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Small points on a multiplicative group and class

number problem.

Francesco Amoroso ∗

Abstract. Let V be an algebraic subvariety of a torus Gnm ↪→ Pn and denote
by V ∗ the complement in V of the Zariski closure of the set of torsion points of V .
By a theorem of Zhang, V ∗ is discrete for the metric induced by the normalized
height ĥ. We describe some quantitative versions of this result, close to the conjec-
tural bounds, and we discuss some applications to study of the class group of some
number fields.

Résumé. Soit V une sous-variété algébrique du tore Gnm ↪→ Pn et notons V ∗

le complémentaire dans V de l’adhérence de Zariski de l’ensemble des points de
torsion de V . Par un théorème de Zhang, V ∗ est discrète pour la métrique induite
par la hauteur normalisée ĥ. Nous décrirons certaines versions quantitatives de ce
résultat, proche des conjectures les plus précises que l’on puisse formuler, et ses
applications à l’étude du groupe de classes d’idéaux de certains corps de nombres.

1 Lehmer’s problem

Let α ∈ Q and let K be a number field containing α. We denote by MK the set
of places of K. For v ∈ K, let Kv be the completion of K at v and let | · |v be
the (normalized) absolute value of the place v. Hence, if v is an archimedean place
associated with the embedding σ : K ↪→ Q

|α|v = |σα|,

and, if v is a non archimedean place associated with the prime ideal P over the
rational prime p,

|α|v = p−λ/e,

where e is the ramification index of P over p and λ is the exponent of P in the
factorization of the ideal (α) in the ring of integers of K. This normalization agrees
with the product formula ∏

v∈MK

|α|[Kv:Qv]v = 1

∗Laboratoire de Mathématiques Nicolas Oresme, U.M.R. 6139 (C.N.R.S.), Université
de Caen, Campus II, BP 5186, F–14032 Caen Cedex.
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which holds for α ∈ K∗. We define the Weil height of α by

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{|α|v, 1}.

More generally, if α = (α0 : · · · : αn) ∈ Pn(K), we define the Weil height of α as

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{|α0|v, · · · , |αn|v}.

It is easy to see that these definitions do not depend on the field K containing the
coordinates of α. The height of an algebraic number satisfies:

i) h(α) = 0 if and only if α = 0 or α is a root of unity.

ii) h(αn) = |n|h(α) for any integer n.

It is therefore natural to ask for a lower bound h(α) ≥ f(d) for non torsion

α ∈ Q∗ of degree d, where f is a positive function. Looking at 21/d we see that the
best possible lower bound for such an α is

h(α) ≥ c

d
, (1.1)

where c > 0 is an absolute constant.
This problem was considered for the first time by Lehmer in [19]. More precisely,

Lehmer considers the polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

which has precisely one root α on (1,∞). Since α is a Salem number (i.e. all the
conjugates of α, except α itself and α−1, lie on the unit circle), its height is

h(α) =
logα

10
.

Notice that α ≈ 1.176. In the quoted paper, Lehmer asks for the following problem:
If ε is a positive quantity, to find a polynomial of the form f(x) = xr+a1x

r−1+
... + ar where the a’s are integers, such that the absolute value of the product of
those roots of f which lie outside the unit circle, lies between 1 and 1+ε. (...)
Whether or not the problem has a solution for ε < 0.176 we do not know.

The best known result in the direction of (1.1) is Dobrowolski’s theorem (cf.
[15]), which implies

Theorem 1.1 (Dobwolski, 1979)

For any ε > 0 there exists c(ε) > 0 such that, for all non torsion points α ∈ Q∗ of
degree d,

h(α) ≥ c(ε)

d1+ε
.
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More generally, we can look for lower bounds for the height for special families
of numbers. Let S be a set of algebraic numbers and let µ be the set of roots of
unity. Let’s define, for d ∈ N,

fS(d) = inf{h(α) such that α ∈ S\µ, α 6= 0, [Q(α) : Q] ≤ d} .

For instance we have (see [29]),

Theorem 1.2 (Smyth, 1971)

If α ∈ Q∗ is not a reciprocal number (i.e. if α−1 is not an algebraic conjugate of
α), then

h(α) ≥ log θ0
[Q(α) : Q]

,

where θ0 > 1 is the only real root of the equation x3 − x− 1 = 0.

Also, Mignotte (see [21]) gives a positive answer to Lehmer’s problem for any
α of degree d such that there exists a prime p ≤ d log d which splits completely
in Q(α). More recently, Lehmer’s problem was solved by Borwein, Dobrowolski
and Mossinghoff (see [11]) for algebraic integers whose minimal polynomial has
coefficients all congruent to 1 modulo a fixed m ≥ 2.

