
30 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Efficient similarity based methods for the playlist continuation task

Publisher:

Published version:

DOI:10.1145/3267471.3267486

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Association for computing machinery

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1870200 since 2022-07-20T08:50:49Z

Efficient similarity based methods for the playlist continuation
task

Guglielmo Faggioli
University of Padova

Padova, Italy
ggfaggioli@gmail.com

Mirko Polato
University of Padova

Padova, Italy
mpolato@math.unipd.it

Fabio Aiolli
University of Padova

Padova, Italy
aiolli@math.unipd.it

ABSTRACT

In this paper, the pipeline we used in the RecSys challenge
2018 is reported. In particular, we present content-based and
collaborative-filtering approaches for the definition of the
similarity matrices we used for the top-500 recommendation
task we had in the challenge. The task consisted in recom-
mending songs to add to partial playlists. Different methods
have been proposed depending on the number of available
songs in a playlist. We show how a hybrid approach which
exploits both content-based and collaborative-filtering based
information is effective on this particular task. Specifically,
information derived by the playlist titles helped to tackle the
cold-start issue.

CCS CONCEPTS

� Information systems � Recommender systems;

KEYWORDS

Collaborative Filtering, Top-N recommendation, Playlist con-
tinuation

ACM Reference Format:
Guglielmo Faggioli, Mirko Polato, and Fabio Aiolli. 2018. Efficient

similarity based methods for the playlist continuation task. In
Proceedings of ACM RecSys conference (RecSys’18). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.475/123 4

1 INTRODUCTION

The task of the RecSys challenge 2018 was playlist continuation[7].
The playlist continuation task [2, 8, 9] can be described as
in the following: given a playlist, i.e., a limited list of songs,
recommending new songs that are likely to continue such
playlist. In the challenge, the training set has been provided
by Spotify®, and it contains 1M playlists (Million Playlists
Dataset, MPD) with a total of more than 2M unique songs.
The test set (a.k.a. challenge set) is composed by different
kind of playlist scenarios: playlists with no songs but the
title, playlists with few songs (e.g., 1 or 5), and playlists with
“many” songs (¿ 10 up to 100). It is clear that, besides the
playlist continuation task itself, many other challenges had

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

RecSys’18, October 2018, Vancouver, Canada

© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123 4

to be faced, the cold start problem in primis. Our idea to
tackle this challenge was to develop a framework that relies
on the concept of similarity.

All the presented methods are based on a similarity matrix.
Such similarity are defined over songs, playlists, and content
(i.e., title) of the playlists.

The paper is structured as follows. Section 2 describes
theoretical groundwork. First of all we describe CF-KOMD[3–
5], a top-N recommendation technique based on the concept
of margin maximization which aims to maximize the Area
Under the ROC Curve (AUC). Then, the WMSD method [1]
is presented in both its user-based and item-based versions. At
the end of the section, the approach we used to handle the cold
start is discussed. Section 3 contains the detailed description
of how our pipeline to produce recommendations works. We
describe how we validate our methods, and how we manage
to build data structures and to wrangle data. Later on, we
will describe how we actually combined all elements in order
to produce recommendations using techniques described in
the theoretical section. Afterwords, Section 4 briefly discusses
some other attempts, like other kernels representations or
recommendation techniques, which were promising but have
failed in the challenge. Finally, Section 5 and 6 presents some
of our results, focussing especially on performances, and then
we draw some conclusions. Note that, since we are working on
a Recommender system framework, in this paper the terms
playlist and user will be used interchangeably, just as words
song and item, in fact we can consider a playlist as a user
and the songs belonging to said playlist as items rated by
the user.

2 BACKGROUND

Our setting assumes there are n playlists, contained in the
set U , composed by songs taken from set I, i.e., the set of all
possible songs. We can define Ui the list of users who rated
item i (or in other words, playlists containing the song i),
and Iu, or u

+ interchangeably, the list of songs in playlist u.
Note that the challenge set is composed by 10000 playlists,
divided in six buckets; each bucket contains playlists where
we know a specific number of songs; we will call “seed” the
number of songs that are known.

