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Introduction

Fostering green technical change is at the top of the global policy agenda. No long-run

economic growth is indeed possible without timely addressing climate change issues.

A theoretical cornerstone for understanding green innovation dynamics is represented

by the so-called “double externality” issue affecting the incentives to invest in green

R&D projects. On the one hand, non-appropriability and non-exclusivity of technologi-

cal knowledge give way to the kind of externalities that are common to any innovation,

and that lead to under-investment in the private sector. On the other hand, because

of their potentially pervasive influence, GTs that effectively contribute to containing

or preventing the negative effects of climate change bring about global benefits in the

form of environmental protection that represent a positive externality for society, therein

including non-innovating firms. This double externality exacerbates the traditional un-

certainty that surrounds the development of new technologies and provides a rationale

for public policy interventions that create positive preconditions for investments in GTs.

With this clear-cut issue at stake, the literature on the economics of green innovation

flourished during the last two or more decades. First, given its uniqueness, scholars

widely investigated the peculiarities of the green innovation process. Second, due to the

essential need of publicly intervening, scholars deeply entered into the analysis of the

heterogeneous effect on green innovation dynamics of diverse policy tools from micro,

meso and macro level perspectives.
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Mainly exploiting information contained in patent data, the present thesis aims at

contributing the empirical literature on the determinants of green innovation processes

under several original perspectives. It indeed provides evidence, on the one hand, about

the very antecedents of green inventions by looking at the way how inventor teams re-

combine extant technological knowledge and, on the other hand, on how two diverse

and under-explored policy tools, namely government-funded R&D and public procure-

ment, affect green innovation dynamics. The thesis is thus a collection of three research

articles. I briefly provide here a description and the main findings of those studies.

The first chapter is coauthored with Michele Pezzoni and Francesco Quatraro and

focuses on the antecedents of green innovation processes from a micro viewpoint. By ex-

ploiting the European Patent Office universe of patent data, it investigates how inventor

teams’ recombinant capabilities and green-tech experience drive the creation of green

inventions. Furthermore, the chapter also explores differential effects of both combina-

torial abilities and experience according to heterogeneous levels of environmental policy

stringency.

The team dimension of green innovation processes has been almost neglected by the

extant studies. The main argument of the chapter is instead that it is of crucial im-

portance since GTs are likely to emerge out of hybridization of existent technological

processes, thus requiring continuous collaboration and exchanges.

Results suggest that green technological change is positively associated with recom-

binant creation, previous experience in the green-tech domain, and high stringency of

regulatory frameworks. Interestingly, teams lacking experience in green technological

processes benefit more from the recombinant creation, especially in regimes character-

ized by weak environmental regulation. To the bunch of GT drivers, the chapter orig-

inally adds evidence of the importance of the team’s ability in creatively recombining

extant technological knowledge.
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Passing from the team perspective to a more general one, the second part of the

thesis focuses on the investigation of the inducement effect of two precise policy tools,

named public R&D and public procurement. Even if responsible for a large part of the

governments’ intervention, the influence of those policy tools on green innovation has

been surprisingly under-investigated by the extant literature.

The second chapter investigates the effect of changes in the level of government-funded

R&D on both the rate of green-tech knowledge accumulation and the direction it takes,

exploiting information contained in patent citation data. The study sample includes

green patents applied at the European Patent Office from 1980 to 1984. Citations are

observed from 1981 to 1988, together with their qualitative characteristics. To find a

causal effect of a change in the level of public R&D expenditures on citations received

by green patents, the analysis has been framed in a quasi-experimental environment, ex-

ploiting the Chernobyl nuclear disaster occurred in 1986 as an exogenous shock affecting

the public intervention in the energy sector.

Results reveal that a 1% increase in Government R&D budget increases by 0.14% the

yearly average number of citations a green patent receives. Similar evidence emerges

for the number of citations coming from highly original and radical patents, and from

non-green patents. Government-funded R&D is thus an important lever for both con-

solidating the established green technological trajectory and accelerating the process of

changing technological paradigm. However, the magnitude of the estimated effects sug-

gests that an unprecedented effort in public R&D investments is required to timely shift

from dirty to clean production systems.

While the second chapter provides evidence of a specific kind of supply-side public

intervention, the third chapter mainly focuses on the effect of a demand-oriented kind

of public intervention, named green public procurement. It is coauthored with Da-

vide Consoli, François Perruchas and Francesco Quatraro and it investigates whether

x



and through which channels green public procurement (GPP) stimulates local environ-

mental innovation capacity. To this end, detailed data sources on green patents and

procurement expenditures at the level of US Commuting Zones (CZs) for the period

2000-2011 have been exploited. The chapter also checks for the moderating effects of

the local labor market composition in the relation between green public procurement and

green innovation capacity. Lastly, by exploiting the richness of information contained in

patent documents, the chapter tests for differential effects of green public procurement

on different classes of green technologies.

The main finding is that GPP is an important driver in explaining the growth of

local green-tech stocks. The positive effect of GPP is mainly driven by expenditures for

procured green services and is magnified by the local presence of high shares of abstract-

intensive occupations. When separately considering diverse kinds of green technologies,

the evidence of a more pronounced effect of GPP on the growth of local knowledge stocks

of mitigation technologies emerges.
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1 Antecedents of Green Technologies:

The Role of recombinant capabilities

and team knowledge production1

Abstract

Understanding the antecedents of green technologies (GTs) is of crucial importance for firms’ green

innovation strategies. The chapter investigates how inventor teams’ recombinant capabilities, green

experience, and environmental regulation stringency drive the creation of green inventions. Our results

show that green technological change is positively associated with recombinant creation, previous ex-

perience in the green-tech domain, and high stringency of regulatory frameworks. Moreover, we find

that teams lacking experience in green technological processes benefit more from the recombinant cre-

ation, especially in regimes of weak environmental regulation. These results have implications for the

strategic management of inventor teams within firms willing to grasp the opportunities set forth by the

emergence of new markets for green technologies.

1This chapter is coauthored with Michele Pezzoni and Francesco Quatraro. We acknowldge partic-
ipants in: the DRUID Academy 2016 conference, University of Bordeaux, Bordeaux, France; the GCW
2016 – Innovation, Employment and Environment conference, INGENIO [CSIC-UPV], Valencia, Spain;
and the What’s new in the economics of innovation? Theory, empirics and public policy conference,
December 2016, Grenoble, France.
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1.1 Introduction

Green technologies (GTs) are deemed crucial assets to decouple firms’ growth from

environmental degradation. Their implementation is expected to lead to improvements

in both firms’ productivity levels and environmental performances (Porter and van der

Linde, 1995). For this reason, GTs have been the object of the increasing research on

environmental and innovation dynamics. Many studies have enquired so far into the

determinants of the generation and the adoption of these technologies, as well as into

their actual effects on economic and environmental outcomes (Barbieri et al., 2016).

Empirical applications investigating the determinants of green knowledge production

have mainly focused on the role of environmental and innovation policies. The rationale

behind the prominent role of public interventions as a lever for the generation and

diffusion of GTs resides in the so-called “double externality problem” (Rennings, 2000).

On the one hand, like any other kind of technologies, GTs are intrinsically featured

by appropriability problems. On the other hand, their diffusion in the economy yields

positive impacts on the environment, generating benefits to those who do not bear the

costs. Accordingly, the allocation of resources to the production of GTs is expected

to be sub-optimal. Environmental regulation and innovation policies gain therefore a

crucial role in this framework.

In light of the regulatory push/pull effect (Rennings, 2000), both supply and demand

oriented policies have proved to be effective in stimulating the production and adoption of

GTs (Requate, 2005). Demand side policies are based on the induced innovation effect,

according to which stringent regulatory frameworks push firms to adopt GTs to save

production costs. As an effect, these measures lead either to the modification of existent

markets or to the emergence of new niches that make it profitable for firms to enter

the GTs business and allocate resources to their production (Nemet, 2009; Johnstone

et al., 2012; Hoppmann et al., 2013). Supply-side policies, conversely, represent a direct

2



support for technological change. They include subsidies, loans, tax credits, grants,

pricing schemes, R&D funding for risky innovative processes, and so on.

The choice to engage in green knowledge production may be deemed as a strategic

decision for a firm willing to reap the profit prospects opened by policy interventions. For

this reason, this chapter aims at shedding light on the very antecedents of GTs (Taylor

et al., 2005; del Ŕıo González, 2009) by analyzing the collective invention dynamics

behind their production. Specifically, we investigate the factors affecting the probability

that an inventor team produces a green invention.

A large number of studies stresses the importance of the team dimension of knowl-

edge production (Singh and Fleming, 2010; Bercovitz and Feldman, 2011; Dornbusch

and Neuhäusler, 2015; Teodoridis, 2017). As invention dynamics based on team collab-

orations benefit from leveraging heterogeneous competences for recombinant innovation

(Weitzman, 1998; Fleming, 2001), specific attention has been devoted to investigating

how the team composition influences its innovation outcomes. Accordingly, this study

seeks to provide an answer to the research question as to how inventor teams recombine

knowledge to produce GTs.

In doing so, we elaborate on the concept of recombinant capabilities (Henderson and

Clark, 1990; Hargadon and Sutton, 1997; Galunic and Rodan, 1998; Yayavaram and

Ahuja, 2008). We primarily focus on the distinction between ‘recombinant creation’ and

‘recombinant reuse’, framing such dichotomy in the inventor teams’ context (Carnabuci

and Operti, 2013). In the team context, ‘recombinant creation’ points to the team’s abil-

ity to adopt an explorative behavior combining knowledge that has never been combined

before. On the contrary, ‘recombinant reuse’ points to the adoption of an exploitative

behavior. In line with earlier works (e.g. Fleming, 2001), we develop indicators of in-

novation by ‘recombinant creation’ vis-à-vis ‘reuse’ in inventor teams, and study which

typology of recombinant capability drives the generation of green inventions. The po-

3



tential moderating effects of environmental policies and of teams’ previous experience

in the green domain is also investigated.

Results reveal an overall dominance of the impact of recombinant creation capabili-

ties. However, a finer grained analysis suggests that the dynamics at stake are somewhat

more articulated, due to learning dynamics and knowledge accumulation within inven-

tor teams. Results also confirm the critical role played by environmental policies in

boosting the generation of GTs and, interestingly, in moderating the effects of different

recombinant capabilities. Indeed, our results suggest that, for teams lacking previous

technological experience in the green domain, the more stringent is the environmental

regulation the more effective is the impact of recombinant creation in triggering the

generation of green inventions. Conversely, for teams with green experience, the impact

of recombinant creation turns out to be negative especially in regimes characterized by

low levels of environmental policy stringency.

The rest of the chapter is organized as follows. Section 2 reviews the background litera-

ture and proposes our research questions. Section 3 describes the empirical methodology.

Section 4 discusses the main results, and Section 5 concludes.

1.2 Theory and hypotheses

1.2.1 Green knowledge production and inventor teams

The analysis of GTs has gained momentum in the last two decades, following the well-

known argument set forth by Porter and van der Linde (1995). Green technological

change is indeed likely to enhance both firms’ environmental performances and their

production efficiency (Ambec et al., 2013). As noticed by del Ŕıo González (2009), most

studies investigating the determinants of GTs have focused on the understanding of the

innovation and the diffusion stages, while the antecedents of green invention have been

4



somewhat neglected.

Invention involves collective dynamics (Allen, 1983). A wide body of literature has

stressed how the tale of lone inventors and individual genius is a myth with scant empir-

ical support. In the last century there has been indeed a marked shift towards teamwork

knowledge production (de Solla Price, 1963; Adams et al., 2005; Wuchty et al., 2007).

Several factors have been proposed as possible explanations of this trend. On the one

hand, according to the ‘knowledge burden’ hypothesis (Jones, 2009), emerging team-

work organization is deemed a consequence of the increasing individual specialization

and narrowing of expertise engendered by the advancing knowledge frontier (Jones, 2009;

Agrawal et al., 2016). On the other hand, it is enabled by advances in theoretical under-

standing of problems, instrumentation, and computational capability, and the parallel

increasing relevance of general and abstract knowledge (Arora and Gambardella, 1994).

These forces have indeed stimulated an increasing division of labor in inventive processes,

as well as the fragmentation and dispersion of knowledge, paving the way to the rise of

collective invention dynamics based on the collaboration amongst numerous individuals,

often organized in teams (Teodoridis, 2017).

Recent studies have shown that teams of inventors are more productive and better

able to produce impactful inventions than lone inventors. In line with the recombinant

knowledge approach (Kauffman, 1993; Weitzman, 1996, 1998; Olsson, 2000; Fleming,

2001; Olsson and Frey, 2002; Caminati, 2006), the key source of such comparative ad-

vantage lies in the augmented potential combinatorial opportunities made possible by

the diversity of competences and experiences of individual inventors belonging to the

team. Such knowledge variety influences teams’ search patterns, increasing the number

of possible new combinations (Singh and Fleming, 2010).

However, diversity of competences cannot be considered a sufficient condition to en-

sure teams’ good performances. Indeed, the composition of the group represents a cru-

5



cial aspect. In this framework, some studies have stressed the importance of including

academic staff in the team, while others have focused on the difference between scien-

tists and engineers (Bercovitz and Feldman, 2011; Gruber et al., 2013; Dornbusch and

Neuhäusler, 2015; Teodoridis, 2017). An often-neglected issue concerns the impact of

the recombination patterns pursued by inventor teams.

The notion of recombinant capabilities, developed by strategy researchers, can be

fruitfully extended from the firm to the team domain (Henderson and Clark, 1990; Kogut

and Zander, 1992; Galunic and Rodan, 1998). Team’s recombinant capabilities can be

defined as the ability of its members to combine knowledge to produce technological

innovations. Moreover, recombination patterns are not all alike, and the distinction

between recombinant ‘creation’ and recombinant ‘reuse’ seems particularly useful in this

context. The former involves experimentation with unexplored interdependencies, while

the latter concerns the refinement and improvement of known technological combinations

(Carnabuci and Operti, 2013).2 Inventor teams may therefore differ with respect to the

capacity of their members to generate inventions drawing on recombinant creation vis-

à-vis reuse capabilities.

Recent empirical evidence suggests that green inventions are more likely to emerge

out of the hybridization of technologies that do not share important commonalities.

GTs are often the result of the combination of green and dirty technologies in new

and unprecedented ways (Zeppini and van den Bergh, 2011; Dechezleprêtre et al., 2014;

Colombelli and Quatraro, 2017). In this direction, the composition of inventor teams is

particularly relevant when green inventions are at stake, as the combination of knowledge

inputs that are loosely related requires the capacity to manage exploration-oriented

2By shedding light on the antecedents of recombinant capabilities, this distinction helps understand-
ing the tension between exploration and exploitation in organizations (March, 1991; Katila and Ahuja,
2002). Exploration requires the development of new knowledge, or moving away from the existing
technological competences (Levinthal and March, 1993; Benner and Tushman, 2002), while exploita-
tion builds upon existing knowledge and competences and strengthens existing skills, processes, and
structures (Abernathy and Clark, 1985; Levinthal and March, 1993; Benner and Tushman, 2002)

6



search processes to move beyond the fences of established technological domains and

envisage new recombination opportunities (Nightingale, 1998; Bercovitz and Feldman,

2011). These arguments lead to the following hypothesis:

H1: Inventor teams leveraging recombinant creation dynamics are more likely to gen-

erate green inventions.

1.2.2 Regulatory frameworks, green inventions and the impact of

recombinant capabilities

An established tenet in the literature on the determinants of GTs production concerns

the key role of environmental regulatory frameworks. This is due to the so-called ‘double

externality problem’ characterizing the generation and the diffusion of GTs (Jaffe et al.,

2005; Rennings, 2000). Inducement mechanisms, set forth through the implementation

of stringent environmental regulatory frameworks, stimulate research efforts aimed at

generating new GTs, by means of demand pull and technology push dynamics (Porter,

1991; Lanjouw and Mody, 1996; Jaffe and Palmer, 1997; del Ŕıo González, 2004; Fron-

del et al., 2008; Nemet, 2009; Johnstone et al., 2010; Popp et al., 2010; Renning and

Rammer, 2011; Acemoglu et al., 2012; Costantini and Mazzanti, 2012; Horbach et al.,

2012; Ghisetti and Quatraro, 2013; Hoppmann et al., 2013). These arguments lead us

to spell the following hypothesis:

H2: Stringent regulatory frameworks are positively associated to the probability of gen-

erating green inventions.

The way how heterogeneous regulatory frameworks affect GT dynamics by modifying

innovation strategies has received scant attention by the extant literature. Only few

studies have recently explored the link between modes of innovation and deployment

policies. Deployment policies have become central in the design of policy architecture
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aiming at boosting the diffusion of GTs. Indeed, in a rising number of countries, re-

sources dedicated to this specific policy tool by far exceed the incentives for R&D activ-

ities (Hoppman et al., 2013). Most of the evidence assumes that deployment policies, by

creating new market niches, are likely to foster exploitative learning due to the neces-

sity for suppliers of GTs to meet rapidly increasing demand (e.g. Nemet, 2009). Some

studies highlight that, by enhancing exploitative search strategies, deployment policies

could reduce technological diversity in an industry – rather than stimulating the search

for radically new technological solutions – even contributing to the emergence of lock-ins

into more mature, non-necessarily superior, technological trajectories (with respect to

the PV industry, see: Menanteau, 2000; Sandén, 2005; Sartorious, 2005; van den Heuvel

and van den Bergh, 2009).

Hoppmann et al. (2013) provide theoretical and empirical grounds to the link be-

tween deployment policies and the tension between exploration and exploitation. Based

on comparative evidence from 9 leading firms in the photovoltaic module industry, they

argue that deployment policies are likely to yield differential effects in terms of firms’ ex-

ploration vs. exploitation strategies, according to both the rate of policy-induced market

growth and the maturity of firms’ technological competences. More precisely, market

growth constitutes an incentive to invest in exploration for both firms pursuing more

mature and firms pursuing less mature technologies. In the balance between exploitation

and exploration, the latter by far dominates the former when firms face high rates of

market growth.

However, the extant literature does not provide exhaustive evidence about the role

of the whole policy architecture for addressing environmental issues on the adoption of

diverse innovation modes pursued by economic actors. We argue that a stringent policy

strategy leads to raise the demand for GTs by means of both modifying existent markets

and creating new niches. At the same time, it provides incentives to explore previously
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untried combinations, which are more likely to result in breakthrough green inventions.

In view of this discussion, we thus propose the following hypothesis:

H3: The positive association between the team’s leveraging of recombinant creation and

green inventions is magnified in contexts of stringent regulatory frameworks.

1.2.3 Learning dynamics

Innovation processes involve the combination of both tacit and codified knowledge

(Rosenberg, 1976; Nelson and Winter, 1982; von Hippel, 1994). Different and yet com-

plementary learning processes have been identified by the extant literature. Learning-

by-doing increases the effectiveness of production processes, engendering dynamic scale

economies (Arrow, 1962; Hatch and Mowery, 1998). Learning-by-using concerns advan-

tages accruing to the end users of a product as their understanding of it increases as

a function of usage. This makes user-producer relationships an important source of

innovation (Rosenberg, 1982; von Hippel, 1988).

Cohen and Levinthal (1989, 1990) stress how learning dynamics influence the effec-

tiveness of innovation production, in that they affect the ability of innovating agent to

either successfully combine different inputs in new and unprecedented ways or find out

new applications of known combinations. These mechanisms are better managed by

agents that have previously committed resources to the accumulation of both tacit and

codified knowledge. Knowledge accumulation increases agents’ absorptive capacity, i.e.

the ability to understand, process, and recombine external knowledge inputs (Pavitt,

1984). This is due to the inherent stickiness of knowledge, which in turn is determined

by learning dynamics themselves and the associated emerging tacit knowledge (von Hip-

ple, 1994). In other words, the evolutionary process by which absorptive capacity is

developed leads to the emergence of innovation routines, i.e. “routines for the support

and direction of innovative efforts” (Nelson and Winter, 1982: 134). Innovation routines
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involve the generation of new combinations and the selection of most promising research

avenues (Tidd et al., 1997).

In this framework, the team’s accumulation of competences in the domain of GTs is

expected to enhance the absorptive capacity of inventors and to improve their recombi-

nant capabilities, leading to the generation of further green inventions. In view of these

arguments, we spell out the following hypothesis:

H4: Teams’ previous experience in GTs positively affects the probability of generating

green inventions.

Learning dynamics are not only cumulative, but also local (Dosi and Grazzi, 2006,

2010). This means that search processes and the development of new technologies is

likely to take place in the neighborhood of the technological competences already devel-

oped by innovating agents (David, 1975; Antonelli, 1995). Therefore, while improving

the general effectiveness of the innovation process, both learning dynamics and the de-

velopment of innovation routines are likely to constrain the direction of technological

change. All other things being equal, path-dependence is likely to limit the scope for

the experimentation of new combinations, pushing inventors to deal with familiar areas

of the technology landscape.

The two features of learning, i.e. locality and cumulativeness, make recombinant reuse

preferable to recombinant creation, as inventors with sound competence in a specific

technology area will attribute a high value to knowledge that is close to their cumulated

knowledge, and will value distant knowledge inputs less (Ahuja and Morris Lampert,

2001; Kim et al., 2006). Accordingly, inventors already experienced in the green-tech

domain will likely exploit their specific cumulated knowledge to further produce other

green inventions. These arguments lead us to specify the following hypothesis:

H5: The impact of inventor teams’ recombinant creation on the generation of green

10



inventions is mitigated by inventor teams’ previous experience in GTs.

As a corollary, it is reasonable to expect that stringent regulatory frameworks enhance

recombinant creation for the generation of GTs mostly for teams in which no members

have previous experience in the green domain. Conversely, such augmenting impact is

less pronounced as far as inventors’ teams composed by experienced green inventors are

concerned.

1.3 Data, variables and methodology

1.3.1 Data

Our study sample includes 706,943 patents filed at the European Patent Office (EPO),

from 1995 to 2009. The main dataset we exploit is PatStat, released by the EPO

and maintained by the CRIOS Center for Research on Innovation, Organization and

Strategy.3 The correct attribution of the patents included in our sample to their inventors

might be affected by homonymy problems. We rely on the Massacrator c© Algorithm

to disambiguate the inventors’ identity and to correctly attribute patents to inventors

(Lissoni et al., 2006; Pezzoni et al., 2012).

