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Abstract. We review at first the role of localization operators as a meeting

point of three different areas of research, namely: signal analysis, quantization

and pseudodifferential operators. We extend then the correspondence between
symbol and operator which characterizes localization operators to a more gen-

eral situation, introducing the class of bilocalization operators. We show that

this enlargement yields a quantization rule that is closed under composition.
Some boundedness results are deduced both for localization and bilocaliza-

tion operators. In particular for bilocalization operators we prove that square

integrable symbols yield bounded operators on L2 and that the class of bilocal-
ization operators with integrable symbol is a subalgebra of bounded operators

on every fixed modulation space.

1. Fourier Analysis, Signals and Localization Operators

The theory of localization operators, also known as Toeplitz operators or anti-
Wick operators, is an important tool in at least three areas of pure and applied
mathematical research: signal theory, pseudodifferential operators and quantiza-
tion. Berezin [7] was the first who proposed to associate an observable F (x, ω)
with an operator of the type

(1.1) Lu =

∫
R2n

F (x, ω)Px,ωu dx dω

where Px,ωu = (u, ϕx,ω)L2(Rn)ϕx,ω is the orthogonal projection of u on the trans-

lations and modulations of the L2(Rn)-normalized gaussian ϕ(s) = (π−n/4)e−
1
2 |s|

2

,
namely ϕx,ω(s) = e2πisωϕ(s − x). This quantization rule is known as Berezin or
anti-Wick quantization. We refer to [22] for a comprehensive presentation of this
type of quantization and various related topics.

The classical method for the analysis of a signal u(t) is the study of its Fourier
transform

(1.2) û(ω) = Fu(ω) =

∫
R
e−2πitωu(t)dt,

which represents the distribution of the frequencies ω contained in the signal. How-
ever notice that the Fourier transform of a delayed signal Txu(t) = u(t− x) can be
distinguished from the transform of the original signal u(t) only by the ”complex
phase” factor e−2πixω, and therefore turns out to be indistiguishable in absolute
value. For time-variant signals a modification of the Fourier transform, originally
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proposed by Dennis Gabor, has proved more advantageous. The idea is to focus the
Fourier transform on small intervals in time and to analyze the frequencies lying
in these intervals. This can be done by multiplying the function u(t) by a cut-off,
or window, function φ(t), usually in L2(R), that can be translated by a parameter
x along the time axis, before taking the Fourier transform. This leads to the defi-
nition of the Gabor transform or short-time Fourier transform (briefly STFT) of a
signal u(t):

(1.3) Vφu(x, ω) =

∫
Rn
e−2πitωφ(t− x)u(t)dt,

which evaluates the ”amount” of the frequencies ω of the signal in a neighborhood of
the time x. The complex conjugation on the window φ is mathematically convenient
as it permits to write the Gabor trasform as inner product, namely Vφu(x, ω) =
(u, φx,ω)L2 , where φx,ω are translation and modulation of φ. The variables x and
ω are respectively time and frequency variables and the space Rnx × Rnω is called
time-frequency plane.
The signal u(t) can be reconstructed (synthesis process) from its STFT by means
of the inversion (or reconstruction) formula:

(1.4) u(s) =
1

(ψ, φ)L2

∫
R2n

Vφu(x, ω)e2πisωψ(s− x) dx dω,

where φ, ψ ∈ L2(R2n) and (φ, ψ)L2 6= 0, see [23], Cor. 3.2.3, or [28], Sec. 2.3.
Generally before being reconstructed, the signal undergoes a processing or filtering,
consisting of a modification of its STFT, realized by multiplying Vφu(x, ω) by a
function F (x, ω) that amplifies or annihilates different parts of the signal. This
procedure leads therefore to operators of the form:

(1.5) LFφ,ψu(s) =

∫
R2n

F (x, ω)Vφu(x, ω)e2πisωψ(s− x) dx dω

that are called localization operators. A fundamental reference on this topic is [16],
a discrete version is studied in [20].

The remarkable fact is that operators of type (1.5), exactly coincide with oper-
ators (1.1) when the window function is a L2-normalized gaussian.

Finally localization (anti-Wick) operators (1.5) have also found interesting appli-
cations in the theory of pseudodifferential operators. They can actually ”approxi-
mate” in a suitable sense Weyl pseudodifferential operators, permitting a simplified
and elegant treatment of many central questions such as boundedness, compactness
and the theory of weighted Sobolev spaces. A classical reference on this topic is
Shubin [37], see also [31] and [34] for operators associated with general globally
hypoelliptic symbols.

Translations and modulations, called time-frequency shifts in the language of
signal analysis, are essentially the actions of the Weyl-Heisenberg group on the
Hilbert space L2(Rn), so operators of type (1.5) could be viewed as associated
in a natural way with the Weyl-Heisenberg group. The important role played by
group theory in enlightening the basic structures of localization operators is very
well presented for instance in [3], [23], [27], whereas a general theory of localization
operators associated with square integrable representations is developed in [25],
[42].
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Localization operators traditionally act on L2(Rn), Sobolev (Bessel potential)
spaces, or more generally modulazion spaces (see [8], [10], [21], [24], [35]), the
latters have also been considered as symbols for localization operators in [9], [12],
and [13] where various boundedness and Schatten-von Neumann properties are
proved. Lp-boundedness and compactness results for localization operators with
symbols in Lq(R2n) are presented in [11], whereas boundedness and compactness
on modulation spaces are studied in [8], [40] and [41].

