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Abstract

The Weighted Safe Set Problem requires to partition an undirected graph into two families of connected com-

ponents, respectively denoted as safe and unsafe, in such a way that each safe component dominates the unsafe

adjacent components with respect to a weight function. We introduce a combinatorial branch & bound ap-

proach, whose main strength is a refined relaxation that combines graph manipulations and the solution of an

auxiliary problem. We also propose fixing procedures to reduce the number of branching nodes. The algo-

rithm solves all weighted instances available in the literature and most unweighted ones, up to 50 vertices, with

computational times orders of magnitude smaller than the competing algorithms. In order to investigate the

limits of the approach, we introduce a benchmark of graphs with 60 vertices, solving to optimality the denser

instances.

Keywords: Safe Set, Branch & bound, graph partitioning

1. Introduction

Let G = (V,E) be a connected undirected graph with n = |V | and w : V → Q+ a positive weight function

defined on its vertices. The weight of any subset of vertices T ⊆ V is defined as the sum of the weights of all

vertices in T : w(T ) =
∑

v∈T wv. We denote as G[T ] the subgraph induced on G by the vertices of T and as

CG(T ) the collection of all maximal connected components in the induced subgraph G[T ]. We generalise the

adjacency relation from vertices to disjoint subsets R, T ⊆ V by introducing the relation R ▷◁G T which holds

when there exists an edge between a vertex of R and a vertex of T . The notation is simplified to ▷◁ when the

graph G is clear from the context.
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A subset S ⊆ V is said to be safe when each connected component Si ∈ CG(S) has a weight not smaller

than the weight of any connected component Uj ∈ CG(V \S) such that Uj ▷◁ Si. The components of CG(S) and

CG(V \ S) are denoted, respectively, as safe and unsafe. The Weighted Safe Set Problem (WSSP) requires to

find in G a safe set of minimum weight.

The literature discusses an application of the WSSP to the design of temporary refuges in buildings, to

shelter people from the surrounding spaces in the most volume-efficient way (Fujita et al., 2014). Another

application concerns the determination of communities in a social network, whose prevailing weights allow to

influence the other communities (Bapat et al., 2016). In a more general fashion, the problem can model the

search for a subnetwork whose control guarantees some form of dominance over the entire network.

The early contributions to the study of this problem are theoretically oriented. Fujita et al. (2016) prove its

strong NP-hardness on general graphs, even in the unweighted case (wv = 1 for all v ∈ V ). For general weight

functions, the WSSP is NP-hard even on star graphs, but can be solved in O(n3)-time on paths (Bapat et al.,

2016). On bounded-treewidth graphs and interval graphs, the problem is only weakly NP-hard, and Àgueda

et al. (2018) solve it with pseudopolynomial algorithms based on kernelisation and dynamic programming, that

become polynomial in the unweighted case. In particular, trees admit an O(n5)-time algorithm. On planar

graphs and split graphs, the problem is NP-hard even in the unweighted case: an approximation-preserving

reduction from the Minimum Vertex Cover Problem (Dinur and Safra, 2005) implies that approximation guar-

antees better than 1.3606 are possible only if P = NP (Àgueda et al., 2018). Belmonte et al. (2020) analyse

the parameterised complexity of the unweighted problem. The variant of the problem known as Connected Safe

Set Problem (CSSP) imposes on the solution the additional constraint to induce a connected subgraph. It was

also introduced in Fujita et al. (2014) and further studied by Ehard and Rautenbach (2020) and Fujita et al.

(2020, 2021) with the aim to characterise the maximum gap between the optimal values of the two problems

and the instances for which they coincide.

To the best of our knowledge, four papers propose computational approaches to the WSSP. Macambira et al.

(2019) introduce a randomized stingy heuristic inspired by the algorithm by Fujita et al. (2016) for trees. They

also propose an Integer Linear Programming (ILP) formulation using O(n3) binary variables. Since the number

of constraints is exponential, they propose a branch & cut approach with separation procedures to generate

violated constraints at each branching node (Mitchell, 2009). This approach solves instances up to 30 vertices

in a couple of hours. Hosteins (2020) presents a Mixed Integer Linear Programming (MILP) formulation using

O(n2) binary variables and O(n2) real variables. This formulation has polynomial size, as it includes only

O(n3) constraints; in particular, the connectivity requirements are enforced by flow conservation. Experimental

results show that it is able to solve instances up to 40 vertices in one hour. Malaguti and Pedrotti (2021, 2022)

introduce an ILP formulation for the WSSP with n variables that indicate the safe vertices and an exponential

number of safety constraints. For this noncompact formulation, the approach is again a branch & cut algorithm,

that improves upon both Macambira et al. (2019) and Hosteins (2020). All these approaches can be adapted
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to the connected version of the problem.

In this paper, we propose a combinatorial branch & bound approach for the WSSP , that can also be

naturally extended to provide only connected solutions. Its main feature is the design of a bounding procedure

that quickly provides an effective lower bound on the objective, without resorting to linear programming. This

procedure proves particularly effective on the dense instances, which are the most challenging ones for the

formulations proposed by Macambira et al. (2019) and Malaguti and Pedrotti (2021). A second contribution is

given by logical reduction procedures that allow to fix vertices of the graph in or out of the optimal solution.

These procedures are particularly effective on the sparse instances, which are slightly harder for the formulation

proposed by Hosteins (2020). We evaluate the performance of this algorithm on both the available benchmarks

and on new instances up to 60 vertices, solving nearly all of them in a limit time of one hour.

In the next section, we recall the MILP formulation by Hosteins (2020). Section 3 describes the branch &

bound algorithm and Section 4 discusses the computational experiments. Conclusions close the paper.

2. Mathematical programming formulation

We recall here the mathematical programming formulation of Hosteins (2020). The idea behind the model is

to introduce a fictitious flow which can only circulate between vertices of the same (safe or unsafe) component

and is absorbed equally by each vertex of the graph. Therefore, we need to add to G an artificial vertex 0

adjacent to every other vertex of the graph, which will be the source of this flow. In practice, we will allow a

positive amount of flow from vertex 0 to at most one vertex per component, so as to keep track of the component

to which each vertex belongs in the solution. Since there are at most n− 1 components of either type (safe or

unsafe), the integer index c ranges in {1, ..., n− 1}.

The model includes the following families of binary variables:

• xu = 1 if vertex u is safe, 0 otherwise;

• yuv = 1 if both the extreme vertices of edge (u, v) are safe, 0 otherwise;

• y′uv = 1 if both the extreme vertices of edge (u, v) are unsafe, 0 otherwise;

• auc = 1 if vertex u is safe and included in component c;

• a′uc = 1 if vertex u is unsafe and included in component c;

• tuc = 1 if vertex u is safe, belongs to component c and receives a nonzero flow from vertex 0;

• t′uc = 1 if vertex u is unsafe, belongs to component c and receives a nonzero flow from vertex 0;

and of continuous variables:

• fuv: flow from vertex u ∈ V ∪ {0} to adjacent vertex v ∈ V ;
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• ωu: total weight of the safe component which includes u ∈ V (0 if u is unsafe);

• ω′
u: total weight of the unsafe component which includes u ∈ V (0 if u is safe);

• νc: total weight of the safe component c;

• and ν′c: total weight of the unsafe component c.

Given a vertex v ∈ V , the set of its neighbours Nv ⊂ V is defined as

Nv = {u ∈ V | (u, v) ∈ E} ,

and the quantity W is defined as the total weight of the graph:

W :=
∑
u∈V

wu.

