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We investigate generalized Einstein-Aether theories that are compatible with the Planck Cosmic
Microwave Background (CMB) temperature anisotropy, polarisation, and lensing data. For a given
dark energy equation of state, wde, we formulate a designer approach and we investigate their
impact on the CMB temperature anisotropy and matter power spectra. We use the Equation of
State approach to parametrize the perturbations and find that this approach is particularly useful
in identifying the most suitable and numerically efficient parameters to explore in a Markov chain
Monte Carlo (MCMC) analysis. We find the data constrains models with wde = −1 to be compatible
with ΛCDM. For wde 6= −1 models, which avoid the gravitational waves constraint through the
entropy perturbation, we constrain wde to be wde = −1.06+0.08

−0.03 (CMB) and wde = −1.04+0.05
−0.02

(CMB+Lensing) at 68%C.L., and find that these models can be different from ΛCDM and still be
compatible with the data. We also find that these models can ameliorate some anomalies in ΛCDM
when confronted with data, such as the low-` and high-k power in the CMB temperature anisotropy
and matter power spectra respectively, but not simultaneously. We also investigate the anomalous
lensing amplitude, quantified by Alens, and find that that for wde = −1 models, Alens = 1.15+0.07

−0.08

(CMB) and Alens = 1.12± 0.05 (CMB+Lensing) at 68%C.L. ∼ 2σ larger than expected, similar to
previous analyses of ΛCDM.

I. INTRODUCTION

Cosmological observations suggest that we live in a
Universe undergoing accelerated expansion, see for ex-
ample [1–4]. Moreover, the data is consistent with a cos-
mological constant, Λ, as the origin for this acceleration
[5]. Initial observations of type Ia supernovae allowed
significant freedom for alternative dark energy and mod-
ified gravity models to explain the accelerated expansion
[6, 7]. However, recent observations, and in particular
of the propagation of gravitational waves [8–10], have
greatly restricted the space of viable models.

A popular set of scalar-tensor (ST) models are the
Horndeski models [11, 12], which are the most general
that can be constructed up to second order derivatives
in the scalar field. Its generality allows the testing of
many subclasses of models such as Quintessence [13–15],
k-essence [16, 17], f(R) [18–20], Kinetic Gravity Braiding
(KGB) [21], Galileons [22], and many others. Until very
recently, the space of Horndeski models was relatively
unconstrained, in that many subclasses yielded accept-
able expansion histories and also were compatible with
data from the CMB, large scale structure, and cluster-
ing. While cosmological data from these have helped in
restricting some specific manifestations of these models,
e.g. Galileons [23], observations of gravitational waves,
and more notably GW170817 and its electromagnetic
counterpart GRB170817A [8–10], have been used to ex-
clude many subclasses of Horndeski. In particular, the
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observations have constrained their propagation speed to
be the speed of light, to very high precision. As several
authors have pointed out, see for example [24–28], this
has left a significantly reduced model space of viable sub-
classes in Horndeski models and beyond. As it stands,
current data is consistent with the Λ Cold Dark Matter
(ΛCDM) model and other alternatives are not signifi-
cantly favoured.

That is not to say that the cosmological constant is
itself without problems. It is well known that problems
arise when interpreting Λ as a vacuum energy in quantum
field theory, often dubbed the naturalness problem [29].
A related issue is the coincidence problem which is often
discussed in arguments against a cosmological constant.
This is related to why dark energy is only beginning to
dominate today, despite its energy density having a very
different evolution to that of matter and radiation, see for
example [30] for a discussion. While alternative models
do not necessarily themselves even solve these problems,
at the very least it suggests our understanding of dark
energy, whether its origin is the cosmological constant or
not, is incomplete.

There are also a number of anomalies which currently
exist within ΛCDM when confronted with data. Per-
haps the most notable is the ∼ 3σ discrepancy between
the value of H0 determined directly from local distance
measures, H0 = (73.2 ± 1.7) km s−1 Mpc−1 [31], and in-
ferred from the angular scale of fluctuations in the CMB,
H0 = (66.9 ± 0.6) km s−1 Mpc−1 [4]. Another is that
the data for the CMB temperature angular anisotropy
power spectrum, CTT

` , for ` . 30 is systematically be-
low the prediction from ΛCDM [32], also similar to the
data for the matter power spectrum, P (k), at large k
[33, 34]. Recent work has also highlighted the Planck
Alens anomaly [35, 36], rescaling the lensing amplitude
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in the CMB spectra. This parameter is a consistency
check and is not physically motivated, with an expected
value of 1. However, the latest Planck analysis puts this
value at Alens = 1.15+0.13

−0.12 at 95%C.L., ∼ 2.3σ larger
than expected [37]. It is currently unknown whether
these anomalies are due to systematics or new physics
and provide more motivations for the field of modified
gravity and dark energy.

While models like Horndeski introduce a dynamical
scalar field instead of Λ to modify General Relativity,
an alternative is to consider the introduction of a vec-
tor field. Vector-tensor (VT) models of modified gravity
have been shown to be capable of leading to periods of
accelerated expansion and so provide an interesting line
of dark energy research, complementary to those already
studied in the context of the Horndeski class of models,
see for example [38–41].

In this paper, we study the dynamics of cosmological
perturbations in a class of VT models called generalized
Einstein-Aether. First studied in [39] and then general-
ized in [40], these models introduce a vector field, Aµ,
known as the Aether field, that is constrained to have
a timelike unit norm. Under this constraint, Einstein-
Aether propagates only one scalar degree of freedom,
similar to ST models. Its generalization comes about
via non-canonical kinetic terms parametrized by a free
function F(K), where K is defined as

K =
1

M2
Kαβ

µν∇αAµ∇βAν , (1)

and the rank-4 tensor is given as

Kαβ
µν = c1g

αβgµν +c2δ
α
µδ

β
ν +c3δ

α
ν δ

β
µ+c4A

αAβgµν . (2)

Here, M has dimensions of mass and {ci} are dimension-
less constants, which are the free parameters of the the-
ory. In particular, in this paper we study designer F(K)
models that mimic ΛCDM and wCDM background cos-
mologies but allow for the existence of non-trivial per-
turbations. These designer F(K) models were studied
in [42] for wde = −1. In considering such models, it
is only the dynamics of the perturbations which will be
important in distinguishing these models from ΛCDM.
Of course, gravitational wave observations have also con-
strained this class of models and it can be shown that it
places the restriction c1 +c3 = 0 or dF/dK = 0 [27]. The
implications of this are discussed later on in the paper.

In recent years, a large amount of effort has been di-
rected at developing parametrized frameworks for dark
energy and modified gravity theories, in order to explore
the theoretical landscape and departures from ΛCDM in
a consistent manner. The philosophy behind this ap-
proach is to compress the freedom within the numer-
ous different models of dark energy into a small num-
ber of phenomenological functions. These in turn can
then be used to explore the parameter space of many
different models. For example, in Horndeski models a
popular parametrization is via the Effective Field The-
ory approach and {αi} functions, which can be related

back to the physical properties of a given model [43, 44].
These approaches also include the Parametrized Post-
Friedmann Framework [45, 46], a general theory of linear
cosmological perturbations: ST and VT theories [47, 48]
and the Equation of State (EoS) approach [49], and the
(µ, γ) or (µ,Σ) parametrization, for example see [50, 51].
The main difference between these frameworks is the level
at which they parametrize different models i.e. at the
level of the action, the equations of motion, or the solu-
tions to the equations of motion. Of course, when study-
ing the effects of these models on cosmological observ-
ables, the choice of framework should not matter.