Hence, if S is the set of non reciprocal numbers, or the set of algebraic α such
that there exists a prime p ≤ [Q(α) : Q] log([Q(α) : Q]) which splits completely in
Q(α), or the set of algebraic integers whose minimal polynomial has coefficients all
congruent to 1 modulo a fixed m ≥ 2, then

fS(d) ≥ c

d

for some absolute constant c > 0.

For other set S we know even more than Lehmer:

fS(d) ≥ c (1.2)

for an absolute constant c. For instance, if Q(α) is a totally real field and α 6= ±1,
then, by a special case of a result of Schinzel (see [25]),

h(α) ≥ 1

2
logϕ

where ϕ is the golden ratio 1+
√
5

2 . This also holds if Q(α) is a CM field, provided
that1 |α| 6= 1 (op. cit.). This last condition can be very restrictive for some
applications; it was removed for abelian extensions2 in [3]:

1In a CM field |α|v = 1 for an archimedean place if and only if |α|v = 1 for any
archimedean place.

2We remark that there exist algebraic numbers α (necessarly of absolute value 1 by
Schinzel’s result) with positive and arbitrarily small height such that Q(α) is a CM field
(see [9]).
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Theorem 1.3 (A. – Dvornicich, 2000)

Let α ∈ Q∗ not a root of unity, and assume that Q(α)/Q is an abelian extension.
Then

h(α) ≥ log 5

12
.

As remarked before, given an arbitrary algebraic number α, we cannot hope
for nothing more than Lehmer’s conjecture. Nevertheless, if we look at several
multiplicatively independent numbers, we have a bound which is close to (1.2).

Theorem 1.4 (A. – David, 1999)

Let α1, . . . , αn ∈ Q∗ multiplicatively independent. Then, for any ε > 0

max{h(α1), . . . , h(αn)} ≥ c(n, ε)

d1/n+ε

where d = [Q(α1, . . . , αn) : Q] and c(n, ε) > 0.

This result is better understood in the more general setting of the next section.

2 Lower bounds for the height in Gnm

2.1 Normalized height and essential minimum

Let h be a height on subvarieties of Pn(Q), for instance the height defined by
Philippon in [22] or an other equivalent: for our purposes two projective heights h1
and h2 are equivalent if for any subvariety3 V we have

|h1(V )− h2(V )| ≤ cdeg(V )

for some c > 0 independent of V . We consider the n power of the multiplicative
group Gnm which is naturally embedded in Pn. We denote by [l] the “multiplication”
by l ∈ Z in Gnm(Q). Let, as in the rest of this paper, V be a subvariety4 of
Gnm(Q); by degree deg(V ) and height h(V ) we mean the degree and the height of
the Zariski closure of V in Pn. Following David and Philippon (see [14]), we define

the normalized height ĥ(V ) of V by a limit process:

ĥ(V ) = lim
l→+∞

h([l]V ) deg(V )

l deg([l]V )

The same height can be defined using Arakelov theory. It satisfies:

i) ĥ(·) is non-negative;

3By a subvariety of Pn(Q) we mean an algebraic and geometrically irreducible subva-
riety defined over Q.

4V is a subvariety of Gn
m(Q) if V = Ṽ ∩Gn

m(Q), where Ṽ is a subvariety of Pn(Q).
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ii) for every l ∈ N we have

ĥ([l]−1V ) = lcodim(V )−1ĥ(V )

iii) for every torsion point ζ we have ĥ(ζV ) = ĥ(V ).

For θ ≥ 0 let

V (θ) = {α ∈ V (Q) such that ĥ(α) ≤ θ},

where ĥ(α) = h
(
(1 : α1 : · · · , αn)

)
. Hence V (0) is the set of torsion points on V . It

is now important to recall the former Manin-Mumford conjecture for Gnm (see [18]):

Theorem 2.1 (Laurent, 1984)
The Zariski closure of V (0) is a finite union of translates of subtori by torsion
points (= torsion varieties).

Let define the essential minimum µ̂ess(V ) of V as the infimum of the set of
θ ≥ 0 such that V (θ) is Zariski dense in V . Then (see [30]),

Theorem 2.2 (Zhang, 1995)
The following assertions are equivalent:

i) V is torsion;

ii) µ̂ess(V ) = 0;

iii) ĥ(V ) = 0.