Consequently, the WSSP can be formulated as:

min
∑
u∈V

wu · xu (1a)

Subject to:

yuv ≥ xu + xv − 1 (u, v) ∈ E (1b)

y′uv ≥ 1− xu − xv (u, v) ∈ E (1c)

yuv ≤ xu (u, v) ∈ E (1d)

yuv ≤ xv (u, v) ∈ E (1e)

y′uv ≤ 1− xu (u, v) ∈ E (1f)

y′uv ≤ 1− xv (u, v) ∈ E (1g)∑
v∈Nu

fuv −
∑

v∈Nu∪{0}

fvu = −1 u ∈ V (1h)

∑
v∈V

f0v = n (1i)

f0u ≤ (n− 1) ·
n−1∑
c=1

(tuc + t′uc) u ∈ V (1j)

fuv ≤ (n− 1) · (yuv + y′uv) (u, v) ∈ E (1k)

n−1∑
c=1

auc = xu u ∈ V (1l)

n−1∑
c=1

a′uc = 1− xu u ∈ V (1m)
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auc ≥ avc + yuv − 1 (u, v) ∈ E, c ∈ {1, ..., n− 1} (1n)

avc ≥ auc + yuv − 1 (u, v) ∈ E, c ∈ {1, ..., n− 1} (1o)

a′uc ≥ a′vc + y′uv − 1 (u, v) ∈ E, c ∈ {1, ..., n− 1} (1p)

a′vc ≥ a′uc + y′uv − 1 (u, v) ∈ E, c ∈ {1, ..., n− 1} (1q)

tuc ≤ auc u ∈ V, c ∈ {1, ..., n− 1} (1r)

t′uc ≤ a′uc u ∈ V, c ∈ {1, ..., n− 1} (1s)∑
u∈V

tuc ≤ 1 c ∈ {1, ..., n− 1} (1t)

∑
u∈V

t′uc ≤ 1 c ∈ {1, ..., n− 1} (1u)

νc =
∑
u∈V

wu · auc c ∈ {1, ..., n− 1} (1v)

ν′c =
∑
u∈V

wu · a′uc c ∈ {1, ..., n− 1} (1w)

ωu ≥ νc −W · (1− auc) u ∈ V, c ∈ {1, ..., n− 1} (1x)

ωu ≤ νc +W · (1− auc) u ∈ V, c ∈ {1, ..., n− 1} (1y)

ωu ≤ W · xu u ∈ V (1z)

ω′
u ≥ ν′c −W · (1− a′uc) u ∈ V, c ∈ {1, ..., n− 1} (1aa)

ω′
u ≤ ν′c +W · (1− a′uc) u ∈ V, c ∈ {1, ..., n− 1} (1ab)

ω′
u ≤ W · (1− xu) u ∈ V (1ac)

ωu ≥ ω′
v −W · y′uv (u, v) ∈ E (1ad)∑

u∈V

xu ≥ 1 (1ae)

yuv, y
′
uv ∈ {0, 1} (u, v) ∈ E (1af)

auc, a
′
uc ∈ {0, 1} u ∈ V, c ∈ {1, ..., n− 1} (1ag)

ωu, ω
′
u ≥ 0 u ∈ V (1ah)

νc, ν
′
c ≥ 0 c ∈ {1, ..., n− 1} (1ai)

0 ≤ fuv ≤ n− 1 u ∈ V ∪ {0}, v ∈ V (1aj)

xu ∈ {0, 1} u ∈ V (1ak)

tuc, t
′
uc ∈ {0, 1} u ∈ V, c ∈ {1, ..., n− 1} (1al)

The objective function (1a) is the total weight of the safe vertices. Constraints (1b - 1g) guarantee the

consistency of variables y and y′ with variables x. They are a linearization of the constraints yuv = xu · xv

and y′uv = (1 − xu) · (1 − xv) for each (u, v) ∈ E. Constraints (1h) force the inflow of a vertex to exceed the
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outflow by 1, because every vertex consumes one unit of flow. Constraint (1i) imposes an outflow equal to n from

vertex 0. Constraints (1j) impose that a vertex receiving flow from vertex 0 becomes the representative vertex of

a component. Constraints (1k) prevent any flow through edges between different components. Constraints (1l,

1m) state that each vertex belongs precisely to one safe or unsafe component. Constraints (1n - 1q) guarantee

that vertices of the same component have the same index c. Constraints (1r, 1s) enforce consistency between

the components described by variables a and a′ and those described by variables t and t′. Constraints (1t, 1u)

guarantee that at most one vertex for each component receives flow directly from vertex 0. Constraints (1v,

1w) assign to νc the total weight of component c. Constraints (1x - 1ac) assign to ωu the total weight of the

component that contains vertex u. Constraints (1ad) express the safety requirements and, finally, constraint

(1ae) imposes that the safe set is not empty.

Hosteins (2020) demonstrates that, if the integrality property holds for variables x, t and t′, it is possible

to relax the integrality constraint over variables y, y′, a and a′. Additional symmetry breaking constraints are

provided, along with a variable reduction procedure based on an evaluation of the maximum number of maximal

connected components in both the safe and unsafe sets.

3. The branch & bound algorithm

We describe hereafter the scheme of the combinatorial branch & bound algorithm developed to solve the

WSSP. The algorithm proceeds by fixing vertices in or out of the solution. Each node of the branching tree,

therefore, corresponds to a subproblem in which the vertex set V is partitioned into (S,U, F ), where S is the

subset of safe vertices (fixed inside the solution), U is the subset of the unsafe vertices (fixed outside) and

F is the subset of the residual free vertices. In this framework, since any feasible solution can be interpreted

as a special subproblem (S, V \ S, ∅) with no free vertices, we can generalise the concepts of safe and unsafe

components previously introduced by defining:

CG(S) = {Si | i = 1, 2, ..., k} as the collection of all safe components Si (with k = |CG(S)|),

CG(U) = {Uj | j = 1, 2, ...|CG(U)|} as the collection of all unsafe components Uj ,

CG(F ) = {Fl | l = 1, 2, ..., |CG(F )|} as the collection of all free components Fl.

In each node of the branching tree, the algorithm tries to construct a feasible solution, respecting the current

assignments. It computes a lower bound on the optimum of the subproblem. It fixes some free vertices using

logical tests. Finally, it decides how to branch creating two children nodes.

The following proposition provides a technical remark that will be used by the upper and lower bounding

procedures. The intuitive idea is that, when the free vertices of a subproblem (S,U, F ) are assigned to the

safe and the unsafe components to generate a solution, each original component can be enlarged and possibly

merged with other components of the same type; therefore, each safe component of the subproblem is fully

included in exactly one safe component of the solution, and each unsafe component of the subproblem is fully

included in exactly one of the unsafe components of the solution.
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Proposition 1. Let (S,U, F ) be a subproblem and S̃ a set of vertices such that S ⊆ S̃ ⊆ S∪F , that is a feasible

or infeasible solution for the subproblem. For each component Si ∈ CG(S) there is a component S̃x ∈ CG(S̃)

such that Si ⊆ S̃x and w(Si) ≤ w(S̃x); for each component Uj ∈ CG(U) there is a component Ũy ∈ CG(V \ S̃)

such that Uj ⊆ Ũy and w(Uj) ≤ w(Ũy).

Proof. Consider a safe component Si ∈ CG(S). Since Si is connected, we know that every pair of vertices

u, v ∈ Si are connected through a path involving only vertices of Si. Since S ⊆ S̃, all the vertices in the path

between u and v are also contained in S̃, but this implies that they are contained in the same component

S̃x ∈ CG(S̃). This holds for each pair of vertices u, v ∈ Si, implying that Si is fully contained in S̃x. As the

weights are nonnegative, Si ⊆ S̃x implies w(Si) ≤ w(S̃x). The same reasoning can be applied to the unsafe

components, as U ⊆ V \ S̃ ⊆ U ∪ F .

3.1. Upper bound and feasibility

Once the safe, unsafe and free components of a subproblem are known, it is possible either to find a feasible

solution, or to prove that none exists. In particular, the definition below identifies free components whose

vertices belong to the unsafe set in any feasible solution.

Definition 1. A free component Fl ∈ CG(F ) is called unsavable if:

1. Fl is not adjacent to any safe component;

2. its weight w(Fl) is smaller than the weight of at least one adjacent (unsafe) component.

The following proposition shows that all vertices of the unsavable free components can be moved from subset

F to U , with no risk of excluding feasible solutions.

Proposition 2. In all feasible solutions of subproblem (S,U, F ), the vertices of the unsavable free components

are unsafe.

Proof. Let Fl ∈ CG(F ) be an unsavable free component, and Uj ∈ CG(U) an unsafe component adjacent to Fl

such that w(Uj) > w(Fl). Let S̃ be a feasible solution and Ũj ∈ CG(V \ S̃) the unsafe component that contains

Uj (Proposition 1). Either Ũj fully includes also Fl, or there exists a vertex v ∈ Fl that is adjacent to Ũj and

belongs to S̃. The first case implies the thesis. The second case contradicts the feasibility of S̃. In fact, let

S̃(v) ∈ CG(S̃) be the safe component that includes v in S̃. Since Fl is unsavable, S̃
(v) ⊆ Fl, but all weights are

nonnegative, and therefore w(S̃(v)) ≤ w(Fl) < w(Uj) ≤ w(Ũj), which violates the safety constraint.

Since moving free vertices to U enlarges some unsafe components, other free components can become un-

savable, allowing to apply the proposition repeatedly. At the end of this chain effect, moving all free vertices

to the safe set and checking the safety requirements on the resulting set provides a simple feasibility test, as

proved in the following theorem.

7



Theorem 1. A subproblem (S,U, F ) with no unsavable free component is feasible if and only if S ∪ F is a

feasible solution.