2.1 CF-KOMD

CF-KOMD [3–6] is a technique developed to explicitly maxi-
mize the AUC, inspired by preference learning and designed
for top-N recommendation. CF-KOMD is a kernel-based
method: this might be a strong limitation, since not all

RecSys’18, October 2018, Vancouver, Canada Guglielmo Faggioli, Mirko Polato, and Fabio Aiolli

datasets can be represented through kernels because of the
high amount of memory required. However, thanks to the
fact that often datasets in recommender systems are sparse,
this technique is often applicable to collaborative filtering
problems. More so, it is an highly efficient method, with
very short computational time, highly parallelizable, scal-
able and suited for datasets with few positives and many
negative/unlabelled examples.

Let be W ∈ Rn×k the user embedding, and X ∈ Rk×m the
item embedding in a k-dimensional latent factor space, where
n is the number of users and m the number of items. We
can define R̂ = WX where r̂ui = w⊤

u xi, with the constraint
∥xi∥ = ∥wu∥ = 1.
CF-KOMD learns implicitly the user representation w∗

u by
solving the following optimization problem:

α∗
u = arg min

α
u+

α⊤
u+Kuαu+ + λ ∥αu+∥2 − 2α⊤

u+qu

where αu+ is a probability distribution over songs belonging
to the playlist u (i.e., user), meanwhile Ku ∈ Rm×m is a
kernel matrix between songs, induced by a kernel function
κ, and q ∈ R|Iu| is the vector containing for each item the
average kernel with all the other items:

qui =
1

m

∑
j∈I

κ(xi,xj).

Finally, the recommendation for the user u is computed by
following function:

r̂u = x⊤w∗
u = K⊤

u+:αu+ − q,

where K⊤
u+: ∈ R|Iu|×m is the matrix obtained by taking only

rows ofK associated to positive items for u and q ∈ Rm is like
qu but defined over the whole dataset, and considering only
those elements associated to Iu. The final recommendation is
done by taking the items (i.e., songs) with the highest scores.
For more details about CF-KOMD we refer the reader to the
works [3, 4].

2.2 WMSD

One typical approach for making recommendation is collabo-
rative filtering (CF). In particular we can cast the playlist
continuation problem to a typical implicit feedback top-N
recommendation task. In this section we briefly discuss the
CF method winner of the Million Songs Dataset challenge [1].
We will refer to this method as WMSD.

One important observation about collaborative filtering is
that, when calculating scoring function’s value for a specific
user-item pair, we can decompose contribution from user and
items; what we are doing it is implicitly defining embeddings
for users and items.

Thus, underling classical CF techniques, we have similarity
measures, able to convey how much two items or two users are
close. Among these similarity measures, one of the most used
is cosine similarity. In its common form the cosine similarity
is symmetric, however in [1] an asymmetric definition is
provided: called R the binary rating matrix, given two users

a and b, we can observe that:

P (a|b) = R⊤
a Rb

R⊤
b Rb

and P (a|b) = R⊤
a Rb

R⊤
a Ra

thus, called a and b vectors containing ratings for user a and
b

P (a|b) = a⊤b

b⊤b
=

a⊤b

∥b∥2
.

We can define cosine similarity as the square root of the two
conditional probabilities:

cos(a,b) = P (a|b)
1
2P (b|a)

1
2 =

a⊤b

∥a∥ ∥b∥ .

We can now generalize the concept of cosine similarity using
the conditional probabilities in this way:

cosα(a,b) = P (a|b)αP (b|a)(1−α) =
a⊤b

∥a∥2α ∥b∥2(1−α)

with 0 ≤ α ≤ 1.
So, the asymmetric cosine similarity wuv between the users
u and v can be computed as:

wuv =
|Iu ∩ Iv|

|Iu|α|Iv|(1−α)
.

Similarly, we can define asymmetric cosine similarity wij

between items i and j as:

wij =
|Ui ∩ Uj |

|Ui|α|Uj |(1−α)
.

