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Abstract

This thesis investigates technological change through three essays, focusing on geography,

environmental innovation, and policy. The first essay explores the role of inward and

outward Foreign Direct Investments (FDIs) in fostering recombinant novelty at the re-

gional level, focusing both technological distance and functional characteristics of FDIs

in generating local novelty. The second essay investigates green diversification in U.S.

cities, emphasizing how local skill composition interacts with green FDIs on branching

into environmentally sustainable technologies. The third essay studies the effects of cli-

mate policy uncertainty on environmentally directed technical change across European

firms, highlighting the importance of clear policies to direct technological efforts toward

low-carbon innovation. Together, these essays contribute to understanding how external

connectivity, local capacities, and policy signals shape innovation, providing empirical

evidence for regional development and green industrial policy.
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Chapter 1

Introduction

This thesis is composed of three essays exploring technological change from different

angles. Long recognized as the engine of long-term economic growth, technological change

- and its spatial and environmental dimensions - are now central to the policy agenda.

The three essays are interconnected by their focus on understanding the mechanisms and

dynamics of technological change in the context of global and local forces. Together,

they investigate how regions and firms navigate the interplay between external knowledge

flows and internal capabilities to foster innovation, with particular attention to the green

transition.

The chapters collectively emphasize the importance of geography in shaping innov-

ation outcomes, while also addressing distinct perspectives. The first two chapters are

connected by a focus on geography, studying the relationship between regional innovation

performance, and the external connectivity to global knowledge pools through Foreign

Direct Investments (FDIs). The first chapter focuses on the determinants of recombinant

novelty at the local level, while the second on the process of diversification into green

technological domains. The second two chapters come together around the theme of the

climate transition, and the development of environmentally-sustainable technologies, from

the different perspective of cities in the United States and firms in Europe. In the context

of addressing the climate crisis, environmental innovation is the fundamental element at

the crossroads of growth and emissions reduction. In times of renewed interest in green

industrial policy and the need for implementing strong climate policies - bearing in mind

the potential geographical inequalities generated by the transition - understanding the
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determinants of environmentally-directed technological change is crucial.

The first essay is coauthored with Francesco Quatraro and Alessandra Scandura, and

focuses on recombinant novelty from a regional perspective. The motivation for this

chapter lies in the need to understand the spatial dynamics of recombinant innovation,

as a result of the external connectivity of European regions. Bringing together different

literature streams on the geography of innovation, recombinant growth, and evolutionary

economic geography, we investigate the role of FDIs in fostering the recombination of

knowledge at the local level. Studying patenting activity in European NUTS3 provinces,

between 2003 and 2017, we take a recombinant approach and explore how the connectivity

brought by greenfield FDIs might favour regions in accessing foreign knowledge elements,

in turn stimulating their capacity for recombination and potentially leading to new tech-

nological trajectories. We identify patents which make unprecedented combinations at the

local level, and study their relationship with both inward and outward FDIs. In addition,

we employ a measure of proximity between FDIs and the local knowledge base of the

home regions, as technological distance between internal and external knowledge might

play a significant role in expanding the local technological search space, and in turn foster

recombinant innovation.

The main findings suggest that inward FDIs (IFDIs) are positively associated with

local recombinant novelty, while OFDIs are negatively associated with it, although with

more nuanced results. We uncover a high degree of geographical heterogeneity by explor-

ing the different associations of FDIs depending both on the origin and destination of the

flows, and by observing different samples for EU15 countries and non EU15 countries. We

also find that proximity of FDIs (in both directions) to the the local knowledge base is

negatively associated with recombinant novelty, suggesting that more distant knowledge

elements available to regions through external linkages might be more effective in expand-

ing local recombination possibilities. By employing spatial econometric models, we also

find evidence of different effects in terms of spatial spillovers, contributing to the idea that

the concentration of knowledge returns and recombinant capabilities in space is fostered

by the presence of external connectivity. Finally, we also unpack the functional char-

acteristics of FDIs, finding that greenfield FDIs focused on Research and Development
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(R&D) projects are more positively associated to recombinant novelty, and particularly

so in terms of OFDIs.

The second essay is coauthored with Fabrizio Fusillo, Gianluca Orsatti, Francesco

Quatraro and Alessandra Scandura, and investigates the interplay between the local en-

dowments of skills, and the presence of external knowledge linkages proxied by inward

FDIs. This chapter focuses on the determinants of diversification into green technolo-

gical domains, contributing to the literature of evolutionary economic geography and

eco-innovation. We study a panel of 287 cities (Metropolitan Statistical Areas, MSAs) in

the United States, for the period 2003-2018 and consider IFDIs as agents of technological

change, driving the process of branching into green technologies together with the local

skills composition. We specifically consider FDIs in green-intensive sectors, and explore

the moderating roles of abstract and routine skills in the relationship between FDIs and

green diversification of cities. The interactions between FDIs and the local skills com-

position reveal how absorptive capacities, both potential and realized, contribute to the

integration and exploitation of external knowledge, particularly in green technological

development. The findings suggest that MSAs with higher levels of green FDIs and ab-

stract skills have a greater likelihood of developing new green technological specializations.

Moreover, we show how abstract skills are more important in regions with fewer green

FDIs, acting as a compensatory factor, while routine skills enhance the effects of FDI on

green technological diversification.

The third essay instead takes on the perspective of firms, and investigates empirically

the relationship between climate policy uncertainty (CPU) and directed technical change

(DTC) across European firms. This study is motivated by the need to understand how

uncertainty around climate policy-making influences firms’ innovation choices. By col-

lecting a novel dataset of newspaper articles, and using text-as-data techniques, I develop

new indexes for CPU in four European countries: France, Germany, Italy, and Spain. I

explore how CPU can influence the direction of technological innovation considering both

low-carbon and polluting technologies patents filed by firms. The analysis builds on the

DTC literature, and connects it with that of the empirics of policy uncertainty. I build

sub-indexes for both positive and negative-leaning uncertainty, namely pointing towards
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increased or decreased probability of future stringency, and test econometrically the effects

of CPU on patenting. I adopt an empirical model of DTC and firm-level data matched

with patent portfolios, controlling for the path-dependency in the environmental innova-

tion process. The findings show that firms respond to CPU’s direction in terms of their

technological efforts. Policy uncertainty implying an increase in regulatory stringency, is

positively associated to green innovation, and negatively to polluting patents. On con-

trary, when policy uncertainty indicates a weakening or a setback climate policy-making

firms stick to polluting technologies and divest from green ones. The results highlight that

clear and consistent climate policies are crucial to pushing firms towards green innovation,

and away from polluting innovation, bearing important policy implications for steering

the direction of technological change.

Evolutionary Economic Geography and Economic Complexity are the theoretical and

empirical backbone for the thesis. While the first two essays share a regional perspective

in terms of the empirical analysis, all the chapters focus on innovation as the engine for

economic growth. Methodologically, this work is in line with the tradition of analyzing

innovation employing patent data as its proxy. The thesis investigates how regions and

firms can adapt to the challenges of globalization and climate change, attempting to

provide empirical evidence to policymakers on urgent issues shaping the current policy

debate.
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Chapter 2

Recombinant novelty and Foreign Direct

Investments: evidence from European Re-

gions

Chapter co-authored with Francesco Quatraro and Alessandra Scan-

dura
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Abstract

This work investigates the determinants of technological recombinant nov-
elty at the local level across European regions, focusing on the role of inward
and outward greenfield Foreign Direct Investments (FDIs). We conduct an
empirical analysis on a panel of European NUTS3 regions observed from 2003
to 2017. The results show that inward FDIs are positively associated with
regional technological novelty consistently across several estimations. Out-
ward FDIs are generally negatively associated with technological novelty but
the relationship changes when we account for the geographical distribution
of FDIs and the knowledge intensity of the investments. We also employ
a proximity measure between FDIs and the local knowledge base, which we
find to be negatively associated with novel recombination efforts. The results
of this work are relevant both for the academic discourse on local and non-
local determinants of regional technological performances and for the policy
discussion on the relevance of global connectivity for regional economic de-
velopment.
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2.1 Introduction

Technological novelty has long attracted academic research interest in innov-

ation studies, given its relevance for understanding the rate and direction

of innovation and technological change. The wide body of literature that

has focused on the dynamics underlying the introduction of novelty has pro-

posed two distinct views grounded respectively in Marshallian’s gradualism

and Schumpeter’s saltationism. Accordingly, on the one hand, novelty is

regarded as the outcome of the slow accumulation of variations and improve-

ments in knowledge and technologies; on the other hand, the evolutionary

approach stresses how it stems from a recombination process suddenly leading

to the emergence of new paradigms and major technological breakthroughs

(Antonelli 2007; Strumsky and Lobo 2015).

In recent times, a new wave of empirical studies has focused on analyzing

the economic effects of technological novelty. Understanding technological

novelty is especially important from a geographical perspective because of

its impact on the change of the local economic structure (Quatraro 2012;

Antonelli 2014). Extant literature has documented a positive link between

technological novelty and a firm’s ability to generate impactful innovation

and sustain persistent, innovative efforts (Arts and Veugelers 2015; Carn-

abuci and Operti 2013a). More recently, technological novelty has been found

to be positively connected with an increased likelihood of generating envir-

onmentally friendly patents and developing regional specialization in green
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technological domains (Orsatti, Quatraro and Pezzoni 2020b; Orsatti, Quat-

raro and Scandura 2023).

Because of the proven significance of technological novelty, recent efforts

have also been devoted to enhancing the measurement of technological nov-

elty (Verhoeven et al. 2016) and comprehending potential drivers from a

geography of innovation perspective. Within this line of analysis, consider-

able attention has been given to the composition of local knowledge pools,

particularly the diversity of knowledge and the influence of related versus un-

related variety, as well as to the presence of local highly fungible knowledge

pools, like those characterizing the generation of key enabling technologies

(Castaldi, Frenken et al. 2015; Castaldi and Los 2017; Mewes 2019; Berkes

and Gaetani 2021; De Noni and Belussi 2021; Montresor, Orsatti et al. 2023).

Yet, the literature developed so far has overlooked the role of non-local

drivers for regions’ capability to develop novelty in local contexts. A re-

cent debate has been connecting the literature in evolutionary economic geo-

graphy (EEG) and that of Global Production Networks (GPN), highlighting

gaps and potential complementarities (Yeung 2021; Boschma 2022a). Recent

works in EEG have started to address the gaps, stressing the importance of

foreign-owned firms for regional structural change, measured as the capab-

ility of regions to diversify into new unrelated industrial activities (Neffke

et al. 2018a; Elekes et al. 2019). The present study aims to contribute to

this field of inquiry by connecting the analysis of technological novelty in re-
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gional contexts to the literature on non-local agents of structural change. In

particular, we follow Iammarino (2018) and focus on the impact of regional

connectivity, i.e. the exposure of a place to the inflows and outflows of as-

sets, knowledge, capabilities and expertise from and towards the rest of the

world (Iammarino 2018, p.157), which we measure with global foreign direct

investments (FDIs). These latter can be considered as carriers of different

forms of knowledge through which Multinational enterprises (MNEs) cre-

ate economic connections between territories characterized by heterogeneous

technological, industrial and scientific structures (Iammarino and McCann

2013; Castellani, Marin et al. 2022a).

Combining the well-established recombinant knowledge approach (Weitz-

man 1998) with the economic geography and geography of innovation liter-

ature on MNEs (Iammarino and McCann 2013; J. Cantwell and Iammarino

2005), we contend that FDIs affect the opportunities for local agents to ac-

cess heterogeneous pools of knowledge and hence to implement unpreced-

ented combinations of ideas and knowledge components. In doing so, we

discriminate between the role of incoming and outgoing greenfield FDIs for

regional novelty. Furthermore, we postulate that the potential impact on

the generation of recombinant novelty is related to the extent of similarity

between FDIs and the economic activities of local firms.

Our empirical analysis focuses on European NUTS3 regions over the period

included between 2003 and 2017. We employ panel data models along spa-
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tial econometric ones, uncovering the role of spatial spillovers and adding

geographical nuance to the analysis. Our results show a positive association

between inward FDIs and recombinant novelty of European regions. Out-

ward FDIs are generally negatively associated with local novelty, although

our evidence on this matter is more mixed. We uncover heterogeneity in the

relationship between novelty and FDIs, both due to the knowledge-intensity

of investments, and due to geographical differences within Europe. In addi-

tion, we employ a measure of relatedness-density between FDIs and the local

knowledge base, found to be negatively associated with novel recombination

efforts at the regional level.

The contribution of this work is manyfold. In the first place, our theoret-

ical framework and empirical analysis shift the focus from the usual innov-

ation output measures (e.g. patent counts) to a more comprehensive and

representative measure of technological novelty at the regional level. The

latter mirrors regions’ capabilities to put in place innovative efforts directed

at generating effective new knowledge, which we measure by looking only at

patents entailing unique recombination of technological classes. Secondly, we

stress the relation between regions’ innovative efforts and the extent of their

global connectivity throughout FDIs, hence zooming in at the sub-national

scale to look closer at local technological dynamics, as advocated by recent

works on the topic (see e.g. Iammarino (2018) and Elekes et al. (2019)).

Thirdly, we include in our study both incoming and outgoing FDIs. In par-

ticular, outward FDIs have been largely overlooked both in scholarly com-
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munities and in the policy debate for a number of reasons mostly revolving

around the argument about employment destruction and consequent wage

depression at home (Iammarino 2018). Yet, offshoring is increasing steeply,

notably in advanced economies, hence definitely raising a call for further re-

search on this topic. Fourthly, we explore the heterogeneity of both inward

and outward FDIs, notably with respect to their geographical location and

direction (extra- versus intra-EU) and type of activities (R&D versus non-

R&D activities), which allow to better qualify the relation between regions’

novelty and their global connectivity.

The rest of the paper proceeds as follows. In Section 2.2 we review the

background literature and develop hypotheses. In Section 2.3 we present the

datasets used for the analysis, the variables of interest, and our estimation

strategy. Section 2.4 presents and discusses the results while Section 2.5

provides the concluding remarks.

2.2 Background literature

2.2.1 The role of non-local drivers for regions’ technological nov-

elty

Following the recombinant approach, innovation can be conceived as the

outcome of the incremental search process through which agents recombine

knowledge elements (Weitzman 1998; Nelson and Winter 1982). Novel inven-

tions can be byproducts of existing components recombined in new ways that,
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if successful, open further technological trajectories (Weitzman 1998; Flem-

ing 2001). As a matter of fact, a rich empirical literature has operationalized

indicators of recombinant novelty, capturing unprecedented combinations of

technologies within patents (Arts and Veugelers 2015; Verhoeven et al. 2016;

Arts, Hou et al. 2021).

Technological novelty, defined as the creation of unprecedented combin-

ations of knowledge elements, offers a deeper understanding of innovation

quality compared to standard metrics like patent counts. Berkes and Gaetani

(2021) underlines that unconventional innovations often emerge in densely

populated urban areas, where diverse knowledge pools and frequent interac-

tions foster the recombination of disparate ideas. Similarly, Mewes (2019)

demonstrates that larger metropolitan areas exhibit superlinear scaling in

the production of atypical knowledge combinations, reflecting the enhanced

capacity of these regions to generate novel technologies. These findings rein-

force the idea that fostering technological novelty allows regions to enhance

their recombinant capabilities, ultimately promoting economic growth and

diversification.

Indeed, the search process over the knowledge space results from the cap-

abilities of firms and regions to channel knowledge internally (Carnabuci and

Operti 2013a) and on the availability of external knowledge elements. Like-

wise, Boschma (2017a) underscored the importance of recombinant innov-

ations resulting from the successful combination of both local and external
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knowledge, which can help regions to exit stagnant technological paths and

result in a process of unrelated diversification. Recent empirical works at the

regional level have focused on the role of relatedness and regional capabilities

for recombinant novelty within patents. In addition to the role of relatedness,

scholars have investigated the role of universities (Plunket and Starosta de

Waldemar 2023; Giorgi et al. 2024) and academic inventors (Orsatti, Quat-

raro and Scandura 2024) as agents of technological change, enhancing the

recombination of local and non-local knowledge.

Over the past two decades, the EEG literature has largely investigated

the drivers of growth, innovation and structural change from a geographical

perspective. Starting from Frenken et al. (2007), much work has focused on

the path-dependency of technological and industrial change. The concept of

relatedness has been recognized as a fundamental driver of diversification into

new industrial and technological specializations, from numerous different per-

spectives (Hidalgo et al. 2018). Traditionally, the focus of this literature has

been on the role of regional internal capabilities for developing novel know-

ledge elements. Recent critical readings of this literature have highlighted

the need to connect these findings with the International Business literature

(Iammarino 2018) and that of Global Production Networks (Yeung 2021).

Until recently, the literature had overlooked the staple role external con-

nectivity, through which foreign agents act as non-local drivers of regional

growth and innovation (Iammarino 2018; Boschma 2017a). As explained by

Iammarino (2018): Connectivity, an essential but somehow disregarded di-
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mension of territorial equity and economic development policy, extends far

beyond the idea of ’attractiveness’: connected places are flows recipients as

well as senders.

Local actors embedded in a territory do not only interact within it, but

in a global, networked and complex context that spans well beyond their

geographical boundaries (Yeung 2021). The role of the global connectiv-

ity and its interaction with each peculiar territorial condition has famously

been described as a "local buzz" (Storper and Venables 2004) with "global

pipelines" (Bathelt, Malmberg et al. 2004a). A variety of non-local agents

are responsible for connecting the local economy to global markets, opening

up the possibility to tap into heterogeneous pools of knowledge. Recently,

scholars have started to consider the role of non-local actors in affecting the

local economy, with notable examples including MNEs and migrant inventors

(e.g. Neffke et al. (2018a), Elekes et al. (2019), Crescenzi, Di Cataldo et al.

(2021) and Miguelez and Morrison (2023)).

Iammarino and McCann (2013) highlight that the access to GPNs, facil-

itated by FDIs, enable regions to access external knowledge and resources,

enhancing local innovation capabilities and enabling knowledge spillovers.

FDIs are carriers of different forms of knowledge through which MNEs cre-

ate economic connections between territories characterized by heterogeneous

technological, industrial and scientific structures (Iammarino and McCann

2013; Castellani, Marin et al. 2022a). The connections between firms and
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regions through FDIs can be established in several different forms, rendering

their effects on innovation complex and multifaceted. External linkages can

be created by non-local actors entering the region or by the internationaliza-

tion of firms outside the home region. Importantly, the directionality of flows

- inward and outward - exposes regions to two types of co-existing knowledge

flows that may have heterogeneous effects on local innovation dynamics.

2.2.2 Inward FDIs

Inward FDIs have long been recognized as a key driver of regional growth

(Iammarino and McCann 2013). The positive relationship with regional pro-

ductivity and innovation can be generated through technological transfers

and spillovers to the local innovation system. Traditionally, MNEs have also

been considered as more advanced firms compared to firms which are not

internationalizing. MNEs spend more in R&D, are more productive, and

characterized by a technological superiority and broader expertise if com-

pared to the local ones (Castellani and Zanfei 2007).

Knowledge transfers from the home to the host regions can be of tacit

or non-tacit nature. The latter is the explicit knowledge introduced through

the flow of novel products and services. Domestic firms can learn directly

from MNEs through vertical or horizontal linkages, as non-local MNEs can

integrate in the territory through the local supply chain, directly interacting

with local suppliers, both downstream and upstream (Castellani, Meliciani et

al. 2016). Tacit knowledge, instead, concerns all those components that are

”embedded” and cannot be simply inferred by reverse-engineering products:
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know-how, expertise, company culture, technical standards, requirements for

local producers (Amendolagine, Presbitero et al. 2019). Among others, Gar-

cía et al. (2013) showed how technological spillovers from MNEs to local firms

are a critical component of innovation dynamics and technological upgrad-

ing in local firms present in the host regions. Through FDIs, MNEs can be

vectors of tacit and explicit knowledge components that domestic firms can

absorb, adapt and, crucially for our application, recombine.

Tacit knowledge is often disseminated through informal mechanisms such

as on-the-job training, mentorship, and collaborative problem-solving, as em-

phasized by Ernst and Kim (2002). These informal mechanisms complement

formal channels like structured training programs and standardized proced-

ures in contributing to knowledge transfers. The effectiveness of these mech-

anisms largely depends on the absorptive capacity of local firms—their abil-

ity to recognize, assimilate, and apply new knowledge. FDIs, therefore, can

stimulate regional innovation through local knowledge spillovers, which can

by direct or indirect (labour mobility, buyer-supplier networks, etc.; see for

example Antonietti, Bronzini et al. (2015)). Through these mechanisms of

knowledge transfers, MNEs could therefore increase the local technological

search space, fostering the creation of atypical recombination.

Furthermore, extensive literature has investigated the effect of FDIs on in-

novation through agglomerations (Burger and Meijers 2016). The co-location

of local and non-local actors within the same region can give rise to knowledge

externalities of both Jacobian and Marshallian nature, from which regions
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can benefit (Iammarino 2018). Technology transfers, and the ability to gen-

erate (and profit from) local spillovers, also depends on firms’ capacity to

assimilate and apply new technologies and on the economic environment.

Crescenzi, Gagliardi et al. (2015) find evidence for intra-industry knowledge

spillovers to local firms in the United Kingdom, as a result of greater invest-

ments by MNEs. More recently, Jin et al. (2019) emphasized that regions

with high absorptive capacity—defined as the ability to recognize, assimilate,

and apply external knowledge are more likely to benefit from these technolo-

gical spillovers. Absorptive capacity, hence, enables local firms to incorporate

the new knowledge into their own innovation processes, leading to techno-

logical diversification and a better innovative performance. Y. Huang and

Yan Zhang (2020) also find evidence of firm spillovers in innovation for IFDI

in China.

Outside of knowledge transfer and collaborative effects, another channel

through which inward FDIs are expected to impact innovation in the host

regions concerns the pro-competitive effects in the receiving region. Com-

petition arises over local inputs for the innovation process, for example spe-

cialized labour force, necessary to gain a competitive advantage and increase

productivity (Castellani, Castellani et al. 2006). As reviewed in Antonietti,

Bronzini et al. (2015), many works have focused on the effect of inward FDIs

(both greenfield and M&As) onto the performance of local firms. Increased

competition can push incumbents to a reallocation of resources. Critically in

terms of long and short-term effects, FDIs may have negative effects in the
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short term if the capital reallocation is not fast enough (Antonietti, Bronzini

et al. 2015). At the country level, evidence in this direction is found between

inward FDIs and the complexity index by Antonietti and Franco (2021).

In our case we expect that a new player entering the region could increase

competitive pressure by reducing the space for technological exploitation (es-

pecially given MNEs’ technological superiority), and in the longer term force

local competitors to increase exploration over the technological space, pro-

ducing novel technologies to remain competitive on the market.

Recent empirical evidence from regional-level studies on connectivity and

innovation has been investigating the effects of IFDIs on a variety of outcomes

in Europe. Antonietti, Bronzini et al. (2015) and Ascani and Gagliardi (2015)

found evidence for Italy, showing that IFDIs in services can stimulate patent-

ing at the provincial level. Elekes et al. (2019) bring forward evidence for the

specialization patterns of Hungarian provinces, showing that foreign-owned

firms contribute to unrelated diversification. From a network perspective,

Ascani, Bettarelli et al. (2020), reconstruct the ownership structure of firms

present in Italian regions, finding evidence for the role of connectivity in fos-

tering regional innovation, with important nuances in terms of the structure

of the networks. Ascani, Balland et al. (2020a) add on the spatial and sectoral

heterogeneity in the relationship between FDIs and local innovation. Ob-

serving Italian provinces, they do not find evidence of spatial spillovers from

FDIs to neighbourhood regions. They add nuance to the sectoral spillover

effects, finding that only IFDIs in knowledge-intensive branches of manufac-
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turing ("Science-based" and "Specialised supplier") positively impact other

sectors with inter-industry linkages.

Crescenzi, Dyèvre et al. (2022) sheds light on the effect of spillovers

through greenfield IFDIs in R&D intensive activities, on the emergence of

high-innovation clusters in regions. They find evidence on two mechanisms:

both knowledge spillovers to local firms and the attraction of subsequent IF-

DIs, showing that MNEs can not only directly affect technological change

but also act as catalysts for attracting other foreign players. Similarly, Bello

et al. (2023) also study knowledge-intensive FDIs through both greenfield

investments and M&As. They study the potential increase in availability of

knowledge components due to external linkages, specifically focusing on green

and digital technologies, finding that FDIs can indeed expand the knowledge

base of these regions. In terms of spillovers, two recent papers add nuance on

the internal characteristics that can moderate the effects external knowledge

on local innovation, employing data on Brazilian regions. Garcia, Araujo,

Mascarini, Gomes Santos et al. (2023) find a positive role for FDIs and pat-

enting, while showing that the effect on innovation performances are higher

in regions characterized by a more diverse industrial composition. Garcia,

Araujo, Mascarini, Santos et al. (2024) instead elaborate on the role of two

types of absorptive capacities, showing how both institutional and industrial

capacities (respectively proxied by R&D in universities and firms) can pos-

itively moderate spillover effects.
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While evidence about the IFDIs and innovation is generally positive, re-

cently more mixed results have added nuance in terms of competition effects,

the timing of the dynamics on regional innovation, and the sectoral aspect

of knowledge spillovers (Rojec and Knell 2018). Damioli and Marin (2024),

in Europe, explore this heterogeneity in terms of entry mode (greenfield vs

M&A for European regions) finding a negative effect between greenfield IFDI

and the total amount of patenting. They provide evidence on how greenfield

entry can displace local teams, by hiring more senior inventors, resulting in

a detrimental effect on more junior ones.

Another channel through which IFDIs could be acting on the regional pos-

sibility for recombination, is by introducing competitive pressures, through

market-stealing and resource reallocation. As explained in Aitken and Har-

rison (1999) foreign firms, due to their superior technology and scale, can

crowd out domestic firms by capturing market share and limiting access to

critical inputs. Similarly, Ascani and Gagliardi (2020) emphasize the role of

absorptive capacity, where regions and firms with lower capabilities are more

vulnerable to these effects, as they struggle to compete with technologically

advanced foreign entrants. This displacement may on the one hand hinder

local firms’ productivity and innovation potential, but on the other put pres-

sure for a more exploratory innovation, resulting in atypical combinations in

inventions.

Nevertheless, much of the extant evidence points towards a positive, though

nuanced, effect of greenfield FDIs onto local innovation. Many of these em-
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pirical exercises have focused on aggregate count of patents as an outcome

variable proxying for innovation performance. In contrast with the extant

literature on IFDIs and regional innovation, here we consider the recombin-

ant characteristics of this patents, and how FDIs might be acting as external

linkages for regions, providing them with a larger set of recombination possib-

ilities. Hence, in the case of novelty, we expect that IFDIs, through knowledge

spillovers and technological transfers, are able to introduce novel knowledge

components, broadening the technological search space available for recom-

bination. Moreover, the pro-competitive effects spurred by foreign entry may

also push the incentives of local firms to recombine, increasing explorative

innovation, and in turn driving the generation of local recombinant novelty.

In line with these arguments, we test the following hypothesis for IFDIs:

Hypothesis 1: Inward greenfield FDIs are positively associated with local

recombinant novelty in EU regions.

2.2.3 Outward FDIs

In contrast with IFDIs, OFDI are commonly perceived as a negative phe-

nomenon for the home economy, as linked to the offshoring of production

activities resulting in a destruction of local employment. OFDI policies have

historically been leaning towards the maximisation of net flows, attracting

investments while retaining firms as much as possible within the territory

(Iammarino 2018). However, the effects of OFDIs have been subject to much

less academic attention in comparison with IFDIs, especially when consid-
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ering innovative outcomes and at the regional level (Bathelt and Buchholz

2019). Increasingly, opposing evidence has been brought forward, suggest-

ing that OFDIs might have a positive impact on the home economy. While

on the one hand offshoring of production and job loss could be responsible

for negative outcomes at the regional level, a more nuanced vision of con-

nectivity as a two-way flow of knowledge has been emerging in the economic

geography literature, pointing towards positive effects of internationalization

on the home economy (Crescenzi and Iammarino 2018).

In recent work on firms, Valacchi et al. (2021) finds a positive effect of

internationalization on the patenting activities of MNEs. Another stream of

literature finds similar evidence for the internationalization of Chinese firms,

particularly in the context of the Belt and Road initiative, (e.g. Fu et al.

(2018), Zhou et al. (2019), Xing Li et al. (2021) and Yongmin Zhang et al.

(2024)), and for that of Indian MNEs (Amendolagine, Piscitello et al. 2022;

Reddy et al. 2022). The effects of internationalization, however, are also

subject to a large degree of sectoral and geographical heterogeneity. Recent

critical readings of this literature have cautioned about the ambiguity of these

results in terms of the direction of the effects for Chinese firms (R. Yang and

Bathelt 2022) as a result of empirical limitations, and a lack of focus in the

data on knowledge dynamics.

However, empirical evidence in terms of regional innovation is still scant

and the effect of OFDIs can be ambiguous. Castellani and Pieri (2016) ana-
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lyze the impact of OFDIs on regional productivity in Europe, finding that

OFDIs in manufacturing are negatively associated with productivity growth,

while investments in sales, distribution, and marketing enhance local pro-

ductivity, especially when directed outside the EU. Opposing forces affect

home regions’ performance after firms internationalize, largely depending on

the type of investment, and on the geographical origin and destinations of

the investments. In terms of mechanisms, the first channel between OFDIs

and local innovation is that of reverse knowledge transfers, positively affect-

ing home regions through backward linkages. Similarly to the case of IFDI,

outward connectivity can create the opportunity for tapping into a more di-

verse foreign knowledge base, with internationalizing firms learning abroad

and bringing back novel knowledge components.

Connectivity through internationalization of local firms can open up new

markets for them, increasing efficiency and productivity, exerting a positive

effect not only on the MNEs investing outside of the region, but also in ag-

gregate for home regions and cities (Bathelt, Buchholz and J. A. Cantwell

2023). MNEs themselves can become more productive, learn on international

markets, and become by consequence more innovative and productive within

their home economy. OFDIs are in fact associated with higher economies

of scale and scope, that incentivise investment in R&D activities (Petit and

Sanna-Randaccio 2000). OFDIs also open up the chance for regions to im-

prove their ability to source and exploit foreign knowledge (Fosfuri and Motta

1999). By adapting and interacting in the new environments, MNEs learn
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from the foreign knowledge base and might absorb and recombine in novel

and unexpected ways, increasing the likelihood of discovery (Buchholz et al.

2020). Therefore, as MNEs tend to gain in size and productivity compared

firms remaining in the domestic market (Helpman et al. 2004; Bannò et al.

2014; Bertrand and Capron 2015; Cozza et al. 2015), they might directly

affect the home region themselves through reverse knowledge transfers.

At the regional level, Ascani, Bettarelli et al. (2020) find evidence for

internationalisation of firms as a key mechanism for local learning opportun-

ities through reverse knowledge transfers. However, evidence on OFDIs and

aggregate regional innovation performance is still scant (Castellani, Mancusi

et al. 2015; Iammarino, McCann and Ortega-Argilés 2018; Bathelt and Buch-

holz 2019) and results are mixed. A recent stream of empirical exercises, from

an economic geography perspective, study the relationship between OFDIs

and income levels in the United States. Bathelt and Buchholz (2019) provides

fresh evidence on OFDIs from US cities, showing that they exert a positive

effect on median incomes. One of the channels investigated to explain the

positive role of OFDIs is that reverse knowledge transfers. OFDIs provide

access to foreign knowledge bases, and knowledge flowing backwards not only

enhances own-firm performance but spills over to local agents at home, which

in turn can absorb it and recombine novel elements, in turn increasing me-

dian incomes.

Buchholz et al. (2020) adds on this results by looking at OFDIs’ effects
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on inequality and aggregate income distribution rather then at income only.

They argue that exposure to OFDIs can increase geographical inequality by

the increasing returns to the stock of knowledge in a location. Increasing

returns are also depending on labour markets: the presence of MNEs suc-

cessfully internationalizing exerts a positive effect on the local innovation also

through higher attractiveness to high-skill workers, in turn reinforcing local

knowledge spillovers. If higher-income cities (regions) are apparently dis-

proportionately benefiting from knowledge spillovers, the virtuous (vicious)

circles of accumulation through increasing returns will increase the polariza-

tion of local labour markets and drive up inequality (Bathelt, Buchholz and

J. A. Cantwell 2023). The authors underscore that knowledge dynamics at

the regional level have been under-investigated, and can vary depending on

host location. These aspects provide further motivation for our focus on the

geography of recombinant knowledge, adding evidence on its spatial dynam-

ics.

In contrast to the idea of reverse knowledge transfers and spillovers, the lit-

erature has investigated a competing effect from OFDIs: a "hollowing-out" of

local resources (for a comprehensive review in the case of knowledge-intensive

FDIs, see D’agostino (2015)). The "hollowing-out" occurs when critical in-

novation resources, such as R&D and skilled labor, are relocated abroad,

leaving the home region with diminished capacities to generate technological

advancements. Recent empirical literature shows that the effect could be

negative if the firm-level gains do not offset the aggregate loss of value added
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due to offshoring abroad (e.g. Castellani and Pieri (2016)). In such case, out-

ward FDIs may adversely affect the overall balance of payments and exports

as well as domestic employment and skills (e.g. Crinò (2009) and Gagliardi

et al. (2021)). The offshoring of R&D can result in a gradual substitution

of locations in the innovation process, with demand for high-skill compet-

ence moving outside of the home region. In addition, a detrimental effect

of outward connectivity might take place in case of barriers to (backward)

knowledge flows, impeding the transmission of knowledge from host to home

regions. On the one hand the subsidiary in the host region is exposed to the

novel knowledge elements of the subsidiary, and act as a bridge transferring

them back to the headquarters, which in turn could absorb them and re-

combine them into novel technologies. On the other, barriers could stop this

knowledge flows if the subsidiary is not sufficiently embedded in the MNE

network, or if cultural and institutional differences between locations (and

companies) is too high (D’agostino 2015).

As in the case of IFDIs, geographical heterogeneity also increases the com-

plexity of these mechanisms (Castellani, Castellani et al. 2006; Castellani and

Pieri 2016). Evidence on the geographical spillovers from OFDIs have been

also underinvestigated. In addition, in terms of geographical heterogeneity,

Damijan et al. (2017) also adds nuance when considering emerging regions

in Eastern Europe, in conjunction to the scope of OFDIs. Flows focused on

low-cost production often fail to generate meaningful improvements in parent

firm performance or regional innovation. Their study on new EU member
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states shows that while OFDIs can enhance productivity when targeting ad-

vanced economies, those aimed at cost reduction in less developed countries

often result in minimal knowledge spillovers and limited positive outcomes

for the home economy. In addition, the degree of relatedness and comple-

mentarity can also affect significantly the effects of OFDIs, as shown for the

case of manufacturing and services in European by Ascani, Bettarelli et al.

(2020). Finally, the heterogeneity found in the literature in terms of effects

and mechanisms, depending on the knowledge intensity of sectors, and the

scope of OFDI flows (D’agostino 2015; Cozza et al. 2015; Valacchi et al.

2021; Bathelt, Buchholz and J. A. Cantwell 2023) are very relevant in our

case, considering recombinant novelty.

In summary, we expect two opposite mechanisms in OFDIs to mainly

affect regional recombinant novelty. In the case of a successful and effect-

ive transfer of knowledge from host to home, regions might be tapping into

foreign knowledge pools, and able to recombine foreign knowledge compon-

ents locally. On the contrary, OFDIs might also put regions at risk of a

hollowing-out of innovation processes to foreign locations. Hence, our ex-

pectation is that both phenomena might be happening, and there can be

competing explanations on the potential impact of OFDIs on recombinant

novelty. Therefore, both positive and negative outcomes likely expected:

Hypothesis 2a: Outward greenfield FDIs are positively associated with

(local) recombinant novelty in EU regions.
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Hypothesis 2b: Outward greenfield FDIs are negatively associated with

(local) recombinant novelty in EU regions.

2.2.4 Proximity between FDIs and local capabilities

Having outlined the possible channels through which IFDIs and OFDIs can

affect recombinant novelty, we add on the distance between external and

internal knowledge components. As mentioned, the internal variety and di-

versity characterising regional knowledge composition affects the possibilities

for new combinations, leading to breakthrough innovations (Fleming 2001;

Verhoeven et al. 2016). Castaldi, Frenken et al. (2015) have shown how

both related and unrelated variety, within regions, are the building blocks

for technological recombination. Regions with a higher degree of unrelated

knowledge might be better able to explore new recombination, opening tech-

nological trajectories connecting previously disconnected fields. The transfer

of external knowledge affects this knowledge composition, exposing regions

to a broader set of innovations. Hence, in the context of FDIs, we expect that

the (dis)similarity between local and non-local knowledge components to be

a relevant dimension for the generation of recombinant novelty. As high-

lighted by Boschma (2017a), the gradient of distance between incoming and

local knowledge can influence the potential for knowledge spillovers. Also in

the case of regional recombinant novelty, we consider the distance between

internal knowledge and FDIs as a factor at play. If the knowledge is too

similar, it may not provide enough novelty to spur potential for recombina-

tion: connecting to more distant technologies could expand the search space
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and positively affect recombination probabilities. Elekes et al. (2019) find

that foreign firms showing a higher deviation from the region’s capabilities,

induce more unrelated diversification in regions, as compared with domestic

firms. Increased distance indicates that foreign firms are more likely to in-

duce structural change by introducing unrelated diversification in regions,

and particularly so in peripheral, rather than capital, regions. They find

that a higher distance increases the probability for breakthrough, as IFDIs

are allowing access to knowledge distinct from the region’s knowledge base.

