [10, Theorem 6.1.8]. Namely, consider 
the lattice Λ = αZd × βZd and two windows g, γ ∈ S(Rd) such that the related Gabor 
frame operator Sg,γ := SΛ

g,γ satisfies Sg,γ = I on L2(Rd). If we set gm,n := MβnTαmg, it 
remains to prove that the matrix operator

{cm,n} �−→
∑

m,n∈Zd

〈μ(A)gm,n, gm′,n′〉cm,n (64)

is bounded from 
pvs into 
pvs . This follows from Schur’s test (cf. [10, Lemma 6.1.7 (ii)]) 
if we prove that the kernel

Km′,n′,m,n := 〈μ(A)gm,n, gm′,n′〉vs(m′, n′)/vs(m,n),

satisfies

Km′,n′,m,n ∈ 
∞m,n

p
m′,n′ . (65)

Since

|〈μ(A)gm,n, gm′,n′〉| ≤ Cv−r(A(m,n) − (m′, n′)), (66)

for every r ≥ 0, cf. [8, Proposition 5.3] we have

|Km′,n′,m,n| � v−r(A(m,n) − (m′, n′)) vs(m′, n′)
vs(A(m,n) − (m′, n′))vs(m,n) . (67)

Now, the last quotient in (67) is bounded, so we deduce (65). �
Corollary 2.14. Under the assumptions of Theorem 2.13 we have

‖μ(A)f‖Mp
vs

� ‖f‖Mp
vs
, f ∈ Mp

vs(R
d), (68)

(with M∞(Rd) in place of M∞(Rd) for p = ∞).

Proof. Using the invertibility property of metaplectic operators,

‖f‖Mp
vs

= ‖μ(A)−1μ(A)f‖Mp
vs

= ‖μ(A−1)μ(A)f‖Mp
vs

� ‖μ(A)f‖Mp
vs

where the last estimate follows from Theorem 2.13 since A−1 ∈ Sp(d, R). The reverse 
inequality is stated in Theorem 2.13. �
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Theorem 2.15. Assume f, g ∈ Mp
vs(R

d), 0 < p ≤ ∞, s ≥ 0. For any A ∈ Sp(2d, R) the 
A-Wigner WA(f, g) is in Mp

vs(R
2d), with

‖WA(f, g)‖Mp
vs

� ‖f‖Mp‖g‖Mp
vs

+ ‖g‖Mp‖f‖Mp
vs
. (69)

Proof. By Theorem 2.13 (with dimension 2d in place of d) we can write

‖WA(f, g)‖Mp
vs

= ‖μ(A)(f ⊗ ḡ)‖Mp
vs

� ‖f ⊗ ḡ‖Mp
vs
. (70)

Note also that vs(z, ζ) � (vs ⊗ 1)(z, ζ) + (1 ⊗ vs)(z, ζ), so that

‖WA(f, g)‖Mp
vs

� ‖f ⊗ ḡ‖Mp
vs⊗1+1⊗vs

� ‖f ⊗ ḡ‖Mp
vs⊗1

+ ‖f ⊗ ḡ‖Mp
1⊗vs

= ‖f‖Mp
vs
‖g‖Mp + ‖f‖Mp‖g‖Mp

vs
.

The proof is concluded. �
Theorem 2.16. Assume f ∈ Mp

vs(R
d), 0 < p ≤ 2, s ≥ 0, A ∈ Sp(2d, R). Then the 

following statements are equivalent:
(i) f ∈ Mp

vs(R
d)

(ii) WA(f) ∈ Mp
vs(R

2d).

Proof. If f(t) = 0 for a.e. t then WA(f)(x, ξ) = 0 and the equivalence is trivially true. 
Let us now consider the non-trivial case.
(i) ⇒ (ii). It is a consequence of Theorem 2.15. In particular, from (69) for f = g we 
have

‖WA(f)‖Mp
vs

� ‖f‖Mp
vs
‖f‖Mp � ‖f‖2

Mp
vs
.

(ii) ⇒ (i). Fixing f = g and using (68),

‖WA(f)‖Mp
vs

= ‖μ(A)(f ⊗ f̄)‖Mp
vs

� ‖f ⊗ f̄‖Mp
vs
.

Note that

‖f ⊗ f̄‖Mp
vs⊗1

� ‖f‖Mp
vs
‖f‖Mp .

So, for f ∈ L2(Rd) \ {0}, we have

‖f‖Mp
vs

� 1
‖f‖Mp

‖f ⊗ f̄‖Mp
vs⊗1

� 1
‖f‖L2

‖f ⊗ f̄‖Mp
vs
,

since ‖f‖L2 � ‖f‖Mp , 0 < p ≤ 2. �
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Theorem 2.17 (Inversion formula for the A-Wigner distribution). Consider g1, g2 ∈
L2(Rd) with 〈g1, g2〉 �= 0, A ∈ Sp(2d, R). Then, for any f ∈ L2(Rd),

f = 1
〈g2, g1〉

∫
Rd

μ(A−1)WA(f, g1)(x, ξ)g2 dξ. (71)

Proof. Observing that

μ(A−1)WA(f, g1) = μ(A−1)μ(A)(f ⊗ ḡ1) = f ⊗ ḡ1,

we can write∫
Rd

μ(A−1)WA(f, g1)(x, ξ)g2(ξ) dξ =
∫
Rd

f(x)ḡ1(ξ)g2(ξ) dξ = f(x)〈g2, g1〉

and the equality (71) follows. �
Proposition 2.18. For f, g1, g2, g3 ∈ L2(Rd), A ∈ Sp(2d, R), we have

Vg3f(w) = 1
〈g2, g1〉

〈WA(f, g1),WA(π(w)g3, g2)〉L2(R2d). (72)