As pointed out by Wong in [42] (see Remark 22.4), one of the drawbacks of the
theory of localization operators is that the composition of two of them in general
is not a localization operator with symbol in the same class. As composition corre-
sponds in signal theory to the effect of the application of two filters in series, this is
a relevant issue both from the theoretical as well as from the applied point of view.
This problem has been faced by Wong and Du by giving a composition formula
in terms of twisted convolution in the case of operators with gaussian windows,
see [18] and [42], Ch. 22, whereas in [17] the same authors define a subclass of
localization operators closed with respect to composition. Different composition
formulae can be found in [1] and, with Weyl remainder in the framework of Shubin
calculus, in [14]. Various other interesting issues have been addressed in the frame
of localization operators, we cite e.g. density of range [6], convolution and quanti-
zation [32], [33], inverse problems on eigenfucntions [2]. A comprehensive analysis
of localization operator can be found in [15]. Finally interesting generalizations are
contained in [4], where time-frequency shifts are replaced by continuous frames in
the sense of [28], and [5], where bilinear operators are considered.
The present paper is organized as follows. In Section 2 we revise the theory of mod-
ulation spaces, a class of spaces particularly suitable to measure the time-frequency
content of functions and temperate distributions, see [19] and [23]. Their connec-
tion to localization operators is analogous to that of the Besov spaces to the wavelet
transform and they contain as particular cases most of the usual Sobolev spaces.
In the past decades modulation spaces have turned out to be an ideal setting for
developing a considerable amount of research in time-frequency analysis and Weyl
operators (see [26], [29], [30], [36], [38], [39] and reference therein).
In Section 3 we introduce bilocalization operators as natural generalization of lo-
calization operators, in analogy to the extension of linear maps from the case of
diagonal matrices to general matrices. We give then some examples of important
operators from harmonic analysis which are not localization but can easily be ex-
pressed as bilocalization operators.
The basic properties of bilocalization operators are studied in Section 4 where we
prove a composition formula and analyze the effect of a change of windows. In
particular we remark that both composition and change of windows in localization
operators lead to operators which are naturally expressed as bilocalization opera-
tors. By computing the symbol of the adjoint we finally show that the bilocalization
correspondence symbol-operator is a quantization i.e. it associates self-adjoint op-
erators with real valued symbols.
In section 5 we consider boundedness properties both for localization operators
(Propositions 5.2 till Corollary 5.7) and bilocalization operators (Proposition 5.8)
on modulation spaces. From this last proposition two interesting results follow.
Namely, square integrable symbols yield L2-bounded bilocalization operators and



4 P. BOGGIATTO, G. GARELLO

secondly, for every fixed modulation space Mp,q bilocalization operators with sym-
bol in L1 form a subalgebra of the algebra of bounded operators on Mp,q.

2. Modulation spaces

From now on in every inequality of the type f(z) ≤ Cg(z) the positive constant
C can be different, suitably chosen case by case.
A weight function on Rd is a positive, locally integrable function v(z). It is called
sub-multiplicative if v(z1 + z2) ≤ v(z1)v(z2) for every z1, z2 ∈ Rd.
If v(z) is a weight function, then a v-moderate weight function is a function m(z)
such that 0 < m(z1 + z2) ≤ Cv(z1)m(z2) for every z1, z2 ∈ Rd.
Standard examples of weight functions are 〈z〉 =

√
1 + |z|2 and v(z) = 1 + |z|, the

second one is also sub-multiplicative.
We assume further that both v(z) and 1/v(z) have tempered growth i.e. there exists
k > 0 such that

(2.1) v(z) + 1/v(z) ≤ C〈z〉k.

We also remark that we can assume without loss of generality that v(z) is continuous
and symmetric in the sense that v(x, ω) = v(−x, ω) = v(x,−ω) = v(−x,−ω) (see
[23] Def. 11.1.1).
We shall be concerned with the case d = 2n, z = (x, ω) ∈ R2n. In this case time-
frequency shifts of a function u(t) on Rn are defined as uz(t) = MωTxu(t) with
Txu(t) = u(t− x), Mωu(t) = ei2πtωu(t).

Next we summarize the essential facts about the theory of modulation spaces,
see for instance [23] for references.

Definition 2.1. Let g be a fixed function (window function). Then, whenever this
makes sense, the short-time Fourier transform (STFT) of the function u is defined

as Vgu(z) = (u, gz)L2 =
∫
Rn e

−2πitωu(t)g(t− x)dt.

Proposition 2.2. If u, v, g, f ∈ L2(Rn) then Vgu and Vfv are in L2(R2n) and

(2.2) (Vgu, Vfv)L2 = (u, v)L2(f, g)L2 ,

in particular Vg : L2(Rn)→ L2(R2n) is an isometry if ‖g‖L2 = 1.
Furthermore, (g, u) → Vgu is a continuous map from S(Rn) × S(Rn) to S(R2n)
which can be extended to a continuous map from S′(Rn)× S′(Rn) to S′(R2n).

If m(x, ω) is a fixed weight function on R2n and p, q ∈ [1,+∞], let Lp,qm (R2n) denote
the weighted mixed-norm space of the measurable functions ϕ on R2n such that
‖ϕ‖Lp,qm = (

∫
ω

(
∫
x
m(x, ω)p|ϕ(x, ω)|pdx)q/pdω)1/q < +∞ and usual modification for

p =∞ or q =∞.

Definition 2.3. Let v(x, ω) be a sub-multiplicative weight function and m(x, ω) a
v−moderate weight function, p, q ∈ [1,+∞] and 0 6= g ∈ S(Rn). The modulation
space Mp,q

m (Rn) is defined as

(2.3) Mp,q
m (Rn) = {u ∈ S′(Rn) : Vgu ∈ Lp,qm (R2n)}.

The space Mp,q
m (Rn) is independent of 0 6= g ∈ S(Rn) and even more generally one

can suppose g ∈M1
v (Rn) := M1,1

v (Rn).
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The abbreviations Mp,q
m (Rn) = Mp,q

m , Mp,p
m = Mp

m and Mp,q
1 = Mp,q are commonly

used. If p ∈ [1,+∞], we indicate with p′ the conjugate of p, i.e. the extended real
number defined by 1

p + 1
p′ = 1.

In the following proposition we summarize the properties of modulation spaces that
we shall need.

Proposition 2.4. Let g ∈M1
v (Rn) and let m be a v−moderate weight function on

R2n. Then the following assertions hold:

(a) Mp,q
m (Rn) is a Banach space with respect to the norm ‖.‖Mp,q

m
:= ‖Vg(.)‖Lp,qm

and different functions 0 6= g ∈M1
v (Rn) give rise to equivalent norms.

(b) M2,2
m (Rn) is a Hilbert space with respect to the inner product (., .)M2,2

m
:=

(Vg(.), Vg(.))L2
m(R2n).

(c) If p, q ∈ [1,+∞] then, for u ∈Mp,q
m (Rn), v ∈Mp′,q′

1/m (Rn) we have

|(Vgu, Vgv)L2 | ≤ ‖u‖Mp,q
m
‖v‖

Mp′,q′
1/m

, and for 1 ≤ p, q < ∞, the pairing

(., .)
Mp,q
m ,Mp′,q′

1/m

:= (Vg(.), Vg(.))L2 gives a standard idendification of the dual

of Mp,q
m (Rn) with Mp′,q′

1/m (Rn).