More precisely, the equivalence between ii) and iii) follows by a special case
of Zhang’s inequality (see again [30]), which shows that the normalized height and
the essential minimum are closely related:

µ̂ess(V ) ≤ ĥ(V )

deg(V )
≤ (dim(V ) + 1)µ̂ess(V ).

2.2 Lower bounds

Let V be a subvariety of Gnm(Q) and let K be a subfield of Q. We denote by V
K

the union of the orbit of V under the action of Gal(Q/K); therefore

deg
(
V
K)

= [LK : K] deg(V ),

where L is the field of definition of V .
Let us also define the “obstruction index” of V over K as the minimum ωK(V )

of deg
(
Z
K)

where Z is an hypersurface containing V . For instance, if V = {α} ⊆
Gnm(Q),

ωK(V ) ≤ n[K(α) : K]1/n (2.1)

by a linear algebra argument.

We propose two conjectural lower bounds for the essential minimum:
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Conjecture 2.3 (A. – David, 1999–2003)
There exists c(n) > 0 having the following properties.

• Arithmetic case. Let us assume that V is not contained in any proper
torsion subvariety. Then,

µ̂ess(V ) ≥ c(n)

ωQ(V )
.

• Geometric case. Assume further that V is not contained in any translate
of a proper subgroup. Then,

µ̂ess(V ) ≥ c(n)

ωQ(V )
.

As for Lehmer’s conjecture, the previous statement is best possible, since

µ̂ess([l]−1V ) = lµ̂ess(V ) and ωK([l]−1V ) ≤ lωK(V ).

In [1], [4] and [5] we prove that conjecture 2.3 holds up to an ε > 0.

Theorem 2.4 (A. – David, 1999–2003)
For any ε > 0 there exists c(n, ε) > 0 having the following properties.

• Arithmetic case. Let us assume that V is not contained in any proper
torsion subvariety. Then,

µ̂ess(V ) ≥ c(n, ε)

ωQ(V )1+ε
.

• Geometric case. Assume further that V is not contained in any translate
of a proper subgroup. Then,

µ̂ess(V ) ≥ c(n, ε)

ωQ(V )1+ε
.

We remark that a 0-dimensional variety V = {α} is contained in a proper
torsion subvariety if and only if α1, . . . , αn are multiplicatively dependent. Moreover

µ̂ess(V ) = h(α) ≤ max{h(α1), . . . , h(αn)} and ωQ(V ) ≤ nd1/n.

by (2.1), where d = [Q(α) : Q]. Therefore the lower bound

max{h(α1), . . . , h(αn)} ≥ c(n, ε)

d1/n+ε

of theorem 1.4 for multiplicatively independent α1, . . . , αn is a corollary of theo-
rem 2.4.
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2.3 Small points.

Let V be a non-torsion subvariety of Gnm(Q) and define V ∗ as the complement in
V of the union of torsion subvarieties contained in V . Then, theorem 2.2 implies
that the height on V ∗(Q) is bounded from below by a positive quantity.

Similarly, if V is not a union of translates of subgroups we define, following [12],
V 0 as the complement in V of the union of translate of subgroups B of positive
dimension with B ⊆ V . Bombieri and Zannier (see [12]) and Schmidt (see [26])
prove that, outside a finite set, the height on V 0(Q) is bounded from below by
a positive quantity depending only on the ideal of definition of V and not on its
field of definition. Later, their lower bound was strongly improved by David and
Philippon (see [14]).

Let K be any subfield of Q and define δK(V ) as the minimum integer δ such

that V is the intersection of hypersurfaces Z1, . . . , Zr with degZj
K ≤ δ. Then(

deg V
K)1/codim(V ) ≤ δK(V ) ≤ deg V

K
.

and both lower and upper bounds can be attained.

We propose the following conjectural lower bounds for the distribution of small
points:

Conjecture 2.5 (A. – David, 2004–2005)
There exists c(n) > 0 having the following properties.

• Arithmetic case. For any α ∈ V ∗(Q) we have

h(α) ≥ c(n)

δQ(V )
.

• Geometric case. For all but finitely many α ∈ V 0(Q) we have

h(α) ≥ c(n)

δQ(V )
.

In [7] and [8] we prove that conjecture 2.5 holds up to an ε > 0.

Theorem 2.6 (A. – David, 2004–2005)
For any ε > 0 there exists c(n, ε) > 0 having the following properties.

• Arithmetic case. For any α ∈ V ∗(Q) we have

h(α) ≥ c(n, ε)

δQ(V )1+ε
.