Proof. From the preceding inversion formula (71) we have

Vg3f(w) = 1
〈g2, g1〉

∫
R2d

WA(f, g1)WA(π(w)g1, g2)π(w)g3(x)dxdξ

= 1
〈g2, g1〉

∫
R2d

WA(π(w)g1, g2)(x, ξ)μ(A)(g2(ξ)π(w)g3(x))dxdξ,

since μ(A−1) = μ(A)∗. Observe that the integrals above are absolutely convergent inte-
grals since π(w) is an isometry on L2(Rd) and WA : L2(Rd) × L2(Rd) → L2(R2d), by 
Proposition 2.3. This concludes the proof. �

Proposition 2.18 suggests the following definition:

Definition 2.19. Given A ∈ Sp(2d, R), we say that WA is shift-invertible if

|WA(π(w)f, g)| = |TEA(w)WA(f, g)|, f, g ∈ L2(Rd), w ∈ R2d,

for some EA ∈ GL(2d, R), with

TEA(w)WA(f, g)(z) = WA(f, g)(z − EAw), w, z ∈ R2d.
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Not every A-Wigner satisfies the above property. Let us compute WA(π(w)f, g) ex-
plicitly. Consider A with the block decomposition in (47), and sub-bocks (48). Easy 
calculations and the intertwining formula μ(A)π(z) = cAπ(Az)μ(A) with |cA| = 1 show, 
for w = (w1, w2),

WA(π(w)f, g) = μ(A)((π(w)f) ⊗ ḡ)

= μ(A)π(w1, 0, w2, 0)(f ⊗ ḡ)

= cAπ(A(w1, 0, w2, 0)T )WA(f, g),

= cAπ(A(w1, 0)T + B(w2, 0)T , C(w1, 0)T + D(w2, 0)T )WA(f, g)

= cAπ(A11w1, A21w1) + (B11w2, B21w2), (C11w1, C21w1)

+ (D11w2, D21w2))WA(f, g)

= cAπ(A11w1 + B11w2, A21w1 + B21w2, C11w1 + D11w2, C21w1

+ D21w2)WA(f, g)

= cAMC11w1+D11w2,C21w1+D21w2TA11w1+B11w2,A21w1+B21w2WA(f, g).

so that

|WA(π(w)f, g)| = |TA11w1+B11w2,A21w1+B21w2WA(f, g)|.

Hence the matrix EA in Definition 2.19 is given by

EA =
(
A11 B11
A21 B21

)
. (73)

WA is shift-invertible if and only if the matrix EA is invertible.

Remark 2.20. (i) If A ∈ Sp(2d, R) is a covariant matrix then

EA =
(
A11 A13
A21 Id×d −AT

11

)
. (74)

Hence if EA is invertible the covariant matrix A is shift-invertible.
(ii) For τ -Wigner distributions the matrix A = Aτ is shown in (6). The related matrix 
Eτ := EAτ

is

Eτ =
(

(1 − τ)Id×d 0d×d

0d×d τId×d

)
,

so that Aτ is covariant for every τ ∈ R, whereas it is shift-invertible for τ ∈ R \ {0, 1}.
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(iii) For f, g ∈ L2(Rd), Vgf = μ(AST)(f ⊗ ḡ), and we have, cf. [10, Proposition 1.2.15],

|Vgπ(w)f | = |TwVgf |, w ∈ R2d. (75)

This implies that A = AST in (7) is shift-invertible. Observe that in this case, EST :=
EAST

is

EST = I2d×2d =
(

Id×d 0d×d

0d×d Id×d

)

according to relation in (75). We notice that AST is not covariant.

Proposition 2.21 (Relation between the matrix EA and BA). If A ∈ Sp(2d, R) is a co-
variant matrix with related matrix EA in (74) and symmetric matrix BA in (60), then

EAJ + 1
2J = BA. (76)

Proof. It is a simple computation. In fact,

EAJ + J

2 =
(

A13 −A11
Id×d −AT

11 −A21

)
+ 1

2

(
0d×d Id×d

−Id×d 0d×d

)

=
(

A13 −A11 + 1
2Id×d

1
2Id×d −AT

11 −A21

)
= BA.

This concludes the proof. �
Observe that the next result extends [11, Theorem 3.11] to every 0 < p ≤ ∞.

Theorem 2.22. Fix g ∈ S(Rd). For A ∈ Sp(2d, R) we have the following issues:
(i) For 0 < p < 2, if f ∈ Mp

vs(R
d) then WA(f, g) ∈ Lp

vs(R
2d).

(ii) Let WA be shift-invertible according to the preceding definition. Then,
(iia) For s ≥ 0, 1 ≤ p ≤ 2,

f ∈ Mp
vs(R

d) ⇔ WA(f, g) ∈ Lp
vs(R

2d), (77)

with equivalence of norms ‖f‖Mp
vs

� ‖WA(f, g)‖Lp
vs

.
(iib) For 1 ≤ p ≤ ∞, if WA(f, g) ∈ Lp

vs(R
2d) then f ∈ Mp

vs(R
d).

(iic) For 0 < p < 1, if WA(f, g) ∈ Lp
vs(R

2d) and there exists a Gabor frame G(γ, Λ) for 
L2(Rd) with γ ∈ S(Rd) such that the sequence WA(f, γ)(λ) ∈ 
pvs(Λ), then f ∈ Mp

vs(R
d).

Proof. (i) Let us recall that S(Rd) ⊂ Mp
vs(R

d), 0 < p ≤ ∞, s ∈ R. Assume first 
f ∈ Mp

v (Rd), s ≥ 0. Then by Theorem 2.15 we have

s
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‖WA(f, g)‖Mp
vs

� ‖f‖Mp
vs
‖g‖Mp

vs
.