(d) If p1 ≤ p2, q1 ≤ q2, with p1, p2, q1, q2 ∈ [1,∞], and m1(z) ≥ m2(z) we
have the continuous imbedding Mp1,q1

m1
(Rn) ↪→Mp2,q2

m2
(Rn).

(e)
⋂
s∈RM

1,1
〈.〉s(R

n) = S(Rn);
⋃
s∈RM

∞,∞
〈.〉s (Rn) = S′(Rn)

(with 〈 . 〉 =
√

1 + | . |2).
(g) We have, for p, q ∈ [1,∞], continuous imbeddings S(Rn) ↪→ Mp,q

m (Rn) ↪→
S′(Rn) (this is the essential reason of the requirement (2.1)). Furthermore,
for 1 ≤ p, q <∞, S(Rn) is dense in Mp,q

m .

The modulation space M1
1 (Rn) is an algebra, called Feichtinger Algebra. In the

context of modulation spaces the Feichtinger algebra and its dual space M∞1 (Rn),
contained in the space of tempered distributions, play a role similar to the one
played by the Schwarz space S(Rn) and its dual S′(Rn) in the usual distribution
theory.
If g ∈ L2(Rn) with ‖g‖L2 = 1 then, from (2.2), we see that the product in the spaces
M2
m as well as the pairing in Proposition 2.4 (c) are just a restriction/extension of

the L2 product. With abuse of notation we shall therefore write (u, v) instead of
(u, v)M2

m
and (u, v)

Mp,q
m ,Mp′,q′

1/m

.

Modulation spaces include many Sobolev-type spaces. In particular, defining the
pseudodifferential operators

Psu(x) =
∫
R2n e

i(x−y)ω〈ω〉su(y) dy dω,

Λsu(x) =
∫
R2n e

i(x−y)ω〈(x, ω)〉su(y) dy dω,
we can define the Bessel potential spaces and the Shubin-Sobolev spaces (see [37],
Ch. IV) by

W p
s (Rn) = {u ∈ S′(Rn) : Psu ∈ Lp(Rn)},

Qs(Rn) = {u ∈ S′(Rn) : Λsu ∈ L2(Rn)},
respectively.
We have the following identifications (cfr. [9]):

Proposition 2.5. M2
〈ω〉s(R

n) = W 2
s (Rn) and M2

〈z〉s(R
n) = Qs(Rn), for every

s ∈ R.
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Definition 2.6. Let φ, ψ ∈ S(Rn), F ∈ S′(R2n). The linear continuous operator
from S(Rn) to S′(Rn) defined by

(2.4) (LFφ,ψu, v) = (F, VφuVψv), u, v ∈ S(Rn),

is called localization operator with symbol F and window functions φ, ψ.
More generally the definition of LFφ,ψ can be extended to windows functions φ, ψ ∈
M1
m(Rn), see [12].

In agreement with (1.5) if we write (2.4) more explicitly we have

(2.5) LFφ,ψu(t) =

∫
R2n

F (z)(u, φz)ψz(t)dz, u ∈ S(Rn),

whenever the integral exists or can be interpreted in a weak sense. As can easily
be verified, we also have the factorization

(2.6) LFφ,ψu = V ∗ψFVφu

where V ∗ψ is the adjoint of Vψ : L2(Rn)→ L2(R2n).

In the case ψ = φ = g with g(z) an L2(Rn)−normalized gaussian function the
localization operator LFg,g is called anti-Wick operator. These operators have been
widely used in pseudodifferential calculus independently of the theory of localization
operators and signal analysis, see [37], Ch. IV.24.
A re-definition of modulation spaces through localization operators with hypoellitic
symbols as well as necessary and sufficient conditions for the compact immersion
between modulation spaces are presented in [10].

3. Bilocalization Operators

In this section we introduce an extension of the correspondence symbol-operator
given by localization operators (1.5). This defines a ”quantization” closed under
composition which seems a natural setting for a theory similar to that of localizaion
operators, but with the generality of Kohn-Nirenberg and Weyl calculus.

Let us consider for the moment a ”discrete” parallel of our situation. Suppose
{ej}j∈N and {fi}i∈N are Riesz bases respectively of two Hilbert spaces H1, H2.
Then the linear operator associated with a diagonal (infinite) matrix

[ai,j ]i,j∈N = δi,jαj ,

is the map:

A : u ∈ H1 → Au =
∑
j

αj (u, ej) fj ∈ H2,

whereas the form of a general linear operator associated with a non necessarily
diagonal matrix [ai,j ]i,j∈N is of course:

A : u ∈ H1 → Au =
∑
i

∑
j

ai,j (u, ej) fj ∈ H2.

As mentioned by Shubin in [37], in the case of the Hilbert space L2(Rn) the time-
frequency shifts {φz}z∈R2n of a fixed (non identically null) window function φ form
an overcomplete system for instance when φ is a gaussian.
We observe therefore that operators of the form

(3.1) LFφ,ψ : u→ LFφ,ψu =

∫
R2n

F (z)(u, φz)ψz dz
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i.e. usual localization operators, are the continuous correspondent of diagonal ma-
trix operators in the discrete case. As continuous correspondent of linear operators
with general matrix it seems natural to consider the class of operators defined as
follows.

Definition 3.1. Let φ, ψ ∈ S(Rn) and σ ∈ S(R4n). Then we call bilocalization
operators the map from S(Rn) to S(Rn) defined by:

(3.2) Tσφ,ψ : u→ Tσφ,ψu =

∫
R2n

∫
R2n

σ(z, w)(u, φz)ψw dz dw.

The name is due to the separation of the analysis parameter z ∈ R2n from the
reconstruction parameter w ∈ R2n with consequent doubling of the integral with
respect to usual localization operators. It is clear that Tσφ,ψ is extendable by duality

to a map from S′(Rn) to S′(Rn).
More generally we can consider simbols σ ∈ S ′(R4d). In this case Tσφ,ψu is a
distribution defined by

(Tσφ,ψu, v) = (σ, Vφu⊗ Vψv) u, v ∈ S(Rn).

where (Vφu ⊗ Vψv)(z, w) = Vφu(z)Vψv(w) and defines a continuous map Tσφ,ψ :

S(Rn) −→ S ′(Rn) due to the continuity of V : S(Rn)× S(Rn) −→ S(R2n) (Prop.
2.2) and of the tensor product (f, g) ∈ S(R2n)× S(R2n) −→ f ⊗ g ∈ S(R4n).

