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Abstract

Post-wildfire geological hazards are an emerging problem
for a number of different environments, including areas
not typically associated with these events such as the
Alpine Region. The risk connected with post-fire pro-
cesses such as debris-flows and flood-type events threat-
ens people, infrastructures, services and economical
activities. Apart from a few examples, such as in the
USA and Australia, there is a lack of models available to
quantify the increase in susceptibility of the aforemen-
tioned phenomena as a result of the modification induced
by the wildfires. In this work we test the application of a
modified version of the RUSLE, on GIS, to quantify the
post-fire erosive phenomena for a case study in the
north-western Italian Alps. The results of its application,
taking advantage of high-resolution rainfall series and
data deriving from field surveys, highlight the marked
increase (more than 20 times) in erosion rates, quantified
by expressing both the EI (erodibility index), the A
(monthly soil loss) and the SL (monthly sediment loss)
rise. The months of April, May and June represent the
larger share of the total quantities. This is a consequence
of the noticeable increase of the EI, which for the post-fire
scenario is more than one order of magnitude higher than
the pre-fire one.
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1 Introduction

Climate change is having far-reaching effects ranging from
unprecedented forest fires, heatwaves, droughts and extreme
rainfall events (IPCC 2014a, b). Natural disturbances are
thought to experience a further increase in frequency and
severity, progressively affecting areas not endangered in the
past also due to land use change (Maringer et al. 2016;
Mantero et al. 2020). They can occur alone or in combina-
tion with each other and cause and/or be followed by sec-
ondary hazards, constituting a complex chain of
multi-hazards processes also called cascading effect. As an
example, forest fires lead to new avalanche-prone slopes,
and to a higher risk of rockfall, debris-flow, mudslides, soil
erosion and water quality problems. Recent estimates for the
Alpine region, forecasting an increased impact of the climate
change effects, suggest wildfires and post-wildfire geological
hazards to represent a looming issue in the near future
(Zumbrunnen et al. 2009; Moreira et al. 2011; Wastl et al.
2012; Arndt et al. 2013, Dupire et al. 2019, Barbero et al.
2019).

Amongst other hydrological hazards, debris-flow and
flood-type events represent the most serious concern, as can
be seen in the reports and the scientific literature of the
regions (USA, Australia) which are facing the problem
nowadays (De Graff 2014). The modification of the hydro-
logical properties, due to litter and vegetation removal, ash
deposition, alteration of the physical properties of soil and
rocks results in an increase of the availability of easily
erodible materials on hillslopes and of runoff rates (Moody
and Martin 2001; Parise and Cannon 2008, 2012; Staley et al
2017). In fact, rainsplash, sheetflow and rill erosion
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increases due to the diminished capacity of rainfall inter-
ception by the tree canopies, shrubs and grass. Very soon the
surface runoff may concentrate in hollows and low order
channels carrying the eroded sediment and entraining the
materials deposited in the waterways, eventually exerting a
strong erosive action at the expense of the riverbed sedi-
ments and causing their “in mass” failure. All of these
processes can lead to sediment concentration to levels
associated with debris flows (Tang et al. 2019).