In our context, we also expect that a larger expansion in the search space

can lead to the generation of novel recombination. Building on these in-

sights, we propose the following hypothesis to test the relationship between

the proximity of IFDIs to the local knowledge base and the generation of

recombinant novelty:

Hypothesis 3 : The proximity between IFDIs and the local knowledge

base is negatively associated with recombinant novelty.

A symmetric reasoning could be applied in the case of the proximity

between the host knowledge base and OFDIs: the distance between OFDI

and foreign knowledge would be expected to be positive, as the home region

would be increasing the space for exploration tapping into a more distant

knowledge base abroad. However, as explained in more detail in the next

Section, we can only observe the relationship between home knowledge base
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and the OFDIs originating from there. While the role of distance is rather

intuitive in the case of IFDIs, that between home knowledge base and OFDI

is less so. A higher technological proximity between the OFDI and the local

knowledge base indicates that the MNE is more embedded in its regional

innovation system, playing a more central role within the technological struc-

ture. Firms’ centrality within the regional productive structure, on the one

hand, might mean that the MNEs going on the international markets through

OFDIs is more productive, and therefore more likely to effectively transfer

knowledge through backward linkages (Bathelt and Buchholz 2019). In this

case, the proximity of OFDIs to the regional knowledge base would exert a

positive effect on recombinant novelty. On the other hand, if the dominating

effect is instead the "hollowing-out" of local resources, a higher degree of

proximity between MNEs and their region’s technological production could

increase the negative effects on the home economy. In this case, in terms

of incremental innovation, loosing more central elements would deplete even

more knowledge resources in favour of foreign regions. As mentioned in the

previous section, a vicious circle (Bathelt, Buchholz and J. A. Cantwell 2023)

could be triggered within the home labour market. Triggered by OFDI of

(technologically) highly embedded firms, closer to the core of the technolo-

gical structure of the region, the "hollowing-out" could be further reinforced

by loss of high-skilled workers, decreasing local knowledge spillovers and the

possibility of effectively recombine knowledge. For these reasons, the ex-

pectations in terms recombinant novelty on the distance between OFDIs and

regional knowledge are less clear-cut, and mirror our expectations about the
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role of OFDIs, leading us to the following alternative hypotheses:

Hypothesis 4a: The proximity between OFDIs and the local knowledge

base is positively associated with recombinant novelty.

Hypothesis 4b: The proximity between OFDIs and the local knowledge

base is negatively associated with recombinant novelty.

2.3 Empirical framework

2.3.1 Data and variables

We test the hypotheses developed in the previous Section, and investigate

the relationship between recombinant novelty and FDIs, building a balanced

panel dataset for 1136 European NUTS3 regions, over the period 2003-2017.

The choice of this time-frame is related to the availability of FDI data, which

are only available starting from 2003. We employ patent data to proxy for

the innovative activity of regions, and construct indicators of recombinant

novelty. In particular, we rely on the OECD REGPAT database, collecting

patent applications to the European Patent Office (EPO). REGPAT provides

geolocated data, at the NUTS3 European level, for both patent inventors and

applicants. Based on the location of inventors, we assign patents to NUTS3

provinces, double-counting patents collaboratively produced across different

regions.
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We construct our dependent variable as the number of patents that com-

bine originally pairs of technologies, following Verhoeven et al. (2016) and

Orsatti, Quatraro and Scandura (2023). A patent can be filed to the EPO un-

der a set of different technological codes, classified through the Cooperative

Patent Classification (CPC). First, we compare all the unique combinations

of 4-digit CPC codes attributed to a given patent with all the unique com-

binations appeared before that patent, within that same region. The logic of

local novelty is that a patent can be recombining for the first time a techno-

logy for that region, and does not necessarily need to be novel for the whole

set of patents observed. We rely on 4-digit CPC codes rather than lower

digits, in order to avoid inflating the novel patents that combine very similar

technologies. Based on this notion, we construct the indicator of recombinant

novelty (variable name: Novelty), which will serve as our dependent variable

throughout the analysis, as the number of novel patents for NUTS3 regions,

between 2003 and 2017.

In terms of indicators of recombinant novelty, similar methodologies have

been applied by Mewes (2019) and Berkes and Gaetani (2021), who analyzed

atypical combinations in metropolitan areas, and by Montresor, Orsatti et

al. (2023), who explored regional recombinant capabilities to generate tech-

nological novelty. The choice to focus on a local indicator of recombinant

novelty reflects the need to capture how regions adapt and recombine know-

ledge in ways that are unique to their contexts. This approach builds on

recent works emphasizing the importance of measuring innovation quality
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rather than quantity, such as through the creation of unprecedented tech-

nological combinations within a region. Local measures capture the unique

interplay between external flows and the existing regional knowledge base,

driving place-specific innovation (Iammarino 2018) and the potential emer-

gence of new local varieties. Future extensions could incorporate broader

indicators, such as those capturing novelty at the national or global levels

could provide further insights into this dynamics.

We create FDI indicators using the Financial Times’ fDiMarkets database.

This database contains information about greenfield FDI flows, observed at

bilateral investment level, collected from the year 2003 onward. Greenfield

FDIs are cross-border investment projects for which the firm is opening a

new establishment in a foreign country, rather than acquiring or merging

with already existing firms. As discussed in Castellani and Pieri (2016), our

main estimates refer to the association between novelty and newly estab-

lished projects, one of several types of external linkages through which firms

can tap into foreign knowledge. For each project, fDiMarkets provides in-

formation on the level of capital investment (CAPEX), as well as a sectoral

classification, which we reconcile with the North American Industry Classi-

fication (NAICS) classification.

We exploit information about FDIs addresses (provided at the city-level)

for investing companies and target locations in order to assign each project

with its target (IFDI) or source (OFDI) in a NUTS3 region. We aggregate
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information about FDI flows into several variables. We work out our main

FDI regressors as counts of projects, according to the permanent inventory

method, in order to account for the fluctuations, spuriousness and seasonal-

ity in yearly FDI flows for NUTS3 regions (Albulescu and Goyeau 2019). In

addition, as mentioned in the previous Section, this also allow us to capture

the compounding effects of different projects, which are likely interacting and

accumulating over time, impacting the regional innovation system at differ-

ent speeds. In this sense, this also help us reducing the measurement noise

from fDiMarkets, projects are registered in the database when announced:

each project might take different time to be completed and exert an effect

on local knowledge recombination.

While our focus is on on greenfield FDIs as drivers of recombinant nov-

elty, the distinction between greenfield FDIs and M&As warrants further

discussion. Greenfield FDIs are typically associated with the introduction of

entirely new operations, which may offer opportunities for knowledge creation

and recombination from the ground up. However, M&As could also play a

significant role in facilitating knowledge spillovers (Javorcik 2004; Valacchi

et al. 2021; Damioli and Marin 2024). The choice to prioritize greenfield

FDIs in this analysis stems from their data availability and clarity as direct

indicators of external knowledge flows. Nonetheless, future research could ex-

plore the comparative relationship of greenfield and M&A investments with

innovation quality, such as technological novelty (Mewes 2019; Berkes and

Gaetani 2021).
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Table 2.1: Variables’ description

Variable Description Source

Novelty Count of patents with (locally) novel recom-
binations of CPC4 technological codes

REGPAT (Spring 2022)

IFDI Count of flows of inward FDIs into focal re-
gion, cumulative stocks.

FDIMarkets (FT Intelli-
gence)

OFDI Count of flows of outward FDIs out of focal
region, cumulative stocks.

FDIMarkets (FT Intelli-
gence)

PopDensity Population Density (persons per square kilo-
meter)

ARDECO

GDPpercapita Gross Domestic Product per capita, in euros
per person

JRC Urban Data Platform

Reldens In Relatedness Density of the local technolo-
gical base around inward FDIs

FDIMarkets (FT Intel-
ligence) and REGPAT
(Spring 2022)

Reldens Out Relatedness Density of the local technolo-
gical base around outward FDIs

FDIMarkets (FT Intel-
ligence) and REGPAT
(Spring 2022)

KnowledgeStock Knowledge Stock - cumulative stock of pat-
ents

REGPAT (Spring 2022)

Variety Ratio between Unrelated and Related Vari-
ety (Castaldi et al. 2015)

REGPAT (Spring 2022)

RegSpecialization Regional specialization, calculated as re-
vealed comparative advantage, into employ-
ment in manufacturing sectors (B-E), ex-
pressed as a dummy variable (above or below
1)

ARDECO

Our key explanatory variables, therefore, are based on the number of

projects flowing into (or out of) European regions (respectively IFDI and

OFDI). An advantage of this measure for our framework, as opposed to

summing up capital expenditures, is that counts better able to capture the

number of distinct linkages established by regions, rather than capturing the

size of the investments. While these are the preferred explanatory variables,

relying on counts of projects does not allow for depreciation or disinvestments

in the capital stock of the region. We ensure that our results are not influ-

enced by this construction, by running a battery of robustness checks with
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FDI variables constructed in different ways1, confirming our main estimates.

Next, in order to investigate the role of distance between FDIs and the

knowledge base of home regions, and test hypotheses 3 and 4, we build a

measure of relatedness density (Hidalgo et al. 2018) around FDIs. This meas-

ure reflects the average share of local technologies that are related to the cu-

mulative number of FDI projects in that region. We work out two variables

for inward and outward flows (variable names: ReldensIn, ReldensOut).

Given an investment entering or leaving a region, our relatedness measures

take into consideration the share of technologies within that region which are

related to that investment. In order to compare the technological content of

FDIs to the local technological capabilities, we employ crosswalks between

sectors and technologies provided by Lybbert and Zolas (2014b), and map

the sector of each FDI to 4-digit technological codes. In turn, we build a

symmetric proximity matrix between technologies, in which we rely on all

the patents and CPC codes in REGPAT to calculate pairwise proximities.

Based on all the patent applications in the database, we calculate the min-

imum conditional probability of co-occurrences:

ϕi,j = min{P (RCAxi|RCAxj), P (RCAxj|RCAxi)} (2.1)

ϕi,j is a proximity matrix of technology-technology occurrences, and sym-

metrically defines the technological-space Hidalgo et al. (2018). We define
1Robustness checks include discounted stocks of capital expenditures and stocks of inflows net of

outflows
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the matrix ψi,r,t for technology i in region r at year t as proposed in Boschma,

Heimeriks et al. (2014), obtaining the relatedness measures for each region-

technology pairs:

ψi,r,t =

∑
j∈r,j ̸=i ϕi,j∑
j ̸=i ϕi,j

(2.2)

ψi,r,t represents the relatedness between each technology and the rest of

the technologies in the region (i.e. its knowledge base). In turn, we aggregate

ψi,r,t as to the region-year level, in order to capture the average relatedness-

density around FDIs. In Equation 2.3 we calculate ωi,r,t as the number

of FDIs in technological category i, for that region and year. Finally, we

calculate the relatedness-density vector as the average relatedness density

around the FDIs. For region r at time t this will be expressed as:

Reldensr,t =

∑
j ̸=i ωi,r,tψi,r,t∑

i ̸=j ωi,r,t
(2.3)

The count is based on the count of (cumulative) FDI projects, consist-

ently with our main regressors for both IFDI and OFDI, and captures the

evolution over time of the relatedness density around FDIs. In summary, the

region-year vector that we obtain represents the average relatedness that the

technological basis of a given region has with respect to inward and outward

FDIs. Therefore, it ranges between 0 and 1, where the zeros might also be due

to the absence of FDIs. As mentioned in Section 2.2.4, this measure is more

intuitive for the case of IFDI, as it measures the average share of technolo-

gies related to the technologies of the incoming FDIs. In the case of OFDI,
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instead, the measure reflects how related the knowledge base in the home

region is to the knowledge of the OFDI moving outside of it. In this sense,

we rely on the diversity of FDIs in interacting with regional knowledge bases,

without making assumptions about the composition of the structure of the

foreign knowledge-base. This measure reflects the distance between FDIs and

regions, as opposed to the bilateral distance between region-region knowledge

bases. By adopting a similar approach to relatedness-density and worldwide

regionalized patents, future work could explore the (bilateral) technological

distance between host and home regions, connected through FDIs, in spur-

ring recombinant novelty.

Additionally to recombinant novelty and FDI variables, we also build a

set of controls. First, we create a variable for the total stock of patents in

the region (variable name: KnowledgeStock), calculated using the invent-

ory rule with no discount rates.2 This allows us to control for the total

amount of patents, with respect to the novel-only patents as well as for the

size-effect of the innovation system. Next, we build a control for population

density (PopDensity, population per square kilometer), capturing the effect

of agglomeration economies. Furthermore, we control for GDP per capita in

order to account for the level of development of the region (GDPpercapita).

We also create a variable for the composition of knowledge variety at the

local level. We follow previous work (Frenken et al. 2007; Castaldi, Frenken

et al. 2015) in order to build entropy-based measures of unrelated variety. In
2In robustness checks, we test different discount rates, at 10% and 20%.
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our models explaining recombinant novel patents, it controls for the size of

technological classes that are distant enough from each other and that are

available in the local innovation system, affecting the probability to generate

recombiant novelty. Regions might combine to different degrees both related

and unrelated variety (Castaldi, Frenken et al. 2015). We create an indicator

reflecting the relative importance of unrelated variety (UV) over related vari-

ety (RV) expressed as the ratio of UV over RV. Finally, in order to control

for the regional industrial base composition (RegSpecialization), we build

a control for specialization in manufacturing employment in the region. We

calculate the revealed comparative advantage, using employment data, from

ARDECO database, for the NUTS3 regions in manufacturing sectors (B-E).

We dichotomize this indicator as a dummy variable, capturing regions above

or below median values for specialization in manufacturing. In Table 2.1 we

provide a summary of the main variables employed in the analysis, while in

Table 3.2 we provide the descriptive statistics for our final dataset. In Fig-

ure 2.1 we show the geographical distribution of Novelty, IFDI and OFDI.
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2.3.2 Methodology

In order to test our hypotheses, we estimate the following baseline model,

regressing the recombinant novel patents on FDI variables and a set of con-

trols:

yi,t = α + β1FDIi,t−5 + Xi,t−5β + γi + θt + ϵi,t (2.4)

where:

• γi are time-fixed effects;

• θt are region-fixed effects;

• X is a vector of control variables;

• ϵi,t is the idiosyncratic error term

Our estimation strategy relies on a set of fixed effects in order to control

for region and time-specific factors affecting the generation of recombinant

novelty, in which we test the battery of FDI variables constructed in the

previous subsection. Standard errors are clustered the NUTS3 level. Given

that both patents-based indicators FDIs variables suffer from volatility, es-

pecially at a highly granular level like NUTS3 regions. In order to account

for the high volatility of patents at such a fine-grained geographical level,

we run our main estimates by employing a 4-years moving average of both

dependent and independent variables. In robustness checks, we test differ-

ent windows for moving averages.3 All the variables are constructed at the
3As robustness, we also run models with an aggregation in rolling-sums of novel patents, avoiding the

use of moving averages on dependent and independent variables, finding consistent results.
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(a) Stock of IFDIs 2003-2017 (log scale) (b) Stock of OFDIs 2003-2017 (log scale)

(c) Recombinant Novel patents (log scale)

Figure 2.1: IFDIs, OFDIs and local recombinant novelty in NUTS3 regions (2003-2017)
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NUTS3 level over the period 2003-2017, and enter the estimation in log form.

Importantly, all the variables on the right-hand side are lagged by five

years. The timing of effects when considering the nexus between FDI and

innovation might be crucial, leading us to choose this specification for three

reasons. First, while greenfield FDIs are registered in the fDiMarkets at

announcement, it takes time for them to be realized, and start affecting

the local innovation system. Second, recombinant innovation arguably takes

some time to materialize, as knowledge has to be absorbed and further re-

combined. From a theoretical point of view, as detailed in Section 2.2, the

effects of FDI projects are also likely to compound in time, and the inter-

action between external and internal knowledge within the home innovation

system is likely to require time to materialize and translate into recombinant

novelty, leading us to assume at least a 5-years lag. From an econometric

standpoint, lagging independent variables also reduces potential endogeneity

problems due to the simultaneity bias and of reverse causality. Regions with

a more diverse knowledge pool and characterized by higher levels of local

recombinant innovation are also more likely to attract IFDIs, or be home

economies for more competitive firms engaging in OFDIs. Despite theoret-

ical and econometric reasons in running our baseline estimates with a 5 years

lag structure, in robustness checks we dive deeper into the timing of effects

and run several specifications with different lag structures.
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2.4 Results

2.4.1 Main results

We estimate our baseline models by means of two-way fixed effects OLS re-

gressions, with both time and NUTS-3 region fixed effects, in 1096 NUTS3

regions between 2003 and 2017. Following Aghion, Akcigit et al. (2019), we

correct for the zero inflation in FDIs by building a dummy variable that turns

positive if the number of FDIs is equal to 0, and having the continuous FDI

variable turn 0 to avoid logarithms of null values. This dummy captures the

possible structural difference between NUTS3 regions lacking FDIs or having

them, always significant and not reported.

In Table 2.2 we regress recombinant-novel patents against IFDI, OFDI

and the set of control variables detailed in the previous Section. Columns

1-5 add stepwise the set of controls for IFDI: in line with hypothesis 1,

inward FDIs are positively associated with recombinant novelty, suggesting

that external knowledge flows to the focal regions. In columns 6-10, instead,

we regress recombinant novelty against OFDI, and find a negative and sig-

nificant association, in favor of hypothesis 2b and in contrast with hypothesis

2a. The magnitude of the coefficients suggests a small but significant elasti-

city, with a 1% increase in the IFDIs being associated with a 0.04% increase

in the number of novel patents.
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Also the rest of predictors are in line with our expectations. PopDensity,

capturing the agglomeration dynamics, is always positive and significant.

The measure for V ariety (the ratio between UV and RV) also seems pos-

itively associated with novelty. This reflects the idea that the higher the

relative importance of unrelated variety in the regional knowledge compos-

ition, the larger the possibilities for novel and unprecedented combinations.

Also the control for GDP per capita is positive and significant in all specific-

ations. Finally, our control for regional specialization (RegSpecialization)

is also positively and significantly associated with local recombinant novelty.
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Table 2.2: OLS two-way FE

Novelty
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

IFDI 0.0512∗∗∗ 0.0506∗∗∗ 0.0487∗∗∗ 0.0435∗∗∗ 0.0434∗∗∗
(0.0163) (0.0162) (0.0162) (0.0159) (0.0159)

OFDI -0.0422∗∗∗ -0.0415∗∗∗ -0.0395∗∗∗ -0.0440∗∗∗ -0.0441∗∗∗
(0.0146) (0.0145) (0.0145) (0.0142) (0.0142)

PopDensity 0.7052∗∗ 0.6794∗∗ 0.7075∗∗ 1.254∗∗∗ 1.262∗∗∗ 1.080∗∗∗ 1.049∗∗∗ 1.060∗∗∗ 1.632∗∗∗ 1.642∗∗∗
(0.2986) (0.2983) (0.2981) (0.3062) (0.3077) (0.2997) (0.2991) (0.2986) (0.3085) (0.3101)

KnowledgeStock 0.0420 0.0466 0.0030 0.0029 0.0401 0.0448 -0.0012 -0.0013
(0.0328) (0.0325) (0.0318) (0.0318) (0.0329) (0.0326) (0.0318) (0.0318)

Variety 0.7116∗∗ 0.5026 0.5034 0.6782∗∗ 0.4517 0.4525
(0.3163) (0.3102) (0.3102) (0.3151) (0.3073) (0.3073)

GDPpercapita 0.9357∗∗∗ 0.9361∗∗∗ 0.9730∗∗∗ 0.9735∗∗∗
(0.1405) (0.1406) (0.1406) (0.1406)

RegSpecialization 0.1198∗∗∗ 0.1285∗∗∗
(0.0252) (0.0249)

Observations 7,952 7,952 7,952 7,952 7,952 7,952 7,952 7,952 7,952 7,952
R2 0.98222 0.98225 0.98231 0.98283 0.98283 0.98219 0.98222 0.98228 0.98284 0.98284
Within R2 0.01218 0.01403 0.01764 0.04635 0.04643 0.01095 0.01262 0.01588 0.04706 0.04715

region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clustered (region) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: Number of novel patents in NUTS3 regions. IFDI is the cumulative count of inward FDI projects in the region. OFDI is the cumulative count of
number of outward FDI projects from the region. Explanatory variables are lagged by five years. Continuous explanatory variables are log-transformed, applying
the inverse hyperbolic sine function. All models are estimated through two-way fixed effects OLS estimators. Heteroskedastic-robust standard errors, reported in
parentheses, are clustered at the NUTS3 level.
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We turn to testing hypotheses 3 and 4a/4b, concerning the distance

between external knowledge (respectively of IFDI and OFDI) and the local

knowledge base, as proxied by the relatedness-density measure constructed in

Section 2.3. In Table 2.3 we show the results of the estimations around both

IFDI and OFDI, in columns 1-5 and 6-10 respectively. In line with the

expectations laid out in hypothesis 3, relatedness around IFDI is negatively

associated with local recombinant novelty. This indicates that FDIs are likely

to feed the generation of novelty at the local level, as long as investments are

targeted to activities that are loosely related with the technological domains

in which the region is specialized. Foreign-knowledge inputs too closely re-

lated to the local technological base, could fail to provide new components

through knowledge transfers, necessary to generate novel recombination, and

maybe even reinforce existing path-dependence.

By contrast, relatedness-density around OFDIs is negatively and signi-

ficantly associated with local recombinant novelty in the home region. The

negative coefficients are in line with the findings for the competing hypo-

theses on the role of OFDIs, and seem to support hypothesis 4b, and in

contrast with hypothesis 4a. The distance between OFDIs and the special-

izations in the home knowledge base is negatively associated with novelty.

The higher the proximity between OFDI firms and the core of the special-

izations of the focal region, the more negative the association with novelty,

indicating that hollowing out by very central firms could bear worse impacts

than more peripheral ones. As mentioned in Section 2.3.1, this measure of
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outward relatedness only concerns the proximity of the home knowledge base

around OFDIs, and does not consider the characteristics of the host economy.
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Table 2.3: OLS two-way FE

Novelty
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Reldensin -0.3899∗∗∗ -0.3853∗∗∗ -0.3713∗∗∗ -0.3394∗∗∗ -0.3412∗∗∗
(0.1012) (0.1014) (0.1004) (0.0998) (0.0999)

Reldensout -0.4057∗∗∗ -0.3987∗∗∗ -0.3846∗∗∗ -0.3762∗∗∗ -0.3775∗∗∗
(0.1091) (0.1087) (0.1077) (0.1078) (0.1079)

PopDensity 0.9408∗∗∗ 0.9110∗∗∗ 0.9312∗∗∗ 1.463∗∗∗ 1.473∗∗∗ 0.8506∗∗∗ 0.8238∗∗∗ 0.8466∗∗∗ 1.387∗∗∗ 1.397∗∗∗
(0.2861) (0.2861) (0.2859) (0.2957) (0.2972) (0.2873) (0.2874) (0.2871) (0.2973) (0.2987)

KnowledgeStock 0.0433 0.0479 0.0032 0.0030 0.0409 0.0454 0.0002 0.0000
(0.0330) (0.0326) (0.0319) (0.0319) (0.0328) (0.0324) (0.0317) (0.0317)

Variety 0.7235∗∗ 0.5066 0.5074 0.6851∗∗ 0.4645 0.4653
(0.3165) (0.3099) (0.3099) (0.3146) (0.3074) (0.3074)

GDPpercapita 0.9528∗∗∗ 0.9532∗∗∗ 0.9605∗∗∗ 0.9609∗∗∗
(0.1408) (0.1408) (0.1408) (0.1408)

RegSpecialization 0.1438∗∗∗ 0.1379∗∗∗
(0.0256) (0.0250)

Observations 7,952 7,952 7,952 7,952 7,952 7,952 7,952 7,952 7,952 7,952
R2 0.98217 0.98221 0.98227 0.98281 0.98282 0.98224 0.98227 0.98233 0.98288 0.98288
Within R2 0.00978 0.01175 0.01548 0.04540 0.04551 0.01363 0.01538 0.01872 0.04915 0.04925

region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clustered (region) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: Number of novel patents in NUTS3 regions. Reldensin is the relatedness density of regional knowledge base around inward FDIs in the region.
Reldensout is the relatedness density of regional knowledge base around outward FDI projects from the region. Explanatory variables are lagged by five years.
Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function. All models are estimated through two-way fixed effects OLS
estimators. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the NUTS3 level.
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Overall, our baseline estimates are in line with the idea that IFDI can

stimulate recombinant novelty, through knowledge transfers increasing local

spillovers, or through competitive effects within the home economy, with

this impact increasing with the technological distance between FDIs and the

local knowledge base. In contrast, we find evidence suggesting a potential

hollowing-out of local resources through OFDI, with regions loosing the po-

tential for generating recombinant novelty, loss magnified by the relatedness

of OFDIs to the technological structure of the home region.

2.4.2 Heterogeneity

We add evidence on the spatial dimension of knowledge spillovers, which can

give rise to Jacobian and Marshallian externalities at the local level, spurred

by the agglomerations of FDIs (Burger and Meijers 2016) or in neighbour-

hood regions, contributing to local recombinant search process (Boschma,

Martín et al. 2017). Our focus on NUTS3 regions is rooted in the need to

understand FDIs’ effects with greater nuance, and in its geographical het-

erogeneity, as knowledge transfers do not happen in a "territorial vacuum",

but in highly contextualized local dynamics (Crescenzi and Iammarino 2018).

While many studies have been performed either at a national level or for sets

of regions of a single EU country, we add evidence at a fine-grained geograph-

ical level, exploring the core-periphery structure of regional innovation and

FDI patterns within Eastern and Western European regions. CH2/figures

2.1a and 2.1b show the average (log) of greenfield IFDI and OFDI. As
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far as inward FDIs are concerned, we observe that their spatial distribution

partly overlaps with the traditional European core-periphery economic geo-

graphy. The bulk of outward FDIs is mainly originating from the European

core regions, which include central-northern regions and their global capital

cities.

We explore geographical heterogeneity, breaking down FDIs according to

the origin and destination of the flows. We build variables, for both inward

and outward FDIs, concerning European regions only (EUFDI), or rest-of-

the-world only (ROWFDI). This latter measure counts IFDIs coming from

the rest of the world into European regions (ROWIFDI) or OFDIs leaving

the continent (ROWOFDI). In addition, we build variables distinguishing

between EU15 and nonEU15.4 nonEU15 countries in the sample, and build

variables with the same logic.5

Given the relevance of sectoral, functional, and value-chain aspects in the

study of FDIs and innovation (for discussions, see Iammarino (2018) and

Ascani, Bettarelli et al. (2020)), we also consider the knowledge-intensity of

FDIs as a driver of recombinant novelty. We exploit the functional classifica-

tion provided by fDi Markets, allowing us to distinguish knowledge-intensive

projects involving R&D efforts, which as show in the previous section might
4While naming the variable EU15, we exclude the UK from our sample, counting into this group:

Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands,
Portugal, Spain, Sweden and Norway

5The countries included are Bulgaria, Croatia, Cyprus, Czech Republic, Estonia, Hungary, Latvia,
Liechtenstein, Malta, Poland, Romania, Slovakia. We exclude from the analysis, due to the lack of time-
consistent regional data for control variables: Lithuania, Slovenia, Montenegro, Iceland, North Macedonia
and Bosnia-Herzegovina.
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be a source of heterogeneity in their relationship with recombinant novelty,

for both inward and outward flows. Finally, we test a complementary measure

for R&D FDIs, counting only FDIs which are not classified as R&D projects.

As done for the previous measures, we build several variables for nonR&D

FDIs according to their geographical variation (EU and ROW; EU15 and

nonEU15). We provide complete list and description of the set of FDI vari-

ables that we are testing in Appendix Table A.1.

In Table 2.4 In columns 1-6, we focus on the same sample of European

NUTS3 regions, and show first the same coefficients for FDIs coming from

anywhere (within and outside the EU), in the first two columns. In turn, we

break down FDIs by origin and destination, as those coming from (or going

to) European countries (EUIFDI, EUOFDI, columns 3 and 4), and those

coming from or going to the rest of the world (ROWIFDI, ROWOFDI,

columns 5 and 6). The positive association for IFDIS remains positive and

significant for within-EU IFDIs, while only significant at the 10% confidence

for FDIs coming from outside-Europe regions (ROWIFDI). OFDIs, in-

stead, seem to be more significantly associated to novelty when investments

are flowing outside of the EU, with coefficients remaining negative in both

cases.

Zooming into European flows, we further subset the analysis to European

flows directed to (or coming from) EU15 vis-à-vis non-EU15 countries. In

columns 7-10, we present estimates splitting the sample for EU15 only coun-
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tries, and testing separately investments in (from) other EU15 countries or

non-EU15 countries. The effects seem to be driven by the regions within

EU15 countries, again in the line of hypothesis 1 and 2b, with a positive

coefficient for EU15IFDI and negative for EU15OFDI. In contrast, when

considering only non-EU15 regions as a sample for the regressions (columns

11-14) the effects are insignificant, except for the positive coefficient, at the

10% significance level and with a larger magnitude, for investments coming

from EU15 regions (column 11). Interestingly, the negative association with

OFDIs, in this case, is always insignificant, suggesting that OFDIs at a lower

level of technological capacities in non-EU15 regions, might not have negative

effects on recombinant novelty. Additionally, we speculate that these results

might be speaking to different dynamics in terms of competitive effects. In

EU15 countries, outward flows from firms could result in a loss of knowledge

elements to recombine, the opposite is true for non-EU15 regions. While the

former have longer been exposed to the Single Market, the latter might not

be loosing knowledge elements due to the hollowing-out, when MNEs gain

access to EU15 knowledge pools.
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Table 2.4: OLS two-way FE - FDI variables

All EU EU15 nonEU15
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

IFDI 0.0434∗∗∗
(0.0159)

OFDI -0.0441∗∗∗
(0.0142)

EU IFDI 0.0583∗∗∗
(0.0165)

EU OFDI -0.0577∗∗∗
(0.0146)

ROW IFDI 0.0281∗
(0.0158)

ROW OFDI -0.0353∗∗
(0.0176)

EU15 IFDI 0.0365∗∗ 0.0921∗
(0.0159) (0.0551)

EU15 OFDI -0.0306∗∗ 0.0391
(0.0134) (0.0587)

nonEU15 IFDI 0.0266 0.0396
(0.0170) (0.0611)

nonEU15 OFDI -0.0144 -0.0109
(0.0154) (0.0639)

Full controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7,952 7,952 7,952 7,952 7,952 7,952 6,426 6,426 6,426 6,426 1,526 1,526 1,526 1,526
R2 0.98283 0.98284 0.98286 0.98286 0.98277 0.98276 0.98402 0.98401 0.98401 0.98397 0.95094 0.95048 0.95072 0.95042
Within R2 0.04643 0.04715 0.04772 0.04779 0.04326 0.04217 0.01800 0.01728 0.01702 0.01507 0.08773 0.07912 0.08360 0.07798

region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clustered (region) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: Number of novel patents in NUTS3 regions. IFDI is the cumulative count of inward FDI projects in the region. OFDI is the cumulative count of
number of outward FDI projects from the region. The geographical breakdown of variables is computed as the flows, for the focal NUTS3 regions, only coming
from (or going to) European countries (EUFDI), non-European countries (ROWFDI) or to respectively EU15 and nonEU15 countries, as detailed in section
2.3. Explanatory variables are lagged by five years. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function. All
models are estimated through two-way fixed effects OLS estimators. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the NUTS3
level.
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The estimates presented so far considered any type of FDI investment,

without distinguishing their nature, particularly in terms of knowledge-intensity.

As mentioned above, the knowledge intensity of these projects might be cov-

ering for additional heterogeneity, given the different nature of R&D invest-

ments, which might exert a more positive effect especially for OFDIs, in

contrast with the offshoring of production activities. Hence, we exploit in-

formation from fDiMarkets, and only consider those in R&D activities. In

Table 2.5, we present similar estimates as in the previous Table, but focus-

ing on investments concerning new R&D facilities. In column 1, the inward

coefficient for total projects is not significant, while it remains negative and

significant for outward total flows, in column 2. Once again, these effect

seem to be driven by within-EU flows, while ROWIFDI and ROWOFDI

are not significant. Looking at the within EU15 dynamics, the coefficient for

EU15IFDI (IFDIs flowing into EU15 regions, from EU15 regions - column

7) remains highly significant and positive, with a coefficient larger in mag-

nitude. In comparison with total investments presented in the previous Table,

OFDI are never significant when considering within-EU FDIs in R&D. In

comparison with total investments, knowledge-intensive OFDIs are not show-

ing potential for a hollowing-out of local knowledge resources. While positive

in aggregate, the breakdown does not show negative effects of OFDIs.
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Table 2.5: OLS two-way FE - FDI variables for Research and Development Projects

All EU EU15 nonEU15
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

IFDI 0.0244
(0.0249)

OFDI -0.0410∗∗
(0.0172)

EU IFDI 0.1108∗∗∗
(0.0302)

EU OFDI -0.0683∗∗∗
(0.0202)

ROW IFDI -0.0292
(0.0254)

ROW OFDI 0.0239
(0.0381)

EU15 IFDI 0.1136∗∗∗ 0.0565
(0.0328) (0.0614)

EU15 OFDI 0.0039 -0.3717
(0.0220) (0.3451)

nonEU15 IFDI 0.0222 -0.2398∗
(0.0466) (0.1307)

nonEU15 OFDI 0.0011 0.3025
(0.0285) (0.6071)

Full controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7,952 7,952 7,952 7,952 7,952 7,952 6,426 6,426 6,426 6,426 1,526 1,526 1,526 1,526
R2 0.98276 0.98276 0.98285 0.98277 0.98276 0.98275 0.98407 0.98397 0.98397 0.98397 0.95049 0.95046 0.95054 0.95043
Within R2 0.04243 0.04267 0.04768 0.04324 0.04217 0.04164 0.02070 0.01470 0.01478 0.01468 0.07920 0.07866 0.08016 0.07820

region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clustered (region) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: Number of novel patents in NUTS3 regions. IFDI is the cumulative count of inward FDI projects in the region. OFDI is the cumulative count of
number of outward FDI projects from the region. The geographical breakdown of variables is computed as the flows, for the focal NUTS3 regions, only coming
from (or going to) European countries (EUFDI), non-European countries (ROWFDI) or to respectively EU15 and nonEU15 countries, as detailed in section
2.3. All FDI variables are only counted if labeled as R&D projects in the FDIMarkets database. Explanatory variables are lagged by five years. Continuous
explanatory variables are log-transformed, applying the inverse hyperbolic sine function. All models are estimated through two-way fixed effects OLS estimators.
Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the NUTS3 level.
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Three possible factors might be at play in explaining the heterogeneous

results for sub-samples of regions within the EU. First, the numerosity of

the projects at such a fine-grained geographical level could represent an issue

for in estimating this relationship, especially when considering the non-EU15

sample. Second, the negative association of total OFDIs with local novelty

could be driven by the offshoring of resources in non-knowledge intensive

projects, while MNEs internationalising in R&D project are not depleting

regions of knowledge resources. Third, spillover effects at such a fine-grained

geographical level could help explain the direct and indirect effects of FDIs

on recombinant novelty. In order to understand further the functional as-

pects of FDIs, we run estimates only considering FDIs in non-R&D projects.

In Table 2.6, we present symmetric estimates excluding R&D projects from

the construction of FDI variables. The main results for global, overseas

and European investments are confirmed as positive for inward FDIs. In-

terestingly, OFDIs directed outside of Europe (column 6) are negative and

significant, suggesting that the hollowing-out hypothesis is indeed subject to

a large degree of heterogeneity in terms of the knowledge-intensity of the

investments, with R&D OFDIs going overseas not necessarily harming local

recombinant innovation, in comparison with non-R&D flows.
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Table 2.6: OLS two-way FE - FDI variables excluding Research and Development Projects

All EU EU15 nonEU15
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

IFDI 0.0474∗∗∗
(0.0160)

OFDI -0.0453∗∗∗
(0.0142)

EU IFDI 0.0611∗∗∗
(0.0164)

EU OFDI -0.0565∗∗∗
(0.0146)

ROW IFDI 0.0357∗
(0.0182)

ROW OFDI -0.0365∗∗
(0.0176)

EU15 IFDI 0.0388∗∗ 0.0931∗
(0.0157) (0.0550)

EU15 OFDI -0.0101 0.0496
(0.0121) (0.0783)

nonEU15 IFDI 0.0300∗ 0.0406
(0.0174) (0.0619)

nonEU15 OFDI -0.0137 -0.0106
(0.0154) (0.0628)

Full controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7,952 7,952 7,952 7,952 7,952 7,952 6,426 6,426 6,426 6,426 1,526 1,526 1,526 1,526
R2 0.98284 0.98284 0.98287 0.98285 0.98278 0.98276 0.98403 0.98399 0.98401 0.98397 0.95091 0.95047 0.95071 0.95042
Within R2 0.04700 0.04700 0.04832 0.04723 0.04362 0.04217 0.01843 0.01584 0.01706 0.01508 0.08715 0.07884 0.08343 0.07798

region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clustered (region) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: Number of novel patents in NUTS3 regions. IFDI is the cumulative count of inward FDI projects in the region. OFDI is the cumulative count of
number of outward FDI projects from the region. The geographical breakdown of variables is computed as the flows, for the focal NUTS3 regions, only coming
from (or going to) European countries (EUFDI), non-European countries (ROWFDI) or to respectively EU15 and nonEU15 countries, as detailed in section
2.3. All FDI variables are only counted if not labeled as R&D projects in the FDIMarkets database. Explanatory variables are lagged by five years. Continuous
explanatory variables are log-transformed, applying the inverse hyperbolic sine function. All models are estimated through two-way fixed effects OLS estimators.
Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the NUTS3 level.
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However, the coefficient for total EUOFDI remains significantly negat-

ive (column 4), also in this case, again suggesting a potential competition

effect within Europe. Interestingly, this coefficient is negative and significant

for the overall sample, but not significant when breaking down the origin

and destination of flows between EU15 and non-EU15 regions. The underly-

ing mechanisms explaining these geographical differences, therefore, could be

rooted in the core-periphery structure of both recombinant innovation and

the geography of FDIs, adding to the functional aspects highlighted here.