1.3.2 Variables

Dependent variable

Patents are classified as green on the basis of the two main worldwide existent classifica-

tions: 1) The World Intellectual Property Organization (WIPO) “IPC green inventory”,

an International Patent Classification that identifies patents related to the so-called “En-

vironmentally Sound Technologies” and scatters them into their technology fields; 2) The

3For a complete description of the data supplied by the CRIOS Center for Research on Innovation,
Organization and Strategy, see Coffano and Tarasconi (2014).
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OECD “Indicator of Environmental Technologies” (OECD, 2011), based on the Inter-

national Patent Classification (IPC), which features seven environmental areas, i.e. (a)

general environmental management, (b) energy generation from renewable and non-fossil

sources, (c) combustion technologies with mitigation potential, (d) technologies specific

to climate change mitigation, (e) technologies with potential or indirect contribution to

emission mitigation, (f) emission abatement and fuel efficiency in transportation, and

(g) energy efficiency in buildings and lighting.

We combine both classifications to define our dependent variable (Green). The vari-

able Green is a dummy that equals one if the focal patent is classified as green either

in the WIPO or in the OECD classification, zero otherwise. Figure 1 shows the yearly

count of patents, the count of green patents according to the two classifications, and the

share of patents identified as green according to our variable Green.

Figure 1.1: Total number of patents and shares of green patents by year

Patent-based knowledge-search indicators

In order to construct a measure proxying inventor teams’ recombinant creation capabil-

ities, we proceed in three steps.
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First, for each patent, we calculate three technological knowledge indicators rely-

ing on the IPC technology classes contained in their backward citations: technological-

knowledge variety (IE), knowledge coherence (COH), and cognitive distance (CD) (see

the Appendix for a complete description of the mechanics behind the calculation of the

indicators).

Second, we assign to each inventor listed in the focal patent document the average

value of IE, COH, and CD she accumulated in her previous patenting activity, up to time

(t − 1). For each inventor i we define: IE(i,t−1) =
(∑

p IEp

N

)
; COH(i,t−1) =

(∑
p COHp

N

)
;

CD(i,t−1) =
(∑

p CDp

N

)
. The numerators are the sums of the observed values of IE, COH

and CD for each patent p in the inventor i stock; N is the total number of patents in

the inventor’s i stock, namely the patents filed by inventor i up to time (t− 1).

Finally, we assign the average values of IE, COH, and CD of each inventors to the

inventor team of the focal patent.

By focusing the analysis at the inventor team level, the combination of these indica-

tors allows us to capture the complexity of the knowledge search behavior behind the

generation of an invention. However, only precise combination of the values of the three

indicators can be interpreted as the evidence of an explorative behavior. Precisely, an

explorative behavior is positively correlated with IE and CD, and negatively correlated

with COH (Krafft et al., 2014). Coherently, to provide a synthetic indicator of knowl-

edge search behaviors characterizing the technological portfolio of the inventor team, we

perform a principal component analysis on IE, COH, and CD, measured at the team

level. Table 1 reports the results. The analysis identifies only one dominant component

with eigenvalue above one. It captures the 43% of the total variance. It is positively

correlated with IE and CD, and negatively correlated with COH. Thus, we consider high

values of the dominant component as representative for recombinant creation dynamics.

We use the dominant component to calculate the dummy RecCreation that equals one
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Table 1.1: Principal Component Analysis

Component number 1 2 3
Coherence -0.67 0.02 0.74
Variety 0.54 -0.67 0.51
Cognitive Distance 0.51 0.74 0.44

Eigenvalues 1.28 0.95 0.77
Cum. % of tot variation 0.43 0.74 1

if the score of the component is above its average value and zero if it is below its average

value. In the former case the team is leveraging recombinant creation capabilities, while

in the latter case the team is adopting a ‘recombinant reuse’ behavior.

Team green experience and environmental policy stringency

As for the team’s green experience, we define a dummy GreenExp that equals one if the

team has at least one patent in green technologies in its patent stock, up to t− 1, zero

otherwise.

As for the policy stringency variable, we include in the analysis the OECD “Environ-

mental Policy Stringency Index” (EPS), which is a country-specific and internationally-

comparable measure of the stringency of environmental policy architectures. OECD

defines “stringency” as the degree to which environmental policies put an explicit or

implicit price on polluting or environmentally harmful behavior. The composite index

is based on the degree of stringency of 14 environmental policy instruments, primarily

related to climate and air pollution and it ranges from 0 (not stringent) to 6 (stringent).

It covers 28 OECD and 6 BRIICS countries for the period 1990-2012 (Botta and Koźluk,

2014). The value of the index is assigned to each observed patent on the basis of the

applicant country of residence. The dummy Stringency equals 1 if the index is above its

average value, zero otherwise. Table 2 shows the descriptive statistics of our dependent

and independent variables. Table 3 shows the conditional average of the dependent vari-

able Green, according to high (above the average) and low values (below the average) of
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RecCreation, GreenExp, and Stringency.

Table 1.2: Descriptive statistics
obs. mean sd min max

Dependent variable
Green dummy 706943 0.172 0.377 0.00 1.00

Variables of interest
RecCreation (Dummy) 706943 0.547 0.498 0.00 1.00
High Variety (Dummy) 706943 0.471 0.499 0.00 1.00
High Coherence (Dummy) 706943 0.424 0.494 0.00 1.00
High Cognitive Distance (Dummy) 706943 0.499 0.500 0.00 1.00
Stringency (Dummy) 706943 0.554 0.497 0.00 1.00
GreenExp (Dummy) 706943 0.355 0.478 0.00 1.00

Team controls
N. of inventors 706943 3.253 2.209 1.00 60.00
Team experience (Stock) 706943 20.841 143.995 1.00 4259
Share of granted patents 706943 0.514 0.379 0.00 1.00
Share of triadic patents 706943 0.531 0.386 0.00 1.00
Number of backward citations 706943 90.719 380.153 1.00 19043

Applicant controls
Applicant patenting experience (Stock) 706943 1193 3444 0.00 34855
Applicant green experience (Dummy) 706943 0.706 0.456 0.00 1.00

Table 1.3: Percentage of green patents. Conditional mean for each variable of interest

variables High Low diff Pvalue

RecCreation (Dummy) 0.167 0.178 0.011 0.00
High Variety (Dummy) 0.164 0.18 0.015 0.00
High Coherence (Dummy) 0.166 0.18 -0.014 0.00
High Cognitive Distance (Dummy) 0.17 0.174 0.004 0.00
Stringency (Dummy) 0.187 0.154 -0.033 0.00
GreenExp (Dummy) 0.389 0.053 -0.34 0.00
Obs: 706,943

1.3.3 Methodology

We test the hypotheses proposed in Section 2 with a series of nested regression models.

First, we estimate the effect of the inventor teams’ recombinant creation capabili-

ties (RecCreation), the presence in the country where the applicant resides of stringent
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environmental policies (Stringency), and team green experience (GreenExp) on the prob-

ability to observe a patent with green technological content (Equation 1).

Pr(GREEN = 1)p = β0 + β1RecCreation+ β2Stringency +

+β3GreenExp+ X ′β4 + εp. (1.1)

Second, to investigate whether environmental policy stringency (Stringency) and team

green experience (GreenExp) moderate the effect of recombinant creation (RecCreation)

on the generation of GTs, we extend the model described in Equation 1 by testing for

all the possible interactions (Equation 2).

Pr(GREEN = 1)p = β0 + β1RecCreation+ β2Stringency +

β3GreenExp+ β4RecCreation× Stringency +

β5RecCreation×GreenExp+

β6Stringency ×GreenExp+

β7RecCreation× Stringency ×GreenExp+

X ′β8 + εp. (1.2)

In both models, represented by Equation 1 and 2, we include a comprehensive set of

controls at the level of the inventor team and the applicant. At the level of the team, we

control for several characteristics: i) the number of inventors (N. of inventors); ii) the

number of previous patents as proxy of the team experience (Team experience); iii) the

share of the team members’ granted patents (Share of granted patents); iv) the share

of the team members’ triadic patents (Share of triadic patents); and v) the number of

backward citations of the focal patent (Number of backward citations).

At the level of the patent applicant, we control for i) the applicant experience, proxied
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by the number of previous patents (Applicant patenting experience) and ii) the applicant

previous green experience, proxied by the dummy Applicant green experience that equals

one if the applicant has in its stock of patents at least one green patent, zero otherwise.

Finally, as further controls, we include a set of dummies, one for each patent Priority-

year, and a set of country dummies, one for each country reported in the applicant’s

residence address. We control also for the team’s previous patenting activity in specific

technology classes, as defined by the OST7 classification (Schmoch et al., 2003). Pre-

cisely, we consider seven OST7 technology dummies, each dummy assuming value one if

at least one of the team members has patented in that class, zero otherwise. Table 2

shows the descriptive statistics of the control variables.

In the next Section we present results from OLS estimations.4 All regression exercises

are conducted at the patent level.

1.4 Results

In Table 4 we estimate six nested models. In columns 1, 2, 3, and 4 we estimate the effect

of RecCreation, GreenExp, and Stringency, on the dependent variable Green. In column

5 we add the team characteristics. In column 6 we also add the applicant characteristics.

In all the six specifications we include as controls country, OST7 technology, and Priority-

year dummies.

Results reveal that recombinant creation capabilities shows a premium on the prob-

ability of observing a patent with green technological content, confirming hypothesis 1

stated in Section 2. Precisely, the capacity to combine knowledge inputs in previously

untried ways increases the probability of observing a green patent by 1.32% (column 6).

This evidence confirms that inventor teams leveraging recombinant creation capabilities

4Results are consistent also applying Logit estimations.
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Table 1.4: Probability of observing a green patent. OLS estimation
(I) (II) (III) (IV) (V) (VI)

Pr(green) Pr(green) Pr(green) Pr(green) Pr(green) Pr(green)

Variables of interest (lagged t-1)

RecCreation t-1 (Dummy) 0.0131∗∗∗ 0.0205∗∗∗ 0.0134∗∗∗ 0.0132∗∗∗

Stringency t-1 (Dummy) 0.0168∗∗∗ 0.0144∗∗∗ 0.0135∗∗∗ 0.0149∗∗∗

GreenExp t-1 (Dummy) 0.345∗∗∗ 0.345∗∗∗ 0.353∗∗∗ 0.336∗∗∗

Team controls (lagged t-1)

n. of inventors 0.00509∗∗∗ 0.00480∗∗∗

log(Stock of patents) -0.0272∗∗∗ -0.0258∗∗∗

Share of granted patents -0.00506∗∗∗ -0.00546∗∗∗

Share of triadic patents -0.00739∗∗∗ -0.00758∗∗∗

log(Number of backward citations) 0.00397∗∗∗ 0.00458∗∗∗

Applicant controls (lagged t-1)

log(1+Stock of patents) -0.00876∗∗∗

Applicant green experience (Dummy) 0.0773∗∗∗

Other controls

Country dummies (Applicant) yes yes yes yes yes yes
OST7 dummies (Team) yes yes yes yes yes yes
Calendar year dummies yes yes yes yes yes yes

Constant 0.128∗∗∗ 0.128∗∗∗ 0.130∗∗∗ 0.117∗∗∗ 0.120∗∗∗ 0.107∗∗∗

Observations 706,943 706,943 706,943 706,943 706,943 706,943
R-squared 0.064 0.063 0.219 0.220 0.224 0.228
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are more likely to introduce green technologies into the market. Moreover, environmen-

tal policy stringency has a positive effect (+1.49%), as well as the team green experience

(+33.6%). Hypothesis 2 and 4 are thus confirmed. Interestingly, what emerges is the

prominent role of the team green experience in driving the probability of generating

green inventions, revealing a strong path-dependence. Building teams that persistently

perform green R&D is thus the best strategy that firms should pursue for introducing

GTs.

As for the controls, the number of inventors positively impacts the probability of

generating green inventions, as well as the number of backward citations, and the ap-

plicant’s green previous experience. On the contrary, the team’s stock of patents, the

team’s share of granted and triadic patents, and the applicant’s stock of patents, show

a negative effect.

In Table 5 we estimate 6 regression models adding sequentially a set of interactions

that allow us to test both hypothesis 3 and hypothesis 5, namely whether team’s green

experience and stringent environmental policy frameworks moderate the effect of team’s

recombinant creation capabilities on the generation of green inventions. The same model

estimated in Table 4, column 6, represents our baseline model in Table 5, column 1. In

columns 2, 3, 4, and 5 we sequentially add to the baseline model all the possible double

interactions between RecCreation, Stringency, and GreenExp. Finally, in column 6 we

add the triple interaction between the three variables.

In order to simplify the interpretation of the interaction terms reported in the com-

plete specification of column 6 (Table 5), we show in Table 6 the marginal effects of

RecCreation in different conditions of policy stringency and team green experience. Pre-

cisely, we consider the effect of recombinant creation capabilities in four scenarios: (i)

the team has experience in GTs (GreenExp equals 1) and the green policies are strin-

gent (Stringency equals 1), (ii) the team has no green experience and the policies are
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Table 1.5: Probability of observing a green patent, interactions. OLS estimation
(I) (II) (III) (IV) (V) (VI)

Pr(green) Pr(green) Pr(green) Pr(green) Pr(green) Pr(green)

Variables of interest (lagged t-1)

RecCreation (Dummy) 0.0132∗∗∗ 0.0280∗∗∗ 0.0115∗∗∗ 0.0132∗∗∗ 0.0242∗∗∗ 0.0310∗∗∗

RecCreation * GreenExp -0.0413∗∗∗ -0.0430∗∗∗ -0.0665∗∗∗

RecCreation * Stringency 0.00310* 0.00772∗∗∗ -0.00534∗∗∗

RecCreation * Stringency * GreenExp 0.0391∗∗∗

Stringency * GreenExp -0.00310* -0.00812∗∗∗ -0.0306∗∗∗

Stringency (Dummy) 0.0149∗∗∗ 0.0150∗∗∗ 0.0132∗∗∗ 0.0158∗∗∗ 0.0133∗∗∗ 0.0203∗∗∗

GreenExp (Dummy) 0.336∗∗∗ 0.359∗∗∗ 0.336∗∗∗ 0.337∗∗∗ 0.365∗∗∗ 0.379∗∗∗

Team controls (lagged t-1)

N. of inventors 0.00480∗∗∗ 0.00484∗∗∗ 0.00479∗∗∗ 0.00480∗∗∗ 0.00484∗∗∗ 0.00483∗∗∗

log(Stock of patents) -0.0258∗∗∗ -0.0254∗∗∗ -0.0259∗∗∗ -0.0258∗∗∗ -0.0254∗∗∗ -0.0256∗∗∗

Share of granted patents -0.00546∗∗∗ -0.00567∗∗∗ -0.00546∗∗∗ -0.00549∗∗∗ -0.00575∗∗∗ -0.00569∗∗∗

Share of triadic patents -0.00758∗∗∗ -0.00773∗∗∗ -0.00760∗∗∗ -0.00753∗∗∗ -0.00765∗∗∗ -0.00752∗∗∗

log(Number of backward citations) 0.00458∗∗∗ 0.00442∗∗∗ 0.00461∗∗∗ 0.00455∗∗∗ 0.00442∗∗∗ 0.00451∗∗∗

Applicant controls (lagged t-1)

log(1+Stock of patents) -0.00876∗∗∗ -0.00870∗∗∗ -0.00876∗∗∗ -0.00875∗∗∗ -0.00865∗∗∗ -0.00868∗∗∗

Applicant green experience (Dummy) 0.0773∗∗∗ 0.0769∗∗∗ 0.0773∗∗∗ 0.0773∗∗∗ 0.0769∗∗∗ 0.0769∗∗∗

Other controls

Country dummies (Applicant) yes yes yes yes yes yes
OST7 dummies (Team) yes yes yes yes yes yes
Calendar year dummies yes yes yes yes yes yes

Constant 0.107∗∗∗ 0.0987∗∗∗ 0.108∗∗∗ 0.106∗∗∗ 0.0993∗∗∗ 0.0952∗∗∗

Observations 706,943 706,943 706,943 706,943 706,943 706,943
R-squared 0.228 0.229 0.228 0.228 0.229 0.229
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stringent, (iii) the team has green experience and the policies are not stringent, and (iv)

the team has no green experience and the policies are not stringent.

Table 1.6: Marginal effect of RecCreation, summary

Stringency
high low

GreenExp
high -0.17% -3.55%
low 2.56% 3.10%

Note: results based on estimations in Tab. 5, Col. 6.

We find that recombinant creation fosters the probability of observing a green in-

vention in contexts of low team’s green experience. Interestingly, the marginal effect is

higher when the stringency level of environmental policy is weak (+3.1%). Conversely,

for teams showing higher levels of green experience, the marginal effect of recombinant

creation is negative, namely recombinant reuse is more effective in generating green in-

ventions. Moreover, this effect is magnified when the environmental policy stringency is

weak (-3.55%).

Summing up, firms aiming at generating green inventions face a trade-off between

pursuing exploitative strategies relying on experienced teams and pursuing explorative

strategies performed by non-experienced inventors. Reasonably, if a firm already employs

experienced teams, exploitative research strategies guarantee a premium in terms of

green-tech production. Conversely, the choice of a firm lacking previous green experience

and aiming at entering the green technological realm should be between assembling teams

whose inventors reveal higher abilities in recombining technological knowledge and hiring

green-experienced inventors. Furthermore, the policy context matters in this decision

process. Indeed, the more stringent the policy regime in which the team operates the

lower the relative incentive to pursue exploitative strategies for experienced teams. This

suggests that a proper combination of both exploitative and explorative strategies is

likely to ensure successful R&D performances in the green domain.
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1.4.1 Sensitivity analysis

By exploiting the OST7 classification (Schmoch et al., 2003), we perform the same

estimations as in column 6 of Table 5 for each technological macro-sector. Table 7 reports

the sector-specific marginal effects of recombinant creation capabilities on the probability

of observing a green invention. Precisely, columns 1-4 report the results for the four

different scenarios mixing diverse combinations of team’s technological experience in

GTs and environmental policy stringency. Figure 2 plots the marginal effects reported

in Table 7 for each technological macro-sector.

Figure 1.2: RecCreation marginal effects by OST technogical areas

A heterogeneous picture emerges, confirming the relevance of sector specificities when

investigating patterns of green technological emergence. Indeed, if the overall effect of

recombinant creation capabilities is significantly positive only in scenarios characterized

by low previous green experience, when empirical estimations are conducted separately

by technological domain, conclusions change notably.

For interpreting those results, at least two aspects must be simultaneously considered.

First, each technological domain cultivates its own specificity in the ways innovative

activities are structured and organized. Second, the green dimension of the innovative
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processes within a specific sector differs from technology to technology, due to comple-

mentarities and vertical linkages across sectors.

We expect to observe domains characterized by high stability, concentration in in-

novation activities, and with low levels of entry, to introduce – ceteris paribus – green

technologies more incrementally, by exploiting previous knowledge and without attempt-

ing to disrupt consolidated technological patterns. Conversely, domains characterized

by lower concentration of innovative activities, lower stability in the hierarchy of innova-

tors, and higher relevance of new innovators are supposed to introduce – ceteris paribus

– green technologies more dynamically, through recombinant creation dynamics. At the

same time, the more a technological area is vertically related in terms of green knowl-

edge to the rest of the technological space, the higher the importance of recombinant

creation in explaining the introduction of innovative (green) technologies. Conversely,

the less is its relatedness to the rest of the space, the more likely the process through

which technical change emerge is based on exploitation strategies.

Four technological macro-sectors are of particular interest as representative of different

conditions of concentration, stability in hierarchy of innovators, and levels of entry.

We focus our comments on electrical engineering, chemicals, pharma, and mechanical

engineering.

When the analysis is restricted to patents related to the macro technological area of

electrical engineering, the premium of pursuing explorative patterns is always positive.

This is of particular evidence in cases of high previous team’s experience (independently

from the level of the policy stringency in place). This technological domain is character-

ized by low levels of concentration of innovative activities, low stability in the hierarchy

of innovators and high relevance of new innovators. Furthermore, it is highly verti-

cally related to other technological areas, facing a heterogeneous demand for technology.

Given these characteristics, recombinant creation dominates in explaining the emergence
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of green technologies in this domain.

We observe a similar effect for innovation processes related to the macro technological

field of chemicals. However, this domain shares with the electrical engineering one just

the level of vertical relatedness with the rest of the technology space. The chemicals

rely mostly on demand coming from external domains. A particularly strong positive

premium for recombinant creation capabilities emerges indeed in cases of high previous

team’s innovative experience, combined with high levels of policy stringency. The higher

the overall environmental stringency, the higher the potential demand the chemical do-

main faces. To attack this heterogeneous demand, recombinant creation is preferred to

recombinant reuse strategies.

A completely reverse scenario emerges in the case of the pharma sector, which reveals

a complete dominance of exploitation strategies in explaining the emergence of green-

related inventions, also in cases of low previous green experience. Green technologies in

the pharma domain seem to emerge exclusively within the domain itself, without spread-

ing across technological boundaries. They respond to internal demand and serve mainly

the goal of abating costs. Exploitation of existent techniques is thus the predominant

strategy pursued in the pharma domain for innovating green.

The mechanical engineering and transportation macro area deserves a final comment.

Contrary to the overall evidence, for this technological macro-domain the level of overall

policy stringency, and not the level of accumulated experience, seems to matter the

most for recombinant creation to induce green inventions. Given the relevance of the

domain in terms of emissions, to promptly respond to regulation, this domain relies on

explorative strategies.

For the rest of the analyzed macro-sectors, results are in line with our expectations.
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1.5 Conclusions

By exploiting the EPO universe of patent data, the present study aims at capturing

the effect of diverse knowledge recombination patterns, mastered by inventor teams, as

important drivers for the generation of GTs. Empirical evidence shows a positive pre-

mium of recombinant creation capabilities in the generation of GTs, confirming our first

hypothesis that recombinant creation increases the probability that a team produces a

green invention. Moreover, we find positive effects of both team’s previous technologi-

cal green experience and environmental regulation stringency, confirming, respectively,

our second and forth hypotheses. We also find diverse moderating effects of technologi-

cal green experience and environmental regulation stringency on recombinant creation.

Precisely, the positive effect of team’s recombinant creation capabilities is magnified for

teams lacking technological green experience, even more in regimes of weak environmen-

tal regulation. Both third and fifth hypotheses are thus confirmed, showing a complex

architecture behind the generation process of green inventions.