Currently, very few models are available for the estimate
of the hazard and risk of these phenomena. The USGS
preliminary hazard assessment relies on empirical models to
assess the likelihood, volume and combined hazard of debris
flows for selected watersheds in response to a design storm.
These models rely on historical debris–flow occurrence and
magnitude data, rainfall storm conditions, terrain and soils
information, and burn–severity maps (Staley et al. 2016,
2017). In Australia, the Victorian Department of Sustain-
ability and Environment (DSE) developed an empirical rapid
risk assessment procedure for post-fire hydrologic risks,
namely debris flows risk, water quality risk and flooding
risk. The model, in the early stages of development, is based
on available datasets and combines information for terrain,
vegetation, rainfall erosivity, burn severity maps and stream
network (Sheridan et al. 2009). In other countries, such as
the Mediterranean ones, despite an increasing number of
hazardous events (Parise and Cannon 2008; Tiranti et al.
2006; Carabella et al. 2019; Esposito et al. 2013, 2017,
2019), no model for the hydro-geomorphic events suscep-
tibility assessment has been implemented or validated
extensively. Very few examples of model application can be
found in Italy, Greece, Portugal and Spain (Terranova et al.
2009; Fernandez et al. 2010, 2018; Coschignano et al. 2019;
Esteves et al. 2013 Rulli et al. 2013; Lanorte et al. 2019;
Depountis 2020, Efthimiou 2020). The need to quantify the
influence of fires on the propensity for hazardous processes
clashes with the fact that, in many regions outside the United
States, the scientific community has faced the problem in a
consistent way only in recent years and thus the available
post-fire event statistics does not allow for a data driven
approach. In this study, we focused on the application and
validation of a modified version of the RUSLE model
(Revised Universal Soil Loss Equation—Wischmeier and
Smith 1978) to quantify the post-fire erosive phenomena for
a case study in the north-western Italian Alps. In this area,
during October 2017, ten wildfires occurred, burning a total
area of 10,000 hectares of which 7000 were forests; this
value far exceeds the average regional forest burned area
(600 ha/year between 2005 and 2013) (Morresi et al. 2022).
Season fires in 2017 were favored by the exceptionally dry
conditions, high temperatures and the occurrence of several
days with hot and dry winds (Arpa Piemonte 2017; Bo et al.
2020). The largest and most severe fire—almost 4000 ha—

occurred in the Susa Valley, where fourteen catchments on
the left of the Dora Riparia River were involved. Starting
from late April 2018 until the early June, several flow events
originated from the burned catchments. The larger damages
were recorded at the outlet of the Comba delle Foglie, a
small drainage basin overhanging the Bussoleno munici-
pality (Vacha et al. 2021). Ground evidence highlighted a
remarkable increase in erosion rates exerted by the surface
runoff in many sectors within the fire perimeter, in agree-
ment with literature findings (Moody and Martin 2001;
Parise and Cannon 2008, 2012; Staley et al. 2017). Based on
the assumption that these processes represent the key aspect
governing the availability of sediments to be entrained
during rainfalls, and taking into account the available spatial
data, the structure of the RUSLE model proved to be the
most suitable framework to be adopted. In fact, the approach
used is deliberately simple, replicable, improvable and easy
to implement in a GIS environment. It is also possible to
automate it in order to make it available for the rapid pro-
duction of thematic maps to support authorities and for civil
protection purposes. Moreover, it relies mostly on the
available open source spatialized data provided by regional
authorities and other public bodies, which makes it easy to
replicate the conceptual scheme in other areas. The model
has been applied and validated on the Comba delle Foglie
catchment, for which a detailed temporal reconstruction of
the processes and quantification of the volume of mobilized
material has been carried out in a previous work (Vacha
et al. 2021).

2 Study Area

The study area is located in the Susa Valley, an east–west
Alpine valley, located in the western part of Piedmont
(starting * 20 km West of Turin). It was affected by the
largest and more severe of the ten wildfires that occurred in
the region in 2017 (The Bussoleno and Mompantero Wild-
fire) which burned 4000 ha on the left of the Dora Riparia
River, going up the valley from east to west and affecting the
slope almost to the divide (Fig. 1). The fire started on
October 22, 2017 and lasted until November 1, 2017. It
interested an area dominated by European Beech (Fagus
sylvatica L.) and Scots Pine (Pinus sylvestris L.), the forest
cover being the 37.1% and the 26.7% for the Broadleaved
and the Coniferous species, respectively, with 36.2% of the
wildfire surface being represented by non-forested areas
(Morresi et al. 2022). Comba delle Foglie is one of the
catchments affected by this exceptional wildfire. It is located
towards the eastern side of the wildfire area and is a steep,
elongated watershed ranging between 480 and 1747 m a.s.l.,
characterized by an average slope of 35° and an area of
approximatively 1.37 km2 (Vacha et al. 2021). The bedrock
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of the catchment is represented by polimethamorphic rocks
and in particular by Micaschists and gneiss belonging to the
Dora Maira pre-triassic basement (DMb), by calcschists,
marbles and dolomitic marbles belonging to the Dora Maira
Mesozoic cover (DMc) and by calcschists, serpentinites,
serpentinoschists and chloritoschist belonging to the Lower
Piedmont Zone (PZ) (Carraro et al. 2002; Gasco et al. 2011).
The geomorphological setting of the study is both influenced
by its geologic history and by quaternary geomorphic
events. The main valley is dominated by erosional and
depositional landforms of glacial origin, mainly glacial ter-
races, suspended-tributary valleys and lodgement and abla-
tion till. The post-glacial remodeling action exerted by
gravitative and fluvial processes strongly influenced the
landscape. In particular, the left side of the Susa Valley hosts
a series of ravine and canyon-like features in correspondence
of morphological steps at the outlet of suspended valleys
into the main valley. As a result, the quaternary deposits
mantle the study area heterogeneously: the main valley floor
is filled by alluvial deposits, while the slope are patched by
glacial, fluvial and gravity related deposits, often reworked
(Cadoppi et al. 2007).