Proof. If S∪F is a feasible solution, the subproblem is trivially feasible. If, on the contrary, S∪F is infeasible,

there is a maximal connected component Ŝi ∈ CG(S ∪ F ) that is adjacent to a maximal connected component

Uj ∈ CG(U), and has strictly lower weight: w(Ŝi) < w(Uj). Consider any S̃ ⊆ S∪F . According to Proposition 1,

component Uj is fully contained in a component Ũy ∈ CG(V \ S̃). On the other hand, when S∪F is reduced to S̃

moving vertices from F to U , component Ŝi can become smaller, or split in smaller disjoint subsets, or completely

vanish. The third case is impossible, because it would require Ŝi to fully consist of free vertices and have no

adjacent safe vertex: such a component, with w(Ŝi) < w(Uj), would be unsavable, against the hypothesis.

Therefore, S̃ contains one or more components S̃x ⊆ Ŝi, with weights w(S̃x) ≤ w(Ŝi) < w(Uj) ≤ w(Ũy) and

one of these components is adjacent to Ũy. Consequently, S̃ is infeasible.

The solution provided by the previous theorem for feasible subproblems is actually the worst feasible one,

but it is a fast way to potentially improve the upper bound during the visit of the branching tree.

3.2. Lower Bound

The lower bounding procedure adopted by the algorithm exploits a sequence of relaxations, obtained by

changing the topology of the graph and removing or weakening the safety constraints, until we obtain a much

simpler problem, for which we build an ILP formulation, whose continuous relaxation we solve via an ad hoc

algorithm.

At each node of the branching tree, it is possible to compute two simple lower bounds, based on the weights

of the safe and unsafe components of subproblem (S,U, F ). The first bound is trivially the total weight of the

safe vertices: for each feasible solution S̃, in fact, w(S̃) ≥ w(S). The second bound is based on the safety

constraints: in any feasible solution, the unsafe component of maximum weight must be dominated by the

adjacent safe components, and consequently by the total weight of the solution. Hence, the maximum weight

of any connected component of CG(U) provides a lower bound on the optimum: w(S̃) ≥ maxUj∈CG(U) w(Uj).

Since these bounds do not take into account the weights of the free vertices, however, their quality in the

upper levels of the branching tree is usually poor. The development of a more refined bound is the main

contribution of this paper and the main reason for the effectiveness of the branch & bound algorithm. This

bound is based on the remark that all free vertices that are adjacent to both S and U will be included in

the existing safe and unsafe components, without generating any new one. Therefore, these free vertices can

be used to tighten the previous two bounds. As an example, Figure 1 shows a subproblem (S,U, F ) in which

S = {1, 6}, U = {3, 7} and F = {2, 4, 5}. The two simple lower bounds are w(S) = 9 and w(U) = 12. However,

all the vertices in F are adjacent to both S and U and, therefore, in every feasible solution their total weight

(w(F ) = 23) will be distributed between S and U . The distribution that minimises the maximum weight of

the two components corresponds to first increasing w(S) by 3 to level them off and then dividing the residual
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weight of F in equal parts between S and U , thus obtaining a lower bound equal to 9 + 3 + (23 − 3)/2 = 22.

Incidentally, this is also the value of the optimal solution of the subproblem, S∗ = {1, 4, 5, 6}.
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Figure 1: Example of a subproblem (S,U, F ). The weight of each node is displayed next to it.

Such a situation is quite frequent, especially when the graph is dense, as shown by the following remark

based on the model proposed by Gilbert (1959).

Remark 1. Let G = (V,E) be a random graph following the Erdős-Rényi-Gilbert model, where each pair of

vertices has a fixed probability δ ∈ [0, 1] of corresponding to an edge. Given a subproblem (S,U, F ), the expected

cardinality of the set of free vertices adjacent to both S and U , X = {x ∈ F | ∃s ∈ S, u ∈ U : (s, x) ∈

E ∧ (x, u) ∈ E}, is

E[|X|] = |F | · (1− (1− δ2)|S|·|U |).
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Proof. The probability that some vertex f ∈ F belongs to X is

P(f ∈ X) = P(∃s ∈ S, u ∈ U : (s, f) ∈ E ∧ (f, u) ∈ E)

= 1− P(∀s ∈ S, u ∈ U : (s, f) /∈ E ∨ (f, u) /∈ E)

= 1−
∏
s∈S

∏
u∈U

P((s, f) /∈ E ∨ (f, u) /∈ E)

= 1−
∏
s∈S

∏
u∈U

(1− P((s, f) ∈ E) · P((f, u) ∈ E))

= 1−
∏
s∈S

∏
u∈U

(1− δ · δ)

= 1− (1− δ2)|S|·|U |

Let Xf be the binary random variable equal to 1 when f ∈ X, and 0 otherwise. The cardinality of X is the

random variable |X| =
∑

f∈F Xf , and therefore, a binomial variable with parameters |F | and P(f ∈ X). Its

expected value is E[|X|] = |F | · P(f ∈ X), which implies the thesis.

The example of Figure 1 conveys the general idea, but is simplified from several points of view. First of all,

the number of safe or unsafe components can be larger than one, and adding free vertices can merge components,

instead of simply enlarging them. Then, not all free vertices are adjacent both to the safe and unsafe components.

Also, the assignment of free vertices to the components with the aim to reduce the maximum weight bears a

resemblance to the subset sum problem, but is also constrained by the topology of the graph. Finally, such an

NP-complete problem is hard to solve.

In order to deal with all these aspects, we assume that S and U are not empty, and that at most one of

the |CG(S)| = k ≥ 1 components of CG(S) is adjacent to F . The first limitation is true in most subproblems,

and the second limitation can be easily maintained in all nodes by adopting a branching rule described in

Section 3.4. Under this assumption, no pair of such components will be merged by fixing free vertices in

the solution. Without any loss of generality, we can impose that, for any feasible solution S̃, the first safe

components are the same as in S (S̃i = Si for i = 1, . . . , k−1), Sk possibly incorporates free vertices (S̃k ⊇ Sk),

and new safe components S̃i (i = k + 1, . . . , r) are possibly created from scratch. Figure 2 provides examples

of the possible cases. Given subproblem (S,U, F ) with S = {4, 6, 8} and U = {5, 7, 9, 12, 13}, set S consists of

k = 2 components: S1 = {4, 8} cannot be augmented because it is not adjacent to F = {1, 2, 3, 10, 11}, whereas

S2 = {6} can. In fact, the feasible solution S̃ = {1, 3, 4, 6, 8} induces three safe components: the first one is

unchanged with respect to S (S̃1 = S1), the second one is augmented (S̃2 = {1, 6} ⊃ S2) and the third one is

completely new (S̃3 = {3}). Considering the unsafe components, set U induced four: U1 = {5, 9}, U2 = {12},

U3 = {13} and U4 = {7}. The complement of the feasible solution Ũ = V \ S̃ = {2, 5, 7, 9, 10, 11, 12, 13} has the

following unsafe components: Ũ1 coincides with U1, Ũ2 is obtained augmenting U2 by vertex 10, Ũ3 is obtained

merging U3 and U4 through vertex 11, and Ũ4 is created from scratch including vertex 2. This confirms the

properties stated by Proposition 1. Additionally, the limitation on subproblem (S,U, F ) guarantees that none
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of the safe components of S merge.

6 4 13

7 5 8 5

5 7 2
4

3 3

1 2 3

4 5 6 7

8 9 10 11

12 13
S1 = S̃1 U1 = Ũ1

S2

S̃2

Ũ2

U2
U3

U4

Ũ3

S̃3Ũ4

Figure 2: The safe and unsafe components of subproblem (S,U, F ) (marked in dashed lines) satisfy two basic limitations: S and U

are nonempty, and at most one of the safe components of CG(S), namely S2, is adjacent to F . Considering any feasible solutions of

the subproblem (e.g, S̃ = {1, 3, 4, 6, 8}), its safe and unsafe components (marked in continuous lines) can remain the same (S̃1 = S1

and Ũ1 = U1), be augmented (S̃2 = S2 ∪ {1} and Ũ2 = U2 ∪ {10}) or be created from scratch (S̃3 = {3} and Ũ4 = {2}); only the

unsafe components can merge including free vertices (Ũ3 = U3 ∪ {11} ∪ U4).

Now, we focus on the subset of free vertices that are adjacent to both S and U :

F ′ = {v ∈ F | ∃s ∈ S, u ∈ U : (s, v) ∈ E ∧ (v, u) ∈ E}.

Under the limitation above introduced, the vertices of F ′ are actually adjacent only to safe component Sk.

In any feasible solution, these vertices either join Sk, increasing its weight, or join an unsafe component Ul,

increasing its weight and possibly merging it with other unsafe components. Since the second situation is

harder to treat, we avoid it modifying the graph so that also the existing unsafe components cannot merge. The

following propositions show that this can be done while simultaneously producing a relaxation of the original

subproblem. In fact, the manipulations described limit the ways in which the unsafe components Ul can enlarge,
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but they keep and possibly extend those in which the safe component Sk can become larger.