• Geometric case. For all but finitely many α ∈ V 0(Q) we have

h(α) ≥ c(n, ε)

δQ(V )1+ε
.
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2.4 More conjectures and results.

• The proofs in the quoted papers [1], [5], [7] and [8] follow the usual steps of
a transcendence proof: interpolation (construction of an auxiliary function), ex-
trapolation, zero estimates and conclusion. Unfortunately, for subvarieties of codi-
mension > 1, we need a rather technical extra step (descent argument). It will
be very interesting to find an alternative proof removing this extra step. Recently
C. Pontreau succeeds in this task for subvarieties of G2

m(Q) in the arithmetic case
(see [23]) and for subvarieties of G3

m(Q) in the geometric case.

• In the geometric case of conjecture 2.5 we could ask for an upper bound for the
exceptional points:

Conjecture 2.7 (A. – David, 2005)
There exist translates of subgroups B1, . . . , Bm ⊆ V with

deg(B1) + · · ·+ deg(Bm) ≤ c(n)−1δQ(V )n.

such that

h(α) ≥ c(n)

δQ(V )
.

for any α ∈ V (Q) outside B1 ∪ · · · ∪Bm.

Recently, Pontreau gives some partial results in this direction for curves in G2
m

and for surfaces in G3
m (see [24])

• The arithmetic part of conjectures 2.3 and 2.5 can be generalized by replacing
Q with Qab. For instance, for the essential minimum we can formulate:

Conjecture 2.8 (A. – David, 2005)
Let V be a subvariety of Gnm(Q) which is not contained in any torsion subvariety.
Then,

µ̂ess(V ) ≥ c(n)

ωQab(V )
.

For n = 1 (“relative Lehmer Problem”) this conjecture was proved up to an ε
(see [2]).

Theorem 2.9 (A. – Zannier, 2000)

Let α ∈ Q∗ not a root of unity and let ε > 0. Then

h(α) ≥ c(ε)

d1+ε
.

where c(ε) > 0 and d = [Qab(α) : Qab].
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3 Size of the class group of some fields

Lower bounds for the height can be used to obtain informations on the size of the
ideal class group of a field K, following a general construction which we summarize
as follows :

I) Let assume that the ideal class group of K is “small” and construct algebraic
integers of small norm by analytic methods.

II) Construct algebraic numbers of small height from algebraic integers of small
norm.

III) Use lower bounds for the height to get a contradiction.

In the next three subsections we describe how this construction works for cy-
clotomic fields, for CM fields and for other more general fields. To simplify the
notations, we only state the results concerning the exponent of the class group,
i.e. the smallest positive integer e such that Ie is principal for any ideal I of K,
although the method can give more general informations on the size of the class
group and on its Galois structure. As we see in the next subsections, this construc-
tion produces a good lower bound for the exponent for families of fields for which
it is known, by classical methods, that the class number goes to infinity.

3.1 Cyclotomic fields.

Let’s start by the simpler case of a cyclotomic field Km = Q(ζm) where ζm is a
m-th primitive root of unity. Let em be the exponent of the class group of Km.

I) By Linnik’s theorem, there exists an absolute constant L and a prime p ≤ mL

which splits completely in Km. Let P be a prime ideal of Km over p; by definition
P em = (γ) for some integer γ ∈ Km. We have

|NKm
Q γ| = pem ≤ mLem .

II) Let α = γ/γ. Then, |α|v = 1 for every archimedean place v ∈ MKm and, if
v ∈MKm is non archimedean

|α|v =


p−em , if v is associated to P ;

pem , if v is associated to P ;

1, otherwise.

Therefore

h(α) =
em log p

[Km : Q]
≤ emL logm

ϕ(m)
,

where ϕ(·) is the Euler function.
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III) Since Km/Q is abelian, we can use theorem 1.3:

log 5

12
≤ h(α) ≤ emL logm

ϕ(m)
.

We obtain (see [6]):

Theorem 3.1 (A. – Dvornicich, 2003)
The exponent em of the class group of the m-th cyclotomic field satisfies

em ≥
log 5

12L
× ϕ(m)

logm
.

3.2 CM fields.

If we want to obtain similar results for a CM field K, then we must take into ac-
count two main problems: first, there are no sharp unconditional results as Linnik’s
theorem, second as K/Q need not to be abelian, we cannot use theorem 1.3.

The construction of subsection 3.1 can be modified as follows. Let ∆ be the
discriminant of K, d = [K : Q] and let eK be the exponent of the class group of K.