The vegetative cover of the catchment before the fire was
low with respect to other sectors of the burned area due to
previous wildfires (Ascoli et al. 2011), and it was mostly
dominated by young trees of Populus tremula and Salix
caprea. The most relevant parameters describing the
watershed are given in Table 1, in which the major mor-
phometric descriptors can be found.

3 Materials and Methods

3.1 Burn Severity

The burn severity map of the Bussoleno and Mompantero
Wildfire (Morresi et al. 2022) was adopted in this work. This
map was produced through satellite imagery and field sur-
veys, following a methodology based on US FIREMON
framework (Key and Benson 2006). The analysis of spectral
changes caused by the 2017 wildfires was carried out using
multispectral images acquired by the MultiSpectral Instru-
ment (MSI) onboard Sentinel-2 A/B satellites (European
Space Agency). In particular, the burn severity obtained by
using the uncalibrated RdNBR bi-temporal index (Miller and
Thode 2007, Eq. 1) calculated from reflectance composites
was adopted here. It was generated using all the clear
observations available in the period spanning from 20 May
to 10 September for both 2017 and 2018; the validation of
the map and the classification in severity categories followed
Miller et al. (2009), Miller and Thode (2007) and Parks et al.
(2014). This product was chosen because among all the
other indices calculated by the authors, it was the one with
the best overall accuracy.

RdNBR ¼ dNBRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NBRprefire

�� ��q ð1Þ

RdNBR is based on the definition of the Normalized Burn
Ratio (NBR) (Eq. 2) which is calculated by contrasting the

Fig. 1 Perimeter of the Susa valley wildfire and location of the Comba delle Foglie watershed. The base map is the regional DTM
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reflectance in the near infrared (NIR) and in the shortwave
infrared (SWIR); the delta Normalized Burn Ratio (Key and
Benson 2006) is calculated through Eq. (3).

NBR ¼ NIR� SWIRð Þ= NIRþ SWIRð Þ½ � ð2Þ

dNBR ¼ NBRprefire � NBRpostfire

� �� 1000 ð3Þ

RUSLE—Monthly erosion calculation

Sediment erosion has been assessed implementing the
RUSLE model at a monthly scale through the following
equation:

Amonth ¼ Rmonth�K�L�S�C�P ð4Þ
where A = mean soil loss per month [Mg ha−1 m−1],
R = rainfall erosivity factor [MJ mm h−1 ha−1 m−1], K =
soil erodibility factor [Mg MJ−1 mm−1 h], LS = topo-
graphic factor or slope length factor [dimensionless], C =
soil coverage [dimensionless], and P = erosion control
practices factor [dimensionless]. The value of the sediment
loss (SL) is obtained by multiplying the value of A for the
drainage surface. The R factor quantifies the mechanical
impact energy exerted by a given precipitation and depends
on duration and intensity of the rainfall. Remaining param-
eters in the equation give a measure of the environmental
resistance to erosive phenomena. The K, LS and C factors
are assumed to change in areas affected by wildfires as a
result of fire effect on soil erodibility, vegetative cover and
shift in rill to interrill soil erodibility ratio (Terranova et al.
2009). RUSLE model is intended to quantify soil losses in
the long term, so that processes such as gully and channel
erosion and sediment transport cannot be modelled. Predic-
tion accuracy for individual storm is very low, as contro-
versial is the application on large spatial scale. Despite this,

the model can be used as a solid framework to quantify
high-risk erodible areas (Efthimiou et al. 2020). With this
regard, the product of K, LS and C factor is used to compare
post-fire to pre-fire condition; thus, EI [Mg MJ−1 mm−1 h]
is introduced to describe the erosion susceptibility:

EI ¼ C�K�Ls ð5Þ
P factor has been considered equal to 1, because there are

no support practices for the erosion reduction in the study
area.