If spatial dependence is a factor at play, one could expect strong spatial

spillover effects to be driving different effects between focal and neighbour-

hood regions across the EU.

2.4.3 Robustness checks and spatial analysis

We run several additional robustness checks to ensure the consistency of our

baseline estimates, in particular for the construction of our FDI variables.

In Table A.2 of the Appendix we run several specifications testing different

measures and aggregations of the FDI and novelty variables, confirming our

main results. In the first two columns, we run our baseline model, employing

a measure for the net FDIs in the region, subtracting outflows from inflows.

In columns 2-8, we run different specifications based on Capital Expendit-

ures: first net Capex stocks, Capex stock depreciated at different rates, and

the same for Capex stock normalized by unit of GDP. In column 9, we run a

model without moving averages, aggregating novel patents as a rolling sum
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of 4 years. In column 10, we run our baseline model considering the number

of patents per capita as a dependent variable. In Table A.3 of the Appendix,

we run the same checks as the ones presented in the previous Table, except

for the measures of net FDIs. Again, we confirm the baseline estimates and

negative association between outward FDIs and recombinant novelty.

Furthermore, while a lag of 5-years is reasonable in our setting, we present

results at different lags (1-8), for each column of Table A.4 of the Appendix.

Inward FDIs seem to be positively associated to novelty, with significant ef-

fects starting to materialize after four years, in line with the idea that the

impacts of foreign knowledge flows compounds over time. In Table A.5 of the

Appendix, we run the same test for outward FDIs, finding similar results,

although for a shorter time horizon.

We turn to addressing the issue of spatial dependence. We employ Spatial

Durbin models (SDM), adding spatial lags of both the dependent and inde-

pendent variables. We detail the methodology employed for running SDM

models in the Appendix. In Appendix Table A.7, we present the marginal

effects, broken down between direct and indirect effects, for both IFDI and

OFDI, again considering the full sample of NUTS3 regions (panel A), and

splitting the sample in EU15 and non-EU15 (panel B). In addition to direct,

indirect and total effects, we report also the coefficients for the first-order

spatial autoregressive term, which is positive and significant across all spe-

cifications.

65



Once we account for spatial dependence of both FDIs and novelty, very

interesting dynamics emerge. Indirect effects are negative and significant

across our specifications and samples, revealing that spatial spillovers are

an important factor at play. This result is indicative of the strong spatial

concentration of FDIs, especially at the NUTS3 level. Panel B uncovers

interesting spatial dynamics: the direct effects of IFDIs are positive and

significant, and for OFDI are only negative when flowing to other EU15

countries, suggesting that the hollowing out of resources towards similarly

developed countries, while insignificant in the case of nonEU15 countries. A

very different picture emerges for the nonEU15 sample: direct and indirect

effects, of both IFDI and OFDI are always positive and significant, sug-

gesting a positive role for internationalization, where regions are less exposed

to internationalization. The negative and significant coefficients for spatial

spillovers, instead, suggest a staple importance for the agglomeration dy-

namics brought by increased connectivity, resulting in negative spillovers for

the neighbourhood regions and in between-regions competition in benefiting

from international investments (be it through forward or backward linkages).

Again, these results concern total FDIs, without distinguishing in their

knowledge-intensity: in order to shed further light on the knowledge-spillover

mechanisms, we repeat this exercises for both R&D FDIs and non-R&D FDIs.

One would expect that once spatial spillovers are controlled for, the direct

effects of knowledge-intensive FDIs could be more positively associated with
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recombinant novelty. In Table A.8, we show evidence in this direction.

Panel A shows how, for R&D intensive FDIs, direct effects are positive and

significant, and the agglomeration effects are mostly responsible for negative

total effects through indirect geographical spillovers. In the case of IFDIs in

R&D projects, the geographical spillovers (indirect effects) are even turning

positive when these flows stay within the EU. In Panel B a similar dynamic is

present, with EU15 countries being able to better profit from different types

of connectivity (both outside and inside EU15) through direct effects. Across

all specifications, OFDIs’ direct effects are never negative and significant. In

particular, the direct effects seem to be more relevant for EU15 regions in

the case on knowledge-intensive FDIs, with focal regions being more able to

rip the benefits of both inward and outward FDIs. Interestingly, negative

spillovers seem more relevant in the case of IFDIs, while insignificant for out-

ward FDIs. For non-EU15 regions, the positive direct effects of IFDIs are

driven, expectedly, by flows coming from Western Europe.

In Appendix Table A.9 we show instead the results for non-R&D projects.

Generally, we confirm that the negative relationship with recombinant nov-

elty is driven by the indirect effects of connectivity on neighbourhood regions,

but in this case also direct effects can be negative (for example, in within-

EU OFDIs). Comparing these estimates with those in the previous Table,

we speculate that knowledge-seeking type of investments, even when flowing

out of the regions, are not necessarily negative (or even positive) in terms of
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local novelty. Interestingly, in this case, both IFDIs and OFDIs in Eastern

Europe are significantly positive. The evidence seems to suggest the pres-

ence of two-way knowledge transfers, and technological spillovers for R&D

projects, while the hollowing-out effects can be at play in the case of non-

R&D projects, and in particular in regions characterized by a higher degree

of international exposure. Evidence on the knowledge-intensity of FDIs calls

for careful policy considerations, in particular in terms of OFDIs, showing

that the effects of internationalization on local novelty can largely differ de-

pending on their technological content, as well as the specific regional context.

Importantly, our results on direct and indirect effects also speak to the re-

cent literature on income agglomeration through FDIs in the US (Bathelt and

Buchholz 2019; Buchholz et al. 2020; Bathelt, Buchholz and J. A. Cantwell

2023). In particular in terms of OFDIs, the benefits of external connectivity

seem to be spurring recombinant novelty in the home regions, with import-

ant negative indirect effects. The latter suggest a strong competition for the

external resources brought by cross-border investments, and are very evid-

ent at the provincial level. While speculative, this could indicate that both

IFDI and OFDI can increase the concentration of novelty, substantiating

the hypothesis of increasing returns to knowledge enhanced by international

connectivity, both in terms of IFDIs and OFDIs (Buchholz et al. 2020). The

negative geographical spillovers, in fact, could be driven by the labour-market

effects described in Section 2.2, and contributing to increase inter-regional

inequality through an increased spatial concentration of knowledge spillovers,
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not only because of IFDIs but also through backward linkages and OFDIs.

In this sense, comparing Tables A.8 and A.9 underscores the functional dif-

ferences in this sense, showing that generally the negative direct effects of

connectivity, particularly in terms of OFDIs is moderated by the knowledge-

intensity of the investments.

In summary, our estimates suggest a clearly positive role of inward FDIs

for local recombinant novelty, with underlying sources of geographic and tech-

nological heterogeneity. Strong spatial spillovers are underlying the variation

in both IFDIs’ and OFDIs’ relationship with recombinant novelty, suggest-

ing potentially positive direct effects offset by negative indirect ones through

neighbourhood regions.

2.5 Conclusions

In this paper, we have investigated the role of greenfield FDIs for regions’

capacity to introduce technological novelty. Our analysis relies on a concep-

tual framework blending different streams of literature, i.e. the recombinant

knowledge approach, evolutionary economic geography ad regional connectiv-

ity theory. In particular, the theoretical and empirical debate on regional

technological novelty is grounded on the Schumpeterian tenet according to

which innovation stems from the agents’ capacity to combine knowledge and

ideas in new ways. The concept of regional recombinant capabilities extends

to the regional domain the appreciation of individuals’ ability to manage
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novel recombination through recombinant reuse or creation dynamics (Carn-

abuci and Operti 2013a; Orsatti, Quatraro and Scandura 2023). In this dir-

ection, novelty emerges as the outcome of recombinant creation dynamics,

according to which innovating agents in local contexts introduce unpreced-

ented combinations of knowledge and ideas. A crucial factor affecting these

dynamics is the composition of local knowledge pools in terms of heterogen-

eity.

Regional connectivity (Iammarino 2018), i.e. the capacity of regional act-

ors to establish connections with the rest of the world to ensure flows of

assets, knowledge and capabilities, represents an additional, and yet very

relevant, source of variety that is likely to affect regional recombinant cap-

abilities, and in particular increasing the prospects for the introduction of

novel combinations. Consequently, we have put forth four main hypotheses.

The first one suggests a positive connection between inward greenfield foreign

direct investments (FDIs) and the emergence of new combinations of know-

ledge in European Union (EU) regions. As widely recognized in the FDI

literature, these investments tend to create pro-competitive effects and tech-

nological spillovers in the receiving region. The second hypothesis articulates

an alternative explanation regarding the potential impact of outward FDIs

on the economy of the home region. This competing explanation suggests

that both positive and negative outcomes are likely and indeed supported

by empirical studies. Therefore, we examine both arguments and propose

two nested hypotheses: one suggests a positive relationship between outward
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greenfield FDIs and the novelty of EU regions, while the other suggests a neg-

ative relationship. This approach allows us to investigate how outward FDIs

contribute to reconfiguring the local industrial structure in the home region.

Finally, the third and fourth hypothesis builds on the argument that the

effect of multinational enterprises’ (MNEs) investments may depend on the

extent to which these investments concentrate in similar or different activities

from those of local firms. Based on this, we propose a negative association

between the proximity of inward FDIs, and symmetrically two competing

explanations, positive and negative, for the proximity of the local knowledge

base to outward FDIs leaving the region.

The analysis has focused on the generation of fpatents combining at least

one pair of technological classes that have never been combined (Verhoeven

et al. 2016). We have focused on a panel of 1096 NUTS3 European regions

observed between 2003 and 2017, and implemented panel data and spatial

econometrics models to test the relationship between FDIs and regional nov-

elty. In particular, in line with the extant literature, we find that IFDIs are

positively and significantly associated with the innovation efforts of regions,

suggesting the presence of forward linkages fostering the recombination of

distinct knowledge components. While additional micro evidence at the firm

level may shed light on the underlying mechanisms, our results support the

hypothesis that MNEs’ cross-border investments activate knowledge flows

connecting heterogeneous and distant knowledge bases.
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The evidence on the role of OFDI is instead less straightforward, yet

unveiling interesting patterns. In particular, we find an overall negative re-

lationship between outward FDI investments and local recombinant novelty,

which would support the hypothesis of a hollowing-out of local resources and

knowledge in favour of foreign regions. However, the negative coefficients

are also largely driven by local negative spillovers, and direct effects are

either positive or insignificant when considering investments in R&D activ-

ities. This suggests that knowledge-seeking connectivity might be neutral or

even beneficial for the sender region. Relatedness of both inward and out-

ward FDIs shows a negative association with local recombinant knowledge,

in line with the evolutionary tenet stressing the importance of variety, and

in particular of unrelated variety, for the change in the structure of local

economic and technological activities.

Finally, spatial analysis highlights that IFDIs are generally postively asso-

ciated to local recombinant novelty, especially in knowledge-intensive sectors,

with spatial spillovers often being negative, indicating competition between

regions and increasing territorial concentration of knowledge returns. Evid-

ence for OFDIs points to a similar direction. While potentially hollowing-out

local resources, these also largely depend on negative spatial spillovers, relev-

ant given the strong concentration of OFDIs. Moreover, knowledge-intensive

FDIs tend to foster more favorable direct (and even indirect) effects on re-

combination in neighbourhood regions, whereas non-R&D FDIs are more

likely to produce negative impacts through spillovers, showing how different
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types of connectivity greatly matter in understanding FDI-innovation nexus.

Overall, we find that spatial dynamics play a staple role, with both IFDIs and

OFDIs potentially contributing on the one hand to the positive acceleration

of recombinant capabilities, but on the other to inter-regional competition

and inequality.

Our analysis brings relevant policy implications. Previous literature has

indeed shown that the capacity to generate technological novelty affects

not only the economic performances of firms and regions but also the ca-

pacity to address important social challenges like climate change through

eco-innovation. Understanding the drivers of technological novelty can hence

provide useful indications to policymakers concerning measures possibly fos-

tering path-breaking research and innovation strategies. In this direction,

we are line with literature stressing the need to insert regional connectivity

into the toolbox of regional development policy (Iammarino 2018). In par-

ticular, our results not only confirm the importance of incoming FDIs, but

also point to the importance of FDIs outflows and to the need to design local

and national strategies in this respect carefully. Policy should consider the

motives and geographical aspects of different types of connectivity in design-

ing policies highly embedded in a territorial and technological context. Our

evidence shows that maximizing knowledge exchanges to generate local nov-

elty requires a nuanced understanding of the mechanisms at play: namely

in terms of the geographical and technological aspects of investments, which

might increase inequality by increasing returns to knowledge agglomeration
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(Iammarino 2018; Bathelt, Buchholz and J. A. Cantwell 2023).

As with any study, this one has some limitations that should be men-

tioned. The first aspect pertains to utilizing patent data to quantify regional

innovation actors’ technological efforts. While it is important to acknowledge

that not all new technologies are patented and that patenting propensity is

unevenly distributed across sectors, it is noteworthy that there exists a gen-

eral scientific consensus regarding patents being a dependable indicator of

the creation of novel technologies at the local level (Acs et al. 2002). In ad-

dition, our evidence only concerns greenfield FDIs and does not distinguish

between modes of entry. Another limitation to consider is that the empir-

ical framework employed does not enable us to establish definitive causal

relationships. However, our findings offer statistically robust and intriguing

associations among the primary variables examined.

Yet, our analysis provides insights for further research. For example, ex-

ploiting matched firm-level data to develop a finer-grained analysis of firm-

level mechanisms underlying these associations would be useful. Future re-

search could provide more in-depth knowledge of the asymmetrical effects

of both incoming and outgoing FDIs, depending on the considered foreign

regions and their technological structures. In addition, this paper focuses on

EU regions: further research should provide evidence concerning recombin-

ant novelty in different geographical locations, and in particular comparing

advanced and developing economies. Finally, while our results on the role
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of spatial spillovers are suggestive, more research is needed in understand-

ing both the local mechanisms driving negative indirect effects, and their

potential consequences on the spatial concentration of recombinant novelty,

potentially contributing to inter and intra-regional inequality.
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Chapter 3

Green diversification, global knowledge

sourcing and local skill composition:

evidence from the US

Chapter co-authored with Fabrizio Fusillo, Gianluca Orsatti, Francesco

Quatraro and Alessandra Scandura
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Abstract

This work investigates the role of green foreign direct investments (FDIs)
and local skill composition for regional technological diversification in green
domains. We conduct the analysis on 287 US Metropolitan Statistical Areas
(MSAs) observed from 2003 to 2018. Our results show that MSAs with
higher volumes of green FDIs and higher intensity of abstract skills are more
likely to diversify in green technological domains. Moreover, we find that
the local endowment of abstract and routine skills moderates the impact of
green FDIs, activating compensation and reinforcing mechanisms, respect-
ively. The findings of this work provide novel insights for the academic de-
bate on the determinants of green technological diversification and for the
design of an effective policy toolbox to sustain the regional green transition.
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3.1 Introduction

The 2023 Adaptation Gap Report released by the United Nations Environ-

ment Programme (UNEP) stresses that the progress of advanced countries on

mitigation and adaptation has been slowing down while the dramatic effects

of climate change are becoming more and more severe. One of the main reas-

ons behind such a situation lies in the reduction of the resources committed

to planning and implementing concrete actions to cope with environmental

degradation and favour the green transition (UNEP 2023).

Given this evidence, understanding the factors that improve the environ-

mental performance of human actions and their drivers remains of paramount

importance. In this respect, policy and academic debates have long stressed

the relevance of investments in innovation and new technologies as a key

enabling condition. The concept of eco-innovation has gained momentum

in the last decade. It has paved the way for a flourishing stream of liter-

ature investigating the economic drivers and the impact of the generation

and adoption of innovation and new technologies aiming at reducing the ex-

ploitation of natural resources or the environmental damage associated with

economic activities (Kemp 2010; Barbieri, Ghisetti et al. 2016).

More recently, the spatial dynamics underlying the generation of green

technological knowledge have been stressed by an increasing number of em-

pirical studies in the geography of innovation field, blending the analysis of
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eco-innovation dynamics with the regional branching approach. Strengthen-

ing the capacity to develop new regional comparative advantage in the supply

of clean technologies is indeed an inescapable condition to develop smart spe-

cialization strategies for the green transition (Montresor and Quatraro 2020;

Orsatti, Quatraro and Scandura 2023; Santoalha et al. 2021; Cicerone et al.

2023).

Based on the well-established tenet that green technologies are likely to

stem out of recombination and hybridization of heterogeneous knowledge in-

puts (Zeppini and Bergh 2011; Zeppini 2015; Orsatti, Quatraro and Pezzoni

2020a), extant literature has shown that technological complementarities and

recombinant creation capabilities facilitate regional green technological diver-

sification. On the one hand, Montresor and Quatraro (2020) and Cicerone

et al. (2023) stress the importance of local specializations in digital techno-

logies or key enabling technologies, given their general purpose nature and

horizontal applicability. On the other hand, Orsatti, Quatraro and Scandura

(2023) and Quatraro and Scandura (2019) focus on the interplay between

local recombinant capabilities and agency, stressing the relevance of the dis-

tinctive capacity to generate atypical knowledge combinations and the pres-

ence of agents of structural change such as academic inventors.

The present work intends to contribute to this strand of literature by em-

pirically exploring the extent to which environmental-related foreign direct

investments (FDIs) and human capital enable or hinder green technological
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diversification in the local economies of the United States (US). First, we

hypothesize that regions’ global knowledge sourcing, measured by the local

presence of non-local agents – specifically multinational enterprises (MNEs)

through their FDIs – provides access to heterogeneous and unrelated know-

ledge inputs and hence positively impacts entry into new green technological

specializations. Second, given the inherent complexity of green technological

knowledge and the consequent relevance of recombinant creation capabilities,

we posit that the prevalence of exploration-oriented skills in local contexts

is associated with a higher probability that regions will develop new green

technological specializations. Thirdly, we investigate the interplay between

the local skills endowment and external knowledge sourcing. This interplay

is rooted in the tension between potential and realised local absorptive capa-

city. The former requires a higher ability to recognize, acquire, and assimilate

useful external knowledge, while the latter requires the ability to transform

and apply it effectively. If local skills suit the first requirement, we posit that

they likely compensate for external knowledge in raising the probability of

entering new green technological specializations; conversely, if local skills suit

the second requirement, we contend that they reinforce the role of external

knowledge in regional green technological diversification.

We carry out the empirical analysis on a balanced panel of 287 US Met-

ropolitan Statistical Areas (MSAs) observed from 2004-2018. Our results

support the hypotheses that both the local presence of inward environmental-

related FDIs and the prevalence of exploration-oriented skills are positively
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associated with higher likelihoods of regional diversification in green tech-

nological domains. Moreover, our results suggest that there is more a com-

pensatory than a reinforcing interplay between these two forces, suggesting

that, considering the tension between knowledge sourcing and exploitation,

skills more related to the former dominate in the sample analyzed, leading

to higher potential than realised absorptive capacity.

This work adds to the literature in many respects. Firstly, theoretical re-

flections within the evolutionary economic geography literature have stressed

the need to link agency to regional diversification, especially when the un-

derstanding of structural change dynamics is at stake. Yet, efforts in this

direction are still underdeveloped. Some contributions have focused on the

role of non-local agents like migrant inventors and foreign firms, with no focus

on green technological diversification (Boschma, Coenen et al. 2018; Neffke

et al. 2018b; Miguelez and Morrison 2023). Other studies have focused on

FDIs in EU green specialization patterns (Castellani, Marin et al. 2022b) and

on the structure of co-inventorship networks on country-level diversification

patterns (Corrocher et al. 2024). Our study provides a step forward in that

we articulate the analysis of the role of green inward FDIs by focusing on

the region level of analysis, looking at the entry in new green specializations

for regions that were not previously specialized in those domains. Further,

our focus on the determinants of regional green technological diversification

in the US enriches existing empirical evidence that is mainly centered on

European countries. Secondly, the inclusion of the occupational structure as
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a proxy of the skill endowment of the local workforce explicitly brings to the

fore the dynamics of know-how and learning that can either enable or thwart

the development of a new technological trajectory. While recent studies have

investigated the nexus between changes in the local skill structure and the

green transition, they have mainly focused on the labor market impact of the

greening of the economy in terms of both job creation and destruction and

changes in the task content of occupations (Vona, Marin, Consoli and Popp

2018; Consoli, Marin et al. 2016; Vona, Marin and Consoli 2019). Yet, little

emphasis has been put so far on the role of local human capital endowment in

green technological diversification dynamics (Orsatti, Perruchas et al. 2020).

The remainder of the paper is organized as follows. Section 2 articulates

the theoretical framework and puts forth the hypotheses. Section 3 presents

the data and the empirical strategy. Section 4 discusses the results of the

econometric analysis. Section 5 concludes and discusses the policy implica-

tions and the avenues for further research.

3.2 Background and hypotheses

3.2.1 FDIs and green technological diversification

The flourishing literature that analyses the determinants of eco-innovation

underscores that green inventions show greater complexity (in terms of tech-

nological scope) than non-green counterparts (Marchi 2012; Ghisetti, Mar-
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zucchi et al. 2015) and that they are more likely to emerge out of novel

recombination of existing knowledge components (Barbieri, Marzucchi et al.

2020; Orsatti, Quatraro and Pezzoni 2020a). Accordingly, the generation of

green technological knowledge is conceived as the outcome of a set of complex

processes involving the hybridization of highly diversified and loosely related

sets of competencies (Zeppini and Bergh 2011; Fusillo, Quatraro et al. 2022;

Fusillo 2023).

More recently, the evolutionary economic geography literature has contrib-

uted to extending such arguments to the geographical context, investigating

the dynamics of the geography of green technologies. As a matter of fact,

sectoral and technological diversification in eco-innovation is considered a

priority by national and local governments in various geographical contexts,

across both developed and developing countries. Yet, our understanding re-

mains limited concerning the ability of regions to engage in eco-innovation

and diversify their portfolio of green technologies (Losacker, Hansmeier et al.

2023). Extant research has shown that regions tend to diversify in green

domains through a process of regional branching, thus relying both on green

and non-green pre-existing capabilities (Tanner 2014; Tanner 2016; Montre-

sor and Quatraro 2020). These findings align with the fundamental tenet

of the relatedness approach, according to which regions primarily diversify

by developing new technologies characterised by higher proximity to their

pre-existing ones (Boschma 2017b). However, similarly to the general case

of technological diversification (in any sector), different factors have been
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found to play a crucial role, besides as well as together with relatedness, for

green-tech branching. In particular, while most of the available studies have

focused on local factors, only limited attention has been paid to the factors

that affect the green-tech diversification of regions by acting across their geo-

graphical boundaries, namely, extra-regional factors.

Recent contributions highlight that the development of eco-innovation at

the local level and the consequent regional specialization in green sectors are

highly dependent on the availability of heterogeneous knowledge sources. In

particular, developing green technologies and, hence, technological specializ-

ations, require global connections (Castellani, Marin et al. 2022b; Corrocher

et al. 2024). Global connectedness is crucial to accessing foreign knowledge

and building, as well as strengthening, the endogenous green domestic cap-

abilities (Amendolagine, Lema et al. 2021; Castellani, Marin et al. 2022b; De

Marchi et al. 2022). MNEs and FDIs play a pivotal role in this respect. The

core tenet brought forward by the international business literature on MNEs

is that they are characterised by a distinctive ability to transfer, integrate and

exploit knowledge from their geographically dispersed network. In so doing,

MNEs act as channels for global pipelines of knowledge, which intersect with

the so-called local “buzz” of domestic knowledge, thereby enhancing regional

capabilities (Bathelt and P. Li 2020; Bathelt, Malmberg et al. 2004b).

Given the recognised properties of FDIs in shaping the knowledge and as-

sets of the recipient locations, they certainly represent one of the most relev-
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ant channels of global connectedness, through which external knowledge gets

into local contexts and interacts with local knowledge (Marino and Quatraro

2022). Through their investments, MNEs hence act as agents of structural

change. These arguments have been recently applied to the eco-innovation

field, thus identifying FDIs as a key source of green knowledge at the firm

and region level. Analysing green inward FDIs in renewable energy sectors

worldwide, Amendolagine, Lema et al. 2021 find that they enhance the overall

orientation to sustainability of MNEs, strengthening their innovation activ-

ities related to green technologies. Investigating green innovation involving

MNEs and their subsidiaries across 14 EU countries, De Marchi et al. (2022)

show that MNEs’ affiliates display superior performance in green innovation

than domestic companies. Similarly, Amendolagine, Hansen et al. (2023)

find that subsidiaries of MNEs created through green inward FDIs generate

more green patents than locally owned firms thanks to fruitful bi-directional

knowledge flows based on continuous interactions and learning processes. At

the region level, Castellani, Marin et al. (2022b) found that inward innov-

ative FDIs occurring in green industries across the EU positively influence

the occurrence of a region’s specialization in green technologies. The empir-

ical evidence supports the argument that the transfer of (green) knowledge

occurring via MNEs’ dense global relationships has a crucial role in the sus-

tainability transition.

Interestingly, although it is not straightforward to define green FDIs when

referring to inward FDIs occurring in green-related sectors, the above-reviewed
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literature seems to clearly point to the argument that eco-innovation at the

firm level is more likely to be induced by MNEs engaged in green R&D and

inward FDIs characterised by environmental content. Yet, what remains un-

explored is whether FDIs in green sectors influence the extent of regional

technological diversification into green domains. We argue that inward FDIs

are a source of green knowledge necessary for regions not only for specializ-

ing in green technologies, but also to expand the set of green technological

domains they diversify into. Throughout FDIs and MNEs subsidiaries, host

regions can access non-local (or global) green knowledge beyond their geo-

graphical boundaries, which is new with respect to the existing local one

and can be possibly transferred and exploited for the sake of their green-tech

transition (Neffke et al. 2018b; Boschma 2022b). Specifically, throughout a

process of hybridization of local and global green knowledge, the combina-

tion of heterogeneous and loosely related knowledge inputs likely increases

the probability of developing a specialization in a green domain that is new

with respect to the pre-existing ones, hence spurring local green technological

diversification.

Against this background, we posit the following hypothesis:

Hypothesis 1: Inward green FDIs are positively associated with regional

technological diversification in green domains.
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3.2.2 Recombinant capabilities and the local occupational struc-

ture

In the previous Section, it has been stressed that green technologies’ reliance

on the hybridization of heterogeneous and loosely related knowledge inputs

implies that knowledge sourcing across geographical boundaries increases the

probability of developing a new green specialization in areas that did not pos-

sess a previous comparative advantage in that specific domain.

However, the local availability of diverse knowledge components is not a

sufficient condition for the success of green technological efforts. The presence

of adequate capabilities is also crucial to ensure that heterogeneous knowledge

inputs are effectively combined together for the production of green techno-

logical knowledge. An increasing number of studies have indeed framed the

analysis of the antecedents of green technological knowledge leveraging on

the distinction between recombinant reuse and creation capabilities (Carn-

abuci and Operti 2013b).

While recombinant reuse involves the refinement and improvement of

known technological combinations, recombinant creation capabilities concern

experimentation with unexplored combinations. Empirical studies exploiting

patent-based indicators have shown that the command of recombinant cre-

ation mechanisms is crucial in generating green patents (Orsatti, Quatraro

and Pezzoni 2020a; Quatraro and Scandura 2019) and in the dynamics of re-
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gional green diversification in Europe (Orsatti, Quatraro and Scandura 2023).

In this context, existing literature has emphasized that regional recom-

binant capabilities are influenced by human capital endowment. Specifically,

it has been found that differences in green patenting across territories are

associated with the prevalence of exploration-oriented skills, measured by

the share of abstract skills in the local occupational structure. Within the

task-based approach (Acemoglu and D. Autor 2011), abstract skills feature

non-routine cognitive occupations that range from corporate managers to sci-

ence and technology professionals. These latter, hence, involve occupations

and skills that leverage recombinant creation capabilities to generate new sci-

entific and technological knowledge and inventions (Orsatti, Perruchas et al.

2020).

Accordingly, the composition of the local skill set plays a significant role

in influencing regional variations in the ability to support the generation of

green technologies. The prominence of abstract skills holds crucial import-

ance in this context, as they correlate with cognitive capabilities to integrate

concepts and resources from diverse domains into fresh and unexplored av-

enues. By the same token, regional technological diversification in the green

domain can be favoured by the configuration of local occupational structures

characterized by a relatively high share of abstract skills.

In view of the above discussion, we spell out the following hypothesis:
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Hypothesis 2: The local prevalence of abstract skills is positively asso-

ciated with regional technological diversification in green domains.

3.2.3 The interplay between external knowledge and the local

occupational structure

The skill composition of the local occupational structure can explain regional

differences in terms of the capacity to develop new green technological spe-

cializations. High-quality human capital endowed with exploration-oriented

skills can better bear boundary-spanning R&D and innovation efforts. Yet,

not only scientific boundaries matter in this context.

A stylized fact within the geography of innovation is that scientific and

technological capabilities are place-specific. This is the main reason why the

injection of knowledge and capabilities from foreign places is expected to

positively influence the local diversity and structure of the knowledge base,

increasing the degree of unrelated diversification (Neffke et al. 2018b). As

recalled above, this likely represents a key distinctive advantage for regions

willing to develop new green technological specializations.

These arguments entail that inward green FDIs and the local occupational

structure may interact in two distinct and opposite directions that can be

conceptualized by elaborating upon the absorptive capacity argument. Ac-

cording to Cohen and Levinthal (1989) and Cohen and Levinthal (1990),

absorptive capacity stands for agents’ ability to spot and assimilate valuable
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external knowledge, and to exploit it commercially. An extensive stream of

literature has documented the importance of this capacity for firms’ innovat-

ive performances, focusing on learning dynamics emerging out of accumulated

R&D investments, or on the quality of human capital within firms’ bound-

aries (Gambardella 1992; Romijn and Albaladejo 2002; Lund Vinding 2006).

Further articulations of the absorptive capacity argument have proposed

that absorptive skills are heterogeneous and may involve different tasks de-

pending on whether the activity concerns the sourcing of knowledge or its

exploitation. In the first case, potential absorptive capacity indicates the abil-

ity to explore, recognise, acquire and assimilate useful external knowledge.

In contrast, realised absorptive capacity stands for the ability to transform

and apply acquired knowledge effectively within organisations (Zahra and

George 2002; Mason et al. 2020).

Accordingly, the interplay between the local occupational structure and

global knowledge sourcing through FDIs can take two opposite forms, de-

pending on the kind of absorptive capacity that prevails in the local occupa-

tional structure. On the one hand, given their characteristics, local qualified

science and technology workers in abstract-skills intense occupations can be

considered as the agents of potential absorptive capacity. Accordingly, they

will tend to act as local brokers of global knowledge, specializing in the

screening across geographically dispersed knowledge sources (Malecki 2002;

Parjanen et al. 2011). In this case, high local shares of abstract-skills-intense
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occupations would compensate for weak flows of incoming green FDIs.

On the other hand, locally qualified workers in routine-intensive occu-

pations can be considered agents of realised absorptive capacity, showing

distinctive capabilities in translating globally sourced knowledge into new

technologies that are eventually marketable. This capacity is more likely to

feature professionals who, in some cases, can work at the crossroads between

high and intermediate-level occupations (Mason et al. 2020; Girma 2005;

Consoli, Fusillo et al. 2021). In this case, local high shares of routine-skills-

intense occupations would complement incoming flows of green FDIs.

This discussion leads to the following hypotheses:

Hypothesis 3a: The local prevalence of abstract skills compensates for

the effects of inwards FDIs on regional green diversification.

Hypothesis 3b: The local prevalence of routine skills augments the effects

of inwards FDIs on regional green diversification

3.3 Empirical framework

3.3.1 Data and variables

To test our hypotheses, we build an original dataset on regional green-tech

diversification, green FDIs and abstract skills for a balanced panel of 287 US

Metropolitan Statistical Areas (MSAs) observed over the period 2003-2018.1

1In order to ensure comparability and consistency of territorial units over time and across different
data sources, we follow the procedure described in Consoli, Fusillo et al. (2021) that allows the unique
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We investigate the technological diversification of MSAs in the green do-

main by looking at the green technologies that enter the regional knowledge

base. Following consolidated literature, we calculate Entry as a dummy

variable taking value one if MSA r acquires a Revealed Technological Ad-

vantage (RTA) – i.e., a technological specialization – in technology i, at time

t provided that it was not observed at time t − 1. In order to measure

the acquisition of a new green specialization, our main dependent variable

EntryGTi,r,t is expressed as a dummy variable equal to one if technology i

is identified as a green technology. Formally:

EntryGT i,r,t = 1 if RTAi,r,t ≥ 1 and 0 ≤ RTAi,r,t−1 < 1 (3.1)

where RTAi,r,t is defined as follows:

RTAi,r,t =

pi,r,t∑
i pi,r,t∑
r,t pi,r,t∑

r

∑
i pi,r,t

(3.2)

with pi,r,t is the number of patents in technology i, in MSA r, at time t.

The dependent variable is constructed using the PatentsView database,

which contains detailed information on patent applications filed at the United

States Patent and Trademark Office (USPTO).2 In order to identify green

technologies, we follow the ENV-TECH definition provided by the OECD

(Haščič and Migotto 2015b) and group CPC codes for green technology

identification of MSAs over changing county composition.
2PatentsView database is available at: https://patentsview.org/
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classes at the 4-digits level.3 Patents have been assigned to MSAs based

on the inventor’s location as provided by PatentsView. Patents with mul-

tiple inventors residing in different MSAs have been assigned to each MSA.

The first key regressor, aiming at testing H1, measures the capacity of

regions to attract FDIs in the green domain. To do so, we collect data on

greenfield FDI from the fDi Markets database and work out the total amount

of green-related inward FDI capital expenditure in each MSA (GreenCapex).4

Greenfield FDIs, as opposed to Mergers and Acquisitions (M&A), are invest-

ments entailing the opening of a new firm, establishment, or factory in a

foreign location. Each project recorded in fDi markets databese, contains

information about the location of the investing firm, and the city of des-

tination of the investment. We assign, by geolocating the city of destina-

tion, each investment project to a Metropolitan Statistical Area. In order to

define whether a given investment is related to environmental technologies,

we follow the methodology proposed by Castellani, Marin et al. (2022b). Ac-

cordingly, each investment in the fDi Markets database can be assigned to a

NAICS sector. We start by assigning patents from PatentsView to NAICS

sectors, based on the crosswalks provided in Lybbert and Zolas (2014a). In

turn, we calculate the RTA in green technologies for each of these sectors,
3The OECD’s classification for environmental technologies includes the following classes of patents:

Environmental Management, Water-related Adaptation Technologies, Climate Change Mitigation Tech-
nologies Related To Trasportation, Climate Change Mitigation Technologies Related To Buildings, Cli-
mate Change Mitigation Technologies In The Production Or Processing Of Goods, Climate Change Mit-
igation Technologies Related To Energy, Climate Change Mitigation Technologies Related To Wastewater
Treatment Or Waste Management, Capture, Storage, Sequestration Or Disposal Of Greenhouse Gasses

4fDi Markets is a database maintained by the Financial Times Intelligence Unit that tracks foreign-
direct investments in greenfield projects. The database records flows of cross-border greenfield investments
since 2003.
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based on the patenting activity within the United States. Exploiting the sec-

toral specialization in green technologies, we link FDIs to green sectors and

calculate regional measures of FDI inflows of green-related investments.We

build two measures of green FDIs at the MSA level. First, we build a variable

based on the amount of capital expenditures for inward FDIs in green sectors

for each MSA. We build our regressors of interest as a five-year moving aver-

age in order to account for the volatility in FDI inflows5. Second, we build a

dummy variable equal to one if the moving average of green FDIs in an MSA

at time t is greater than zero. In this way, we will be able to appreciate the

effect of FDIs (green and brown) at the intensive and the extensive margins,

respectively.6.

The second key explanatory variable, is aimed at capturing the local en-

dowment of abstract-skilled labor force. Accordingly, we employ and adapt

the task-based framework initially proposed by D. H. Autor, Levy et al.

(2003), along with its geographical adaptation (D. H. Autor and Dorn 2013).

The rationale behind this framework lies in considering occupations as ag-

gregations of tasks matched with the skills required to perform such tasks

(D. H. Autor, Levy et al. 2003), allowing to delineate occupational structures

based on individual attributes rather than educational proxies (Consoli and

Rentocchini 2015; Vona and Consoli 2015). Following the task-based frame-
5In robustness checks, we ensure the consistency of our results by accounting for the volatility of

FDI flows in different ways. These include calculating stocks using the permanent inventory method at
different discount rates.

