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1 Introduction

Accurate measurements of processes with muons in the final state are among the main goals of
the CMS experiment [1] at the CERN LHC. Because many analyses rely on the presence of these
leptons to identify interesting physical processes and suppress backgrounds, a successful physics
program relies on a high-quality muon selection. First, it is necessary to discriminate genuine muons
from other background sources that fake muons, such as spurious hits misreconstructed as muons, or
misidentified charged hadrons. Then, for analyses targeting prompt muons from decays of the W,
Z, or Higgs bosons, or muons from t lepton decays, it is important to avoid a contamination from
nonprompt muons produced by hadron decays, especially b quark hadrons.

The LHC Run 2 at CERN occurred during the years 2015 to 2018 and provided an unprecedented
number of proton-proton (pp) collision events at a centre-of-mass energy,

p
B, of 13 TeV recorded

by the CMS experiment. During this period, muon identification relied on a cut-based approach,
using a set of requirements on individual variables related to the information from the tracker and
the muon system. This approach defines three sets of selection criteria [2] with a differing balances
between efficiency and purity that allow each analysis to choose the desired set. However, whenever
the purity of the selected sample is critical, or the muon identification performance is degraded
due to the number of simultaneous collisions in the same or adjacent bunch crossings (pileup, PU),

– 1 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
2
0
3
1

the use of more sophisticated techniques is crucial to maintain an acceptable compromise between
efficiency and purity.

We adopted a multivariate analysis (MVA) approach to design two muon identification
discriminators. The first discriminator, referred to as “muon MVA ID”, is used for generic muon
identification while minimizing hadron misidentification. This discriminator has been trained using
muon identification variables defined in ref. [2] and is presented in this paper for the first time. The
second MVA, referred to as the “prompt-muon MVA”, is designed to accurately identify isolated
prompt muons, for those particular cases in which it is critical to tag such muons, particularly those
produced from the decays of W, Z, Higgs bosons, or t leptons.

The prompt-muon MVA discriminator was trained in the context of multileptonic analyses
with high yields of nonprompt backgrounds, and it was already used in several CMS analyses with
multilepton final states [3–10]. This prompt-muon MVA was designed for isolated muons and it was
trained using both muon identification and isolation variables. Hence, it cannot be used to identify
other genuine muons, such as muons from heavy-flavour decays.

Following a similar MVA approach, a second classifier was trained, combining only muon
identification variables, to construct a more general and robust discriminator able to outperform the
cut-based identification [2]. Such a discriminator could offer a continuous variable that provides
more flexibility to pick the desired trade-off between signal and background efficiencies. With
these goals in mind, we developed the muon MVA ID discriminator for muons with transverse
momentum (?T) >10 GeV and plan to use it for the Run 3 era of the LHC running. Low-?T muons
come from low-mass resonances, so they present different signatures when compared to muons
from Z bosons, hence they require special treatment and are beyond the scope of this study. For
identification of low-?T muons, a special MVA-based discriminator, referred to as “Soft MVA
ID” [11], was developed and used during Run 2. It was trained using the 2016 data set for muons
with ?T < 10 GeV. We present technical aspects about the training of the two algorithms in this
paper and compare their performance in data and simulated events.

The paper is organized as follows: section 2 briefly describes the CMS experiment, and section 3
summarizes the data and simulated samples used in this work. Section 4 contains the details of the
event reconstruction. Section 5 provides a full description of the MVA discriminators, together with
the details of their training. Section 6 discusses the performance of the algorithms on the Run 2 data
and Monte Carlo (MC) simulation. The results are summarized in section 7.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter,
providing a magnetic field of 3.8 T. Within the solenoid volume there are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron
calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the
pseudorapidity ([) coverage provided by the barrel and endcap detectors. Muons are measured
in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A more
detailed description of the CMS detector, together with a definition of the coordinate system used
and the relevant kinematic variables, is reported in ref. [1].
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The CMS muon system consists of three types of gas-ionization detectors: drift tube chambers
(DTs), cathode strip chambers (CSCs), and resistive-plate chambers (RPCs). The DT and CSC
detectors are located in the regions of |[ | < 1.2 and 0.9 < |[ | < 2.4, respectively, and are
complemented by the RPCs in the range |[ | < 1.9. The chambers are arranged to maximize the
coverage and to provide some overlap wherever possible. In both the barrel and endcap regions, the
chambers are grouped into four “muon stations”, separated by the steel absorber of the flux-return
yoke. A detailed description of these detectors, including the gas composition and operating voltage,
is reported in ref. [2]. Figure 1 shows a schematic representation of the CMS detector.