Proposition 3. Removing an edge (u, v) from graph G = (V,E) provides a relaxation of subproblem (S,U, F )

if u ∈ U and v ∈ F or both u, v ∈ F ′.

Proof. We now show that any feasible solution S̃ remains feasible in the graph obtained removing edges as in

the statement, and therefore the resulting problem is a relaxation of the original one.

Let (u, v) be an edge with u ∈ U and v ∈ F . If v ∈ S̃, the safe and unsafe components of S̃ that include,

respectively, v and u are adjacent in G, but can be nonadjacent in the reduced graph. This would remove a

safety constraint. If on the contrary v ∈ V \ S̃, u and v belong to the same unsafe component, and removing

the edge could split it, replacing some safety constraints with other ones concerning unsafe components of lower

weight. In both cases, the feasibility of S̃ is maintained.

Let (u, v) be an edge with u, v ∈ F ′. If one of the two vertices is in S̃, say u, and the other in V \ S̃, say v,

deleting the edge does not cause any change because u ∈ S̃k and v is directly adjacent also to S̃k. If both are

unsafe, deleting the edge can split the unsafe component that includes them, replacing some safety constraints

with weaker ones. Finally, if both u and v are safe, since they are adjacent to Sk and Sk is connected, they

both belong to component S̃k, that remains connected. Hence, S̃ remains feasible.

A technical detail worth discussing is that removing edges can disconnect the graph, while the WSSP is

commonly defined on connected graphs. With the purpose to obtain a problem for which lower bounds are

simple to compute, we adopt the natural extension to nonconnected graphs that admits the existence of isolated

unsafe components, because they do not violate any safety constraint.

Proposition 4. Replacing in graph G = (V,E) an edge (u, v) with u ∈ F ′ and v ∈ F \ F ′ with any edge (s, v)

with s ∈ Sk provides a relaxation of subproblem (S,U, F ).

Proof. Consider any feasible solution S̃ and let (u, v) be an edge with u ∈ F ′ and v ∈ F \F ′. If v ∈ S̃, the safe

component of S̃ that includes v merges with Sk (unless they already were the same), the weight of their union

is larger than the original weights and all safety constraints are even more satisfied. If v ∈ V \ S̃ and u ∈ S̃ the

adjacent components induce the same safety constraint. Finally, if u, v ∈ V \ S̃, the unsafe component including

u and v possibly splits, inducing weaker safety constraints.

Figure 3 shows an example of these relaxations for graph G = (V,E) with V = {1, . . . , 13} and the sub-

problem with S = {1}, U = {4, 5, 7, 8, 11, 13} and F = {2, 3, 6, 9, 10, 12}). The dashed boxes are the only safe

component Sk = {1} and the six unsafe components U1 = {4}, U2 = {5}, U3 = {7}, U4 = {8}, U5 = {11},

U6 = {13}, while F ′ = {2, 3, 6, 9}. The weights are reported next to each vertex.

Table 1 provides examples of all the modifications discussed in the previous propositions on the graph of

Figure 3. The removed or replaced edges are marked with crosses, the new edge is drawn with a dotted line

and an arrow points it from the original edge. The first row of the table describes the starting graph, the
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Figure 3: Example of graph manipulations: removing each of the three edges (2, 3), (6, 7) or (12, 13) (in red) or replacing edge

(9, 10) (also in red) with (1, 10) (in dotted blue) yields a relaxation of the original problem.
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optimal solution S∗ and its total weight w(S∗). Each of the following rows reports a modification applied to

the starting graph, the corresponding proposition, the optimal solution S∗ of the relaxed instance obtained and

its total weight w(S∗). The last row applies all the previous modifications. In all cases, the optimal solution of

the original problem remains feasible, but a new better solution appears; in particular the value of the last one

coincides with the simple bound w(U4) = 3.

Modification Proposition S∗ w(S∗)

nothing {1, 3, 6, 9, 10} 5

remove (2, 3) 3 {1, 6, 9, 10} 4

remove (6, 7) 3 {1, 3, 9, 10} 4

remove (12, 13) 3 {1, 3, 6, 9} 4

replace (9, 10) with (1, 10) 4 {1, 3, 6, 10} 4

all the previous 3, 4 {1, 6, 10} 3

Table 1: Manipulations applied to the graph in Figure 3 and their effects on the optimal solution.

The lower bounding procedure adopted in the branch & bound algorithm applies Propositions 3 and 4 to

graph G so as to obtain a reduced graph G′ in the following way:

• remove all edges (u, v) with u, v ∈ F ′;

• remove all edges (u, v) with u ∈ U and v ∈ F \ F ′;

• for each vertex v ∈ F ′, remove all but one of the edges (u, v) such that u ∈ U , so that at most one unsafe

component remains adjacent to v;

• replace every edge (u, v) with u ∈ F ′ and v ∈ F \ F ′ with an edge (s, v) with s ∈ Sk (if such an edge

already exists, just remove (u, v)).

Thanks to these modifications, in the reduced graph the unsafe components Ul ∈ CG(U) can include vertices of

F ′, but not merge with each other, and they cannot extend to F \ F ′. Therefore, in any feasible solution S̃ of

the relaxed problem each unsafe component includes at most one unsafe component Ul and can be denoted by

the same index Ũl ∈ CG(V \ S̃). Finally, each v ∈ F ′ joins either Sk or the only unsafe component Ul adjacent

to v.

The choice of the edge between each v ∈ F ′ and U is arbitrary, but, considering that the maximum weight of

an unsafe component provides a lower bound on the optimum, it looks more promising to allow a vertex to join

an unsafe component of large weight, rather than a component of small weight. Therefore, we associate each

vertex to the maximum weight adjacent unsafe component, obtaining a partition of F ′ into subsets associated
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to the unsafe components Ul.

F ′
l =

{
v ∈ F ′ | Ul = argmax

Uy▷◁G{v}
w(Uy)

}
l ∈ L′,

where L′ ⊆ {1, . . . , |CG(U)|} is the set of indices of the unsafe components Ul that are adjacent to Sk or to F ′,

and consequently of the unsafe components Ũl that can be adjacent to and impose safety constraints on S̃k in the

original graph. Notice that some subsets F ′
l can be empty, either because the corresponding unsafe component

Ul is not adjacent to F ′ or because it is of small weight. For example, after applying all the manipulations listed

in Table 1 to Figure 3, F ′ is partitioned into F ′
1 = {2}, F ′

2 = {3}, F ′
3 = ∅, F ′

4 = {6}, F ′
5 = {9}, F ′

6 = ∅.

Now, we can go back to the combinatorial definition of the WSSP. Any feasible solution S̃ of subproblem

(S,U, F ) on graph G′ must satisfy the safety constraints

w(S̃i) ≥ w(Ũl) S̃i ∈ CG′(S̃), Ũl ∈ CG′(V \ S̃) : S̃i ▷◁G′ Ũl, (2)

We relax all of them, except for those that involve S̃k and Ũl with l ∈ L′, that we rewrite as

w(S̃k) = w(Sk) +
∑

v∈F∩S̃k

wvxv ≥ w(Ul) +
∑
v∈F ′

l

wv(1− xv) = w(Ũl) l ∈ L′, (3)

where the binary variables xv ∈ {0, 1} for v ∈ F are set to 1 if vertex v ∈ S̃, to 0 otherwise. The left-hand-side

of the inequality can be majorised (relaxing the constraint) by simply replacing F ∩ S̃k with F . Intuitively, this

corresponds to allowing free vertices that are not in component S̃k to contribute to its safety. The advantage

is to remove any term depending on S̃ (which is unknown a priori), apart from the binary variables xv. The

resulting relaxation can be formulated as:

minw(S) +
∑
v∈F

wvxv (4a)

w(Sk) +
∑
v∈F

wvxv ≥ w(Ul) +
∑
v∈F ′

l

wv(1− xv) l ∈ L′ (4b)

xv ∈ {0, 1} v ∈ F. (4c)

This problem generalises the optimisation version of the Subset Sum problem, that is NP-complete (Garey and

Johnson, 1979): setting F ′ = F , L′ = {1} and w(Sk) = w(U1) yields min
∑

v∈F wvxv subject to
∑

v∈F wvxv ≥

1/2·
∑

v∈F wv. Since we need to solve problem (4) at every branching node, we consider its continuous relaxation.