I) Assume the Generalized Riemann Hypothesis for the Dedekind zeta function of
K. Then, the effective Chebotarev’s theorem of Lagarias and Odlyzko (see [17])
gives primes ideals P1, . . . , Pn of K of degree 1, non-ramified over Q, and such that

log |NK
Q Pj | ≤ 3 log log |∆|+ c(n)

where c(n) depends only on n. As before P eKj = (γj) for some integers γj ∈ K.

II) As for cyclotomic fields, let αj = γj/γj ; then

h(αj) ≤
eK(3 log log |∆|+ c(n))

d
.

III) Since α1, . . . , αn are easily seen to be multiplicatively independent, we can
apply theorem 1.4, which gives:

eK ≥
c(n, ε)d1−1/n−ε

3 log log |∆|+ c(n)

for any ε > 0. This inequality is good, except if |∆| is very big with respect to d.
In this last situation it is better to use the lower bound

h(α1) ≥ log |∆| − d log d

2d(d− 1)
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which easily follows by Hadamard’s inequality since α1 is a generator of K and so
disc(α1) | ∆ (see [27] or [28] for details). This gives:

ek ≥
log |∆| − d log d

2(d− 1)(3 log log |∆|+ c(1))

Putting together these two lower bounds we get (see again [6]):

Theorem 3.2 (A. – Dvornicich, 2003)
Let K be a CM field of discriminant ∆ and degree d. Then, assuming the Gener-
alized Riemann Hypothesis for the Dedekind zeta function of K, for any ε > 0 the
exponent eK of the class group of K satisfies:

eK ≥ max

{
C log |∆|
d log log |∆|

, C(ε)d1−ε
}
,

where C and C(ε) are positive constants.

We recall that, under suitable assumptions, the class number of a CM field goes
to infinity with |∆| (see [16]). Theorem 3.2 proves, under GRH, the corresponding
result for the exponent, giving a positive answer to a conjecture of Louboutin and
Okazaki [20].

3.3 Some other fields.

The main problem in extending the method of section 3.2 to other fields is the
construction of algebraic numbers of small height from integers of small norm. A
first attempt to attack this problem is the following. Let K be a number field of
discriminant ∆ and degree d and let γ1, . . . , γt ∈ OK of norm ≤ x. Let also r be
the rank of the unit group EK , δ be a bound for the sum of the height of a system
of generators of EK/(EK)tors and let m and N be two positive integers satisfying
mNr < t. The box principle gives m units u1, . . . , um and m + 1 distinct indexes
i0, i1, . . . , im ∈ {1, . . . , t} such that

h(ujγijγ
−1
i0

) ≤ log x

d
+

δ

N

for j = 1, . . . ,m. Unfortunately, r is at least d/2 and so the parameter t must be
exponential in the degree, excluding in most cases reasonable applications.

Let Γ be the group of Q-automorphisms of K; to avoid this undesired growth,
we assume that there exists a “small” φ in the group ring Z[Γ] such that the rank

of EφK is also small. More precisely, let ‖φ‖1 be the sum of the absolute values of

the coefficients of φ, let rφ = rank(EφK) and let δφ be a bound for the sum of the
height of a system of generators of (EK)φ/(EK)tors. Then, if mNrφ < t we can find
as before m units u1, . . . , um and m + 1 distinct indexes i0, i1, . . . , im ∈ {1, . . . , t}
such that

h(ujγijγ
−1
i0

) ≤ ‖φ‖ log x

d
+
δφ
N

11



for j = 1, . . . ,m. This construction could give a good lower bound for the expo-
nent (using effective Chebotarev’s theorem and lower bounds for the height as in
subsection 3.2), if

‖φ‖1rφ log
(
dδφ/(rφ + 1) + 2

)
is small. For instance, let α be a Salem number and let τ ∈ Γ defined by ατ = α−1.
Put φ = 1− τ . Then ‖φ‖1 = 2, rφ = 1 and dδφ ≤ 2 logα. We obtain (see [10]):

Theorem 3.3 (A., 2005)
Let α be a Salem number and let K = Q(α). Then, assuming the Generalized
Riemann Hypothesis for the Dedekind zeta function of K, for any ε > 0 the exponent
of the class group of K satisfies:

eK ≥
max(Cd−1 log |∆|, Cεd1−ε)
log log |∆|+ log(logα+ 2)

.

We mention that an analogous result for the class number of the field generated
by a Salem number was proved in [13] using a relation between Salem numbers and
the derivative at 0 of an Artin L-function.
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