In this paper we work with the EoS approach, where
the dark energy or modified gravity model is assumed
to be a non-trivial cosmological fluid. At the level of
linear perturbations, this approach eliminates the inter-
nal degrees of freedom introduced by the model and
parametrizes the scalar sector via the gauge invariant
anisotropic stress, ΠS, and entropy perturbation, Γ, in
order to close the perturbed conservation equations. Pre-
vious works have computed the equations of state for
elastic dark energy [52], f(R) gravity [53], Quintessence,
k-essence, KGB [54], and more generally Horndeski the-
ories [12]. It was also applied to generalized Einstein-
Aether theories in [42] and this paper continues that
work by implementing this model in a modified version
of class [55], called class eos, a modification to the
Einstein-Boltzmann code that implements the EoS ap-
proach. For details of its numerical implementation we
refer the reader to [56], where it was used to investigate
designer f(R) models. We will call the code used in this
paper as class eos gea.

Previous works, such as [57–59], have attempted
to constrain Einstein-Aether and generalized Einstein-
Aether using observational data. Before the gravitational
waves constraint, these models provided more compelling
alternatives to ΛCDM. However, in light of recent con-
straints, these models have been severely restricted. In
this work, we constrain generalized Einstein-Aether, in
a similar way to [57, 58], but instead of a power law
solution for the general function F(K), we opt for a de-
signer approach. In particular, as well as studying mod-
els with wde = −1, which are now tightly constrained by
gravitational waves, we investigate whether models with
wde 6= −1 can still be observationally interesting, while
still being compatible with the gravitational waves con-
straint. Such models will typically require ΠS

de = 0 and
so the modification to gravity is encoded solely by Γde,
though there are caveats to this, see for example [60].
Since the current constraints from the data which apply
to Γde are much weaker, we seek to investigate models
whose modification to gravity comes about from a non-
zero Γde only. The aim of this analysis is to understand
how such models will affect cosmological observables and
whether or not some of these models will be able to ame-
liorate some of the mentioned anomalies in ΛCDM. We
will also investigate what the best parameters to explore
are in a MCMC analysis, which we will see that the Equa-
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tion of State approach is particularly useful for.
This paper is organized as follows. In section II we re-

view generalized Einstein-Aether models and construct
designer F(K) models for a wCDM background. In sec-
tion III we review the EoS approach to parametrizing
the perturbations and apply this to generalized Einstein-
Aether models. Using this approach, we study the evo-
lution of dark energy perturbations in section IV and
analyse their impact on cosmological observables in sec-
tion V. We then present observational constraints on the
parameters in designer F(K) models, from current CMB
and lensing data in section VI. The effect of modifying
the amplitude of the lensed C` via an Alens parameter is
also investigated. We then discuss our results and con-
clude in section VII.

Natural units are used throughout with c = ~ = 1 and
the metric signature is (−,+,+,+).

II. OVERVIEW OF GENERALIZED
EINSTEIN-AETHER AND DESIGNER F(K)

In this section we briefly overview generalized Einstein-
Aether theories and in particular, highlight important
features of designer F(K) models discussed in [42].

Generalized Einstein-Aether is defined by the action,
in the Jordan frame,

S =

∫
d4x
√−g

(
1

16πG
R+ LGEA

)
+ Sm, (3)

where

16πGLGEA = M2F(K) + λ(gµνA
µAν + 1). (4)

The Lagrange multiplier term, λ, enforces the timelike
unit norm constraint for the Aether field, Aµ. Also note
that Aµ does not couple directly to the matter sector.
Variation of (3) with respect to the metric yields Ein-
stein’s equation in the form

Gµν = 8πGTµν + Uµν , (5)

where Tµν is the standard matter energy-momentum ten-
sor. Written in this way, all contributions from the
Aether field are included in Uµν and we will interpret
this as the energy-momentum tensor of a non-trivial cos-
mological fluid. The full form of Uµν is given in [42]. We
assume a background cosmology described by the FLRW
metric,

ds2 = −dt2 + a(t)2δijdx
idxj , (6)

and Aµ = (1, 0, 0, 0) to be compatible with the symme-
tries from FLRW and also the timelike unit norm con-
straint. Projecting out the energy density, ρGEA, and
pressure, PGEA, we have that

ρGEA = 3αH2

(
FK −

F
2K

)
, (7)

PGEA = α

[
3H2

( F
2K −FK

)
− ḞKH −FKḢ

]
, (8)

where overdots denote differentiation with respect to cos-
mic time, t, H = ȧ/a is the Hubble factor, FK = dF/dK,
α = c1 + 3c2 + c3, and for later use we will further define
c13 = c1 + c3, c14 = c1 − c4, and c123 = c1 + c2 + c3. We
also have that

K =
3αH2

M2
. (9)

Note that due to the definition in (5), ρGEA and PGEA

have absorbed factors of 8πG. We will therefore also
define 8πGρde = ρGEA and 8πGPde = PGEA, where the
subscript ‘de’ and, later on, ‘m’ refers to dark energy and
matter, respectively.

The freedom in the background evolution is currently
governed by F(K), its derivative, and {ci} via α and K,
as this dictates the evolution of ρGEA, PGEA, and hence
wde = PGEA/ρGEA. One approach is to simply choose
a form for F(K) e.g. a power law as in [41], or more
complicated functions as in [61]. This would then allow
us to fine-tune its functional form in order to be compat-
ible with the observed background cosmology. Instead,
we opt for a designer approach where we link the evolu-
tion of a(t) with F(K) so that a(t) is identical to ΛCDM
or wCDM. While this is somewhat artificial, it has the
virtue that only the dynamics of the perturbations will be
important in distinguishing these models from the stan-
dard ΛCDM and wCDM cosmologies.

In [42], it was found that for a given constant equa-
tion of state, wde, and energy density parameter today,
Ωde,0 = 8πGρde,0/(3H

2
0 ), for a background cosmology in-

distinguishable from wCDM, F(K) must obey

(1 + wde) (2KFK −F)

= (2KFKK + FK)

[
K +

1

2
αwde (2KFK −F)

]
,

(10)

assuming negligible radiation contribution, which is true
from matter domination and onwards, subject to the ini-
tial conditions

F(K0) = F0 and FK(K0) =
Ωde,0

α
+
F0

2K0
, (11)

where K0 = K(a = 1) and F0 is the value of F(K) today,
similar to the B0 parameter in designer f(R) theories.
Solving (10) will yield the behaviour for F(K) required
for a given wde and Ωde,0, provided F0 is also given. It
was shown in [42] that the background evolution of F(K)
was independent of the choice of {ci} and that F0 was
degenerate with M . The mass parameter, M , was there-
fore fixed at M = H0 and will be for the rest of this
paper.

In fact, (10) is more complicated than what is required
by class eos gea, which is F as a function of time, or
some equivalent time variable e.g. scale factor or confor-
mal time. Therefore, (10) can be reduced to a first order
equation in a via the Friedmann equation,

(1− αFK)

(
H

H0

)2

+
1

6
F =

Ωm,0

a3
, (12)
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by demanding that the modifications to the Friedmann
equation in (12) evolve as a general dark energy fluid
with constant wde i.e.

αFK
(
H

H0

)2

+
1

6
F =

Ωde,0

a3(1+wde)
. (13)

From (9), we can rewrite this as

F ′ = −εH
(
F +

6Ωde,0

a3(1+wde)

)
, (14)

where primes denote differentiation with respect to log a
and εH = −H ′/H.