Figure 1. Layout of a quadrant of the CMS detector with the muon system highlighted. The chambers are
named MB for muon barrel, corresponding to DT chambers, and ME for muon endcap, corresponding to
CSC chambers. The RPC chambers are named RB and RE for barrel and endcaps, respectively. Reproduced
from [2]. © 2018 CERN for the benefit of the CMS collaboration. CC BY 3.0.

Events of interest are selected using a two-tiered trigger system. The first level, composed of
custom hardware processors, uses information from the calorimeters and muon detectors to select
events at a rate of around 100 kHz within a fixed latency of about 4 `s [12]. The second level,
known as the high-level trigger, consists of a farm of processors running a version of the full event
reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz
before data storage [13].

3 Data and simulated samples

The studies described in this paper are based on a data set of pp collisions at
p
B = 13 TeV produced

at the LHC in 2018 and corresponding to an integrated luminosity of 59.7 fb�1 [14, 15] recorded
using the CMS experiment. The 2018 data set is representative of the Run 2 data-taking conditions.
The trigger required the presence of a muon with a ?T > 24 GeV threshold fulfilling loose isolation
requirements [16].
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Events are simulated representing the main standard model (SM) processes and matching the
detector and PU conditions of the 2018 data-taking period. Drell-Yan (DY) dilepton events are
generated at next-to-leading order (NLO) in perturbative quantum chromodynamics (QCD) using
the M��G����5_a��@��� 2.6.1 generator [17, 18]. The ������ 2.0 [19–21] generator at NLO
accuracy in QCD is used to simulate top quark pair production (tt) and the production of a Higgs
boson in association with a top quark pair (ttH). Samples of Z + jets, W + jets, and multĳet events
are generated at leading order (LO) in QCD using the M��G����5_a��@��� generator. For all the
MC simulated samples, the primary interaction is overlaid with additional simulated minimum-bias
events to simulate the effect of the PU. The NNPDF 3.1 next-to-NLO [22] parton distribution
function set is used for generating all MC samples. Parton showering and hadronization are simulated
with ������ v8.240 [23, 24] using the underlying event tune CP5 [25]. In the event simulation
using M��G����5_a��@���, the FxFx [26] (MLM [18]) merging scheme is used for NLO (LO)
samples, to avoid possible double-counting of jets from the matrix element calculations and parton
shower. The generated events are then processed through a detailed simulation of the CMS detector
based on G����4 10.04 [27] and are reconstructed with the same algorithms as used for data.

For the training and misidentification rate studies for the muon MVA ID, two different tt samples
that include semileptonic decays are used. The simulated sample used to check the performance
includes generation-level information for the particles produced in the PU interactions, whereas the
other sample does not. The choice of a tt sample for the training provides a wide variety of sources
of genuine muons, including muons from prompt decays and from heavy-flavour hadron decays. To
determine the source of muons in simulated events we look for the geometrical matching between
the hits of the simulated muon track and those of the muon track reconstructed in the muon system.
From the simulated muon track we are able to trace the generated parent particle. In the simulated tt
sample used to check the performance, we find that 60% of muons with ?T > 10 GeV passing the
loose cut-based identification criteria [2] are prompt isolated muons originating from the primary
interaction (gauge boson decays); 8% are isolated muons from t lepton decays; 30% are nonisolated
muons from heavy-flavour decays (b and c hadrons); and 2% are muons from light-hadron decays
(pions or kaons) or nonprompt muon candidates from hadron misreconstruction.

4 Muon reconstruction, identification, and isolation

In the standard CMS reconstruction procedure for pp collisions, muon tracks are first reconstructed
independently in the inner tracker and in the muon systems. In the muon system, tracks called
“standalone muons” are reconstructed by using information from the DT, CSC, and RPC detectors
along the muon trajectory using the Kalman filtering technique [28]. Within each station, multiple
detector planes record muon hits. The hits within a station are combined into segments, which are in
turn fitted into standalone-muon tracks. If the momentum, direction, and position in the transverse
plane of a standalone-muon tracks and a track reconstructed in the inner tracker [29] are compatible,
then a global track is fitted by combining hits from the tracker track and standalone-muon track in a
common fit using the Kalman filtering method, referred to as “global muons”. A third type of muons
referred to as “tracker muons” are reconstructed by extrapolating the inner tracker tracks outward to
the muon system with loose geometrical matching to the DT or CSC segments, these muons need to
have a ?T of at least 3 GeV, otherwise they would not be able to reach the first station in the muon
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system. If at least one muon segment matches the extrapolated track, the track is qualified as a
“tracker muon”. Tracker muons have higher efficiency than global muons for low muon momenta and
in regions of the CMS detector that are less instrumented. More details about muon reconstruction
and the corresponding track parameter resolution of each muon type are reported in refs. [2, 30].