Since (vs ⊗ 1)(x, ξ) � vs(x, ξ) for s ≥ 0, the inclusion relations for modulation spaces 
(cf., e.g., [10, Theorem 2.4.17] and [28, Proposition 1.2]) yield

Mp
vs(R

2d) ↪→ Mp
vs⊗1(R2d),

for 0 < p ≤ 2 (see [27, Proposition 2.9], whereas the case 0 < p < 1 is a direct consequence 
of [29, Theorem 2.4] with B = Lp

vs)

Mp
vs⊗1(R2d) ↪→ Lp

vs(R
2d),

hence WA(f, g) ∈ Lp
vs(R

2d).
(ii) Assume now that WA is shift-invertible and WA(f, g) ∈ Lp

vs(R
2d). Then, by Propo-

sition 2.18, with g1 = g3,

|Vg1f(w)| � 1
|〈g2, g1〉|

|〈WA(f, g1),WA(π(w)g1, g2)〉L2(R2d)|

�
∫

R2d

|WA(f, g1)|(u)|WA(π(w)g1, g2)|(u)du

�
∫

R2d

|WA(f, g1)|(u)|WA(g1, g2)|(u− EAw)du

�
∫

R2d

|WA(f, g1)|(u)|[WA(g1, g2)]∗|(EAw − u)du

Hence

‖f‖Mp
vs

� ‖Vg1f‖Lp
vs

� ‖|WA(f, g1)| ∗ |[WA(g1, g2)]∗|(EA·)‖Lp
vs

� ‖|WA(f, g1)| ∗ |[WA(g1, g2)]∗‖Lp
vs

since vs(y) � vs(E−1
A y). Now, Young’s convolution inequalities for 1 ≤ p ≤ ∞ give

‖|WA(f, g1)| ∗ |[WA(g1, g2)]∗‖Lp
vs

≤ ‖WA(f, g1)‖Lp
vs
‖WA(g1, g2)‖L1

vs
< ∞,

since WA(g1, g2) ∈ S(R2d) for g1, g2 ∈ S(Rd) by Proposition 2.3. This proves the im-
plication in (iib). Moreover, item (i) and the previous estimate yield the equivalence in 
(iia). It remains to show item (iic). For 0 < p < 1, consider γ ∈ S(Rd) such that G(γ; Λ)
is a Gabor frame for L2(Rd), then, arguing as above with γ in place of g3:

‖f‖Mp
vs

� ‖Vγf‖Lp
vs

� ‖Vγf‖�pvs � ‖|WA(f, γ)| ∗ |[WA(γ, g2)]∗|(E·)‖�pvs
� ‖|WA(f, γ)| ∗ |[WA(γ, g2)]∗‖�pvs ≤ ‖WA(f, γ)‖�pvs‖[WA(γ, g2)]∗‖�pvs < ∞,
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by the convolution property for sequences:


pvs ∗ 

p
vs ↪→ 
pvs , s ≥ 0, 0 < p ≤ 1;

and WA(γ, g2) ∈ S(R2d) for γ, g2 ∈ S(Rd) (cf., Proposition 2.3). In fact, the restriction 
WA(γ, g2)(λ), λ ∈ Λ is in 
pvs(Λ), for every 0 < p ≤ ∞, s ≥ 0. This concludes the 
proof. �
Corollary 2.23. For s ≥ 0, 1 ≤ p ≤ 2, A ∈ Sp(2d, R) such that WA is shift-invertible. 
Then

f ∈ Mp
vs(R

d) ⇔ WAf ∈ Lp
vs(R

2d).

Proof. f ∈ Mp
vs(R

d) ⇒ WAf ∈ Lp
vs(R

2d) is a straightforward generalization of the 
proof of Theorem 2.22 (i), with g = f ∈ Mp

vs(R
d). Vice versa, following the proof 

pattern of Theorem 2.22 (ii) with Proposition 2.18 applied for g1, g2, g3 ∈ S(Rd) we can 
write

‖f‖Mp
vs

� ‖WA(f, g1)‖Lp
vs
‖WA(g3, g2)‖L1

vs
. (78)

Now, for f ∈ Mp
vs(R

d) there exists a sequence (gn)n ⊂ S(Rd) such that gn → f in 
Mp

vs(R
d). Now, using [27, Proposition 2.9] in the first inequality below and [10, Propo-

sition 2.4.17] in the second one, for 1 ≤ p ≤ 2,

‖WA(f, f) −WA(f, gn)‖Lp
vs

= ‖WA(f, f − gn)‖Lp
vs

≤ ‖WA(f, f − gn)‖Mp
vs⊗1

≤ ‖WA(f, f − gn)‖Mp
vs

= ‖WA(f, f − gn)‖Mp
vs

� ‖f‖Mp
vs
‖gn − g‖Mp

vs
,

where the last inequality is due to Theorem 2.15. Since ‖gn − g‖Mp
vs

→ 0 as n → ∞, 
we obtain that ‖WA(f, gn)‖Lp

vs
→ ‖WA(f, f)‖Lp

vs
as n → ∞ and the thesis follows by 

replacing g1 by gn in (78) and letting n → ∞. �
For τ -Wigner distributions we have a characterization for every 0 < p ≤ ∞, as 

explained below. Notice that we extend Theorem 3.11 of [11] to 0 < p ≤ ∞ for the 
weight v = vs, s ≥ 0.

Proposition 2.24. Consider 0 < p, q ≤ ∞, τ ∈ R \ {(0, 1)}. Then, for any g ∈ S(Rd),

f ∈ Mp,q
vs (Rd) ⇔ Wτ (f, g) ∈ Lp,q

vs (R2d). (79)

For 1 ≤ p, q ≤ ∞ the window g can be chosen in the larger class M1
v (Rd).

s



26 E. Cordero, L. Rodino / Journal of Functional Analysis 284 (2023) 109892
Proof. For p = q and 1 ≤ p ≤ ∞ the result was proved in Theorem 3.11 of [11]. Let us 
prove the general case. By Corollary 3.3. of [11], with Qτg in place of g, we can write

VQτgf(x, ξ) = τde−2πi(1−τ)xξWτ (f, g)
(
B−1
τ (x, ξ)

)
,

where

Qτg(t) = Ig
(

1 − τ

τ
t

)
, t ∈ Rd,

Ig(t) := g(−t), and

B−1
τ =

(
(1 − τ)Id 0d

0d τId

)
.