It is interesting to remark that bilocalization operators, even with Schwartz
windows, cover the whole set of linear continuous operators from S(Rn) to S ′(Rn)
(similarly to Weyl and Kohn-Nirenberg operators). This can be seen as follows.
Let Tσφ,ψ be a bilocalization operator with symbol σ ∈ S(R4n) and windows φ, ψ ∈
S(Rn), then

(Tσφ,ψu)(t) =
∫
R4n σ(z, w)(u, φz)ψw(t) dz dw

=
∫
Rn

( ∫
R4n σ(z, w)φz(s)ψw(t) dz dw

)
u(s) ds

which, setting z = (x, ω), w = (y, η), means that Tσφ,ψ has Schwartz kernel

(3.3) K(s, t) =

∫
R4n

σ(x, ω, y, η)e2πi(sw−tη)φ(s− x)ψ(t− y) dx dω dy dη.

Suitably extended to distributions, expression (3.3) yields the Schwartz kernel for
any symbols σ ∈ S ′(R4n). To our aim it is however enough to consider the particular
case where σ ∈ S ′(R4n) depends only on the variables ω and η. In this case we
have actually σ ∈ S ′(R2n

ω,η) and writing σ̂ = Fω→s,η→tσ for its Fourier transform,
(3.3) reads

(3.4) K(s, t) = C σ̂(s,−t)

with C =
∫
Rn φ(s) ds

∫
Rn ψ(t) dt. Supposing φ and ψ such that C 6= 0, we remark

that both the Fourier transform and the ”partial reflection” a(s, t) −→ a(s,−t)
are bijections of S ′(R2n) so that equation (3.4) defines a bijection between symbols
σ ∈ S ′(R2n

ω,η) and Schwartz kernels K ∈ S ′(R2n
s,t) proving our assertion. This also

shows, in analogy with amplitudes for pseudodifferential operators, that there is not
uniqueness for symbols of bilocalization operators, a fact that we will deal more
precisely in the next section.
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We show next that some important operators of harmonic analysis, which can
be easily expressed as bilocalization operators, are not localization operators with
windows in S(Rn). We need some preliminary results.

Definition 3.2. Let b ∈ S(R2n) then the Weyl operator with symbol b is the linear
continous map

u ∈ S(Rn) −→W bu ∈ S(Rn)

with

(3.5) W bu(x) =

∫
R2n

e2πi(x−y)ωb
(x+ y

2
, ω
)
u(y) dy dω

Definition 3.3. The Wigner transform is the sesquilinear continuous map

u, v ∈ S(Rn) −→Wig(u, v) ∈ S(R2n)

with

Wig(u, v)(x, ω) =

∫
Rn
e2πitωu(x+ t/2)v(x− t/2) dt.

These are connected by the well-known formula

(W bu, v) = (b,Wig(v, u)).

which permits to define more generally Weyl operators for any b ∈ S ′(R2n). In
this case they are continuous maps W b : S(Rn) −→ S ′(Rn). Viceversa any con-
tinuous map T : S(Rn) −→ S ′(Rn) can be expressed as a Weyl operator W b for
a unique b ∈ S ′(R2n). In particular when T is a localization operator Laφ,ψ with

a ∈ S ′(R2n), φ, ψ ∈ S(Rn) we have

(3.6) Laφ,ψ = W b, with b = a ∗Wig(ψ, φ).

Formula (3.6) implies that the Weyl symbol of localization operators Laφ,ψ are nec-

essarily functions in C∞(R2n), which shows that localization operators do not cover
all linear continuous maps from S(Rn) to S ′(Rn).

Let us consider now convolution operators Qh : u ∈ S(Rn) −→ h ∗ u ∈ S ′(Rn)
for fixed h ∈ S ′(Rn). We have

Qhu(x) = F−1[ĥû](x) =

∫
R2n

e2πi(x−y)ω ĥ(ω)u(y) dy dω,

which shows that the Weyl symbol of the operator Qh is ĥ (depending only on ω,
but considered as function on R2n). It follows that for every h ∈ S ′(Rn) for which

ĥ does not bolong to C∞(R2n) the operator Qh is not a localization operator in our
sense. On the other hand the bilocalization symbols of these operators are easily
calculated. To see this fix two arbitrary L2-normalized windows φ, ψ ∈ S(R2n),
then by (1.4) we have

Qhu(x) =
∫
R2n h(x− y)u(y) dy =

∫
R2n

∫
Rn h(x− y)φz(y)(u, φz) dz dy

=
∫
R2n(h ∗ φz)(x) (u, φz) dz =

∫
R2n

∫
R2n(h ∗ φz, ψw)ψw(x) (u, φz) dz dw,

where the last expression shows that Qh coincides with the bilocalization operator
Tσφ,ψ with symbol

(3.7) σ(z, w) = (h ∗ φz, ψw).
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Two examples of this situation, which are relevant also for applications, are the
following.

Example 3.4. For λ > 0 consider the cardinal sine function sincλ(x) = sin(2πλx)
πx .

The classical ideal low-pass filter associated with the threshold frequency λ > 0 is

Qsincλ : u −→ sincλ ∗ u
For σ(z, w) = (sincλ ∗ φz, ψw), we have

Tσφ,ψ = Qsincλ .

As ŝincλ = χ[−λ,λ] (characteristic function of the interval [−λ, λ] ⊂ R), is not
smooth, this is not a localization operator.

Example 3.5. Let hλ(x) = e2πiλx with λ ∈ R, than the operator which ”extracts”
the single frequency λ from a signal u is given by:

Qhλ : u −→ hλ ∗ u = e2πiλxû(λ)

and, according to (3.7), we have Qhλ = Tσφ,ψ with σ(z, w) = (e2πiλ(.) ∗ φz, ψw).

Again ĥλ = ê2πλ(.) = δλ is not a smooth function and therefore Qhλ is not a
localization operator.