The primary vertex (PV) is taken to be the vertex corresponding to the hardest scattering in the
event, evaluated using tracking information alone, as described in section 9.4.1 of ref. [31]. The
performance of the PV determination depends on the ?T of the particles, as described in ref. [29].

Reconstructed muons are an input into the CMS particle-flow (PF) algorithm [32], which
reconstructs and identifies each individual particle in an event by combining the information from
all the CMS subdetectors. Particles reconstructed by the PF algorithm are classified into charged
and neutral hadrons, photons, electrons, and muons.

After reconstruction, hadrons are clustered into jets using the anti-:T algorithm [33, 34] with
a distance parameter of 0.4. For this analysis, only jets with ?T > 10 GeV are selected. Charged
hadrons not associated with the PV are excluded from the clustering. The energy of the reconstructed
jets is corrected for residual PU effects using the method described in refs. [35, 36] and calibrated as
a function of jet ?T and [ [37]. Jets originating from the hadronization of b quarks are identified
with the D���J�� b tagging algorithm [38, 39]. We define the nearest jet to the muon as the one in
which the muon candidate is clustered.

In the following we describe the standard CMS muon identification method, which makes use
of a set of variables related to the muon track candidate information from both the tracker and the
muon system. The most common sets of selection criteria are referred to as loose, medium, and tight.
Their efficiencies, as measured during the Run 2 data taking by selecting muons with ?T > 20 GeV,
are 99.75, 98.25, and 96.00% with statistical uncertainties between 0.02 and 0.03% for muons with
|[ | < 0.9. Then, for muons with |[ | > 0.9 the efficiencies for each WP are 99.77, 98.55, and 97.46%
with the statistical uncertainties between 0.02 and 0.04%[2].

The “relative isolation” variable is used to distinguish between muons from heavy-flavour
decays and the prompt muons. It is defined as the ?T sum of all charged hadrons, the transverse
energies of all photons and of all neutral hadrons reconstructed by the PF algorithm in a cone of
angle �' =

p
(�q)2 + (�[)2 around the muon direction, divided by the muon ?T, where q is the

azimuthal angle. The charged PF particles not associated with the PV are not included in this sum,
whereas the contribution from neutral particles arising from PU is taken into account by using the
following two alternative approaches [2]. In the first approach, the corrected energy sum from
neutral particles is obtained by subtracting the sum of charged-hadron deposits originating from
PU vertices scaled by a factor of 0.5 from the energy sum of neutral hadrons and photons [2]. In
the second approach, the sums are corrected using the average energy density in the event (d) [40],
scaled by the corresponding “effective area” (A). If the correction exceeds the PF cluster sum,
the correction to the isolation is set to zero. Effective areas are determined independently for the
electromagnetic and the hadronic energy sums and separately in barrel and endcap components.

For this study, two isolation variables are used: one computed with all the PF particles
within an �' = 0.4 cone and corrected using the first method, and the other, referred to as “mini-
isolation” [41], for which the cone size varies as a function of the muon ?T: �' = 0.2 when
?T < 50 GeV, �' = 10 GeV/?T when 50 < ?T < 200 GeV, and �' = 0.05 otherwise, corrected
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using the second method. This variable is particularly well suited to identify isolated muons in
events with significant hadronic activity or in the Lorentz-boosted regime where accidental overlaps
of muons and jets may occur, but still performs just as well in cleaner environments.

5 Definition of the multivariate discriminators

Two classifiers using MVA techniques are presented. Muons used in the training of both classifiers
must pass the loose cut-based identification criteria and have ?T > 10 (5) GeV for the muon MVA ID
(prompt-muon MVA). The loose identification criteria requires muons selected by the PF algorithm
to be either global muons or tracker muons. This preselection shows an efficiency of almost 100%
and helps to avoid poorly reconstructed muons that are not relevant for analyses.