Let us introduce the auxiliary variables σ =
∑

v∈F wvxv and τl =
∑

v∈F ′
l
wv(1−xv) with l ∈ L′. These variables
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satisfy the following properties:

τl =
∑
v∈F ′

l

wv(1− xv) ≤
∑
v∈F ′

l

wv = w(F ′
l ) l ∈ L′ (5)

σ +
∑
l∈L′

τl =
∑

v∈F\F ′

wvxv +
∑
v∈F ′

wvxv +
∑
l∈L′

∑
v∈F ′

l

wv(1− xv)

=
∑

v∈F\F ′

wvxv +
∑
v∈F ′

wvxv +
∑
v∈F ′

wv(1− xv)

≥ w(F ′) (6)

from which we derive

minσ (7a)

w(Sk) + σ ≥ w(Ũl) + τl l ∈ L′ (7b)

τl ≤ w(F ′
l ) l ∈ L′ (7c)

σ +
∑
l∈L′

τl ≥ w(F ′) (7d)

σ, τl ≥ 0 l ∈ L′ (7e)

To solve problem (7) and compute a lower bound for subproblem (S,U, F ), we propose Algorithm 1. First,

by setting τl = 0 for all l ∈ L′ and σ = max{0, max
l∈L′

w(Ul)− w(Sk)}, we obtain the best solution that satisfies

all constraints but (7d). Then, we increase each τl variable to reduce the infeasibility of (7d), without violating

constraints (7b, 7c). The main loop of the algorithm iteratively computes the violation ϕ of constraint (7d) and

identifies the unsafe components which still have a residual capacity, along with the minimal value µ of these

capacities. As long as the violation cannot be fairly divided among the components without exceeding their

residual capacity, we increase σ and τl (for all l such that τl < w(F ′
l )) by µ to keep constraints (7c) satisfied.

Increasing them by the same amount, also constraints (7b) remain satisfied. When the condition on the residual

violation no longer holds, we exit the loop and divide the violation equally among the remaining components,

to minimise the increase of the objective function. If constraint (7d) was already satisfied before the loop, it

means that we already have the optimal solution and that we must not decrease the variables by ϕ̄ ≤ 0 because

it could possibly violate constraints (7e).

At each iteration, at least one of constraints (7c) is activated, implying that, after at most |L′| iterations,

Q = ∅ and therefore µ = +∞ ≥ ϕ̄, exiting the loop. Once outside the loop, ϕ̄ ≤ µ, so τl + ϕ̄ ≤ w(F ′
l ) for all

l ∈ Q: it is possible to increase σ and every τl with l ∈ Q by ϕ̄. Increasing |Q|+ 1 variables by ϕ̄ = ϕ/(|Q|+ 1)

reduces the violation of (7d) to zero, thus producing a feasible solution. The optimality of this solution is given

by the fact that at each step we increase every variable (which can be feasibly increased) by the same amount,

minimising the maximum quantity among w(Sk) + σ and w(Ul) + τl ∀l ∈ L′.
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1 z := max

{
w(Sk), max

l∈L′
w(Ul)

}
2 σ := z − w(Sk) // Satisfies constraints (7b)

3 τl := min {w(F ′
l ), z − w(Ul)} ∀l ∈ L′ // Keep satisfied constraints (7c)

4 loop

5 ϕ := w(F ′)− σ −
∑
l∈L′

τl // ϕ is the violation of constraint (7d)

6 Q := {l ∈ L′ | τl < w(F ′
l )} // Set of all components with residual capacity

7 ϕ̄ := ϕ/(|Q|+ 1)

8 µ := min
l∈Q

{w(F ′
l )− τl} // Minimal residual capacity among Q (µ = +∞ if Q = ∅)

9 if ϕ̄ ≤ µ then exit loop

10 τl := τl + µ ∀l ∈ Q // Since µ ≤ w(F ′
l )− τl ∀l ∈ Q, (7c) are satisfied

11 σ := σ + µ // Since the increment is the same, (7b) are satisfied

12 end

13 if ϕ > 0 then // Fails only if (7d) were already satisfied before the loop

14 σ := σ + ϕ̄

15 τl := τl + ϕ̄ ∀l ∈ Q // ϕ̄ ≤ µ so the increment respects (7c)

16 end

17 return σ, ∀l ∈ L′ : τl
Algorithm 1: Algorithm to solve problem (7)
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In Figure 4, F ′ = {1, 10, 11} is partitioned assigning vertex 1 to U1, vertex 10 to U4 and vertex 11 to U3,

while F ′
2 remains empty because U2 has a weight smaller than U3, even though it is adjacent to vertex 11. Now,

z = w(U1) = 15, so we need to increase the weights of the other components to that value. This amounts to

setting σ = 7, τ3 = 5 and τ4 = 2, while τ1 = τ2 = 0 because U1 already has the maximum weight and U2 cannot

increase its weight (F ′
2 = ∅). The residual violation to be distributed is ϕ = w(F ′)−σ−

∑
l τl = 29−7−5−2 = 15

and Q = {1, 3, 4} identifies the unsafe components with residual capacity; the minimum capacity is µ =

w(F ′
1) − τ1 = 2. Since ϕ̄ > µ, we increase all variables τl with l ∈ Q and σ by µ, setting τ1 = 2, τ3 = 7,

τ4 = 4, and σ = 9. This decreases the residual violation to ϕ = 7 and leaves only 2 augmentable components

(Q = {3, 4}). As µ = w(F ′
3) − τ3 = w(F ′

4) − τ4 = 8, and it is not smaller than ϕ̄ = 7/3, we exit the loop and

distribute the residual violation in equal parts among σ, τ3 and τ4, increasing them by 7/3. Consequently, the

optimal value of σ is σ∗ = 9 + 7/3 and the lower bound is w(S) + σ∗ = 15 + 8 + 9 + 7/3 = 34 + 1/3, that can

be rounded up to 35 (since all weights are integers). This is much larger than the two simple bounds, that are,

respectively, equal to w(S) = 23 and w(U1) = 15. The weight of the optimal solution S∗ = {2, 4, 6, 8, 11} is 42.

3.3. Vertex fixing

Section 3.1 described a feasibility test for a given subproblem (S,U, F ), that also moves some vertices from

F to U , based on the fact that any solution including them is necessarily infeasible (see Proposition 2). In the

following, we introduce other properties that allow to move free vertices to S or U , thus reducing the size of

the current subproblem. The first one simply extends the feasibility test with an implicit branching operation.

Proposition 5. Given a subproblem (S,U, F ), let C be a component of CG(S ∪F ) and f a vertex of C ∩F . If

w(C)− wf <
∑

Uj∈CG(U):
Uj▷◁{f}

w(Uj) + wf (8)

then vertex f belongs to all feasible solutions of (S,U, F ).

Proof. Moving f from F to U modifies subproblem (S,U, F ) into subproblem (S,U ∪ {f}, F \ {f}). Corre-

spondingly, all the unsafe components Uj ∈ CG(U) that were adjacent to f (Uj ▷◁ {f}) merge into a single one,

whose weight is the right-hand-side of (8). On the other hand, component C loses vertex f and possibly splits

into several components, each with a weight dominated by the left-hand-side of (8). Therefore, at least one of

the safety constraints concerning subset S ∪ F \ {f} is violated.

The following property assigns a vertex with another implicit branching based on the comparison with the

value of the best known solution, S̄, that is an upper bound on the optimum.

Proposition 6. Let (S,U, F ) be a subproblem and f ∈ F a free vertex. If

w(S) + wf ≥ w(S̄)
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Figure 4: Example of the computation of the refined lower bound for a subproblem (S,U, F ): the current total weight of the safe

components is w(S) = 23 and the current maximum weight of the unsafe components is w(U1) = 15, but the lower bound can be

raised up to 35, partitioning F ′ = {1, 10, 11} into F ′
1 = {1}, F ′

2 = ∅, F ′
3 = {11} and F ′

4 = {10} and distributing its weight among

S2, U3 and U4. This strongly reduces the gap with respect to the optimal solution S∗ = {2, 4, 6, 8, 11}, whose weight is 42.
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then vertex f does not belong to any feasible solution better than S̄. If∑
Uj∈CG(U):
Uj▷◁{f}

w(Uj) + wf ≥ w(S̄)

then vertex f belongs to all feasible solutions better than S̄.

Proof. The proof is based on computing the two simple lower bounds described in the beginning of Section 3.2,

respectively assuming that vertex f is moved to S or to U .

Notice that moving free vertices to S can create new safe components, possibly violating the assumption

made in Section 3.2 that at most one safe component is adjacent to F . Since this assumption is fundamental to

refine the lower bound, if we are applying the bounding procedure, we move into S only free vertices that are

already adjacent to S.

3.4. Exploration strategy and branching rule

We adopted a best-first strategy for the visit of the branching tree, visiting first the open node which

minimises the lower bound, in order to focus the search on the most promising nodes and produce good upper

bounds.

For what concerns the branching strategy, we select the branching vertex as the free vertex of maximum

weight. The rationale of this choice is that assigning such a vertex in both ways could increase the lower bound

by increasing either the total weight of the safe vertices or the weight of the heaviest unsafe component. In case

of ties, we consider the vertex of maximum degree because it is more likely to be involved in a larger number

of safety constraints, thus strengthening the lower bound.