4. Basic properties of bilocalization operators

In this section we start our study of bilocalization operators. As we focus on
their basic qualitative features without too much emphasis on the best functional
framework, we shall simply suppose that all symbols and windows are Schwartz
functions.

A key role will be played by the inversion formula (1.4) for the STFT, already
used in the previous section, which in the terminology of localization operators is
actually the equality

L1
φ,ψu = (ψ, φ)u

i.e. a localization operator with symbol F (z) = 1 is a multiple of the iden-
tity by the factor (ψ, φ), coinciding therefore with the identity when ψ = φ is
a L2(Rn)−normalized window function.
By the following property we show that the product of two localization operators
is actually a bilocalization operator.

Proposition 4.1. Let LFφ1,ψ1 and LGφ2,ψ2 be localization operators with symbols F

and G and window functions φj , ψj, (j = 1, 2), respectively. Then the composition
LGφ2,ψ2 ◦ LFφ1,ψ1 is the bilocalization operator Tσφ1,ψ2 with symbol σ given by

(4.1) σ(z, w) = G(w)F (z)(ψ1
z , φ

2
w)

Proof. The expression of σ(z, w) is obtained by direct computation of the compo-
sition

(LGφ2,ψ2 ◦ LFφ1,ψ1)u =
∫
R2n G(w)

( ∫
R2n F (z)(u, φ1z)ψ

1
z dz , φ

2
w

)
ψ2
w dw

=
∫
R2n

∫
R2n G(w)F (z)(ψ1

z , φ
2
w) (u, φ1z) ψ

2
w dz dw

=
∫
R2n

∫
R2n σ(z, w) (u, φ1z) ψ

2
w dz dw

with σ(z, w) = G(w)F (z)(ψ1
z , φ

2
w). �
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The following two propositions show that bilocalization operators actually gen-
eralize localization operators in a way that allows for great flexibility in the choice
of windows and symbols.

Proposition 4.2. Let φ, ψ, γ be window functions and let LFφ,ψ be a localization

operator with symbol F . Then LFφ,ψ can be written as a bilocalization operator in
both of the following forms:

(4.2) LFφ,ψ = Tσ1

φ,γ where σ1(z, w) =
1

‖γ‖2L2

F (z)(ψz, γw)

(4.3) LFφ,ψ = Tσ2

γ,ψ where σ2(z, w) =
1

‖γ‖2L2

F (w)(γz, φw)

Proof. Let us prove the expression (4.3). From the inversion formula (1.4) we have
for every w ∈ R2n:

φw =
1

‖γ‖2L2

∫
R2n

(φw, γz)γz dz.

Inserting this in the expression (2.5) of LFφ,ψ we obtain

LFφ,ψu =
∫
R2n F (w)

(
u , 1

‖γ‖2
L2

∫
R2n(φw, γz)γz dz

)
ψw dw

= 1
‖γ‖2

L2

∫
R4n F (w)(γz, φw)(u, γz)ψw dz dw,

which proves the assertion. �

A different expression of a localization as a bilocalization operator is the following

Proposition 4.3. Let φj , ψj, with j = 1, 2, 3, be window functions and LFφ1,ψ1 a

localization operator with symbol F and windows φ1, ψ1. Then LFφ1,ψ1 can be written
as the following bilocalization operator

(4.4) LFφ1,ψ1 = Tσφ2,ψ2 where σ(z, w) =

∫
R2n

F (z′)
(φ3z, φ

1
z′)

(φ3, φ2)

(ψ1
z′ , ψ

3
w)

(ψ2, ψ3)
dz′

(we remark that the operator is independent of the windows φ3, ψ3 appearing in the
symbol).

Proof. From the inversion formula (1.4) we have

φ1z′ =
1

(φ2, φ3)

∫
R2n

(φ1z′ , φ
3
z)φ

2
z dz,

ψ1
z′ =

1

(ψ2, ψ3)

∫
R2n

(ψ1
z′ , ψ

3
w)ψ2

w dw.

Inserting these in LFφ1,ψ1u we get:

LFφ1,ψ1u =

∫
R2n

F (z′)
(
u ,

1

(φ2, φ3)

∫
R2n

(φ1z′ , φ
3
z)φ

2
z dz

)
ψ1
z′ dz

′

=

∫
R2n

F (z′)
(
u ,

∫
R2n

(φ1z′ , φ
3
z)

(φ2, φ3)
φ2z dz

)∫
R2n

(ψ1
z′ , ψ

3
w)

(ψ2, ψ3)
ψ2
w dw dz′∫

R4n

(∫
R2n

F (z′)
(φ3z, φ

1
z′)

(φ3, φ2)

(ψ1
z′ , ψ

3
w)

(ψ2, ψ3)
dz′
)

(u, φ2z)ψ
2
w dz dw,
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which proves (4.4). �

Remark 4.4. Besides showing that bilocalization operators generalize localization
operators, Propositions 4.2 and 4.3 lead to the following two remarks.
1) Not only composition but also a change of window in localization operators leads
to bilocalization operators.
2) Different windows and symbols could give rise to the same bilocalization operator.
The situation for symbols is similar to that of the Weyl Calculus with respect to
amplitudes. In particular we point out that σ(z, w) = 1 is not the symbol of the
identity operator, instead the identity has symbols δ(z−w), σ1(z, w) = (φz, γw),

σ2(z, w) = (γz, ψw), σ(z, w) =
∫
R2n

(φ3
z,φ

1
z′ )

(φ3,φ2)

(ψ1
z′ ,ψ

3
w)

(ψ2,ψ3) dz
′ respectively in the cases

when expressions (3.2), (4.2), (4.3), or (4.4) are used.

Along these lines we can prove a general formula for the change of windows in a
bilocalization operator.

Proposition 4.5. Let φj , ψj, j = 1, 2, 3, be window functions of and Tσ
1

φ1,ψ1 a

bilocalization operator with symbol σ1. Then Tσ
1

φ1,ψ1 = Tσ
2

φ2,ψ2 where

(4.5) σ2(z, w) =

∫
R2n

∫
R2n

σ1(z′, w′)
(φ3z, φ

1
z′)

(φ3, φ2)

(ψ1
w′ , ψ

3
w)

(ψ2, ψ3)
dz′ dw′.