5.1 General muon identification

The muon MVA ID discriminant is trained to distinguish genuine (i.e. signal) muons from background
muons. Signal muons are produced promptly in the decay of W, Z, and Higgs bosons, isolated muons
from t leptons decays, and nonisolated muons from heavy-flavour hadron decays. Background
muons come from light hadron (i.e. kaons and pions) decays and spurious signatures in the detector
misreconstructed as muons, such as hadrons detected in the muon system after traversing the
calorimeters and the steel flux-return yoke.

The sources of the muons included in the training sample are shown as a function of ?T and
[ in figure 2. As expected, the various signal contributions, as well as the background, exhibit
different ?T profiles. The low-?T region is enriched in muons from heavy-flavour hadron decays and
background sources, whereas the higher ?T region presents a larger proportion of muons originating
from prompt decays.

20 40 60 80 100
ηMuon 

10

210

310

410

510

610

710

810

N
um

be
r o

f e
ve

nt
s 

/ 2
.0

0 
G

eV Prompt
Heavy-flavour decays
Tau lepton decays
Background

 Simulation CMS  (13 TeV)-159.7 fb

2− 1− 0 1 2
MVA Score

10

210

310

410

510

610

710

810

N
um

be
r o

f e
ve

nt
s 

/ 0
.0

5 Prompt
Heavy-flavour decays
Tau lepton decays
Background

 Simulation CMS  (13 TeV)-159.7 fb

Figure 2. Composition of the simulated tt sample used for training after muon preselection in terms of muon
origin according to generator-level information. The composition is shown as a function of ?T (left) and [

(right). The last bin on the left figure includes events with ?T > 100 GeV.

The training of the MVA is performed with all variables used in the standard cut-based
identification criteria, with the exception of the compatibility with the PV, quantified with the muon
impact parameter in the GH-plane and along the I-direction. These variables are excluded as we aim
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to obtain a discriminator to select both prompt and nonprompt muons produced in heavy-flavour
hadron decays. To discard nonprompt muons, further isolation requirements or a custom impact
parameter selection criteria should be applied at the analysis level. The input variables used are:

• The ?T and [ of the muon.

• “Global muon” flag.

• Normalized j
2 of the muon track fit.

• Number of muon stations with hits included in the muon track fit.

• j
2 of the kink-finder algorithm on the inner track defined in ref. [2]. The algorithm splits the

inner track in two parts in several places along the trajectory and compares them. A large j
2

indicates that the two parts are not compatible with being a single track.

• j
2 of the position matching between the inner and standalone tracks (local j2). If there is no

standalone track, it is set to 0.

• Segment compatibility: the compatibility of track segments in the muon system with the
pattern expected for a minimum ionizing particle.

• Number of hits in the pixel detector used to fit the muon track.

• Number of tracker layers used in the muon track fit.

• Fraction of tracker hits used for the fit of the inner track.

• Number of matched stations: number of segments (one per station) reconstructed in the muon
chambers and used in the global muon track fit.

The ?T and [ bins are weighted to have the same distributions in both signal and background samples to
avoid any kinematic bias in the muon classification. The distributions of the input variables used in the
tt training sample for signal and background muons passing the preselection requirements are shown
in figure 3. For the three input variables defined as a j

2 the logarithm of the variable is presented.
A random forest [42] classifier is trained using the S�����-����� 0.19.1 package [43]. All

the parameters of the model (hyperparameters) are optimized, combining manual and grid search
strategies, with the aim of achieving the best performance while preventing overfitting, and hence
reaching the highest possible accuracy on the classification. The optimal values of the hyperparameters
are 200 trees with a maximum depth of 8. The optimization was performed using the area under the
receiver operator characteristic (ROC) curve, as well as the efficiency and the background rejection.
The memory usage was also taken into account in the optimization, so slightly higher performance
was traded for lower memory consumption. The main challenge of this classification problem is
the class imbalance, since the simulation contains many more signal than background muons. The
most important input variables in the training are the j

2 of the kink-finder algorithm on the inner
track and the j

2 of the position matching between the inner and standalone tracks.
The trained muon MVA ID discriminator offers a continuous variable, which provides flexibility

to select the most suitable trade-off between signal and background efficiencies, known as working
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Figure 3. Distribution in the simulated tt training sample of the number of matched stations (upper left), the
segment compatibility (upper central), the number of tracker layers with hits (upper right), the fraction of
valid tracker hits (middle left), the inner-standalone matching (middle central) and normalized j

2 of the muon
fit (middle right), the number of valid pixel hits (lower left) and the total number of valid muon chamber hits
(lower central), and the j