Note that when α = 1
2
, wuv is equal to the standard cosine

similarity between u and w, while if α = 0, the value for wuv

is P (u|v). Same considerations can be done for the items.
The final score is computed by:

r̂ui =
∑
v∈U

wuvrvi.

The scoring function can also be slightly modified in order
to give more importance to the most similar users by expo-
nentiating the weights as in the following:

r̂ui =
∑
v∈U

wq
uvrvi,

with q ≥ 0. If q = 0, all weights will be equal to 1, thus the
score is the popularity of the song. On the other hand, when
q ≫ 1, the smallest weights will be brought to 0, ignoring
the most different examples and considering only the closest
neighbours.

2.3 Handling the cold start

One of the main issues with the proposed task, has been the
handling of the cold start. The usual approach for facing the
cold start problem is using the content of users and items
and with such information a recommendation is produced.
However, in this specific situation, using a content-based
approach has been challenging because of the very few infor-
mation at our disposal. The only information we can rely on
are: the title of the playlist and the number of followers. After
a statistical analysis, the latter information was discarded
because of its very low significance. Hence, the only usable

Efficient similarity based methods for the playlist continuation task RecSys’18, October 2018, Vancouver, Canada

content was the title. Fortunately, titles represent a powerful
tool to aggregate playlists: if two playlists share the same
title, it is likely that they share at least a part of their songs.
Yet, this is not always true: some titles don’t held any infor-
mation, e.g., ”my playlist” or ”music”, are too generic and
not very useful in narrow down the research area for possible
recommendations. As better described later, titles have been
used to implement a content-based strategy to infer relevant
items associated to a playlist. By using the title, we can limit
our search to those songs that appear in playlists having the
same title.

3 PIPELINE

In order to build the final recommendation, we developed
a pipeline composed by three main steps: preprocessing of
raw data, building the needed structures, applying the rec-
ommendation techniques.

3.1 Step 0: defining the validation set

The following step is not necessary in order to produce a
submissions, but it is necessary to validate the methods
without doing it directly on the challenge set.

The validation set consists in a part of the training set of
playlists used to validate the performance of the developed
methods. We built a validation set which mimic the challenge
set in the sense that it had the same number of playlists
for each seed. In order to do so, we collected length of the
shortest playlists for each seed; we then randomly shuffled
playlists. Finally, for each seed, we run through this list and,
if the length of the playlist is greater or equal to the minimum
length for that seed, we include it in the validation set. This
procedure is repeated until reaching the same amount of
playlists in the challenge set for that specific seed.

3.2 Step 1: Playlists’ titles pre-processing

As already pointed out in Section 2.3, the challenge set con-
tains playlists with no useful information (0 seeds), except
for their title. The documentation for the challenge specif-
ically states that playlists have been chosen to share their
title with many others in the dataset. Note that, although
titles are not unique, we often have synonyms, variation of
the same word (singular and plural) and punctuation con-
founding titles. Thus a preprocessing step has been applied
to standardize the titles set. Specifically, the following steps
have been performed:

• convertion to lower case;
• remotion of punctuation symbols, such as ?!,.-;()/
—: #’ˆ. Often this punctuation doesn’t have any rel-
evant semantic, thus can be safely removed. Not all
punctuation has been removed, special symbols like
$ have been kept because we assumed having their
importance in the titles.

• finally, stemming has been applied.

In the reminder we will refer to the titles set T as the set of
titles produced after the application of the just mentioned
procedure.

3.3 Step 2: Building Support Matrices

All the procedures described in this section can be ran in
parallel; time, memory and disk space will be better detailed
in Section 5.

3.3.1 CF-KOMD Kernel. As previously mentioned, CF-
KOMD is a kernel-based collaborative filtering algorithm
and thus it requires the construction of a kernel matrix be-
tween songs. We validated different kernels, however the best
performing ones, in both validation and test (i.e., on the
challenge set), have been the linear kernel and the mono-
tone Disjunctive kernel (mD-kernel). This results confirm the
considerations presented in [5].