The result is then a simple computation:

‖f‖Mp,q
vs

� ‖VQτgf‖Lp,q
vs

= ‖Wτ (f, g)(B−1
τ ·)‖Lp,q

vs
� ‖Wτ (f, g)((1 − τ)·, τ ·)‖Lp,q

vs

� ‖Wτ (f, g)‖Lp,q
vs

,

since vs((1 − τ)·, τ ·)) �τ vs, for τ = R \ {0, 1}. �
2.3. STFT and A-Wigner representations

The case of τ -Wigner distributions suggests a deeper study of covariant matrices A
such that

μ(A) = F2TL

as in (51), where F2 is the partial Fourier transform with respect to the second variables 
y defined in (52) and the change of coordinates TL is defined in (34). As observed in 
[11], see also [22],

μ(AFT2) = F2, (80)

where

AFT2 =
(
AFT2

11 AFT2
12

AFT2
21 AFT2

22

)
∈ Sp(2d,R), (81)

and AFT2
11 , AFT2

12 , AFT2
21 , AFT2

22 are the 2d × 2d matrices:

AFT2
11 = AFT2

22 =
(

Id×d 0d×d

0d×d 0d×d

)
, AFT2

12 =
(

0d×d 0d×d

0d×d Id×d

)
, AFT2

21 = −AFT2
12 .

(82)
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Proposition 2.25. A covariant matrix A ∈ Sp(2d, R) satisfies (51) if and only if

A =

⎛⎜⎜⎜⎝
A11 Id×d −A11 0d×d 0d×d

0d×d 0d×d Id×d −AT
11 −AT

11
0d×d 0d×d Id×d Id×d

−Id×d Id×d 0d×d 0d×d

⎞⎟⎟⎟⎠ (83)

(observe that A13 = A21 = 0d×d) and the matrix L in (34) is given by

L =
(
Id×d Id×d −A11
Id×d −A11

)
. (84)

Proof. Up to a phase factor we can write

A = AFT2DL,

where DL is defined in (45). The claim is then a straightforward computation, using that

L−1 =
(

A11 Id×d −A11
Id×d −Id×d

)
. �

Remark 2.26. (i) The matrix L in (84) is invertible for every d × d real matrix A11. (We 
stress that A11 is not required to be invertible.) In fact, we have

detL = det(−Id×d) = (−1)d.

(ii) Under the assumptions of Proposition 2.25 the matrix EA becomes

EA =
(

A11 0d×d

0d×d Id×d −AT
11

)
(85)

so that EA is invertible if and only if A11 and Id×d−AT
11 (or, equivalently, Id×d−A11) are 

invertible matrices. In other words, A is shift-invertible if and only if A11 and Id×d−A11
are invertible matrices.

(iii) For τ -Wigner distributions the matrix L = Lτ is easily computed to be

Lτ =
(
Id×d τId×d

Id×d −(1 − τ)Id×d

)
. (86)

We are interested to determine the conditions under which a covariant A-Wigner 
WA = cAF2DL with |cA| = 1, can be related to the STFT. We recall that the matrix L
takes the form in (84) so that
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(L−1)T =
(

AT
11 Id×d

Id×d −AT
11 −Id×d

)
.

Theorem 2.27. Let A ∈ Sp(2d, R) be a covariant matrix satisfying (51) and shift-
invertible. For every f, g ∈ L2 (Rd

)
, the following formula holds:

WA (f, g) (x, ξ) = |det(Id×d −A11)|−1
e2πi(I−AT

11)
−1ξ·xVg̃f(A−1

11 x, (I −AT
11)−1ξ),

x, ξ ∈ Rd, (87)

where

g̃ (t) = g
(
−A11(Id×d −A11)−1t

)
. (88)

Proof. Since A is shift-invertible the matrices A11 and Id×d − A11 are invertible. Then 
the result follows from Theorem 3.8 of [12]. �
Theorem 2.28. Consider 0 < p, q ≤ ∞, A ∈ Sp(2d, R) as in Theorem 2.27. Then, for 
any g ∈ S(Rd),

f ∈ Mp,q
vs (Rd) ⇔ WA(f, g) ∈ Lp,q

vs (R2d), (89)

with equivalence of norms ‖f‖Mp,q
vs

� ‖WA(f, g)‖Lp,q
vs

. For 1 ≤ p, q ≤ ∞ the window g
can be chosen in the larger class M1

vs(R
d).

Proof. It is a straightforward consequence of Theorem 2.27. In fact, for g ∈ S(Rd) and 
under the assumptions detA11 �= 0, det(Id×d −A11) �= 0, the rescaled function g̃ in (88)
is in S(Rd) and by (87),

‖f‖Mp,q
vs

� ‖Vg̃f‖Lp,q
vs

� ‖WA(f, g)(A11·, ·)‖Lp,q
vs

� ‖WA (f, g) ‖Lp,q
vs

,

since

vs(A−1
11 z1, z2) = (1 + |A−1

11 z1|2 + |z2|2)s/2 � (1 + |z1|2 + |z2|2)s/2, s ∈ R.