6The volume of capital expenditures for each FDI flow is estimated by FT Intelligence (see ht-
tps://www.fdimarkets.com/faqs) In order to account for potential measurement problems, in the robust-
ness checks section, we show the results of the estimations, including the share of green over total FDIs,
expressed as a count of projects and as capital expenditures, assuming that the potential measurement
error does not vary according to our classification of green and non-green FDIs.
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work, abstract-skilled jobs encompass tasks demanding creativity, intuition,

problem-solving and persuasion, typically found in professional, managerial,

technical and creative occupations such as law, medicine, science, engineer-

ing, marketing and design. Hence, these abstract tasks are generally carried

out by highly educated individuals with strong analytical skills.

In order to develop an indicator of the abstract task intensity in the MSAs’

labor force, we follow previous literature (Fusillo, Consoli et al. 2022; Consoli,

Fusillo et al. 2021) and rely on the crosswalk provided by Acemoglu and D.

Autor (2011), which directly links occupations from two-digit Standard Oc-

cupational Classification codes to their respective task intensities. Collecting

employment data by occupation from the Occupational Employment Statist-

ics (OES) program developed by the US Bureau of Labor Statistics (BLS),

we compute the abstract task employment share (ASH) for each MSA as

follows:

ASHr,t =

(
J∑

j=1

Lj,r,t1 [ATIj]

)(
J∑

j=1

Lj,r,t

)−1

(3.3)

where ASHr,t represents the abstract employment share in MSA r at time

t; Ljit is the employment in occupation j in MSA r at time t; ATIj is an

indicator function taking value 1 if the corresponding occupation is abstract

task intense. Our measure of abstract skills thus consists in the share of em-

ployment in abstract-intensive jobs. In the empirical estimations, we express

ASHr,t as a dummy variable equal to one if the share of abstract skills in
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MSA r at time t is above the median share of abstract skills across all MSAs

in the sample, and 0 otherwise.

In order to test H3b, we develop an indicator of routine task intensity in

the MSAs’ labor force. According to the task-based framework, routine jobs

belong to the mid-skill spectrum and entail performing repetitive manual

or cognitive (i.e., blue-collar) work tasks. The former generally concerns

‘Office and Administrative support’ occupations (i.e., clerks) while the latter

concerns ‘production’, ‘maintenance and repair’ occupations (i.e., performed

by blue-collars). In line with the ASH indicator, we compute the routine

task employment share (RSH) for MSA r at time t as follows:

RSHr,t =

(
J∑

j=1

Lj,r,t1 [RTIj]

)(
J∑

j=1

Lj,r,t

)−1

(3.4)

where RTIj is an indicator function taking value 1 if the corresponding

occupation is routine task intense. Hence, the routine skill indicator measures

the share of employment in routine-intensive jobs. For the sake of consistency,

in the empirical estimations, RSHr,t is also expressed as a dummy variable

equal to one if the share of routine skilled workers in MSA r at time t is

above the median across MSAs, and 0 otherwise.

In line with consolidated literature on regional technological diversifica-

tion and its application to green diversification, we build a control variable

for the path-dependent nature of the entry in new specializations (Hidalgo

2021), i.e., the relatedness density of new (green) technological specializ-
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ations to the pre-existing specializations in the regional knowledge space.

The construction of the technological relatedness index entails a number of

steps. Firstly, we define a measure of technological proximity following the

symmetric measure proposed by Eck and Waltman (2009). Based on the co-

occurrence of technology classes within patent documents filed at USPTO,

technological proximity is defined as follows:

ϕi,j =
mcij
sisj

(3.5)

wherem is the total number of patents, cij is the number of co-occurrences

between the two technologies, and si, sj are, respectively, the total amount of

occurrences of the two technologies. Hence, ϕi,j is a symmetric technology-by-

technology proximity matrix. Secondly, we measure the relatedness density

of technology i, in region r, at time t, as the average proximity between the

specializations that the region has at time t− 1, and the focal technology i:

TechReli,r,t =

∑
j∈r ϕijRTAj,r,t−1∑
j∈rRTAj,r,t−1

(3.6)

The final dataset consists of 287 time-consistent MSAs and 666 techno-

logies (of which 74 are identified as green technologies) observed over the

period 2003-2018.

Finally, we build a number of control variables varying by MSA and year.

First, we create a measure of FDIs in non-green sectors, called BrownCapex,

calculated as its counterpart GreenCapex, which will be used in some of the
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estimated models. Second, we work out the level of economic development

of the MSAs, measured as per capita Gross Domestic Product (GDPpc). To

build this variable, we collect data on GDP by MSA from the US Bureau

of Economic Analysis and population data from the Bureau of Labour Stat-

istics. Third, we control for the rate of employment growth (EmpGrowth)

in the MSA. To do so, we collect employment data from the County Busi-

ness Patterns and build the employment growth measure by adapting the

indicator described in Haltiwanger et al. (2013) to the MSA level. Precisely,

employment growth in MSA r at time t is defined as the difference between

the MSA employment level at time t and the MSA employment at time

t − 1, divided by the average employment level in the MSA over the two

periods.7 Fourth, we calculate, in line with Castellani, Marin et al. (2022b),

the share of patents of the MSA within the total patents in the country

(ShPatents). In addition, we calculate the share of establishments in green

sectors (shGreenEst), where the definition of green sectors follows the one

proposed to identify green FDIs, as described in Section 3.3.1. shGreenEst

is expressed as a dummy variable taking value one if the share of green estab-

lishments in a given MSA is above the national median, 0 otherwise. We also

include in the list of control variables the extent of regional pre-existing green

specializations through a variable called GreenPrevRTA, which counts the

total number of specializations in green technologies for MSA r at time t−1.

A synthetic description of the variables is provided in Table 3.1, while
7Let Er,t represent the level of employment in MSA r at time t; formally, the employment growth

rate is calculated as: (Er,t − Er,t−1)/Xr,t, where Xr,t = (Er,t + Er,t−1) ∗ 0.5. The measure is symmet-
ric and centered around 0, and has the advantage of sharing log-difference measures properties while
accommodating entry and exit (Haltiwanger et al. 2013)
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their summary statistics are reported in Table 3.2.

Table 3.1: Variable description

Variable Description Source

EntryGT Entry in low-carbon technological specializations,
with respect to t-1.

USPTO

GreenCapex Capital expenditures for inward FDIs in green sectors
(5 years moving average).

FDIMarkets (FT Intelligence)

(d) GreenCapex Dichotomous indicator equal to one if the moving av-
erage of green Capex is greater than 0, and 0 otherwise

FDIMarkets (FT Intelligence)

BrownCapex Capital expenditures for inward FDIs in non-green
sectors (5 years moving average).

FDIMarkets (FT Intelligence)

(d) BrownCapex Dichotomous indicator equal to one if the moving av-
erage of green Capex is greater than 0, and 0 otherwise

FDIMarkets (FT Intelligence)

shGreenCapex Share of capital expenditures inward FDIs in green-
intensive sectors over total inward FDIs (5 years mov-
ing average).

FDIMarkets (FT Intelligence)

ASH Employment share of abstract-skilled workers Bureau of Labor Statistics
(d) ASH dichotomous indicator equal to one if the employment

share of abstract skilled workers is above the national
median, and 0 otherwise

Bureau of Labor Statistics

RSH Employment share of routine-skilled workers Bureau of Labor Statistics
(d) RSH Dichotomous indicator equal to one if the employment

share of routine skilled workers is above the national
median, and 0 otherwise

Bureau of Labor Statistics

EmpGrowth Employment growth County Business Patterns
TechRel Relatedness density of the new specializations with

respect to the pre-existing ones.
USPTO

GDPpc Gross Domestic Product per capita. US Bureau of Economic Analysis,
US Bureau of Labour Statistics

ShPatents Total number of patents, as a share of the total pat-
ents in the country.

USPTO

shGreenEst Share of establishments in green-intensive sectors over
total establishments.

County Business Patterns

(d) shGreenEst Dichotomous indicator equal to one if the share of
establishments in green sectors is above the national
median, and 0 otherwise

Bureau of Labor Statistics

GreenPrevRTA Count of existing green specializations. USPTO

3.3.2 Methodology

To investigate the relationship between green-tech diversification, green FDIs,

and abstract skills (H1 and H2), we estimate the following model:

EntryGTi,r,t = β1GreenCapexr,t−1 + β2ASHr,t−1 + β3RSHr,t−1

β4TechReli,r,t + ψX
′
r,t−1 + δi,t + γs + ϵi,r,t

(3.7)

where i, r, and t index, respectively, technology, MSA, and year. EntryGT
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Table 3.2: Summary Statistics

N Mean St. Dev. Min Max

EntryGT 2,472,858 0.010 0.100 0.000 1.000
GreenCapex 2,472,858 55.680 218.190 0.000 3,760.140
BrownCapex 2,472,858 93.190 321.570 0.000 6,107.350
(d) GreenCapex 2,472,858 0.600 0.490 0.000 1.000
(d) BrownCapex 2,472,858 0.760 0.430 0.000 1.000
shGreenCapex 2,472,858 0.170 0.190 0.000 1.000
GreenFDI 2,472,858 0.900 2.380 0.000 27.200
BrownFDI 2,472,858 3.020 12.420 0.000 192.800
ASH 2,472,858 0.200 0.040 0.100 0.400
RSH 2,472,858 0.420 0.050 0.280 0.680
TechRel 2,472,858 10.940 12.800 0.000 100.000
GDPpc 2,472,858 47,174.430 12,821.290 20,320.000 171,389.060
EmpGrowth 2,472,858 0.007 0.032 −0.270 0.206
ShPatents 2,472,858 0.000 0.010 0.000 0.120
shGreenEst 2,472,858 0.010 0.000 0.000 0.020
GTprevRTA 2,472,858 12.790 8.750 0.000 43.000

is the probability of observing a new specialization of MSA r in technology

i at time t, conditional on i being green. GreenCapex and ASH are the

explanatory variables of interest, lagged by one year. The former is, altern-

atively, a dummy equal to 1 for the presence of inward FDIs in MSA r or the

share of green FDIs over total FDIs;8 the latter is a dummy equal to 1 if the

intensity of abstract-related skills in MSA r is above the national median.

TechRel accounts for the role of technological capabilities at t − 1, a key

driver of regional green diversification. X ′ is a vector of time-varying control

variables at the MSA level, 1 year lagged, that may affect the probability

of green-tech diversification. δi,t are technology-year fixed effects, included

to control for common technological trends likely to affect the probability of

specializing in GTs in specific domains9; furthermore, we also include State
8When we use the share of green FDIs, we correct for the zero inflation in FDIs by including an

indicator variable for the absence of inward FDIs in the MSA, following (Aghion, Akcigit et al. 2019).
9Technology codes for the fixed effects are build on 1-digit CPC codes, rather than 4-digits, in order
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fixed-effects (γs) that allow to exploit within-State MSA variation while con-

trolling for State-level characteristics10; ϵi,r,t is the idiosyncratic error term.

Finally, we test H3a and H3b augmenting model (3.7) firstly with the

interaction term between GreenCapex and ASH, secondly, the interaction

between GreenCapex and RSH, as follows:

EntryGTi,r,t = β1GreenCapexr,t−1 + β2ASHr,t−1 + β3RSHr,t−1

β4GreenCapexr,t−1 × ASHr,t−1+

β5TechReli,r,t + ψχr,t−1 + γs + δi,t + ϵi,r,t

(3.8)

EntryGTi,r,t = β1GreenCapexr,t−1 + β2ASHr,t−1 + β3RSHr,t−1

β4GreenCapexr,t−1 ×RSHr,t−1+

β5TechReli,r,t + ψχr,t−1 + γs + δi,t + ϵi,r,t

(3.9)

We estimate Equation (3.7) and Equation (3.8) through fixed effects Logit

estimators. In all specifications, continuous variables are log-transformed ap-

plying the inverse hyperbolic sine function, and standard errors are clustered

at the MSA level to account for heteroskedasticity.

to allow for within-code variation, and maintain a larger sample. In robustness checks, we test for 4-digit
by year fixed effects.

10State-level policies and taxation incentives for foreign companies, for example, might affect location
choice for inward FDIs.
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3.4 Results

3.4.1 Green FDI, skills and green diversification

We estimate several specifications of Equation (3.7) to test our working hy-

potheses. Table 3.3 reports the results concerning the impact of FDIs at the

intensive margin, i.e. when GreenCapex and BrownCapex are calculated

as the 5-year moving average of capital expenditure. Column (1) is the most

conservative model in which we only includeBrownCapex, year×technology,

and State fixed effects as control variables. We find positive and significant

coefficients for both ASH and GreenCapex (point estimates, respectively,

.04 and .27). This result supports our hypotheses H1 and H2. Then, from

column (2) to column (4), we gradually augment the initial specification

with the full set of control variables. In all specifications, we find positive

and significant coefficients for both ASH and GreenCapex (point estimates

ranging between .02 and .04 for GreenCapex, and between .16 and .2 for

ASH), in line with the baseline results. For what concerns ASH, results

show that the odds of acquiring a new specialization in green domains for

MSAs endowed with above-national median levels of abstract-oriented occu-

pational skills are higher than those of areas with below median intensity

of abstract skills (with odds ranging between 17% and 22%). This result

suggests that high levels of abstract-intense jobs in the local skill composi-

tion are associated with greater capability to integrate diverse concepts and

resources which, leveraging on recombinant creation capabilities, favour gen-
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erating GTs and acquiring technological specialization in the green domain.

Moreover, the presence of inward green FDIs – a proxy for the local capacity

to attract external competencies and knowledge in green domains – is a lever

for diversifying towards GTs. Indeed, MSAs capable of attracting 1% addi-

tional capital expenditures through green FDIs are around 2.2% more likely

to acquire new green specializations. This confirms that through inward

green FDIs, local areas can access external (possibly global) green know-

ledge, which, coupled with existing local competencies, can be successfully

exploited for novel recombinations, hence allowing regions to expand the set

of technological specialization toward the green realm and accelerating their

green transition. These results corroborate working hypotheses H1 and H2

proposed in Section 3.2.

We now move to the interplay between green FDIs and the local skills’

endowment. Columns (5) and (6) of Table 3.3 provide evidence related to H3a

and H3b, respectively. We are interested in the coefficients of the interactions

between the GreenCapex and the skills-related variables.

On the one hand, H3a posits that workers in abstract-skills-intensive oc-

cupations can be considered agents of potential absorptive capacity. In this

direction, we expect that the local intensity of those skills compensates for the

impact of the inflow of external knowledge on the entry into new green techno-

logical specializations. Areas with an abundance of workers with exploration-

oriented skills are less dependent on trade flows to source external knowledge.

The coefficient of interest, β4 in Equation 3.8, is negative and significant, as
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reported in column (5), supporting H3a.

On the other hand, the successful exploitation of external knowledge re-

quires the local availability of skills and capabilities, allowing the adaptation

of knowledge created elsewhere to local idiosyncratic conditions. Follow-

ing the arguments underlying H3b, local qualified workers in routine-skills-

intensive occupations can be considered as carriers of such realised absorptive

capacity. In this direction, routine-skills can work as enablers of the positive

impact of FDIs on green technological diversification. The coefficient of in-

terest, β4 in Equation 3.9, is positive and significant, as reported in column

(6), supporting H3b.

With respect to the control variables, we estimate positive and statistically

significant coefficients for the variable TechRel in all specifications, as ex-

pected. Indeed, the literature has widely recognised technological relatedness

as a key driver of regional technological diversification in general and green

diversification in particular. We confirm this well-documented evidence in

our sample. Moreover, we estimate positive and statistically significant coef-

ficients for the variables BrownCapex, shGreenEst, and GreenPrevRTA.

The variable BrownCapex allows to control for the overall non-green ca-

pacity of attracting inward FDIs, hence incoming foreign direct investments

that bring knowledge and expertise from outside the region to local innov-

ative actors. GTs are complex technologies requiring the recombination of

heterogeneous and distant knowledge. Since inward FDIs help regions widen
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and diversify their knowledge bases, this favors regional branching, hence

the entry into new green specializations. The variable shGreenEst captures

the role of local industrial composition exposed to environmental innovation

activities. The higher the number of firms operating in sectors exposed to

green activities, the higher the likelihood that the local system adds new

green specializations to its technological portfolio. Lastly, we include the

variable GreenPrevRTA to control for the regional cumulative process of

green specialization. Together with TechRel and shGreenEst, we include

this variable to control for the effect of the accumulation of local innovation

competencies in environmental-related technological fields. The higher this

accumulation, the higher the likelihood of green diversification, at least in

the short term and up to a certain threshold of saturation of technological

opportunities.

The previous analysis shows that the MSA’s capacity to attract FDIs, both

green and non-green, is positively associated with the likelihood of entering a

new green technological specialization. While these results provide evidence

of the impact of FDIs at the intensive margins, the extensive margins are

also important when investigating the impact of international trade dynam-

ics. For this reason, in Table 3.4, we provide the results of the econometric

estimations in which brown and green FDI variables have been dichotomized.

The Table’s structure is the same as Table 3.3. Column (1) reports the res-

ults of the most conservative model, in which we include only our regressors
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Table 3.3: Green Diversification, skill composition, and Green FDI Capex

entryGT
(1) (2) (3) (4) (5) (6)

GreenCapex 0.0436∗∗∗ 0.0267∗∗∗ 0.0366∗∗∗ 0.0222∗∗∗ 0.0406∗∗∗ 0.0058
(0.0090) (0.0084) (0.0080) (0.0080) (0.0108) (0.0092)

BrownCapex 0.0340∗∗∗ 0.0133 0.0321∗∗∗ 0.0197∗∗ 0.0219∗∗∗ 0.0215∗∗
(0.0098) (0.0089) (0.0087) (0.0083) (0.0083) (0.0083)

(d) ASH 0.2753∗∗∗ 0.2016∗∗∗ 0.1835∗∗∗ 0.1576∗∗∗ 0.2262∗∗∗ 0.1534∗∗∗
(0.0471) (0.0426) (0.0400) (0.0361) (0.0422) (0.0357)

(d) RSH 0.0298 0.0463 -0.0107 -0.0283 -0.0343 -0.1140∗∗
(0.0431) (0.0396) (0.0356) (0.0339) (0.0333) (0.0444)

TechRel 0.0143∗∗∗ 0.0143∗∗∗ 0.0125∗∗∗ 0.0126∗∗∗ 0.0126∗∗∗
(0.0009) (0.0008) (0.0008) (0.0008) (0.0008)

GDPpc 0.2879∗∗∗ 0.1621∗ 0.1715∗ 0.1748∗
(0.1009) (0.0984) (0.0972) (0.0984)

EmpGrowth -0.0453 -0.1767 -0.1754 -0.1563
(0.3985) (0.3873) (0.3841) (0.3870)

ShPatents -0.1905∗∗∗ -0.1755∗∗∗ -0.1644∗∗∗ -0.1661∗∗∗
(0.0296) (0.0306) (0.0296) (0.0307)

(d) shGreenEst 0.2986∗∗∗ 0.2898∗∗∗ 0.2925∗∗∗
(0.0866) (0.0848) (0.0852)

GreenPrevRTA 0.6514∗∗∗ 0.6822∗∗∗ 0.6503∗∗∗
(0.1841) (0.1817) (0.1818)

GreenCapex × (d) ASH -0.0354∗∗∗
(0.0118)

GreenCapex × (d) RSH 0.0347∗∗∗
(0.0117)

Observations 2,102,562 2,102,562 2,102,562 2,102,562 2,102,562 2,102,562
Log-Likelihood -108,356.0 -108,022.8 -107,854.2 -107,798.5 -107,786.0 -107,785.0
Adjusted Pseudo R2 0.06667 0.06953 0.07095 0.07142 0.07151 0.07152

Year*Tech fixed effects ✓ ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Clustered (MSA) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: MSA entry in a green technological specialization. GreenCapex and BrownCapex are ex-
pressed as continuous variables. ASH and RSH are dichotomous variables equal to one if the share of,
respectively, abstract and routine skills is above the national median. Explanatory variables are lagged
by one year. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine
function. All models are estimated through fixed effects logit estimators. Heteroskedastic-robust stand-
ard errors, reported in parentheses, are clustered at the MSA level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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of interest, along with year×technology and State fixed effects. At the ex-

tensive margin, areas featured by non-zero GreenCapex and BrownCapex

have higher odds of diversifying in green technological domains than areas

with no FDIs. This result further supports H1. The coefficient of (d)ASH

is also positive and significant, suggesting that higher local levels of abstract

skills increase the likelihood of entering new green technological specializ-

ations, in line with H2. In columns (2) to (4), we gradually include the

full set of control variables. The results concerning our focal regressors do

not change qualitatively, though the inclusion of control variables causes a

modest reduction in the magnitude of the estimated coefficients. Finally, in

columns (5) and (6), we report the results of the estimations of models 3.8

and 3.9, which are intended to test H3a and H3b. The results are consistent

with those reported in Table 3.3. The coefficient of the interaction between

(d)ASH and (d)GreenCapex is negative and significant, suggesting the ex-

istence of a compensation mechanism according to which local areas with

high levels of abstract skilled workers are less dependent on FDIs in the dy-

namics of green technological diversification. In column (6), the coefficient

of the interaction between (d)GreenCapex and (d)RSH is positive and sig-

nificant, providing further support to H3b concerning the enabling role of

routine skills in the impact of green FDIs on the probability of opening a

new green technological specialization. Overall, the magnitude of the coeffi-

cients at the extensive margins is larger than that of the coefficients at the

intensive margins.
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Table 3.4: Green Diversification, skill composition, and Green FDI Capex (dummies)

entryGT
(1) (2) (3) (4) (5) (6)

(d) GreenCapex 0.2078∗∗∗ 0.1190∗∗∗ 0.1409∗∗∗ 0.0726∗∗∗ 0.1602∗∗∗ 0.0046
(0.0337) (0.0301) (0.0300) (0.0278) (0.0398) (0.0302)

(d) BrownCapex 0.2166∗∗∗ 0.1518∗∗∗ 0.1657∗∗∗ 0.1206∗∗∗ 0.1300∗∗∗ 0.1170∗∗∗
(0.0425) (0.0389) (0.0385) (0.0346) (0.0345) (0.0343)

(d) ASH 0.3418∗∗∗ 0.2173∗∗∗ 0.2052∗∗∗ 0.1599∗∗∗ 0.2383∗∗∗ 0.1601∗∗∗
(0.0423) (0.0371) (0.0369) (0.0321) (0.0354) (0.0319)

(d) RSH 0.0411 0.0431 -0.0038 -0.0329 -0.0415 -0.1265∗∗∗
(0.0394) (0.0351) (0.0323) (0.0306) (0.0300) (0.0374)

TechRel 0.0155∗∗∗ 0.0157∗∗∗ 0.0128∗∗∗ 0.0128∗∗∗ 0.0128∗∗∗
(0.0009) (0.0009) (0.0008) (0.0008) (0.0008)

GDPpc 0.3906∗∗∗ 0.2068∗∗ 0.2195∗∗ 0.2134∗∗
(0.0977) (0.0933) (0.0927) (0.0937)

EmpGrowth 0.2052 -0.0286 0.0423 0.0139
(0.3498) (0.3340) (0.3347) (0.3360)

ShPatents -0.1531∗∗∗ -0.1545∗∗∗ -0.1510∗∗∗ -0.1514∗∗∗
(0.0262) (0.0264) (0.0258) (0.0261)

(d) shGreenEst 0.3359∗∗∗ 0.3399∗∗∗ 0.3412∗∗∗
(0.0790) (0.0773) (0.0776)

GreenPrevRTA 0.8439∗∗∗ 0.8480∗∗∗ 0.8430∗∗∗
(0.1760) (0.1741) (0.1742)

(d) GreenCapex × (d) ASH -0.1699∗∗∗
(0.0382)

(d) GreenCapex × (d) RSH 0.1679∗∗∗
(0.0407)

Observations 2,867,130 2,867,130 2,675,988 2,675,988 2,675,988 2,675,988
Log-Likelihood -144,517.0 -143,957.5 -134,730.9 -134,610.0 -134,590.5 -134,591.2
Adjusted Pseudo R2 0.06665 0.07025 0.07150 0.07232 0.07245 0.07244

Year*Tech fixed effects ✓ ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Clustered (MSA) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: MSA entry in a green technological specialization. GreenCapex and BrownCapex are expressed
as dichotomous variables equal to one if the stock of, respectively, green or non-green FDI is greater than
0. ASH and RSH are dichotomous variables equal to one if the share of, respectively, abstract and
routine skills is above the national median. Explanatory variables are lagged by one year. Continuous
explanatory variables are log-transformed, applying the inverse hyperbolic sine function. All models
are estimated through fixed effects logit estimators. Heteroskedastic-robust standard errors, reported in
parentheses, are clustered at the MSA level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The estimates of the marginal effects of the two variables of interest –

graphically reported in Figures 3.1 and 3.2 – unveil interesting dynamics.

Figure 3.1 shows that for low and medium levels of green FDI intensity, the

expected probability of acquiring a new green specialization is always higher

in MSAs endowed with a high level of abstract skills if compared to MSAs

for which these skills are relatively lacking, though the gap decreases as the

intensity of green FDIs increases. For what concerns areas in the top 5%

of the distribution of green FDI capital expenditure, we find that substan-

tially no differences can be observed in the probability of green technological

diversification based on the relative endowment of abstract skills. In other

words, in line with the compensation hypothesis spelt out in H3a, the lower

the intensity of green FDIs, the higher the impact of abstract skills (i.e.,

ASH = 1) on green technological diversification, as compared to areas that

are poorly endowed with these skills (i.e., ASH = 0). The left and right

panels of Figure 3.1 show the differential effects for areas where the endow-

ment of routine-skilled workers is below and above the median, respectively.

Overall, one cannot find significant differences between the two states.

In Figure 3.2, we show how the impact of the endowment of routine skilled

workers on green technological diversification changes along the distribution

of GreenCapex. The left panel concerns areas in which ASH = 0, while

the right panel refers to areas in which ASH = 1. The diagrams show that

above-the-median levels of routine skills yield differential positive effects as

compared to below-the-median levels only for high levels of GreenCapex.
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Figure 3.1: Marginal effects of the interaction between the share of abstract skills
(dummy) and GreenCapex at different percentiles of the distribution.

Figure 3.2: Marginal effects of the interaction between the share of routine skills
(dummy) and GreenCapex at different percentiles of the distribution.

110



Moreover, the impact of RSH = 1 grows as GreenCapex increases. This is

in line with the augmenting effect hypothesized in H3b, i.e., the argument

that routine skills provide local areas with the realized absorptive capacity

necessary to translate external knowledge into actual innovation.

The evidence discussed so far provides empirical support to our hypotheses

concerning the direct effects of green FDIs and abstract skills endowment on

the probability of entering new green technological specializations, as well

as the interplay between FDI inflows and local skills structure. In the next

Section, we investigate sources of heterogeneity and discuss the results of

robustness checks.

3.4.2 Heterogeneity and robustness

Heterogeneity: upstream vs. downstream green FDIs

The data provided by fDi Markets can be exploited to investigate sources of

heterogeneity along the value chain. We map FDIs according to their value-

chain position, derived from the classification of business functions proposed

by Sturgeon (2008). This categorization allows us to map investments at dif-

ferent stages of the value chain consistently across both countries and sectors.

We follow the approach proposed in Crescenzi, Pietrobelli et al. (2014) and

distinguish investment projects by functions, such as “Research and Develop-

ment”, or “Retail”. In turn, we draw upon Ascani, Crescenzi et al. (2016) and

group investments into upstream, downstream, and production activities, as

summarized in Table 3.5.
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Table 3.5: Classification of business functions

Classification Activity

Upstream Business Services
Design, Development and Testing
Education and Training
Headquarters
Research and Development

Downstream Customer Contact Centre
Logistics, Distribution and Transportation
Maintenance and Servicing
Recycling
Sales, Marketing and Support
Shared Services Centre
Technical Support Centre

Production Construction
Electricity
Extraction
ICT and Internet Infrastructure
Manufacturing

Following this classification, we distinguish between FDIs concentrated

in upstream and production (supply) functions on the one hand and those

in downstream (demand) functions on the other one. Hence we run ad-

ditional estimations of Equation (3.7), Equation 3.8 and Equation 3.9 by

jointly including GreenCapexSupply and GreenCapexDemand instead of

GreenCapex.

Table 3.6 shows the results of the estimations including FDIs-related vari-

ables as the 5-year moving average of capital expenditure. Coherently with

the previous regression tables, column (1) presents the baseline version of

the model. The breakdown of total green FDI expenditure reveals that
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the positive and significant effect is driven by GreenCapexSupply rather

than GreenCapexDemand. This latter variable features, indeed, a non-

significant and negative coefficient. The coefficient of (d)ASH is positive

and significant. In columns (2) to (4), we gradually add the whole set of

control variables to the estimations. The evidence is confirmed, as the coef-

ficient of GreenCapexSupply remains positive and significant, and so is

the coefficient of (d)ASH. The coefficient of GreenCapexDemand remains

non-significant. These results suggest that the mechanisms underlying the

impact of green FDIs on the probability of green technological diversification

are driven by projects clustered in upstream activities, i.e. related to the

location of functions mostly focusing on education, training, creativity, and

knowledge generation.

Columns (5) and (6) investigate the interplay betweenGreenCapexSupply

and the skill structure of the local workforce (H3a and H3b). The coefficient

of the interaction with (d)ASH is negative and significant, while that of inter-

action with (d)RSH is positive and significant. These results are consistent

with those shown in the previous tables and further strengthen our hypo-

theses about the role of potential and realized absorptive capacity. Workers

in abstract skill-intensive occupations deal with creativity and exploration of

the knowledge space and hence compensate for the lack of adequate levels of

inward FDI. Workers in routine skill-intensive occupations are connected to

the production floor and develop tacit knowledge through localized learning

dynamics, which is crucial to translating knowledge from outer spaces into
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Table 3.6: Green Diversification, skill composition, and Supply vs. Demand Green FDI
Capex

entryGT
(1) (2) (3) (4) (5) (6)

GreenCapexSupply 0.0428∗∗∗ 0.0302∗∗∗ 0.0340∗∗∗ 0.0213∗∗∗ 0.0386∗∗∗ 0.0040
(0.0092) (0.0085) (0.0083) (0.0082) (0.0109) (0.0100)

GreenCapexDemand -0.0036 -0.0242 0.0084 −7.39× 10−5 0.0079 0.0051
(0.0149) (0.0149) (0.0125) (0.0120) (0.0114) (0.0122)

BrownCapex 0.0362∗∗∗ 0.0186∗∗ 0.0321∗∗∗ 0.0204∗∗ 0.0216∗∗∗ 0.0214∗∗
(0.0097) (0.0088) (0.0087) (0.0084) (0.0084) (0.0084)

(d) ASH 0.2768∗∗∗ 0.2064∗∗∗ 0.1824∗∗∗ 0.1573∗∗∗ 0.2223∗∗∗ 0.1534∗∗∗
(0.0473) (0.0423) (0.0401) (0.0361) (0.0413) (0.0358)

(d) RSH 0.0301 0.0459 -0.0103 -0.0280 -0.0350 -0.1087∗∗
(0.0432) (0.0393) (0.0357) (0.0339) (0.0333) (0.0434)

TechRel 0.0145∗∗∗ 0.0143∗∗∗ 0.0125∗∗∗ 0.0126∗∗∗ 0.0126∗∗∗
(0.0009) (0.0008) (0.0008) (0.0008) (0.0008)

GDPpc 0.2883∗∗∗ 0.1619 0.1727∗ 0.1749∗
(0.1012) (0.0985) (0.0977) (0.0987)

EmpGrowth -0.0545 -0.1851 -0.1839 -0.1679
(0.3965) (0.3850) (0.3822) (0.3849)

ShPatents -0.1930∗∗∗ -0.1751∗∗∗ -0.1672∗∗∗ -0.1677∗∗∗
(0.0304) (0.0310) (0.0303) (0.0310)

(d) shGreenEst 0.3011∗∗∗ 0.2931∗∗∗ 0.2959∗∗∗
(0.0868) (0.0855) (0.0858)

GreenPrevRTA 0.6569∗∗∗ 0.6743∗∗∗ 0.6510∗∗∗
(0.1866) (0.1847) (0.1839)

GreenCapexSupply × (d) ASH -0.0358∗∗∗
(0.0118)

GreenCapexSupply × (d) RSH 0.0343∗∗∗
(0.0120)

Observations 2,102,562 2,102,562 2,102,562 2,102,562 2,102,562 2,102,562
Log-Likelihood -108,359.3 -108,019.3 -107,855.7 -107,799.3 -107,787.0 -107,786.3
Adjusted Pseudo R2 0.06663 0.06955 0.07093 0.07140 0.07150 0.07150

Year*Tech fixed effects ✓ ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Clustered (MSA) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: MSA entry in a green technological specialization. GreenCapexSupply is the amount of capital
expenditure in green FDIs in supply (upstream and production) sectors. GreenCapexdemand is the
amount of capital expenditures in green FDI in demand (downstream) sectors. ASH and RSH are
dichotomous indicators equal to one if the share of, respectively, abstract skills or routine skills is above
the national median. Explanatory variables are lagged by one year. Continuous explanatory variables are
log-transformed, applying the inverse hyperbolic sine function. All models are estimated through fixed
effects logit estimators. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at
the MSA level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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innovation fitting the idiosyncratic conditions of local production systems

(Antonelli 2006).

The previous table shows the results concerning the impact of supply and

demand green FDIs at the intensive margins. In Table 3.7, we show the res-

ults of the estimations at the extensive margins. We move from the baseline

model in column (1) to gradually saturate the model in column (4). The res-

ults are consistent with those presented in table 3.6. It is also worth noting

that at the extensive margins FDIs in downstream business functions yield

a positive and significant impact on the probability of entering a new green

technological specialization.

In columns (5) and (6), we find the estimations that include the interac-

tion between the green FDI supply dummy and the skills-related variables.

The results are in line with the previous estimations, confirming the com-

pensation role of (d)ASH and the boosting role of (d)RSH.

Robustness checks

As stressed in Section 3.3.1, the volume of capital expenditures for each FDI

flow is estimated by FT Intelligence. To account for potential measurement

problems, we run further estimations to check for the robustness of our res-

ults. First of all, we assume that if any bias is introduced by the estimation

procedure, it is supposed to affect all the sampled FDI projects in the same
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Table 3.7: Green Diversification, skill composition, and Supply vs. Demand Green FDI
Capex (dummies)

entryGT
(1) (2) (3) (4) (5) (6)

(d) GreenCapexSupply 0.1662∗∗∗ 0.1069∗∗∗ 0.1257∗∗∗ 0.0710∗∗ 0.1393∗∗∗ -0.0056
(0.0361) (0.0338) (0.0329) (0.0326) (0.0447) (0.0363)

(d) GreenCapexDemand 0.1435∗∗∗ 0.0590∗ 0.1167∗∗∗ 0.0770∗∗∗ 0.0838∗∗∗ 0.0812∗∗∗
(0.0348) (0.0306) (0.0282) (0.0248) (0.0244) (0.0244)

(d) BrownCapex 0.2220∗∗∗ 0.1733∗∗∗ 0.1796∗∗∗ 0.1415∗∗∗ 0.1430∗∗∗ 0.1374∗∗∗
(0.0429) (0.0403) (0.0396) (0.0367) (0.0362) (0.0363)

(d) ASH 0.2612∗∗∗ 0.1784∗∗∗ 0.1711∗∗∗ 0.1441∗∗∗ 0.2245∗∗∗ 0.1376∗∗∗
(0.0434) (0.0400) (0.0381) (0.0349) (0.0434) (0.0343)

(d) RSH 0.0223 0.0365 -0.0105 -0.0283 -0.0310 -0.1496∗∗∗
(0.0417) (0.0384) (0.0349) (0.0334) (0.0329) (0.0486)

TechRel 0.0141∗∗∗ 0.0145∗∗∗ 0.0125∗∗∗ 0.0126∗∗∗ 0.0126∗∗∗
(0.0009) (0.0008) (0.0008) (0.0008) (0.0008)

GDPpc 0.2927∗∗∗ 0.1638∗ 0.1749∗ 0.1804∗
(0.0978) (0.0955) (0.0946) (0.0960)

EmpGrowth 0.0333 -0.1246 -0.1307 -0.1537
(0.4016) (0.3888) (0.3849) (0.3876)

ShPatents -0.1696∗∗∗ -0.1637∗∗∗ -0.1584∗∗∗ -0.1582∗∗∗
(0.0287) (0.0295) (0.0287) (0.0290)

(d) shGreenEst 0.2855∗∗∗ 0.2885∗∗∗ 0.2911∗∗∗
(0.0834) (0.0817) (0.0817)

GreenPrevRTA 0.6731∗∗∗ 0.6958∗∗∗ 0.6727∗∗∗
(0.1791) (0.1769) (0.1769)

(d) GreenCapexSupply × (d) ASH -0.1464∗∗∗
(0.0495)

(d) GreenCapexSupply × (d) RSH 0.1889∗∗∗
(0.0516)

Observations 2,102,562 2,102,562 2,102,562 2,102,562 2,102,562 2,102,562
Log-Likelihood -108,317.0 -107,983.4 -107,840.4 -107,782.0 -107,771.7 -107,764.2
Adjusted Pseudo R2 0.06700 0.06986 0.07106 0.07155 0.07163 0.07169

Year*Tech fixed effects ✓ ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Clustered (MSA) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: MSA entry in a green technological specialization. GreenCapexsupply is the amount capital
expenditures in green FDI in supply (upstream and production) sectors. GreenCapexdemand is the
amount of capital expenditures in green FDI in demand (downstream) sectors. All FDI variables are
expressed as a dummy variable equal to 1 if the amount of capital expenditures is higher than 0, and 0
otherwise. ASH and RSH are dichotomous indicators equal to one if the share of, respectively, abstract
skills or routine skills is above the national median. Explanatory variables are lagged by one year.
Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function.
All models are estimated through fixed effects logit estimators. Heteroskedastic-robust standard errors,
reported in parentheses, are clustered at the MSA level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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way. Hence, calculating the share between green and total FDIs should clean

any possible measurement issue. The results of these estimations are repor-

ted in the Appendix in Table B.1.