Our results bring interesting implications for firms aiming at performing green R&D

activities. GTs are indeed likely to positively respond to explorative strategies: assem-

bling teams of inventors able to creatively recombine extant technological knowledge

increases the firm’s probability of introducing new GTs. However, path dependence

plays a fundamental role also in the green technological realm, suggesting that experi-

enced teams are those that show highest rates of success in introducing green inventions.

Finally, the level of local policy stringency is relevant in virtue of the innovation mode a

firm pursues. Indeed, explorative strategies seem to enhance their positive effect when

the level of stringency is sufficiently high, and, at the same time, teams lack previous

green experience. Therefore, firms aiming to generate green inventions and operating

in technological domains where both regulation schemes and previous green experience

are weak should assemble teams formed by inventors able to creatively recombine sparse

26



and heterogeneous technological knowledge.

From a policy perspective, our results lead to two main policy implications.

First, building proper levels of green technological knowledge within a sector, as rep-

resented by the presence of teams with experience in GTs, is by far the most important

driver for boosting GTs. However, teams with green experience that adopt explorative

behaviors, especially in regimes of weak environmental regulation, are less likely to

generate green inventions. This combination of presence of experienced teams and ab-

sence of incentives to adopt explorative behaviors could be harmful in terms of possible

emergence of technological lock-ins. Proper innovation policies aiming at guarantee-

ing systemic variety and exploration strategies are thus suggested in contexts of high

green-technological specialization.

Second, in contexts where the level of advance of green technological knowledge is

scarce, recombinant creation dynamics reveal their relevance in fostering GTs. Inter-

estingly, when these exploration-oriented behaviors are combined with elevated levels of

stringency, their effect is magnified. Thus, the importance for policy makers of combin-

ing environmental stringency with innovation policies oriented towards the exploration

of technological niches. This combination is the most effective channel boosting green

technical change for countries/sectors where the green technological infrastructure is

weak.
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Appendix - Technological Knowledge Indicators

Technological variety First, in order to measure the level of technological-knowledge

variety (IE) a patent reveals, we apply the Information Entropy Index to the co-

occurrences of IPC classes contained in the backward citations of any observed patent.5

The index was introduced to economic analysis by Theil (1967). Its earlier applications

aimed at measuring the degree of diversity of industrial activity (or of a sample of firms

within an industry) against a uniform distribution of economic activities in all sectors,

or among firms (Attaran, 1986; Frenken et al., 2007; Boschma and Iammarino, 2009).

Compared to common measures of variety and concentration, information entropy has

some interesting properties (Frenken and Nuvolari, 2004). An important feature of the

entropy measure, which we exploit in our analysis, is its multidimensional extension.

Consider a pair of events (Xj, Ym), and the probability of their co-occurrence pjm, a

two-dimensional (total) entropy measure can be expressed as follows (patent and time

subscripts are omitted for the sake of clarity):

H(X, Y ) =

q∑
j=1

w∑
m=1

pjmlog2

(
1

pjm

)
(1.3)

If pjm is assumed to be the probability that two technological classes j and m, con-

tained in the backward citations of a patent, co-occur within the same patent, then

the measure of multidimensional entropy focuses on the variety of co-occurrences of

technological classes within patents’ backward citations portfolio.

Moreover, the total index can be decomposed in a “within” and a “between” part

whenever the events to be investigated can be aggregated to form smaller numbers

of subsets. Within-entropy (IEW) measures the average degree of disorder or variety

within the subsets, between-entropy (IEB) focuses on the subsets measuring the variety

5Backward citations have been collected on the basis of the patent’s DOCDB family. IPC classes
have been truncated at the 4 digits level.
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across them. It can be easily shown that the decomposition theorem also holds for the

multidimensional case. Hence, if one allows j∈Sg and m∈Sz (g = 1, . . ., G; z = 1, . . ., Z),

we can rewrite H(X, Y ) as follows:

H (X, Y ) = HQ +
G∑

g=1

Z∑
z=1

PgzHgz (1.4)

where the first term on the right-hand-side is the between-group entropy and the second

term is the (weighted) within-group entropy. In particular,

HQ =
G∑

g=1

∑
z=1

ZPgzlog2

(
1

Pgz

)
(1.5)

Pgz =
∑
j∈Sj

∑
m∈Sz

Pjm (1.6)

Hgz =
∑
j∈Sj

∑
m∈Sz

Pjm

Pgz

(
1

pjm
Pgz

)
(1.7)

Following Frenken et al. (2007), we can refer to between-group and within-group

entropy, respectively, as unrelated technological variety (UTV) and related technological

variety (RTV), while total information entropy is referred to as general technological

variety (TV) . The distinction between related and unrelated variety is based on the

assumption that any pair of entities included in the former generally are more closely

related or more similar to any pair of entities included in the latter. This assumption is

reasonable given that a type of entity (patent, industrial sector, trade categories, etc.)

is organized according to a hierarchical classification. In this case, each class at a given

level of aggregation contains “smaller” classes, which, in turn, contain yet “smaller”

classes. Here, small refers to a low level of aggregation. We can reasonably expect then

that the average pair of entities at a given level of aggregation will be more similar than
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the average pair of entities at a higher level of aggregation. Thus, what we call related

variety is measured at a lower level of aggregation (three-digit class within a one-digit

macro-class) than unrelated variety (across one-digit macro-classes).

Technological coherence Second, we define the knowledge coherence (COH) measure

as the average relatedness of any technology randomly chosen within the patent’s portfo-

lio of backward citations with respect to any other technology present in the technological

space (Nesta and Saviotti, 2005, 2006). To yield the knowledge coherence index, several

steps are required. First of all, we calculate the weighted average relatedness WARl of

technology l with respect to all other technologies present within the technological space.

Such a measure builds upon the measure of technological relatedness τlj (see Nesta and

Saviotti, 2005). Following (Teece et al., 1994), WARl is defined as the degree to which

technology l is related to all other technologies j∈l in the technological space, weighted

by patent count Pjt:

WARlt =

∑
j 6=l τljPjt∑
j 6=l Pjt

(1.8)

Finally the coherence (or relatedness) of the patent’s knowledge base is defined as the

weighted average of the WARl measure:

R =
∑
j 6=l

WARlt×
Plt∑
l Plt

(1.9)

It is worth stressing that this index measures the degree to which the services rendered

by the co-occurring technologies are complementary one another. The relatedness mea-

sure τlj indicates indeed that the utilization of technology l implies that of technology j

in order to perform specific functions that are not reducible to their independent use.
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Cognitive distance Third, the similarity amongst different types of knowledge can be

captured by a measure of cognitive distance (CD). A useful index of distance can be

derived from the measure of technological proximity originally proposed by Jaffe (1986,

1989), who investigated the proximity of firms’ technological portfolios. Subsequently

Breschi et al. (2003) adapted the index in order to measure the proximity, or relatedness,

between two technologies. We follow the same approach, but adapting the analysis at

the patent level. The idea is that each patent is characterized by a vector V of the k

IPC classes (technologies) that occur in its backward citations. Knowledge similarity

can first be calculated for a pair of technologies l and j as the angular separation or

un-centered correlation of the vectors Vlk and Vjk. The similarity of technologies l and

j can then be defined as follows:

Slj =

∑n
k=1 VlkV jk√∑n

k=1 V
2
lk

√∑n
k=1 V

2
jk

(1.10)

The idea underlying the calculation of this index is that two technologies j and l

are similar to the extent that they co-occur with a third technology k. The cognitive

distance between j and l is the complement of their index of similarity:

dlj = 1− Slj (1.11)

Once the index is calculated for all possible pairs, it needs to be aggregated at the

patent level to obtain a synthetic index of technological distance. This can be done in

two steps. First of all one can compute the weighted average distance of technology l,

i.e. the average distance of l from all other technologies:

WADlt =

∑
j 6=l dljPjit∑
j 6=l Pjit

(1.12)

Where Pj is the number of patents in which the technology j is observed. The average
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cognitive distance for a patent is obtained as follows:

CDlt =
∑
l

WADlit×
Plit∑
l Plit

(1.13)
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2 Government-funded R&D and the

accumulation of green knowledge.

Evidence from EPO patent-citation

data1

Abstract

The present study investigates the effect of changes in the level of government-funded R&D on the

process of green knowledge accumulation, measured through patent citations. The sample includes

green patents applied at the European Patent Office from 1980 to 1984. Patent citation data are

collected from 1981 to 1988, together with their qualitative characteristics in terms of technological

originality and radicalness. The level of government-funded R&D is instrumented through the policy

reaction to the 1986 Chernobyl-accident, affecting the energy-generation domain. Results reveal that

a 1% increase in government-funded R&D increases by 0.14% the yearly average number of citations a

green patent receives. Similar evidence emerges for the number of citations coming from highly original

and radical patents, and from non-green patents. Policy implications are manifold.

1All my thanks to Davide Consoli, Edoardo Ferrucci, Francesco Lissoni, Enrica Maria Martino,
Alessandro Palma, Francesco Quatraro, Valerio Sterzi and Matteo Tubiana for their suggestions and
comments. I also thank participants in the DRUID17 conference, June 2017, NYU, New York, US.
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2.1 Introduction

The design of public policies for pursuing environmentally sustainable growth is at the

top of the global policy agenda. To necessarily and timely abate CO2 emissions and

concentration in the atmosphere, only two interrelated options seem to be viable: one

is to develop feasible and cost-effective technologies for capturing carbon from the air

and storing it safely; the other is to drastically reduce the future consumption of fossil

fuels. Both are a matter of systematic policy interventions, requiring long-term systemic

vision and strong coordination between institutions (Covert et al., 2016).

Innovation plays a crucial role. Scholars substantially agree in stating that public

interventions, both market and R&D oriented, will be required at least until green

technologies (hereafter GTs) will overcome the sunk-cost advantage of incumbent tech-

nologies (Acemoglu et al., 2012).

Importantly, technological change is a process of knowledge cumulativeness, gradual

specialization and consolidation of successful routines (Nelson and Winter, 1982; Cohen

and Levinthal, 1990; Stuart and Podolny, 1996), inexorably path dependent (David,

1985).

Furthermore, the intrinsic limits to the appropriability of knowledge reduce the in-

centives to generate it, leading to constant under-supply. This calls for systematic pub-

lic interventions to restore efficiency by means of either subsidies or direct generation

through large public research systems (David, 1993; Antonelli, 2009).

Popp (2006b) stresses the importance of considering that social returns to research are

high. Precisely, the author states that “[T]he welfare gains from ITC [induced techno-

logical change] nearly double when market failures for knowledge are corrected, increasing

from 9.4% to 16.7%. For policymakers, these findings suggest that government-funded

R&D can play an important role in climate change policy” [pag. 599].
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Therefore, a better understanding of the way how the accumulation process of green-

technological knowledge responds to changes in government-funded R&D2 is required to

optimally design the policy architecture targeting green technical change.

Surprisingly, the extant literature provides little evidence about this relationship. This

is the reason why the present chapter aims at investigating the causal effect of changes

in public R&D on green knowledge accumulation dynamics, under several perspectives.

The first question I aim to answer is: does an increase in government-funded R&D

expenditures foster the broad accumulation process of green technological knowledge?

As a second step of the analysis, I enter more deeply into the technological content of

inventions making use of the established green knowledge. In other words, I investigate

the direction that the accumulation process of green knowledge takes.

Two aspects characterizing the technologies making use of green knowledge are of

primary interest in this sense: their qualitative technological content and whether they

pertain to dirty trajectories. Indeed, if green knowledge enters trajectories with higher-

than-the-average technological quality, it is reasonable to expect both high rates of its

diffusion and an increase in the likelihood of the emergence of breakthrough technical

advances.3 Furthermore, if it also enters dirty trajectories, it is reasonable to expect a

positive, faster substitution effect of dirty with clean technologies.

Accordingly, I firstly test for the effect of changes in government-funded R&D on the

rate of accumulation of green knowledge in highly original, radically new and potentially

breakthrough invention processes.

Second, I investigate whether changes in public R&D efforts lead to the modification

of non-green trajectories: do changes in government R&D expenditures facilitate the

2Throughout the chapter the terms “government-funded R&D”, “government R&D”, “publicly-
funded” R&D and “public R&D” are used as synonyms.

3By investigating the relationship between innovation complementarity and environmental pro-
ductivity at the EU level, Gilli et al. (2014) conclude that incremental strategies dominated radical
strategies so far, leading to insufficient results when looking at long-run economic and environmental
goals. Fostering radical attempts seems thus a real priority.
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entry of green knowledge in non-green invention processes?

To answer this set of questions, I analyze the early stage phase of development of GTs.

Precisely, I exploit patent information data, considering all green patents filed at the

European Patent Office (EPO) from 1980 to 1984, together with their citation patterns,

to measure the level of knowledge accumulation in response to changes in government

R&D investments.

To overcome endogeneity issues characterizing the relationship between technical ad-

vance and public intervention, I rely on the occurrence of the Chernobyl nuclear accident

(April 1986) as an exogenous shock for the design of policies targeting the energy gener-

ation domain. According to the arguments proposed in Section 3, the policy reaction to

the Chernobyl nuclear accident allows me to instrument the level of government R&D

expenditures. Once instrumented, I estimate its effect on several characteristics of the

green knowledge accumulation process.

Results reveal that increasing the level of government-funded R&D fosters the broad

accumulation process of green technological knowledge. Furthermore, public R&D leads

to the use and reuse of established green technological knowledge both in technologies

revealing higher breakthrough potential and in trajectories not classified as environmen-

tally friendly. This evidence demonstrates that increasing the level of public funding for

R&D activities would be an important lever for both consolidating the established green

technological trajectory and accelerating the process of changing technological paradigm.

However, the magnitude of the estimated effects suggests that an unprecedented effort

in public R&D investments is required to timely shift from dirty to clean production

systems.

The rest of the chapter is structured as follows. Section 2 reviews the extant litera-

ture and proposes three main hypotheses. Section 3 describes the research design, the

identification strategy, the data collection, the variables construction and the empirical
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models applied. Section 4 presents the results. The last section concludes.

2.2 Theoretical background and hypotheses

The uniqueness of the green technological realm traditionally resides in two well doc-

umented theoretical arguments, resumed in the so-called ‘double-externality’ concept

(Rennings, 2000): first, GTs are affected by environmental externalities; second, com-

mon to any innovation process, firms are systematically not able to entirely capture the

social value of performed R&D, due to the intrinsic characteristics of (partial) non-rivalry

and non-excludability of technological knowledge. This double issue leads to a constant

sub-optimal level of investments in green innovation processes. Public intervention for

restoring systemic efficiency and guaranteeing long-term growth is thus indispensable

(Jaffe et al., 2002a). Starting from this consciousness, since the mid-1990s the litera-

ture investigating the mechanisms through which green innovation processes respond to

policy interventions has experienced a tremendous upsurge.

Public R&D and green knowledge accumulation

During the last decades a variety of policy schemes and tools has been implemented to

foster both the demand- and the supply-side of the green innovation process.

Demand oriented policies act in modifying consumer preferences, changing long-term

consumption patterns. Examples of demand interventions include greenhouse gas emis-

sion targets, environmental standards, or carbon taxes. These tools represent an indirect

stimulus to develop green technologies. Supply-side policies, conversely, represent a di-

rect support for technological change. They include subsidies, loans, tax credits, grants,

pricing schemes, R&D funding for risky innovative processes, and so on.

While indirect stimuli would be suitable to foster the introduction and the spreading

of existent, mature green technologies, direct stimuli would instead be more likely able to

37



create the ground for the generation of technological novelties (less mature technologies)

with breakthrough potential (Nemet, 2009; Hoppmann et al., 2013; Costantini et al.,

2015).

Browsing the extensive extant literature investigating the role of different types of

instruments in shaping eco-innovation activities, we can conclude that the evidence of a

strong policy effect on the generation and diffusion of GTs is crystalline.4

However, only few studies specifically focus their attention on the role of government-

funded R&D in fostering GTs, all of them related to the energy sector.

Klaassen et al. (2005) examine the impact of (subsidy-induced) capacity expansion

and public R&D expenditures on cost reducing innovation for wind turbine farms in

Denmark, Germany and the UK during the 1990s by both reviewing the extant liter-

ature and proposing a finer empirical analysis. The proposed survey of the literature

suggests that R&D policy in Denmark was most successful in supporting innovation,

and capacity promoting subsidies were most effective in Denmark and Germany in stim-

ulating innovation. From their empirical analysis they conclude that results support the

validity of the two-factor learning curve formulation, in which the cost reductions are

explained by cumulative capacity and the R&D-based knowledge stock.

Sagar and van der Zwaan (2006) discuss aspects of public R&D and ‘learning by doing’

again in the energy realm. They conclude that “[s]till, however uncertain the precise

payoff of spending in research and development may be, there is little doubt that public

ER&D budgets ought to be maintained, and probably increased, if we are to seriously

address global problems such as climate change. The prime reason is that R&D efforts

have been the basis for historical changes in energy production and conversion, and will

4Among all, see: Green et al. (1994); Jaffe and Stavins (1995); Porter and van der Linde (1995);
Lanjouw and Mody (1996); Jaffe and Palmer (1997); Kemp (1997); Rennings (2000); Jaffe et al. (2002a);
Popp (2002); Brunnermeier and Cohen (2003); Popp (2003); Beise and Rennings (2005); Jaffe et al.
(2005); Popp (2006b); Frondel et al. (2007, 2008); Crabb and Johnson (2010); Johnstone et al. (2010);
Popp et al. (2010); Renning and Rammer (2011); Costantini and Mazzanti (2012); Horbach et al. (2012);
Costantini and Crespi (2013); Ghisetti and Quatraro (2013).
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underlie the technological changes that need to occur for transitioning to a sustainable

energy system. Given the public-goods aspects of such a transition, the government’s role

will remain crucial” (pag. 2607).

Bointner (2014) estimates the level of the cumulative energy knowledge stock induced

by public R&D expenditures in 14 IEA-countries from 1974 to 2013, with specific em-

phasis devoted to renewable knowledge. The author concludes that “[o]n total, public

energy R&D expenditures were increasing over the last five to ten years and, thus the

cumulative knowledge stock is currently also increasing” [pag. 745]. As for the renew-

able energy knowledge stock, the analysis shows that heterogeneous patterns emerge

according to the technology type and between countries.

The ‘double-externality issue’ characterizing GTs and the evidence provided by the

extant literature about the positive effect of supply-side policy tools on green innovation

outcomes lead to the following hypothesis:

H1: Increasing government-funded R&D augments the broad accumulation of green

technological knowledge.

Public R&D and the direction of the green knowledge accumulation

To understand the possible direction that green knowledge may take in response to

changes in government-funded R&D, the analysis of the intrinsic characteristics of the

knowledge involved in green innovation processes is required. As well relevant and com-

plementary is the uniqueness of government-funded R&D activities. The combination

of these two aspects as a lever for green technical change has been almost neglected by

the extant literature.

As highlighted by Ghisetti et al. (2015), environmental innovation processes are char-

acterized by intrinsic systemic nature and general purpose content – requiring, on aver-
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age, the combination of more heterogeneous and distant knowledge than other innova-

tions to be performed (Renning and Rammer, 2009; Horbach et al., 2013).

According to the recent strand of literature investigating the labor market implications

associated with the transition towards green production systems (Consoli et al., 2016;

Vona et al., 2017, 2018), green occupations exhibit a stronger intensity of high-level

cognitive skills compared to non-green jobs. Furthermore, the extant empirical evidence

suggests that occupations that are changing qualitatively (i.e. in terms of their skill

content) have on average more formal education, more work experience and more on-

the-job training relative to non-green jobs (Consoli et al., 2016).

The complexity associated with environmental innovation processes is likely to gen-

erate technological knowledge with broad potential in terms of applicability. Using

patent citation data in four technological fields (energy production, automobiles, fuel

and lighting), Dechezleprêtre et al. (2014) find that clean patents receive on average

43% more citations than dirty patents. Furthermore, the authors find that clean tech-

nologies receive on average more citations by highly-cited patents. They individuate

two factors able to explain the clean superiority: clean technologies have more general

applications, and they are radically new compared to more incremental dirty innovation.

These findings represent an important message in terms of potential positive effect of

green technical change on growth. At the same time, they raise an issue with respect

to the system of incentives for their generation: high spillover effects are indeed possi-

bly associated with harmful appropriability disadvantages. Direct innovation-oriented

public interventions seem thus to be required for guaranteeing the optimal level of green

knowledge generation (either R&D subsidies or direct, public R&D investments).

A second argument refers to the nature and the purposes of government-funded R&D

activities. The prior that public R&D points to more basic research is common in

the literature. Indeed, in a competitive market setting, the amount of basic research
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generated is likely to be sub-optimal (Nelson, 1959). This is due to the intrinsic features

of basic research: the quantification of its economic value and the large number of

externalities it generates.

The former feature is due to the fundamental Knightian uncertainty characterizing

the outcomes of basic research (there is no known probability distribution over their

attainment). Furthermore, even when scientific discoveries occur, the timing in the

realization of economic payoffs is uncertain.

Second, the discoveries that stem from basic research tend to produce large external-

ities: results and applications may be performed that are distant from those that were

expected ex ante (“serendipity”) and hence they may benefit several economic agents

that are unconnected to those that provided the primary investments. As a consequence,

social returns to basic research are typically larger than private returns.

These features cause a systematic market failure, calling for necessary public invest-

ments in basic research.

Relevant for our analysis is that the nature of GT processes and the features character-

izing basic research show high degree of potential common reinforcement. Indeed, green

knowledge shares with basic research the strong uncertainty related to both the rate of

attainment and the time required for the realization of the relative economic payoffs.

Furthermore, the concept of “serendipity” seems to perfectly fit the outcomes of green

R&D, due to the global nature of the phenomenon. Publicly-funded R&D projects are

thus natural candidates for carrying out a more than compensatory role in the environ-

mental realm. In other words, they may more than correct for the typical market failures

attached to green-tech investments, playing an active role. These arguments lead to the

following hypothesis:

H2: Increasing government-funded R&D fosters the entry of green knowledge into more

radical, original and potentially breakthrough innovations.
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Technologies emerge out of combinatorial attempts (Weitzman, 1996, 1998). The

amount and heterogeneity of available knowledge affect the probability that combina-

tions take place. The cost opportunity of applying specific knowledge inputs in innova-

tion processes is an important factor explaining which combinations will be performed,

selected within the overall bunch of disposable knowledge pieces from which inventors

can draw.