Rainfall erosivity factor—R

The rainfall erosivity factor (R) factor has been estimated at
a monthly scale by calculating the summation of the
parameter EI30 of every single erosive event (k) for each
considered month.

Rmonth ¼
Xn
k¼1

EI30k ð6Þ

Following Brown and Foster (1987), EI30 for a single
rainstorm event is defined as the product of the kinetic
energy of rainfall events (E) and its maximum 30-min
intensity (I30):

EI30 ¼
Xm
r¼1

ervr

 !
I30 ð7Þ

where er = unit rainfall energy [MJ ha−1 mm−1], vr = rainfall
volume [mm] during the r-th period of a storm which divided
into m parts and I30 is the maximum 30-min rainfall intensity
[mm h−1]. The unit rainfall energy er is calculated for each
time interval using Eq. (8) (Brown and Foster, 1987):

er ¼ 0:29 1� 0:72e �0:05irð Þ
h i

ð8Þ

Table 1 Morphometrical and hydrological descriptors of the Comba delle Foglie watershed; area Aw [km2], perimeter P [km], watershed length
Lb [km], minimum elevation Emin [m s.l.m.], maximum elevation Emax [m s.l.m.], mean elevation Emea [m s.l.m.], minimum slope Smin [°],
maximum slope Smax [°], mean slope Smea [°], main channel length Lp [km], average main channel slope LpS [°], total streams length L [km],
Fan to watershed area ratio Af_Aw [−], Form factor Ff [−] (Horton 1932), Circularity ratio Rc [−] (Miller 1953; Strahler 1964), Elongation ratio
Re [−] (Schumm 1956), Melton Index Me [−] (Melton 1965), Drainage density Dd [km/km2] (Strahler 1964), Time of concentration Tc [h]
(Kirpich 1940)

Index Unit Value Index Unit Value Index Unit Value

Aw [km2] 1.37 Smax [°] 74.82 Af_Aw [−] 8.14

P [km] 6.1 Smea [°] 35.01 Ff [−] 0.22

Lb [km] 2.59 Lp [km] 2.44 Rc [−] 0.44

Emin [m a.s.l.] 480 LpS [°] 32.22 Re [−] 0.53

Emax [m a.s.l.] 1747 L [km] 4.14 Me [−] 1.02

Emean [m a.s.l.] 1035 Dd [km/km2] 3.19

Smin [°] 1.5 Tc [h] 0.18
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where ir is the rainfall intensity during the time interval
[mm h−1]. High resolution rainfall data (10 min time reso-
lution) were downloaded from Arpa Piemonte database for
three rain gauges located in the surrounding of the watershed,
namely Prarotto, Borgone and Malciaussia (Table 2 and
Fig. 2). Rainfall series covers a period of time ranging from
September 1, 2017 to August 3, 2018. The identification of
the erosive rainfall (n) events for each station record followed
three criteria given by Renard et al. (1997): the cumulative
rainfall of an event is greater than 12.7 mm, or the event has
at least one peak that is greater than 6.35 mm during a period
of 15 min. Individual storms are separated if a rainfall
accumulation is less than 1.27 mm during a period of 6 h.
Those criteria have been developed for the USA countries,
but are also widely accepted in other areas (Panagos et al.
2015a). The Rainfall Intensity Summarisation Tool (RIST)
software (USDA 2014) was used to calculate the R-factor
based on the single station annual series. After that, the single
monthly R factors related to each rain gauge were averaged to
get the final value representative of the watershed. The
obtained results were compared with the average monthly
rainfall erosivity calculated by Ballabio et al. (2017) at
European scale analyzing > 17 years of rainfall data and
downloaded from ESDAC repository (European Soil Data
Centre, European Commission, Joint Research Centre).