For p, q ≥ 1 the windows can be chosen in the larger class M1
vs(R

d) and we can argue as 
above by observing that g̃ in (88) is in M1

vs(R
d) whenever g is. �

3. A-perturbations of the Wigner distribution

This section studies the covariant A-Wigner representations as perturbations of the 
Wigner distributions in (61):

WA(f, g) = W (f, g) ∗ σA f, g ∈ S(Rd),



E. Cordero, L. Rodino / Journal of Functional Analysis 284 (2023) 109892 29
where the kernel σA is defined in (62). We revisit in wider generality the linear pertur-
bations already performed in [12]. First, we recall the expression of the kernel σA from 
Theorem 2.11:

Corollary 3.1. For a covariant matrix A ∈ Sp(2d, R) satisfying (51) the matrix BA in 
(60) becomes

BA =
(

0d×d
1
2Id×d −A11

1
2Id×d −AT

11 0d×d

)
, (90)

so that the kernel σA can be rephrased as

σA(z) = F−1(e−πiζ·BAζ)(z) = F−1(e−πiζ1·ζ2e−2πiζ1·A11ζ2)(z). (91)

In particular, if (1/2)Id×d −A11 is invertible, then by [11, Theorem 4.7]

σA(z) = eπi�(BA)|detBA|e−πiz·B−1
A z (92)

= eπi�(BA)(det((1/2)Id×d −A11))2e−πiz1·( 1
2 Id×d−AT

11)
−1z2 ,

where �(BA) is the number of positive eigenvalues of BA minus the number of negative 
eigenvalues and

B−1
A =

(
0d×d (1

2Id×d −AT
11)−1

(1
2Id×d −A11)−1 0d×d

)
. (93)

We observe that a sufficient condition for and (1/2)I−AT
11 to be invertible is ‖A11‖ <

1/2, then (1/2)Id×d −AT
11 is invertible and

((1/2)Id×d −AT
11)−1 = 2(Id×d − 2AT

11)−1 = 2
+∞∑
n=0

(2AT
11)n.

For τ ∈ (0, 1), AT
11 = A11 = (1 − τ)Id×d and the Neumann series gives ((1/2)Id×d −

AT
11)−1 = 1

τ− 1
2
Id×d, expected.

In what follows we give a precise estimate of the time-frequency content of the chirp 
function Θ(z1, z2) = e2πiz1·z2 , improving [7, Proposition 3.2 and Corollary 3.4] (see also 
[10, Proposition 4.7.15]).

Lemma 3.1. For any 0 < p ≤ ∞ the function Θ(z1, z2) = e2πiz1·z2 satisfies

Θ ∈ Mp,∞
v ⊗1

(
R2d) ∩W (FLp

v , L∞)
(
R2d) , s ≥ 0.
s s
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Proof. We first compute W (FLp
vs , L

∞)-norm of Θ. Proceeding as in the proof of [7, 
Proposition 3.2],

‖Θ‖W (FLp
vs ,L

∞)(R2d) = sup
u∈R2d

‖F(ΘTug)‖Lp
vs (R2d).

Using the Gaussian window g(ζ1, ζ2) = e−πζ2
1 e−πζ2

2 and following the pattern of [7, 
Proposition 3.2] we obtain

‖F(ΘTug)‖Lp
vs

= 2−d/2‖e−π
2 |·|2‖Lp

vs
= Cp,s > 0, s ∈ R.

Hence ‖Θ‖W (FLp
vs ,L

∞)(R2d) = Cq,s, for every s ≥ 0. Observe that

FΘ(ζ1, ζ2) = F(e2πiz1·z2)(ζ1, ζ2) = e−2πiζ1·ζ2 , (94)

and a direct computation or an inspection of the proof of [7, Proposition 3.2] shows

‖F(FΘTug)‖Lp
vs

= 2−d/2‖e−π
2 |·|2‖Lq

vs
= Cp,s > 0, s ∈ R.

In other words, the minus sign at the exponent of Θ does not affect its norm, so that

‖Θ‖W (FLp
vs ,L

∞)(R2d) = ‖FΘ‖W (FLp
vs ,L

∞)(R2d).

Finally, using (40),

‖Θ‖Mp,∞
vs⊗1

= ‖FΘ‖W (FLp
vs ,L

∞) < ∞,

so we are done. �
In what follows we shall use the dilation properties for modulation spaces. Since we 

are not aware of dilation properties for quasi-Banach modulation spaces, we state the 
following result, which extends [9, Proposition 3.1] to these cases.

Proposition 3.2 (Dilation properties for modulation spaces). Let 0 < p, q ≤ ∞ and A ∈
GL(d, R), 0 < p, q ≤ ∞, p1 = min{p, 1}, q1 = min{q, 1}, ϕ(t) = e−πt2 . Then, for every 
f ∈ Mp,q(Rd),

‖fA‖Mp,q � |detA|−(1/p−1/q+1)‖VϕA−1ϕ‖W (L1,Lp1,q1 )‖f‖Mp,q . (95)

In particular, for p, q ≥ 1,

‖VϕA−1ϕ‖W (L1,Lp1,q1 ) = ‖VϕA−1ϕ‖L1 � (det(I + ATA))1/2,

cf. [9, Lemma 3.2].
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Proof. The pattern is similar to [9, Proposition 3.1]. By a change of variable, the dilation 
is transferred from the function f to the window ϕ(t) = e−πt2 :

VϕfA(x, ξ) = |detA|−1VϕA−1 f(Ax, (A∗)−1ξ).

The change of variables Ax = u, (A∗)−1ξ = v gives

‖fA‖Mp,q = |detA|−1

⎛⎜⎝∫
Rd

⎛⎝∫
Rd

|VϕA−1 f(Ax, (A∗)−1ξ)|p dx

⎞⎠q/p

dξ

⎞⎟⎠
1/q

= |detA|−(1/p−1/q+1)‖VϕA−1 f‖Lp,q .

Changing the window function (see, e.g., [10, Lemma 1.2.29]),

|VϕA−1 f(x, ξ)| ≤ ‖ϕ‖−2
L2 (|Vϕf | ∗ |VϕA−1ϕ|)(x, ξ).