Both the linear and the mD-kernel have been constructed
assuming the songs represented in the space of the playlists.
In particular, given a song i its representation is defined as
the n-dimensional binary vector x where xu = 1 iff i ∈ Iu.
Hence, by arranging the songs in rows of a matrix we get the
matrix X ∈ {0, 1}m×n.

Given X, the linear kernel matrix can be easily computed
by

KLIN = XX⊤.

In the experiments the normalized linear kernel is considered.
For the construction of the mD-kernel matrix we refer the
reader to the works [5, 6]. However, the final recommender
has been built using the linear kernel.

3.3.2 WMSD playlists similarity matrix. In order to apply
the WMSD algorithm in its user-based form, we need to build
the playlists similarity matrix.

To save both memory and computational time, we lim-
ited the construction of this matrix only between challenge
playlists and training playlists. Let be Rch and Rtr the chal-
lenge set rating matrix and the training set rating matrix,
respectively. Let us also define the following two matrices:

R̂ch
p,: =

Rch
p,:

|Rch|αp,:
, R̂tr

p,: =
Rtr

p,:

|Rtr|1−α
p,:

,

where p is a playlist and α is defined as in Section 2.2. Then,
the final similarity matrix is computed by:

P =
[
R̂ch(R̂tr)⊤

]q
,

where q ≥ 0 is the WMSD locality parameter which controls
the size of the neighbourhood. In the extreme cases, if q = ∞,
the neighbourhood is the playlist itself, while if q = 0 the
neighbourhood is the whole set of playlists.

3.3.3 WMSD songs similarity matrix. Akin to the CF-
KOMD case, the asymmetric cosine similarity between songs
can be arranged in a similarity matrix. In this case how-
ever we cannot generally define it as a kernel because of its
asymmetry. Recalling the asymmetric cosine defined in terms
of conditional probabilities (Section 2.2), its corresponding
similarity matrix can be computed using a procedure almost
identical to the one described in the previous section. In this
case however, no distinction has been done between challenge

RecSys’18, October 2018, Vancouver, Canada Guglielmo Faggioli, Mirko Polato, and Fabio Aiolli

and training set. Simply all training songs has been consid-
ered. In the remainder we will refer to the songs similarity
matrix with M.

3.3.4 Titles similarity matrix. Instead of näıvely used titles
simply as aggregators of playlists, we introduced the notion
of titles similarity. Such similarity assumes that titles are
represented in the space of songs. It is very similar to the
user-based similarity previously defined. The only difference
is that a title represents actually a group of playlists which
share such title.

Let us define the matrix A ∈ {0, 1}|T |×|I| such that Ati =
1 if song i appears in at least one playlist having title t.
Finally we can define the titles similarity matrix S as

Sij = Ai,:A
⊤
j,:.

Finally, the matrix S is row normalized. It is worth to notice
that the similarity of a title with itself is equal to 1, but, in
the dataset it might happen that the title doesn’t appear
(especially during validation/test phase). In such case it is
necessary to force the value 1 in the diagonal.

3.4 Step 3: Building Recommendations

In order to build the recommendations, we applied different
approaches on the basis of the number of available seeds:

0 seeds requires a full content-based strategy, since we
know the playlists titles and no information about the
songs are available;

1 seed we need something more user centred, since it can
be seen as a cold start from the item based collaborative
filtering point of view;

5, 10 and 25 seeds represent the intermediate case, where
enough information is available about items and thus
item based strategies are effective;

100 seeds are the highest available number of seeds and
an hybrid content-based and user-based (CF-KOMD)
approach have shown to be the most effective.