In [42], it was found that the only cosmologically in-
teresting solution to (10) for wde = −1 was

F(a) = (F0 + 6Ωde,0)
H

H0
− 6Ωde,0, (15)

which is consistent with (14). Note that if F0 = −6Ωde,0

then F reduces to a constant and so this theory would
be indistinguishable to ΛCDM at the perturbative level
as well. For constant wde 6= −1, then the solution to (14)
is given by

F(a)

6Ωde,0
=

H

H0

(
1 +

F0

6Ωde,0
− β0

)
+ a−3(1+wde)(β − 1),

(16)
where again we have assumed negligible radiation contri-
bution to the total matter density. We have also further
defined

β = 2

√
1 + a3wde

Ωm,0

Ωde,0

× 2F1

(
1

2
,−1 + wde

2wde
;
wde − 1

2wde
;−a3wde

Ωm,0

Ωde,0

)
,

(17)

with β0 = β(a = 1), and where 2F1(a, b; c;x) is the stan-
dard Gaussian hypergeometric function. With the inclu-
sion of radiation and ultra-relativistic species the solution
is no longer analytical. However, given that we will start
the dark energy perturbations well into the matter domi-
nation era, see section IV, this assumption is reasonable.

III. EQUATION OF STATE APPROACH

We will now briefly outline the Equation of State ap-
proach and its application to generalized Einstein-Aether
models. Our starting point is (5), where we treat all
modifications to General Relativity as a fluid via Uµν
and by construction, must be covariantly conserved i.e.
∇µUµν = 0.

At linear order in perturbations, δUµν is decomposed
as

δUµν = (δρ+ δP )uµuν + δPδµν

+ (ρ+ P )(δuµuν + δuνu
µ) + PΠµ

ν ,
(18)

TABLE I. The dimensionless variables we choose to work with
in the EoS approach are given in this table, in both the con-
formal Newtonian and synchronous gauges.

Variable Conformal Newtonian Synchronous

T 0
h′
‖

2HK2

W 1
HX

′ − εH(X + Y ) 1
HX

′ − εH(X + Y )

X 1
HZ
′ + Y 1

HZ
′ + Y

Y ψ 1
HT
′ + εHT

Z ϕ η − T
∆ δ + 3H(1 + w)θS δ + 3H(1 + w)θS

Θ̂ 3H(1 + w)θS 3H(1 + w)θS + 3(1 + w)T

δP̂ δP δP + P ′T

where the anisotropic stress, Πµ
ν , is further projected

into scalar, vector, and tensor components via [62, 63]

Πij =

(
k̂ik̂j −

1

3
δij

)
ΠS + 2k̂(i

(
ΠV1 l̂j) + ΠV2m̂j)

)
+ Π+

(
l̂i l̂j − m̂im̂j

)
+ Π×

(
l̂im̂j − l̂jm̂i

)
,

(19)

where the unit vectors
{
k̂, l̂, m̂

}
form an orthonormal

basis in k-space.
The metric is perturbed as

ds2 = a2(τ)
[
−(1 + 2ψ)dτ2 + (δij + hij)dx

idxj
]
, (20)

in conformal time, τ . Similar to Πij , hij can be decom-
posed as in (19). This, together with the entropy pertur-
bation,

wΓ =

(
δP

δρ
− dP

dρ

)
δ, (21)

form the gauge invariant equations of state for the linear
perturbations. In keeping with this gauge invariant lan-
guage, we will work with a set of gauge invariant variables
formed from the metric and perturbed fluid variables de-
fined in Table I. Note that T is not gauge invariant,
but will not explicitly appear in the expressions for ΠS

and Γ. For further details see [53]. We also define the
dimensionless wavenumber K = k/(aH).

After eliminating the internal degrees of freedom for
the scalar sector, we write ΠS and Γ as linear functions
of the gauge invariant perturbed fluid variables, and find
that

wdeΠS
de = cΠ∆∆de + cΠΘΘ̂de + cΠXX

+ cΠY K2Y, (22)

wdeΓde = cΓ∆∆de + cΓΘΘ̂de + cΓWW

+ cΓXX + cΓY K2Y, (23)

where the {cΠ,Γ} coefficients are in principle functions of
both scale and time.
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The philosophy behind the EoS approach is that all
modifications to gravity are treated as a new non-trivial
cosmological fluid. To that end, we eliminate the met-
ric variables {W,X, Y } in favour of the perturbed fluid

variables {∆i, Θ̂i} via the Einstein equations,

2W = Ωm

(
3δP̂m

ρm
+ 2wmΠS

m − 3Θ̂m

)

+ Ωde

(
3δP̂de

ρde
+ 2wdeΠS

de − 3Θ̂de

)
, (24)

2X = ΩmΘ̂m + ΩdeΘ̂de, (25)

−2

3
K2Y = Ωm(∆m − 2wmΠS

m) + Ωde(∆de − 2wdeΠS
de),

(26)

−2

3
K2Z = Ωm∆m + Ωde∆de. (27)

Substituting into (22) and (23) yields

wdeΠS
de = cΠ∆de

∆de + cΠΘde
Θ̂de + cΠ∆m

∆m

+ cΠΘm
Θ̂m + cΠΠm

ΠS
m, (28)

wdeΓde = cΓ∆de
∆de + cΓΘde

Θ̂de + cΓ∆m
∆m

+ cΓΘm
Θ̂m + cΓΓm

Γm, (29)

where we have included Πm and Γm for generality, as
these are non-zero for ultra-relativistic matter species.
Note that cΠ∆ and cΠ∆de

are not the same since Y can
be rewritten in terms of {∆i} via (26), similarly for cΓ∆

and cΓ∆de
. The relationship between these coefficients

and the previous ones are given in Appendix A.
Their forms in generalized Einstein-Aether were com-

puted in [42] in full generality and are given in Appendix
A, however they simplify significantly for wde = − 1 in
designer F(K) models. From (15) we have an analytical
solution and in this case the {cΠ,Γ} coefficients reduce to

cΠ∆ =
c13

c14
, cΠΘ =

1

2
(1 + εH)− c13

c14
,

cΠX = 0, cΠY = −c13

3α

(
1 +

F0

6Ωde,0

)
H

H0
,

(30)

and

cΓ∆ = −cΓΘ = −dPde

dρde
= 1, cΓW = cΓX = cΓY = 0.

(31)
Together, these coefficients completely encode the mod-
ification to gravity due to a designer F(K) model with
wde = −1.

In a designer background, H is already determined and
so the only two parameters which will dictate how these
models impact cosmological observables are

P1 =
c13

c14
and P2 =

c13

α

(
1 +

F0

6Ωde,0

)
, (32)

and it will be these parameters that we will explore over
in the MCMC analysis, see section VI. Note that we
have reduced the initial 5 free parameters of this theory,
i.e. {ci,F0}, to only 2. In principle, we could run the
MCMC analysis with these 5 parameters, but this would
only show us that degeneracies exist between these pa-
rameters, as shown by (32), and so it is more numerically
efficient to directly use the 2 parameters P1 and P2. This
is one of the advantages of the EoS approach, in that it al-
lows us to see explicitly what combinations of parameters
will directly affect the observables and what degeneracies
exist between the original parameters. Note that impos-
ing flat priors on P1 and P2 is not equivalent to doing
the same for the original 5 parameters.

For F0 = −6Ωde,0 we have that P2 = 0. This case
is indistinguishable from ΛCDM at the level of linear
perturbations as F is constant, corresponding to FK = 0.
As we will see later, another case that recovers ΛCDM is
when c13 = 0 and so P1 = P2 = 0, see section IV.