So that

‖VϕA−1 f‖Lp,q = C‖|Vϕf | ∗ |VϕA−1ϕ|‖Lp,q = ‖|Vϕf | ∗ |VϕA−1ϕ|‖W (Lp,q,Lp,q)

≤ ‖|Vϕf | ∗ |VϕA−1ϕ|‖W (L∞,Lp,q),

since L∞ ⊆ Lp,q, locally. Now [15, Corollary 3.1] with X = Z = L∞, Y = L1 (so that 
L∞ ∗ L1 ⊂ L∞) gives

‖|Vϕf | ∗ |VϕA−1ϕ|‖W (L∞,Lp,q) ≤ C‖Vϕf‖W (L∞,Lp,q)‖VϕA−1ϕ‖W (L1,Lp1,q1 )

with p1 = min{p, 1}, q1 = min{q, 1}. Finally, by [16, Lemma 3.2],

‖Vϕf‖W (L∞,Lp,q) ≤ C‖Vϕf‖Lp,q � ‖f‖Mp,q ,

which concludes the proof. �
Proposition 3.3. Consider M ∈ GL(d, R) and set

σM (z) = e−πiz1·Mz2 .

Then we have

σM ∈ Mp,∞
vs⊗1

(
R2d) ∩W (FLp

vs , L
∞)

(
R2d) , s ≥ 0,

for every 0 < p ≤ ∞.
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Proof. We highlight the rescaling matrix in σM as follows

σM (z1, z2) = e−πiz1·Mz2 = DM̃Θ (z1, z2) ,

where Θ(z1, z2) = e2πiz1·z2 and DM̃ is the dilation operator DM̃F (t) := F
(
M̃t

)
associ-

ated with the invertible matrix M̃ :

M̃ =
(
−1

2Id×d 0
0 M

)
.

It is clear that M̃ is invertible if and only if M is. Now, since the mapping F �→ (vs⊗1)F
is an homeomorphism from Mp,∞

vs⊗1(R2d) to Mp,∞(R2d) (cf. [27, Corollary 2.3] for p ≥ 1
and [1] for p < 1), we can write

‖DM̃Θ‖Mp,∞
vs⊗1

� ‖(vs ⊗ 1)DM̃Θ‖Mp,∞ � ‖DM̃{[DM̃−1(vs ⊗ 1)]Θ}‖Mp,∞ ,

where

M̃−1 =
(
−2Id×d 0

0 M−1

)
.

Observe that

DM̃−1(vs ⊗ 1)(z1, z2) = vs(−2z1)

so that DM̃−1(vs ⊗ 1) � vs ⊗ 1 and therefore

‖DM̃{[DM̃−1(vs ⊗ 1)]Θ}‖Mp,∞ � ‖DM̃ [(vs ⊗ 1)Θ]}‖Mp,∞

and the dilation properties of Proposition 3.2 yield

‖DM̃ [(vs ⊗ 1)Θ]‖Mp,∞ ≤ Cp,M‖(vs ⊗ 1)Θ‖Mp,∞

�p,M ‖Θ‖Mp,∞
vs⊗1

< ∞,

by Lemma 3.1, which gives σM ∈ Mp,∞
vs⊗1(R2d).

Now, condition detM �= 0 yields FσM (ζ1, ζ2) = CMe−4πiζ1·M−1ζ2 , for a suitable 
CM > 0, so that

σM (z1, z2) = CMF−1(e−4πiζ1·M−1ζ2)(z1, z2) = CMF(e−4πiζ1·M−1ζ2)(z1, z2).

Using the same argument as above we deduce e−4πiζ1·M−1ζ2 ∈ Mp,∞
vs⊗1(R2d) which gives 

σM ∈ W (FLp
vs , L

∞)(R2d), since FMp,∞
vs⊗1 = W (FLp

vs , L
∞) by (40). This concludes the 

proof. �
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Theorem 3.4. Let A ∈ Sp(2d, R) be a covariant matrix as in (83) with BA as in (90)
and BA invertible (equivalently, (1/2)Id×d − A11 invertible). Then, for 0 < p, q ≤ ∞, 
f ∈ S ′ (Rd

)
, we have

Wf ∈ Mp,q
vs⊗1

(
R2d) ⇔ WAf ∈ Mp,q

vs⊗1
(
R2d) , s ∈ R.

Proof. Assume first Wf ∈ Mp,q
vs⊗1

(
R2d), for some 0 < p, q ≤ ∞, s ∈ R. Since WAf =

Wf ∗ σA (cf. (91)), the result follows by the convolution relations for (quasi-)Banach 
modulation spaces [2, Proposition 3.1] and Proposition 3.3 by which σA ∈ Mr,∞

vs⊗1(R2d)
for any r = min{p, 1}. This gives the convolution relations:

Mp,q
vs⊗1(R2d) ∗Mr,∞

vs⊗1(R2d) ↪→ Mp,q
vs⊗1(R2d),

so that WA ∈ Mp,q
vs⊗1(R2d).

Vice versa, considering the symplectic Fourier transform of the equality in (61) with 
σA in (92), we obtain

FσWAf = FσσA ·Amb (f) ,

where the ambiguity function Amb (f) is defined in (33) and FσσA(ζ) = e−πiζ·BAζ . Thus, 
multiplying both sides of the previous equality by eπiζ·BAζ and taking the symplectic 
Fourier transform again, we obtain

Wf = F(eπiz·BAz) ∗WAf

and the thesis follows arguing as in the previous part. �
Proposition 3.5. Let A ∈ Sp(2d, R) be a covariant matrix as in (83) with BA as in (90)
and BA invertible (equivalently, (1/2)Id×d − A11 invertible). Then, for 0 < p, q ≤ ∞, 
f ∈ S ′ (Rd

)
, we have

Wf ∈ FLp,q
vs⊗1

(
R2d) ⇔ WAf ∈ FLp,q

vs⊗1
(
R2d) , s ∈ R.