2 of the kink-finder algorithm (lower right), shown for signal and background, as
defined in section 5.1. The last bin of each distribution contains the overflow events.

point (WP), for each analysis. Additionally, two WPs, medium and tight, are defined to provide a
simple way to see the performance of the MVA in data. They provide an alternative discriminator
for high-efficiency WPs while not necessarily as relaxed as the medium cut-based identification. The
medium WP is defined as the value yielding the same background rejection of the cut-based selection
medium WP, calculated for muons with ?T > 20 GeV in the tt simulated sample used to check the
performance. A higher threshold in the muon MVA ID discriminator defines the tight WP to further
reduce the background contamination by 10% with respect to the medium WP, while still providing
high efficiency. The defined thresholds correspond to MVA > 0.08 and 0.20 for the medium and tight
WPs, respectively. Figure 4 shows the ROC curve of the muon MVA ID with the selected muon MVA
ID WPs. The cut-based medium and tight WPs, as well as the soft MVA ID [11] ROC curve are also
shown for reference. The rates shown are computed selecting muons with ?T > 10 GeV in the tt sam-
ple that is not used for training. This plot summarizes the performance for all the available muon IDs.
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Figure 4. The ROC curve for muons with ?T > 10 GeV for the developed general muon MVA ID discriminator
(black solid line) with the selected medium and tight WPs shown as orange solid and purple open stars,
respectively. Orange solid and blue open points show the medium and tight WPs of the cut-based ID. The
ROC curve of the soft MVA ID [11] is also shown (grey dashed line).

5.2 Prompt-muon identification and isolation

Muons originating from prompt decays of W, Z, or Higgs bosons, or from t decays, appear isolated
and pointing to the PV. This information is used to build an MVA discriminator that drastically
reduces the contribution of nonprompt leptons to the selected muon sample. We refer to this
discriminator as “prompt-muon MVA”. In addition to the minimal selection criteria detailed at
the beginning of the section, muons used in the training are required to have a mini-isolation
smaller than 40% of the ?T of the muon. In addition, the muon impact parameter with respect
to the PV is required to be smaller than 0.05 cm in the GH-plane and 0.1 cm in the I-direction.
The three-dimensional impact parameter of the muon track with respect to the PV, divided by its
uncertainty, which corresponds to its significance (3/f

3
) is required to be smaller than 8. These

requirements reject muons that are very unlikely to have a prompt origin, while bounding some of
the MVA input variables, enhancing its performance. The signal is defined as the muons selected by
these criteria and matched to a generator-level muon produced in the prompt decay of the particles
mentioned above, whereas all the muons not fulfilling these criteria are considered as background.
The sample of signal (background) muons is obtained from simulated samples of ttH (tt) events.

The input variables used in the training include properties of the muons, information regarding
the muon isolation, and, if present, properties of the jet associated with the muon. To be considered
as associated, the jet must contain the muon candidate. The training variables are:

• Muon ?T and |[ |.

• Charged component of the mini-isolation variable, defined as �charged
µ =

Õ
charged ?T/?

µ
T.

• Neutral component of the mini-isolation variable, corrected for PU effects with the effective
areas method [2], defined as �neutrals

µ = max
�
0,
Õ

neutrals ?T � dA ('/0.3)2�/?µ
T.
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• Muon-to-jet ?T ratio variable, ?ratio
T : the ratio of the transverse momentum of the muon to the

transverse momentum of the nearest jet, ?µ
T/?

jet
T . If no jet associated to the muon is present,

this variable is set to 1/(1 + �rel), where �rel is the relative isolation.

• Muon relative ?T variable, ?rel
T : the component of the muon momentum in direction transverse

to the jet, ?rel
T = ?

µ sin \, where \ denotes the angle between the muon and jet momentum
vectors and ?

µ , the magnitude of the muon momentum. If no jet associated with the muon is
present, this variable is set to zero.

• Jet b tagging score: the value of the D���J�� b tagging algorithm discriminator [38] of the
associated jet. When such a jet is not present, the variable is set to zero.

• Jet charged constituents: the number, #charged, of charged PF candidates within the associated
jet. Tracks associated with those particles must be within ' < 0.4 of the muon and are
required to come from the PV to enter the counting. Minimal track quality, ?T, and impact
parameter criteria are also applied. If such a jet does not exist this variable is set to zero.

• Longitudinal (3
I
) and transverse (3

GH
) impact parameters. Since these variables span over

several orders of magnitude, their logarithmic value, log
�
3
I (GH)/1 cm

�
, is used.