In the knowledge landscape, green knowledge represents a portion. To switch from

dirty to clean methods of production it is crucial that this portion mixes with traditional

knowledge. Hybridization processes have been indeed individuated as fundamental en-

gines for green technical change to take place (Zeppini and van den Bergh, 2011).

Several contrasting mechanisms should be considered when investigating whether and

how the knowledge content of green innovation processes spills over, combines with

diverse non-green pieces of knowledge and, eventually, contributes to the modification

of traditional, non-green technical processes.

To start, due to its systemic and partially general purpose nature, knowledge embodied

in green innovation processes is expected to be exploited and to spread more broadly than

general knowledge. In other words, its large technical applicability may make its cost of

usage relatively more competitive than the cost of using traditional knowledge. However,

if it is true that the systemic characteristic of GTs increases their applicability, it is also

true that the required skills for adopting and exploiting the incorporated knowledge of

green technical processes are likely to be higher than the average. This may negatively

impact on the cost opportunity of its usage. Furthermore, the presence of environmental

externalities exacerbates the common appropriability issue affecting innovation, again

with a negative impact on the cost of usage of green knowledge as an input in the

knowledge production mechanism.

The coexistence of these forces is likely to translate into sub-optimal rates of green
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knowledge adoption by traditional technological trajectories. In other words, these forces

are likely to slower the process of transformation of traditional trajectories.

Following the arguments set forth in drawing the second hypothesis, public R&D is

intended to target research areas with possibly more relevant and larger impact in terms

of knowledge generality and applicability (basic research). Importantly, when targeting

green projects, it should also absorb (at least indirectly and partially) the negative effect

of environmental externalities.5 Furthermore, public R&d to be performed is attached to

universities and contexts of high education and skills. As a result, the cost of using green

knowledge is likely to decrease if public R&D for green projects increases, enhancing the

probability of its combination with other components. Thus,

H3: Increasing government-funded R&D enhances the use of green knowledge by tradi-

tional, incumbent technological processes.

The next section will punctually describe the methodology adopted for testing these

three hypotheses.

2.3 Methods

2.3.1 Research design and identification strategy

To test for the effect of government R&D expenditures on green knowledge accumulation

dynamics, I exploit information contained in patent documents. Precisely, I estimate the

effect of government expenditure in R&D on: a) the number of yearly citations received

by green patents applied at the European Patent Office (EPO) from 1980 to 1984; b)

the yearly number of citations coming from the highest original and radical patents; c)

the yearly number of citations coming from non-green patents.6

5International public investments in green R&D would probably better contrast the negative effect
of environmental externalities, due to the global nature of climate change.

6Patent citations are observed from 1981 to 1988.
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In estimating the effect of government R&D expenditures on green knowledge accumu-

lation, several endogeneity problems emerge, both related to unobservables and reverse

causality.

For what concerns potential omitted variables, both policy decisions and innovation

dynamics are affected by the quality of the local institutional context, which is preten-

tious to properly proxy. Second, human capital features – again, almost unobservable –

affect both policy decisions and innovation.

For what concerns reverse causality in explaining the relationship between public

policies and innovation outcomes, the established level of deployed technologies should

be relevant in designing an innovation-oriented policy measure. This is particularly

true for key, strategic industries, such as the energy one. Moreover, the higher the

level of development of an industry, the higher its impact in terms of employment and

value added generated, with reverse effects on policy decision-making processes. Thus,

technology pulls policy intervention through several channels.

To overcome endogeneity issues, I rely on the Chernobyl nuclear accident occurred in

1986 as an exogenous shock impacting the policy architecture of the energy industry.

The energy sector in the 1970s and 1980s

The energy sector experienced a durable reconfiguration in the decades of the 70s and

the 80s of the last century, mainly due to the energy crises (1973 and 1979). With the

aim of guaranteeing economic sustainability and self-sufficiency of the energy production

system, an important wave of investments in alternative energy generation technologies

took place worldwide, starting from the 1970s. This process was driven by vast invest-

ments in nuclear technologies (see Figure 1).

As an example, the share of electricity7 produced from nuclear sources in Europe

7Fossil fuel combustion is responsible for approximately 65 percent of global greenhouse gas emis-
sions (US Environmental Protection Agency). Of these emissions, coal contributes for 45%, oil for 35%
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Figure 2.1: Number of new reactors connected to the grid (1954- 2015)

Source: IAEA 2016.

increased from about 2 percent in the early 1970s to about 35 percent in 1990, stabilizing

at that level afterward. Conversely, the share of electricity production from fossil fuels

(oil, gas and coal) fell from about 70% to about 50% in the same period for European

countries. The US experienced very similar patterns. As for renewable sources (i.e. solar

and wind), a public push for their development started in the late 1970s. The world

first on-shore wind farm (0.6 MW) was installed in southern New Hampshire (US) in

December 1980 and, similarly, the first photovoltaic park was launched in the US at the

end of 1982. However, looking again at the electricity generation sector, the share of

its production from renewable sources was almost irrelevant up to the end of the last

millennium (abundantly below 2% worldwide), revealing a pattern of stagnation (see

Figure 2). Several reasons stay behind this sort of almost two decades’ congestion, since

their launch, in the adoption of renewables for substituting fossil fuels in the energy

and natural gas for 20% (Carbon Dioxide Information Analysis Center). The major sectors demanding
fossil fuels are the electricity and the transportation sectors. Having a descriptive look at the electricity
sector is thus very informative.
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generation process.

Figure 2.2: Electricity production by source, shares (EU, 1960-2010)

Notes: Electricity production from hydroelectric sources excluded. Source: The World Bank, 2017.

In the 1970s and the early 1980s, renewables were embryonic technologies, not able

to immediately guarantee a large-scale, cost-effective production of energy. Therefore,

investments in R&D for renewable sources were riskier and more subject to uncertainty

than investments in R&D for more mature energy generation technologies. Their devel-

opment and deployment required public support in terms of supply push. Furthermore,

there was scarce international policy pressure with respect to environmental issues at

that time, unable to compensate for market distortions related to environmental exter-

nalities, and thus to direct demand towards more green sources (see Figure 3).

Given the energy crises that have been characterizing the 1970s, the urgency of guar-

anteeing long-run economic sustainability of the energy generation industry led govern-

ments to start supply-oriented public investments in alternative-to-fossil-fuels technolo-

gies. Within alternative energy generation technologies, nuclear power technologies were

by far the leading technologies. Their tremendous development, by indirectly weaken-
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Figure 2.3: Number of new introduced environmental policies (IEA countries, 1970-1995)

Notes: All IEA Member Countries considered. Source: IEA, 2017.

ing the oil and gas industry, opened the way for investments also in other alternative

technologies, i.e. solar and wind. In the early 1980s, renewables represented thus a

peripheral part of the overall policy architecture for reducing the dependence from fossil

sources. Consequently, their development was strongly attached to the nuclear advance.

The 1986 Chernobyl disaster is classified as “Level 7: Major accidents” by the In-

ternational Nuclear and Radiological Event Scale (INES), and is considered – together

with the 2011 Fukushima Daiichi disaster – as the most relevant nuclear accident ever

occurred. The effects of the Chernobyl accident prompted strong international debates

about the sustainability and the security of the entire energy generation system, calling

for immediate policy responses worldwide. As a matter of fact, several European coun-

tries adopted rigid policy interventions against nuclear power investments, immediately

after the Chernobyl event. Finland shelved the application on its fifth nuclear power

station and decided not to expand its nuclear program. Similarly, the Netherlands con-
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gested its nuclear power program and Austria decided not to start any investment in

nuclear power generation, even if the construction of its first reactor was already com-

pleted at that time. Italy was one of the countries that more strongly replied to the

accident. After the 1987 referendum, the Italian government decided indeed to phase-out

its nuclear power activity, definitively shutting down all the active reactors.

Figure 2.4: GBAORD average level (Energy vs. Non-Energy, 1985-1987)

Notes: OECD average level of expenditures in 2010 mln USD, PPP. Source: OECD, 2017.

Summing up, the main hypothesis I draw is that the entire policy architecture for

boosting alternative-to-fossil-fuel technologies has been exogenously affected by the Cher-

nobyl accident, negatively. Figure 4 plots the pattern of the average government spend-

ing for R&D in energy vs. non-energy fields (OECD Countries) between 1985 and

1987. The descriptive evidence shows a similar declining trend in both kinds of expen-

diture from 1985 to 1986. However, while non-energy-related public R&D expenditures

increased on average by around 10.7% between 1986 and 1987, public energy R&D con-

tinued decreasing (-12.4% from 1986 to 1987).8

8The decreasing trend of public energy R&D started in the early 1980s (the average level decreases
by around 12% from 1981 to 1985). Dooley (1998) found that most IEA member states reduced public
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Unfortunately, the disposable data on aggregate government R&D expenditures from

1980 to 1990 allow for disentangling between green and non-green targets only in the

energy field, making impossible to compare this pattern with the ones experienced by

other domains. Exploiting this data as a further descriptive support of the arguments

proposed above, Figure 5 draws the difference in the level of the US government R&D

expenditures between fossil-fuels and renewables. After a minimum experienced in 1979

as a response to the second oil crisis, the divergence between fossil-fuel and renewables

has returned to the early-1970s levels in 1986. Afterwards, a tremendous increase is

evident, confirming a restored relative public interest in supporting R&D for fossil-fuels

technologies. According to Bointner (2014), public renewable energy R&D expenditures

indeed peaked in Carter’s last year of presidency in 1980, leading to a first knowledge

maximum in 1985 and decreasing afterwards. A similar pattern emerged also for other

OECD countries. This evidence allows me to assume that, in relative terms, the fall in

public R&D expenditures due to the Chernobyl accident was mainly driven by reducing

public resources to alternative to fossil fuel technologies.

Identification strategy

The arguments proposed above allow me to investigate the causal effect of innovation

policies on the cumulativeness of green technological knowledge. The time at which a

patent receives citations (pre- or post-Chernobyl) as well as its technological domain

(energy versus other technological domains) determine the likelihood of being affected

by a change in policy intervention. The identification strategy relies on the fact that

only the technological knowledge cumulativeness of energy patents was affected by the

energy R&D expenditures from the mid-1980s to the 1990s. He argues that this decrease is mainly
due to deregulation of the energy markets, and that the remaining R&D money was shifted towards
short-term, less risky research projects. According to Wiesenthal et al. (2012), this decrease is partly
influenced by liberalisation and privatisation of the energy sector. However, a tremendous drop is
evident in the second half of the 1980s (on average, -38% from 1985 to 1988) due to, I argue, the
consequences of the Chernobyl accident. Conversely, non-energy domains maintain a stable pattern of
growth in government R&D funding during the 1980s.
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Figure 2.5: US-Gov energy-R&D expenditure: difference between fossil-fuels and renew-
ables (1974-1990)

Notes: difference expressed in 2010 mln USD. Source: OECD/IEA 2017.

exogenous change in innovation policies after the Chernobyl disaster. The knowledge

cumulativeness of green energy patents before Chernobyl and the knowledge cumulative-

ness of green non-energy patents before and after Chernobyl were not affected by the

change in the innovation policy design. Therefore, I can combine differences in innova-

tion policy design within different technological domains (energy vs. non-energy) with

differences across cohorts induced by the shock (pre-Chernobyl vs. post-Chernobyl). Af-

ter controlling for the energy field and the cohort effect (post-Chernobyl), the interaction

between the two can be used as an exogenous variable capturing the causal effect of the

shock, which can be used as an instrument for the level of policy intervention. Finally,

I can estimate the relationship between the level of innovation policy intervention and

the level of technological knowledge cumulativeness in the green field.

If the Chernobyl accident exogenously decreased the policy effort towards alternative

to fossil fuel technologies, the interaction between the dummy signaling for an energy-

related patent and the post-Chernobyl dummy should have a negative and significant
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effect on the level of innovation policy effort, while controlling for energy field and

cohort effects. This difference-in-differences (DD) specification controls for overall time

trends in policy pressure (across all green technologies) and for time invariant unobserved

differences between technological fields (Angrist and Pischke, 2008). Moreover, DD

regression allows me to include further control variables affecting the level of policy

pressure, such as country, year and technology characteristics.

The DD can be interpreted as the causal effect of the Chernobyl accident under the as-

sumption that, in the absence of the Chernobyl shock, the pattern of policy intervention

for technological advance would not have been systematically different between energy

and non-energy green domains. To further strengthen this assumption, I apply the

Coarsened Exact Matching (CEM) technique (Iacus et al., 2009, 2011) to match green

energy patents with green non-energy patents on several pre-Chernobyl characteristics

(see the Appendix).

2.3.2 Data and sample

I study the effect of the innovation policy effort on the level and the qualitative character-

istics of the green technological cumulativeness exploiting information contained in EPO

patent citation data. Precisely, I select green patents applied at the EPO from 1980 to

1984, and I estimate the effect of the innovation policy effort in R&D on both the num-

ber of yearly citations they receive (overall accumulation process) and the qualitative

characteristics of these citation patterns (the yearly number of citations coming from,

respectively, highly original and highly radical patents; the yearly number of citations

coming from non-green patents).

Patents are classified as green on the basis of the two main worldwide existent classifi-

cations: 1) The World Intellectual Property Organization “WIPO IPC green inventory”,

an International Patent Classification that identifies patents related to the so-called “En-
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vironmentally Sound Technologies” and scatters them into their technology fields, with

the caveat that it is not the only possible classification of green technologies and, as with

other available classifications, it presents some drawbacks (Costantini et al., 2013); 2)

The OECD Indicator of Environmental Technologies9, based on the International Patent

Classification (IPC), which features seven environmental areas, i.e. (a) general environ-

mental management, (b) energy generation from renewable and non-fossil sources, (c)

combustion technologies with mitigation potential, (d) technologies specific to climate

change mitigation, (e) technologies with potential or indirect contribution to emission

mitigation, (f) emission abatement and fuel efficiency in transportation, and (g) energy

efficiency in buildings and lighting. I combine both classifications to define a patent as

green, excluding from the analysis nuclear power-related patents.

The resulting dataset consists of 27515 unique green patents. Patent citations they

received have been observed from 1980 to 1988. The sample reduces to 7431 unique

green patents when applying the CEM technique.

2.3.3 Variables

Dependent variables

The level of the overall knowledge cumulativeness is measured through the number of

yearly citations a patent receives. The number of citations a patent receives reveals that

the knowledge incorporated in the protected technology is somehow subsequently used

by innovating and producing companies (Trajtenberg, 1990). Indeed, since citations

show the degree of novelty and inventive steps of the patent claims, they identify the

antecedents upon which the invention stands. In this respect, a citation from patent

A to patent B indicates that part of the knowledge protected by patent B is also used

in generating the technology protected by the patent A. Citations thus capture the

9http://www.oecd.org/env/indicators-modelling-outlooks/greengrowthindicators.htm
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technological impact of an invention: the more a patent is cited the more the protected

technological knowledge is used by further innovation processes (impacting on their

evolution).10 The number of yearly forward citations to green patents is corrected for

DOCDB patent families to account for the entire flow of citations a specific technology

receives.11

As for the second and third step of the analysis, I estimate the effect of a change in

the level of government R&D expenditures on: a) the number of citations coming from,

respectively, the 5% more original and the 5% more radical patents;12 b) the number of

citations coming from non-green patents.

As stressed by Trajtenberg et al. (1997), important patents are those that get higher

number of citations, and are cited by patents that are themselves relatively highly cited.

For what matters for the present study, testing for the quality of the patents citing green

patents would be thus very informative to assess the effect of public R&D expenditures

on the implementation of green knowledge in the evolution of technological trajectories.

For this reason I look at the number of citations coming from patents pertaining to

the 95th percentile of, alternatively, the number of forward citations and the level of

originality in a given year.

Patents in the top of the citations distribution are indeed considered as radical in-

ventions (Ahuja and Lampert, 2001).13 Similarly, more original patents should protect

10As stressed by Jaffe & de Rassenfosse (2016, pag. 12), “(c)itations are, first and foremost, an
indicator of technological impact”. Due to the richness of information contained in patent documents,
citations are also used in the literature to track knowledge flows (Jaffe et al. 1993; Jaffe and Trajten-
berg 1999; Maurseth and Verspagen 2002; Bottazzi and Peri 2003; Bacchiocchi and Montobbio 2010).
Griliches (1990) and Breschi et al. (2005) provide a path-breaking and renowned survey. For a recent
survey about the use of patent citation data in social science research, see Jaffe & de Rassenfosse (2016).

11Patent families essentially originate from a company or an inventor applying for the protection
of the same invention at different patent offices. This results in a series of equivalent filings that
patent examiners and attorneys can cite indifferently. Simple patent families are quite restrictive sets
of equivalents, all sharing the same priority (an original filing at one or another patent once, before
extension elsewhere). DOCDB are an alternative of simple families. For a complete discussion about
the opportunity of correcting citations for patent families, see Martinez (2010).

12The implemented measures of originality and radicalness come from Squicciarini et al. (2013).
13It must be stressed that other measures of radicality have been implemented. For example, Dahlin
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more basic inventions (Trajtenberg et al., 1997).14

Finally, for the green knowledge trajectory to impose, an important feature would be

the one of entering the more traditional, dirty trajectories. If this is the case, it would

be likely to observe a faster and decisive switch in production processes from dirty to

clean methods. Thus, I measure the effect of increasing government R&D expenditures

on the number of citations coming from dirty patents.

Independent variable and controls

The main independent variable is the yearly level of Government appropriation or outlays

budget for R&D (GBAORD) by socio economic objective (SEO).

GBAORD is a budget-based data, which allows government support for R&D to be

measured. It is the result of a joint OECD-Eurostat international data collection on

resources devoted to R&D. Essentially, this involves identifying all the budget items

with an R&D component and measuring or estimating their R&D content in terms of

funding. These estimates are less accurate than performance-based data but as they

are derived from the budget, they can be linked to policy through classification by

“objectives” or “goals”.

GBAORD series cover R&D in exploration and exploitation of the earth, environment,

exploration and exploitation of space, transport, telecommunication and other infras-

tructures, energy, industrial production and technology, health, agriculture, education,

and Behrens (2005) define a ‘radical’ invention within a given technology domain (tennis rackets, in
their application) as the one that recombines previous technology elements in a new and different way,
but which is then imitated and so spawns subsequent patents that combine technology elements in a
manner substantially similar to the radical invention.

14The originality measure is retrieved from Squicciarini et al. (2013). It is based on a modifica-
tion of the Hirschman-Herfindahl Index (HHI) and relies on information concerning the number and
distribution of citations made (backward citations) and the technology classes (IPC) of the patents
these citations come from. In calculating the index, they consider 4-digits IPC classes contained in
the cited patent documents. Building on Hall at al. (2001), they define the originality indicator as:
Originalityp = 1 −

∑np
j s2pj where spj is the percentage of citations made by patent p to patent class

j out of the np IPC 4-digit patent codes contained in the patents cited by patent p. Citation measures
are built on EPO patents and account for patent equivalents.
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culture, recreation, religion and mass media, political and social systems, structures and

processes, general advancement of knowledge, defense. They include R&D performed on

the national territory as well as payments to foreign performers, including international

organizations. GBAORD, however, covers only R&D financed by central government;

local government and sometimes also provincial government are excluded.15

Following Stanc̆́ık (2012), I assign SEOs to economic sectors (NACE rev. 2 sectors).

Then, following Van Looy et al. (2014), I assign NACE codes to IPC classes. This allows

me to measure the level of Government budget for R&D related to each technology

classifying a patent, separating the energy domain from the others.16,17

Control variables include a binary variable for energy patents, and a post-Chernobyl-

accident time variable. The interaction between the two will be used as the instrumental

variable for the level of Government budget for R&D.

Several variables could affect the likelihood that a patent will receive forward cita-

tions. Therefore, additional controls are included: the total intramural business R&D

expenditure (BERD), as a control for the overall private innovation effort at the country

level; the level of country emission intensity, as a control for the overall country environ-

mental policy effort;18 the yearly number of patents by IPC 4digits contained in the focal

15A complete description of socioeconomic objectives (SEO) is provided by the Frascati Manual 2015
(OECD), chapter 12.4.

16Unfortunately, I am not able to measure the exact level of government R&D funding assigned
to the green sub-category for each observed field. I thus proxy this level with the aggregate level of
expenditures in the field, assuming implicitly that the composition of the funding (green vs. non-green)
does not endogenously differ between technological domains. This assumption should not be far from
the reality if there is not an evident policy line recognizing relatively diverse levels of environmental
externalities affecting the funded sectors. Given the arguments proposed above, the period of analysis
is not a period characterized by strong environmental pressure. I am thus confident that this variable,
even if imprecise, is unbiased.

17Patents are assigned to countries according to the inventor’s country of residence.
18This measure comes from The World Bank (2017) and is expressed as kg per 2010 US$ of GDP.

Alternatively I include the Government budget for R&D directly related to the environment. Following
the Frascati Manual 2015 (OECD), the SEO “Environment” covers R&D aimed at improving the control
of pollution, including the identification and analysis of the sources of pollution and their causes, and
all pollutants, including their dispersal in the environment and the effects on humans, species (fauna,
flora, micro-organisms) and the biosphere. This kind of R&D seems not to be directly related to specific
green technologies. It instead more generally targets basic research for environmental issues, possibly
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patent (averaged over the number of IPCs), as a proxy for the level of advance of the

basket of IPCs classifying the focal technology;19 several patent quality measures such

as being granted, the number of claims, and the size of the patent family; the number

of patent backward citations, as a proxy for the already cumulated knowledge behind

the focal technology; the number of inventors, proxying for the team effect; patent pri-

ority year, controlling for the time distance from the shock; Year and Country dummies.

Furthermore, I also add the yearly level of oil prices, adjusted for inflation, as a control

for potential shocks in the oil and gas industry with consequences both on the innova-

tive efforts in the renewable energy domain and on the volatility of public energy R&D

expenditures.20,21

2.3.4 Models

To measure the effect of a change in the government budget for R&D on the level

of green technological knowledge cumulativeness and its qualitative characteristics, I

estimate three specifications of the following model:

Yi,t = δc + δt + β1GBAORDi,t + Ω′
i,tβ2 + Λ

′

iβ3 + εc,t,

spreading on the overall environmental research spectrum. I thus use this kind of expenditure as a
further control for the overall public policy pressure (supply-side). However, since I can not rule out
the possibility that this kind of R&D precisely targets specific green technologies, I use this measure
only in robustness analyses. Results do not change when included.