As already mentioned above, moving free vertices to S can violate the basic condition required to compute

the refined lower bound. To avoid doing that, we modify the branching rule selecting the free vertex of maximum

weight and degree only among those that are adjacent to S. In case no such vertex exists, we select it among

those that are adjacent to U . At the root of the branching tree, where both S and U are empty, we simply

apply the basic branching rule. It is worth mentioning that the modified branching rule also allows to apply

the algorithm to the CSSP. In order to maintain a single safe component, in fact, it is possible to restrict the

selection of the branching vertex only to the free vertices adjacent to it. In case no free vertex is adjacent to

the safe component, all remaining free vertices must be moved to the unsafe set. This either solves the current

node or proves that it is unfeasible.

4. Experimental results

4.1. Experimental setting

The literature on the WSSP provides two sets of benchmark instances. The set used by Macambira et al.

(2019) is publicly available at http://www.cos.ufrj.br/~luidi/papers/safeset.html. It consists of three
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classes, based on the density of graph G: the number of edges is set to ⌊δn(n− 1)/2⌋, with δ ∈ {0.3, 0.5, 0.7}.

Each class includes one instance for each number of vertices n, ranging from 10 to 30. There are weighted and

unweighted instances, that consider the same graphs. The weights for the former are randomly extracted from

a uniform distribution in {1, . . . , 100}1. Overall, therefore, this benchmark consists of 3 · 21 · 2 = 126 instances.

The instances introduced by Hosteins (2020) have a similar structure, but they are partitioned into four

classes, with δ ∈ {0.1, 0.2, 0.3, 0.4}, and their number of vertices is n ∈ {20, 25, 30, 35, 40, 50}. Moreover, each

size corresponds to 5 instances. The benchmark includes weighted and unweighted instances, where the former

have weights uniformly extracted from {1, . . . , 10}. Also in this case, weighted and unweighted instances share

the same graph topology. Overall, this yields 4 · 6 · 5 · 2 = 240 instances. Since the branch & bound algorithm

solves nearly all the existing instances to optimality, we have extended the latter benchmark generating other

4 · 5 · 2 = 40 instances with n = 60 vertices. All the instances and the detailed results are available in the

supplementary material and at https://homes.di.unimi.it/cordone/research/wssp.html.

The experiments have been conducted on a Linux server, with processor Intel Xeon E5-2620 2.1 GHz and 16

GB of RAM. The algorithm is coded in C99 and compiled with GNU GCC 8.3.0, and runs in a single thread.

4.2. Contribution of the bounding and the vertex fixing procedures

A first phase of experiments has been dedicated to estimate the role played in the performance of the

algorithm by the lower bounding procedure discussed in Section 3.2 and the vertex fixing procedures presented

in Section 3.3. To this purpose, we have compared four variants of the branch & bound algorithm, that apply,

respectively:

• the best among the refined lower bound and the two simple ones, and all vertex fixing procedures (RF);

• the best among the refined lower bound and the two simple ones, with no vertex fixing (RN);

• the better of the two simple lower bounds and all vertex fixing procedures (SF);

• the better of the two simple lower bounds with no vertex fixing (SN).

We remind that RF and RN must respect the limitations discussed at the end of Sections 3.3 and 3.4 when

choosing the branching vertex and fixing vertices to safe.

We compared the four versions on the instances from 20 to 40 vertices in the second benchmark, because

the first benchmark proved rather easy to solve and the larger instances were too hard for some versions.

Figures 5 and 6 report the average computational time required by the four versions of the algorithm to solve to

optimality these instances as a function of the number of vertices n. The scale is logarithmic on the time axis

1The weighted instances with 18 and 23 vertices have one or two vertices of zero weight. Since the corresponding unweighted

instances provide the same graphs and positive weights, we have used the latter as a replacement. This explains some small

differences in the published results.
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to improve the quality of the visualisation. Figure 5 concerns the weighted instances, while Figure 6 concerns

the unweighted ones. Each figure contains four graphs, corresponding to the different values of the density.

The two versions with all vertex fixing procedures (in continuous lines) consistently perform better than the

other two (in dashed lines), although the difference is marked for the sparse instances and rather limited for

the dense ones. This suggests that the computational effort they require is compensated by their effectiveness.

As for the bounding procedure, the refined one has a disruptive effect on the dense instances, for which the

computational time becomes orders of magnitude lower, whereas the simple procedure performs better on the

sparser instances, that is up to δ = 0.2 for the weighted benchmark and δ = 0.1 for the unweighted one. This is

consistent with Remark 1, since denser instances have a larger set of free vertices that can contribute to increase

the bound. For example, if |V | = 40 and |U | = |S| = 4, the expected number of free vertices adjacent to both

is only E[|X|] ≈ 5 out of |F | = 32 free vertices when the density is δ = 0.1, but rises to E[|X|] ≈ 15 when the

density is δ = 0.2 and up to E[|X|] ≈ 30 when the density is δ = 0.4. This suggests that, even if the refined

bound always dominates the simple one, the effort required to compute it is justified only for sufficiently dense

graphs. Consequently, in the following experiments, we decided to apply the vertex fixing procedures, but to

adopt the refined bound when δ ≥ 0.2 and the simple bound when δ < 0.2.

4.3. Comparison with the state of the art

In the second phase of experiments, we have compared the results of our combinatorial branch & bound

algorithm with those of the competing algorithms available in the literature. All these approaches run on

different, but comparable, machines. Table 2 reports the acronyms used in the following to denote them and

their main features. The number of threads for B&C1 is not explicitly reported, but is presumably equal to 1.

The following additional information is available on the solvers and options. B&C1 was implemented in C++

using CPLEX 12.6 and disabling all heuristics, cuts and pre-processing. The MILP formulation by Hosteins

(2020) was solved with CPLEX 12.9, disabling CPLEX’s cuts, that slowed down excessively the solution process.

B&C2 was written in C/C++ and compiled with g++ version 8.3.0, exploiting the SCIP solver version 6.0.2

along with the Soplex LP solver version 4.0.2; a test with Gurobi reduced the number of branching nodes, but

increased the overall computational time.

Acronym Reference Processor Frequency RAM Threads

B&C1 Macambira et al. (2019) Intel Core TM i7-6700 3.40 GHz 15.6 GB -

MILP Hosteins (2020) Intel Core i7-6600U 2.60 GHz 32 GB 4

B&C2 Malaguti and Pedrotti (2021, 2022) Intel Core i7-4790 3.60 GHz 32 GB 1

B&B This contribution Intel Xeon E5-2620 2.1 GHz 16 GB 1

Table 2: Acronyms of the existing algorithms for the WSSP and machines used to test them
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Figure 5: Computational time required by the branch & bound algorithm on the weighted instances of Hosteins (2020), respectively

with the refined bound and all fixing procedures (RF), the refined bound and no fixing procedures (RN), the simple bounds and

all fixing procedures (SF), the simple bounds and no fixing procedures (SN)
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Figure 6: Computational time required by the branch & bound algorithm on the unweighted instances of Hosteins (2020), re-

spectively with the refined bound and all fixing procedures (RF), the refined bound and no fixing procedures (RN), the simple

bounds and all fixing procedures (SF), the simple bounds and no fixing procedures (SN); a time limit of one hour is imposed on

the execution
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Table 3 reports the results for the weighted benchmark introduced by Macambira et al. (2019). Each row

refers to a value of size n, that is reported in the first column. The following three groups of four columns report

the computational time in seconds required by the four approaches to solve the three instances of size n, which

differ by the density δ of the graph. These results derive from the original references, with the original precision.

The instances with a computational time of 7 200 seconds are actually not solved to optimality because of the

imposition of a time limit of 2 hours. While B&C2 dominates the other approaches for δ = 0.3, B&B is slightly

slower on those instances, slightly faster for δ = 0.5 and two to three orders of magnitude faster for δ = 0.7.

The computational time of MILP (some minutes) and B&C1 (sometimes more than 2 hours) are three to four

orders of magnitude larger.