Note that in [42] it was found that

c2s =
1

c14

(
c123 +

2

3
αγ2

)
, (33)

could be interpreted as a sound speed for perturbations
i.e. the coefficient of k2δde in the δ̈de equation, however
it need not necessarily be so. After all, a sound speed
is itself frame dependent. For wde = −1 models, we
find that c2s = 2

3P1. Indeed, (33) is also consistent with
[64, 65] where they computed the wave speed of different
modes in Einstein-Aether, in the Minkowski limit. How-
ever, as discussed in [42], in designer F(K) models where
we have directly coupled the evolution of F to a(t), no
sensible Minkowski limit exists for this theory once this
connection has been made. It could be argued that on
grounds of subluminal propagation P1 should have a up-
per bound of 3

2 . However, as previously mentioned it is
not necessarily the sound speed and if it was it would
only refer to the phase velocity. We will therefore leave
the upper bound of P1 unrestricted.

In complete generality it is not clear what the equiva-
lent parameters to P1 and P2 are when wde 6= −1. How-
ever, we will see in the next section that the gravitational
wave constraints significantly reduce the complexity of
such models, allowing us to identify the parameters in a
general way.

III.1. Constraints from gravitational waves

Recent observations of gravitational waves, and in par-
ticular detections with a coincident gamma ray burst,
have provided strong constraints on the deviation of the
speed of gravitational waves, cgrav, from light, cγ . Specif-
ically, GW170817 and GRB170817A [8–10] have con-
strained this deviation to be

− 3× 10−15 <
cgrav − cγ

cγ
< 7× 10−16. (34)
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While there may be caveats to this constraint, see [60],
taken as it is, it suggests that gravitational waves must
propagate at the speed of light. In generalized Einstein-
Aether, c2grav is given by

c2grav = (1 + c13FK)
−1
, (35)

and hence we require c13 = 0 or FK = 0. The latter is
the case of a cosmological constant and so we will focus
on the potentially more interesting case of c13 = 0.

From (A1) - (A4) we see that all {cΠ} coefficients are
proportional to c13 and hence the gravitational waves
constraint sets ΠS

de = 0. Therefore, the modification to
gravity in these models is encoded solely in Γde. Under
this constraint, the {cΓ} coefficients (A5) - (A9) can be
written as

cΓ∆ =
3(1 + wde)

εH

[
a4+3wde(P4 − P3β0)

(
H
H0

)
+ aP3β

] − wde,

(36)

cΓΘ =
2

3
(εH − 1)− ε′H

3εH
, (37)

cΓW =
1

2
cΓX = −3cΓY =

1 + wde

εH
, (38)

and the new parameters we choose to explore are

P3 =
c14

c2
and P4 =

c14

c2

(
1 +

F0

6Ωde,0

)
. (39)

These choices are motivated by the forms of P1 and P2

in (32) for wde = −1 models.
In principle, the gravitational waves constraint of ei-

ther FK or c13 = 0 could also be applied to wde = −1
models. However, as mentioned previously, this would
correspond to ΛCDM at the level of perturbations, ren-
dering the MCMC analysis for such models unnecessary.
In such cases, either P1 6= 0 but P2 = 0, corresponding to
FK = 0, where such models are degenerate with ΛCDM
for any value of P1, or P1 = P2 = 0, corresponding to
c13 = 0, and so there are no parameters to explore. How-
ever, it will still be instructive to consider the dynamics
of wde = −1 models without the gravitational waves con-
straint applied, which will aid our understanding of the
dynamics when wde 6= −1 and see whether the MCMC
analysis will pick out wde = −1 models that are consis-
tent with either FK = 0 or c13 = 0, without information
from gravitational waves.

IV. COSMOLOGICAL DYNAMICS

We now move on to investigate the evolution of cosmo-
logical perturbations, both analytically and numerically,
in designer F(K) models.

0.01 0.05 0.10 0.50 1
0.001

0.010

0.100

1

10

100

FIG. 1. The evolution of Ωde∆de is shown for k =
0.001 Mpc−1, 0.01 Mpc−1, and 0.1 Mpc−1, for logP1 = 1.0
and P2 = 1.0 fixed, compared with the attractor solution for
each scale (black dashed lines).

IV.1. Dynamics of linear perturbations

For simplicity we will assume that radiation is negli-
gible, which is true for the times that we are interested
in and so ΠS

m = Γm = 0. The perturbed conservation
equation gives 2 coupled first order differential equations
for each species, given by

∆′ − 3w∆ + gKεHΘ̂− 2wΠS = 3(1 + w)X, (40)

Θ̂′ + 3

(
dP

dρ
− w +

1

3
εH

)
Θ̂

−3
dP

dρ
∆− 2wΠS − 3wΓ = 3(1 + w)Y, (41)

where gK = 1 + K2

3εH
. The initial conditions are cho-

sen such that dark energy perturbations are negligible
at zini = 100 i.e. ∆de = Θ̂de = 0, Ωm∆m = − 2

3K2Z,

ΩmΘ̂m = 2X, and X = Y = Z. The exact starting
point for the evolution of the dark energy perturbations
is somewhat arbitrary provided we are sufficiently into
the matter dominated era. If this is the case then the
results are not sensitive to the precise value of zini.

The behaviour of the Newtonian potentials was studied
in [42] and in particular it was found that the gravita-
tional slip η = φ/ψ → 1 for K � 1 i.e. φ = ψ, or
equivalently ΠS

de = 0, for K � 1. Therefore, we would
expect complete consistency with ΛCDM in the CMB
temperature angular anisotropy power spectrum at high-
`. However, for low-`, we would expect differences as the
late-time Integrated Sachs-Wolfe (ISW) effect is sensi-
tive to ΠS

de and, in particular, to the variation of φ and
ψ. Furthermore, it is these large scale modes that enter
the horizon at late times when the dark sector compo-
nent is dominating. It should be noted that if ΠS

de 6= 0
for K � 1, then it is still possible to be consistent with
ΛCDM at high-`, see, for example, [56] in f(R).
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FIG. 2. The Weyl potential, 2Φ = ψ + φ, (solid lines) and
its derivative (dashed lines) as a function of scale factor for
different values of Geff,0, corresponding to P2 = 1, 0, and −1,
with logP1 = 0.1, wde = −1, and K0 = 1 fixed. The ΛCDM
potential is denoted by the black dotted line.

In [42] it was found that for K � 1 the perturbed
conservation equations, for wde = −1, could be written
as 2 coupled second order differential equations, given by

∆′′m + (2− εH)∆′m −
3

2
Ωm∆m =

3

2
Ωde∆de, (42)

∆′′de + (5− εH)∆′de +
2

3
cΠ∆de

K2∆de = −2

3
cΠ∆m

K2∆m,

(43)

provided the {Θ̂i} terms were small relative to the {∆i}
terms. This will be true for small scales where K� 1, as
can be seen from the Einstein equations (25) and (26).
This regime corresponds to modes which are within the
horizon during matter domination. From (43) we see that
∆de will tend to the attractor solution

∆de = − cΠ∆m

cΠ∆de

∆m, (44)

shown in Figure 1. The ΛCDM background cosmology
was set such that h = H0/100 km s−1 Mpc−1 = 0.68,
Ωde,0 = 0.69, and Ωbh

2 = 0.022. We see that ini-
tially ∆de grows to match −cΠ∆m

/cΠ∆de
∆m and oscil-

lates about the attractor solution. These oscillations
are a consequence of setting the dark energy perturba-
tions to be zero at z = 100. If the initial conditions are
set at earlier times, the amplitude of the oscillations is
suppressed since the attractor solution will be closer to
zero. We will therefore set the initial condition for ∆de

in class eos gea to match the attractor. This is nu-
merically more efficient and in doing so the oscillations
will be suppressed.