19This measure proxies the level of technological advance of the fields in which the focal patent
belongs. The more a field develops the more likely a patent will receive citations. Formally, let i =
1, . . . , N the IPCs 4-digits classifying the patent document p, for each year t the measure takes the
following form: fieldp,t = 1

N

∑
i patenti,t.

20Baccini and Urpelainen (2012) found a significant and positive impact of oil prices on the volatility
of public energy R&D expenditures. A period of low oil price in the 1980s may have lowered the
governmental incentives to invest in energy R&D, leading to a decline of knowledge in the 1990s.

21Patent data information have been extracted from the CRIOS database (Coffano and Tarasconi,
2014). Data about GBAORD, BERD and GDP have been extracted from the OECD.Stat database
(2010 million US Dollars, PPP). Data about emission intensity come from World Bank. Oil prices have
been extracted from the IEA energy statistics database (2010 US Dollars, adjusted for inflation). Table
1 provides variables description and summary statistics.
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where Yi,t is, alternatively, i) the total number of yearly forward citations received,

ii) the number of citations coming from the more original and more radical patents, or

iii) the number of citations coming from non-green patents; δc is a vector of country

fixed effects; δt is a vector of year fixed effects; GBAORDi,t is the level of GBAORD

affecting patent i at time t, according to the inventors’ country of residence; the vector

Ω′
i,t contains a set of time varying controls, as described above; the vector Λ

′

i is a vector

of further controls for fixed patent characteristics, such as being granted, the number

of claims, the size of the patent family, the number of patent backward citations, the

number of inventors, the patent priority year, and the inventor’s country of residence.

All the specifications are estimated with a two-stage least square model (2SLS). In the

first stage, I estimate the level of R&D budget with an OLS in a difference-in-differences

configuration. Precisely, I include the interaction between the energy domain and the

cohort effect (post-Chernobyl) as an exogenous variable capturing the causal effect of

the shock, energy domain, post-Chernobyl and all other further control variables. After

instrumented, I estimate the effect of changes in the level of government budget for R&D

on the three outcomes of interest. All 2SLS models use a single instrument resulting in

a just identified estimate.

2.4 Results

The purpose of the empirical analysis is to test for the effect of publicly-conducted R&D

on both the rate and the direction of the green knowledge accumulation process.

To find causality going from public R&D decisions to green innovation outcomes,

I frame the empirical analysis in an instrumental variable setting. Coherently, I first

estimate the first stage of the 2SLS models, predicting the level of government budget

for R&D as a function of the Chernobyl shock in the energy domain and control variables.

Table 2 displays the results of the first stage estimation for both the CEM subsample and
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Table 2.1: Summary Statistics

CEM Sample

Variable Description Obs Mean Std. Dev. Min Max

tot cit Number of forward citations 28,134 .235 .610 0 14
tot original cit Number of forward citations from

patents in the 95th percentile of orig-
inality

28,134 .012 .120 0 6

tot radical cit Number of forward citations from
patents in the 95th percentile of rad-
icalness

28,134 .015 .135 0 5

GBAORD Level of government R&D budget by
SEO (2010 million $, PPP)

28,134 50877.06 36136.22 16.221 93053.25

energy Binary: energy patent 28,134 .124 .329 0 1
post-Chernobyl Binary: citations received after 1986 28,134 .330 .470 0 1
energy*post Cher-
nobyl

Binary: Energy patent and citations
received after 1986

28,134 .040 .196 0 1

field tot patents Number of patents by IPCs listed in
the patent document

28,134 6.014 1.103 .693 8.919

oil price Oil price corrected for inflation (2010
$)

28,134 3.887 .394 3.412 4.552

emission intensity Inventors’ country average emission
intensity (kg per 2010 US$ of GDP)

28,134 .475 .164 .111 .677

BERD total intramural business R&D ex-
penditure (US Dollar, Millions, 2010)

28,134 11.050 1.098 4.161 11.951

claims Number of claims 28,134 7.481 7.576 0 116
triadic Binary: triadic patent 28,134 .620 .485 0 1
DOCDB family
size

Number of patents constituting the
DOCDB family

28,134 1.002 .048 1 2

bwd cit Number of backward citations 28,134 .701 1.261 0 21
granted Binary: granted patent 28,134 .671 .470 0 1
N. of inventors Number of patent inventors 28,134 1.766 1.041 1 11

Full Sample

Variable Description Obs Mean Std. Dev. Min Max

tot cit Number of forward citations 103,482 .326 .843 0 24
tot original cit Number of forward citations from

patents in the 95th percentile of orig-
inality

103,482 .035 .236 0 9

tot radical cit Number of forward citations from
patents in the 95th percentile of rad-
icalness

103,482 .023 .166 0 5

GBAORD Level of government R&D budget by
SEO (2010 million $, PPP)

103,482 41725.66 37107.38 .541 93053.25

energy Binary: energy patent 103,482 .103 .303 0 1
post-Chernobyl Binary: citations received after 1986 103,482 .328 .470 0 1
energy * post
Chernobyl

Binary: Energy patent and citations
received after 1986

103,482 .032 .175 0 1

field tot patents Number of patents by IPCs listed in
the patent document

103,482 6.648 1.464 0 9.720045

oil price Oil price corrected for inflation (2010
$)

103,482 3.881 .392 3.412 4.552

emission intensity Inventors’ country average emission
intensity (kg per 2010 US$ of GDP)

103,482 .445 .162 .111 .677

BERD total intramural business R&D ex-
penditure (US Dollar, Millions, 2010)

103,482 10.533 1.453 4.161 11.951

claims Number of claims 103,482 8.269 8.648 0 157
triadic Binary: triadic patent 103,482 .594 .491 0 1
DOCDB family
size

Number of patents constituting the
DOCDB family

103,482 1.088 .479 1 9

bwd cit Number of backward citations 103,482 1.108 2.439 0 54
granted Binary: granted patent 103,482 .663 .473 0 1
N. of inventors Number of patent inventors 103,482 1.878 1.180 1 19
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the full sample. The interaction between energy domain and post-Chernobyl, capturing

the causal effect of the Chernobyl accident, has a significant negative effect on the level

of government budget for R&D. Marginal effects (CEM sample results) indicate that

the Chernobyl shock decreased the log level of government budget for R&D by 0.34

in absolute terms (around -26% of a pre-Chernobyl standard deviation). Overall, the

results from the first stage indicate that the natural experiment had a relevant negative

effect on the level of government budget for R&D: the policy reaction to the unexpected

nuclear accident resulted in a reduction on the public R&D effort for ‘alternative to fossil

fuel’ technologies.

I then estimate the effect of government-funded R&D on the broad accumulation of

green technological knowledge, proxied by the number of citations a focal green tech-

nology receives. Table 3 reports the results of the second stage of the 2SLS model,

estimating the effect of the government budget for R&D on the yearly number of for-

ward citations a green patent receives. The government budget for R&D has a significant

positive effect on the overall level of green knowledge cumulativeness. Precisely, results

suggest that a 1% increase in government R&D budget increases the average yearly

number of citations by 0.14% (CEM sample results). This result confirms the first hy-

pothesis proposed in Section 2, according to which government-funded R&D represents

an effective tool for restoring (at least partially) efficiency in the generation and dif-

fusion of green knowledge into the system. Public R&D is indeed likely to relax both

kinds of externality affecting GT processes, and, due to its nature, to guarantee their

cumulativeness.

We then enter more in depth into the understanding of the direction that the green

knowledge accumulation process takes.

The second hypothesis of the chapter is indeed that an increase in public R&D fosters

the entry of green knowledge into more radical and more original technological trajec-
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Table 2.2: First stage results

Full sample CEM sample

energy*post-Chernobyl -0.358∗∗∗ -0.344∗∗∗

(0.010) (0.016)
energy -2.682∗∗∗ -2.701∗∗∗

(0.004) (0.006)
post-Chernobyl 0.008∗∗∗ 0.022∗∗∗

(0.002) (0.005)
tot patents by field (log) 0.002∗∗∗ -0.001

(0.000) (0.001)
oil price (log) 0.017∗∗∗ 0.029∗∗∗

(0.003) (0.007)
emission intensity 0.221∗∗∗ -0.009

(0.059) (0.224)
BERD (log) 0.433∗∗∗ 0.592∗∗∗

(0.013) (0.076)
N. of claims 0.000∗∗∗ 0.000

(0.000) (0.000)
triadic -0.006∗∗∗ -0.001

(0.001) (0.002)
docdb family size -0.002∗∗ -0.003

(0.001) (0.020)
bwd cit 0.001∗∗∗ 0.002∗∗∗

(0.000) (0.001)
granted -0.001 0.000

(0.001) (0.002)
N. of inventors -0.001 0.001

(0.001) (0.001)
time trend yes yes
priority year dummies yes yes
country dummies yes yes
R2 0.991 0.990
Observations 103482 28134

Dep. Var.: Annual level of GBAORD (log.). Robust standard errors are in
parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.

60



Table 2.3: GBAORD effect on the annual number of forward citations
(2SLS results)

CEM sample Full sample

GBAORD (log) 0.137∗∗∗ 0.084∗∗∗

(0.041) (0.020)
energy 0.380∗∗∗ 0.220∗∗∗

(0.116) (0.055)
post-Chernobyl -0.031∗∗ -0.038∗∗∗

(0.014) (0.005)
tot patents by field (log) 0.016∗∗∗ 0.018∗∗∗

(0.003) (0.001)
oil price (log) 0.010 0.021∗∗

(0.026) (0.009)
emission intensity -0.585∗ -0.584∗∗∗

(0.307) (0.093)
BERD (log) 0.041 0.036

(0.079) (0.023)
claims 0.000 0.002∗∗∗

(0.000) (0.000)
triadic 0.058∗∗∗ 0.067∗∗∗

(0.008) (0.003)
docdb family size -0.117∗∗∗ -0.060∗∗∗

(0.040) (0.003)
bwd cit 0.021∗∗∗ 0.025∗∗∗

(0.003) (0.001)
granted 0.050∗∗∗ 0.039∗∗∗

(0.007) (0.002)
N. of inventors 0.005 0.009∗∗∗

(0.003) (0.001)
time trend yes yes
priority year dummies yes yes
country dummies yes yes
R2 0.046 0.075
Observations 28134 103482

Dep. Var.: Annual number of forward citations (log). Robust standard errors
are in parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.
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tories: public R&D plays an active role for green technical change. Results confirm this

hypothesis, revealing a positive and significant impact of an increase in government-

funded R&D on the yearly number of citations received by highly original and highly

radical patents (Table 4). Precisely, a 1% increase in government R&D budget increases

the average yearly number of citations from highly original and radical patents by, re-

spectively, 0.012% and 0.025% (CEM sample results). The nature of GT knowledge and

the uniqueness of publicly-performed R&D are likely to mutually operate in rendering

green trajectories technologically superior.

The last aim of the analysis is the one of investigating whether green knowledge is also

likely to pervade traditional trajectories. The third hypothesis proposed by the present

chapter is that government-funded R&D makes the usage of green knowledge more

competitive compared to traditional, dirty knowledge, thus enhancing the probability of

hybridization of non-green trajectories.

Table 5 displays the effect of GBAORD on the number of yearly citations received

from non-green patents. Results reveal a positive and significant effect of government

investments in R&D on the level of green knowledge accumulation in traditional, non-

green domains, confirming such hypothesis. Precisely, a 1% increase in government

R&D budget increases the average yearly number of citations from non-green patents

by 0.059% (CEM sample results). This evidence demonstrates that green knowledge is

more likely to enter traditional technological trajectories if governments increase their

effort in public R&D. By making green knowledge more competitive in its usage, public

R&D may foster hybridization attempts, accelerating the transition towards sustainable

production methods.

The overall evidence demonstrates that the public effort in R&D is likely to impor-

tantly foster the green technological advance. However, the magnitude of the estimated

effects reveals that, probably, both an unprecedented effort in public R&D investments
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Table 2.4: GBAORD effect on the annual number of citations from the
more original and more radical patents (2SLS estimates, CEM
sample)

(I) (II)
Original Radical

GBAORD (log) 0.012∗ 0.025∗∗∗

(0.007) (0.010)
energy tot 0.030 0.065∗∗

(0.020) (0.027)
post-Chernobyl -0.002 0.002

(0.003) (0.004)
tot patents by field (log) 0.003∗∗∗ 0.004∗∗∗

(0.001) (0.001)
oil price log 0.001 0.003

(0.006) (0.006)
emission intensity -0.017 -0.107

(0.098) (0.101)
BERD (log) -0.010 -0.011

(0.025) (0.026)
claims -0.000 0.000

(0.000) (0.000)
triadic 0.000 0.003

(0.002) (0.002)
docdb family size 0.002 -0.006

(0.007) (0.005)
bwd cit 0.001∗∗ 0.000

(0.001) (0.001)
granted 0.001 0.001

(0.002) (0.002)
N. of inventors -0.000 0.000

(0.001) (0.001)
time trend yes yes
priority year dummies yes yes
country dummies yes yes
R2 0.004 0.005
Observations 28134 28134

Dep. Var.: Annual number of forward citations (log) from more original (Col.
I) and more radical (Col. II) patents. Robust standard errors are in parentheses.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.
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Table 2.5: GBAORD effect on the number of cita-
tions from non-green patents (2SLS esti-
mates, CEM sample)

Non-green

GBAORD (log) 0.059∗∗

(0.024)
energy 0.105

(0.069)
post-Chernobyl -0.018

(0.012)
tot patents by field (log) 0.010∗∗∗

(0.002)
oil price (log) 0.015

(0.021)
emission intensity -0.374∗

(0.219)
BERD (log) 0.020

(0.057)
claims 0.000

(0.000)
triadic 0.038∗∗∗

(0.007)
docdb family size -0.019

(0.037)
bwd cit 0.010∗∗∗

(0.002)
granted 0.023∗∗∗

(0.006)
N. of inventors -0.003

(0.002)
time trend yes
priority year dummies yes
country dummies yes
R2 0.032
Observations 28134

Dep. Var.: Annual number of forward citations (log) from
non-green patents. Robust standard errors are in parenthe-
ses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.
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and a more systematic intervention for decisively attracting private green investments

are required to timely shift from dirty to clean production systems.22

2.5 Conclusions

Simultaneously fostering the emergence of breakthrough green technologies and substi-

tuting traditional-emitting technologies with new, clean ones are crucial policy targets

for guaranteeing long-run growth. Given the level of advance of dirty technologies and

the cumulative nature of innovation processes, supply side oriented (public) interven-

tions are indispensable for filling the technological gap between environmentally friendly

and traditional technologies. The present chapter aims at contributing the literature on

policy-driven green technical change dynamics by providing evidence of the causal effect

of changes in public R&D on both the rate and the direction of green technological cu-

mulativeness. This would represent a key step forward in the design of the entire policy

architecture targeting green growth.

Results reveal a significant positive effect of increasing government budget for R&D on

the overall process of green technological knowledge accumulation. Indeed, a 1% increase

in R&D budget increases by around 0.14% the yearly average number of citations a green

patent receives. Even if positive, this effect seems discouraging, partially revealing how

difficult would be fostering the entire green domain in the short-medium run.

As for the effect of government R&D expenditures on the number of citations coming

from highly original and radical patents, the emerging picture follows the general one.

This demonstrates that public R&D is likely to positively impact on the process of green

knowledge spilling over into the system. In turn, this may also be beneficial for economic

growth.

22For robustness I replicate the same kind of analysis estimating models presented in Tables from 2
to 5 in patent fixed effects and applying the Negative Binomial estimator. Results are consistent with
the ones presented in this section (see Appendix B).
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Similarly, public R&D significantly fosters the use of green knowledge by non-green

innovation processes, even if at low rates. This last result sheds light on the role of pub-

lic R&D for enhancing combinatorial technological attempts and hybridization, with

beneficial consequences on both the substitution of dirty with clean methods and the

maintenance of systemic variety (e.g. reducing the risks associated with possible tech-

nological lock-ins).

Policy implications are manifold. First, shifting all the public R&D resources from

dirty to green targets is likely to significantly reduce the time required by green tech-

nologies to overcome the technological advantage of incumbent, dirty technologies.

Second, this mechanism is likely to indirectly increase (decrease) the relative cost of

dirty (clean) technologies, presumably letting the market prices adjusting consequently

and reducing the future consumption of fossil fuels, creating also incentives for urgently-

needed private green-investments.

Finally, the overall evidence proposed shows that a finer systematic investigation is

needed for individuating technological R&D niches with the highest potential in terms of

green radicalness and breakthrough to be systematically publicly funded. Heterogeneity

in designing direct public R&D investments is indeed likely to be required to more

efficiently foster green technical processes. In other words, the management of green

public R&D is a topic that requires further systematic investigation.
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Appendix A - Coarsened Exact Matching

In an experiment, one ideally observes two identical groups over time whereby one group

is affected by an exogenous treatment at a particular point in time. To decrease the

chance that pre-treatment differences between treated and control groups confound the

results, I construct a matched subsample of patents using Coarsened Exact Matching

(CEM).

CEM is a nonparametric multivariate matching method that reduces the covariate

imbalance between treated and control groups (Iacus et al. 2009, 2011). The objective

of CEM is to improve the estimation of causal effects by reducing imbalance, model

dependence and statistical bias.

To improve the pre-treatment similarity between treated and control groups, I match

green energy patents to green non-energy patents on the following pre-Chernobyl char-

acteristics:

• average yearly rate of change of Government R&D budget in the patent-related

SEOs;

• patent characteristics such as being granted, being triadic, patent DOCDB family

size, number of backward citations and number of claims;

• average yearly number of pre-shock citations received;

• number of inventors and their patent stock;

• geographical location of the inventors listed in the patent (country of residence);

• patent priority year (as a proxy for patent age);

• technological field (IPC 4-digits) age, proxied by the minimum priority year of the

first patent classified in the IPC 4-digits codes listed in the patent document;
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• the level of technological advance of the field the patent belongs to, proxied by the

number of patents assigned to the IPC 4-digits classifying the focal patent.

I rely on CEM coarsening algorithm to develop coarsened strata. Jointly applying

these criteria, I obtain 7,666 strata. For each stratum I retain only energy and non-

energy matched patents. The resulting sample consists of 7,431 patents (27% of the

original sample of green patents). The large majority of dropped patents (99.2%) belong

to the control group of green non-energy patents that do not provide a proper control

for the green energy patents. In the analysis, the matched green energy patents get a

weight of 1 and the matched control patents get a weight equal to
[
#MCPi

#MTPi

]
×
[
#TPi

#CPi

]
,

where, for each stratum i, #MCPi is the number of matched control patents, #MTPi

is the number of matched treated patents, #TPi is the number of treated patents, and

#CPi is the number of control patents.
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Appendix B - Robustness

Fixed effect estimations

Table 2.6: First stage results. Fixed effect

Full sample CEM sample

energy*post-Chernobyl -0.480∗∗∗ -0.479∗∗∗

(0.004) (0.006)

post-Chernobyl 0.020∗∗∗ 0.036∗∗∗

(0.002) (0.006)

tot patents by field (log) 0.096∗∗∗ 0.051∗∗∗

(0.005) (0.010)

oil price (log 0.016∗∗∗ 0.029∗∗∗

(0.002) (0.009)

emission intensity 0.118∗ -0.058

(0.064) (0.300)

BERD (log) 0.425∗∗∗ 0.582∗∗∗

(0.019) (0.125)

trend 0.011∗∗∗ 0.006

(0.002) (0.006)

R2 0.561 0.623

Observations 103482 28134

Dep. Var.: Annual level of GBAORD (log.). Robust standard errors are in

parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.
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Table 2.7: GBAORD effect on the yearly number of citations (2SLS esti-
mates). Fixed effect

CEM sample Full sample

GBAORD 0.078∗∗∗ 0.020
(0.029) (0.014)

post-Chernobyl -0.027∗∗ -0.042∗∗∗

(0.013) (0.004)
tot patents by field (log) 0.063∗∗∗ 0.083∗∗∗

(0.024) (0.008)
oil price (log) 0.008 0.021∗∗∗

(0.023) (0.008)
emission intensity -0.769∗∗∗ -0.602∗∗∗

(0.295) (0.089)
BERD (log) 0.096 0.062∗∗∗

(0.083) (0.021)
trend -0.003 0.004

(0.009) (0.003)
R2 0.012 0.011
Observations 27072 99672

Dep. Var.: Annual number of forward citations (log). Robust standard errors
are in parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.

Table 2.8: GBAORD effect on the yearly number of citations from more
original and radical patents (2SLS estimates). Fixed effect
(CEM sample)

(I) (II)
Original Radical

GBAORD 0.009∗ 0.020∗∗∗

(0.005) (0.007)
post-Chernobyl -0.002 0.001

(0.003) (0.004)
tot patents by field (log) 0.007∗ 0.001

(0.004) (0.006)
oil price (log) 0.001 0.004

(0.006) (0.006)
emission intensity -0.022 -0.083

(0.088) (0.094)
BERD (log) -0.008 -0.011

(0.024) (0.027)
trend 0.001 0.001

(0.002) (0.002)
R2 0.001 0.002
Observations 27072 27072

Dep. Var.: Annual number of forward citations (log) from more original (Col.
I) and more radical (Col. II) patents. Robust standard errors are in parentheses.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.
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Table 2.9: GBAORD effect on the yearly number of ci-
tations from non-green patents (2SLS esti-
mates). Fixed effect (CEM sample)

Non-green

GBAORD 0.038∗∗

(0.017)
post-Chernobyl -0.022∗∗

(0.011)
tot patents by field (log) 0.056∗∗∗

(0.018)
oil price (log) 0.017

(0.018)
emission intensity -0.373∗

(0.217)
BERD (log) 0.005

(0.062)
trend 0.006

(0.007)
R2 0.010
Observations 27072

Dep. Var.: Annual number of forward citations (log) from
non-green patents. Robust standard errors are in parenthe-
ses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.
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Negative binomial estimations

Table 2.10: Negative binomial results

N. fwd cit N. original

cit

N. radical cit N. non-green

cit

GBAORD 0.113∗∗∗ 0.059 0.063 0.332∗∗∗

(0.018) (0.062) (0.057) (0.029)

tot patents by field (log) 0.132∗∗∗ 0.667∗∗∗ 0.277∗∗∗ 0.067∗∗∗

(0.006) (0.020) (0.020) (0.008)

oil price (log) 0.076 -0.199 -0.146 0.184∗∗

(0.051) (0.136) (0.154) (0.072)

emission intensity -4.808∗∗∗ -6.136∗∗∗ -5.818∗∗∗ -3.605∗∗∗

(0.631) (1.668) (1.913) (0.919)

BERD (log) 0.981∗∗∗ 0.917∗∗ 1.688∗∗∗ 0.788∗∗∗

(0.165) (0.386) (0.518) (0.237)

claims 0.007∗∗∗ 0.016∗∗∗ 0.004∗ 0.004∗∗∗

(0.001) (0.002) (0.002) (0.001)

triadic 0.503∗∗∗ 0.552∗∗∗ 0.603∗∗∗ 0.616∗∗∗

(0.018) (0.053) (0.059) (0.026)

docdb family size -0.331∗∗∗ -0.272∗∗∗ -0.222∗∗∗ -0.251∗∗∗

(0.020) (0.048) (0.054) (0.028)

bwd cit 0.108∗∗∗ 0.076∗∗∗ 0.056∗∗∗ 0.087∗∗∗

(0.003) (0.007) (0.007) (0.004)

granted 0.289∗∗∗ 0.071 0.159∗∗∗ 0.226∗∗∗

(0.018) (0.048) (0.054) (0.025)

N. of inventors 0.064∗∗∗ 0.056∗∗∗ 0.064∗∗∗ 0.034∗∗∗

(0.006) (0.015) (0.017) (0.009)

time trend yes yes yes yes

priority year dummies yes yes yes yes

country dummies yes yes yes yes

Observations 103482 103482 103482 103482

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.
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3 Public procurement, local labor

markets and green technological

change: Evidence from US

Commuting Zones1

Abstract

The present chapter investigates whether and through which channels green public procurement (GPP)

stimulates local environmental innovation capacity. To this end, we use detailed data sources on green

patents and procurement expenditure at the level of US Commuting Zones for the period 2000-2011.