Proof. As in Proposition 4.3, we use the identities

φ1z′ =
1

(φ2, φ3)

∫
R2n

(φ1z′ , φ
3
z)φ

2
z dz,

ψ1
z′ =

1

(ψ2, ψ3)

∫
R2n

(ψ1
z′ , ψ

3
w)ψ2

w dw,

which follow from the inversion formula, to substitute the window functions of

Tσ
1

φ1,ψ1 . We do not repeat the details. �

In the following we shall be interested in outlining similarities and differences
between bilocalization operators and usual localization operators.
The most relevant difference, which is actually the main reason for their definition,
is that bilocalization operators are a class closed under composition. We prove this
by giving a formula for the product of bilocalization operators.

Theorem 4.6. Let Tσ
1

φ1,ψ1 and Tσ
2

φ2,ψ2 be bilocalization operators with symbols σ1

and σ2, and window functions φ1, ψ1 and φ2, ψ2, respectively. Then the composition

product operator Tσ
2

φ2,ψ2 ◦ Tσ
1

φ1,ψ1 can be written as the bilocalization operator Tσφ1,ψ2

with symbol

(4.6) σ(z, w) =

∫
R2n

∫
R2n

σ2(z′, w) σ1(z, w′) (ψ1
w′ , φ

2
z′) dz

′ dw′.

Proof. Again the expression is a matter of direct calculation:

(Tσ
2

φ2,ψ2 ◦ Tσ
1

φ1,ψ1)u =

=
∫
R2n σ

2(z′, w′)
( ∫

R2n σ
1(z, w)(u, φ1z)ψ

1
w dz dw , φ2z′

)
ψ2
w′ dz

′ dw′

=
∫
R2n

( ∫
R2n σ

2(z′, w′)σ1(z, w)(ψ1
w, φ

2
z′) dz

′ dw
)

(u, φ1z)ψ
2
w′ dz dw

′

=
∫
R2n σ(z, w′)(u, φ1z)ψ

2
w′ dz dw

′



12 P. BOGGIATTO, G. GARELLO

and, after an exchange of the names of the variables w and w′, the assertion is
formally proved with σ given by (4.6).
In order to give sense to the composition we remark that

(ψ1
w′ , φ

2
z′) = F [Tw′1φ

1Tz′1ψ
2](z′2 − w′2),

so that in the expression (4.6) (ψ1
w′ , φ

2
z′) is a smooth function of z′, w′ which is also

bounded as

sup
z′,w′∈R2n

(ψ1
w′ , φ

2
z′) ≤ ‖ψ1‖L2‖φ2‖L2 .

Then σ1(z, w′) σ2(z′, w) (ψ1
w′ , φ

2
z′) ∈ S(R8n) and therefore

σ(z, w) =

∫
R2n

∫
R2n

σ1(z, w′) σ2(z′, w) (ψ1
w′ , φ

2
z′) dz

′ dw′ ∈ S(R4n)

whenever σ1, σ2 ∈ S(R4n). �

Notice that if the two bilocalization operators are both expressed using the same
window functions, i.e. φ1 = φ2, ψ1 = ψ2, then the composed bilocalization operator
in Theorem 4.6 is still expressed with the same window functions.

Of course one could also write a composition formula expressing the product of
two bilocalization operators using new window functions φ3, ψ3 according to Prop.
4.5.

We conclude this section with a formula for the (formal) adjoint operator of a
bilocalization operator.

Proposition 4.7. Let Tσφ,ψ be a bilocalization operator with symbol σ and window

functions φ, ψ. Then, as an operator on L2(Rn), Tσφ,ψ has adjoint operator

(Tσφ,ψ)∗ = Tσ
∗

ψ,φ,

where σ∗(z, w) = σ(w, z).

Proof. For u, v ∈ S(Rn), multiple application of Fubini Theorem yields

(u, (Tσφ,ψ)∗v) = (Tσφ,ψu, v) =

=

∫
Rn

(∫
R2n

∫
R2n

σ(z, w)(u, φz)ψw(t) dz dw
)
v(t) dt

=

∫
R2n

∫
R2n

σ(z, w)(u, φz)(ψw, v) dz dw =

=

∫
Rn
u(s)

(∫
R2n

∫
R2n

σ(z, w)φz(s)(ψw, v) dz dw
)
ds =

=

∫
Rn
u(s)

(∫
R2n

∫
R2n

σ(z, w)φz(s)(v, ψw) dz dw
)
ds =

= (u, Tσ
∗

ψ,φv).

which, extended to u, v ∈ L2(Rn), shows that (Tσφ,ψ)∗ = Tσ
∗

ψ,φ. �
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One can check that, for localization operators, this agrees with the well-known

formula (LFφ,ψ)∗ = LFψ,φ. Of course one has to take care of the fact that, according to

which one of the formulae (4.2), (4.3), (4.4) is used to express LFφ,ψ as a bilocalization
operator. Different expressions are obtained which actually define a unique operator
thanks to the change of window formula (4.5).
Finally we remark that we have (formally) self-adjoint bilocalization operators when

φ = ψ and σ(z, w) = σ(w, z), in particular for real and symmetric symbols. In this
case the map σ → Tσφ,φ becomes a quantization.

5. Boundedness of localization and bilocalization operators

In this final section we present for specific functional setting some boundedness
results both for localization and bilocalization operators.
We begin with a study of localization operators on modulation spaces, see also [8].
In this section let v(z) be a weight function with tempered growth and m1(z),m2(z)
v−moderate weight functions. We further assume φ, ψ ∈ M1

v (Rn) are window
functions, F is a measurable function belonging to S′(Rn) and we indicate with
LFφ,ψ the localization operator defined as in (2.4) (or equivalently (2.5),(2.6)).

The following is a technical lemma about mixed-norm spaces that we shall need
later.

Lemma 5.1. Let α, β, γ, δ ∈ [1,+∞] and F ∈ Lαγ,βδ(R2n), G ∈ Lα
′γ,β′δ(R2n).

Then FG ∈ Lγ,δ(R2n) and

(5.1) ‖FG‖Lγ,δ(R2n) ≤ ‖F‖Lαγ,βδ(R2n)‖G‖Lα′γ,β′δ(R2n).