Substituting (44) into (42) yields the standard evolu-
tion equation for ∆m in ΛCDM, but with an effective
Newtonian gravitational constant, given by

Geff

G
= 1− ΩdecΠ∆m

ΩmcΠ∆de

. (45)

This parameter is important in explaining the dynamics
of cosmological perturbations and hence the cosmological
observables. We can write the value of Geff today as

Geff,0

G
=

1

1 + P2

2P1
Ωde,0

. (46)

As mentioned previously, if P2 = 0, corresponding to
FK = 0, then we recover ΛCDM and we find that Geff,0 =
G and in fact so is Geff(a) for all a. As we will see later,
for c13 = 0 where P1 = P2 = 0, there are no growing
modes in ∆de and hence we recover the standard ΛCDM
evolution equation in (42) upon setting ∆de = 0, with
the standard Newtonian gravitational constant.

A similar analysis can applied to wde 6= −1 models.
We find that, for K� 1, (42) still holds, but now

∆′′de + [(2− 3wde)− εH ] ∆′de

+ (wde + cΓ∆de
)K2∆de = −cΓ∆de

K2∆m. (47)

Hence, the attractor solution is modified to

∆de = − cΓ∆m

wde + cΓ∆de

∆m, (48)

and the effective Newtonian gravitational constant be-
comes

Geff

G
= 1− ΩdecΓ∆m

Ωm(wde + cΓ∆de
)
. (49)

Note that the value of Geff,0 in these models can be writ-
ten as

Geff,0

G
=

6

6 + P4Ωde,0
, (50)

i.e. Geff,0 is independent of wde and depends only on P4

and in principle P3, since

P4 =

(
1 +

F0

6Ωde,0

)
P3. (51)

Note that there is not a direct link between {P1,P2}
and {P3,P4}, since the former parametrizes ΠS

de in wde =
−1 models where Γde is fixed and contains no free param-
eters and the latter parametrizes Γde in wde 6= −1 models
where c13 = 0 and so ΠS

de = 0.

IV.2. Dynamics under the gravitational wave
constraint

Consider again the gravitational waves constraint
which demand either FK = 0 or c13 = 0. It is clear
that the case of FK = 0 will yield a model identical to
ΛCDM and hence there will be no dark energy perturba-
tions. However, we find that this is also true if c13 = 0
and wde = −1.
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To see this, recall that ΠS
de = 0 if c13 = 0 and so (43)

becomes

∆′′de + (5− εH)∆′de = 0. (52)

In the matter dominated era εH → 3/2 and so the solu-
tion to (52) has no growing modes, i.e. if c13 = 0 then
there are no dark energy perturbations, since any non-
zero initial condition for ∆de would quickly decay. There-
fore, the constraint that c13 = 0 restricts designer F(K)
models to those which are indistinguishable from ΛCDM
both at the level of background cosmology and linear
perturbations, if wde = −1. Therefore, to explore cos-
mologically interesting models which are different from
ΛCDM and compatible with the gravitational waves con-
straint, we cannot restrict ourselves to wde = −1. How-
ever, as mentioned previously, it will still be interesting
and instructive to study the impact of such models on
cosmological observables which we can use to aid our un-
derstanding of models with wde 6= −1.

V. IMPACT ON COSMOLOGICAL
OBSERVABLES

We now study the impact of designer F(K) models on
cosmological observables, and in particular on the CMB
temperature angular anisotropy and matter power spec-
tra. In doing so we will use the results derived in sec-
tion IV and in particular Geff which will directly affect
the growth of matter and the Newtonian gravitational
potentials.

V.1. wde = −1

The impact of these models on the CMB temperature
angular anisotropy power spectrum depends on the time
variation of the Weyl potential, 2Φ = ψ + φ. In par-
ticular, the late-time ISW effect is proportional to the
integral

∫
Φ̇ dz, for redshift z along the line of sight. and

so the presence of a non-zero ΠS
de which will modify the

behaviour of Φ will also affect the late-time ISW effect.
Note that it is still possible for Φ to be different from
ΛCDM even if ΠS

de = 0, as long as Γde 6= 0. In the ab-
sence of ΠS

de the gravitational slip η = 1 because ψ = φ,
but their behaviour will still be modified due to a non-
zero ∆de in the Poisson equations for ψ (26) and φ (27).

From Figure 2, we observe that for Geff,0/G > 1 (<
1), Φ is enhanced (suppressed) with respect to ΛCDM.
For Geff,0/G > 1 we see that Φ initially grows before
decaying again due to dark energy. The growth can be
explained from considering the matter power spectrum,
since Geff,0/G > 1 would enhance clustering and hence
give rise to a larger Φ. In these cases we would expect the
late-time ISW effect to be larger. For Geff,0/G < 1, Φ is
suppressed relative to ΛCDM as expected and naively we
may expect that the late-time ISW effect to be switched
off for sufficiently low values of Geff,0. However, as seen in

Figure 3 we observe a larger late-time ISW effect relative
to ΛCDM as Φ̇ is still larger in these cases as well, see
Figure 2. Therefore, there is a minimum in the late-time
ISW effect for some value of Geff,0 before the late-time
ISW effect grows again. Of course, it will not only depend
on Geff,0 but also the overall behaviour of Geff(a).

Since Geff also directly affects ∆m via (42), the matter
power spectrum, P (k), will be enhanced or suppressed
according to the behaviour of Geff . Note that this will
only be true for small scales as we have assumed we are
in the regime K � 1. Hence, designer F(K) models
will simultaneously modify the low-` CMB temperature
angular anisotropy power spectrum and P (k) for large
k. Indeed, this is what we find for P (k) as shown in
Figure 3. For large scales P (k) is unaffected.

In principle there are 2 independent functions which
are required to describe the behaviour of the Newtonian
potentials, ψ and φ. What we call Geff is sometimes
referred to as Gmatter or µφ, which parametrizes modi-
fications to the Poisson equation for φ, for example see
[60]. However there is an equivalent function which also
modifies ψ, sometimes referred to as Glight or µψ. There-
fore, to fully describe the behaviour of Φ = ψ + φ we re-
quire knowledge of both Gmatter, what we call Geff , and
Glight. However, as mentioned previously, for designer
F(K) models with wde = −1 we have that η → 1 for
K � 1. This means that for subhorizon modes, where
the expression for Geff holds, the behaviour of ψ and φ
are identical. Therefore, only 1 function, Geff , is required
to describe both the behaviour of ψ and φ. Note that this
will also be true for our analysis of wde 6= −1 models as
we set c13 = 0 which gives ΠS

de = 0 and so η = 1 at all
scales.

V.2. wde 6= −1

The behaviour of the spectra for wde 6= −1 is straight-
forward to understand. From Figure 4, we see that wde

is anti-correlated with the amplitude of clustering, as in
wCDM quintessence models [66]. For more negative wde,
dark energy domination begins later than more less neg-
ative values. Therefore, matter is more gravitationally
bounded, enhancing the growth of structure. Similar to
the wde = −1 models, this in turn affects the gravita-
tional lensing potential, Φ, enhancing the late-time ISW
component of the CMB spectrum, as can be seen in Fig-
ure 4.