We find a positive and statistically significant coefficient for shGreenCapex

in all specifications, concluding that the relative weight of green FDIs over

total FDIs is a positive driver of regional green diversification. Precisely, in

the full model (column (4) in Table B.1 in the Appendix), a higher intensity

of inward green FDIs is associated with a 17% increase in the likelihood of en-

tering a new green technological specialization. This suggests that local areas

that can orient the flow of FDIs towards green economic activities are also

more likely to diversify in new green technological specializations. The posit-

ive and significant relationship between abstract skills intensity and entryGT

is also confirmed. In particular, MSAs endowed with a high intensity of

abstract-oriented occupational skills are 17.3% more likely to acquire new

green technological specializations (as in the full model reported in columns

(4) of Table B.1). Also, the results concerning the interaction between green

FDIs and the skills-related variables are coherent with those discussed above.

H3a and H3b on the compensating effect of ASH and the boosting effect of

RSH, respectively, are supported, too. As for the control variables, we con-

firm the main findings discussed above. In fact, in all specifications reported

in Table B.1 we estimate positive and statistically significant coefficients for

the control variables TechRel, shGreenEst, and GreenPrevRTA.
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As a further robustness check, we measure green FDIs as the share between

the number (count) of green and total FDI projects. The Appendix reports

the results in Table B.2. Overall, the results are consistent with the evid-

ence presented so far and support H1, H2, H3a, and H3b. It is worth noting

that the magnitudes of the effects of dhGreenFDI and (d)ASH are also

aligned in this case. As a final robustness check, Table B.3 in the Appendix

reports the results of estimations including a stricter set of fixed effects:

Tech ∗ Y ear fixed effects, where technologies are identified at the 4-digit

level and State ∗ Y ear fixed effects. This causes a drop in the number of

observations preserved by the estimation. Yet, the results are fully consistent

with those reported and discussed in the previous sections.

3.5 Conclusions

This work investigates the role of global connectedness and skill composition

for local technological diversification into green domains. Specifically, we hy-

pothesize that inward green FDIs and exploration-oriented skills positively

influence the probability that a given locality develops a new green technolo-

gical specialization. Additionally, we explore the role of the interplay between

FDIs and the local skills endowment in these dynamics, stressing the import-

ance of distinguishing between potential vis-à-vis realised local absorptive

capacity as drivers of compensating or boosting mechanisms. We conduct

the empirical analysis on a dataset of 287 US MSAs observed over 2003-2018,
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employing fixed effects Logit estimators with MSA-clustered standard errors.

The results show that green inward FDIs, measured through capital ex-

penditure, count of projects, shares, or dichotomous variables, are positively

related to the probability for MSAs to develop new green-tech specializa-

tions, supporting H1 of this work. Likewise, the probability of acquiring a

new green specialization is higher for MSAs endowed with above-national

median levels of abstract-oriented occupational skills compared to the rest of

MSAs, thus supporting H2. Lastly, on the one hand, we estimate a negative

interaction between green FDIs and abstract skills, suggesting that a com-

pensation mechanism is at stake between the two drivers. Coherently with

H3a, estimated marginal effects show that a high endowment of exploration-

oriented skills is crucial for regional green diversification, regardless of the

relative weight of green FDIs. We interpret this result as follows: in local la-

bour markets that are characterized by above median levels of abstract-skills

intensity, knowledge-search, and exploration-oriented capabilities that speak

to potential absorptive capabilities prevail. On the other hand, we find robust

evidence of a positive interaction between green FDIs and the local endow-

ment of routine skills. In line with H3b, this suggests that the presence of

workers employed in production-floor functions is crucial for the development

of tacit knowledge through localized learning, which favors the translation

of external knowledge into actual innovation, i.e. realised absorptive capacity.

The findings of this work are relevant both for the academic discourse and
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for the policy debate around the drivers of the green transition. As for the

former, while the positive association between green FDIs and eco-innovation

is corroborated in the academic literature – particularly in the contributions

concerned with MNEs eco-innovation performances (e.g. De Marchi et al.

2022; Amendolagine, Hansen et al. 2023) – our results add to the recently

emerged stream of studies that investigate the role of non-local knowledge

flows for local green technological trajectories (Castellani, Marin et al. 2022b;

Corrocher et al. 2024). Specifically, our study shows that global knowledge

flows are important not just for specializing in green technologies but also,

and importantly, for the process of green technological branching. While

specialization simply indicates the acquisition of new technologies, diversific-

ation implies that regions acquire novel green specializations, hence proving

that a process of branching into the green domain is effectively taking place.

We provide evidence that MNEs act as non-local agents of structural change

via their green investments, allowing host regions to access global knowledge

beyond their geographical boundaries (Neffke et al. 2018b; Boschma 2022b).

Through a process of hybridization of local and global green knowledge, the

combination of heterogeneous and distant knowledge components increases

the probability of developing a new green specialization, which, in turn, will

foster local green technological diversification.

Our study also adds to the recent innovation literature investigating the

nexus between the change in the local skill structure and the green transition

(Consoli, Marin et al. 2016; Vona, Marin, Consoli and Popp 2018; Vona,
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Marin and Consoli 2019). Yet, while extant research mostly focuses on the

labor market impact of the greening of the economy, we delve into the role

of local human capital endowment for green technological diversification dy-

namics, showing that the composition of the local skill set plays a crucial role

in influencing the ability to support the generation of green technologies. Spe-

cifically, the prominence of abstract skills is of paramount importance as it

correlates with the cognitive capabilities necessary to integrate concepts and

resources from diverse domains into fresh and unexplored avenues.

The findings of this work are also relevant for policy-makers. On the one

hand, diversification into green technologies is undoubtedly a priority for gov-

ernments across different geographical contexts and at different geographical

scales (Mazzucato and Perez 2015; Corrocher et al. 2024). However, diversi-

fying in green technologies depends on several internal and external factors,

most notably when referring to local technological patterns. Our evidence

on US MSAs is useful to show that the attraction of MNEs’ green invest-

ments can become a fundamental ingredient of smart specialization policy

toolboxes aimed at increasing environmental sustainability. On the other

hand, transitioning to green growth encompasses more than just develop-

ing and adopting new green technologies. Much of the necessary innovation

involves organizational and institutional changes, breaking away from estab-

lished norms and carrying inherent uncertainties about their effectiveness.

Thus, fostering the development and adaptation of human capital becomes

a key area for policy intervention. Active labor market policies are vital
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not only for swiftly reintegrating displaced workers but also for addressing

or preventing skill gaps. To ensure a seamless adjustment of labor markets

to these demands, concerted efforts are necessary to discern the direct (e.g.,

market demand) and indirect (e.g., regulatory) impacts of addressing climate

change on existing job profiles and the required skill sets for emerging green

sectors. Moreover, beyond the quantitative implications, public authorities

should assist businesses in generating quality employment opportunities dur-

ing their transitions to greener practices, thereby aiding local labor market

adjustments. From a dynamic perspective, agile, adaptable, and targeted

education and training systems are pivotal in laying the groundwork for an

equitable shift towards a low-carbon economy. Given the territorial specificity

of climate change, local labor market institutions will play a crucial role in

balancing national or supranational regulations with incentives to promote

sustainable business ventures.

As with any study, ours is not free from limitations, some of which re-

late to the empirical framework. The latter, as it stands, does not allow

us to fully rule out the endogeneity concerns revolving around the potential

bi-directional link between green diversification and FDIs. In fact, it is pos-

sible that MNEs target regions already specialized in green technologies and

contribute to spurring green diversification. Taking into account such consid-

erations is relevant for any conclusion about causality and should be the focus

of future research. Similarly, future research avenues aimed at disentangling

causality relationships should open the black box of FDIs. In particular,
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given the well-known heterogeneity of FDIs (Ascani, Balland et al. 2020b), it

is important to account for their diverse nature, notably with respect to the

stage of the value chain they refer to (e.g. upstream versus downstream). We

take a first step in this direction by showing that the mechanisms underlying

the role of green FDIs for green technological diversification are likely driven

by investment projects clustered in upstream activities, i.e. related to the

location of functions mostly focusing on education, training, creativity and

knowledge generation.
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Chapter 4

Climate Policy Uncertainty and Direc-

ted Technical Change: evidence from

European firms
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Abstract

In this paper, I derive novel indexes of Climate Policy Uncertainty for
four European countries. Exploiting a new dataset of web-scraped newspa-
per archives and text-as-data techniques, I explore the role of policy stance
underlying aggregate indices of CPU, deriving sub-indexes for uncertainty
suggesting increasing or decreasing future stringency. Building on the Direc-
ted Technical Change literature, I test empirically the relationship between
CPU sub-indexes and environmentally sensitive technologies, in a panel of
European firms between 1990 and 2020. I find a significant relationship
between the direction of firms’ technological efforts, proxied by patents, and
that of policy uncertainty. The results suggest that policy uncertainty is a rel-
evant factor in affecting the direction of technical change, bearing important
implications in terms of both climate and green industrial policy making.
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4.1 Introduction

Addressing the climate crisis, and achieving the Paris Agreement targets of

containing average emissions’ increase well below 2°C, requires radical decar-

bonization of the world economy. The scale and speed of change necessary

for achieving climate targets entails major coordination efforts, in which the

role of governments in steering market forces is fundamental. The scale of

these efforts, in fact, has been described as an industrial revolution against

a deadline (Schmitz et al. 2013; Lütkenhorst et al. 2014). The development

of carbon-neutral technologies in all sectors of the economy, from transport

to energy production, plays an essential part in the tension between decar-

bonization and economic growth (IEA 2020).

Within the green growth paradigm, the development and production of

sustainable technologies open new economic opportunities, while contributing

to decouple growth from polluting emissions. The costs required for achiev-

ing climate targets and stimulate green innovation must be met timely, in

order to avoid further climate damage. Green growth represents an oppor-

tunity for the economic success of countries and regions, but is also the source

of deep tensions. At its core, climate policy aims at pricing environmental

externalities and steering market prices towards making green products and

technologies relatively more convenient than polluting ones (Gugler et al.

2024). Transitioning away from a fossil-based model of economic growth is

met by resistance of stakeholders of sunset industries. Transitioning away

from polluting products and technologies could result in unjust outcomes, by
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favoring specific economic players, income groups, or territories, and creating

new forms of climate-related inequalities (Pegels 2014; Rodríguez-Pose and

Bartalucci 2023).

In this landscape, the support for climate and green industrial policies

critically depends on the success of the policy mix in delivering a just and ef-

fective transition (Altenburg and Rodrik 2017). Climate and green industrial

policies have taken a central role in the academic and public debates during

the past decade (Wade 2014; Cherif and Hasanov 2019). Strong government

intervention is essential in steering economies towards a sustainable growth

path, and the implications of this necessity are at the core of the tension

between the State and the market (Mazzucato 2011; Rodrik 2014).

The crucial role of green innovation in ensuring both emissions reduc-

tion and competitiveness is everyday more relevant (Fankhauser et al. 2013;

Aghion, Ahuja et al. 2023). In this sense, directing technical change away

from a high-carbon equilibrium towards a low-carbon one, requires a policy

mix able to steer economic incentives for innovation in a cleaner direction

(Acemoglu, Aghion et al. 2012). The need for strong climate policies has

been stressed for decades, and progress has been made, but their implement-

ation has been subject to periods of deceleration and doubt. In light of the

green-tech race, and more in general the success of the transition, consensus

and clarity around climate and industrial policy-making are of immense im-

portance (Altenburg and Rodrik 2017). Uncertainty in climate policy making
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has recently been subject to the attention of scholars, as a potential factor

slowing down investments and hindering the transition (Basaglia et al. 2021).

As defined by (Baker et al. 2016), Economic Policy Uncertainty (EPU)

regards government actions, regulations, and policies that can influence eco-

nomic and business decisions. Climate policy uncertainty (henceforth, CPU)

is a specific subset, focusing on the ambiguity surrounding the design, im-

plementation, or future trajectory of policies aimed at addressing climate

change, and achieving the transition. This uncertainty includes unclear gov-

ernment attitudes towards climate regulations, in terms of emissions’ targets,

carbon pricing mechanisms, or international climate agreements. CPU could

in turn affecting the behavior of economic agents, particularly delaying the

transition to a low-carbon economy.

In this chapter, I contribute to the empirical literature on directed tech-

nical change (DTC), and on the behavior of economic agents facing climate-

related uncertainty (Pindyck 2021), in different respects. First, I build on

the empirical literature on policy uncertainty started by Baker et al. (2016),

and construct new measures of CPU for France, Germany, Italy and Spain.

Exploiting text-as-data techniques and Natural Language Processing (NLP)

I derive novel sub-indexes of CPU, leaning towards increasing or decreasing

stringency, in order to map the direction of uncertainty. Second, I employ

semi-supervised machine learning on this data to make this exercise extens-

ible flexibly to other data sources, and test the relevance of text-as-data
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techniques in policy-uncertainty and environmental economics applications

(Dugoua et al. 2022).

Adding to previous empirical exercises in the literature, I explicitly adopt

a DTC framework, and study the effects of CPU on the direction of tech-

nological change in firms, studying their low-carbon and polluting patenting

activity. I run an empirical analysis on a panel of around 4800 European firms

between 1990 and 2020 and argue that the direction of policy uncertainty

(suggesting increasing or decreasing probability of future policy stringency)

affects the belief revision of firms and in turn the direction of innovation.

The remainder of the paper is organized as follows. Section 4.2 presents

the relevant literature context and develops hypotheses. Section 4.3 presents

the data and the empirical strategy. Section 4.4 presents and interprets the

results. Section 4.5 concludes and derives policy implications.

4.2 Literature background

4.2.1 Policy uncertainty and firms’ behavior

In recent years, economists have stressed the importance of endogenous

growth in the context of climate change. Starting from Acemoglu, Aghion et

al. (2012), numerous studies have investigated the effects of climate and green

industrial policies on the direction of technological change (Dechezleprêtre,

Martin et al. 2019). A recent body of empirical evidence has confirmed the
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relevance of DTC frameworks, showing how innovation in climate-relevant

technologies is sensitive to economic incentives, and how incentives can be

altered by climate policy instruments. (Dechezleprêtre and Hémous 2022)

and Hémous and Olsen (2021) provide recent reviews of the theoretical and

empirical developments in this area. Climate policies aimed at affecting the

relative price of green and dirty goods, such as carbon taxes or green R&D

subsidies affect innovation outcomes, directing technical change away from

polluting technologies towards low-carbon ones.

In this context, an emerging stream of literature has started investigating

the role of policy uncertainty. The study of firms’ behavior in response to

uncertainty has a long tradition (Bernanke 1983; McDonald and Siegel 1986).

More recently, novel forms of climate-related uncertainties are being increas-

ingly recognized as factors affecting the incentives system faced by economic

agents (Pindyck 2021). In addition, the increased availability of text data,

in the past decade, has paved the way for a flourishing empirical literature

on policy uncertainty, building on the initial idea for EPU proposed in Baker

et al. (2016). Differently from other measures of market uncertainty, based

often on the volatility of stock prices or on econometric measurement, they

developed measures based the text of newspaper articles. Both this work

and a large number of follow-up studies have shown the negative effects that

EPU shocks exert on the economy during periods of high uncertainty about

economic policy actions (for a comprehensive review about measurements

and effects, see Cascaldi-Garcia et al. (2023)).

130



EPU indexes are built on a set of keywords able to capture events in

which EPU has risen historically, making it possible to operationalize indic-

ators of policy uncertainty across languages and time. Building on similar

methodology, an emerging stream of literature has been developing similar

indexes for CPU (Gavriilidis 2021; Basaglia et al. 2021; Noailly et al. 2022).

Differently from EPU, CPU is built based on a different set of keywords for

climate-related newspaper articles, rather than capturing a broad range of

articles dealing with the economy (the precise construction of the index is

detailed in Section 4.3). CPU aims at quantifying how uncertain the climate-

policymaking process is, based on a set of nationally relevant newspapers,

which might affect the behavior of economic agents.

At the firm level, the responses to uncertainty in adapting expectations are

rooted in real-options theory (Dixit and Pindyck 1994). The effect of CPU on

firms’ behavior can be understood through two complementary conceptual

mechanisms: real-options theory and anticipatory behavior. According to

real-options theory, uncertainty about future policies increases the value of

delaying investments, particularly when these investments involve high up-

front costs or are irreversible (Bernanke 1983; Dixit and Pindyck 1994). For

green technologies, which are often capital-intensive and highly dependent on

regulatory clarity, this mechanism can be particularly relevant. Uncertainty

regarding the timing and stringency of measures such as carbon taxes or

green subsidies can lead firms to adopt a wait-and-see approach, postponing
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investments until greater clarity emerges. This delay can be further exacer-

bated by the path-dependency of green technologies, where early inertia in

the development of polluting technologies can create additional barriers to

shifting investment priorities.

On the other hand, anticipatory behavior can drive firms to act preempt-

ively in response to policy uncertainty, accelerating investments to gain a

strategic advantage in expected future markets. This mechanism may be

particularly relevant for green technologies, given their reliance on govern-

ment intervention to address market failures and their potential for long-term

competitiveness in a transitioning economy (Acemoglu, Aghion et al. 2012) .

While this analysis is built on the notion that firms merely react to CPU,

firms may also generate uncertainty by influencing government action by lob-

bying policy-makers and politicians. While this is highly plausible given the

size and relevance of sectors and firms affected by the transition, this avenue

of research is beyond the scope of this analysis, and will be further discussed

as limitation in my empirical setup, being a source of possible endogeneity.

For the scope of the present study, firms are reacting to increasing CPU by

a wait-and-see mechanism or anticipatory behaviors, in terms of their tech-

nological direction.

Empirically, the net effect of concurrent mechanisms, in the context of

climate related risks and uncertainties, is still unclear (Pindyck 2021). In

particular, different studies find rather heterogeneous results, depending on

the employed measures for policy uncertainty. In the next subsection, I
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review the extant empirical literature at the crossroads between policy un-

certainty and environmental innovations, and develop the hypothesis.

4.2.2 Empirical evidence on uncertainty and green innovation

In Table 4.1, I review of recent studies linking policy uncertainty and firm out-

comes, from an environmental and green innovation perspective. I consider

two different measures for policy uncertainty. First, I review papers from

the literature on EPU, including only studies dealing with environmentally-

related outcomes, namely green investments and patenting, or greenhouse

gases (GHG) emissions. Second, I include exercises employing CPU as the

explanatory variable of interest.
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Table 4.1: Literature Review: Policy uncertainty and innovation

Paper Sample Measure CountriesOutcome FrequencyEffects
Bai et al. 2023 firms, 2011-2020 CPU China Green Patents yearly Positive
Basaglia et al.
2021

firms, 1990-2019 CPU US Stock re-
turns, RD,
patenting,
employment

quarterly Negative

Berestycki et al.
2022

firms, 1990-2018 CPU 12
OECD
countries

Investments yearly Negative

Bettarelli et al.
2023

countries, 1976-
2020

EPU 81 coun-
tries

Green patents yearly Negative

Bouri et al. 2022 firms, 2000-2021 CPU US Stock returns
(green vs
brown)

monthly Positive

Cui et al. 2023 firms, 2005-2019 EPU China Green Patents yearly Negative
Dorsey 2019 plant, 2002-2011 CAIR

(single
policy)

US Investments
and emissions

yearly Negative

Y. Feng and X.
Ma 2024

firms, 2011-2021 PEU (text-
based at
firm level)

China Green Patents yearly Negative
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G.-F. Feng and
Zheng 2022

countries, 2000-
2022

EPU 22 coun-
tries

Renewable
Energy pat-
ents

yearly Positive

Gavriilidis 2021 US, 2000-2021 CPU US CO2 emis-
sions

monthly Negative

Hoang 2022 firms, 2000-2019 CPU US R&D ex-
penditures

quarterly Negative

Hu et al. 2023 firms, cross-
section

survey-
based
EnvPU

China Green invest-
ments

yearly Negative

W. Huang 2023 firms, 1987-2019 CPU US Green Patents yearly Negative
Khalil and
Strobel 2023

macro and firms,
2000-2019

CPU US Market value,
Investments

quarterly Positive

Kyaw 2022 firms, 2002-2020 EPU US EnvInnovation
score

yearly Positive

Xiaoqing Li et
al. 2021

provinces, 2000-
2017

EPU China Green Patents yearly Negative

Noailly et al.
2022

macro and firms,
1990-2019

EnvPU US Green VC in
startups

quarterly Negative

Peng et al. 2023 provinces, 2000-
2017

EPU China Green Patents yearly Positive

Ren, Shi et al.
2022

firms, 2009-2020 CPU China Total Factor
Productivity

yearly Negative
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M. Wang et al.
2023

firms, 2000-2020 CPU US CO2 Emis-
sions and
Green Patents

yearly Positive

J. B. Wang 2022 cities and firms,
2003-2019

Local CPU
(instru-
mented)

China Green RD,
Patents,
Employment

yearly Negative

Xu and Z. Yang
2023

cities, 2005-2016 EPU China Green Patents yearly Positive

Yu and Chen
2023

firms, 2007-2020 EPU China Green Patents yearly Negative
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Evidence about the effect of EPU and green innovation is far from con-

clusive. In a recent working paper, analyzing a large sample of countries and

sectors, Bettarelli et al. (2023) suggest that an increase in EPU, measuring

the general uncertainty about government’s economic policy, depresses green

patenting. Cui et al. (2023) and Niu et al. (2023) study the effect of EPU

on firm-level green patenting in China, also finding a negative relationship.

Xiaoqing Li et al. 2021, at the level of Chinese provinces, adds evidence in

this direction. Yu and Chen (2023) and Hu et al. (2023) also report a neg-

ative association between EPU and green patenting in China, at the firm

level. On the contrary, in the United States, Kyaw (2022) and M. Wang

et al. (2023) find a positive effect on measures of green innovation, including

investments, patents, and survey-based eco-innovation measures. Xu and Z.

Yang (2023) and Peng et al. (2023) finds similar results at the provincial level

in China. At the country level, G.-F. Feng and Zheng (2022) adds to this

positive relationship.

EPU is a measure capturing general aspects of economic policy, including

monetary policy shocks, terrorist attacks, trade shocks or electoral uncer-

tainty. Environmentally-related technologies might be more sensitive to a

general uncertainty shocks compared to other technologies (Bettarelli et al.

2023), because of the different nature of green technologies in terms of risk,

complexity, or their need for government support.

Green technologies might be particularly sensitive to policy uncertainty
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due to their unique characteristics, entailing a higher complexity in their re-

combinant properties (Barbieri, Marzucchi et al. 2020; Fusillo 2023). Unlike

other technologies, green innovations address externalities that markets fail

to price adequately, requiring consistent government support through car-

bon pricing, renewable energy incentives, and green R&D subsidies (Acemo-

glu, Aghion et al. 2012). These technologies also involve higher financial

and technological risks. Long development cycles and reliance on novel,

cross-disciplinary knowledge create significant uncertainty for firms, espe-

cially when policy environments are unpredictable. Delays or reversals in

key regulations, such as carbon taxes, can therefore devalue investments.

Uncertainty could further amplify their exposure to fragmented or inconsist-

ent international policies, disrupting innovation ecosystems and the spatial

diffusion of these technologies (Losacker, Horbach et al. 2023).

Green investments and technologies are therefore arguably more sensitive

to uncertainty, and in particular to that specifically bound to climate and en-

vironmental policies. An emerging stream of empirical studies, on which this

analysis builds, quantifying this type of uncertainty based on the methodo-

logy put forward by (Baker et al. 2016). Gavriilidis (2021) measured CPU,

based on a sample of nationally-relevant newspapers in the United States,

finding a negative relationship with emissions’ reduction in a sample of firms.

Many studies relate to the effect of CPU rises in the United States, employ-

ing the index constructed by Gavriilidis (2021), and observing its relationship

with firm level outcomes. Most of these studies focus on the effect of rising
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CPU in US and Chinese firms. Since then, a number of different exercises

have developed alternative CPU indexes.

Noailly et al. (2022) develops a similar index for environmental policy un-

certainty (EnvPU) employing text-as-data techniques, and testing its effect

on venture capital funding for US startups. Using quarterly data, they find

that an increase in Environmental Policy Uncertainty is associated to lower

amounts of capital raised by clean-tech startups. Other recent exercises have

built CPU indexes for a larger number of countries. Basaglia et al. (2021)

and Berestycki et al. (2022) are the most connected to this paper, measuring

and studying the impact of CPU respectively in the United States (Basaglia

et al. 2021), and on OECD countries, exploiting a global firm-level datasets

(Berestycki et al. 2022). Both studies find a reduction in investments and

firm level performances, and Basaglia et al. (2021) also explicitly measures the

direction of uncertainty that underlies variation in CPU in English-speaking

countries. They use a keywords-based approach to distinguish newspaper

articles pointing towards more or less stringent regulation. By interacting

emissions intensities as a form of exposure to climate policies, they show how

US-firms are more sensitive to variation in CPU that is pointing towards

more rigid regulation. While they test results for R&D expenditures, share

price volatility, and other outcomes in the US, they do not look explicitly

into the direction of effects in terms of green-vs-dirty patenting.

Again for the context of the United States, J. B. Wang (2022) measures
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CPU differently, exploiting the volatility in votes regarding climate legisla-

tion, finding that firms adopt an anticipatory behavior with respect to in-

novation and adoption of climate technologies. Adding to the US evidence,

Hoang (2022) distinguishes between low and high-emitting firms, finding a

negative effect for the latter, suggesting that heavy-emitting firms might be

adopting a wait-and-see investment strategy. Two studies explicitly look at

the relative performance of green and dirty outcomes in response to climate

policies. At the macro level, Khalil and Strobel (2023) employ both a gen-

eral equilibrium models, and granular firm level data for the US. They find

evidence of capital reallocation towards cleaner assets with respect to more

polluting ones, while lowering investments in carbon intensive industries and

increasing it in "greener" firms. These findings are in line with Bouri et al.

(2022), finding a positive role for US-CPU on the relative performance of

green energy stocks vis-à-vis brown counterparts. In a study precedent to

the empirical literature based on newspaper data, Dorsey (2019) exploits a

quasi-experimental framework relating to a single climate policy measure.

He finds that firms exposed to a higher level of CPU reduced investments

and experience a lower reduction in emissions.

Outside of the US, a number of empirical studies have investigated the

CPU and firms’ performance in China. Ren, X. Zhang et al. (2022) find a

negative effect of US-CPU on total factor productivity in a sample of Chinese

firms, channeled through a reduction in R&D expenditures and cash flows,

with results varying according to the institutional ownership of firms. Bai
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et al. (2023) test the US-based index developed in Gavriilidis (2021) on a

sample of listed Chinese firms, finding a positive relationship with green pat-

enting. Similarly, Ren, Shi et al. (2022) find a strong non-linear correlation

between CPU and investments, negative in polluting industries and posit-

ive for green-related investments. Differently from other studies based on

newspaper data, Hu et al. (2023) uses survey-based measures of policy un-

certainty (policy content and policy enforcement), at the local level, and find

a negative relationship with green patenting in Chinese firms. Other papers

focus instead on Chinese CPU. Recently, Y.-R. Ma et al. (2023) employed

deep learning techniques to build indexes with geographical variation of CPU

in China. Y. Feng and X. Ma (2024) also use text analysis techniques on

company reports in order to build a measure of environmental uncertainty

perceived by the firms, finding that it might hinder green innovation. At

the city-level, M. Wang et al. (2023) finds that a reduction in Chinese green

R&D, patents and employment, due to uncertainty specifically constructed

around the allocation system of subsidies allocated by the central govern-

ment.

In summary, while in the case of the EPU index, capturing a more general

aspect of policy uncertainty related to economic policies, uncertainty can be

expected to be detrimental to any innovation process (Basaglia et al. 2021),

depressing general investment activity, the empirical evidence seems to show

more mixed results. However, in the case of CPU, the same effect cannot

be expected a-priori, as the underlying signals in the climate-policymaking
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process could be differently affecting environmentally-opposing technologies.

4.2.3 CPU’s direction and technological change

A number of gaps emerge from reviewing the literature on EPU and CPU’s

effects. First, in terms of technological dynamics, evidence beyond general

investments is still scant. Studies focusing on green patenting do not ex-

plicitly adopt a directed technical change perspective, controlling for the

strong path-dependencies characterizing environmentally-sensitive technolo-

gies (Acemoglu, Aghion et al. 2012; Aghion, Dechezleprêtre et al. 2016).

If CPU is differently affecting green and brown investments (or sectors)

it is plausible to think that climate-sensitive technologies (green or dirty)

would also be affected in different ways. Khalil and Strobel (2023), from

a macro perspective in a general equilibrium framework, find evidence for

a mechanism of capital reallocation, with investments shifting from brown

towards cleaner sectors.

Bouri et al. (2022) add evidence on the positive effect of CPU on the relat-

ive performance of green vis-à-vis brown financial stocks. I add to this evid-

ence focusing on technological dynamics. CPU could affect firms’ behaviors

in terms of future costs and values of the technologies. In an environmentally-

positive direction, CPU could rise, for example due to discussion about the

implementation of a carbon tax. This would directly affect the (expected)

cost of capital for polluting technologies (Khalil and Strobel 2023), and indir-

ectly the future value of clean-tech alternatives, causing a shift in investments
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efforts from dirty technologies to green technologies.

From this perspective, policy direction within uncertainty indexes becomes

central in the expectation-revision of firms, driving investments towards two

alternative technologies. As discussed in depth in the next section, CPU in-

dices are built on a set of environmental, policy, and uncertainty keywords.

They capture both directions of the climate policy-making process, aggregat-

ing both milestones and setbacks. As mentioned, this aspects could be crucial

in terms of firms’ expectations and technological trajectories. With the ex-

ception of Basaglia et al. (2021) and Berestycki et al. (2022), most of these

studies do not unpack CPU indices, and consider aggregate CPU. Building

on their work, I add nuance in terms of the direction of policy-uncertainty. If

policy uncertainty points towards a more stringent environmental regulation,

firms might be inclined to accelerate innovation in terms of environmental

technologies, and divest from fossil-based technologies. A symmetric beha-

vior could be expected in terms of polluting technologies. If CPU increases

are driven by setbacks in the climate policy-making process, firms could

continue, or accelerate, investments into polluting technologies. Therefore,

rather than its aggregate level, a driving factor for innovation could be the

underlying variation in "good" or "bad" news for the environment, with un-

certainty indicating a higher probability of future regulation that could affect

both the costs and returns from alternative technologies.

An increase in positive policy uncertainty would enter the production func-
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tion of profit-maximizing agents as a (potential) extra cost for the production

of environmentally-damaging technologies. A decrease in the probability of

a carbon tax, for example, could represent a (relatively) higher expected cost

for the development of green technologies vis-à-vis polluting ones.

Hence, uncertainty caused by setbacks in climate policy-making, could

cause firms to continue investing in fossil-based technologies. Furthermore,

given the strong path-dependency (Aghion, Dechezleprêtre et al. 2016), an

increase (or a non-decrease) in future value of polluting technologies could be

detrimental for development of low-carbon alternative, and incentivize agents

to continue developing polluting technologies. In an economic equilibrium

which is already favoring polluting technologies, uncertainty could therefore

be a significant factor in steering change towards a cleaner path (Acemoglu,

Aghion et al. 2012). By the same logic, an increase in the probability of

green subsidies, could decrease the expected costs of firms in developing

green technologies with respect to fossil-based ones, therefore incentivizing

the former and discouraging the latter. In line with the evidence on green

industrial policy (Pegels 2014), clarity and commitment of legislators around

policies is crucial in this sense, as CPU could be an underlying factor altering

expectations and investments into alternative technologies. In this chapter,

I hypothesize, that different signals underlying CPU matter for the direction

of technical change:

Hypothesis 1 : Climate Policy Uncertainty affects the direction of tech-

nological change in firms, depending on the underlying changes in the
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probability of a more stringent environmental regulation.

To the best of my knowledge, no study has yet tested the relationship

between (sub) indices of CPU and DTC by considering both low and high-

carbon technologies. Furthermore, many of the cited studies using green pat-

ents as an outcome variable do not explicitly account for the path-dependency

in climate-sensitive technologies, adopting a framework of directed technical

change.

The motivation for this study, therefore, stems from the necessity to un-

derstand how support for green technologies demands stable, harmonized,

and long-term policy frameworks. Without this consistency, the high risks

and systemic requirements of green technologies will continue to limit innov-

ation and delay the transition to a sustainable economy. This is particularly

relevant in the context of the unpriced externalities and path-dependencies

emerging when considering fossil technologies alongside green ones.

I add another two contributions with respect to the extant literature.

First, I bring evidence for the European context, while most of the stud-

ies reviewed bring forward evidence regarding the US and China. Second,

I contribute to the emerging literature applying text-as-data techniques in

environmental economics and policy (Dugoua et al. 2022), adopting a novel

approach to measure the policy stance of news articles.
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4.3 Empirical Framework

4.3.1 Data

Newspapers’ archives and CPU

In order to build European indices of CPU, I collect millions of full text art-

icles by means of web scraping. Web scraping automates the collection of the

content of web pages. I built scrapers for several newspapers archives across

my sample countries (Germany, France, Italy and Spain). I focus on multiple

archives for each country, as common in the policy uncertainty literature to

smooth effects due to the structure of a single outlet.

I collect nationally-relevant archives, although the selection of sources

by each country was limited by the availability of digitized news archives

and the feasibility of the scraping process. I target outlets with different

political leaning, in order to balance reporting biases, which is important for

the reliability of this measures, although numerous normalization steps are

performed in line with the literature. The selection of newspapers for this

paper largely resembles that of similar exercises in the literature (Basaglia

et al. 2021).

With the exception of Germany, for which I focus on the weekly outlets

Der Spiegel and Die Zeit, all remaining news sources detailed in Table 4.2

have a daily frequency. For France, I collect data for Le Monde and Figaro.

In Italy for La Stampa, La Repubblica, Il Foglio and il Sole 24 Ore. For
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Spain, I collect data on El Pais and El Mundo newspaper archives. The

resulting dataset allows me to exploit around 17 million full-text newspaper

articles, spanning the period 1990-2020.

The data I collect via web scraping include the date on which the article

was published, its title, and the body of text. No reliable information about

the relevance of the article within that day’s newspaper (or within the web-

site) was available. I clean the collected data from duplicates (based on the

webpage’s URL, its unique identifier). Furthermore I remove near-duplicate

texts belonging to different URLs, often resulting from the process of digit-

ization of newspaper scans for articles belonging to the physical editions.

I do not distinguish, in this database, between digitized articles which

originally appeared in the paper version, and digitally native articles that

gained importance since the early 2000s. While this distinction could help

understand the structure of newspapers archives, for most news sources it

is not possible to identify the origin of the news article. Thus, I consider

the archives available online as a single entity, blending digital and physical

news. A more detailed exploration of newspaper data, or a structured digit-

ization of raw scans1 could have relevant implications for policy uncertainty

indicators, but is beyond the scope of this paper. The span and richness of

the dataset collected, allows me to build CPU indicators, for four European

countries, and a longer time span than the one considered in previous exer-
1For a recent example see Dell et al. (2024)
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cises.

Following the methodology proposed by Baker et al. (2016) and sub-

sequent work, I match newspaper articles employing three sets of keywords,

and consider an article expressing CPU if it matches all three sets. The first

set contains climate-related words (e.g. climate, environment, CO2), for each

language. The second set of keywords, instead, matches articles referring to

policy issues (e.g. government, policy), including policy-specific terms where

relevant (for example ETS - Emissions Trading System). I build on, and ex-

pand, the sets of climate and policy keywords adopted in previous exercises

(Gavriilidis 2021; Basaglia et al. 2021; Berestycki et al. 2022).

The most important difference, compared to the extant literature, is in the

set of keywords expressing uncertainty. The majority of exercises in climate

policy uncertainty only match articles based on the keywords "uncertain"

or "uncertainty". This selection of keywords has been subject to criticism.

Tobback et al. (2018), in the case of EPU, employs a wider set of keywords

more generally expressing uncertainty (e.g. doubt, maybe, perhaps). They

borrow from the concept of modality in linguistics: modality relates to dif-

ferent ways of expressing degrees of doubts and certainties. Tobback et al.

(2018) show that this approach is preferable to simple matches of the words

"uncertain" and "uncertainty".

Adapting from this work, I compile a similar list of keywords representing
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uncertainty. Employing a larger set of keywords helps minimizing false neg-

atives from the sample of articles, by matching a larger number of articles

compared to the more restrictive approach. Given this much larger set in-

cludes very common keywords, I minimize false positives by only considering

articles with a number of modality-expressing words in the top 15th percent-

ile, replicating the approach proposed by Tobback et al. (2018). I match and

calculate percentiles separately for each newspaper archive.