Soil erodibility factor—K

The soil erodibility (K) factor has been determined based on
soil textural data. Homogeneous lithological units have been
individuated by grouping the geological units derived from
1:50,000 geological map (Carraro et al. 2002). Soil samples
have been then collected and processed in laboratory for
determining grain size distribution following standard
ASTM procedures. Afterwards, the K factor for each unit
has been then calculated based on the following formulae
(Renard et al. 1997):

K ¼ 0:0034þ 0:0405 � exp �0:5
logDg þ 1:659

0:7101

� �2
" #

ð9Þ

Dg ¼ exp
X

fi ln
di þ di�1

2

� �� 	
ð10Þ

where Dg = geometric mean particle size for each particle
size class (clay, silt, sand), di = maximum diameter (mm), di
−1 = minimum diameter and fi is the corresponding mass
fraction.

Cover factor—C

The C factor has been assessed based on Forestry/Land
Cover Map and by assigning C values according to Panagos
et al. (2015b). Tabulated values for each land cover class are
given in Table 3, whilst land cover classes areal distribution
is given in Table 4.

Length/Slope Factor LS

The LS factor in the original RUSLE model describes the
interaction between standard parcel length (L) and slope (S).
In this study, it is substituted by the unit contributing area
Ls, which takes into account the flow convergence (Mita-
sova et al. 1996; Terranova et al. 2009). Ls is computed for
each 5 m wide DTM cell as follows:

Ls ¼ lþ 1ð Þ a=a0ð Þl sin b=b0ð Þg ð11Þ
where a [m] = the upslope contributing area for each cell
(result of the ArcGIS “flowacc” and “resolution” functions),
b [%] = slope, a0 [m] = 21.1 m (the standard USLE plot
length), and bo [%] = 9% (the standard USLE plot slope).
The parameter l is calculated as a function of b, which is the
ratio of rill to interrill erosion (Miller et al. 2003; Foster et al.
2003):

l ¼ b= 1þ bð Þð Þ ð12Þ
Based on literature, b can be set equal to 0.5 for unburned

areas and equal to 1 for burned areas with high severity. The
parameter η is considered equal to 1.2 following Terranova
et al. (2009) and Coschignano et al. (2020). The cell values
in a buffer of 10 m around the stream network has been
excluded from the calculation since the RUSLE model does
not provide estimates for streamflow erosion. For them, a
default value of 0 has been assigned.

Model implementation

Pre-fire monthly mean soil loss (Apre) and erodibility index
(EIpre) were calculated based on the previous equations on a
5 m resolution raster grid based on DTM cells position.

Table 2 Location of the three rain gauges of Prarotto, Borgone and Malciaussia

Name Elevation (m s.l.m.) WGS84-UTM32N X (m) WGS84-UTM32N Y (m) Basin

Prarotto 1440 361,493 5,000,737 Dora riparia

Borgone 400 361,958 4,997,582 Dora riparia

Malciaussia 1800 354,590 5,007,700 Stura di lanzo
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Then the spatially weighted average of Aw_pre was calculated
over the entire watershed surface.

Finally, the value of the monthly sediment loss (SLpre)
[Mg y−1] for the watershed was calculated multiplying the
value of Aw_pre times the watershed area. Post-fire condition
was modeled by calculating mean soil loss per month (Apost)
and erodibility index (EIpost) following Eqs. (3) and (4). The
single factors of the RUSLE model were adjusted as a
function of fire severity (unburned, low, moderate or high)
following with some modifications the procedures described
in Terranova et al. (2009) and Lanorte et al. (2019). The
metrics used in this work are given in Table 5. For both
scenarios (pre- vs post-fire), A and EI raster cell values have

been subsequently averaged for each watershed giving
Aw-post and SLpost value.

4 Results

The fire severity class distribution over the watershed
(Fig. 3) highlight a predominancy (77.10%) of moderate fire
severity, while unburned/low and high severity cover the
21.98%, and 0.92% of the watershed area, respectively.
Given the fact that the area experienced another fire in 2003,
the burn severity map may underestimate the 2017 situation,
even if a relativized index such as RdNBR has been used.