As before with P1 and P2, Geff,0 (50) can be used to
explain the impact of P4 on cosmological observables for
wde 6= −1 models. We do not show the effect of varying
P3 only as this is degenerate with P4 via (51). The argu-
ments that were made previously for wde = −1 also hold
here. In fact, the behaviour for different wde can also
be explained via Geff . Even though the value of Geff,0

in (50) is independent of wde, the behaviour of Geff(a)
is dependent on wde, with more negative values of wde

causing Geff to be larger over its evolution, on average,
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FIG. 3. Left panels: The matter power spectrum relative to ΛCDM (top panel) and CMB temperature angular anisotropy
power spectrum (bottom panel) for P2 = 1 and wde = −1 fixed. The late-time ISW component is shown by the dashed lines.
The black dotted line denotes ΛCDM. Right panels: As the left panels but with logP1 = 0.1 fixed.

TABLE II. The posterior mean (68%C.L.) for wde, σ8, logP1, P2, P3, and P4 for 2 sets of models that mimic a ΛCDM and
wCDM expansion history. The ellipses indicate parameters that are not used for that set of models. Note that for the wCDM
models we study, P1 and P2 is set to zero and hence logP1 → −∞.

CMB (F(K) ΛCDM) CMB+Lensing (F(K) ΛCDM) CMB (F(K) wCDM) CMB+Lensing (F(K) wCDM)

wde −1 −1 −1.06+0.08
−0.03 −1.04+0.05

−0.02

σ8 0.84± 0.02 0.82± 0.01 0.86+0.02
−0.03 0.83+0.01

−0.02

logP1 1.7+2.3
−1.9 4.1+1.9

−1.3 −∞ −∞
P2 −0.4± 0.5 1.8+0.9

−3.2 0 0

P3 · · · · · · 1.3+17.0
−19.0 −0.7+19.9

−17.9

P4 · · · · · · −1.7+1.2
−0.9 −1.0+1.0

−0.5

compared to less negative wde.
It is interesting to note that in these models ΠS

de =
0 but we still observe differences in the late-time ISW
effect. This suggests that even in models where ΠS

de = 0
and hence φ = ψ, the late-time ISW effect can still be
sensitive to a non-zero Γde.

We will also briefly mention the effect of ignoring the{
Θ̂i

}
terms in (29) for these models. From (47), it was

possible to derive a second order equation of motion for

∆de coupled to ∆m assuming the
{

Θ̂i

}
terms were neg-

ligible in the K � 1 regime. In these models, the coeffi-
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FIG. 4. Left panels: The matter power spectrum relative to ΛCDM (top panel) and CMB temperature angular anisotropy
power spectrum (bottom panel) in wCDM models, compatible with the gravitational waves constraint c13 = 0, for different
wde and P3 = 1 and P4 = −1 fixed. The late-time ISW component is shown by the dashed lines. The black dotted line denotes
ΛCDM. Right panels: As with the left panels, but for models with different P4 and wde = −1.1 and P3 = 1 fixed. All other
cosmological parameters are fixed to ΛCDM values given previously.

TABLE III. For comparison, the posterior mean (68%C.L.) for wde, σ8, for the standard ΛCDM and wCDM models.

CMB (ΛCDM) CMB+Lensing (ΛCDM) CMB (wCDM) CMB+Lensing (wCDM)

wde −1 −1 −1.54+0.18
−0.38 −1.36+0.31

−0.46

σ8 0.83± 0.01 0.82± 0.01 0.98+0.11
−0.06 0.91+0.13

−0.03

cients of Γde written as (29) are given by

cΓ∆de
=

6(1 + wde)

f(P3,P4) [2εH − 3Ωde(1 + wde)]
(53)

+
Ωde(1 + wde)(1 + 6wde)− 2wdeεH

2εH − 3Ωde(1 + wde)
, (54)

cΓΘde
=

4(εH − 1)εH − 2ε′H
3 [2εH − 3Ωde(1 + wde)]

(55)

− Ωde(1 + wde)(1 + 3wde)

2εH − 3Ωde(1 + wde)
, (56)

cΓ∆m
= −cΓΘm

=
1

3
(1 + wde), (57)

where we have defined f(P3,P4) = a4+3wde(P4 −
P3β0) HH0

+ aP3β from (36). Since wde will be close to

−1, cΓΘm will be close to zero and since the {∆i} terms
will dominate anyway for K� 1, a simplified model can
be obtained by simply setting cΓΘde

= cΓΘm = 0. In do-
ing so we essentially ignore superhorizon modes, but it
is interesting to see how much an effect this has on the
spectra. We find that the error due to this simplification
compared to the full model, when varying wde and P4, is
below 1% down to ` ≈ 10 for CTT

` and values of k down to

k ≈ 10−2hMpc−1 for P (k). As expected, for the largest
scales, the spectra become increasingly inaccurate from
ignoring the superhorizon modes in Γde.
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FIG. 5. Left panels: The matter power spectrum (top panel) and CMB temperature angular anisotropy power spectrum
(bottom) relative to ΛCDM for the best fitting values of logP1 and P2, with wde = −1, for CMB (red) and CMB+Lensing
(yellow). All other parameters have been kept fixed at the ΛCDM values. Right panels: As the left panels, but for the best
fitting values of P3, P4, and wde 6= −1, in wCDM models compatible with the gravitational waves constraint of c13 = 0. The
oscillations observed at high-` are due to a slightly different background cosmology which has shifted the peaks of the CMB
spectrum.

VI. CONSTRAINTS FROM COSMOLOGICAL
OBSERVABLES

In this section we present observational constraints for
designer F(K) models using CMB and CMB+Lensing
data sets, from the Planck 2015 public likelihoods for low-
`, high-` temperature with polarization, and lensing [4].
We do not consider data set combinations with baryon
acoustic oscillations (BAOs), as these constrain only dis-
tance measurements and, as discussed in [42], {ci,F}
would be insensitive to these, since they do not affect the
background evolution. The caveat to this is that BAOs
could give tighter constraints on other cosmological pa-
rameters which could then also affect the constraints on
{Pi}, however we do not consider this further. We reit-
erate that the main purpose of this analysis is not to get
the best constraints for the parameters in this theory, but
to understand how these models affect cosmological ob-
servables and if they can be used to solve some previously
mentioned anomalies.

For the MCMC sampling of the parameter space we

use the montepython code [67]. In this analysis, we
vary the 6 base cosmological parameters and the required
Planck nuisance parameters with the same priors as the
Planck Collaboration.

We consider 2 sets of models: one which mimics a
ΛCDM background where wde = −1 and one which mim-
ics wCDM. As discussed in section III, these two sets of
models have different parameters to sample other than
wde. The 68%C.L. constraints for these parameters are
shown in Table II. For comparison we also show the
68%C.L. constraints we obtain for wde and σ8 in the stan-
dard cases, with the same data sets, in Table III. Note
that for wCDM, in this case, the parameters are poorly
constrained due to the lack of BAO data which would
constrain the background and hence wde. This is not the
case for F(K) models because the perturbations play a
more important role than in the standard Quintessence
case. Also note that we choose to explore over the pa-
rameter space for logP1. As discussed previously, P1 is
related to the sound speed, though there may be a caveat
to this. Indeed we find that P1 must be positive other-
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wise the perturbations become unstable, and therefore
logP1 is a more suitable parameter.