After identifying articles matching the three sets of keywords, I derive

monthly time series, for each newspaper, dividing the monthly count of CPU

articles by the total amount of articles. In turn, following standard practice in

this literature, I normalize the time series by standard deviation, and multiply

it for their mean. This normalization helps to remove newspaper-specific

factors, due for example to the structure of the newspaper archive.2 I take

averages between newspapers (in the overlapping periods) and multiply the

series by 100, making my measures comparable to other policy uncertainty

time series.3

2I calculate standard deviations and means based on periods of consistent number of articles in the
archives. I follow Baker et al. (2016), for each newspaper in common in the sample, in defining breaking
periods for calculating standard deviations. I also calculate different standard deviations in periods where
the total number of articles in the archive shows structural breaks. This might indicate a change in the
format of the outlet or in the total amount of digitized news, and could add noise to the measurement.

3Several series from different exercises are updated and available at: https://policyuncertainty.com
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Table 4.2: Database of newspaper archives

Country Archive Articles

Germany Der Spiegel 307,103
Die Zeit 220,497

France Figaro 1,773,778
Le Monde 1,491,681

Italy Il Foglio 53,541
La Stampa 5,813,893
La Repubblica 4,528,482
Il Sole 24 Ore 149,839

Spain El Mundo 421,725
El Pais 2,490,156

Total 17,250,695

150



(a) Germany (b) France

(c) Italy (d) Spain

Figure 4.1: Policy uncertainty indexes for sample countries
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In Figure 4.1, I plot these results for the four countries. In blue, I rep-

resent the (yearly and quarterly) averages for the CPU index built with the

procedure illustrated above. I compare it with a similar index developed by

the OECD (Berestycki et al. 2022), as well and the EPU series available from

Baker et al. (2016). While it correlates quite highly, in yearly aggregation,

with the OECD’s CPU index, there are notable differences, most likely due to

the different methodologies in keywords matching, and a different selection of

newspaper archives. Importantly, the CPU index differs from the Economic

Policy Uncertainty.

Interestingly, all indices seem to be spiking around 1992-1993 (years of the

discussions around the Kyoto Protocol). Also, spikes in the index correspond

to the passing of climate legislation in 2007-2008, when during France’s EU

presidency, the "Climate and Energy Package" was discussed and adopted,

fixing climate targets for 2020. In Germany, the index spikes around 2011,

during the discussions on Energiewende, the comprehensive climate-policy

agenda for the energy transition, featuring a 60% Greenhouse Gases (GHG)

reduction before mid-century. For France, in the early 2000s, some spikes

relate to the Climate Act (2001), as well as to the 2003 heatwave (peaking

also in Italy and Spain).

In Italy, the index first spikes in the middle of the 1990s, at the begin-

ning of the debate on energy market liberalization, began with the 1996 EU

directive, implemented in Italy with the 1999 Bersani Law. Another strong
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rise happens in Italy, in the early 2000s, during the implementation of the

reforms and the privatization of energy markets. Another peak in 2011 refers

to peaks in solar panel subsidies.

In more recent years, following 2017, CPU seems to be rising across all

four countries. The rising trend starting from 2016, could be due to country-

specific factors (the Gilet Jeunes protests following a fuel-tax rise in France)

or global discussions. As mentioned, in aggregate, all these indices are sum-

ming up different types of events. Both President Trump’s decision to exit

the Paris Agreement (2017), and the Government’s responses to the Climate

Strikes began by Gretha Thunberg (2018), or the passing of environmental

protection laws could be contributing to the rise of the index. 4

As noted in Basaglia et al. (2021), while one could expect that a rise in

general EPU to be slowing down firms’ investments and in general economic

activity, and even in green patenting (see Bettarelli et al. (2023) among oth-

ers), it is not necessarily the same with CPU. As mentioned, the direction of

CPU seems particularly relevant for the direction of innovation.

CPU might be pointing in two different directions: at a strengthening or

a weakening of future climate stringency, for example suggesting further im-

plementation, or a slowdown in the policymaking process. Previous attempts
4In addition, some news articles refer to specific place-based policies (oil leakages, or polluting plants)

which might not necessarily have national relevance. The distinction between local or nationally relevant
events is an interesting avenue for further research, but beyond the scope of this paper.
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(Berestycki et al. 2022; Basaglia et al. 2021) have mapped the direction of

CPU, creating sub-indexes for CPU+ and CPU- (increasing or hindering

climate policies) for English-speaking countries, based on sets of keywords

capturing the direction of uncertainty. Previous measurement exercises in

policy uncertainty have employed human labellers for the validation of these

indexes, in particular to filter out false positives. I take a different approach,

exploiting full-text data. Recent literature has shown the potential of Large

Language Models (LLMs) for accurate annotation of textual data, even over-

performing crowd labeling (Gilardi et al. 2023). LLMs, in fact, are opening

the possibility to lower dramatically the cost of labeling while still achieving

human-level accuracy on a variety of different tasks (for a recent review and

application, see X. Wang et al. (2024)).

Building on this recent computational social science literature, I prompt

the OpenAI API for labeling the universe of CPU news. I make use of the

most recent ChatGPT-4o model.5 I ask three questions during the labeling

process. The first serves in filtering out further false positives resulting from

the keywords matching: "Is this news article about climate policy issues?".

The second two questions are asked to collect information about the policy

stance of news articles, and build indicators of positive or negative CPU. The

first question is "Does this piece of news imply a strengthening or weaken-

ing of climate policy?", and the second "Are the consequences of this news

positive or negative for the environment?". The first question is forced as a
5At the time of writing, ChatGPT-4o is the largest LLM model available by number of parameters,

estimated at around 1.5 trillion.
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binary answer, while I leave the possibility, for the latter two questions, to

be answered with negative, positive or neutral labels. I perform validation

and experimentation of the results of the prompting on a random sample

of CPU articles, in similar fashion to the procedure explained in Berestycki

et al. (2022) for keywords selection.
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(a) Germany (b) France

(c) Italy (d) Spain

Figure 4.2: Policy uncertainty and policy stance indexes for sample countries
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I select as CPUp (CPU plus), articles flagged as true positives during

the labeling procedures, and for which any of the two second answers reflect

a strengthening of climate policies. Similarly, I flag CPUm (CPU minus),

or articles pointing towards a weakening of climate policies or with negat-

ive consequences for the environment. Based on this strategy, I derive novel

time series, for the four European countries. Rather than dividing the num-

ber of articles by the total monthly number of articles in the archive, I divide

CPUp and CPUm number of articles by the total number of CPU articles,

in order for the series to reflect the relative importance of CPUp or CPUm

rather than a general increase of CPU. In Figure 4.2 I plot the time series

for CPUm and CPUp, in quarterly moving averages, showing significant

variation both over time and across countries.

There are several advantages and disadvantages to the use of LLM techno-

logies for the labeling of articles. Compared to keywords, the labeling process

is more of a black-box, while the former is fully reproducible. However, the

selection of keywords can be subject to biases and discretionary selections.

The multilingual capabilities of LLMs, render this approach well-suited for

this dataset, which features four non-English languages. In addition, this

flexibility extends in time, mitigating the possible recency bias. Journalism

and the use of language changed throughout time, and an approach based

solely on frequency might be biased towards more recent policy discussions.

Finally, the complexity of syntax-aware methods is particularly important

in terms of mapping policy stance. While keyword-dictionaries are based
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on the simple occurrence of words within documents, LLM architectures are

syntax-aware, and better able to capture false positives, handling common

issues such as negation.6

In the Appendix, I provide a sample of articles’ titles matched as CPUp

and CPUm. Interestingly, while belonging to the domain of climate issues,

it is clear that other components are still at play, which might be affect-

ing firms’ behaviors differently. Many articles are correctly captured under

the correct category: President Bush’s government agenda for liberalization,

opinion pieces on the risks of environmentalism (CPUm) or policy announce-

ments about an increase in kerosene tax (CPUp). Other news are of local

nature (articles about local smog levels or waste management). In this sense,

a promising avenue for further research on the measurement and validation

of policy uncertainty measures, could be mixing LLM-labeling methods with

unsupervised learning to unpack the universe of news into topics, as proposed

in the case of EPU by Larsen (2021).

A number of issues remain open with this approach, and will be further

discussed in the limitations section. First, while the results seem promising,

false positives and noise still affect in the measurement. A more formal valid-

ation of the sub-indexes and the labeling performance remains necessary. The

performance of LLMs in comparison with human judgment, in social science

applications, requires validation, which is not currently implemented for the
6For example, the sentence "innovation subsidies will not slow down the climate transition", would be

captured by the terms "slow down" in a dictionary-based approach.
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sake of this analysis, given the need for human-annotated datasets (Panga-

kis, Wolken and Fasching 2023; Törnberg 2024). In particular, the prompts I

have created to label the news could be further refined by formalizing a val-

idation method for LLM labeling, given a rather cognitively complex task.

In future work, I plan on formalizing and validating the prompt form that

more accurately can capture the direction of CPU, limiting its subjectivity

and increasing accuracy (Juroš et al. 2024).

Nevertheless, this approach seems particularly promising for social sci-

ences, given the large amount of news-data sources now employed in eco-

nomics, and its potential to develop teacher-student architectures in ma-

chine learning applications. In this architectures, the LLM-generated labels

are used as training inputs for training smaller text-models (Pangakis and

Wolken 2024). I apply this architecture to my dataset and test the reprodu-

cibility of artificially generated labels with smaller text models. I discuss its

potential merits in the case of CPU indices, and provide benchmark evalu-

ation metrics in the Appendix.

Finally, in order to derive a set of robustness indicators, I isolate events

(peaks) in both of the CPU series. I build a peak detection algorithm based

on the rolling mean of the monthly time series. This algorithm detects peaks

based on the deviation of future data points from a rolling mean of the series.

I run the peak detection based a six-months moving average, built for each

time series, with a threshold of two standard deviations. Thus, a peak is
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detected if the new data-points exceed two standard deviations from the

rolling mean calculated on the past data points. For the implementation of

the algorithm I follow the approached proposed in Brakel (2014), where new

peaks detected influence the series. In the Appendix Figure C.1 I show an

example of the peak detection process. All indicators are included in the

econometric analysis as yearly moving averages.

Firms and patents dataset

In line with the literature on the economics of innovation, I make use of pat-

ent data to proxy the technological efforts of firms. The use of patent data

as a proxy for innovation has a long tradition. Despite the numerous criti-

cisms, patent databases represent a valuable source of information for firms’

technological efforts, and have been shown to map effectively the knowledge

generated by firms, regions and countries.

I use the OECD’s REGPAT database (Maraut et al. 2008) for deriving

patent-based indicators. Patents widely vary in quality, and can be filed

into different jurisdictions at different patent offices. In addition, firms can

file several patents to protect the same invention. In order to avoid double-

counting patents for the same technology, and to focus on high-quality pat-

ents, I make use of the Triadic Patent Families (TPF) database in REGPAT.

Within triadic patent families, an invention is filed under the three major

patent offices in the world: the European Patent Office (EPO), the United

States Patent and Trademark Office (USPTO) and the Japanese Patent of-
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fice (JPO). Making use of REGPAT, I construct a dataset focusing on pat-

ent families rather than single patents, following the approach in Aghion,

Dechezleprêtre et al. (2016). Patenting inventions is a costly process for

firms, and more valuable innovations with promising market perspectives are

filed in all three offices. Hence, in this work I focus on high-quality inventions.

Patents can be filed under a large number of technological classes, defined

under the International Patent Classification (IPC) and under the Cooper-

ative Patent Classification (CPC). I classify technologies under three cat-

egories. In line with the eco-innovation literature, I consider green pat-

ents technologies that have potential for mitigation or adaptation of climate

change. I match patents based on the methodology recently proposed in Fa-

vot et al. (2023), building on previous work (Ghisetti and Quatraro 2017). I

match codes at different digits based on the OECD’s ENVTECH classifica-

tion (Haščič and Migotto 2015a) and the algorithm proposed by Favot et al.

(2023) on both IPC and CPC codes for patent families. I expand this search

by manually adding codes at higher level from the Y02/Y04S technological

classification. The number of TPFs identified as green technologies represent

roughly 9% of total patent families (in line with the results in Favot et al.

(2023)). I provide a detailed summary of the codes employed in Table C.5 of

the Appendix.7

7Where a description of sub-codes’ purpose is provided, I match codes at a lower depth than the
4-digits macro group indicated, only considering a subset of those technologies. For a more detailed
description of the codes employed, please refer to Favot et al. (2023) and Haščič and Migotto (2015a)
and the most recent OECD’s ENVTECH search strategy.

161



In turn, I identify "dirty" patents families, matching polluting inventions,

linked to the the emission of greenhouse gases. I consider as dirty patent

families for the production of fossil-fuel, combustion engines, electricity pro-

duction from non-renewable sources, in addition to steam and gas technolo-

gies. Again, I adapt previous work from Aghion, Dechezleprêtre et al. (2016)

and Dechezleprêtre and Sato (2017) for polluting technologies, and expand it

with a recent classification of fossil technological codes provided by the Inter-

national Energy Agency (IEA).8 Table C.7 provides a full description of the

technologies considered as dirty. Finally, I create a sub-category of dirty tech-

nologies: grey patents. Grey technologies render combustion processes more

efficient, and have potential of reducing GHG emissions, while still being pol-

luting technologies. Once again, I follow previous work (Dechezleprêtre and

Sato 2017) and provide a breakdown of grey technological codes in Table C.6.

I aggregate total, green, dirty and grey patent families as counts by applic-

ant. Following Aghion, Dechezleprêtre et al. (2016) I only consider applicants

with consecutive observations. Using information on the name and country of

applicants in REGPAT’s TPF database, I match firms in the ORBIS (Bureau

van Dijk) database, exploiting the name-search engine provided by ORBIS,

for the applicants having at least one green or dirty patent over the sample

period, and with their address in Germany, France, Spain or Italy. Using bal-

ance sheet information from ORBIS, I map firms to their main sectors, and

collect information on the year of foundation, and the first available balance
8I adapted to REGPAT the search strategies for fossil-fuel patents available online from the IEA. For

full details, see:https://gitlab.com/ieaddspublic/ieapatstat/
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sheet. I build an unbalanced panel dataset for firms in the four countries. I

consider the beginning of the panel the year of foundation where available,

and if not the first year of available balance-sheet information. Where the

information is not available, I consider as a starting year the year prior to

that of the first patent application recorded in REGPAT.9 I consider as the

year of invention of each patent family the earliest filing among the patents

belonging to that family.

Table 4.3 describes the number of firms and patents by country, break-

ing down patent counts for each technological category. In order to control

for the path-dependency of the innovation process, again borrowing from

Aghion, Dechezleprêtre et al. (2016) I construct several variables for stocks

of previous inventions in dirty and clean technologies, and for geographical

spillovers of knowledge available to the focal firm, as detailed in the next

Section. In addition, to build control variables, I collect data from Euro-

stat and the OECD to construct sectoral measures of emissions intensity,

following Berestycki et al. (2022). I use data on emissions intensities based

on environmentally-extended input-output tables. Emissions intensities are

defined as GHG emissions embodied in final demand, from Yamano and Guil-

hoto (2020), normalized by unit of output.10 Finally, I collect country-level

data for the OECD’s Environmental Policy Stringency Index (Botta and
9Additionally, I correct for discrepancies between firm and patent data. I consider as the starting year

the one prior to the first application filing, for firms in which balance sheet information is available, or
recorded only after the filing of the first patent.

10I consider a number of alternatives for sector emissions, including CO2 intensity per unit of value
added, available from the IEA.
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Koźluk 2014).

4.3.2 Methodology

To investigate the relationship between CPU and the innovation dynamics

in firms, I closely follow and adapt the model proposed by Aghion, Dechezle-

prêtre et al. (2016). I test the hypothesis making use of two symmetric

models. In the first model, I regress the count of green patent, by year and

firm, against Climate Policy Uncertainty and a set of controls:

PATi,t = exp(α + β2CPUi,t−3 + β3EPSc,t−1 ∗GHGc,s,t−1

+β4Ki,t−1) + ηi + τc,t + ψs,t + ϵi,t

(4.1)

where:

• Ki,t is the firm’s past patent stock;

• τc,t are country by year fixed effects;

• ψs,t are sector by year fixed effects;

• ηi,t are firm fixed effects;

• ϵi,t is the idiosyncratic error term.

Patent flows are built for three sets of technologies: green, dirty and grey,

as count variables by firm and year. I construct the exposure to CPU for the

focal firm i, similarly to how Aghion, Dechezleprêtre et al. (2016) construct

their variable for fuel prices, reflecting the importance of country c for firm i
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Table 4.3: Sample of Firms by country

Country Firms Patents Green Dirty Grey

Germany 2780 163089 13982 12707 3619
Spain 192 4000 327 200 27
France 1112 63740 5142 5285 527
Italy 716 17506 1310 1417 262
Total 4800 248335 20761 19609 4435

Table 4.4: Descriptive Statistics

Count Mean Std Min Median Max

CPU 101919 82.76 45.56 0.00 75.44 243.28
CPUp 101919 81.82 31.45 0.00 88.88 139.97
CPUm 101919 81.31 31.43 0.00 89.42 145.27
Green 101919 0.20 1.71 0.00 0.00 114.00
Dirty 101919 0.17 2.72 0.00 0.00 363.00
Grey 101919 0.04 1.53 0.00 0.00 236.00
Green stock 101919 0.96 7.00 0.00 0.00 356.25
Dirty stock 101919 0.87 11.74 0.00 0.00 1075.12
SPILLGreen 101919 4420.78 3876.12 11.46 3458.82 37151.78
SPILLDirty 101919 3026.18 2312.28 9.43 2620.57 17798.43
EPS 101919 2.45 1.51 0.33 2.46 5.17
Emit 94377 0.02 0.18 0.00 0.00 8.22
ShPatents 94377 0.09 0.24 0.00 0.00 1.00
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in terms of exposure to policy uncertainty. Firms, in fact, are not subject to

Climate Policy Uncertainty deriving from only the country in which they are

headquartered, but CPU is weighted by the average share of inventors that

the firm has in that country. Inventors’ shares are built using REGPAT’s

database, and each CPU measure is in turn constructed as:

CPUi,t =
∑
c∈C

wi,c ∗ CPUc,t (4.2)

Where wi,c is a time-invariant, firm-specific weight, where wi,c is the (av-

erage) share of inventors of firm i in country c, over the period of observation

for the firm. Inventors are drawn from the patents’ database, and they are

assigned to both a country and a firm, based on available information on

inventor’s location. While inventors could have moved throughout time, I

build this indicator as the average share of inventors that each firm has in

each country c. I construct identical measures for the directional indicat-

ors of positive CPU (variable CPUp) and negative CPU (variable CPUm).

In the main specifications testing for the hypothesis, I include both vari-

ables for CPU direction as regressors. In equation 4.1, I include country by

year fixed effects in order to control for macroeconomic conditions and busi-

ness cycle dynamics that might be correlated with the dependent variables.

While country-level policy stringency in environmental regulation should be

captured by the country-year fixed effects, I also include an additional con-

trol for EPS, interacted with sectoral GHG emissions’ intensity, following

Berestycki et al. (2022).11. Additionally, I include sector by year fixed effects
11In robustness checks, I test a different versions of this control, building it similarly to Equation 4.2
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in order to capture sectoral trends that might be correlated with patenting

patterns. Ki,t−1 is the total patent stock of firms, controlling for the size of

its innovation portfolio.

Another two symmetric equations are estimated: one for the amount of

dirty patents, and one for subset of dirty patents considered grey technolo-

gies, as detailed in the previous Section. I time-lag uncertainty and control

variables to reflect delayed response, as well as to help mitigate contempor-

aneous feedback effects. Given the slowdown in investments at a one year

lag found in previous exercises, I assume that at least three years should

be necessary for the effects to translate onto the outcomes of the innovation

process, i.e. on patent applications. I run robustness checks for different lag

structures in the robustness Section. In addition, I also lag previous patent

stocks, and other controls of one year, reflecting again the path-dependency of

the innovation process. Patent stocks are constructed following an inventory

rule with depreciation rate r of 20%:

Ki,t = (1− r)Ki,t−1 + PATi,t (4.3)

The total patent stock of a firm, however, does not allow me to distinguish

between green and dirty technologies already available to the firm, as well

as the geographical spillovers that might affect patenting patterns. In order

to explicitly account for the path dependency of the innovation process, I

break Ki,t into different components, accounting for both internal and ex-
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ternal spillovers, again following closely the approach proposed in Aghion,

Dechezleprêtre et al. (2016). The stock of knowledge of the firm can be ex-

pressed in green and dirty components, both internal and external to the

firm:

Ki,t = GreenStocki,t +DirtyStocki,t + SPGreeni,t + SPDirtyi,t (4.4)

Where:

• GreenStocki,t is the firm’s own green patent stock;

• DirtyStocki,t is the firm’s own dirty patent stock;

• SPGreeni,t are country-level green spillovers to firm i in period t;

• SPdirtyi,t are country-level dirty spillovers to firm i in period t;

The stocks of green and dirty patents, for firm i, are again constructed

using the inventory method, and control for the path-dependency in the

innovation process: the probability of patenting in a specific technology de-

pends on the past track-record of technologies patented in that domain. In

addition, country-level spillovers to firm i, control for the external factors

that can affect the focal firm’s patenting: green (dirty) patenting, can be

influenced by the availability of similar technologies outside the firm in that

same country. Firms can learn from the available knowledge pool in green

and dirty patents, which affects the probability of applying for more patents

in the following years. The construction is again symmetrical for dirty and

green technologies, and similar to the approach used for that of policy un-
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certainty. For green technologies, the spillovers available to firm i at time t

are:

SPGreeni,t =
∑
c

wi,c ∗ SPGreenc,t (4.5)

The spillover pool in country c (SPGreenc,t) is defined as the sum of all

other firms’ patent stocks of green technologies (KGreenj,t):

SPGreenc,t =
∑
j ̸=i

wj,cKGreenj,t (4.6)

As detailed in Aghion, Dechezleprêtre et al. (2016) and discussed in follow-

up works (Schickfus 2021), the baseline Directed Technical Change model

estimated with two-way fixed effects, would be inconsistent under strict exo-

geneity, due to serial correlation of the different patent stocks constructed.

Thus, borrowing from their approach, I implement the Blundell-Griffith-Van

Reenen (BGVR) estimator (Blundell et al. 1999), which relies on the pre-

sample mean of the dependent variable in order to proxy for individual fixed

effects. This approach is well-suited to patent data, and in empirical setups

where data for the dependent variable is available for the pre-sample period.

I run a set of symmetric models for green, dirty and grey patent flows using

a Maximum-Likelihood Poisson estimators, accounting for the count data

nature of the dependent variables. In addition to the pre-sample mean of the

dependent variable, I add controls for firm-level variables. First, I control for
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the share of patents of the firm in its country-sector (variable ShPatents),

controlling for potential competition effects. In robustness checks, I also

control explicitly for the size of the firms. Because of the limited availability

of consistent balance sheet information (employment or total assets) before

the 2010 period, I build a time-invariant variable, collecting the last available

data point for the firms’ assets. I build a categorical variable for the size of

the firm (variable FirmSize) based on the quartiles of the distribution of

assets. All right-hand side variables are log-transformed, including the pre-

sample mean. Finally, given some firms have no lagged patent stocks for

some periods, I follow Aghion, Dechezleprêtre et al. (2016) and add three

dummy variables if the green or dirty (lagged) stocks are zero, or if both are

zero. In Table 4.4 of the Appendix, I provide descriptive statistics for all the

variables created.

4.4 Results

I first test the baseline models, regressing the counts of green, dirty, and

grey patents against the aggregate index for CPU. In Table 4.5, I present

estimation results, where in all specifications I include the dummies for the

absence of green or dirty patents in the past stock of the firms, which are

always significant and not reported. In even columns, I add to the baseline

specification the control for the share of country-sector patents of the firm.

Standard errors are always clustered at the firm level.
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Table 4.5: Poisson Regression - Baseline estimates for CPU - Green, Dirty and Grey
patents.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

CPU 0.0658∗∗∗ 0.0660∗∗∗ 0.0908∗∗ 0.0870∗∗ 0.1180 0.1159
(0.0138) (0.0144) (0.0359) (0.0348) (0.0895) (0.0905)

GreenStock 0.9670∗∗∗ 0.9648∗∗∗ 0.0878∗∗∗ 0.1007∗∗∗ 0.0384 0.0570
(0.0174) (0.0174) (0.0195) (0.0202) (0.0529) (0.0580)

DirtyStock 0.0398∗∗∗ 0.0536∗∗∗ 0.9418∗∗∗ 0.9437∗∗∗ 0.9952∗∗∗ 1.004∗∗∗
(0.0121) (0.0117) (0.0169) (0.0166) (0.0593) (0.0555)

SPILLgreen 0.4909∗∗ 0.5183∗∗∗ 0.1076 0.1245 0.7554 0.8411
(0.1940) (0.1958) (0.3593) (0.3784) (0.9403) (1.004)

SPILLdirty -0.3984∗ -0.4170∗∗ -0.1201 -0.1140 -1.192 -1.243
(0.2051) (0.2055) (0.3660) (0.3842) (0.9333) (1.001)

pre-sample mean -0.0206∗∗∗ -0.0066 -0.0468∗∗∗ -0.0339∗∗∗ 0.0228 0.0351
(0.0058) (0.0061) (0.0089) (0.0086) (0.0456) (0.0494)

Emit -0.0480 -0.0466 -0.0853 -0.0884 0.4875∗ 0.5017∗
(0.0639) (0.0635) (0.0681) (0.0660) (0.2599) (0.2581)

EPS*Emit 0.0110 -0.0000 0.0449 0.0309 0.2935 0.2620
(0.0479) (0.0475) (0.0484) (0.0474) (0.2373) (0.2236)

ShPatents -0.0514∗∗∗ -0.0640∗∗∗ -0.0926
(0.0120) (0.0192) (0.0742)

Observations 86,562 86,562 82,082 82,082 59,452 59,452
Pseudo R2 0.65247 0.65321 0.76757 0.76821 0.81496 0.81546
RMSE 0.81964 0.82541 0.86330 0.87008 0.50891 0.51270

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPU
captures firm-level exposure to climate policy uncertainty. GreenStock and DirtyStock are, respectively, the depreciated
stocks of own-firm past green or dirty Triadic Patent Families. SPILLGreen and SPILLDirty are firm-level geographical
spillovers to the focal firm in green and dirty technologies. Emit are country-sector-year emissions, and EPS is the index of
Environmental Policy Stringency. ShPatents is the share of firm patents within its country-sector-year. All models contain
dummy variables in case the past stock of green and (or) dirty patents is 0, which are always significant and not reported.
Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function. Models are estimated
by Maximum-likelihood Poisson regressions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered
at the firm level.
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I find a positive relationship between the aggregate index of CPU for

both green and dirty technologies, suggesting that both climate-related tech-

nologies are sensitive to increases in aggregate uncertainty. The coefficients

for green and dirty own stocks of past patents are positive and significant,

as expected. Own patent stocks coefficients have greater sizes depending

on the technology observed: green past stocks have a higher magnitude for

green technologies than for dirty and grey technologies, and in the latter

case are also insignificant. On the contrary, own stocks of dirty innovations

have a higher magnitude for dirty and grey technologies. The positive sign

for own past stocks of opposite nature (dirty stocks for green, and green

stocks for dirty) have a smaller coefficient but are still positive, indicat-

ing possible between-technology spillovers within firms. External spillovers

SPILLGreen are also positively correlated with green patent flows, while

SILLdirty are have a negative correlation, whereas they are insignificant for

dirty technologies.

As mentioned, the aggregate index does not allow us to distinguish between

the different directions of uncertainty-related indexes. Therefore, in Table

4.6, I test the two complementary hypotheses developed in Section 4.2,

and include as independent variables of interest the indexes for CPUp and

CPUm, respectively reflecting CPU capturing the positive or negative dir-

ection of uncertainty in terms of environmental regulation.

In line with the expectations in hypothesis 1, column (2) shows a positive
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Table 4.6: Poisson Regression - Baseline estimates for CPU - Positive and negative
policy stance.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

CPUp 0.6122∗∗ 0.6394∗∗ -0.2737 -0.2948 -1.244∗∗ -1.335∗∗
(0.2510) (0.2523) (0.3014) (0.3120) (0.6017) (0.6204)

CPUm -0.5453∗∗ -0.5718∗∗ 0.3654 0.3836 1.354∗∗ 1.446∗∗
(0.2518) (0.2532) (0.2959) (0.3062) (0.5983) (0.6123)

GreenStock 0.9671∗∗∗ 0.9649∗∗∗ 0.0877∗∗∗ 0.1007∗∗∗ 0.0378 0.0566
(0.0174) (0.0174) (0.0195) (0.0202) (0.0529) (0.0580)

DirtyStock 0.0397∗∗∗ 0.0536∗∗∗ 0.9418∗∗∗ 0.9438∗∗∗ 0.9957∗∗∗ 1.005∗∗∗
(0.0121) (0.0117) (0.0168) (0.0166) (0.0593) (0.0555)

SPILLgreen 0.5073∗∗∗ 0.5379∗∗∗ 0.1062 0.1245 0.7106 0.8024
(0.1944) (0.1961) (0.3598) (0.3797) (0.9538) (1.019)

SPILLdirty -0.4175∗∗ -0.4390∗∗ -0.1173 -0.1117 -1.141 -1.195
(0.2049) (0.2052) (0.3663) (0.3852) (0.9472) (1.019)

pre-sample mean -0.0207∗∗∗ -0.0066 -0.0468∗∗∗ -0.0338∗∗∗ 0.0229 0.0355
(0.0058) (0.0061) (0.0089) (0.0086) (0.0456) (0.0495)

Emit -0.0477 -0.0464 -0.0838 -0.0868 0.4939∗ 0.5099∗∗
(0.0640) (0.0636) (0.0680) (0.0659) (0.2598) (0.2579)

EPS*Emit 0.0097 -0.0014 0.0458 0.0319 0.3022 0.2714
(0.0481) (0.0477) (0.0485) (0.0475) (0.2387) (0.2245)

ShPatents -0.0516∗∗∗ -0.0643∗∗∗ -0.0942
(0.0120) (0.0192) (0.0743)

Observations 86,562 86,562 82,082 82,082 59,452 59,452
Pseudo R2 0.65254 0.65328 0.76759 0.76824 0.81505 0.81557
RMSE 0.81957 0.82535 0.86289 0.86967 0.50835 0.51212

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp
captures firm-level exposure to climate policy uncertainty with an environmentally-positive policy stance. CPUm instead
captures environmentally-negative policy stance. GreenStock and DirtyStock are, respectively, the depreciated stocks of
own-firm past green or dirty Triadic Patent Families. SPILLGreen and SPILLDirty are firm-level geographical spillovers
to the focal firm in green and dirty technologies. Emit are country-sector-year emissions, and EPS is the index of En-
vironmental Policy Stringency. ShPatents is the share of firm patents within its country-sector-year. All models contain
dummy variables in case the past stock of green and (or) dirty patents is 0, which are always significant and not reported.
Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function. Models are estimated
by Maximum-likelihood Poisson regressions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered
at the firm level.
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relationship between CPUp and green patenting, while turning negative for

CPUm. Interestingly, while the directions of the signs are in line with the

hypothesis, the coefficients for the total of dirty technologies are insignific-

ant. However, in columns (5)-(6), I present the same results only considering

the subset of dirty patents comprehending grey technologies, which are in

this case significant. In line with hypothesis 1b, coefficients suggest that

uncertainty due to potential setbacks in climate policy-making, is positively

related with more grey patenting, while the opposite happens in the case of

green technologies. These results seem to confirm both hypotheses. Unpack-

ing aggregate Climate Policy Uncertainty reveals a symmetric relationship

with green and polluting inventions, suggesting that, depending on its stance,

CPU is an important factor for directing technological change.

In order to to confirm these results, I test for different measures of CPUp

and CPUm. In table 4.7, in odd columns, I include the ratios between the

country-level index for positive-leaning uncertainty (RatioP ) over the gen-

eral CPU index and its counterpart RatioM . In even columns, instead, I

calculate the ratio between the number of positive or negative events over

the total number of events (variables PeaksP and PeaksM) detected with

the algorithm described in Section 4.3.1. Again, these results seem to con-

firm the two hypotheses, suggesting a that there is a significant relationship

between the direction of uncertainty in climate policies, and that of the tech-

nological efforts undertaken by firms.
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Table 4.7: Poisson Regression - Baseline estimates for CPU stances - alternative meas-
ures.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

RatioP 0.7808∗∗ -0.4563 -1.330∗
(0.3084) (0.3831) (0.7177)

RatioM -0.6551∗∗ 0.5410 1.424∗∗
(0.3076) (0.3689) (0.7043)

PeaksP 0.1190∗∗∗ -0.0067 -0.0312
(0.0432) (0.0512) (0.0688)

PeaksM -0.0041 0.1085∗ 0.2242∗∗
(0.0460) (0.0597) (0.0967)

Observations 72,040 72,040 67,809 67,809 49,725 49,725
Pseudo R2 0.65688 0.65693 0.76741 0.76745 0.81231 0.81239
RMSE 0.86039 0.86051 0.92261 0.92246 0.52828 0.52888

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. RatioP is the
ratio between the total level of CPU and its sub-index of environmentally-positive stance. RatioM is the ratio between CPU
and environmentally-negative CPU. PeaksP and PeaksM , respectively, represent the total number of events of positive
or negative stance, over the total number of events detected by the peak-detection algorithm. Continuous explanatory
variables are log-transformed, applying the inverse hyperbolic sine function. All models contain full controls and dummies
for null past stocks of green and (or) dirty patents. Models are estimated by Maximum-likelihood Poisson regressions.
Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the firm level.
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4.4.1 Heterogeneity and robustness

In Table 4.8 I divide the sample into different historical periods, running

separate estimations focusing on the historical evolution of this relationship.

Interestingly, while for the period 1995-2005 only green technologies seem

sensitive to the directions of policy uncertainty, the coefficients for dirty

technologies are again relevant and much higher for the 2010-2020 period,

with notable differences between grey and dirty technologies. Different his-

torical phases, seem to suggest a high degree of heterogeneity, across time,

both for acceleration and deceleration of policies, and for the development

of climate-relevant technologies. This heterogeneity could be driven by ac-

celeration and deceleration of specific policies. In the last decade, in light

of an increased implementation of climate policies, green and dirty might be

perceived as diametric alternatives, and policy-direction has probably been

more credible in terms of their support of one of the two.

Additionally, innovations evolved over time, and the technological link-

ages between alternative technologies might be changing over time. Grey

technologies (on average) appeared more sensitive to CPUp and CPUm

then general dirty ones, while the significance seem to be driven by dirty

ones in the most recent period. While speculative, these results seem prom-

ising in analyzing the dynamic effects of CPU, depending on technological

maturity, and in terms of the degree of substitutability and complementarity

of technologies with opposite environmental effects.
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In the Appendix, I report several robustness checks. In Table C.1, I run

the same baseline estimates for CPUp and CPUm, by weighting regressions

by the average stock of patents of the firm. The coefficients for CPUm

and dirty patents are of higher magnitude, and more significant if compared

with Table 4.6, suggesting that CPUm, pointing a negative direction, might

stimulate overall polluting patenting. Weighting also confirms, at the 10%

significance level the correlation between CPUp and green patents. Grey

patents remain highly sensitive to both directions of CPU, with coefficients

of larger magnitudes.

In Table C.3 I add two controls. First, I include a control for the measure

of Economic Policy Uncertainty (Baker et al. 2016), calculated analogously to

that of CPU. In addition, I also include the categorical variable for quartiles of

firm size. The direction of the effects is consistent with previous results, with

CPUp and CPUm having opposite effects on green and dirty technologies,

and again the latter are driven by grey patents. In Table C.4 I build a control

for Environmental Policy Stringency similar to that I build for my measure

of CPU, again substantially confirming the relevance of the CPU sub-indexes

for DTC.

In Table C.2 I run a leave-one out exercise, excluding one country at the

time from the sample. Interestingly, it seems that Germany is driving the

significance in results, as it is possible to see in the last three columns. While

the numerosity of firms left in the sample could be an issue, this result is very
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suggestive on the underlying geographical heterogeneity of CPU. A promising

direction in policy uncertainty research, is the investigation of cross-country

linkages and spillovers of policy uncertainty (Balli et al. 2017; Abakah et

al. 2021). One possible reason for this result could be the relative weight

that Germany has in both European climate policy-making, and as a power-

house for the production of green technologies. Furthermore, the integration

of value chains across countries (and between technologies) might also be a

factor at play, and the role of technological linkages between products and

industries should be further explored.
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Table 4.8: Poisson Regression. CPU stances: Historical analysis.