Proof. It is just a straightforward computation based on Hölder’s inequality, gen-
eralized to mixed-norm spaces:

∫
R2n |F (z)H(z)|dz ≤ ‖F‖Lp,q‖H‖Lp′,q′ . �

We recall that the topology of modulation spaces is not given by a fixed standard
norm but by a family of equivalent norms (cfr. Proposition 2.4 (a)). Therefore for
linear operators between modulation spaces only norm estimates modulo a multi-
plicative constant have a meaning.

Proposition 5.2. Let α, β, p, q ∈ [1,∞] and F, m1,m2 satisfy the condition

(5.2)
F (z)m2(z)

m1(z)
∈ Lα

′p,β′q(R2n).

Then the localization operator LFφ,ψ : Mαp,βq
m1

(Rn) → Mp,q
m2

(Rn) is bounded with
norm estimate

(5.3) ‖LFφ,ψ‖ ≤ C‖φ‖M1
v
‖ψ‖M1

v

∥∥∥∥F (z)m2(z)

m1(z)

∥∥∥∥
Lα′p,β′q

.

Proof. Suppose that g(z) is an L2(Rn)−normalized gaussian function. Then from
(2.6), using the fact that m2 is v−moderate and |Vψgz(w)| = |TzVψg(w)|, w ∈ R2n,
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we can write

m2(z)
∣∣∣(VgLFφ,ψu)(z)

∣∣∣ = m2(z)
∣∣(LFφ,ψu, gz)∣∣

= m2(z) |(FVφu, Vψgz)|

≤ C
∫
m2(w) |F (w)Vφu(w)| v(z − w) |Vψgz(w)|dw

=

∫
m2(w) |F (w)Vφu(w)| v(z − w) |TzVψg(w)|dw

=
(
m2|FVφu| ∗ v|V̌ψg|

)
(z)

where we have denoted V̌ψg(w) = Vψg(−w). Using this estimate, the mixed-norm
convolution estimates

(5.4) ‖F ∗G‖Lp,q ≤ C‖F‖Lp,q‖G‖L1

and Lemma 5.1 with γ = p, δ = q we have

‖LFφ,ψu‖Mp,q
m2

= ‖m2VgL
F
φ,ψu‖Lp,q

≤ ‖m2|FVφu| ∗ v|V̌ψg|‖Lp,q
≤ ‖m2FVφu‖Lp,q‖vV̌ψg‖L1

≤
∥∥∥∥m2

m1
F

∥∥∥∥
Lα′p,β′q

‖m1Vφu‖Lαp,βq‖vV̌ψg‖L1 .(5.5)

A simple computation shows that exchanging window and signal in the STFT yields
the formula Vψφ(x, ω) = e−2πixωVφψ(−x, ω), for z = (x, ω) ∈ R2n. In our case we

therefore have |V̌ψg(z)| = |Vgψ(x,−ω)| and

(5.6) ‖vV̌ψg‖L1 = ‖vVgψ‖L1 = ‖ψ‖M1
v
.

On the other hand, supposing g is not orthogonal to φ, the following pointwise
estimate holds (see e.g. [23], Lemma 11.3.3):

|Vφu(z)| ≤ 1

|(g, φ)|
(|Vgu| ∗ |Vφg|)(z).

From this estimate, (5.4) and (5.6) we have

‖m1Vφu‖Lαp,βq = ‖Vφu‖Lαp,βqm1
≤ C‖(|Vgu| ∗ |Vφg|) ‖Lαp,βqm1

≤ C‖Vgu‖Lαp,βqm1
‖Vφg‖L1

v

= C‖Vgu‖Lαp,βqm1
‖Vgφ‖L1

v

= C‖u‖Mαp,βq
m1
‖φ‖M1

v
.(5.7)

From (5.5), (5.6), (5.7) we obtain

(5.8) ‖LFφ,ψu‖Mp,q
m2
≤ C‖u‖Mαp,βq

m1
‖φ‖M1

v
‖ψ‖M1

v

∥∥∥∥m2

m1
F

∥∥∥∥
Lα′p,β′q

and therefore the assertion is proved. �

If we let αp = p1, βq = q1, α′p = p0, β′q = q0, p = p2, q = q2, in the previous
proposition we get the following reformulation.
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Corollary 5.3. Assume that p0, p1, p2, q0, q1, q2 ∈ [1,∞],F , m1 and m2 satisfy

(5.9)
1

p 0

=
1

p2
− 1

p1
,

1

q 0

=
1

q2
− 1

q1
,

F (z)m2(z)

m1(z)
∈ Lp0,q0(R2n).

Then the localization operator LFφ,ψ : Mp1,q1
m1

→ Mp2,q2
m2

is bounded with norm

estimate ‖LFφ,ψ‖ ≤ C‖φ‖M1
v
‖ψ‖M1

v
‖Fm2/m1‖Lp0,q0 .

Remark 5.4. We remark that necessarily p2 ≤ p1 and q2 ≤ q1 (strictly for p0 <∞,
q0 < ∞) and therefore Mp2,q2

m2
↪→ Mp1,q1

m1
so that we observe a certain regularizing

effect of the corresponding localization operators with respect to the p, q indices of
modulation spaces.

In view of an application of interpolation theory, we now state explicitly two
particular cases of Corollary 5.3. Supposem and σ are v−moderate weight functions
and consider the case m1 = m, m2 = mσ. Corollary 5.3, for p0 = q0 = ∞, then
gives the following result.

Corollary 5.5. Let F ∈ L∞σ (R2n). Then the operator LFφ,ψ is bounded from

Mp,q
m (Rn) to Mp,q

mσ(Rn) for every 1 ≤ p, q ≤ +∞ with norm estimate:

‖LFφ,ψ‖ ≤ C‖φ‖M1
v
‖ψ‖M1

v
‖F‖L∞σ .

We observe that Corollary 5.5 contains Remark 2, [9, §3].
The other particular case is p0 = q0 = 1 where, from Corollary 5.3 again with
m1 = m, m2 = mσ, follows the next stronger boundedness result.

Corollary 5.6. Let F ∈ L1
σ(R2n). Then, for every p1, q1, p2, q2 ∈ [1,+∞], the

operator LFφ,ψ is bounded from Mp1,q1
m (Rn) to Mp2,q2

mσ (Rn) and ‖LFφ,ψ‖ ≤
C ‖φ‖M1

v
‖ψ‖M1

v
‖F‖L1

σ
.