For both sets of background cosmologies, we see that
σ8 decreases when lensing data is included. As seen pre-
viously, these models only affect the CMB temperature
anisotropy on large angular scales, where the data are
limited by cosmic variance. Hence, we expect the lens-
ing power spectrum to more tightly constrain these mod-
els. Indeed, with the inclusion of lensing, models with
larger σ8 are disfavoured. For wde = −1, this pushes
logP1 higher, corresponding to a value of Geff,0/G closer
to 1 (46). As seen from Figure 7, the higher values of
logP1 have weakened the constraints on P2 compared
with CMB data only, though it is still consistent with
zero. As mentioned previously, models with P2 = 0 are
indistinguishable from ΛCDM at the perturbative level,
which our constraints are consistent with. With P1 6= 0,
this also tells us that designer F(K) models that mimic a
ΛCDM background prefer FK = 0, as opposed to c13 = 0,
though these constraints from CMB data do not provide
anything nearly as stringent as the gravitational waves
constraint.

For models with wde 6= −1, compatible with c13 = 0,
we find that a more negative value of wde is preferred,
though still consistent with −1 (68%C.L.). The parame-
ter P3 is poorly constrained by the data compared with
P4. Including lensing data does little to improve this. It
does, however, more tightly constrain P4 closer to zero,
corresponding to a value of Geff,0/G closer to 1 (50). As
mentioned previously this does not necessarily mean that
Geff(a) = 1 for all a. Lensing data also more tightly con-
strains wde pushing it closer to −1. The contour plot is
shown in Figure 8. It is worth noting that even with the
gravitational waves constraint, which severely restricts
many models, if wde = −1 is relaxed, then these designer
F(K) models are still able to be compatible with the data
but are also distinct from ΛCDM due to the presence of
a non-zero Γde.

For wde = −1 models, the best fitting values for the
parameters are logP1 = 0.10, P2 = −0.33 (CMB), and
logP1 = −1.12, P2 = −0.0055 (CMB +Lensing). The
spectra for these models are shown in Figure 5. We see
that for CMB only, the best fitting parameters have the
low-` CTT

l below that for the ΛCDM prediction, hence
giving a better fit to the data. This is one of the cur-
rent anomalies with the data mentioned previously [32].
However, this comes at the cost of an enhanced mat-
ter power spectrum and hence a larger σ8, at odds with
galaxy clustering observations [68–70], as with f(R) mod-
els [56]. With CMB+Lensing the conclusion is similar,
but we find that the effects at the low-` spectrum and
high-k matter power spectrum are much more subtle.
We, therefore, find no strong reason to favour these mod-
els over ΛCDM for wde = −1 fixed.

For wde 6= −1 models, the best fitting values for the
parameters are wde = −1.06,P3 = 11.4, P4 = −0.66
(CMB), and wde = −1.01,P3 = −35.2, P4 = −0.60
(CMB+Lensing). We see that, similar to wde = −1 mod-
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FIG. 6. Top panel : The lensed CMB temperature angular
anisotropy power spectrum, for high-` peaks, in ΛCDM is
shown. The amount of lensing is modified by Alens. A value
of Alens = 1 is the expected amount of lensing. Bottom panel :
Similar to the top panel, but now in a designer F(K) model
with wde = −1. Here, Alens = 1 but the amount of lensing is
affected by varying P2, with logP1 = −0.5 fixed.

els, the best fitting parameters have suppressed power at
low-` at the cost of a larger σ8. The inclusion of lens-
ing data causes the matter power spectrum to look more
like ΛCDM, as before, however, there is slightly more
suppression of power at low-` compared to wde = −1
models.

VI.1. Gravitational lensing of the CMB power
spectra

As photons travel from the last scattering surface they
are lensed from travelling through gravitational poten-
tials. This gravitational lensing smooths the acous-
tic peaks of the CMB and polarization power spectra.
The amount of lensing is something which can be cal-
culated very accurately once the cosmological parame-
ters are fixed [36]. In [35] the parameter Alens was in-
troduced as a consistency check. This parameter mod-

ifies the amount the CMB is lensed via CTT,lensed
` =
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TABLE IV. The posterior mean (68%C.L.) for σ8, logP1, P2, and Alens in a designer F(K) model with wde = −1 compared to
the usual ΛCDM model.

CMB (F(K) ΛCDM) CMB+Lensing (F(K) ΛCDM) CMB (ΛCDM) CMB+Lensing (ΛCDM)

σ8 0.80± 0.02 0.81± 0.01 0.81+0.01
−0.02 0.81± 0.01

Alens 1.15+0.07
−0.08 1.12± 0.05 1.13± 0.07 1.12+0.05

−0.06

logP1 5.4+2.1
−1.1 6.4+1.4

−0.7 · · · · · ·
P2 28.9+9.0

−30.3 40.0+14.1
−41.3 · · · · · ·

CTT,unlensed
` + AlensĈ

TT
` , where ĈTT

` is the lensed con-
tribution to the unlensed spectrum. A theory which ig-
nores gravitational lensing has Alens = 0, while Alens = 1
is the expected amount of lensing. We run the MCMC
analysis on ΛCDM with Alens, shown in Table IV, and
find that Alens = 1 is inconsistent (68%C.L.), indicating
more lensing is observed than expected in ΛCDM. This
conclusion is compatible with previous analyses [35–37].

In order to investigate this further, we also include
the Alens in our analysis of designer F(K) models. Since
this will modify the amount of gravitational lensing, a
model which modifies the gravitational lensing potentials
should also affect Alens. We have already seen that these
designer F(K) models can significantly modify Φ in Fig-
ure 2. It is therefore interesting to see if the parameters in
these models are degenerate with Alens and hence could
push Alens to be more consistent with 1. For illustrative
purposes we will only consider models with wde = −1
together with Alens.

In Figure 6 we show the high-` peaks of the lensed
CMB temperature angular anisotropy power spectrum.
We see that the spectrum for higher values of Alens have
increasingly smoothed peaks. We compare this to a de-
signer F(K) model with Alens = 1 and see that a similar
behaviour is observed by varying P2. Indeed, this is to
be expected as this parameter, along with logP1, directly
affects the lensing potential Φ. Prima facie, it seems that
there should be a degeneracy between these new param-
eters and Alens, and that there may be a way to ame-
liorate the Alens anomaly through P1 and P2. However,
Alens exclusively modifies the lensed high-` CMB peaks,
while P1 and P2 would affect both the high-` peaks and
low-` late ISW effect, which would likely break the de-
generacy. We again sample over the parameter space for
designer F(K) models with wde = −1, along with the
same datasets as before. However, this time we also in-
clude the Alens parameter. These constraints are shown
in Table IV.

For CMB only, we find that Alens = 1.15+0.07
−0.08 (CMB)

and Alens = 1.12 ± 0.05 (CMB+Lensing) at 68%C.L.
Therefore, these models are not able to solve the Alens

anomaly. Indeed, there does not seem to be any degen-
eracy between {P1,P2} and Alens, due to the fact that
{P1,P2} also modifies the low-` CMB as shown in Fig-
ure 3. With Alens we find that P2 becomes very poorly
constrained. It is interesting to note that, unlike pre-

viously, the inclusion of lensing data pushes σ8 slightly
higher. This is due to the degeneracy with Alens and σ8

that can be seen in Figure 9. We see that larger values
of Alens corresponds to lower σ8. However, as the Cϕϕ`
spectrum does not exhibit the Alens anomaly [4], with the
inclusion of lensing data, this pushes Alens slightly closer
to 1, which in turn means that σ8 is larger.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have investigated cosmologically vi-
able generalized Einstein-Aether theories, by which we
mean models that are compatible with measurements
of the expansion history of the Universe, data from the
CMB photons, their polarization, and gravitational lens-
ing potential, and also the gravitational waves constraint.
In designer F(K) models, the expansion history can be
fixed to wCDM and the form of such an F(K) for generic
constant wde was derived, given by (16). These designer
models are particularly useful for investigating the role
of perturbations since they have the virtue that only the
dynamics of the perturbations can be used to distinguish
these models from ΛCDM or wCDM.