Fig. 2 Location of the three rain
gauges of Prarotto, Borgone and
Malciaussia with respect to the
Comba delle Foglie watershed
position
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Monthly R factors for each rain gauge from September
2017 to August 2018 have been quantified by calculating the
summation of the parameter EI30 of every single erosive
event for each considered month. The R factor obtained for
each station has been then averaged for assessing the rep-
resentative rainfall erosive power at the watershed scale. For
the Prarotto, Borgone and Malciaussia rain gauges 22, 24
and 22 erosive events, respectively, have been identified. For
the Prarotto rain gauge, the selected storms are characterized
by a mean precipitation value of 30.94 mm, duration of
23.23 h and EI30 of 95.99 MJ mm ha−1 h−1. For the Bor-
gone rain gauge mean precipitation, duration and EI30 val-
ues are 27.67 mm, 20.19 h and 73.06 MJ mm ha−1 h−1. At
the Malciaussia station, mean value recorded are 29.20 mm,
16.02 h and 55.40 MJ mm ha−1 h−1, for precipitation,

duration and EI30. The maximum values of R factor are
reached in May, April and March 2018, and are, on the
contrary, equal to zero for September and October 2017.

R factor distribution over time is consistent with Pied-
mont meteorological data (Arpa Piemonte 2018a, b, 2019),
reporting an extremely dry end of 2017 and very wet month
of January, April and May 2018. In fact, erosive events
registered in these months represents approximatively the
75% of the entire annual R factor, and in particular the
month of May reaching almost the 40%. Erodibility K factor
representative of the pre-fire condition has been determined
based on soil textural data collected during the field surveys.

The pre-fire K values have been calculated following Eqs.
(9) and (10). The post-fire adjusted K values have been then
calculated by applying the correction procedure described in
Table 5. Pre-fire and post-fire K values are reported in Fig. 4
(a, b). Pre-fire c factor (Fig. 4c) has been calculated following
the procedure described above, by using the values reported
in Table 3; post-fire c factor (Fig. 4d) has been then calcu-
lated as given in Table 5. Pre-fire LS factor has been calcu-
lated through Eqs. (11) and (12), while post-fire LS values
have been calculated through Eq. 12 and Table 5. Results are
reported in Fig. 4e, f. P value has been set equal to 1.

Erodibility index values for the pre-fire and post-fire sit-
uation (Table 6) has been calculated following Eq. (5), and

Table 4 Land cover classes areal distribution over the Comba delle Foglie watershed

Land principally used
for agriculture

Broad-leaved
forest

Mixed
forest

Transitional
woodland-shrub

Broad-leaved
forest < 20%

Mixed
forest < 20%

Natural grassland with
trees and shrubs

% % % % % % %

5.5 24.5 38.2 4.2 0.6 26.1 0.9

Table 5 Adjusted cover factors (C), erodibility factors (K) and b value
(used for LS factor calculation) (b) for different fire severity classes

Burn Severity class RUSLE parameters

C K b

Unburned/Low Cpre Kpre 0.5

Moderate Cpre + 0.1 1.8 * Kpre 1

High Cpre + 0.25 2 * Kpre 1

Table 3 RUSLE cover factor proposed for each land cover class (after Panagos et al. 2015b)