1995-2005 2000-2010 2005-2015 2010-2020
Green Dirty Grey Green Dirty Grey Green Dirty Grey Green Dirty Grey

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

CPUp 0.9749∗∗ -0.4172 -0.8527 0.1774 -2.897∗ -2.660∗∗ 0.2081 0.3255 -2.280∗∗ 2.155∗∗∗ -3.308∗∗∗ -1.459
(0.3897) (0.5638) (1.130) (0.6943) (1.527) (1.298) (0.4515) (0.6777) (1.048) (0.8050) (0.8258) (1.339)

CPUm -0.8883∗∗ 0.6099 0.9368 -0.1295 3.004∗ 2.754∗∗ -0.1710 -0.2453 2.339∗∗ -2.121∗∗∗ 3.285∗∗∗ 1.485
(0.3847) (0.5533) (1.112) (0.6925) (1.537) (1.349) (0.4587) (0.6781) (1.087) (0.8076) (0.8196) (1.336)

Num. Firms 3952 3952 3952 4011 4011 4011 3908 3908 3908 3678 3678 3678
Observations 23,107 22,800 18,207 24,069 23,370 18,016 23,594 22,150 16,300 21,560 18,728 11,971
Pseudo R2 0.60821 0.80119 0.86894 0.67785 0.76176 0.79337 0.68525 0.75026 0.71657 0.64898 0.68547 0.62463
RMSE 0.72646 1.2568 0.67817 1.0306 0.86549 0.39836 1.0658 0.70783 0.37594 0.71811 0.53636 0.28074

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp captures firm-level exposure to climate policy uncertainty with an
environmentally-positive policy stance. CPUm instead captures environmentally-negative policy stance. All models contain full controls and dummy variables in case the past stock of green
and (or) dirty patents is 0, which are always significant and not reported. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function. Models are
estimated by Maximum-likelihood Poisson regressions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the firm level.
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More puzzling, instead, are the dynamics on the timing of these associ-

ations. Figure C.2 in the Appendix plots the coefficients and standard errors

of CPUp and CPUm tested at different time lags. In the case of green

patents, the only significant lag is at 3 years, and the effects disappears in

the longer term for all dependent variables. The significance across techno-

logies at t-3, could be confirming the idea that the innovation output takes

time to react to a rise in uncertainty. Interestingly, however, short-term cor-

relations with grey inventions seem to be in the same direction as that of

green technologies. This refers again to the nature of different technologies

as substitutes or complements, revealing a potential dynamic complement-

arity between grey and green patents. Firms might be adopting a strategic

behavior in reducing emissions of their products in the short term, while

switching to alternative green technologies in the longer term.

However, further research is needed in this direction to account for the

high-degree of volatility in patenting activity. Grey patents only repres-

ent a small fraction of total patenting activity, and a macro-level analysis

modeling more precisely sectoral dynamics could help clarify this evidence.

Moreover, a source of noise could also be the use of the earliest filing ap-

plications for patents. Filing years of technologies are an approximation of

the timing of innovation activities, but are also the byproduct of legal pro-

ceedings, and crucially depend on invention quality. In this sense, keeping in

mind that these correlations regard high-end innovation, for which arguably

the cost in R&D is higher, looking at the whole spectrum of patent quality
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could reveal a different pattern of strategic behavior relevant for directed

technical change. Evidence on uncertainty and the qualitative features of in-

novation could render important insights (Bhattacharya et al. 2017). In this

framework, the interplay between the business-cycle features of uncertainty

and heterogeneity in innovation development could shed further light on the

forces directing clean and dirty technological change (Manso et al. 2023).

4.4.2 Limitations and further research

A number of other limitations apply to this study. First, while being a

promising research avenue, linking innovation activities proxied by patents

and uncertainty measures, suffers from a discrepancy in frequencies of the

data employed. Patent filing dates are relevant at the yearly level, but, as

shown in Section 4.3.1, much variation in CPU indexes is lost by aggreg-

ating at the yearly level. This loss of information about higher-frequency

dynamics limits the understanding of short and long-term behaviors of firms.

Other studies employing quarterly measures for investments, relying on firms’

reporting, exploit this variation, losing on the technological heterogeneity

by considering aggregate investments. Future research could exploit higher-

frequency measures, for example in survey data, to bring further evidence

on the time-dynamics of green vs brown technologies. As mentioned, these

dynamics might also be explored in the light of the linkages between low

and high-carbon inventions. As these technologies present spillovers and

path-dependencies, there might be supply-chain related factors at play, which
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policymakers should be considering.

The geographical coverage of this analysis is mainly driven by the avail-

ability of adequate sources of news data. The external validity of this study,

therefore, warrants a more thorough analysis, especially considering the pe-

culiar evolution of news markets in each specific country.

Furthermore, while the fixed effects strategy employed in this paper should

capture relevant confounders, more econometric work is necessary in order to

asses the causality of the relationships uncovered. First, the use of pre-sample

means and the BGVR estimator could not be fully capturing firm fixed ef-

fects. Similar approaches, both in terms of control function estimations and

structural modeling could be suitable to address these issues. Second, the

nature of firms is increasingly global. Better data is necessary in order to

disentangle their geographical presence, both for emissions (which can have

strongly local components), and for the geography of their intellectual prop-

erty protection. Additionally, a number of political economy concerns could

be biasing these results, specifically in terms of reverse causality. Bigger firms

and more dominant technological actors, arguably have a much higher poten-

tial for influencing government action via lobbying efforts, or by setting an

anti-environmental agenda in the media. While these concerns are mitigated

by the fact that climate policies are often discussed in an inter-governmental

setup, and that the consensus for action is confirmed by international treat-

ies, lobbying could cause increases in CPU, or in one of its sub-components.
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Nevertheless, this exercise uncovers another potential avenue for future

research. The lack of sectoral variability in CPU indexes (and most of the

available EPU ones) could be an important gap to fill. Sub-indexes derived

for CPUp and CPUm, and are blind to sectors and technologies. Arguably,

both climate policies and CPU are indeed sector-specific, if not technology-

specific, thinking for example to innovation subsidies. Recent papers (Juhász

et al. 2022; Evenett et al. 2024) applied text-as-data techniques to the cat-

egorization of policy texts, quantifying (green) industrial policy efforts. In

this sense, empirical applications based on rich textual data, as in this work,

could give nuance to uncertainty measures, adding sectoral or technological

dimensions. In the same vein of (Gugler et al. 2024), heterogeneity in CPU

linked to specific policy instruments (subsidies, carbon taxes, etc.) could

be explored. A promising approach for future applications is the mix of

policy-stance with content analysis, breaking down policy-uncertainty into

sub-components.

4.5 Conclusions

In this chapter, I investigate the role of Climate Policy Uncertainty for direct-

ing technical change. I build a novel dataset by scraping newspaper archives

for four European countries: Germany, France, Italy and Spain. I apply text-

as-data techniques to derive sub-measures for policy stance underlying CPU,
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showing a high-degree of variation between positive-leaning and negative-

leaning articles. I bring forward additional empirical evidence by construct-

ing a panel of European firms, and testing relevance of CPU sub-indexes in

directing environmentally-sensitive technologies. I employ a model of direc-

ted technical change and study patenting activity of firms in both low-carbon

and polluting technologies.

I find that CPU pointing towards stronger climate policy implementation

is positively associated to the development of green technologies, and instead

negatively to polluting ones. On the contrary, the measure of CPU imply-

ing setbacks weakening climate policy, shows symmetric results, by favoring

dirty innovation and discouraging low carbon inventions. These results sug-

gest that CPU might be affecting firms’ expectations about the future value

of environmentally-sensitive inventions and the direction of their R&D ef-

forts. I propose a novel approach to identify CPU articles from newspaper

data, showing that it could be flexibly applied to different data sources in

multilingual contexts, through the use of supervised deep learning architec-

tures.

In line with the extant literature, I find that not only realized climate

policy but also uncertainty about the probability of future policies affects

firm behaviors (Basaglia et al. 2021; Khalil and Strobel 2023). These find-

ings suggest a complex and dynamic response, in terms of firms behavior, to

differently-leaning uncertainty, and show the relevance of CPU directionality
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in the belief revision of firms. I add to the previous literature by showing that

the direction of this probability has opposite effects on green and dirty innov-

ations. Directing the economy away from a carbon intensive equilibrium to

a cleaner growth path is a priority for policymakers, and governments have

been experimenting with mission-oriented policy agendas for sustainability

(Mazzucato 2018), and new forms of green industrial policy (Rodrik 2014).

Consensus, clarity and communication surrounding climate and green indus-

trial policies is deemed even more relevant in light of the significant effects

on patenting patterns. Legislators can accelerate divestment from fossil tech-

nologies and foster green growth by committing to a decisive climate policy

agenda. Governments can provide clear signals to the market in support of

low-carbon growth, altering firms’ expectations and directing innovative ef-

forts towards a cleaner growth path. While preliminary, these results suggest

that potential cost of climate policy could be lowered by ensuring coherent

market signals to firms. On top of policies, government certainty and com-

mitment to a strong climate agenda could spur virtuous circles, steering

economic growth towards a low-carbon future.
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Chapter 5

Conclusions

This dissertation contributes, throughout its three core chapters, to our

understanding of the spatial and environmental dynamics of technological

change. The first two essays investigate innovation from a fine-grained geo-

graphical perspective. The first part investigates the determinants of re-

combinant novelty at the level of NUTS3 European provinces between 2003

and 2017, making use of patent data and exploring the role of both inward

and outward FDIs as potential vectors of external technological components.

The findings reveal that inward FDIs are positively associated with local

recombinant novelty, facilitating regional access to global knowledge pools,

and stimulating knowledge transfers. In contrast, outward FDIs generally

exhibit a negative association with novel recombination in patents, poten-

tially leading to a "hollowing-out" effect where local innovation capabilities

are reduced. The study also highlights the importance of knowledge prox-

imity, showing that the less related the incoming knowledge is to the local

base, the greater the potential for novel recombination. The findings indicate

that FDIs play a nuanced role not only depending on their direction. The
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geographical and functional heterogeneity of these associations is also evid-

ent, with knowledge-intensive FDIs in Resarch and Development activities

(R&D) showing a more positive impacts compared to non-R&D investments.

In particular, these functional characteristics appear relevant in terms of

the potential negative effects of OFDIs on local innovation. In addition, this

chapter uncovers a large geographical heterogeneity. The study explores both

the geography of the origins and destinations of FDIs, and employ spatial

econometric models to uncover spatial spillovers. These are found to be gen-

erally negative both in terms of outward and inward FDIs, uncovering further

the spatial dynamics of external connectivity and regional recombinant nov-

elty.

The second essay investigates the impact of green Foreign Direct Invest-

ments (FDIs) and local skill composition on regional green technological di-

versification in the United States, across 287 cities (Metropolitan Statistical

Areas, MSAs) from 2003 to 2018, adopting the framework of evolutionary

economic geography. It finds that MSAs with higher levels of green FDIs

and abstract skill intensity are more likely to diversify into green technolo-

gical domains. The study highlights that both external knowledge from FDIs

and local capabilities, especially abstract skills, play crucial roles in enabling

green diversification. Additionally, local skills moderate the effects of green

FDIs through compensation and reinforcing mechanisms. Abstract skills,

supporting exploratory capabilities, compensate for weaker external know-

ledge flows and contribute positively to the process of branching towards
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green domains. In contrast, routine skills, important to the application of

knowledge, enhance the impact of green FDIs by facilitating the transform-

ation of external knowledge flows in green innovation. The results support

the hypothesis that global knowledge flows, combined with local skills, are

essential drivers of the green transition.

The third essay of this thesis explores the effects of Climate Policy Un-

certainty (CPU) on directed technical change (DTC) across European firms

from 1990 to 2020. Using novel CPU indices derived from newspaper art-

icles and text-as-data techniques, the study examines how CPU can be a

factor affecting the direction of firms’ technological efforts towards (or away

from) low-carbon inventions. This research makes use of firm-level data and

studies patenting activity of firms both in green and polluting technologies.

The findings reveal that the direction implied in policy uncertainty, either

by signaling advancements or setbacks in climate policies, is a relevant factor

for directing firms’ expectations. CPU implying a positive environmental

direction is positively associated with green patenting and negatively with

polluting patenting. Conversely, negative CPU, indicating a weakening of

climate policy, positively associates to the development of polluting techno-

logies, potentially hindering green technological development. This reinforces

the idea that firms adjust their innovation efforts based on expected future

policy environments, contributing to steer the direction of technical change.

The empirical evidence presented in this dissertation has relevant implic-
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ations for the current economic policy debate. The first essay suggests that

promoting inward FDIs, particularly those that introduce diverse and un-

related knowledge, can enhance regional innovation. Policymakers should

strive to prevent potential negative spillovers reducing regional innovation

potential, particularly in terms of outward FDIs. Generally, the results from

this chapter calls for the attention of policymakers to nuanced considerations

of the spatial aspects of connectivity policy, in a highly contextualized territ-

orial dimension. The second essay shows that attracting green FDIs, while

enhancing the local workforce’s abstract skills can accelerate green techno-

logical diversification. Policymakers, in this sense, should focus on creating

environments that attract green investments and encourage exploration and

innovation, with a particular attention to skill development in the workforce.

This approach will enable regions to access and utilize global knowledge flows,

advancing green innovation. Finally, the empirical evidence in the third essay

suggests that reducing climate policy uncertainty and providing clearer, long-

term signals can accelerate the transition to low-carbon technologies. Policy-

makers must ensure consistent and strong climate policy commitments, and

be aware that negative uncertainty in the climate policy-making process can

also delay the transition, steering innovation away from green technologies.
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Table A.1: Descriptive Statistics of Variables

Variable Count Mean Std Min Median Max

Total projects
EU FDI in 17040 12.6 47.3 0.0 1.0 1,264.0
EU FDI out 17040 11.6 63.2 0.0 1.0 2,481.0
ROW FDI in 17040 14.9 67.1 0.0 0.0 2,280.0
ROW FDI out 17040 0.3 2.1 0.0 0.0 77.0
EU15 FDI in 17040 10.7 41.0 0.0 1.0 1,128.0
EU15 FDI out 17040 6.6 41.6 0.0 0.0 1,843.0
nonEU15 FDI in 17040 1.8 8.2 0.0 0.0 364.0
nonEU15 FDI out 17040 4.7 23.9 0.0 0.0 638.0

Only R&D projects
IFDI 17040 1.1 4.8 0.0 0.0 136.0
OFDI 17040 1.3 10.5 0.0 0.0 401.0
EU IFDI 17040 0.5 2.4 0.0 0.0 83.0
EU OFDI 17040 0.5 3.5 0.0 0.0 130.0
ROW IFDI 17040 0.6 2.6 0.0 0.0 78.0
ROW OFDI 17040 0.0 0.1 0.0 0.0 6.0
EU15 IFDI 17040 0.4 2.1 0.0 0.0 75.0
EU15 OFDI 17040 0.3 2.5 0.0 0.0 98.0
nonEU15 IFDI 17040 0.1 0.4 0.0 0.0 10.0
nonEU15 OFDI 17040 0.1 1.1 0.0 0.0 32.0

Only non-R&D projects
IFDI 17040 19.5 76.8 0.0 2.0 2,359.0
OFDI 17040 25.1 146.1 0.0 1.0 6,172.0
EU IFDI 17040 12.0 45.3 0.0 1.0 1,219.0
EU OFDI 17040 11.1 60.1 0.0 1.0 2,351.0
ROW IFDI 17040 7.4 33.6 0.0 0.0 1,140.0
ROW OFDI 17040 0.3 2.0 0.0 0.0 75.0
EU15 IFDI 17040 10.2 39.2 0.0 1.0 1,093.0
EU15 OFDI 17040 6.3 39.3 0.0 0.0 1,745.0
nonEU15 IFDI 17040 1.7 7.8 0.0 0.0 354.0
nonEU15 OFDI 17040 4.5 23.1 0.0 0.0 606.0
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Table A.2: OLS two-way FE - Robustness checks

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

netIFDI 0.0318∗∗∗
(0.0087)

netCapex in 0.0082∗∗∗
(0.0025)

Capex in 0.0138∗∗
(0.0066)

Capex in PIM5 0.0124∗
(0.0066)

Capex in PIM10 0.0108∗
(0.0065)

Capex per GDP in 0.0243∗∗∗
(0.0089)

Capex per GDP in PIM5 0.0224∗∗
(0.0089)

Capex per GDP in PIM10 0.0203∗∗
(0.0088)

IFDI noMA 0.0435∗∗
(0.0219)

IFDI 0.0219∗
(0.0117)

Full controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7,952 7,952 7,952 7,952 7,952 7,952 7,952 7,952 7,952 7,952
R2 0.98289 0.98282 0.98280 0.98279 0.98279 0.98283 0.98282 0.98281 0.97359 0.98606
Within R2 0.04939 0.04568 0.04451 0.04421 0.04394 0.04621 0.04570 0.04521 0.00599 0.05105

region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

emphClustered (region) standard-errors in parentheses Dep var: Number of novel patents in NUTS3 regions. IFDI is the
cumulative count of inward FDI projects in the region. netIFDI is the net stock of FDIs (IFDI - OFDI), netCapex is the
same measure for the amount of capital expenditures (CapexIN - CapexOUT). CapexinPIM5 is the amount of inward
Capital expenditures depreciated at the 5% discount rate. CapexinPIM10 is depreciated at the 10% discount rate. Per
GDP are similarly constructed, but normalized by regional real GDP at the NUTS3 level (ARDECO database). IFDInoMA
is constructed without the 4-year moving average transformation, in this case the dependent variable is the 4-years rolling
stock of novel patents. In column 10, the dependent variable is constructed as the number of novel patents per capita.
Explanatory variables are lagged by five years. Continuous explanatory variables are log-transformed, applying the inverse
hyperbolic sine function. All models are estimated through two-way fixed effects OLS estimators. Heteroskedastic-robust
standard errors, reported in parentheses, are clustered at the NUTS3 level.

215



Table A.3: OLS two-way FE - Robustness checks

(1) (2) (3) (4) (5) (6) (7) (8)

Capex out -0.0278∗∗∗
(0.0069)

Capex out PIM5 -0.0268∗∗∗
(0.0068)

Capex out PIM10 -0.0255∗∗∗
(0.0067)

Capex per GDP out -0.0353∗∗∗
(0.0086)

Capex per GDP out PIM5 -0.0342∗∗∗
(0.0085)

Capex per GDP out PIM10 -0.0326∗∗∗
(0.0084)

OFDI noMA -0.0515∗∗∗
(0.0179)

OFDI -0.0175
(0.0107)

Full controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7,952 7,952 7,952 7,952 7,952 7,952 7,952 7,952
R2 0.98288 0.98287 0.98286 0.98288 0.98288 0.98287 0.97363 0.98603
Within R2 0.04910 0.04867 0.04819 0.04934 0.04888 0.04836 0.00732 0.04896

region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Dep var: Number of novel patents in NUTS3 regions. OFDI is the cumulative count of inward FDI projects in the region.
CapexoutPIM5 is the amount of outward Capital expenditures depreciated at the 5% discount rate. CapexoutPIM10 is
depreciated at the 10% discount rate. Per GDP are similarly constructed, but normalized by regional real GDP at the
NUTS3 level (ARDECO database). OFDInoMA is constructed without the 4-year moving average transformation, in this
case the dependent variable is the 4-years rolling stock of novel patents. In column 8, the dependent variable is constructed
as the number of novel patents per capita. Explanatory variables are lagged by five years. Continuous explanatory variables
are log-transformed, applying the inverse hyperbolic sine function. All models are estimated through two-way fixed effects
OLS estimators. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the NUTS3 level.
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Table A.4: OLS two-way FE

Novelty
(1) (2) (3) (4) (5) (6) (7) (8)

IFDI 0.0109 0.0130 0.0152 0.0263∗ 0.0434∗∗∗ 0.0561∗∗∗ 0.0662∗∗∗ 0.0766∗∗∗
(0.0119) (0.0132) (0.0144) (0.0152) (0.0159) (0.0166) (0.0175) (0.0174)

Observations 12,496 11,360 10,224 9,088 7,952 6,816 5,680 4,544
R2 0.97950 0.97875 0.97902 0.98065 0.98283 0.98531 0.98772 0.99034
Within R2 0.20887 0.12522 0.06964 0.04799 0.04643 0.03893 0.02613 0.01863

Full controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: Number of novel patents in NUTS3 regions. IFDI is the cumulative count of inward FDI
projects in the region. Explanatory variables are lagged by five years. In each column, the time lag
for IFDI is increased, from t − 1 (column 1) to t − 8 (column 8). Continuous explanatory variables are
log-transformed, applying the inverse hyperbolic sine function. All models are estimated through two-
way fixed effects OLS estimators. Heteroskedastic-robust standard errors, reported in parentheses, are
clustered at the NUTS3 level.

Table A.5: OLS two-way FE

Novelty
(1) (2) (3) (4) (5) (6) (7) (8)

OFDI 0.0159 0.0057 -0.0131 -0.0346∗∗ -0.0441∗∗∗ -0.0397∗∗∗ -0.0239 0.0038
(0.0118) (0.0129) (0.0137) (0.0141) (0.0142) (0.0145) (0.0151) (0.0162)

Observations 12,496 11,360 10,224 9,088 7,952 6,816 5,680 4,544
R2 0.97955 0.97879 0.97906 0.98073 0.98284 0.98527 0.98763 0.99024
Within R2 0.21106 0.12714 0.07171 0.05229 0.04715 0.03640 0.01927 0.00804

region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: Number of novel patents in NUTS3 regions. OFDI is the cumulative count of outward FDI
projects in the region. Explanatory variables are lagged by five years. In each column, the time lag
for OFDI is increased, from t − 1 (column 1) to t − 8 (column 8). Continuous explanatory variables
are log-transformed, applying the inverse hyperbolic sine function. All models are estimated through
two-way fixed effects OLS estimators. Heteroskedastic-robust standard errors, reported in parentheses,
are clustered at the NUTS3 level.
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Table A.6: OLS two-way FE - FDI variables

All EU EU15 nonEU15
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

IFDI 0.0434∗∗
(0.0188)

OFDI -0.0366∗∗
(0.0151)

EU IFDI 0.0583∗∗∗
(0.0187)

EU OFDI -0.0577∗∗∗
(0.0153)

ROW IFDI 0.0281
(0.0198)

ROW OFDI -0.0353∗
(0.0192)

EU15 IFDI 0.0365∗ 0.0921∗
(0.0190) (0.0534)

EU15 OFDI -0.0306∗∗ 0.0391
(0.0136) (0.0578)

nonEU15 IFDI 0.0266∗ 0.0396
(0.0157) (0.0657)

nonEU15 OFDI -0.0144 -0.0109
(0.0149) (0.0665)

Full controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7,952 7,952 7,952 7,952 7,952 7,952 6,426 6,426 6,426 6,426 1,526 1,526 1,526 1,526
R2 0.98283 0.98282 0.98286 0.98286 0.98277 0.98276 0.98402 0.98401 0.98401 0.98397 0.95094 0.95048 0.95072 0.95042
Within R2 0.04643 0.04577 0.04772 0.04779 0.04326 0.04217 0.01800 0.01728 0.01702 0.01507 0.08773 0.07912 0.08360 0.07798

region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Conley standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: Number of novel patents in NUTS3 regions. IFDI is the cumulative count of inward FDI projects in the region. OFDI is the cumulative count of
number of outward FDI projects from the region. The geographical breakdown of variables is computed as the flows, for the focal NUTS3 regions, only coming
from (or going to) European countries (EUFDI), non-European countries (ROWFDI) or to respectively EU15 and nonEU15 countries, as detailed in section 2.3.
Explanatory variables are lagged by five years. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function. All models
are estimated through two-way fixed effects OLS estimators. Conley standard errors are calculated with a radius of 100 kilometers are reported in parenthesis.
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Table A.7: Spatial Durbin Model: Marginal effects

Panel A:
All EU

IFDI OFDI EU IFDI EU OFDI ROW IFDI ROW OFDI

Direct Effects
0.0437∗∗∗ -0.0056 0.0498∗∗∗ -0.0182∗∗∗ 0.0332∗∗∗ -0.0035

Indirect Effects
-0.0070 -0.1052∗∗∗ 0.0237∗ -0.1166∗∗∗ -0.0534∗∗∗ -0.1721∗∗∗

Total Effects
0.0366∗∗∗ -0.1108∗∗∗ 0.0734∗∗∗ -0.1347∗∗∗ -0.0202∗∗∗ -0.1756∗∗∗

Spatial Coefficient 0.3101∗∗∗ 0.291∗∗∗ 0.3091∗∗∗ 0.294∗∗∗ 0.3021∗∗∗ 0.2951∗∗∗

Region FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 7952 7952 7952 7952 7952 7952

Adj. R2 0.0909 0.0972 0.0929 0.0992 0.0899 0.0913
Panel B:

EU15 nonEU15

EU15 IFDI EU15 OFDI nonEU15 IFDI nonEU15 OFDI EU15 IFDI EU15 OFDI nonEU15 IFDI nonEU15 OFDI

Direct Effects
0.0274∗∗∗ -0.0143∗∗∗ 0.0209∗∗∗ -0.0004 0.1609∗∗∗ 0.0656∗∗∗ 0.1151∗∗∗ 0.0407∗

Indirect Effects
0.0014 -0.0473∗∗∗ -0.0702∗∗∗ -0.0494∗∗∗ -0.0841∗∗∗ -0.2019∗∗∗ -0.1402∗∗∗ -0.1787∗∗∗

Total Effects

0.0288∗∗∗ -0.0617∗∗∗ -0.0493∗∗∗ -0.0498∗∗∗ 0.0768 -0.1364∗∗ -0.0252 -0.1380∗∗

Spatial Coefficient 0.2481∗∗∗ 0.2481∗∗∗ 0.25∗∗∗ 0.2481∗∗∗ 0.2687∗∗∗ 0.2537∗∗∗ 0.2517∗∗∗ 0.2507∗∗∗
Region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 6426 6426 6426 6426 1526 1526 1526 1526
Adj. R2 0.0282 0.0305 0.0288 0.0285 0.1222 0.1193 0.12 0.115

Dep var: Number of novel patents in NUTS3 regions. Full controls included. IFDI is the cumulative count of inward FDI projects in the region. OFDI is the cumulative count of number
of outward FDI projects from the region. The geographical breakdown of variables is computed as the flows, for the focal NUTS3 regions, only coming from (or going to) European countries
(EUFDI), non-European countries (ROWFDI) or to respectively EU15 and nonEU15 countries, as detailed in section 2.3. Explanatory variables are lagged by five years. Continuous
explanatory variables are log-transformed, applying the inverse hyperbolic sine function. Marginal effects are reported, the spatial coefficients refer to the first-order spatial autoregressive terms
in the Spatial Durbin Model for recombinant novel patents. The spatial weights matrix is built with a 5-nearest-neighbour algorithm applied to NUTS3 European regions. Heteroskedastic-
robust standard errors, reported in parentheses, are clustered at the NUTS3 level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.8: Spatial Durbin Model for Research and Development Projects: Marginal effects

Panel A:
All EU

IFDI OFDI EU IFDI EU OFDI ROW IFDI ROW OFDI

Direct Effects
0.0230∗∗∗ 0.0044 0.0711∗∗∗ -0.0112 -0.0039 0.0559

Indirect Effects
-0.0383∗∗ -0.1310∗∗∗ 0.0549∗∗ -0.1156∗∗∗ -0.1255∗∗∗ 0.0551

Total Effects

-0.0153 -0.1266∗∗∗ 0.1260∗∗∗ -0.1268∗∗∗ -0.1294∗∗∗ 0.1110∗

Spatial Coefficient 0.3031∗∗∗ 0.304∗∗∗ 0.304∗∗∗ 0.3091∗∗∗ 0.3041∗∗∗ 0.3071∗∗∗

Region FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 7952 7952 7952 7952 7952 7952

Adj. R2 0.0888 0.0926 0.091 0.0905 0.0914 0.0885
Panel B:

EU15 nonEU15

EU15 IFDI EU15 OFDI nonEU15 IFDI nonEU15 OFDI EU15 IFDI EU15 OFDI nonEU15 IFDI nonEU15 OFDI

Direct Effects
0.0625∗∗∗ 0.0261∗∗ 0.0656∗∗∗ 0.0320∗∗ 0.0788∗∗∗ -0.0308 -0.0848 0.5444∗

Indirect Effects
0.1111∗∗∗ -0.0418 -0.1857∗∗∗ -0.0147 -0.1133∗ -0.9546∗∗ 0.0360 0.1135

Total Effects

0.1737∗∗∗ -0.0157 -0.1201∗∗∗ 0.0172 -0.0345 -0.9855∗ -0.0488 0.6579

Spatial Coefficient 0.2461∗∗∗ 0.2481∗∗∗ 0.262∗∗∗ 0.2501∗∗∗ 0.2597∗∗∗ 0.2467∗∗∗ 0.2567∗∗∗ 0.2577∗∗∗
Region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 6426 6426 6426 6426 1526 1526 1526 1526

Adj. R2 0.0308 0.0271 0.0272 0.0272 0.1143 0.1148 0.1101 0.1091

Dep var: Number of novel patents in NUTS3 regions. Full controls included. IFDI is the cumulative count of inward FDI projects in R&D in the region. OFDI is the cumulative
count of number of outward FDI projects from the region. The geographical breakdown of variables is computed as the flows, for the focal NUTS3 regions, only coming from (or going
to) European countries (EUFDI), non-European countries (ROWFDI) or to respectively EU15 and nonEU15 countries, as detailed in section 2.3. Explanatory variables are lagged by
five years. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function. Marginal effects are reported, the spatial coefficients refer to the first-order
spatial autoregressive terms in the Spatial Durbin Model for recombinant novel patents. The spatial weights matrix is built with a 5-nearest-neighbour algorithm applied to NUTS3 European
regions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the NUTS3 level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.9: Spatial Durbin Model excluding Research and Development Projects: Marginal effects

Panel A:
All EU

IFDI OFDI EU IFDI EU OFDI ROW IFDI ROW OFDI

Direct Effects
0.0474∗∗∗ -0.0073 0.0526∗∗∗ -0.0189∗∗∗ 0.0480∗∗∗ -0.0036

Indirect Effects
-0.0054 -0.1036∗∗∗ 0.0247∗ -0.1171∗∗∗ -0.0608∗∗∗ -0.1737∗∗∗

Total Effects

0.0420∗∗∗ -0.1110∗∗∗ 0.0773∗∗∗ -0.1360∗∗∗ -0.0128 -0.1773∗∗∗

Spatial Coefficient 0.3141∗∗∗ 0.2971∗∗∗ 0.302∗∗∗ 0.2941∗∗∗ 0.316∗∗∗ 0.2941∗∗∗

Region FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 7952 7952 7952 7952 7952 7952

Adj. R2 0.0914 0.0972 0.0934 0.0992 0.0905 0.0914
Panel B:

EU15 nonEU15

EU15 IFDI EU15 OFDI nonEU15 IFDI nonEU15 OFDI EU15 IFDI EU15 OFDI nonEU15 IFDI nonEU15 OFDI

Direct Effects
0.0303∗∗∗ 0.0033 0.0225∗∗∗ -0.0007 0.1605∗∗∗ 0.0708∗∗∗ 0.1209∗∗∗ 0.0395∗

Indirect Effects
-0.0023 -0.0207∗ -0.0609∗∗∗ -0.0477∗∗∗ -0.0754∗∗ -0.1613∗∗ -0.1610∗∗∗ -0.1687∗∗∗

Total Effects

0.0280∗∗∗ -0.0174∗∗ -0.0384∗∗∗ -0.0484∗∗∗ 0.0852 -0.0905 -0.0401 -0.1292∗∗

Spatial Coefficient 0.2561∗∗∗ 0.2541∗∗∗ 0.25∗∗∗ 0.247∗∗∗ 0.2587∗∗∗ 0.2547∗∗∗ 0.2577∗∗∗ 0.2467∗∗∗
Region FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 6426 6426 6426 6426 1526 1526 1526 1526

Adj. R2 0.0285 0.0272 0.0285 0.0285 0.1219 0.1141 0.1217 0.1144

Dep var: Number of novel patents in NUTS3 regions. Full controls included. IFDI is the cumulative count of inward FDI projects in R&D in the region. OFDI is the cumulative
count of number of outward FDI projects from the region. The geographical breakdown of variables is computed as the flows, for the focal NUTS3 regions, only coming from (or going
to) European countries (EUFDI), non-European countries (ROWFDI) or to respectively EU15 and nonEU15 countries, as detailed in section 2.3. Explanatory variables are lagged by
five years. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function. Marginal effects are reported, the spatial coefficients refer to the first-order
spatial autoregressive terms in the Spatial Durbin Model for recombinant novel patents. The spatial weights matrix is built with a 5-nearest-neighbour algorithm applied to NUTS3 European
regions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the NUTS3 level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table B.1: Green Diversification, skill composition, and share of Green FDI Capex

entryGT
(1) (2) (3) (4) (5) (6)

shGreenCapex 0.4767∗∗∗ 0.3180∗∗∗ 0.2971∗∗∗ 0.1571∗∗ 0.3528∗∗∗ 0.0192
(0.0847) (0.0757) (0.0745) (0.0726) (0.1125) (0.0878)

(d) ASH 0.3365∗∗∗ 0.2111∗∗∗ 0.2019∗∗∗ 0.1596∗∗∗ 0.2131∗∗∗ 0.1547∗∗∗
(0.0460) (0.0410) (0.0403) (0.0353) (0.0405) (0.0346)

(d) RSH 0.0330 0.0410 0.0006 -0.0237 -0.0269 -0.1006∗∗
(0.0446) (0.0396) (0.0370) (0.0345) (0.0343) (0.0426)

TechRel 0.0148∗∗∗ 0.0154∗∗∗ 0.0128∗∗∗ 0.0128∗∗∗ 0.0128∗∗∗
(0.0009) (0.0009) (0.0008) (0.0008) (0.0008)

GDPpc 0.3502∗∗∗ 0.1832∗ 0.1831∗ 0.1904∗
(0.1008) (0.0978) (0.0973) (0.0982)

EmpGrowth 0.1175 -0.0952 -0.1314 -0.0969
(0.4040) (0.3902) (0.3873) (0.3905)

ShPatents -0.1446∗∗∗ -0.1474∗∗∗ -0.1465∗∗∗ -0.1467∗∗∗
(0.0269) (0.0273) (0.0268) (0.0271)

(d) shGreenEst 0.3171∗∗∗ 0.3186∗∗∗ 0.3162∗∗∗
(0.0826) (0.0813) (0.0818)

GreenPrevRTA 0.7824∗∗∗ 0.7981∗∗∗ 0.7752∗∗∗
(0.1860) (0.1841) (0.1832)

shGreenCapex × (d) ASH -0.3030∗∗
(0.1225)

shGreenCapex × (d) RSH 0.3546∗∗∗
(0.1167)

Observations 2,102,562 2,102,562 2,102,562 2,102,562 2,102,562 2,102,562
Log-Likelihood -108,388.2 -107,996.9 -107,883.2 -107,801.5 -107,793.9 -107,789.9
Adjusted Pseudo R2 0.06639 0.06975 0.07070 0.07139 0.07145 0.07148

Year*Tech fixed effects ✓ ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Clustered (MSA) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: MSA entry in a green technological specialization. shGreenCapex is the share of green capital
expenditures in inward FDIs over the total capital expenditures in inward FDIs. ASH and RSH are
dichotomous variables equal to one if the share of, respectively, abstract and routine skills is above the
national median. Explanatory variables are lagged by one year. Continuous explanatory variables are
log-transformed, applying the inverse hyperbolic sine function. All models are estimated through fixed
effects logit estimators and include an indicator variable for the absence of inward FDIs in the MSA, whose
estimated coefficient is not reported. Heteroskedastic-robust standard errors, reported in parentheses,
are clustered at the MSA level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.2: Green Diversification, skill composition, and shares of Green FDI (counts)

entryGT
(1) (2) (3) (4) (5) (6)

shGreenFDI 0.5139∗∗∗ 0.3483∗∗∗ 0.3274∗∗∗ 0.1693∗∗ 0.3664∗∗∗ 0.0063
(0.0952) (0.0852) (0.0829) (0.0814) (0.1241) (0.0992)

(d) ASH 0.3413∗∗∗ 0.2136∗∗∗ 0.2032∗∗∗ 0.1601∗∗∗ 0.2156∗∗∗ 0.1559∗∗∗
(0.0463) (0.0410) (0.0405) (0.0353) (0.0410) (0.0346)

(d) RSH 0.0361 0.0428 0.0017 -0.0225 -0.0251 -0.1084∗∗
(0.0444) (0.0395) (0.0367) (0.0343) (0.0341) (0.0433)

TechRel 0.0148∗∗∗ 0.0154∗∗∗ 0.0128∗∗∗ 0.0128∗∗∗ 0.0128∗∗∗
(0.0009) (0.0009) (0.0008) (0.0008) (0.0008)

GDPpc 0.3559∗∗∗ 0.1871∗ 0.1896∗ 0.1966∗∗
(0.1004) (0.0977) (0.0969) (0.0978)

EmpGrowth 0.1024 -0.1040 -0.1441 -0.1015
(0.4044) (0.3901) (0.3865) (0.3903)

ShPatents -0.1448∗∗∗ -0.1474∗∗∗ -0.1464∗∗∗ -0.1462∗∗∗
(0.0270) (0.0273) (0.0267) (0.0269)

(d) shGreenEst 0.3132∗∗∗ 0.3130∗∗∗ 0.3126∗∗∗
(0.0829) (0.0818) (0.0821)

GreenPrevRTA 0.7913∗∗∗ 0.8046∗∗∗ 0.7789∗∗∗
(0.1860) (0.1833) (0.1818)

shGreenFDI × (d) ASH -0.3240∗∗
(0.1354)

shGreenFDI × (d) RSH 0.4218∗∗∗
(0.1301)