We also check for the moderating effects of local labor market composition in the relation between green

public procurement and green innovation capacity. Lastly, we exploit the richness of patent information

to test for differential effects of green public procurement on different classes of green technologies. The

main finding is that GPP is an important driver in explaining the growth of local green-tech stock. The

positive effect of GPP is mainly driven by expenditures for procured green services and is magnified by

the local presence of high shares of abstract-intensive occupations. When separately considering diverse

kinds of green technologies, we do find evidence of a more pronounced effect of GPP on the growth of

local knowledge stocks of mitigation technologies.

1This chapter is coauthored with Davide Consoli, François Perruchas and Francesco Quatraro.
We acknowledge participants in the GEOINNO18 Conference, January 2018, University of Barcelona,
Barcelona, Spain.
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3.1 Introduction

While all the avenues of the debate about climate change seemingly lead to innova-

tion, the nature of the problem, of the possible solutions and the roadmap towards

implementation remain highly contested. The academic and policy circles place great

expectations in the prospect that technology, both old and new, can assist in striking

that balance between running business operations within the limits of environmental

sustainability while staying in the game for innovation and high competitiveness (Porter

and van der Linde, 1995).2 There exists wide consensus on the importance of other

forces that, alongside technology, can accelerate the transition to sustainable growth.

For one, policy can create propitious conditions across the board, not just for techno-

logical innovation but, also, for promoting broader social engagement on the benefits of

a low-carbon economy. It goes without saying that none of the above would be feasible

absent a body of know-how that enables the necessary adjustments in the attendant tech-

nological, organizational and institutional domains. Last but not least, climate change is

a global phenomenon with marked local manifestations, which entails that the dynamics

of both policy and of the knowledge base carry strong spatial dimensions that cannot

be neglected. The present chapter enters this debate with a view to explore empirically

the extent to which policy and human capital enable or thwart local green innovation

capacity in the local economies of the United States (US).

The three dimensions of interest for our study are connected in complex ways. To

begin with, innovation in green technologies (GTs) suffers from a double externality

problem (Rennings, 2000). On the one hand, non-appropriability and non-exclusivity

of technological knowledge give way to the kind of externalities that are common to

any innovation, and that lead to under-investment in the private sector. On the other

hand, because of their potentially pervasive influence, GTs that effectively contribute

2See Barbieri et al. (2016) for an extensive survey.
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to containing or preventing the negative effects of climate change bring about global

benefits in the form of environmental protection that represents a positive externality

for society, therein including non-innovating firms (Jaffe et al., 2002b). This double

externality exacerbates the traditional uncertainty that surrounds the development of

new technologies and provides a rationale for the second dimension of interest, namely

public policy interventions that create positive preconditions for investments in GTs

(del Rı́o González, 2009; Mowery et al., 2010). The portfolio of available mechanisms

is wide and encompasses setting emission standards, stimulating the demand for green

technologies (pull effect) or restoring incentives for private investments in innovation

(push effect) (Johnstone et al., 2012). Last but not least, the scale of changes involved

in these diverse but interconnected dimensions call upon specialized know-how. Human

capital is a key asset to facilitate the development of new technology but the transition

towards low-carbon economies requires capabilities beyond the strictly technical sphere,

for example operation management skills to manage the reconfiguration of industrial

processes as well as legal and administrative skills to comply with regulatory standards

(Vona et al., 2018).

In the view proposed here the interplay between policy, technology and human capital

offers a compelling framework to account for the space-bound co-existence of technology

push and demand pull forces (Requate, 2005; Horbach, 2008; Ghisetti and Quatraro,

2013). The chapter draws on and contributes to this research by investigating whether

and to what extent Green Public Procurement (GPP) of environmentally sustainable

products and services enhances the introduction of new GTs in 722 US Commuting

Zones (CZs) over the period 2000-2011. Our proxy for environmental innovation at local

level is the stock of green patents granted to CZ residents. The main findings of our

analysis are four. First, GPP exerts a positive impact on the generation of GTs in US

CZs. Second, the configuration of the local bundle of skills has a significant impact on
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green knowledge production. In particular, the positive effect of abstract skills intensity

is persistent across all estimates. Third, these two dimensions show a high degree of

interdependence, as the positive and significant coefficient for the interaction between

the variables suggests the existence of a mutual reinforcing effects. Fourth, we find

interesting patterns when disentangling the effects of product-related vis-à-vis service

related GPP, as well as when we disentangle mitigation vis-à-vis adaptation oriented

GTs.

Our findings add to prior literature in several respects. To begin with, in spite of an

intense debate about the importance of demand-side policy instruments, there is a gap on

the role of public procurement as a driver of green innovation. While existing research

has focused on the impact of public procurement on innovation in general (Nelson,

1982; Geroski, 1990; Ruttan, 2006), only a few studies concentrate on the domain of

environmental sustainability and innovation (Ghisetti, 2017). Second, the inclusion of

occupational structure as a proxy of the skill endowment of the local workforce brings

to the fore explicitly the dynamics of know-how and learning that can both enable or

thwart the development of a new technological trajectory. While recent exploratory

studies propose novel approaches to account for the analysis of environmental skills

and green jobs at the level of occupations (Consoli et al., 2016; Vona et al., 2018)

and of US geographical areas (Vona et al., 2017), no study has so far explored the

role of local human capital endowment on green technological change. Further, our

focus on the determinants of eco-innovation in the US enriches existing empirical studies

that is mainly centered on European countries. On the whole, our empirical analysis

connects the geography of eco-innovation and the literature on the determinants of eco-

innovation which remains an appealing, yet arguably underdeveloped, space of future

research (Ghisetti and Quatraro, 2017; Montresor and Quatraro, 2017).

The rest of the chapter is structured as follows. Section 2 articulates the theoretical
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framework and develops the hypotheses. In Section 3 we outline the research design.

Section 4 presents the results of the econometric analysis. In Section 5 we provide a

critical discussion of our findings and derive concluding remarks.

3.2 Theory and hypotheses development

Knowledge generation and diffusion stem out of local interactions that confer innova-

tion a space-bound nature. According to an established tenet, geographical and cogni-

tive proximity are necessary, but not sufficient, to reduce coordination and transaction

costs among otherwise dispersed individuals, and to eventually spur learning, knowl-

edge creation and innovation (Breschi and Lissoni, 2001; Boschma, 2005; Quatraro and

Usai, 2017). The spatial dimension of innovation is especially relevant to analyse cross-

regional heterogeneity in the composition of economic activities and in the attendant

competences and innovation capabilities (Quatraro, 2009; Storper and Scott, 2009).

Empirical studies based on the knowledge production function (KPF) approach of

Griliches (1984) and Jaffe (1986) insist that the variance in the quality of regional

innovation systems and of intensity of investments in R&D activities explains a sub-

stantial portion of the difference of cross-regional innovation performance (Acs et al.,

2002; Fritsch, 2002; Marrocu et al., 2013; Paci et al., 2014; Miguelez and Moreno, 2017).

A strand in evolutionary economic geography adds to this that regional idiosyncratic

factors affect not only the rate of local innovation activities but also their direction,

thus accounting for the effects of path-dependency on regional technological branching

(Colombelli et al., 2014; Montresor and Quatraro, 2017).

Following on the above, we argue that the spatial features underlying the generation

and diffusion of green technology have been somewhat underplayed. The only exceptions

are studies based on the KPF approach that emphasize the role of R&D activities and of
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the regulatory framework in influencing the rate of green technological change (Ghisetti

and Quatraro, 2013). Spatial patterns of GTs production have been analyzed from an

evolutionary perspective only in the fuel cell industry in EU regions with a view to

capture the role of technological relatedness (Tanner, 2014 and 2015). We propose to fill

this gap by articulating the analysis of eco-innovation in the KPF framework with a view

to gain greater understanding of the geographical characteristics of green innovation.

Eco-innovations carry a number of features that set them apart from other types of

innovation (Rennings, 2000). To begin with, besides the classical sources of externalities

that affect any kind of knowledge, green knowledge has positive effects on firm-level,

and hence local-level, environmental performance. These effects can be internalized

by private agents only after policy has restored the appropriate incentive for private

investments. To be sure, there are several variants of environmental policy such as setting

technological standards, regulating prices or establishing pollution thresholds that induce

firms to renew their production processes. As a result of these inducement effects new

market for GTs emerge due to higher R&D efforts (Johnstone et al., 2012; Nemet,

2009; Hoppmann et al., 2013). These considerations bring the institutional context to

the core of the analysis of the drivers of GTs. Since institutions are place-specific,

empirical studies at the micro, meso and at the macro-level consider the regional or

national regulatory framework as a key discriminant to explain differences in the ability

to generate eco-innovations across firms, regions and countries (Barbieri et al., 2016).

Only few scholars have so far considered the role of supply side policies aimed at fostering

the development of technological capabilities in green domains through R&D supporting

schemes (Costantini et al., 2015). More than this, to the best of our knowledge only

Ghisetti (2017) has hitherto explored the role of innovative green public procurement.

Building on the notion that public procurement is place-specific and that it exhibits

variance both between and within regions over time (Heald and Short, 2002; Morgenroth,
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2010), we propose that filling such a gap would create a bridge between the literature

on the determinants of eco-innovation and that on the geography of eco-innovation.

GPP is touted as a key lever to stimulate the development of new technology that can

facilitate meeting environmental sustainability targets. This is because the pathway

to successfully developing green technology entails dealing with substantial uncertainty

(Mowery et al., 2010). Under this perspective, GPP is regarded as a direct form of public

intervention to stimulate the demand for GTs by the government (Parikka-Alhola, 2008).

These arguments lead us to propose the first hypothesis:

H1: Territorial differences in GPP are associated with green technological change dif-

ferentials across regions.

The full appreciation of the mechanisms underlying knowledge production is crucial

to gain a comprehensive view on the spatial dynamics of GTs generation. Knowledge

recombination has long been understood to be a key driver of new competences that

are eventually embodied in new technology (Weitzman, 1996 and 1998; Fleming and

Sorenson, 2001). Proximity in the cognitive domain facilitates the recombination of

know-how, and indeed highly coherent knowledge bases increase significantly the chances

of successful innovation (Quatraro, 2010; Krafft et al., 2014). This is relevant to eco-

innovations in that their emergence is associated with the hybridization of green and dirty

technologies (Zeppini and van der Bergh, 2011; Dechezlepetre et al., 2004; Colombelli

and Quatraro, 2017). According to an established tenet, skilled individuals can more

quickly adapt their activities to the changing incentives that follow the emergence of

new technologies (Nelson and Phelps, 1966) and, in the case at hand, the transition to

low carbon economies calls upon a broad competence base that goes beyond the merely

technical domain (Vona et al., 2018). However, geographical areas are likely to differ in

terms of both the endowment of human capital as well as in the capacity to adapt their

occupational structure to the new opportunities (Vona et al., 2017). This entails that
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agglomeration economies due to geographic concentration of economic activities may

account for significant differences in the capacity to generate green technology across

space. On these grounds, we propose the second hypothesis:

H2: The prevalence of exploration-oriented skills in local contexts is associated with

higher levels of green technological change.

Last but not least, human capital endowment and GPP are ideal candidates to ex-

plain the green innovation capacity of local economies. This holds true also for their

interaction. Due to the double externality problem of eco-innovation, the endowment of

exploration-oriented skills at the local level can hardly display its full potential in terms

of GTs enablers because of the reluctance of economic agents to bear the uncertainty

associated with externalities and low appropriability conditions. At the same time, high

levels of GPP are likely to be more effective in the stimulation of the production of

environmentally sound technologies in areas that are characterized by local availabil-

ity of exploration-oriented skills. Accordingly, we expect the two dimensions to show a

high degree of interdependence and mutual enforcing effect on green innovation capacity.

These considerations lead us to spell out our third hypothesis.

H3: The prevalence of exploration-oriented skills and high levels of GPP in local context

are mutually enforcing in affecting the rate of green technological change.

The remainder of the chapter will elaborate an empirical analysis to test the hypothe-

ses laid out in this section.

3.3 Research design

This section details the key data sources, the variable construction and the proposed

empirical strategy. As anticipated earlier, all the key dimensions of interest for the
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present study, eco-innovation, public procurement and human capital, are space-bound.

For the purpose of their analysis we focus on US Commuting Zones. These spatial units

were first developed by Tolbert and Sizer (1996) using county-level commuting data from

the 1990 Census data to create 741 clusters of counties that are characterized by strong

and weak commuting.3 Compared to other territorial units, CZs carry the advantage of

covering the entirety of the US territory while at the same time being constructed in

such a way that meaningful mobility patterns are accounted for.4

3.3.1 Data and variables

We exploit three main sources of data at the level of CZs to measure: i) the local green

innovation capacity proxied by patenting activity; ii) the level of local green procurement

expenditures and iii) the local composition of human capital proxied by the occupational

structure of the attendant local labor market.

Patent data We measure green innovation capacity as propensity to introduce eco-

innovations using data on US-invented patents with priority year between 1970 and

2012 (Source: PATSTAT, version 2016a).

Patents are assigned to the environment-related domain using the ENV-TECH clas-

sification (OECD, 2015) based on the International Patent Classification (IPC) and

the Collaborative Patent Classification (CPC). Therein, eight environmental areas are

featured: (a) environmental management, (b) water related adaptation technologies, (c)

climate change mitigation technologies related to energy generation, transmission or dis-

tribution, (d) capture, storage, sequestration or disposal of greenhouse gases, (e) climate

change mitigation technologies related to transportation, (f) climate change mitigation

technologies related to buildings, (g) climate change mitigation technologies related to

3Of them, we only consider the 722 CZs that cover the entire mainland United States (both
metropolitan and rural areas).

4See Dorn (2009) for further details on empirical analysis at US CZ level
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wastewater treatment or waste management, and (h) climate change mitigation tech-

nologies in the production or processing of goods.

Since the ENV-TECH classification uses both IPC and CPC codes5 we first convert

IPC codes into CPC codes using the concordance tables of EPO and USPTO.6 Subse-

quently, we use information contained in patent documents to extract CPC codes and

assign patents to ENV-TECH categories. For what concerns the geographical dimension,

we assign a patent to a US territory by means of information contained in inventors’

addresses. This is an original methodology for geo-localizing US green patents to the

level of counties. The 2016a version of PATSTAT does not provide an address for every

inventor. To minimize the number of missing addresses, we follow two parallel strate-

gies. First, we rely the IFRIS version of PATSTAT. IFRIS recovers missing addresses

combining several external patent sources (REGPAT, INPI, etc). Second, we propagate

the inventor’s address into the relative patent family: for each patent family and missing

address, we check if there is an inventor with a similar name (applying the Levenshtein

distance) and with a non-missing address. If it is the case, we fill the missing address

with the one found. Combining both sources, we diminish the missing rate to 10%.

The next step consists in assigning precise geographical coordinates to each address

and, thus, to each patent. To do this we, first, extract the postal code included in

the inventor’s address, when available, to identify US cities according to the GeoNames

postal code table. For each country, GeoNames indeed provides a regular expression to

find postal codes according to their official format. We apply it to identify postal codes

in inventor’s addresses. Second, addresses that could not be assigned to a specific postal

code were parsed through an iterative algorithm that would identify the name of the city

within the address field. Once extracted this information was matched with names of US

5Almost all the IPC codes are present in the CPC classification but not the other way around.
6http://www.cooperativepatentclassification.org/cpcConcordances.html
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city above 5000 inhabitants in GeoNames.7 Third, we exploit the Google’s Geocoding

API resource to assign geographical coordinates to all the remaining addresses. This

procedure allowed us to assign geographical coordinates to 90% of unique US inventors’

addresses. These coordinates were subsequently matched with the 1990 US CZs map to

assign each inventor to a CZ.

The local level of green innovation activity is measured through the fractionalized8

stock of US-invented patents with at least one CPC class which relates to a green tech-

nology. The stock of green patents is corrected for INPADOC patent families9 and

weighted by forward (family) citations received10. Weighting by forward citations allows

us to account for the intrinsic technological value of the local protected inventions.

The green patent stock per CZ j at time t is thus calculated as:

Stockj,t = N.Patj,t + [(1− δ)× Stockj,t−1] , (3.1)

where δ is the decay rate.11

Furthermore, by exploiting the ENV-TECH classification, we differentiate the GT-

stock between two macro-technology groups: i) green adaptation technologies (ENV-

TECH areas (a) and (b)); and ii) green mitigation technologies (ENV-TECH areas from

7We set a threshold on the city population to limit noise in the results. We checked manually results
to remove false positives.

8Patent p is assigned to CZ c according to the fraction of inventors resident in CZ c over the total
number of inventors filing the patent p.

9Patent families essentially originate from a company or an inventor applying for the protection
of the same invention at different patent offices. This results in a series of equivalent filings that
patent examiners and attorneys can cite indifferently. Simple patent families are quite restrictive sets
of equivalents, all sharing the same priority (an original filing at one or another patent once, before
extension elsewhere). For a complete discussion about the opportunity of correcting citations for patent
families, see Martinez (2010).

10In order to make citations comparable across years and ENV-TECH technologies, we calculate a
weighted number of citations, dividing the raw number of citations by the average number of citations
in the same year t and the same technology j, and then by the average number of citations in the same
year t, following the method proposed by Hall et al. (2001): N.cit.weighted = N.cit

AvgN.citt,j
AvgN.citt

11We calculate patent stocks with the permanent inventory method, applying a 15% annual rate of
obsolescence.
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(c) to (h)).

Procurement data Second, we collect data on environmental-related procurement

expenditures by exploiting public information provided by the USAspending.gov re-

source.12 Procurement information are available from 2000 onwards.

The Federal Funding Accountability and Transparency Act of 2006 (FFATA) was

signed into law on September 26, 2006. The legislation required that federal contract,

grant, loan, and other financial assistance awards of more than $25,000 be displayed

on a searchable, publicly accessible website, USAspending.gov, to give the American

public access to information on how their tax dollars are being spent. As a matter of

discretion, USAspending.gov also displays certain federal contracts of more than $3,000.

The initial site went live in 2007. Federal agencies are required to report the name of

the entity receiving the award, the amount of the award, the recipient’s location, the

place of performance location, as well as other information.

In particular, using data on all registered federal contracts we extract information

about the location of funding provision (5-digits Zipcode)13 where the contract is exe-

cuted and the amount of resources dedicated (in 2010 USD). The Product and Service

Codes Manual (PSC, August 2015 Edition) is the guide to identify procured ‘green’

contracts and to distinguish between product-, and service-related.14 Indeed, the PSC

Manual provides codes to describe products, services, and R&D purchased by the federal

government for each contract action reported in the Federal Procurement Data System

12https://www.usaspending.gov
135-digits Zipcodes allow us to assign precise levels of expenditures to counties and, consequently, to

CZs.
14Statutory requirements and Executive Order 13514 direct the Office of Management and Budget

(OMB) Office of Federal Procurement Policy (OFPP) to report on procurement of products and ser-
vices with environmental attributes including recycled content, biobased, and energy efficient. Data
collected in the Federal Procurement Data System include these three environmental attributes plus an
‘environmentally preferable’ attribute. This last attribute means products or services that have a lesser
or reduced effect on human health and the environment when compared with competing products or
services that serve the same purpose.
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(FPDS). Since a contract may include multiple products/services, with and without

environmental attributes, the PSC data element code has been selected based on the

predominant product or service that is being purchased.

Occupational-task data To capture the role of human capital in local labor markets,

we rely on the task-based framework originally proposed by Autor et al. (2003) and

recently extended to the analysis at geographical level by Autor and Dorn (2013). This

approach differs from the traditional operationalization of human capital because it fo-

cuses on the relative importance of occupations rather than on educational-based proxies

such as i.e. the average number of years of education in the workforce or the share of

individuals with postgraduate degrees. In this view, labor is the institutional mecha-

nism that allows the application of individual know-how, and the changing structure

of occupation reflects the growth or decline in the relative importance of the attending

human capital endowment (Consoli and Rentocchini, 2015; Vona and Consoli, 2015).

In this framework work activities are grouped in three broad categories defined on the

basis of the match between the main work tasks and the skills needed to perform them.

First, routine tasks that entail executing codified instructions with minimal discretion

on the part of the worker. Routine tasks are characteristic of middle-skilled jobs that

entail repetitive cognitive (i.e. clerks) or manual (i.e. blue-collar) duties. The second

main category of work task include activities that require creativity, problem-solving,

intuition and social perceptiveness. These abstract tasks are characteristic of profes-

sional, managerial, technical and creative occupations that require high levels of formal

education. Since analytic and interpersonal capabilities are so important, technology

accrue productivity benefits to these workers by facilitating the transmission, organiza-

tion, and processing of information. On the other side of the skill spectrum are manual

tasks, which demand visual and language recognition, personal interaction and physical

dexterity. Occupations that use intensively these tasks are typically low-skill service jobs
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such as food preparation, catering, driving and cleaning.