Proof. Taking the symplectic Fourier transform of both time-frequency representations:

FσWAf = FσσA ·Amb (f)

the claim is equivalent to showing

FσWA ∈ Lp,q
vs⊗1 ⇔ Amb (f) ∈ Lp,q

vs⊗1.

Since both FσσA(ζ1, ζ2) = e−πiz1·( 1
2 Id×d−A11)z2 and (FσσA)−1(ζ1, ζ2) = eπiz1·(

1
2 Id×d−A11)z2

are in L∞(R2d), the statement follows by the point-wise product of mixed-norm 
spaces. �
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4. Schrödinger equations with quadratic Hamiltonians

Using the standard notation for the Cohen class (cf., e.g., [19]), for σ ∈ S ′(R2d) we 
define the Cohen distribution Qσ by

Qσf = σ ∗Wf, f ∈ S(R2d). (96)

Proposition 4.1. For χ ∈ Sp(d, R) we have

Qσ(μ(χ)f)(z) = Qσχ
f(χ−1z), z ∈ R2d, (97)

with σχ(z) = σ(χz).

Proof. From [10, Proposition 1.3.7] we have

W (μ(χ)f)(z) = Wf(χ−1z), f ∈ S(Rd),

so that, for σ ∈ S(R2d), f ∈ S(Rd),

Qσ(μ(χ)f)(z) = [σ ∗W (μ(χ)f)](z) =
∫

R2d

W (μ(χ)f)(u)σ(z − u)du

=
∫

R2d

Wf(χ−1u)σ(χ(χ−1z − χ−1u))du

=
∫

R2d

Wf(ζ)σ(χ(χ−1z − ζ))dζ = Wf ∗ σχ(χ−1z).

For σ ∈ S ′(R2d) one uses standard approximation arguments. This concludes the 
proof. �

We have now all the instruments to tackle the study of Schrödinger equations. We 
consider the Cauchy problem in (19) and express the solution as follows.

Theorem 4.2. Let u(t, ·) = eitOpw(H)u0, t ∈ R, be the solution of the Cauchy problem 
in (19), with Opw(H) the Weyl quantization of the quadratic form H in (20). If we set 
χt = etD ∈ Sp(d, R), for t ∈ R, then

Qσ(u(t, ·))(z) = Qσt
(u0)(χ−1

t z), (98)

where

σt(z) = σ(χtz).
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Proof. Observe that the solution can be written as u(t, ·) = eitOpw(H)u0 = μ(χt) where 
μ(χt) is the continuous family of metaplectic operators with projections χt ∈ Sp(d, R)
and χ0 = Id identity operator (cf. [14,17]). Using the covariance property for the Cohen 
class in Proposition (4.1), we can write

Qσ(u(t, ·))(z) = Qσ(μ(χt)u0)(z) = Qσt
(u0)(χ−1

t z),

as desired. �
Example 4.3. If σ = δ we obtain

W (u(t, ·))(z) = Wu0(χ−1
t z),

as expected.

Let us limit to Cohen distributions generated by covariant matrices A ∈ Sp(2d, R). 
Namely

Qσf = WAf = Wf ∗ σA, (99)

with kernel σA in (62).

Proposition 4.4. Under the assumptions of Theorem 4.2 with a Cohen distribution Qσ

as in (99), if we set χt = etD ∈ Sp(d, R), for t ∈ R, then

Qσ(u(t, ·))(z) = WA(u(t, ·))(z) = WAt
u0(χ−1

t z), (100)

where WAt
f(z) = Wf ∗ σAt

(z) and

σAt
(z) = F−1 (e−πiζ·BAtζ

)
(z),

and

BAt
:= (χ−1

t )TBAχ
−1
t .

We have the equivalence of conditions for 0 < p ≤ 2, s ≥ 0:

(i) u0 ∈ Mp
vs(R

d)
(ii) WA(u(t, ·)) ∈ Mp

vs(R
2d)

(iii) WAt
u0 ∈ Mp

vs(R
2d).

Proof. We use the dilation properties of the Fourier transform. In fact,

F−1 (e−πiζ·BAtζ
)
(χtz) = F−1

(
e−πiχ−1

t ζ·BAtχ
−1
t ζ

)
(z) = F−1

(
e−πiζ·(χ−1

t )TBAtχ
−1
t ζ

)
(z)
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(recall that detχt = 1). The equivalence of (i), (ii) and (iii) follows from Theo-
rem 2.16. �
Proposition 4.5. Under the hypotheses of Proposition 4.4, if we assume A shift-invertible 
then At is shift-invertible. We have the equivalence of conditions for 1 ≤ p ≤ 2, s ≥ 0:

(i) u0 ∈ Mp
vs(R

d)
(ii) WA(u(t, ·)) ∈ Lp

vs(R
2d)

(iii) WAt
u0 ∈ Lp

vs(R
2d).

Proof. For every t ∈ R, the relation between BAt
and EAt

is given by (76), so that

EAt
= BAt

J−1 − 1
2Id×d.

Since BAt
= (χ−1)TBAχ

−1
t , we can view the matrix EAt

in terms of the matrix EA as 
follows:

EAt
= BAt

J−1 − 1
2Id×d

= (χ−1
t )TBAχ

−1
t J−1 − 1

2Id×d

= (χ−1
t )T

(
EA + 1

2Id×d

)
Jχ−1

t J−1 − 1
2Id×d

= (χ−1
t )T

(
EA + 1

2Id×d

)
((χ−1

t )T )−1JJ−1 − 1
2Id×d

= (χ−1
t )TEA((χ−1

t )T )−1 + 1
2Id×d −

1
2Id×d

= (χ−1
t )TEA((χ−1

t )T )−1.