To study the effect of such models on cosmological ob-
servables, we have used the EoS approach, implemented
in a modified version of class, dubbed class eos gea.
We have seen that a strength of this approach is that
it has very readily identified the degeneracies that ex-
ist between the original parameters of the theory. This
allows us to greatly reduce the number of parameters to
explore in a MCMC analysis by constructing new param-
eters made from combinations of the previous ones, which
are more suitable to explore over. In our case, the 5 orig-
inal parameters {ci,F0} could be reduced to 2, {P1,P2}
and {P3,P4} for wde = −1 and wde 6= −1 with c13 = 0,
respectively. Doing this is numerically more efficient and
speeds up the computational analysis.

We found that for designer F(K) models with wde =
−1, the data seems to prefer models with a small deriva-
tive, i.e. FK ≈ 0, corresponding to P2 ≈ 0. Such models
are consistent with the gravitational waves constraint,
but are also indistinguishable from ΛCDM. The other
way to satisfy the constraint is to have c13 = 0, however
this was also shown to cause the models to be indistin-
guishable from ΛCDM. While there exists a choice of
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parameters which would suppress power at low-` for the
CMB temperature angular anisotropy power spectrum,
see Figure 5, this came at the cost of an increased σ8.
Moreover, these effects were diminished with the inclu-
sion of lensing data. This is due to the lensing data
disfavouring models with large values of σ8. Therefore,
these models do not provide a significant alternative to
ΛCDM.

Since c13 = 0 causes the previous set of models to be
indistinguishable from ΛCDM, to explore cosmologically
viable, but also interesting models, the case of wde 6= −1
was investigated. We found that in such models, wde

was constrained to be wde = −1.07+0.08
−0.03 (CMB) and

wde = −1.04+0.05
−0.01 (CMB+Lensing) at 68%C.L. Since wde

is anti-correlated with σ8 it is not surprising that the
value of wde is pushed closer to −1 with the inclusion
of lensing data. We find wde = −1 to be consistent, i.e.
these models need to be close to ΛCDM in order to be
compatible with the data. However, they do not need
to be exactly ΛCDM and there is some leeway for these
models to fit the data but to also have noticeable differ-
ences. In particular, the gravitational waves constraint
does not severely restrict these models since those con-
straints pertain only to those with significant ΠS

de, which
these models avoid, since the constraints on Γde are much
weaker. Similar to before, there exists a choice of param-
eters to suppress power for the low-` CMB temperature
angular anisotropy power spectrum, but at the cost of
a larger σ8. Again, while these models are in principle
cosmologically viable, we do not see any reason to favour
these models over ΛCDM. However, it is interesting to
note that some of the anomalies with ΛCDM can be rec-
tified in these alternative dark energy models, although
not simultaneously. For example, it is possible to sup-
press power at high-k for P (k), as shown in Figure 3,
but at the cost of enhanced power for the low-` CMB
spectrum, and vice-versa.

When investigating the Alens anomaly within F(K),
we found comparable constraints on Alens with previous
analyses, i.e. Alens = 1 is not consistent in these mod-
els. Since the data suggests that these models need to be
close to ΛCDM in order to be cosmologically viable, this
is not surprising. It is currently unclear whether these
previously mentioned anomalies are due to unaccounted
systematics in the data, or whether there is new physics
to be understood. It may be possible to construct models
which are able to simultaneously alleviate these anoma-
lies, i.e. low-` CMB, high-k matter power spectrum, and
the Alens anomaly. As we have seen, these can be linked
to the Weyl potential, Φ, which is affected by Geff only
in our case, though 2 functions are required in general
when ΠS 6= 0. Therefore, it may be possible to construct
models with a suitable Geff by choosing {cΠ, cΓ}, which
then could be used to investigate these anomalies further
and see what properties models would need in order for
these anomalies to be solved in some way. We leave this
for future work.
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Appendix A: Coefficients in the Equations of State
approach

The coefficients for the equations of state in generalized
Einstein-Aether theories are presented here. From (22)
and (23), we have that

cΠ∆ =
c13

c14
, (A1)

cΠΘ =
c13

3c123 + 2αγ2

[
1− 2

(
εHγ2 +

c13

c14

)]
, (A2)

cΠX =
2c13γ1(1 + 2γ2)

(2γ1 − 1) (3c123 + 2αγ2)

[
2

(
c13

c14
+ εHγ2

)
− 1

]
,

(A3)

cΠY =
2c13γ1

3α (1− 2γ1)
, (A4)

cΓ∆ =
α(1 + 2γ2)

3c14
− dPde

dρde
, (A5)

cΓΘ =
α

3(3c123 + 2αγ2)

[(
1− 2c13

c14

)
(1 + 2γ2)− 6εHγ2

(
1 +

2

3
γ3

)]
+
dPde

dρde
, (A6)

cΓW =
2γ1(1 + 2γ2)

3 (2γ1 − 1)
, (A7)

cΓX =
4αγ1

3 (2γ1 − 1) (3c123 + 2αγ2)

[(
1 +

c13

c14

)
(1 + 2γ2)2

+
3c13

α

(
1 + 2γ2

[
1− εH

(
1 +

2

3
γ3

)])]
, (A8)

cΓY =
2γ1(1 + 2γ2)

9 (1− 2γ1)
, (A9)

where γ1 = KFK/F , γ2 = KFKK/FK, and γ3 =
KFKKK/FKK. Using the Einstein equations (24) - (27)
to eliminate the metric variables {W,X, Y }, we obtain

(1−3cΠY Ωde)wdeΠS
de

=

(
cΠ∆ −

3

2
cΠY Ωde

)
∆de +

(
cΠΘ +

1

2
cΠXΩde

)
Θ̂de

− 3

2
cΠY Ωm∆m +

1

2
cΠXΩmΘ̂m + 3cΠY ΩmwmΠS

m,

(A10)
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1

2
(2− 3cΓWΩde)wdeΓde

=

(
cΓ∆ +

3

2
cΓWΩde

dP

dρ

∣∣∣∣
de

− 3

2
cΓY Ωde

)
∆de

+
3

2
Ωm

(
cΓW

dP

dρ

∣∣∣∣
m

− cΓY
)

∆m

+

[
cΓΘ −

3

2
cΓWΩde

(
1 +

dP

dρ

∣∣∣∣
de

)
+

1

2
cΓXΩde

]
Θ̂de

+
1

2

[
cΓX − 3cΓW

(
1 +

dP

dρ

∣∣∣∣
m

)]
ΩmΘ̂m

+
3

2
cΓWΩmwmΓm. (A11)
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Appendix B: Contour plots for designer F(K) parameters

In this section we provide the 2D posterior distribution marginalised cosmological contour plots between P1, P2,
and σ8 in Figure 7, as well as Alens in Figure 9, and also for P3, P4, σ8, and wde in Figure 8.
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FIG. 7. The 68% and 95% constraint contours for logP1, P2, and σ8 are shown for wde = −1 models. Note that the correlation
between logP1 and σ8 is removed once lensing data is included.
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FIG. 8. The 68% and 95% constraint contours for P3, P4, σ8, and wde. Note the anti-correlation between σ8 and wde as in
wCDM quintessence models. As expected, there is a degeneracy between P3 and P4.
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