CLC
class

Class name C-factor
values

CLC
class

Class name C-factor
values

112 Discontinuous urban fabric 0 313 Mixed forest 0.0013

131 Mineral extraction sites 0 313b Mixed forest < 20% 0.003

211 Non-irrigated arable land 0.23 3211 Natural grassland prevailingly without
trees and shrubs

0.04

221 Vineyards 0.34 3212 Natural grassland with trees and shrubs 0.03

222 Fruit trees and berry plantations 0.1 322 Moors and heathland 0.055

231 Pastures 0.09 322b Moors and heathland 0.055

242 Complex cultivation patterns 0.147 324 Transitional woodland-shrub 0.024

243 Land principally used for agriculture, with significant
areas of natural vegetation

0.124 332 Bare rocks 0

311 Broad-leaved forest 0.0013 333 Sparsely vegetated areas 0.25

311b Broad-leaved forest < 20% 0.003 0 Bare Soil 1

312 Coniferous forest 0.0013

312b Coniferous forest < 20% 0.003

Mapping Post-Fire Monthly Erosion Rates at the Catchment Scale … 105



finally monthly mean soil loss A [Mg ha−1 m−1] and aver-
aged monthly sediment loss SL [Mg m−1] for the entire
watershed have been computed for both the burned and
unburned condition. The post-fire mean erodibility index is
more than one order of magnitude higher than the pre-fire
one, having a pre-fire value of 4.63E-04 Mg MJ−1 mm−1 h
and a post fire value of 1.21E-02 Mg MJ−1 mm−1 h. Also,
the maximum values show a rise of about the same order.

Monthly mean soil loss A [Mg ha−1 m−1] and averaged
monthly sediment loss SL [Mg m−1] comparison for the pre-
and post-fire conditions (Fig. 5, Table 7) results in a post-fire
increase of both the indicators of more than 20 times with
respect to pre-fire. Maximum pre-fire values occur in May,

being 0.307 Mg ha−1 m−1 and 39.86 Mg m−1 for monthly
mean soil loss and monthly sediment loss, respectively; for
the post-fire, these parameters reach values of 8.066 Mg
ha−1 m-1 and 1050.400 Mg m−1, respectively.

5 Discussion

The sediment erosion has been assessed for the Comba delle
Foglie watershed by implementing the RUSLE model at a
monthly scale, including model inputs of a detailed erodi-
bility map, the forestry/land cover map, the LS factor map
derived from GIS elaboration and a R factor value calculated

Fig. 3 Fire severity classes
distribution for the Comba delle
Foglie catchment
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Fig. 4 RUSLE factors
distribution over the catchment:
pre-fire erodibility factor a,
post-fire erodibility b, pre-fire
cover factor c, post-fire cover
factor d, pre-fire LS factor e and
post-fire LS factor f
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by retrieving the erosive power of every significant rainfall
event. Monthly mean soil loss [Mg ha−1 m−1] and averaged
monthly sediment loss [Mg m−1] are the result of the
remarkably R values recorded in the months of January,
April and May; these three months in fact contribute for
about 75% to the annual erosion recorded in the watershed.

Comparing the calculated R factors to average monthly R
factor by Ballabio et al (2017) (Fig. 6) is evident a con-
centration of the erosive events in the post-fire time window,
while the precipitations remained well below the average
values from September to December 2017, barely reaching
the 6% of the cumulated average value. The months of
January, April and May show values eleven, eight and four
times greater, respectively, than the long time series data.
The RUSLE model estimates a SL of approximatively
2430 Mg from the extinction of the fire to June (included),
when the most significant event occurred. To validate this
result, the only available information is related to the char-
acterization of the 7 June event: in that case, the maximum
deposit thickness of the debris-flow reconstructed via pho-
togrammetric modelling was approximatively 2 m and the
invasion area covered about 26,000 m2. The total mobilized
volume for only the coarser fraction of the deposit, was
about 4300 m3, of which about 1500 m3 consisting of
materials entrained just at the fan apex. The volume of the
coarser sediments coming from the watershed was estimated
to be 1300 m3. By applying a simple rule of thumb, con-
sidering a bulk density of 1500 kg/m3, the 7 June flow mass
can be estimated in 1950 Mg. Considering the fact that other
four minor events (one debris/mud flow in April and three
floods in May) happened before the 7 June, it is reasonable
to presume that the remnant part of the total sediment loss
estimated by the model could be related to those events.
Some non-negligible aspects undermine the model robust-
ness and accuracy: in fact, the 7 June event volume esti-
mated via photogrammetrical modeling contrast with the one
suggested by Arpa Piemonte (2018b) , which after expedi-
tive surveys estimates the total event volume to be about
20,000 m3. Another aspect which should be taken into
account when dealing with the model validation is the
remarkable erosion exerted by the debris-flows along all
their paths, which may have increased their volumes con-
siderably. The results of the model are not suitable to predict