Observations 2,102,562 2,102,562 2,102,562 2,102,562 2,102,562 2,102,562
Log-Likelihood -108,393.0 -107,998.3 -107,883.9 -107,802.0 -107,794.9 -107,789.0
Adjusted Pseudo R2 0.06635 0.06974 0.07070 0.07139 0.07144 0.07149

Year*Tech fixed effects ✓ ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Clustered (MSA) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: MSA entry in a green technological specialization. shGreenFDI is the share of green FDIs, as
a count of inward FDI flows, over the total count of inward FDI flows. ASH and RSH are dichotomous
variables equal to one if the share of, respectively, abstract and routine skills is above the national median.
Explanatory variables are lagged by one year. Continuous explanatory variables are log-transformed, ap-
plying the inverse hyperbolic sine function. All models are estimated through fixed effects logit estimators
and include an indicator variable for the absence of inward FDIs in the MSA, whose estimated coefficient
is not reported. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the
MSA level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.3: Green Diversification, skill composition, and Green Capex (4-digits tech
FE)

entryGT
(1) (2) (3) (4) (5) (6)

GreenCapex 0.0476∗∗∗ 0.0311∗∗∗ 0.0421∗∗∗ 0.0220∗∗ 0.0401∗∗∗ 0.0058
(0.0107) (0.0101) (0.0096) (0.0091) (0.0119) (0.0107)

BrownCapex 0.0388∗∗∗ 0.0204∗ 0.0420∗∗∗ 0.0254∗∗∗ 0.0279∗∗∗ 0.0273∗∗∗
(0.0114) (0.0107) (0.0102) (0.0095) (0.0096) (0.0096)

(d) ASH 0.3145∗∗∗ 0.2455∗∗∗ 0.2235∗∗∗ 0.1818∗∗∗ 0.2512∗∗∗ 0.1774∗∗∗
(0.0531) (0.0481) (0.0454) (0.0396) (0.0463) (0.0392)

(d) RSH 0.0387 0.0487 -0.0183 -0.0325 -0.0385 -0.1124∗∗
(0.0514) (0.0477) (0.0434) (0.0400) (0.0393) (0.0491)

TechRel 0.0132∗∗∗ 0.0123∗∗∗ 0.0058∗∗∗ 0.0060∗∗∗ 0.0060∗∗∗
(0.0016) (0.0014) (0.0012) (0.0012) (0.0012)

GDPpc 0.3193∗∗∗ 0.1678 0.1766∗ 0.1800∗
(0.1157) (0.1073) (0.1059) (0.1071)

EmpGrowth 0.4733 0.2568 0.2591 0.2668
(0.5191) (0.4968) (0.4919) (0.4938)

ShPatents -0.2007∗∗∗ -0.1718∗∗∗ -0.1606∗∗∗ -0.1629∗∗∗
(0.0314) (0.0318) (0.0311) (0.0322)

(d) shGreenEst 0.3102∗∗∗ 0.3005∗∗∗ 0.3020∗∗∗
(0.0973) (0.0956) (0.0959)

GreenPrevRTA 1.358∗∗∗ 1.389∗∗∗ 1.359∗∗∗
(0.2167) (0.2146) (0.2147)

GreenCapex × (d) ASH -0.0362∗∗∗
(0.0132)

GreenCapex × (d) RSH 0.0333∗∗
(0.0138)

Observations 233,470 233,470 233,470 233,470 233,470 233,470
Log-Likelihood -66,041.3 -65,888.6 -65,715.7 -65,609.8 -65,598.5 -65,599.4
Adjusted Pseudo R2 0.03603 0.03820 0.04063 0.04211 0.04226 0.04225

Tech*Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓
State*Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Clustered (MSA) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dep var: MSA entry in a green technological specialization. GreenCapex and BrownCapex are expressed
as continuous variables. (d)ASH and (d)RSH are dichotomous variables equal to one if the share of,
respectively, abstract and routine skills is above the national median. Explanatory variables are lagged
by one year. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine
function. All models are estimated through fixed effects logit estimators. Heteroskedastic-robust standard
errors, reported in parentheses, are clustered at the MSA level. Technology-by-year fixed effects are built
with 4-digit CPC codes, and State-by-year fixed-effects are included.
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Appendix C

Appendix for Chapter 4
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Figure C.1: Peak detection algorithm.
The dotted line plots the monthly series of CPU for Italy. In blue, I represent the moving average, and
in green the threshold standard deviations for detecting peaks. In the bottom panel, events are flagged
as 1 (peaks) or -1 (troughs). I only consider positive deviations (peaks) in the count of events for each
time series derived.
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Table C.1: Weighted Poisson Regression - Baseline estimates for CPU - Positive and
negative policy stance.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

CPUp 0.6190∗ 0.6487∗ -0.5998 -0.6014 -1.773∗∗ -1.793∗∗
(0.3597) (0.3615) (0.3840) (0.4053) (0.8453) (0.8381)

CPUm -0.5311 -0.5518 1.078∗∗ 1.074∗∗ 2.574∗∗∗ 2.603∗∗∗
(0.3538) (0.3545) (0.4188) (0.4322) (0.8620) (0.8372)

GreenStock 1.034∗∗∗ 1.017∗∗∗ 0.1459∗∗∗ 0.1573∗∗∗ -0.0278 -0.0256
(0.0477) (0.0427) (0.0322) (0.0331) (0.1203) (0.1203)

DirtyStock 0.0171 0.0338∗ 0.9404∗∗∗ 0.9401∗∗∗ 1.282∗∗∗ 1.282∗∗∗
(0.0225) (0.0192) (0.0289) (0.0260) (0.1046) (0.1041)

SPILLgreen 1.331 1.428 1.358∗∗ 1.429∗∗ 3.299∗∗∗ 3.346∗∗∗
(0.9559) (0.9558) (0.6264) (0.6669) (1.157) (1.159)

SPILLdirty -1.389 -1.430 -1.494∗∗ -1.478∗∗ -3.421∗∗∗ -3.437∗∗∗
(1.047) (1.046) (0.6465) (0.6800) (1.126) (1.133)

pre-sample mean -0.0380∗∗∗ -0.0211 -0.0771∗∗∗ -0.0647∗∗∗ -0.1033∗∗ -0.1008∗
(0.0143) (0.0130) (0.0163) (0.0156) (0.0525) (0.0558)

Emit 0.0096 0.0045 0.0036 -0.0006 0.8018∗ 0.7961∗
(0.1049) (0.1058) (0.1008) (0.0984) (0.4110) (0.4084)

EPS*Emit 0.0705∗ 0.0614 0.0819 0.0844 -0.3819∗ -0.3807∗
(0.0419) (0.0412) (0.0620) (0.0554) (0.2197) (0.2163)

ShPatents -0.0438∗ -0.0582∗∗ -0.0159
(0.0256) (0.0254) (0.0499)

Observations 86,562 86,562 82,082 82,082 59,452 59,452
RMSE 0.77593 0.77660 0.71955 0.71647 0.37788 0.37771

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp
captures firm-level exposure to climate policy uncertainty with an environmentally-positive policy stance. CPUm instead
captures environmentally-negative policy stance. GreenStock and DirtyStock are, respectively, the depreciated stocks of
own-firm past green or dirty Triadic Patent Families. SPILLGreen and SPILLDirty are firm-level geographical spillovers
to the focal firm in green and dirty technologies. Emit are country-sector-year emissions, and EPS is the index of En-
vironmental Policy Stringency. ShPatents is the share of firm patents within its country-sector-year. All models contain
dummy variables in case the past stock of green and (or) dirty patents is 0, which are always significant and not reported.
Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function. Models are estimated
by Maximum-likelihood Poisson regressions, weighted by the average number of patents for each firm, over the period of
observation. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the firm level.
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Table C.2: Poisson Regression. CPU stances: Split sample analysis.

Excluding France Excluding Italy Excluding Spain Excluding Germany
Green Dirty Grey Green Dirty Grey Green Dirty Grey Green Dirty Grey

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

CPUp 0.6848∗∗ -0.4028 -1.460 0.4973 -0.8001∗ -2.020∗∗∗ 0.7551∗∗ -0.3604 -1.876∗∗∗ 0.5442 -0.3826 -0.3225
(0.3392) (0.4092) (0.9879) (0.3690) (0.4502) (0.7339) (0.3359) (0.4096) (0.6122) (0.3909) (0.6181) (0.7653)

CPUm -0.6244∗ 0.4503 1.485 -0.4372 0.8890∗∗ 2.140∗∗∗ -0.6899∗∗ 0.4775 1.975∗∗∗ -0.5086 0.4382 0.3334
(0.3380) (0.3960) (0.9903) (0.3704) (0.4458) (0.7351) (0.3382) (0.4119) (0.6107) (0.3904) (0.6020) (0.7618)

Firms 3229 3229 3229 3572 3572 3572 4007 4007 4007 1705 1705 1705

Observations 55,106 52,403 37,760 61,602 57,937 42,262 69,026 65,217 48,660 26,563 21,544 9,870
Pseudo R2 0.66901 0.77451 0.83826 0.67090 0.78022 0.82482 0.66006 0.76938 0.81445 0.59669 0.72441 0.62612
RMSE 0.86068 0.84612 0.54918 0.91030 0.95265 0.54967 0.87477 0.93573 0.53189 0.58320 0.80251 0.41412

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp captures firm-level exposure to climate policy uncertainty with an
environmentally-positive policy stance. CPUm instead captures environmentally-negative policy stance. All models contain full controls and dummy variables in case the past stock of green
and (or) dirty patents is 0, which are always significant and not reported. Continuous explanatory variables are log-transformed, applying the inverse hyperbolic sine function. Models are
estimated by Maximum-likelihood Poisson regressions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the firm level.
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Table C.3: Poisson Regression - Baseline estimates for CPU stances - Additional con-
trols.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

CPUp 0.6803∗∗ -0.4285 -1.645∗∗
(0.3099) (0.3878) (0.6528)

CPUm -0.6011∗ 0.5408 1.924∗∗∗
(0.3151) (0.3913) (0.6860)

PeaksP 0.1208∗∗∗ -0.0182 -0.0523
(0.0452) (0.0563) (0.0786)

PeaksM -0.0144 0.0870 0.2436∗∗∗
(0.0493) (0.0616) (0.0914)

EPU -0.0211 0.0073 -0.0374 0.0408 -0.2377∗∗∗ -0.0474
(0.0384) (0.0191) (0.0569) (0.0382) (0.0794) (0.0585)

Observations 72,040 72,040 67,809 67,809 49,725 49,725
Pseudo R2 0.65696 0.65713 0.76813 0.76811 0.81637 0.81626
RMSE 0.86229 0.86229 0.92212 0.92288 0.50474 0.50629

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓
Firm Size Dummy ✓ ✓ ✓ ✓ ✓ ✓

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp
captures firm-level exposure to climate policy uncertainty with an environmentally-positive policy stance. CPUm instead
captures environmentally-negative policy stance. PeaksP and PeaksM , respectively, represent the total number of events
of positive or negative stance, over the total number of events detected by the peak-detection algorithm. EPU is the
firm-level exposure to Economic Policy Uncertainty. All models contain full controls and dummy variables in case the past
stock of green and (or) dirty patents is 0, which are always significant and not reported. Continuous explanatory variables
are log-transformed, applying the inverse hyperbolic sine function. Models are estimated by Maximum-likelihood Poisson
regressions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the firm level.
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Table C.4: Poisson Regression - Baseline estimates for CPU stances - alternative con-
struction for EPS.

Green Dirty Grey
(1) (2) (3) (4) (5) (6)

CPUp 0.6972∗∗ -0.4363 -1.518∗∗
(0.3096) (0.3911) (0.7262)

CPUm -0.6125∗∗ 0.5286 1.612∗∗
(0.3099) (0.3848) (0.7278)

PeaksP 0.1200∗∗∗ -0.0091 -0.0483
(0.0432) (0.0522) (0.0766)

PeaksM -0.0005 0.1113∗ 0.2342∗∗
(0.0461) (0.0593) (0.1058)

EPS -0.1253∗∗ -0.0665 -0.0895 -0.0267 -0.2624∗ -0.2159∗
(0.0515) (0.0456) (0.0668) (0.0657) (0.1371) (0.1145)

Observations 72,058 72,058 67,826 67,826 49,725 49,725
Pseudo R2 0.65697 0.65704 0.76804 0.76793 0.81585 0.81583
RMSE 0.86151 0.86161 0.91886 0.92111 0.50531 0.50689

Country*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry*Year FE ✓ ✓ ✓ ✓ ✓ ✓
Full Controls ✓ ✓ ✓ ✓ ✓ ✓
Firm Size Dummy ✓ ✓ ✓ ✓ ✓ ✓
Cluster S.E. Firm Firm Firm Firm Firm Firm
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Dependent variables are flows of Triadic Patent Families, identified in their respective technological categories. CPUp
captures firm-level exposure to climate policy uncertainty with an environmentally-positive policy stance. CPUm instead
captures environmentally-negative policy stance. PeaksP and PeaksM , respectively, represent the total number of events
of positive or negative stance, over the total number of events detected by the peak-detection algorithm. EPS is the
Environmental Policy Stringency index, constructed analogously to CPU. All models contain full controls and dummy
variables in case the past stock of green and (or) dirty patents is 0, which are always significant and not reported. Continuous
explanatory variables are log-transformed, applying the inverse hyperbolic sine function. Models are estimated by Maximum-
likelihood Poisson regressions. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the firm
level.
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Figure C.2: Timing of different lags.
Dependent variables are flows of Triadic Patent Families, identified in their respective technological
categories. CPUp captures firm-level exposure to climate policy uncertainty with an environmentally-
positive policy stance. CPUm instead captures environmentally-negative policy stance. All models
contain full controls and dummy variables in case the past stock of green and (or) dirty patents is 0,
which are always significant and not reported. Continuous explanatory variables are log-transformed,
applying the inverse hyperbolic sine function. Models are estimated by Maximum-likelihood Poisson
regressions. Standard errors at a 5% level are plotted in the Figure.
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An application of semi-supervised learning in the case of Climate
Policy Uncertainty

I provide here an example of architecture for out-of-sample labelling of news
data, testing the flexibility of LLM-based methods for labelling of policy un-
certainty in newspapers’ articles. The objective of this exercise is similar
to those of semi-supervised label propagation algorithm (Iscen et al. 2019).
In these setups, semi-supervised deep learning exploits a small number of
human-curated labelled data, in cases where larger unlabelled data of similar
nature are available. The case for this application builds on recent literat-
ure using artificial LLM labels as ground truth, and train semi-supervised
algorithms on unlabelled data. The algorithm, rather simple in its nature,
can be flexibly exploited in the case of policy uncertainty exercises, in which
larger amounts of data from a diverse set of news archives can be added.

The architecture is based on recent literature employing LLM labelled
dataset, in which a "teacher" algorithm is labelling data subsequently used
by another "student" model (Pangakis and Wolken 2024). This approach,
promising in social sciences, can be leveraged to reduce cost of labelling,
and potentially achieving human-level quality (Gilardi et al. 2023). After la-
belling the sample of articles as explained in Section 4.3.1, I extract a random
sample of articles amounting to 50% of the dataset, for each country (and
therefore each language). In turn, I train a "student" model for each lan-
guage. Leveraging the superior syntactic properties of tensor-based architec-
tures (in comparison with word-occurrence models), I train Google’s Bidirec-
tional Encoder Representation from Transformers (BERT) on two training
exercises. First, I train BERT for the prediction of true positives (intended as
the LLM-labelled positives) in the sample of Climate Policy Uncertainty art-
icles. Second, I train BERT in a multi-class labelling exercise, based on the
direction of climate policy uncertainty labels. The training is performed on
the BERT model pre-trained on a large corpus of multilingual data (Devlin
2018). The relevance of this exercise lies in the possibility to exploit labelled
data, costly to obtain, to other news sources within the same language, over
a number of different directions. In terms of parameters, BERT is a much
smaller model, compared with the latest ChatGPT-4o. Scores for evaluation
metrics, across three epochs, are reported in Figure C.3, for general CPU,
and in Figure C.4 for CPUp and CPUm. I report scores for accuracy, pre-
cision, recall and F1 scores.
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The metrics suggest that the prediction of the binary outcome has a quite
high predictive power, with F1 scores well above 0.8 in all languages. This
result shows that teacher-student architectures are relevant for recognizing
news articles about CPU and able to filter out effectively false negatives, also
in a multi-lingual context. Trained models, much smaller and cheaper than
LLM-based labelling could be applied to new data sources.

For what concerns the directions of effects, instead, the performance of
multi-label is lower. While this attempt could be perfected, human inter-
vention in prompt-tuning, and in the generation of artificial labels might
be necessary for achieving a higher out-of-sample performance. However,
precision and recall are around 0.6 for all languages, and the series derived
from predicted labels (following the methodology explained in Section 4.3.1,
correlate at the country level at 0.63 for CPUp and 0.78 for CPUm. Over-
all, these results are very promising for the use of LLM, deep learning and
teacher-student architectures in applications related to policy uncertainty,
with the potential of making the labelling process cheaper, open source, and
flexible and adaptable to novel data sources.

(a) Germany (b) France

(c) Italy (d) Spain

Figure C.3: Evaluation scores for three epochs in training - CPU labelling
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(a) Germany (b) France

(c) Italy (d) Spain

Figure C.4: Evaluation scores for three epochs in training - CPU directions
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Table C.5: Technological categories for green patents

Description Codes Lower digit purpose
Separation; Purification of air, liquids,
or gases

B01D Used in environmental control tech-
nologies such as filtration and water
treatment.

Manufacture of iron or steel C21B Includes processes that reduce environ-
mental impact in steel manufacturing.

Processing of pig-iron or steel C21C Focuses on methods to improve energy
efficiency and reduce emissions.

Methods or apparatus for combustion
using solid fuel

F23B Related to cleaner combustion techno-
logies for reduced pollution.

Combustion apparatus using fluid or
pulverized fuel

F23C Involves systems designed for effi-
cient combustion with minimal envir-
onmental impact.

Cremation; Incineration of waste F23G Waste treatment technologies that
minimize emissions.

Removal or treatment of combustion
products

F23J Techniques for controlling and redu-
cing air pollution.

Furnaces; Kilns; Ovens F27B Energy-efficient designs and emissions
reduction in industrial heating pro-
cesses.

Chemical or physical processes, cata-
lysts

B01J Used in environmental applications
like pollution control and energy-
efficient processes.

Lubricating of internal combustion en-
gines

F01M Involves technologies to reduce envir-
onmental impact from lubricants.

Testing static or dynamic structures,
mechanical structures

G01M Environmental monitoring and testing
technologies.

Magnetic or electrostatic separation of
solid materials

B03C Used in recycling and waste pro-
cessing.

Fuels not derived from petroleum, in-
cluding biofuels

C10L Development of cleaner, renewable en-
ergy sources.

Exhaust apparatus for combustion en-
gines

F01N Technologies for reducing vehicular
emissions.

Auxiliary equipment for ships, includ-
ing pollution control devices

B63J Marine pollution control.

Treatment of water, waste water, or
sewage

C02F Essential for water purification and en-
vironmental protection.

Materials for specific applications, in-
cluding environmental uses

C09K Involves chemicals for environmental
protection like soil conditioners.

Water supply installations E03C Technologies improving water effi-
ciency and management.

Sewage disposal E03F Waste management and pollution con-
trol.

Fertilizers, including those derived
from waste

C05F Involves recycling waste into environ-
mentally friendly fertilizers.

Ships or other waterborne vessels;
Equipment for ships

B63B Marine environmental protection tech-
nologies.

Hydraulic engineering; Dams; Harbors E02B Involves managing water resources and
protecting the environment.
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Cleaning streets; Removing snow, ice,
or sand

E01H Environmental management in urban
areas.

Collecting or transporting refuse; Con-
tainers for refuse

B65F Waste management technologies.

Animal feeding-stuffs; Non-medical
feed additives

A23K Related to sustainable agriculture and
environmental protection.

Footwear A43B Involves materials and processes that
reduce environmental impact in man-
ufacturing.

Cleaning beaches or sea floor; Other
cleaning operations

B03B Environmental cleanup technologies.

Working of metal powder; Manufac-
ture of articles from metal powder

B22F Involves sustainable materials and pro-
cesses in manufacturing.

Preparation or pre-treatment of
plastics or other compositions

B29B Environmental impact reduction in
plastic processing.

Presses in general; Pressing B30B Includes environmentally friendly
pressing methods in manufacturing.

Motor vehicles; Trailers B62D Technologies for reducing the environ-
mental impact of vehicles.

Containers for storage or transport of
articles or materials

B65D Involves packaging technologies that
reduce environmental waste.

Handling thin or filamentary material B65H Includes materials handling in an en-
vironmentally friendly way.

Manufacture of glass; Glassware C03B Technologies to reduce the environ-
mental impact of glass manufacturing.

Cements; Concrete; Artificial stone C04B Focuses on sustainable construction
materials.

Working-up of macromolecular sub-
stances

C08J Recycling and environmental impact
reduction in polymer processing.

Lubricating compositions C10M Development of environmentally
friendly lubricants.

Production and refining of metals C22B Includes environmental technologies in
metallurgy.

Preparation of fibers for spinning; Ma-
chines for cotton processing

D01G Involves technologies for reducing en-
vironmental impact in textile manufac-
turing.

Fibrous raw materials for paper-
making

D21B Environmental impact reduction in the
paper industry.

Production of cellulose by removing
non-cellulose constituents

D21C Cleaner technologies in cellulose pro-
duction.

Pulp compositions; Impregnating ma-
terials

D21H Includes environmentally friendly ad-
ditives in paper production.

Cables; Conductors; Insulators H01B Technologies for energy-efficient and
environmentally friendly electrical sys-
tems.

Electric discharge tubes; Gas-filled dis-
charge tubes

H01J Energy-efficient lighting technologies.

Processes or means for direct conver-
sion of chemical energy into electrical
energy

H01M Focus on batteries and fuel cells, in-
cluding environmentally friendly en-
ergy storage.
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Sterilization or disinfection techniques;
Deodorization

A61L Environmental impact reduction in
medical technology.

Crushing, pulverizing, or disintegrat-
ing in general

B02C Used in recycling and waste pro-
cessing.

Disposal of solid waste B09B Technologies for efficient and environ-
mentally friendly waste disposal.

Cracking hydrocarbon oils; Production
of liquid hydrocarbon mixtures

C10G Cleaner processes in the oil industry.

Reclamation of contaminated soil B09C Environmental technologies for soil re-
mediation.

Signaling or calling systems; Prevent-
ing, indicating, or extinguishing fires

G08B Includes environmental monitoring
technologies.

Technologies for Adaptation to Cli-
mate Change

Y02A

Climate Change Mitigation Technolo-
gies related to Buildings

Y02B

Capture, Storage, Sequestration or
Disposal of Greenhouse Gases

Y02C

Climate Change Mitigation Technolo-
gies in ICT

Y02D

Reduction of GHG Emissions in En-
ergy Generation

Y02E

Climate Change Mitigation Technolo-
gies in the Production or Processing of
Goods

Y02P

Climate Change Mitigation Technolo-
gies related to Transportation

Y02T

Climate Change Mitigation Technolo-
gies related to Wastewater Treatment

Y02W

Smart grids Y04S
Fuel Cells H01M
Wind motors F03D
Propulsion Of Electrically-Propelled
Vehicles

B60L

Tide or wave power plants E02B9/08
Devices for producing mechanical
power from geothermal energy

F03G4

Devices for producing mechanical
power from solar energy

F03G6

Ocean thermal energy conversion F03G7/05
Use of solar heat F24J2
Production or use of heat, not derived
from combustion using geothermal
heat

F24J3/08,
F26B3/28

Clean Filters B01D46, B01D50,
B01D35, B01D39,
B01D41

Water Cleaning E02B15
Construction waste managment C04B18
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Submerged units incorporating electric
generators or motors characterized by
using wave or tide energy

F03B13/10-26

Table C.6: Technological categories for grey patents

Description Codes
Idling devices F02M3/00, F02M3/01, F02M3/02,

F02M3/03, F02M3/04, F02M3/05
Injection apparatus in combutions engines F02M39, F02M41, F02M2041,

F02M46, F02M43, F02M45,
F02M47, F02M49, F02M51,
F02M53, F02M55, F02M57,
F02M59, F02M, F02M61, F02M63,
F02M65, F02M67, F02M69,
F02M71

Adding non-fuel substances to fuel mix F02M23, F02M25
Electricity control and efficiency F02D/41, F02B47/06
Combustion technologies with mitigation poten-
tial

Y02E20/12, Y02E20/14,
Y02E20/16, Y02E20/18,
Y02E20/30, Y02E20/32,
Y02E20/34

Table C.7: Technological categories for dirty patents

Description Codes
Internal-combustion piston engines F02B
Controlling combustion engines F02D
Cylinders, pistons, or casings for combustion en-
gines; arragement of sealings in combustion en-
gines

F02F

Supplying combustion engines with combustiles
mixtures or constituents thereof

F02M

Starting of combustion engines F02N
Ignition (other than compression ignition) for
internal-combustion engines

F02P

Oil extraction and refining C10G
Fuel C10L1
Separating Plants for Oil-related B03B9/02, B03D2203/006
Gas-turbine plants F02C
Production of fuel gases by carburetting air or
other gases

C10J

Hydraulic engineering E02B
Steam engine plants (and similar) F01K
Steam generation F22
Combustion apparatus or processes F23
Furnaces F27
Heat exchange in general F28
Lightning F21H
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Conventional and unconventional oil and gas ex-
ploratation and extraction

E21B B63B35/4413,
B63B2035/442, B63B2035/448,
B63B75/00, C09K8, C10L5/04,
E02B17/0, E02B2017/003,
E02B2017/004, E02B2017/005,
E02B2017/006,E21B
E02B2017/007, E02B2201,

Exploration and mining B03B9/0, B03B1, B03D2203/006,
B61D11, E21C

Gas conditioning F25J3/0209, F25J3/0214,
F25J3/0615, F25J3/061,

Solid Fuel conditioning C10F, C10L
Coal to gas processes C10B47, C10B49, C10B51, C10B53,

C10B55, C10B57, C10J1, C10J3
Hydrogen fuel production C01B3/22, C01B3/3, C01B3/4

Environmental Keywords

Italian:
((riscaldamento AND (globale OR del pianeta)) OR (emissioni AND NOT (obbligazion-
arie OR del tesoro)) OR energia OR energetic* OR ambiente OR ambiental* OR ecologic*
OR climatic* OR carbonio OR gas serra OR effetto serra OR anidride carbonica OR CO2
OR metano OR CH4 OR inquinament* OR inquinante OR (ossid. AND di zolfo) OR
SOx OR diossido di zolfo OR biossido di zolfo OR anidride solforosa OR SO2 OR ossido
di azoto OR monossido di azoto OR NOx OR diossido di azoto OR biossido di azoto
OR NO2 OR (particelle AND (fini OR solide OR piccole)) OR (particolate AND atmos-
feric* )) OR polveri sottili OR materiale particolato OR PM10 OR PM2.5 OR ozono OR
rinnovabil* OR idroelettric* OR idraulic* OR eolic* OR fotovoltaic* OR emissioni OR
biomass* OR (auto OR veicol* AND elettric*) OR ((auto OR motore OR alimentazione)
AND ibrid*) OR (solar* AND NOT (crema OR eritema OR sistema OR trattamento OR
ustione OR anno)))

French:
((energi* OR énergétiqu* OR environmenta*OR écologique* OR changement climatique
OR réchauffement climatique OR climatiq* OR pollution OR pollutan* OR carbone OR
gaz à effet de serre OR dioxyde de carbone OR co2 OR ch4 OR méthane OR oxyde de
soufre OR so2 OR dioxyde de soufre OR sox OR oxyde d azote OR dyoxyde d azote
OR particule fines OR PM2.5 OR PM10 OR ozone OR éolien* OR solair* AND NOT
(crème OR système) OR photovoltaïque* OR hydraulique* OR biomasse OR (énergies
renouvelables OR énergie renouvelable) OR (voitures OR voiture AND (électriques OR
électrique OR hybride*))))

Spanish:
((energ* OR energétic* OR medio ambient* OR ecológic* OR cambio climático OR
calentamiento global OR climatic* OR contaminación OR contaminante* OR polución
OR carbono OR gases de efecto invernadero OR dióxido de carbono OR CO2 OR metano
OR CH4 OR óxido de azufre OR SO2 OR dióxido de azufre OR SOx OR óxido de nitró-
geno OR NOx OR dióxido de nitrógeno OR (partículas AND (finas OR en suspensión))
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OR PM2.5 OR PM10 OR ozono OR eólic* OR (tecnología* OR panel* OR placa* OR
central* AND solar*) OR fotovoltaic* OR (energía AND (hidráulica OR hidroeléctric*))
OR biomasa OR (energías AND (renovables OR verdes OR alternativas OR limpias)) OR
(auto* OR coche* AND (eléctrico* OR híbrido*))))

German:
((klima* AND NOT (Geschäftsklima OR politisches OR wirtschaftliches OR Wirtschafts
OR Regulierung OR regulatorisches OR Rechts OR rechtliches OR gesellschaftliches OR
Gesellschafts)) OR Energiewende OR (Erneuerbare AND Energien AND Gesetz) OR
EEG.Einspeisevergütung OR EEG.Umlage OR Klimapolitik OR Energiepolitik OR Um-
weltpolitik OR Lufteinhaltepolitik OR Luftreinhalteplan OR Umwelt OR ökologisch OR
klimawandel OR Erderwärmung OR globale Erwärmung OR Umwelt* OR Energie* OR
Kohlenstoff* OR Treibhausgas* OR THG* OR Kohlendioxid* OR CO2* OR Methan*
OR CH4* OR Schadstoff* OR Umweltverschmutzung* OR Luftverschmutzung* OR ver-
schmutz* OR schwefeloxid* OR SOx OR Schwefeldioxid* OR SO2* OR Stickoxid* OR
NOx OR Stickstoffdioxid* OR NO2* OR (Partikel* AND (Fein OR Feinpartikel OR Fein-
staub)) OR PM2.5 OR PM10* OR Ozon* OR erneuerbar* OR Hydro* OR Windenergie*
OR Windpark* OR Windkraftanlage* OR Photovoltaik* OR PV OR Solar* OR Bio-
masse* OR (Elektrofahrzeug* OR Elektroauto* OR E-auto*) OR (Hybridfahrzeug* OR
Hybridauto*)))

Policy Keywords

Italian:
((politica AND NOT monetaria) OR regolament* OR legislazion* OR legge OR tasse OR
canon* OR (standard AND NOT (& OR and OR e OR poors OR poor’s)) OR certificat*
OR certificazion* OR sussidi OR sussidio OR sovvenzion* OR ETS OR Sistema ES OR
feed-in-tariff* OR conto energia OR (scambio AND di quote) OR regime di scambio OR
sistema di scambio OR decarbonizzazione OR effetto serra OR cap and trade OR mercato
dei diritti di emissione OR (mercato AND (dell OR di AND emission*)) OR (etichett*
AND (ambiental* OR ecologic*)) OR eco-etichett* OR eco-label OR normative OR norm-
ativa)

French:
((politiq AND NOT monétaire) OR réglementation* OR lois OR loi OR redevance* OR
tax* OR impôt* OR norme* OR tarification* OR tarif de rachat OR certificat* OR sub-
vention* OR ETS OR (marché AND d emissions) OR droit* à polluer OR système d
échange OR SEQE)

Spanish:
((política AND NOT monetaria) OR regulación* OR ley OR leyes OR impuesto* OR
estándar* OR tarifa de alimentación OR certificado* OR subsidio* OR (mercado AND
de emision*) OR derecho* OR contaminar OR sistema de comercio OR ETS)
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German:
((politik AND NOT geld) OR richtlinie* OR reform* OR regulierung* OR vorschrift*
OR gesetz* OR gebühr* OR abgabe* OR maßnahme* OR steuer* OR standard* OR
zertifikat* OR subvention* OR preisgestaltung OR emissionshandel OR ETS OR ein-
speisetarif* OR einspeisevergütung* OR handelssystem* OR cap and trade OR (label
OR kennzeichen AND umweltzeichen OR umweltabzeichen) OR umlage)

Uncertainty Keywords

Italian:
(può OR potrebbe OR probabile OR probabilmente OR possibile OR possibilmente OR
potenziale OR potenzialmente OR immaginare OR assumere OR assunzione OR credere
OR sostenere OR stimare OR ipotesi OR ipotetico OR speculare OR speculazione OR
sospettare OR supporre OR aspettarsi OR dubbio OR dubitare OR dubbioso OR incerto
OR incertezza OR sconosciuto OR non familiare OR discutibile OR discutibilmente OR
forse OR sembrare OR apparentemente OR improbabile OR nessun indizio OR nessuna
prova OR nessuna idea)

French:
(peut OR pourrait OR probable OR probablement OR possible OR possiblement OR
potentiel OR potentiellement OR imaginer OR supposer OR supposition OR croire OR
prétendre OR estimer OR hypothèse OR hypothétique OR spéculer OR spéculation OR
suspecter OR s’attendre à OR doute OR douter OR douteux OR incertain OR incertitude
OR inconnu OR non familier OR discutable OR discutablement OR peut-être OR sembler
OR apparemment OR improbable OR aucun indice OR aucune preuve OR aucune idée)

Spanish:
(puede OR podría OR probable OR probablemente OR posible OR posiblemente OR po-
tencial OR potencialmente OR imaginar OR asumir OR suposición OR creer OR sostener
OR estimar OR hipótesis OR hipotético OR especular OR especulación OR sospechar OR
suponer OR esperar OR duda OR dudar OR dudoso OR incierto OR incertidumbre OR
desconocido OR no familiar OR discutible OR discutiblemente OR quizás OR parecer
OR aparentemente OR improbable OR ningún indicio OR ninguna prueba OR ninguna
idea)

German:
(kann OR könnte OR wahrscheinlich OR möglich OR möglicherweise OR potenziell OR
potentiell OR vorstellen OR annehmen OR Annahme OR glauben OR behaupten OR
schätzen OR Hypothese OR hypothetisch OR spekulieren OR Spekulation OR verdächti-
gen OR vermuten OR erwarten OR Zweifel OR zweifeln OR zweifelhaft OR unsicher OR
Unsicherheit OR unbekannt OR nicht vertraut OR fragwürdig OR fraglich OR vielleicht
OR scheinen OR anscheinend OR unwahrscheinlich OR kein Anzeichen OR kein Beweis
OR keine Ahnung)
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Sample titles of articles flagged as CPU plus
• L’Europa e la sfida dell’energia

• Il futuro dei Verdi

• Europa è ora di riprendere il cammino

• «Sui rigassificatori intervenga il governo» Scaroni: mi preoccupa il prossimo inverno, ma
ci stiamo attrezzando perevitare il peggio

• Bersani «Avanti con le liberalizzazioni di tv ed energia I tagli per risanare il bilancio non
si spalmano»

• Rivoluzione energetica contro la crisi

• Rifiuti, Amaie Energia accetta la sfida

• Ue, l’Italia spinge sull’Accordo commerciale per i beni ambientali

• “La infraestructura verde es un símbolo para el nuevo modelo de ciudades”

• La energía solar sale a flote

• «En 10 años ya no podremos invertir el calentamiento»

• «Hay que proteger el paisaje y a los paisanos»

• Blair asegura que ignorar el cambio climático tendrá consecuencias desastrosas

• Lo hemos hecho posible. Ahora tú decides

• «Abrir los mercados no es el nirvana»

• Es hora de tomar en serio el cambio climático

• 2013: le retour en force de l’Europe?

• Une étude de lAPPA précise limpact de la pollution sur la mortalité et la morbidité

• Mis en œuvre avec pragmatisme, un “Green Deal” européen a le potentiel de remodeler
l’économie du continent

• L’éolien français manque de souffle

• Nucléaire, éolien... Que proposent Emmanuel Macron et Marine Le Pen en matière dén-
ergie?

• Le contre-modèle américain

• Aérien: la Commission européenne planche sur une taxe kérosène

Sample titles of articles flagged as CPU minus
• Tutti i rischi dell ambientalismo

• «Meno tasse, meno regole, più sicurezza» Colloquio con Bush, oggi l’insediamento alla
Casa Bianca

• Enigma Trump: benvenuti nell’era dell’incertezza

• La fiducia nell’Opec dipende da Mosca

• Economia italiana stabile ma pesa l’incertezza politica europea

• Che cosa succede se gli Stati Uniti abbandonano l’accordo sul clima

• Allarme smog nel giorno dell afa

• La OMC y el futuro del medio ambiente
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• Bush propone el mayor aumento del gasto militar desde la era de Reagan

• Un choque de titanes del petróleo en el peor momento posible

• EE UU y China suavizan sus controles medioambientales por la crisis del coronavirus

• Riesgos de catástrofe global

• La política energética de López Obrador provoca incertidumbre en el sector de las renov-
ables

• Écologie et amateurisme

• Comment les Verts ont disparu dune campagne pourtant marquée par lécologie

• Lécologie nest pas morte, cest lécologie politique qui nexiste plus

• Le protocole de Kyoto est moribond, achevons-le !

• Les climato-sceptiques à lassaut du Giec

• Il y a un vrai problème autour de la capacité des Etats en développement à réduire la
déforestation

• «La compensation carbone ne doit pas servir à se dédouaner»

• «Les gilets jaunes, symptôme dun peuple qui refuse un monde en perpétuelle accélération»

• Taxe carbone: pourquoi il ne faut plus laugmenter, et même la diminuer!,

• «Greta Thunberg, icône dun écologisme naïf»
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