Following prior empirical studies (Autor et al., 2003, 2006; Dorn, 2009; Autor and

Dorn, 2013) we merge job task requirements from the fourth edition of the US Depart-

ment of Labor’s Dictionary of Occupational Titles (DOT) (US Department of Labor

1977) to their corresponding Census occupation classifications to measure routine, ab-

stract, and manual task content by occupation.15 We combine these measures to create

summary indicators of task-intensity by occupation (routine RTI, abstract ATI and

manual MTI), calculated as

ATIk = ln(TA
k,1980)− ln(TR

k,1980)− ln(TM
k,1980), (3.2)

RTIk = ln(TR
k,1980)− ln(TA

k,1980)− ln(TM
k,1980), (3.3)

MTIk = ln(TM
k,1980)− ln(TA

k,1980)− ln(TR
k,1980), (3.4)

where, TR
k , TA

k and TM
k are, respectively, the routine, abstract, and manual task inputs

in each occupation k in 1980.16 For each kind of task, this measure rises in its importance

in each occupation and declines in the importance of the other two tasks.

Next, to operationalize these measures constructs at the geographic level, we take two

additional steps. We first use the task intensity index to identify the set of occupations

that are in the top employment-weighted third of task-intensity in 1980. We refer to

these as either abstract-, routine- or manual-intensive occupations. We next calculate

for each CZ j a task employment share measure (RSHjt, ASHjt and MSHjt) equal to:

ASHjt =

(
K∑
k=1

Ljkt · 1
[
ATIk > ATIP66

])( K∑
k=1

Ljkt

)−1
, (3.5)

15The DOT permits an occupation to comprise multiple tasks at different levels of intensity.
16Tasks are measured on a zero to ten scale.
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RSHjt =

(
K∑
k=1

Ljkt · 1
[
RTIk > RTIP66

])( K∑
k=1

Ljkt

)−1
, (3.6)

MSHjt =

(
K∑
k=1

Ljkt · 1
[
MTIk > MTIP66

])( K∑
k=1

Ljkt

)−1
, (3.7)

where Ljkt is the employment in occupation k in CZ j at time t, and 1[·] is the indicator

function, which takes the value of one if the occupation is task intensive by our definition.

Finally, according to the shares calculated form (5) to (7), we assign a set of dummies

equal to 1 if the CZ j is in the top third of national task share at time t:

AIjt = 1
[
ASHjt > ASHP66

t

]
, (3.8)

RIjt = 1
[
RSHjt > RSHP66

t

]
, (3.9)

MIjt = 1
[
MSHjt > MSHP66

t

]
. (3.10)

This characterization of local labor markets allows us to investigate whether diverse

occupational task compositions moderate the effect of green public procurement on the

generation of GTs.

Table 1 reports the main descriptive statistics of the variables used in the analysis.

Figures 1, 2 and 3 offer a visual summary of the the geographical distribution of key

dimensions across CZs. Therein area boundaries are outlined in grey, the interior of each

CZ is shaded according to the quintile rank in the distribution of the relevant dimension

- colour coding is darker for higher quintiles and progressively lighter for lower quintiles.

The distribution of GT patent stock in Figure 1 (panel a) shows that inventive activity

is more concentrated along coastal areas (especially California, Florida and the north

east) as well as in lakeside CZs of the north and of Texas. The figure also indicates

that there is no significant difference in the distribution of patenting of the component
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sub-categories, namely green mitigation technologies (panel b) and green adaptation

technologies (panel c). Figure 2 plots the geographic quintile distribution of the average

amount of GPP expenditures (2010 USD) at the level of CZs for the period 2000-2011.

Precisely, panel a) refers to the total level of expenditures, panel b) to GPP for products,

panel c) to GPP for services, respectively. This pattern reveals some degree of overlap

between the distribution of GPP and that of inventive activities of the previous figure.

Finally, Figure 3 shows the geographic quintile distribution of task-intensive occupations

at the level of CZs in 2005. Precisely, panel a) refers to abstract-intensive occupations,

panel b) to routine-intensive occupations, panel c) to manual-intensive occupations,

respectively. The noticeable feature is that, relative to the other categories, routine

intensive occupations are more concentrated in CZs in the center and the east of the

US. This resonates with the prominence of the attendant jobs in areas with high density

(i.e. clerical occupations) and with higher levels of industrial activity (i.e. blue collar

jobs).

On the whole the maps show that for all the measures there is a large variance across

CZs, as well as a marked evidence of spatial concentration. The maps also show inter-

esting converging patterns in the spatial distribution of GPP, GTs and abstract-skills

intensity. This evidence suggests that an economic geography approach is very suitable

to analyze how policy levers and skills-intensity affect the local production of GTs over

time.

3.3.2 Empirical strategy

Using the full sample of 722 CZs observed from 2000 to 2011, we fit models of the

following form to investigate the relationship between green public procurement and the

local level of green technological activity:
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(a) GT-mitigation patents (b) GT-adaptation patents

(c) Total GT patents

Figure 3.1: Geographic distribution of GT patent stock, 2011 (quintiles)
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(a) Product GPP (b) Service GPP

(c) Total GPP

Figure 3.2: Geographic distribution of GPP average expenditures, 2000-2011 (quintiles)
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(a) Abstract (b) Routine

(c) Manual

Figure 3.3: Geographic distribution of task-intensive occupations, 2005 (quintiles)
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Yj,t = β0 + β1GPP j,t−1 + X ′
j,tβ2 + εj,t, (3.11)

where Yj,t is the (log transformed) fractionalized stock of green patent families (weighted

by forward citations) at time t filed by inventors resident in CZ j; GPPj,t−1 is the (log

transformed) level of expenditures for green public procurement performed in CZ j at

time t − 1 (2010 USD); additionally, the vector X ′
j,t contains (in most specifications)

a rich set of controls for CZs’ labor force and demographic composition that might

independently affect innovation outcomes. Standard errors are clustered at the State

level to account for spatial correlations across CZs.

To test for moderating effects of local heterogeneity in terms of CZ occupational task

compositions on green innovation activities, we estimate three models, augmenting (11)

as follows:

Yj,t = β0 + β1GPPj,t−1 + β2RIj,t−1 + β3GPPj,t−1 ×RIj,t−1 + X ′
j,tβ4 + εj,t. (3.12)

Yj,t = β0 + β1GPPj,t−1 + β2AIj,t−1 + β3GPPj,t−1 × AIj,t−1 + X ′
j,tβ4 + εj,t. (3.13)

Yj,t = β0 + β1GPPj,t−1 + β2MIj,t−1 + β3GPPj,t−1 ×MIj,t−1 +

+X ′
j,tβ4 + εj,t. (3.14)

where dummy variables RIj,t−1, AIj,t−1 and MIj,t−1 are calculated according to equations

from (8) to (10).17

17Due to occupational data availability, the period considered for this second step of the analysis
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Exploiting the ENV-TECH classification, we are also able to differentiate between

diverse types of green technologies. In the final step of the analysis we thus change our

dependent variable accordingly, re-estimating equations from (11) to (14). Precisely, we

aggregate technologies in two precise groups: mitigation and adaptation GTs.18

3.4 Results

Section 2 puts forward the key hypotheses driving our study, according to which we

expect that GPP exerts a positive impact on the local dynamics of GT generation,

because of the double externality problem and the regulatory push/pull effect. Moreover,

we expect that the configuration of the skill bundle in local labor markets also affect

the process by which green inventions are brought about, because of the spanning of

the recombinant innovation process over a large number of heterogeneous technological

components.

Tables 2, 3 and 4 present the results of the baseline estimates of the relationship

between expenditures in GPP and the local environmental innovation capacity. Table 2

shows the estimates for the effect of the overall levels of GPP. Tables 3 and 4 focus instead

on product-related and service-related GPP, respectively. Our dependent variable is the

log transformed level of fractionalized stock of local environmental patents, weighted by

forward citations corrected for patent equivalents (INPADOC patent families).

Columns from I to V of Table 2 provide the results of CZ fixed-effect estimations of

equation (11), by gradually saturating the empirical model with the controls described

in Section 3.1. GPP in column one shows a positive and significant coefficient. Although

we use CZ fixed effects, this result can hide some effects of unobserved variables that one

may want to mitigate. The coefficient of GPP remains positive and significant, if slightly

reduces (2005-2011).
18Mitigation technologies aggregate ENV-TECH technologies from (c) to (h). Adaptation technolo-

gies are the ones related to groups (a) and (b).
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lower, after controlling for the population density of the area (Column II). The estimates

in Column III includes also employment share, the coefficient of which is negative and

significant . The other coefficients are in line with previous estimations. In Columns

IV and V we control, respectively, for the number of firms in the area and the share of

R&D employment. Both coefficient are positive and significant. Still, the coefficient of

GPP preserves the sign and statistical significance.

Column VI estimates equation (11) obtained by substituting fixed effects for the nine

US Census macro-areas for CZ fixed-effects. The overall results suggest that the effect

of GPP is robust across different model specifications. In particular, we can quantify

the positive and significant impact of GPP on local green innovation activities: a 1%

increase in GPP leads to some 0.077% increase in the stock of green patents in the local

areas.

Tables 3 and 4 replicate the same strategy as the one proposed in Table 2 but focusing

on the effects of, respectively, GPP for products and GPP for services on the total stock

of green technological knowledge at the local level. We find a significant and positive

effect of both types of public procurement expenditures. Importantly, we do observe that

expenditures for procured green services show higher effectiveness in boosting the overall

level of local green innovation activity than expenditures for procured green products. If

one looks at Column VI of both tables, it comes that a 1% increase in GPP for products

yields a 0.053% increase in the local stock of GTs, while the same variation in GPP for

services yields a 0.087% increase in the local stock of GTs.

The overall picture emerging from this first set of estimates provides empirical support

to our Hypothesis 1, according to which GPP is expected to positively affect the local

accumulation of GT stock. We can now turn to investigation of the effects of the local

occupational task compositions on GTs stock, drawing upon the measures proposed in

Section 3.1. Our aim is to test for the direct effect of the local skills configuration on
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the local stock of GTs, as well as how they moderate the relationship between GPP and

local green innovation capacity.

Table 5 takes as a benchmark Column VI proposed in Tables 2 to 4. As explained

in Section 3.1, we built dummy variables equal to 1 if a CZ is in the top 33% of task-

intensive occupations shares: abstract (ASH), routine (RSH) and manual (MSH). We

include these dummy variables in the estimations, as well as their interaction with (total)

GPP. Column I and II focus on RSH. Both the coefficient of the direct and moderating

effects do not appear to significantly affect local GTs generation. Columns III and IV

deal with AHS. The coefficient of the direct effect is positive and significant in column III,

but it loses significance in column IV, when the interaction with GPP is introduced. The

moderating effect shows a positive and significant coefficient. Columns V and VI report

the estimations of the effect of RHS. The direct effect does not appear to be significant

in any of the estimations, while the moderating effect is negative. The prevalence of

routine skills appears to reduce the impact of GPP on local accumulation of GTs.

Overall, the inclusion of the local skills composition in the empirical framework seems

to reduce the magnitude of the direct effect of GPP. According to the estimates in table

5, a 1% increase in GPP yields an increase in GTs ranging from 0.021% to 0.048%, which

is far lower than the 0.077% increase found in Table 2. ASH is the only skill category

yielding a positive impact on GTs at the local level. If one sums the coefficient of GPP

and the one of the interaction of ASH with GPP, the overall effect of GPP appears to be

much closer to the evidence reported in Table 2. Focusing on Column IV, in the areas

in the top 33% of abstract-task intensive occupations (ASH=1), the overall impact of

1% increase in GPP consists of some 0.063% increase in local GTs stock.

Tables 6 and 7 complement the analysis proposed in Table 5 by investigating whether

there are differences in the effect of GPP expenditures for, respectively, products and

services on total GT stock. Results show that the direct impact found before exists
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for both types of expenditures. However, it is strongly driven by GPP expenditures

for services, confirming the initial estimates proposed in Tables 2, 3 and 4. Moreover,

the moderating effect of ASH holds for what concern GPP for services, while when

one focuses on GPP for products, only the direct effect of ASH shows a positive and

significant coefficient.

Figure 4 plots average marginal effects calculated on the basis of the results from

Tables 5, 6 and 7. The bottom parts of the three panels plot average marginal effects

of respectively, total, product- and service-related GPP when the CZ is in the top third

share of task-intensive occupations (abstract, routine and manual alternatively). Top

areas plot the reverse case (average marginal effects when the CZ is not in the top third

share of task-intensive occupations).

Figure 3.4: Average marginal effects of GPP on total GT stock with 95% CIs

Focusing on areas in the top third of the skill endowment, we find that the local knowl-

edge base proxied by means of occupations brings about heterogeneity in the results. In

particular, the coefficient for abstract occupations is always significant, with a stronger

effect of expenditure on services as compared to product. Recall that abstract occupa-

tions are intensive in activities that require problem-solving, intuition, persuasion, and
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creativity. These characteristics are over-represented in professional, managerial, tech-

nical and creative occupations in areas as diverse as law, medicine, science, engineering,

design, and management. Workers who are most adept in these tasks typically have

high levels of education and analytic capability. This resonates with the high level of

knowledge intensity of service activities that entail personal interaction, social percep-

tiveness and adaptability and which, in our model, augment the innovation outcome

of public procurement. The coefficient for routine occupations is only significant for

green-service procurement. These jobs encompass many middle-skilled cognitive (i.e.,

bookkeeping, clerical work) or manual activities (i.e., repetitive physical operations in

production jobs). Even though the growth of routine jobs has been in decline for some

time (Autor et al., 2003; Autor and Dorn, 2013), routine occupations still make up the

bulk of employment in the United States. In the case under analysis, we ascribe the

positive effect of routine occupations to the persistent important role of clerical and ad-

ministrative workers in services. Lastly, the endowment of manual skills is only mildly

significant in the general category of public procurement but not in the sub-components.

This is not surprising considering that low-skill manual intensive jobs are mainly con-

centrated in areas such as assistance and hospitality, and thus we expect them to be

only marginally related to the relation between innovation and public procurement.

3.4.1 A comparison between GTs for adaptation and mitigation

As a further step of the analysis, we exploit the OECD ENV-TECH classification to test

for the differential effects of GPP on the two main groups of green technological stock:

adaptation and mitigation, respectively. Columns I, II and III of Table 8 present esti-

mates for the effect of, respectively, total, product- and service-related GPP on the stock

of green mitigation technologies. Columns IV, V and VI report the similar estimates con-

cerning the determinants of green adaptation technologies. Results demonstrate that the
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overall level of GPP positively affects both kinds of green technological stock (Columns

I and IV). The magnitude is higher for mitigation technologies. When splitting GPP

between product- and service-related, we do find a significant positive effect of both,

with service-related GPP expenditures showing higher effectiveness within both groups

of green technologies. The highest effect is found for service-related GPP on mitigation

GT stock (results from Column III suggest that a 1% increase in service-related GPP

leads to a 0.096% increase in the stock of green mitigation patents).

Next, we investigate more in depth the moderating effect of local labor market com-

position in the relation between green public procurement and green innovation capacity

across macro-families of green technology. In particular, we analyze separately the ef-

fects on GT stock in mitigation (Tables 9, 10 and 11) and in adaptation technologies

(Tables 12, 13 and 14). In short, mitigation strategies, and the attendant technologies,

seek to tackle the causes of climate change such as accumulation of greenhouse gases in

the atmosphere. Mitigation is understood as having a global character as opposed to

adaptation strategies which, instead, aim at reducing the local impact of climate change.

Mitigation is a priority in a broad range of domains such as energy, transportation, man-

ufacturing and waste management. Conversely, adaptation strategies target primarily

water and health sectors.

We find that the average marginal effects for mitigation technologies are the same

as those observed in the general case above. This applies to both the significance and

the magnitude of the coefficients. Once again, a high endowment of managerial, sci-

entific and interpersonal (viz. abstract) skills yields an innovation premium (Figure 5)

for public procurement in both green products and green services. Routine intensive

occupations have a significant moderating effect only for green service expenditures.

Conversely, among adaptation technologies, the coefficients of both routine and abstract

occupations are significant only for service-related GPP (Figure 6). We ascribe this
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to the preponderance of intangible nature of coordinating, planning and implementing

adaptation strategies at local level.

Figure 3.5: Average marginal effects of GPP on GT-mitigation stock with 95% CIs

Figure 3.6: Average marginal effects of GPP on GT-adaptation stock with 95% CIs

3.5 Conclusions

Green technologies are a means to successfully decoupling economic growth and envi-

ronmental degradation. Their adoption allows firms to improve both their economic

99



and environmental performances. In view of the social desirability of the diffusion of

this type of technologies, creating economic incentives for private investments in inno-

vation remains a key issue in the policy agenda. Due to the double externality problem,

sub-optimal allocation of resources in these activities is highly likely unless public inter-

vention puts in place policies that restore incentives to invest in green technologies. In

this chapter we have analyzed the impact of a somewhat neglected type of public inter-

vention, green public procurement, on the generation of GTs. The present chapter marks

an important difference with most of the extant literature in that we consider a direct

demand-side policy lever (i.e. government expenditure) instead of indirect demand-pull

effects engendered by the implementation of stringent environmental regulatory frame-

works.

Our analysis of the link between GPP and the generation of GTs has been conducted

at the territorial level of US commuting zones. We put forward the hypothesis that the

local accumulation of competences represents a key enabling condition for the generation

of new technologies in general. GTs show some specificity in this respect, in that they

appear to emerge as an outcome of the hybridization of a variety of technologies that

often are loosely related with one another. The configuration of the local bundle of skills

is therefore much important in affecting local differences in the capacity to sustain green

inventive activities. The prevalence of abstract skills is crucial in this respect, in that it

is related to cognitive abilities to combine ideas and inputs from different fields in new

and previously untried ways.

Our results provide empirical support to our hypotheses, showing that GPP exerts a

positive impact on the generation of GTs. In particular, we have found that a 1% increase

in GPP engenders some 0.077% increase in the local stock of GTs. The government

expenditure lever can therefore prove to be efficient in the promotion of technology-

driven sustainability transitions. Moreover, we have found that GPP for services yield
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a stronger impact than GPP for products. This suggests the existence of bandwagon

effects upwards in the value chain, for which the demand for green services stimulate

the generation of the technologies that make them possible.

The configuration of the local labor market plays also a role in the dynamics of GTs

generation. In particular, the prevalence of abstract skills is positively associated to

the generation of GTs. Moreover, this specific set of skills moderates the effect of GPP

on GTs, by magnifying its coefficient. According to our estimates, the overall impact

of GPP in areas in which abstract skills are prevalent is almost twice the impact of

GPP in areas in which this prevalence is not observed. Finally, our analysis allowed

to investigating the differential impact of GPP and local skills bundle configuration on

mitigation vis-à-vis adaptation oriented green technologies.

Our results bear important implications for policy. Dealing with climate change will

require timely interventions to minimize the risks of further environmental damage while

at the same time making the most of the opportunities provided by the reconfiguration of

intertwined legislative, production, distribution and consumption systems. Transition

assistance at all levels will be important for regions that are home to high emission

industries, and thus candidates for disruption, as well as for regions that can leverage

natural or built assets to seize opportunities for growth. Our analysis highlights two

areas of intervention.

The first concerns the role of public expenditure in boosting technology-driven sus-

tainable development. Most of the extant literature has focused on technology push or

demand pull deployment policies. We do not deny the relevance of these policy instru-

ments. However, we show that besides these options, policymakers can affect the rate

and the direction of green inventive activities by demanding for specific green services or

products. While these are expected to satisfy specific needs of public administrations,

the GTs that are produced are expected to be relevant for a wider set of economic ac-
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tivities, bearing important spillovers for prospective adopters. On the other hand, the

transition to green growth entails much more than just new technologies, in that much

of the innovation that is required is organizational and institutional. These innovations

represent a break from established practice and entail considerable uncertainty about

how to make the new practice work effectively. Therefore, supporting the creation and

adaptation of human capital is the second domain of policy intervention. Active labor

market policies are essential to both favor the rapid re-absorption of displaced workers

and to counter, or prevent altogether, skill gaps. A smooth adaptation of the labor

markets to these pressures calls upon dedicated efforts are needed to identify the direct

(i.e. market demand) and indirect (i.e. through regulations) effects of dealing with

climate change on existing occupational profiles and on the skills mix that is needed

for new green activities. Beyond merely quantitative impact, public authorities should

support business firms in facilitating the creation of decent jobs as they undergo trans-

formations and adaptations of local labor markets to greener demands. In a dynamic

perspective, nimble, adaptable and focused education and training systems are the key

to prepare the ground for an egalitarian transition to a low-carbon economy. Because

climate change is a global phenomenon with strong territorial specificity, local labor

market institutions will be at the forefront of the dual task of accommodating national

or supranational regulations while seeking to promote incentives to stimulate sustainable

business activities.
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Tables

Table 3.1: Descriptive statistics

Variable Obs Mean Std.

Dev.

Min Max

total GT stock 7,937 20.325 87.865 0 2092.176

mitigation GT stock 7,937 16.932 77.027 0 1989.022

adaptation GT stock 7,937 3.393 12.845 0 318.381

total GPP 7,937 14.681 108.543 -203.139 4219.37

product GPP 7,937 4.025 55.748 -44.238 3675.805

service GPP 7,937 9.377 77.731 -158.900 2425.968

RSH 4,476 .336 .472 0 1

ASH 4,476 .333 .471 0 1

MSH 4,476 .330 .470 0 1

pop density 7,937 149.478 770.542 .255 19643.86

employment 7,937 156279.6 452789 138.5 6787960

# of establishments 7,937 10168.18 28537.29 23 434368

R&D employment

share

7,937 .001 .002 0 .055

Note: The time-span of our analysis is 2000-2011. Because information on CZ

occupational structures are available from 2005 onwards, the sample is reduced

to 4,476 observations (from 7,937).
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Table 3.2: Effect of total green procurement on GT stock (2001-2011)

(I) (II) (III) (IV) (V) (VI)

tot GPP 0.082∗∗∗ 0.068∗∗∗ 0.067∗∗∗ 0.064∗∗∗ 0.063∗∗∗ 0.077∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.009) (0.010)

pop density 0.003∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗ -0.000

(0.001) (0.001) (0.001) (0.001) (0.000)

empl share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗

(0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗ 0.000∗ 0.000∗∗∗

(0.000) (0.000) (0.000)

R&D empl 6.686∗ 8.584∗∗

(3.824) (4.260)

r2 w 0.383 0.399 0.403 0.404 0.405 0.386

r2 o 0.147 0.127 0.073 0.084 0.085 0.501

r2 b 0.551 0.125 0.071 0.082 0.082 0.508

N 7937 7937 7937 7937 7937 7937

Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).