δ = 0.3 δ = 0.5 δ = 0.7

n B&C1 MILP B&C2 B&B B&C1 MILP B&C2 B&B B&C1 MILP B&C2 B&B

10 0.87 0 0.0 0.000 1.58 0 0.0 0.001 1.28 1 0.0 0.000

11 0.70 1 0.0 0.000 1.19 0 0.1 0.000 2.78 1 1.4 0.000

12 2.71 1 0.0 0.001 4.13 0 0.1 0.000 4.05 1 7.3 0.001

13 1.93 1 0.0 0.000 3.92 1 0.0 0.000 4.55 1 1.6 0.001

14 6.55 2 0.0 0.001 8.15 2 0.1 0.001 13.78 3 2.7 0.001

15 8.14 2 0.0 0.001 20.73 3 0.1 0.002 26.66 4 2.6 0.003

16 30.72 4 0.0 0.001 27.11 4 0.2 0.001 45.04 6 7.2 0.002

17 24.85 4 0.0 0.003 45.35 4 0.1 0.004 58.95 4 4.3 0.003

18 35.05 4 0.0 0.001 43.11 7 0.5 0.002 96.20 10 2.8 0.003

19 72.18 13 0.0 0.007 74.87 10 0.4 0.003 158.06 14 5.8 0.008

20 130.58 11 0.0 0.009 126.04 13 0.2 0.005 317.75 19 25.4 0.011

21 222.34 11 0.0 0.006 326.43 20 0.5 0.031 304.43 33 9.6 0.036

22 863.93 22 0.0 0.028 515.10 17 0.1 0.032 1422.93 51 1.9 0.028

23 243.63 19 0.1 0.009 428.23 26 0.7 0.012 661.38 44 12.0 0.008

24 455.48 69 0.0 0.040 810.46 59 1.6 0.022 2296.73 76 7.2 0.050

25 940.33 61 0.1 0.046 2209.33 49 1.2 0.046 3065.93 50 13.3 0.029

26 2892.70 203 0.1 0.131 3042.08 80 1.4 0.109 3167.12 113 58.4 0.041

27 2648.34 71 0.1 0.127 4399.39 83 1.6 0.226 2626.44 262 26.6 0.075

28 3081.24 221 0.0 0.100 5961.68 282 0.4 0.084 6761.96 251 14.7 0.051

29 5559.33 138 0.0 0.416 5574.58 211 0.8 0.469 7200.00 254 65.9 0.241

30 3907.08 219 0.2 0.328 7200.00 267 0.1 0.456 7200.00 305 46.8 0.423

Table 3: Computational times (in seconds) required to solve the weighted instances of Macambira et al. (2019) of density δ ∈

{0.3, 0.5, 0.7} with B&C1, MILP, B&C2 and B&B

Table 4 reports the corresponding results for the unweighted instances. The structure of the table is the
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same, and the results are consistent with the ones of Table 3, except for the fact that the difference between

B&C2 and B&B are more marked (in favour of B&C2 for δ = 0.3 and of B&B for δ = 0.5) and that for δ = 0.7

the computational time of B&C2 becomes higher than that of MILP in most instances.

δ = 0.3 δ = 0.5 δ = 0.7

n B&C1 MILP B&C2 B&B B&C1 MILP B&C2 B&B B&C1 MILP B&C2 B&B

10 0.58 1 0.0 0.000 0.68 0 0.0 0.000 0.72 1 0.0 0.000

11 1.02 0 0.0 0.000 0.94 1 0.2 0.000 1.40 0 19.6 0.000

12 1.58 1 0.0 0.000 2.90 1 0.1 0.001 3.52 1 4.3 0.000

13 1.59 1 0.0 0.001 3.59 1 0.0 0.001 4.34 1 27.5 0.001

14 7.72 2 0.0 0.001 4.60 2 0.2 0.002 6.67 2 38.8 0.001

15 10.08 2 0.0 0.004 14.80 3 0.3 0.002 15.17 4 10.1 0.003

16 16.65 2 0.0 0.004 25.44 4 0.8 0.007 32.52 6 33.1 0.002

17 24.36 5 0.0 0.006 47.98 6 1.5 0.004 48.90 4 455.9 0.002

18 32.09 7 0.0 0.005 39.22 9 2.6 0.003 80.11 6 80.7 0.002

19 54.67 10 0.0 0.017 84.42 10 0.5 0.019 101.36 12 24.9 0.015

20 231.73 11 0.0 0.037 222.89 15 0.8 0.019 194.30 22 93.3 0.004

21 297.90 16 0.0 0.014 408.62 27 0.7 0.016 190.03 37 140.0 0.002

22 379.42 18 0.0 0.033 714.91 15 1.0 0.040 750.14 27 52.1 0.007

23 614.10 34 0.0 0.050 467.30 41 3.7 0.057 546.10 94 418.1 0.018

24 381.10 38 0.0 0.107 658.42 58 0.2 0.155 2434.47 110 311.0 0.012

25 1090.78 59 0.1 0.216 907.91 44 0.5 0.097 1768.22 123 80.7 0.079

26 1560.85 78 0.1 0.267 3307.20 97 6.5 0.182 2388.87 148 878.8 0.017

27 1853.99 150 0.0 0.240 2462.43 134 3.6 0.090 3899.18 168 2416.3 0.186

28 4557.31 284 0.1 0.421 3891.22 248 3.6 0.218 2708.83 194 111.2 0.036

29 4276.96 182 0.1 0.494 4089.23 130 11.1 0.303 4679.83 178 2418.2 0.516

30 4962.59 472 0.1 1.723 7200.00 359 11.1 0.549 7200.00 332 439.1 0.053

Table 4: Computational times (in seconds) required to solve the unweighted instances of Macambira et al. (2019) of density

δ ∈ {0.3, 0.5, 0.7} with B&C1, MILP, B&C2 and B&B

Table 5 compares the results of MILP, B&C2 and B&B on the benchmark introduced by Hosteins (2020) for

the weighted instances. Each row of the table refers to a given density and size, reported in the first two columns.

The table reports the arithmetic mean of the optimality gap on each group of 5 instances thus identified, the

number of instances solved within the time limit of one hour and the average computational time in seconds.

For consistency with the results published in Malaguti and Pedrotti (2022), we compute the optimality gap
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obtained by each algorithm a on an instance as the difference between the upper and the lower bound divided

by the upper bound, that is (UBa − LBa)/UBa. This provides a lower estimate of the actual optimality gap,

that would be (UBa − LBa)/z
∗, where z∗ denotes the optimal value.

The proposed branch & bound algorithm solves all 120 instances exactly (in 40 minutes in the worst case),

whereas MILP solves 71 instances up to 40 vertices and B&C2 solves 97 instances up to 40 vertices. On the

biggest instances, the optimality gaps are around 20− 30% for B&C2, larger than 90% for MILP.

The results for the unweighted instances of the same benchmark are displayed in Table 6 and present similar

features. B&B closes 115 instances over 120, exhausting the available memory in less than one hour on the

5 instances with n = 50 and δ = 0.1. In this case, B&C2 and MILP have a similar performance: 73 solved

instances for MILP versus 74 for B&C2, with a predominance of the former on the dense instances and of the

latter on the sparse ones, and shorter computational times for B&C2 on the smaller instances.

4.4. A new benchmark of large instances

In order to check the practical limits of the proposed approach, we have then applied it to a new set of

instances with 60 vertices, generated as in Hosteins (2020). Table 7 displays detailed results for such instances.

Each instance is defined by its density δ and an integer index from 1 to 5. Each row displays the results of

B&B for both the unweighted and weighted version of the problem. We report the upper and lower bound

returned by the algorithm on termination (in bold when they coincide), along with the total computation time

and the number of branching nodes (BN). When the computer runs out of memory we indicate it with the

symbol OM in the BN column. Table 7 shows that instances of 60 vertices indeed become challenging. Most

weighted instances can still be solved (15 over 20), but four hit the time limit of one hour and one exceeds the

available memory in less than one hour. On the other hand, most unweighted instances (16 over 20) cannot be

solved: the sparsest ones require too many branching nodes, whereas those with intermediate density reach the

time limit with 10%− 25% gaps. Only the densest instances can be solved exactly (or nearly).

4.5. Analysis of the algorithm

This section analyses in detail some quantitative aspects of the algorithm that influence its performance.

All results refer to the benchmark proposed by Hosteins (2020) with our extension.