3.4.1 Case 0 seeds: full content-based strategy. As men-
tioned previously, we have at our disposal the title of the
playlists. Note: in both the MPD and the challenge set all
playlists with 0 seeds has a title. The rationale behind our
strategy is the fact that playlists with similar titles contain,
with high probability, similar songs. More so, it is likely that a
popular song will be contained in a playlists, since, by defini-
tion, popular songs appear with high frequency in the dataset.
Let us call tu the title of the playlist u, and let pop(tu, i) be
the number of times the song i appears in playlists with
title tu. Leveraging on the titles similarity matrix defined in
Section 3.3.4, we define the following recommender: given
a playlist u with title tu, and a song i, the score for the
playlist-song pair is computed by

r̂ui =

|T |∑
t=0

pop(t, i)Sq
tu,t.

where q has the same role of the locality parameter of WMSD.
The best performing q during the validation procedure has

been 10. Note that we have to consider the case when the
title wasn’t in the training set, or the case where, after the
preprocessing, the title remains empty: in that case we use
the global popularity of songs, proposing songs that are the
most populars in the entire dataset.

3.4.2 Case 1 seed: user-based WMSD. We recall that the
similarity between challenge playlists and training playlists
is stored in a previously built structure: P. What we want
to recommend are songs present in similar playlists to the
one we are considering, weighted by the similarity between
playlists. Hence, the score for a playlist-song pair is computed
by:

r̂ui =
∑
v∈Ui

Puv.

In other words, the score for a song i w.r.t. the playlist u, is
the sum of the similarities of u with all playlists v in which
the song i appears. We can express this in matrix form: let
R be the binary rating matrix, then

R̂ = Pu,vR.

Inside the notation P there are two hidden hyper-parameters:
q and alpha. In our experiments, the best performing set-
ting has been q = 1 and α = 0.5. In that case that the

resulting R̂ contains less than 500 values greater than 0, the
recommendation is filled with global popularity.

3.4.3 Case 5, 10 and 25 seeds: item-based WMSD. When
lot of songs inside a playlist are available we can start relying
in methods that better exploit such information. What we
would like to recommend, are those songs that often appears
in conjunction with the seeds. Additionally, we would like to
suggest those songs that appears often with not only one of
our seeds, but with all (many) of them, namely those songs i
with the highest

∑
j∈Iu

p(i|j) for a playlist u. Note that p(i|j)
is biased toward popular songs: if i is an highly popular song,
it is likely that it appears associated with many songs j, but
also with many others. Thus we want to weight p(i|j) with
p(j|i): if i is a much more popular song than j, p(j|i) will
be low, and we will partially ignore information about p(i|j).
On the other hand, if i has more or less the same popularity
as j and they often appears together, both p(j|i) and p(i|j)
will be significant. Hence, the final score is calculated by:

r̂ui =
∑
j∈Iu

(p(i|j)α ∗ p(j|i)1−α)q =
∑
j∈Iu

Mij .

We obtained the best results on all seeds (i.e., 5, 10 and 25)
with α = 0.7 and q = 0.4.

3.4.4 Case 100 seeds: Hybrid strategy with CF-KOMD and
title-based filtering. As already said CF-KOMD is a very
efficient and powerful recommendation technique which has
shown to be effective in top-N recommendation scenarios.
However, one of the big limitation about CF-KOMD is the
metric it tries to maximize: by maximizing the AUC, we
somehow ignore the real task of recommending (very) top-N
elements. In order to tackle this problem we can consider
applying CF-KOMD only to a smaller subset of songs that

Efficient similarity based methods for the playlist continuation task RecSys’18, October 2018, Vancouver, Canada

is likely to contain all the relevant songs. By reducing the
research space, the AUC tends to be more similar to precision-
oriented metric such as the nDCG. For each target playlist,
we perform this filtering step by applying the technique used
in the 0 seeds scenario and we pick the first 50000 songs
with the highest score. Then, CF-KOMD is applied on the
selected subset of songs. In our experiment the parameter λ
has been set to 0.01.

4 LESS PERFORMING SOLUTIONS

4.1 Other Kernels

Since KOMD is a Kernel method, many kernels can be used.
As already said, the one we decided to use is the linear
kernel. Here we discuss some of the kernels that we tried
to apply which have performed equally or worse than linear
kernel. Note that one important limitation in applying kernel
methods is the dimension of kernel matrices: having 2 millions
of songs, a kernel between songs has a number of elements
approximatively equal to (2 ∗ 106)2 = 4 ∗ 1012. The reason
why we were able to use kernel methods is that linear kernel
is highly sparse [4]: all kernels that are not highly sparse (like
RBF)

have been immediately excluded.