Since (χ−1
t )T is invertible, EAt

is invertible if and only if EA is. The equivalence of (i), 
(ii) and (iii) follows from Corollary 2.23. �

Observe that the previous result does not require the assumption (51).
Example: The free particle. Consider the Cauchy problem for the Schrödinger equation

{
i∂tu + Δu = 0
u(0, x) = u0(x),

(101)

with x ∈ Rd, d ≥ 1. The explicit formula for the solution u(t, x) = eitΔu0(x) is

u(t, x) = (Kt ∗ u0)(x), (102)
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where

Kt(x) = 1
(4πit)d/2

ei|x|
2/(4t). (103)

The canonical transformation χt is given by

χt(y, η) = (y + 4πtη, η) =
(

Id×d (4πt)Id×d

0d×d Id×d

)(
y

η

)
, (104)

so that

χ−1
t =

(
Id×d −(4πt)Id×d

0d×d Id×d

)
.

We may apply Proposition 4.4 with BAt
and At defined consequently. Assuming further 

shift-invertibility, we may apply Proposition 4.5 as well. It is clear, in this context, that 
starting with a symplectic matrix A of the type (51) does not guarantee that the new 
matrix At in Proposition 4.4 satisfies condition (51). In fact, applying (104) to the matrix 
BA in (90), we obtain

BAt
= (χ−1

t )TBAχ
−1
t =

(
0d×d

1
2Id×d −A11

1
2Id×d −AT

11 (4πt)(A11 + AT
11 − Id×d)

)
.

The matrix BAt
is of the type (90) if and only if

A11 + AT
11 = Id×d, (105)

hence if the previous condition is not fulfilled At is not of the type (51).
We test condition (105) on the τ -Wigner representations, for any τ ∈ R and with Aτ

defined in (6). In this case A11 + AT
11 = 2(1 − τ)Id×d and we obtain condition (105) if 

and only if τ = 1/2 (the expected Wigner case). By a direct computation:

Wτu(t, x, ξ) = Wτ,tu0(x− 4πtξ, ξ), (106)

where the representation Wτ,t is of Cohen class:

Wτ,tf = Wf ∗ στ,t, (107)

with

στ,t(y, η) = στ (χt(y, η)) = στ (y + 4πtη, η), (108)

and
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στ (x, ξ) =

⎧⎪⎪⎨⎪⎪⎩
2d

|2τ−1|d e
2πi 2

2τ−1xξ τ �= 1
2

δ τ = 1
2 ,

cf. Proposition 1.3.27 in [10].
We may write Wτ,t in the form of an At-Wigner representation, with

μ(At)F (x, ξ) =
∫
Rd

e−2πi(yξ+2πt(1−2τ)y2)F (x + τy, x− (1 − τ)y) dy. (109)

Definition 4.6. For A ∈ Sp(2d, R), f ∈ S ′(Rd), 0 < p < ∞, s ≥ 0, we say that z0 =
(x0, ξ0) /∈ WFp,s

A (f), z0 �= 0, if there exists Γ0, conic neighborhood of z0, such that

∫
Γz0

〈z〉ps|WAf(z)|p dz < ∞. (110)

The wave front set WFp,s
A (f) is a closed cone in R2d \ {0}.

In our context, it will be convenient to limit the definition to shift-invertible matrices 
A and 1 ≤ p ≤ 2.

Proposition 4.7. In the preceding Definition 4.6 assume f ∈ Lp(Rd), 1 ≤ p ≤ 2, s ≥ 0
and let A be shift-invertible. Then WFp,s

A (f) = ∅ if and only if f ∈ Mp
vs(R

d).

Proof. Under such assumptions, from Corollary 2.23 we have that f ∈ Mp
vs(R

d) if and 
only if WAf ∈ Lp

vs(R
2d). So, if f ∈ Mp

vs(R
d) then (110) is satisfied in every cone Γz0 , 

for all z0 �= 0, hence WFp,s
A (f) = ∅. In the opposite direction, assume WFp,s

A (f) = ∅, 
that is (110) is satisfied for a suitable conic neighborhood Γz0 of any z0 �= 0. From the 
compactness of the sphere S2d−1 we deduce that the integral (110) is convergent over 
the whole R2d, i.e., WAf ∈ L2

vs(R
2d). This completes the proof. �

Assuming further that A is covariant, we consider the Schrödinger equation (19) and 
define the covariant matrix At, t ∈ R, as in Proposition 4.4. From Proposition 4.5 we 
have that, if A is shift-invertible, so is At, for all t ∈ R.

Theorem 4.8. Assume u0 ∈ L2(Rd). Let u(t, ·) ∈ L2(Rd), t ∈ R, be the solution of (19). 
Let A be covariant and shift-invertible. Then, for 1 ≤ p ≤ 2, s ≥ 0:

WFp,s
A (u(t, ·)) = χt(WFp,s

At
(u0)). (111)

Proof. Assume ζ0 �= WFp,s
A (u0), i.e., there exists Λζ0 , conic neighborhood of ζ0, such 

that
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∫
Λζ0

〈ζ〉ps|WAt
(u0)(ζ)|pdζ < ∞. � (112)

Observe that Γz0 = χ−1
t (Λζ0) is a conic neighborhood of z0. We have, by applying 

(100) and setting z = χt(ζ):∫
Γz0

〈z〉ps|WA(u(t, ·))(z)|pdz =
∫

Γz0

〈z〉ps|WAt
(u0)(χ−1

t z)|pdz

=
∫

Λζ0

〈χtζ〉ps|WAt
(u0)(ζ)|pdζ < ∞,

since 〈χtζ〉ps � 〈ζ〉ps, and we can apply (112). Hence z0 = χtζ0 /∈ WFp,s
A (u(t, ·)). Arguing 

similarly in the opposite direction, we obtain (111).
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