Proof. Corollary 5.3 yields the boundedness from M∞,∞m (Rn) to M1,1
mσ(Rn). Recall-

ing the continuous immersions between modulation spaces (Proposition 2.4, part
(d)) we obtain the following bounded sequence of operators

Mp1,q1
m (Rn)

id
↪→M∞,∞m (Rn)

LFφ,ψ−→ M1,1
mσ(Rn)

id
↪→Mp2,q2

mσ (Rn).

The norm estimate follows immediately from (5.3). �

Consider now the space B(Mp,q
m ,Mp,q

mσ) of bounded linear operators from Mp,q
m to

Mp,q
mσ. From Corollary 5.5 we have that the linear map F → LFφ,ψ is bounded from

L∞σ (R2n) to B(Mp,q
m ,Mp,q

mσ) and from Corollary 5.6 with p1 = p2 = p, q1 = q2 =
q, the same map is also bounded from L1

σ(R2n) to B(Mp,q
m ,Mp,q

mσ). Then using
interpolation (see e.g. [42, Thm. 2.10]) we have proved the following proposition.

Corollary 5.7. Let F ∈ Lrσ(R2n), r ∈ [1,∞], and m, σ be v-moderate weight
functions. Then for every p, q,∈ [1,+∞] we have a bounded localization operator

LFφ,ψ : Mp,q
m (Rn)→Mp,q

mσ(Rn).

with norm estimate ‖LFφ,ψ‖ ≤ C‖φ‖M1
v
‖ψ‖M1

v
‖F‖Lrσ .

Suppose now σ is a measurable function belonging to S′(R4n). Then a first
boundedness result about bilocalization operators is the following.
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Proposition 5.8. Let p1, q1, p2, q2 ∈ [1,+∞], and suppose

σ(z, w)m2(w)

m1(z)
∈ Lp1,q1,p2,q2(R4n),

(
(z, w) = (z1, z2, w1, w2) ∈ R4n

)
Then the bilocalization operator Tσφ,ψ defines a bounded map:

(5.10) Tσφ,ψ : M
p′1,q

′
1

m1 →Mp2,q2
m2

where p′1, q
′
1 are conjugate indices of p1, q1.

Proof. We have the estimate:

|(Tσφ,ψu, v)| ≤
∫
R2n

∫
R2n

|σ(z, w)|m2(w)

m1(z)
m1(z)|Vφu(z)| 1

m2(w)
|Vψv(w)| dw dz

≤
∥∥∥∥σ(z, w)m2(w)

m1(z)

∥∥∥∥
Lp1,q1,p2,q2

∥∥∥m1(z)Vφu(z)
∥∥∥
Lp
′
1,q
′
1

∥∥∥∥ 1

m2(w)
Vψv(w)

∥∥∥∥
Lp
′
2,q
′
2

∼
∥∥∥∥σ(z, w)m2(w)

m1(z)

∥∥∥∥
Lp1,q1,p2,q2

∥∥u∥∥
M
p′1,q
′
1

m1

∥∥v∥∥
M
p′2,q
′
2

1/m2

,

which proves the assertion as (Mp2,q2
m2

)∗ = M
p′2,q

′
2

1/m2
. �

Next we point out two cases where Proposition 5.8 can be of particular interest.
The first case is that of square integrable symbols. Actually in the case p1 = q1 =
p2 = q2 = 2 and m1 = m2 = 1 Proposition 5.8 simply reads:

Corollary 5.9. Suppose that σ ∈ L2(R4n), then the bilocalization operator Tσφ,ψ
defines a bounded map on L2(Rn).

As a second case we consider integrable symbols and see that, as already for local-
ization operators, this is the most favorable case.

Corollary 5.10. Suppose that m2(w) ≤ C, 0 < C ≤ m1(z) and σ ∈ L1(R4n).
Then the bilocalization operator Tσφ,ψ defines a bounded map:

(5.11) Tσφ,ψ : Mp1,q1
m1

→Mp2,q2
m2

for every p1, q1, p2, q2 ∈ [1,+∞].

Proof. Under the above hypothesis we have m2(w)/m2(z) ∈ L∞(R4n) so that
σ(z, w)m2(w)/m2(z) ∈ L1(R4n) and from Proposition 5.8 with p1 = q1 = p2 =
q2 = 1 we have a bounded map Tσφ,ψ : M∞,∞m1

→ M1,1
m2

. The assertion then follows

from the continuous imbedding properties of modulation spaces (see 2.4 (d)):

Mp1,q1
m1

(Rn)
id
↪→M∞,∞m1

(Rn)
Tσφ,ψ−→ M1,1

m2
(Rn)

id
↪→Mp2,q2

m2
(Rn).

�

Remark 5.11. The previous proposition holds in particular for unweighted modu-
lation spaces.

As a final corollary of the previous result we have the following algebraic property
for bilocalization operators with integrable symbols.
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Corollary 5.12. For every p, q, r ∈ [1,+∞] the class of bilocalization operators

Tσφ,ψ with window fucntions φ ∈ Lr(Rn) ∩M1
v (Rn), ψ ∈ Lr′(R2n) ∩M1

v (Rn) and

symbol σ ∈ L1(R4n) is a subalgebra of the algebra B(Mp,q) of bounded operators on
the modulation space Mp,q.

Proof. From Proposition 4.6 we have that the product of two bilocalization opera-
tors Tσ1

φ1,ψ1 , Tσ2

φ2,ψ2 with windows φj ∈ Lr(Rn)∩M1
v (Rn), ψj ∈ Lr′(R2n)∩M1

v (Rn),

(j = 1, 2), is the bilocalization operator Tσφ1,ψ2 with symbol σ given by (4.6). The

first and second windows of the composed operators therefore belong to Lr(Rn) ∩
M1
v (Rn) and in Lr

′
(R2n) ∩M1

v (Rn), respectively. So we just need to show that if
σ1, σ2 ∈ L1(R4n) then σ ∈ L1(R4n). From (4.6) we have

‖σ‖L1(R4n) ≤
∫
R2n

∫
R2n

∫
R2n

∫
R2n |σ1(z, w′)| |σ2(z′, w)| |(ψ1

w′ , φ
2
z′)| dz′ dw′ dz dw

≤ ‖ψ1‖Lr‖φ2‖Lr′ ‖σ1‖L1(R4n) ‖σ2‖L1(R4n)

and the assertion is proved. �
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