4.1.1 Linear Kernel Among Popular songs. In order to study
the problem from a computational point of view, first experi-
ments where based on a reduced version of the dataset. In
this reduced version, only the 105 most popular songs have
been considered. This test allowed us to study the sparsity
of the kernel matrix for CF-KOMD (since we used the most
popular songs, we are considering the most dense part of
the kernel, other kernels based on a superset of these song
will be at most as dense as this), and computational time
needed by different algorithms. One important observation
is that KOMD works better when a subset of songs is used
instead of the entire dataset. Thanks to this, we developed
the solution for seed 100.

4.1.2 Disjunctive kernel. One generalization of the linear
kernel is represented by the Disjunctive Boolean kernel; this
kind of kernels consider the input vector as a set of Boolean
variables and apply Boolean functions to them. If the features
correspond to Boolean literals, we obtain the linear kernels,
that simply counts how many true Boolean variables input
vectors have in common. Behind the Disjunctive kernel[5]
there is the intuition of using disjunction of Boolean variables
as features. We consider a disjunction of d Boolean variables;
given n input variables, there are

(
n
d

)
possible combinations

(i.e., disjunctions), that is the number of features in our re-
sulting embedding. The k-th feature is 1, if at least one of d
Boolean variables considered in the k-th combination is true.
When d = 1, the corresponding disjunctive kernel is actually
equal to the linear kernel. Note that disjunctive kernel pro-
duces a less expressive kernel than linear one: when d ≥ 2 it is
proven that the kernel is fully dense, thus unusable with our
data. However, thanks to some particular properties of the
disjunction we were able to build the kernel by precomputing

many of the entries that has the same value. The method
produced results that were slightly better than linear kernel,
but with a contraction of the computational performances,
thus we decided to keep using the linear kernel.

4.1.3 Words-based kernel. As already said, one important
information is contained in titles, thus one possible represen-
tation for songs, instead of using the playlists they belongs
to, is using the words that form the playlist’s title. This kind
of representation is highly sparse, since the majority of titles
are formed by one single word, and almost all of them have
less than 4 words. On the basis of this representation a kernel,
e.g., linear, can be computed and used inside the CF-KOMD
framework. Unfortunately, results have been unsatisfying,
thus the research path hasn’t been fully explored, but we
suppose it is possible to adapt this technique in order to
combine kernels or exploit information held by titles.

4.2 Artists and albums

Intuitively, artists and albums should have a great power in
shading data, making an higher abstraction of it. This is the
rationale behind a plethora of experiments we tried where
artists and albums were considered. Some examples of such
methods are:

• using artists or albums to limit selection in content-
based recommenders;

• using artists or albums as representation of titles in
building similarity matrix;

• combining kernels for artists, albums and songs in CF-
KOMD.

Unluckily, none of those experiments has been able to
perform better than the version of the same algorithm where
only songs have been used.

5 PERFORMANCE AND EFFICIENCY

In this section we provide some of the results obtained on
our validation set constructed as described in Section 3.1.
The metrics used are the same used in the challenge, namely
r-precision, nDCG and clicks. For each of the methods we also
report the average memory required and the average running
time. All experiments have been performed in machine with
the processor Intel®Xeon®CPU E5-2650 v3 @ 2.30GHz.

Time (s) Memory (GB)

S 224.29 10

K 2669.00 40

P 126.58 8

M 5388.56 100

Table 1: time in seconds and memory in gigabytes
needed to build each matrix in phase 1

Note that the r-precision metric has been computed only at
songs level and it does not include the artist level r-precision.