GPP lagged 1-year. Standard errors clustered at the level of State. Models I to V,

estimated in fixed effect, include a constant and year dummies. Model VI includes

also geographic dummies (9 Census divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3.3: Effect of GPP for products on GT stock (2001-2011)

(I) (II) (III) (IV) (V) (VI)

prod GPP 0.073∗∗∗ 0.050∗∗∗ 0.049∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.053∗∗∗

(0.013) (0.012) (0.012) (0.012) (0.012) (0.013)

pop density 0.004∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ -0.000

(0.002) (0.001) (0.001) (0.001) (0.000)

empl share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗ 0.000∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000)

R&D empl 6.972∗ 8.609∗∗

(3.888) (4.378)

r2 w 0.365 0.385 0.389 0.391 0.392 0.371

r2 o 0.067 0.118 0.069 0.082 0.083 0.472

r2 b 0.432 0.118 0.068 0.080 0.081 0.478

N 7937 7937 7937 7937 7937 7937

Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).

GPP lagged 1-year. Standard errors clustered at the level of State. Models I to V,

estimated in fixed effect, include a constant and year dummies. Model VI includes

also geographic dummies (9 Census divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

105



Table 3.4: Effect of GPP for services on GT stock (2001-2011)

(I) (II) (III) (IV) (V) (VI)

serv GPP 0.093∗∗∗ 0.078∗∗∗ 0.077∗∗∗ 0.073∗∗∗ 0.073∗∗∗ 0.087∗∗∗

(0.010) (0.010) (0.010) (0.010) (0.010) (0.011)

pop density 0.003∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗ -0.000

(0.001) (0.001) (0.001) (0.001) (0.000)

empl share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗ 0.000∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000)

R&D empl 6.716∗ 8.510∗∗

(3.772) (4.168)

r2 w 0.384 0.400 0.404 0.406 0.406 0.388

r2 o 0.138 0.126 0.074 0.086 0.086 0.498

r2 b 0.495 0.125 0.072 0.083 0.084 0.505

N 7937 7937 7937 7937 7937 7937

Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).

GPP lagged 1-year. Standard errors clustered at the level of State. Models I to V,

estimated in fixed effect, include a constant and year dummies. Model VI includes

also geographic dummies (9 Census divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3.5: Effect of total GPP and task composition on GT stock (2006-
2011)

(I) (II) (III) (IV) (V) (VI)

tot GPP 0.039∗∗∗ 0.039∗∗∗ 0.039∗∗∗ 0.021∗∗ 0.040∗∗∗ 0.048∗∗∗

(0.008) (0.009) (0.008) (0.008) (0.008) (0.009)

RSH 0.003 0.004

(0.013) (0.012)

GPP*RSH -0.000

(0.011)

ASH 0.041∗∗∗ 0.017

(0.014) (0.015)

GPP*ASH 0.042∗∗∗

(0.010)

MSH -0.013 0.001

(0.010) (0.010)

GPP*MSH -0.037∗∗∗

(0.012)

pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

empl share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl 6.101 6.100 6.533 6.378 6.455 6.561

(6.303) (6.298) (6.272) (6.264) (6.348) (6.418)

r2 w 0.328 0.328 0.328 0.331 0.327 0.329

r2 o 0.458 0.458 0.464 0.469 0.461 0.464

r2 b 0.467 0.467 0.473 0.478 0.471 0.473

N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families weighted by forward citations

(log). GPP, RSH, ASH and MSH lagged 1-year. Standard errors clustered at the

level of State. All models include a constant, year and geographic dummies (9 Census

divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3.6: Effect of GPP for products and task composition on GT stock
(2006-2011)

(I) (II) (III) (IV) (V) (VI)

prod GPP 0.020∗ 0.021∗∗ 0.020∗∗ 0.008 0.021∗∗ 0.023∗∗

(0.010) (0.011) (0.010) (0.012) (0.010) (0.010)

RSH 0.005 0.006

(0.013) (0.013)

GPP*RSH -0.006

(0.018)

ASH 0.038∗∗∗ 0.036∗∗

(0.014) (0.014)

GPP*ASH 0.021

(0.014)

MSH -0.012 -0.009

(0.010) (0.010)

GPP*MSH -0.031

(0.023)

pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

empl share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl 5.782 5.845 6.243 6.257 6.164 6.248

(6.243) (6.248) (6.220) (6.233) (6.302) (6.320)

r2 w 0.327 0.327 0.327 0.327 0.326 0.326

r2 o 0.440 0.440 0.446 0.447 0.444 0.444

r2 b 0.449 0.449 0.455 0.455 0.453 0.453

N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families weighted by forward citations

(log). GPP, RSH, ASH and MSH lagged 1-year. Standard errors clustered at the

level of State. All models include a constant, year and geographic dummies (9 Census

divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3.7: Effect of GPP for services and task composition on GT stock
(2006-2011)

(I) (II) (III) (IV) (V) (VI)

serv GPP 0.047∗∗∗ 0.048∗∗∗ 0.048∗∗∗ 0.025∗∗ 0.048∗∗∗ 0.057∗∗∗

(0.010) (0.011) (0.010) (0.011) (0.010) (0.011)

RSH 0.003 0.005

(0.013) (0.012)

GPP*RSH -0.004

(0.012)

ASH 0.041∗∗∗ 0.018

(0.014) (0.015)

GPP*ASH 0.050∗∗∗

(0.012)

MSH -0.013 0.001

(0.010) (0.011)

GPP*MSH -0.042∗∗∗

(0.016)

pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

empl share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl 5.875 5.881 6.324 6.167 6.245 6.292

(6.254) (6.249) (6.230) (6.224) (6.301) (6.383)

r2 w 0.331 0.331 0.331 0.334 0.330 0.331

r2 o 0.458 0.459 0.465 0.470 0.462 0.464

r2 b 0.468 0.468 0.474 0.479 0.472 0.474

N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families weighted by forward citations

(log). GPP, RSH, ASH and MSH lagged 1-year. Standard errors clustered at the

level of State. All models include a constant, year and geographic dummies (9 Census

divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3.8: Effect of GPP on GT stock: mitigation and adaptation (2001-
2011)

Mitigation GT Adaptation GT

(I) (II) (III) (IV) (V) (VI)

total GPP 0.086∗∗∗ 0.043∗∗∗

(0.011) (0.008)

prod GPP 0.061∗∗∗ 0.036∗∗∗

(0.014) (0.010)

serv GPP 0.096∗∗∗ 0.049∗∗∗

(0.011) (0.009)

pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

empl share -0.000∗∗ -0.000∗∗∗ -0.000∗∗ -0.000∗ -0.000∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl 7.089 7.115 7.016 4.603 4.640 4.558

(4.438) (4.379) (4.367) (4.983) (5.283) (4.917)

r2 w 0.381 0.364 0.382 0.245 0.236 0.247

r2 o 0.510 0.479 0.507 0.558 0.539 0.556

r2 b 0.519 0.486 0.516 0.576 0.555 0.573

N 7937 7937 7937 7937 7937 7937

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation)

weighted by fwd. cits. GPP variables lagged 1-year. Standard errors clustered at

the level of State. All models include a constant, year and geographic dummies (9

Census divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3.9: Effect of total GPP and task composition on GT-mitigation
stock (2006-2011)

(I) (II) (III) (IV) (V) (VI)

tot GPP 0.043∗∗∗ 0.044∗∗∗ 0.044∗∗∗ 0.023∗∗∗ 0.045∗∗∗ 0.053∗∗∗

(0.009) (0.010) (0.009) (0.008) (0.009) (0.010)

RSH 0.001 0.003

(0.013) (0.013)

GPP*RSH -0.003

(0.011)

ASH 0.044∗∗∗ 0.016

(0.016) (0.017)

GPP*ASH 0.049∗∗∗

(0.011)

MSH -0.010 0.005

(0.011) (0.011)

GPP*MSH -0.040∗∗∗

(0.013)

pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

empl share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl 5.863 5.870 6.360 6.177 6.206 6.320

(6.416) (6.413) (6.391) (6.384) (6.451) (6.528)

r2 w 0.319 0.319 0.319 0.322 0.318 0.320

r2 o 0.463 0.463 0.469 0.476 0.466 0.469

r2 b 0.473 0.473 0.479 0.485 0.476 0.479

N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation)

weighted by fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors

clustered at the level of State. All models include a constant, year and geographic

dummies (9 Census divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3.10: Effect of GPP for products and task composition on GT-
mitigation stock (2006-2011)

(I) (II) (III) (IV) (V) (VI)

prod GPP 0.024∗∗ 0.026∗∗ 0.025∗∗ 0.009 0.026∗∗ 0.028∗∗

(0.011) (0.012) (0.011) (0.013) (0.011) (0.011)

RSH 0.003 0.004

(0.013) (0.013)

GPP*RSH -0.006

(0.020)

ASH 0.041∗∗∗ 0.037∗∗

(0.016) (0.016)

GPP*ASH 0.027∗

(0.016)

MSH -0.008 -0.005

(0.011) (0.011)

GPP*MSH -0.035

(0.024)

pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

empl share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl 5.514 5.581 6.046 6.055 5.890 5.983

(6.337) (6.345) (6.320) (6.336) (6.388) (6.411)

r2 w 0.318 0.318 0.317 0.318 0.317 0.317

r2 o 0.443 0.443 0.450 0.450 0.446 0.446

r2 b 0.452 0.452 0.458 0.459 0.455 0.456

N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation)

weighted by fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors

clustered at the level of State. All models include a constant, year and geographic

dummies (9 Census divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3.11: Effect of GPP for services and task composition on GT-
mitigation stock (2006-2011)

(I) (II) (III) (IV) (V) (VI)

serv GPP 0.051∗∗∗ 0.053∗∗∗ 0.052∗∗∗ 0.026∗∗ 0.052∗∗∗ 0.061∗∗∗

(0.010) (0.011) (0.010) (0.011) (0.010) (0.011)

RSH 0.001 0.005

(0.013) (0.013)

GPP*RSH -0.009

(0.013)

ASH 0.044∗∗∗ 0.018

(0.016) (0.017)

GPP*ASH 0.057∗∗∗

(0.013)

MSH -0.009 0.005

(0.011) (0.011)

GPP*MSH -0.045∗∗∗

(0.016)

pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

empl share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl 5.621 5.639 6.140 5.960 5.987 6.036

(6.375) (6.369) (6.357) (6.353) (6.413) (6.502)

r2 w 0.321 0.321 0.321 0.325 0.320 0.322

r2 o 0.463 0.463 0.470 0.476 0.466 0.469

r2 b 0.473 0.473 0.479 0.486 0.476 0.479

N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation)

weighted by fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors

clustered at the level of State. All models include a constant, year and geographic

dummies (9 Census divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

113



Table 3.12: Effect of total GPP and task composition on GT-adaptation
stock (2006-2011)

(I) (II) (III) (IV) (V) (VI)

tot GPP 0.021∗∗∗ 0.020∗∗∗ 0.022∗∗∗ 0.012 0.022∗∗∗ 0.030∗∗∗

(0.007) (0.007) (0.007) (0.008) (0.007) (0.008)

RSH 0.003 0.002

(0.007) (0.007)

GPP*RSH 0.003

(0.011)

ASH 0.020∗∗ 0.007

(0.009) (0.008)

GPP*ASH 0.023∗∗

(0.010)

MSH -0.019∗∗∗ -0.006

(0.006) (0.007)

GPP*MSH -0.036∗∗∗

(0.008)

pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

empl share -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl 2.601 2.590 2.815 2.737 2.902 3.013

(4.737) (4.732) (4.707) (4.720) (4.760) (4.856)

r2 w 0.188 0.188 0.187 0.188 0.187 0.190

r2 o 0.511 0.511 0.515 0.520 0.516 0.520

r2 b 0.525 0.525 0.530 0.535 0.530 0.535

N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation)

weighted by fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors

clustered at the level of State. All models include a constant, year and geographic

dummies (9 Census divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3.13: Effect of GPP for products and task composition on GT-
adaptation stock (2006-2011)

(I) (II) (III) (IV) (V) (VI)

prod GPP 0.009 0.008 0.009 0.007 0.009 0.011

(0.009) (0.009) (0.009) (0.010) (0.009) (0.009)

RSH 0.004 0.004

(0.007) (0.007)

GPP*RSH 0.003

(0.014)

ASH 0.018∗∗ 0.018∗∗

(0.009) (0.009)

GPP*ASH 0.003

(0.012)

MSH -0.018∗∗∗ -0.017∗∗∗

(0.006) (0.006)

GPP*MSH -0.022∗

(0.012)

pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

empl share -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl 2.474 2.488 2.708 2.713 2.799 2.867

(4.790) (4.783) (4.771) (4.774) (4.826) (4.844)

r2 w 0.189 0.189 0.188 0.187 0.188 0.188

r2 o 0.497 0.498 0.502 0.502 0.502 0.503

r2 b 0.511 0.511 0.516 0.516 0.516 0.517

N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation)

weighted by fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors

clustered at the level of State. All models include a constant, year and geographic

dummies (9 Census divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3.14: Effect of GPP for services and task composition on GT-
adaptation stock (2006-2011)

(I) (II) (III) (IV) (V) (VI)

serv GPP 0.031∗∗∗ 0.030∗∗∗ 0.032∗∗∗ 0.017∗ 0.032∗∗∗ 0.040∗∗∗

(0.008) (0.008) (0.008) (0.010) (0.008) (0.009)

RSH 0.003 0.001

(0.007) (0.007)

GPP*RSH 0.003

(0.010)

ASH 0.020∗∗ 0.005

(0.009) (0.008)

GPP*ASH 0.033∗∗∗

(0.010)

MSH -0.018∗∗∗ -0.006

(0.006) (0.007)

GPP*MSH -0.041∗∗∗

(0.009)

pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

empl share -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl 2.453 2.444 2.677 2.585 2.762 2.815

(4.653) (4.649) (4.625) (4.649) (4.677) (4.785)

r2 w 0.192 0.192 0.191 0.194 0.191 0.194

r2 o 0.514 0.514 0.519 0.525 0.519 0.523

r2 b 0.529 0.528 0.533 0.540 0.534 0.538

N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation)

weighted by fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors

clustered at the level of State. All models include a constant, year and geographic

dummies (9 Census divisions). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

116



Conclusions

The present dissertation provides original empirical evidence about three determinants

of green technical change. The first part of the study focuses on micro-determinants.

Precisely, it looks at inventor teams’ peculiarities in mastering and recombining tech-

nological knowledge as a driver for the emergence of environmental innovations. In the

second and third chapter, the study investigates the role of two specific policy tools,

named government-funded R&D and public procurement, in fostering green innovation

processes. Furthermore, the third chapter also provides evidence about local features

of occupational task compositions as a further driver for the introduction of green tech-

nologies at the territorial level.

By exploiting the EPO universe of patent data, the first chapter aims at capturing

the effect of diverse knowledge recombination patterns, mastered by inventor teams,

as important drivers for the generation of GTs. Empirical evidence shows a positive

premium of recombinant creation capabilities in the generation of GTs. Moreover, the

empirical analysis shows positive effects of both team’s previous technological green

experience and environmental regulation stringency. Interestingly, diverse moderating

effects of technological green experience and environmental regulation stringency on

recombinant creation are at stake. Precisely, the positive effect of team’s recombinant

creation capabilities is magnified for teams lacking technological green experience, even

more in regimes of weak environmental regulation. The overall evidence proposed by this
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first chapter highlights a complex architecture behind the generation process of green

inventions.

Results from the first chapter bring interesting implications for firms aiming at per-

forming green R&D activities. GTs are indeed likely to positively respond to explorative

strategies: assembling teams of inventors able to creatively recombine extant technolog-

ical knowledge increases the firm’s probability of introducing new GTs. However, path

dependence plays a fundamental role also in the green technological realm, suggesting

that experienced teams are those that show highest rates of success in introducing green

inventions. Finally, the level of local policy stringency is relevant in virtue of the innova-

tion mode a firm pursues. Indeed, explorative strategies seem to enhance their positive

effect when the level of stringency is sufficiently high, and, at the same time, teams

lack previous green experience. Therefore, firms aiming at generating green inventions

and operating in technological domains where both regulation schemes and previous

green experience are weak should assemble teams formed by inventors able to creatively

recombine sparse and heterogeneous technological knowledge.

From a policy perspective, results also lead to two main policy implications. First,

building proper levels of green technological knowledge within a sector, as represented

by the presence of teams with experience in GTs, is by far the most important driver for

boosting GTs. However, teams with green experience that adopt explorative behaviors,

especially in regimes of weak environmental regulation, are less likely to generate green

inventions. This combination of presence of experienced teams and absence of incen-

tives to adopt explorative behaviors could be harmful in terms of possible emergence of

technological lock-ins. Proper innovation policies aiming at guaranteeing systemic vari-

ety and exploration strategies are thus suggested in contexts of high green-technological

specialization. Second, in contexts where the level of advance of green technological

knowledge is scarce, recombinant creation dynamics reveal their relevance in fostering
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GTs. Interestingly, when these exploration-oriented behaviors are combined with el-

evated levels of stringency, their effect is magnified. Thus, the importance for policy

makers of combining environmental stringency with innovation policies oriented towards

the exploration of technological niches. This combination is the most effective chan-

nel boosting green technical change for countries/sectors where the green technological

infrastructure is weak.

By exploiting an exogenous technological shock, namely the Chernobyl nuclear acci-

dent occurred in April 1986, in the second chapter the thesis aims at investigating the

effect of changes in the level of government-funded R&D on both the rate of green-tech

knowledge accumulation and the direction it takes. The overall evidence demonstrates

that government-funded R&D is an important lever for both consolidating the estab-

lished green technological trajectory and accelerating the process of changing techno-

logical paradigm. However, the magnitude of the estimated effects suggests that an

unprecedented effort in public R&D investments is required to timely shift from dirty

to clean production systems.

Policy implications are manifold. First, shifting all the public R&D resources from

dirty to green targets is likely to significantly reduce the time required by green tech-

nologies to overcome the technological advantage of incumbent, dirty technologies.

Second, this mechanism is likely to indirectly increase (decrease) the relative cost of

dirty (clean) technologies, presumably letting the market prices adjusting consequently

and reducing the future consumption of fossil fuels, creating also incentives for urgently-

needed private green-investments.

Finally, the overall evidence proposed shows that a finer systematic investigation is

needed for individuating technological R&D niches with the highest potential in terms

of green radicalness and breakthrough to be systematically publicly funded.

While the second chapter provides evidence of a specific kind of supply-side pub-
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lic intervention, the third chapter investigates whether and through which channels a

specific type of demand-oriented intervention, namely green public procurement (GPP)

stimulates local environmental innovation capacity. To this end, detailed data sources

on green patents and procurement expenditures at the level of US Commuting Zones

(CZs) for the period 2000-2011 have been exploited. The chapter also aims at capturing

the moderating effects of local labor market composition in the relation between green

public procurement and green innovation capacity. Lastly, by exploiting the richness of

patent information, the study tests for differential effects of green public procurement

on different classes of green technologies.

The chapter puts forward the hypothesis that the local accumulation of competences

represents a key enabling condition for the generation of new technologies in general.

GTs show some specificities in this respect, in that they appear to emerge as an outcome

of the hybridization of a variety of technologies that often are loosely related with one

another. The configuration of the local bundle of skills is therefore much important

in affecting local differences in the capacity to sustain green inventive activities. The

prevalence of abstract skills is crucial in this respect, in that it is related to cognitive

abilities to combine ideas and inputs from different fields in new and previously untried

ways.

Results show that GPP exerts a positive impact on the generation of GTs. In par-

ticular, a 1% increase in GPP engenders some 0.077% increase in the local stock of

GTs. The government expenditure lever can therefore prove to be efficient in the pro-

motion of technology-driven sustainability transitions. Moreover, GPP for services yield

a stronger impact than GPP for products. This suggests the existence of bandwagon

effects upwards in the value chain, for which the demand for green services stimulate

the generation of the technologies that make them possible.

The configuration of the local skills bundle also proved to affect the dynamics of GTs
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generation. In particular, the prevalence of abstract skills is positively associated to

the generation of GTs. Moreover, this specific set of skills moderates the effect of GPP

on GTs, by magnifying its coefficient. According to the chapter estimates, the overall

impact of GPP in areas in which abstract skills are prevalent is almost twice the impact

of GPP in areas in which this prevalence is not observed.

Results bear important policy implications. The most straightforward concerns the

role of public expenditure in boosting technology-driven sustainable development. Most

of the extant literature has focused on technology push or demand pull deployment poli-

cies. However, the chapter shows that besides these options, policymakers can affect

the rate and the direction of green inventive activities by demanding for specific green

services or products. While these are expected to satisfy specific needs of public ad-

ministrations, the GTs that are produced are expected to be relevant for a wider set

of economic activities, bearing important spillovers for prospective adopters. On the

other hand, the transition to green growth entails much more than just new technolo-

gies, in that much of the innovation that is required is organizational and institutional.

These innovations represent a break from established practice and entail considerable

uncertainty about how to make the new practice work effectively. Therefore, supporting

the creation and adaptation of human capital is the second domain of policy interven-

tion. Active labor market policies are essential to both favor the rapid re-absorption of

displaced workers and to counter, or prevent altogether, skill gaps.

In all, the thesis puts forward that, for what concerns green technical change pro-

cesses, the dynamics at stake are articulated and complex. Mastering diverse knowledge

sources is indispensable for creating novelty in the green realm. Policies are a necessary

but not sufficient condition for driving the transition towards less harmful production

systems. Moreover, their role has been only partially explored so far. Tools such as pub-

lic R&D and public procurement have indeed received scant or none attention. However,
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drawing from the thesis results, those tools show high potential in fostering the tran-

sition towards clean production methods. Finally, local labor market features and the

geographic peculiarities of green innovation processes are crucial aspects that require

systematic attention for properly designing the transition, thus guaranteeing long-run,

sustainable growth.
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