streamflow erosion, so when the estimated value is com-
pared to the available surveyed data, this aspect may also
increase the uncertainty. Finally, the current model does not
take into account the ash and combustion residues which, for
sure, contribute to the overall sediment availability to be
entrained. Ash and combustion residues are expected to
constitute a large part of the removable material especially
immediately after the fire, and that they will then be grad-
ually washed away by the runoff as the rainy events occur.
Despite all the model limitations and the uncertainties related
to its validation, the presented procedure can be considered a
reasonable estimator of the amount of material ready to be
eroded during the rainstorm events and conveyed in the
riverbeds. In fact, it is backed up by ground evidence, the
assumption that the considerable amount of sediment
mobilized from the date of the fire have been progressively
delivered towards the bottom of the slopes and inside the
stream network on the repeated rainfalls. In occasion of
some smaller mud-flows and hyper-concentrated flows have
originated. Then, when the progressive increase of sediments
reached a critical threshold in conjunction with a rainy event
of a sustained intensity, the most destructive debris-flow on
7 June occurred. During the field inspections prior to 7 June
a considerable amount of sediments and combustion resi-
dues had been observed inside the channels, especially in the
terminal part of the watershed and at the apex of the fan. The
investigations carried out following the event revealed evi-
dent traces of areal and channeled erosion, starting from the
upper part of the slopes and into the lower-order channels. It
is clear how all this mass of sediments, both coming from
open slopes and being deposited in the drainage network,
has constituted the load of the debris-flow during its transit,
simultaneously increasing its energy.

6 Conclusions

The Piedmont region, and in particular the western Italian
Alps, experienced an unusually severe wildfire season in
2017. The fires occurred in the late autumn and, after a
snowy winter, were followed by spring rains. In particular,
some of the catchments burned in the Susa Valley wildfire
were interested in May and June 2018 by debris/mud-flows
and flood type events. The major debris-flow happened at
the outlet of Comba delle Foglie and struck the Bussoleno
municipality. Based on field evidence, it was found that the
flows mobilized materials and sediments, which were eroded
from the burned hillslopes and subsequently deposited in the
channels. This is consistent with the literature which repor-
ted the main cause of the post-fire debris-flows to be the
generation of increased erosion due to excess runoff rather
than a discrete landslide failure. On the back of these find-
ings, a modified version of the RUSLE model was applied in

Table 6 Post-fire versus pre-fire erodibility index values over the
Comba delle Foglie watershed

EI [Mg MJ−1 mm−1 h] Pre-fire Post-fire

MIN 0.00E + 00 0.00E + 00

MAX 2.83E - 02 3.54E - 01

MEAN 4.63E - 04 1.22E - 02

STD 1.65E - 03 2.16E - 02
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Fig. 5 Monthly mean soil loss
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the area of Comba delle Foglie to quantify the erosive pro-
cesses on a monthly scale. The results of its application,
incorporating high resolution rainfall series and data deriv-
ing from field surveys, made it possible to reproduce and
highlight the marked increase in erosion rates, quantified by
expressing both the EI (erodibility index), the A (monthly
soil loss) and the SL (monthly sediment loss) rise. In par-
ticular, overall A and SL increased more than twenty times
in the post-fire scenario, the months of April, May and June
representing the larger share of the total quantities. This is a
consequence of the noticeable increase of t EI, which for the
post-fire scenario is more than one order of magnitude higher
than the pre-fire one. The intrinsic uncertainties of the model
are related to the fact that it does not consider the
stream-flow erosion in the channels, it does not account for
the material eroded by the debris-flow during its passage and
it does not incorporate the eroded volume of ash and

combustion residues. Some uncertainties are then linked to
the fact that the estimates regarding the actual volumes of the
flows are limited to a single case (the major one, 7th June)
and also do not agree with each other. Despite these
uncertainties, the proposed procedure can be considered a
reasonable estimator of the amount of material ready to be
eroded, especially if it is used to compare different catch-
ments in a relative way; in this case, it can provide useful
guidance to rank the post-fire debris-flow susceptibility and
to establish intervention priorities. It can be applied every-
where on the regional territory because the model make use
on open-source spatialized data and thanks to its structure, it
can be easily implemented into a GIS for thematic map
production.
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