First, we measure how the overall computational time is distributed among the main elements that compose

the algorithm. These are the computation of the lower bound, the variable fixings and the generation of the

children nodes. The variable fixings are inextricably combined with the feasibility test and with the computation

of the upper bound, because they either prove the infeasibility of the current subproblem or provide a feasible

solution composed by all the vertices that are not fixed to unsafe. The generation of the children nodes includes

the choice of the branching vertex and the construction of the data structure for each new node. We focus on

the instances with 50 vertices, the largest ones that in general can be solved to optimality within the time limit,
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MILP B&C2 B&B

δ |V | gap solved sec gap solved sec gap solved sec

0.1

20 - 5 72.2 - 5 0.8 - 5 0.002

25 - 5 746.4 - 5 4.9 - 5 0.009

30 16.65 3 2554.6 - 5 20.1 - 5 0.046

35 39.53 0 3600.0 - 5 55.0 - 5 0.147

40 74.89 0 3600.0 2.2 4 1244.2 - 5 4.306

50 94.55 0 3600.0 22.7 0 3600.0 - 5 237.367

0.2

20 - 5 28.0 - 5 0.3 - 5 0.008

25 - 5 140.2 - 5 1.9 - 5 0.138

30 7.52 4 1472.0 - 5 10.6 - 5 0.803

35 34.49 1 3522.6 - 5 195.3 - 5 6.127

40 72.21 0 3600.0 - 5 1207.8 - 5 21.879

50 93.72 0 3600.0 33.1 0 3600.0 - 5 1072.342

0.3

20 - 5 11.8 - 5 0.2 - 5 0.013

25 - 5 52.0 - 5 2.3 - 5 0.114

30 - 5 562.2 - 5 22.5 - 5 0.481

35 4.31 4 1956.8 - 5 326.6 - 5 3.133

40 43.19 1 3384.0 2.1 3 2400.3 - 5 10.821

50 96.36 0 3600.0 24.1 0 3600.0 - 5 90.216

0.4

20 - 5 12.8 - 5 0.5 - 5 0.016

25 - 5 66.4 - 5 5.1 - 5 0.088

30 - 5 375.0 - 5 34.2 - 5 0.465

35 - 5 905.4 - 5 404.6 - 5 2.151

40 16.05 3 2788.0 - 5 1367.2 - 5 4.239

50 99.41 0 3600.2 17.8 0 3600.0 - 5 50.748

Table 5: Average gap (%), number of instance solved within an hour and average computational time (in seconds) required to solve

the weighted instances of Hosteins (2020) of density δ ∈ {0.1, 0.2, 0.3, 0.4} with MILP, B&C2 and B&B.
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MILP B&C2 B&B

δ |V | gap solved sec gap solved sec gap solved sec

0.1

20 - 5 94.2 - 5 1.3 - 5 0.020

25 - 5 532.2 - 5 5.2 - 5 0.042

30 4.44 4 1743.8 - 5 32.4 - 5 0.189

35 33.84 1 3538.0 - 5 469.4 - 5 3.943

40 67.73 0 3600.0 19.0 1 2976.1 - 5 107.544

50 87.97 0 3600.0 37.6 0 3600.0 35.78 0 1716.793

0.2

20 - 5 15.4 - 5 0.6 - 5 0.034

25 - 5 234.4 - 5 4.9 - 5 0.434

30 - 5 856.8 - 5 45.2 - 5 1.801

35 18.01 2 3437.0 7.7 2 2825.1 - 5 20.079

40 71.13 0 3600.0 29.2 0 3116.9 - 5 55.688

50 93.11 0 3600.0 45.8 0 3600.0 - 5 2500.817

0.3

20 - 5 14.4 - 5 0.2 - 5 0.016

25 - 5 77.6 - 5 12.5 - 5 0.193

30 - 5 362.6 - 5 174.3 - 5 1.069

35 10.64 3 2798.2 10.5 1 3141.5 - 5 6.962

40 38.39 0 3600.0 30.3 0 3368.4 - 5 29.723

50 91.05 0 3600.0 43.2 0 3600.0 - 5 873.641

0.4

20 - 5 14.2 - 5 1.1 - 5 0.020

25 - 5 98.8 - 5 40.8 - 5 0.166

30 - 5 267.8 - 5 256.6 - 5 0.820

35 2.4 4 1709.4 9.8 1 3486.8 - 5 5.449

40 11.58 4 2678.4 26.6 0 3600.0 - 5 17.279

50 95.27 0 3600.0 39.6 0 3600.0 - 5 214.247

Table 6: Average gap (%), number of instance solved within an hour and average computational time (in seconds) required to solve

the unweighted instances of Hosteins (2020) of density δ ∈ {0.1, 0.2, 0.3, 0.4} with MILP, B&C2 and B&B.
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Instance Weighted Unweighted

δ # UB LB sec BN UB LB sec BN

0.1

1 77 77 3474.908 214559949 31 13 1405.774 OM

2 79 79 637.409 36033589 34 14 1741.854 OM

3 83 83 1130.850 74132535 30 13 842.090 OM

4 103 84 2641.847 OM 33 13 844.763 OM

5 86 86 3486.326 208196017 32 13 1455.969 OM

0.2

1 124 115 3600.000 114519193 30 24 3600.000 124741717

2 111 111 818.154 26933287 30 25 3600.000 122956349

3 145 127 3600.000 118277525 32 24 1864.234 OM

4 133 130 3600.000 115488031 30 25 3600.000 119412243

5 138 125 3600.000 110968265 30 25 3600.000 121037137

0.3

1 129 129 849.539 20954933 30 27 3600.000 89251817

2 124 124 500.606 12054917 30 27 3600.000 90466873

3 157 157 3002.098 72243237 30 27 3600.000 90122711

4 149 149 979.856 22742691 29 28 3600.000 88076127

5 144 144 1480.667 36611413 30 27 3600.000 90393441

0.4

1 137 137 169.997 3122629 29 29 2178.099 40799191

2 130 130 236.432 4292569 29 29 3097.001 60593849

3 163 163 968.583 17609435 29 29 3199.095 63802285

4 154 154 294.560 5287225 29 29 1597.201 30996299

5 155 155 640.122 11745113 30 29 3600.000 71328489

Table 7: Upper bound, lower bound, time (in seconds) and number of branching nodes visited by B&B to solve unweighted and

weighted instances of size |V | = 60 and density δ ∈ {0.1, 0.2, 0.3, 0.4}.
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and we register the fraction of time required by the three procedures, with respect to the overall time. When

we adopt the refined lower bound (density δ ≥ 0.2), the computation of the lower bound takes about 40− 50%

of the time, the variable fixings account for 40− 45% of the time, the generation of the children nodes is below

5% and the residual operations around 5− 10%. Using the simple bound decreases the fraction of time for the

lower bound to 25− 35%, increasing those of the variable fixings to 35− 50%, of the node generation to slightly

above 5% and of the residual operations to 10−30%. This is not surprising, as the two main procedures involve

more or less complex visits of the graph, whereas the other ones consist of simpler operations.

A second aspect of interest is the time required by the upper and the lower bound to converge to their final

values. In fact, the optimal value could be approximated in short time, or only at the end of the computation,

and the behaviour of the upper and the lower bound in this respect could be different. Figure 7 shows the profile

of the upper and lower bound on four instances selected among the largest ones (60 vertices). The two instances

on the left are weighted, the two on the right are unweighted. The upper instances have density δ = 0.2, and

show a residual gap at the end of the time limit of one hour. The lower instances have density δ = 0.4, and can

be solved to optimality, but are among the slowest to be solved. Notice that the time axis is in logarithmic scale

to stress the progress in the early phases of the computation. We can observe that in all four plots, the upper

bound decreases almost instantaneously, obtaining heuristic solutions which are close to the optimum, though

in these hard instances better solutions are found also later on. The lower bound converges more slowly, but it

gives a good approximation of the optimum after a minute, and then steadily increases until the end.

Finally, the size of the branching tree is a relevant index of the computational effort required. Figure 8

reports the average number of branching nodes with respect to the size of the graphs for the weighted instances

(on the left) and the unweighted ones (on the right), for the four classes of density. In both figures, the

graphs are approximately linear in a logarithmic scale, which means that the number of branching nodes grows

exponentially with the size of the problem. There is a minor dependency on density, with sparse graphs tending

to require more nodes, consistently with the remark that the lower bound becomes weaker. For the weighted

instances, the number of branching nodes is approximately one order of magnitude lower than for the unweighted

ones. Indeed, the values are missing for the unweighted instances of 50 and 60 vertices with density δ = 0.1

because the computation is prematurely terminated for insufficient memory: they would be in the order of

108 − 109.

5. Conclusions

We have proposed a combinatorial branch & bound algorithm for the Weighted Safe Set Problem. The algo-

rithm exploits reduction procedures to force vertices in and out of the solution, based on the safety constraints

and on the comparison with the value of the best known heuristic solution. Its main feature is a refined lower

bounding technique that estimates the contribution of the still unfixed vertices to the safe and unsafe compo-

nents of any feasible solution, and therefore to the value of the objective function. Computational experiments
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Figure 7: Profiles of the upper bound and the lower bound during the computation on four instances with 60 vertices: the upper

row concerns the weighted and unweighted instance 60 p0.2 5, with density δ = 0.2; the lower row concerns the weighted and

unweighted instance 60 p0.4 3, with density δ = 0.4.
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Figure 8: Average number of branching nodes visited by the branch & bound procedure on the benchmark introduced by Hosteins

(2020), depending on the number of vertices n and the density of the graph: weighted instances are on the left, unweighted ones

on the right.

on the available benchmarks and on newly generated instances show that the algorithm here proposed is the

only one able to consistently solve instances of 50 and even 60 vertices. Due to the lower bounding procedure,

it is particularly effective on dense instances, whereas on the sparsest ones its performance is comparable, but

probably slower (to the extent that the different machines used are interchangeable) than that of the branch &

cut approach of Malaguti and Pedrotti (2022). In general, the unweighted instances appear to be harder for all

approaches.
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