The python source code used to implement all the described
method is available at https://github.com/guglielmof/recsys

RecSys’18, October 2018, Vancouver, Canada Guglielmo Faggioli, Mirko Polato, and Fabio Aiolli

seed method R-prec Ndcg Click Time Memory

0 Content-based 0.1093334469 0.2451417298 7.706 290.59 16

1 User-based WMSD 0.1353051115 0.305051816 3.456 131.61 16

5 Item-based WMSD 0.124862255 0.307265287 3.653 13276.9508052 72

10 Item-based wMSD 0.177814445 0.381970242 0.5905 17417.31267 72

25 Item-based WMSD 0.200417129 0.387127462 0.3285 16785.9848182 72

100 Selected CF-KOMD 0.163324902 0.345422633 0.6905 6599.02536917 76

Table 2: method used, results, time in seconds and gigabytes needed for each seed

spt2018. Table 1 summarizes the computational time and
the memory required to build and store the main similarity
matrices. While, Table 2 shows the performance achieved by
our model in the validation set. An observation that can be
done about the results is that the best performing seed is
25 instead of 100. While, unsurprisingly, in general the more
the seeds the better the results especially in the click metric.
From an efficiency point of view, since these methods can be
ran in parallel the proposed approach is very fast and it can
produce a recommendation in less than 5 hours.

6 CONCLUSIONS

This paper describe the method used by the team IN3PD to
tackle the playlist continuation task of the RecSys Challenge
2018. It has been shown how different approaches applied
according to the type of task defined by different number
of seeds. We showed how a content-based strategy based
on playlist titles provided us good solutions but with wide
margin of improvement when no songs were available. Instead,
user-based solutions have provide best results on low seeds
problems (only 1 seed). When more than 1 song were available,
as in the case of 5, 10 and 25 seeds, item-based strategies
have given very good results. Too many seeds, on the other
hand, produced unstable results: longer playlists have often
songs that tend to be less correlated than those in smaller
playlists, thus it has been proven to be harder for pure item-
based strategies to produce competitive results. The best
solution was to combine a content-based technique that relies
on playlist’s title, with CF-KOMD, in order to first limit our
research area and then refine our solution by gathering most
relevant items.

In the future we aim to explore some of the research path
we abandoned during the challenge, and also we will focus
on injecting some real learning inside the recommendation
techniques here described.

REFERENCES
[1] F. Aiolli. Efficient top-N recommendation for very large scale binary

rated datasets. In ACM Recommender Systems Conference, pages
273–280, Hong Kong, China, 2013.

[2] G. Bonnin and D. Jannach. Automated generation of music
playlists: Survey and experiments. ACM Comput. Surv., 47(2):26:1–
26:35, Nov. 2014.

[3] M. Polato and F. Aiolli. Kernel based collaborative filtering for
very large scale top-n item recommendation. In Proceedings of the
European Symposium on Artificial Neural Networks, Computa-
tional Intelligence and Machine Learning (ESANN), pages 11–16,
2016.

[4] M. Polato and F. Aiolli. Exploiting sparsity to build efficient kernel
based collaborative filtering for top-n item recommendation. 2017
forthcoming.

[5] M. Polato and F. Aiolli. Boolean kernels for collaborative filtering
in top-n item recommendation. Neurocomputing, 2018.

[6] M. Polato, I. Lauriola, and F. Aiolli. A novel boolean kernels family
for categorical data. Entropy, 20(6), 2018.

[7] M. Schedl, H. Zamani, C. Chen, Y. Deldjoo, and M. Elahi. Current
challenges and visions in music recommender systems research.
CoRR, abs/1710.03208, 2017.

[8] A. Vall, M. Dorfer, M. Schedl, and G. Widmer. A hybrid approach
to music playlist continuation based on playlist-song membership.
In Proceedings of the 33rd Annual ACM Symposium on Applied
Computing, SAC ’18, pages 1374–1382. ACM, 2018.

[9] A. Vall, H. Eghbal-zadeh, M. Dorfer, M. Schedl, and G. Widmer.
Music playlist continuation by learning from hand-curated examples
and song features: Alleviating the cold-start problem for rare and
out-of-set songs. In Proceedings of the 2Nd Workshop on Deep
Learning for Recommender Systems, DLRS 2017, pages 46–54.
ACM, 2017.