• Significance of the three-dimensional impact parameter.

• Muon segment compatibility variable.

The classifier is trained using the TMVA 4.2.1 implementation [44] of a boosted decision tree
(BDT) with gradient boosting. The distributions of signal and background muons, as predicted by
the simulations, are shown in figure 5 as functions of the input variables. The hyperparameters of
the BDT have been chosen to achieve the best performance: the algorithm used is a gradient boost
with 1000 trees of maxium depth of 4. This optimization was performed using the area under the
ROC curve as metric, since no WP was predefined.

The performance of the discriminator is shown in figure 6 together with the performance
obtained using a cut-based approach, which combines a requirement on the tight or the medium
cut-based identification WP with a range of requirements on the mini-isolation variable. For the
prompt-muon MVA, a WP used already in ref. [3] is defined to have a MVA score larger than 0.85,
which gives about 80% efficiency in the ttH events and a nonprompt muon rate of the order of 6⇥10�3

in tt events, where efficiency (nonprompt rate) is defined as the fraction of signal (background)
muons passing the selection.

6 Performance in data

The performance of the discriminators is evaluated using both data and simulated events, and
discussed in this section.

The efficiency is measured as a function of the muon ?T in two [ regions using the “tag-and-
probe method”, which selects muons coming from the Z boson decay, as described in ref. [45]. Tag
muons are required to pass the tight cut-based identification criteria and, to avoid any bias in the
efficiency measurement, to be geometrically matched with the muon that triggered the event. Probe
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Figure 5. Simulated distributions of the charged component (upper left) and the neutral component (upper
central) of mini-isolation, the muon to jet ?T ratio (upper right), the jet relative ?T (middle left), the score of
the associated D���J�� b tagging algorithm (middle central), the significance of the impact parameter (middle
right), the impact parameter in the transverse (lower left) and longitudinal (lower central) direction between
the muon and the PV, and the segment compatibility (lower right) for prompt and nonprompt muons.

muons are required to pass the loose cut-based identification criteria. Efficiency is defined as the
fraction of probe muons that pass the MVA identification requirement.

In simulation, any background to this selection is removed by requiring the tag and the probe
muons to be produced by the decay of a Z boson, looking at the generation-level information. In
collision events, a parametric model of the dimuon invariant mass distribution with a background
and a signal component is built. The signal is parameterized using the templates predicted by the
simulated sample of DY events convolved with a Gaussian distribution to account for potential
resolution differences between data and simulation. To model the background, the convolution of an
exponential decay distribution with an error function is used. The exponential is used to model the
distribution at high-mass values whereas the error function is used to model the low-mass regime.
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Figure 6. ROC curve for the prompt-muon MVA, and for the tight and medium cut-based criteria together
with requirements on mini-isolation. For a set of cuts on the different discriminators, the efficiency is shown
as a function of proportion of nonprompt muons passing the WP selection.

The systematic uncertainties in the efficiencies estimated using the tag-and-probe method are
smaller than 1% [2] and are correlated between the different discriminators.

The systematic uncertainties in the background contamination are strongly dependent on
the topology of the background that contaminates each specific analysis; in particular, when the
background contamination is due to muons with very different topology (e.g. multĳet events) with
respect to those of the signal region. For the prompt-muon MVA, which uses b tagging and other
variables strongly dependent on the event topology, the uncertainties can be larger. However, no large
dependences on the event topology have been observed at analysis level [3]. In either case, the analyses
making use of these MVA selections should tailor the systematic uncertainty in their specific cases.

Several analyses in CMS have already used the prompt-muon MVA discriminator with an
equivalent training to that described in this paper.

Some examples include the evidence of ttH production [3–5], in which the use of the
prompt-muon MVA (including an equivalent training for electrons) leads to a reduction in the
nonprompt-lepton background from tt events by a factor of 4 with respect to the use of an equivalent
cut-based technique. A second example is the measurement of the WZ process [7, 8], or the
multiboson production at

p
B = 5.02 TeV [6], where the use of this identification signficantly reduced

the poorly modelled nonprompt-lepton background arising from Z + jets and tt events. A third
example is the search for electroweak production of supersymmetric particles [9] where the use
of this discriminator improved the nonprompt-lepton background rejection, therefore limiting the
associated systematic uncertainties. Finally, an alternative training of this discriminator was also
employed in the observation of tZq production [46] and four top quark production (tt tt) [10], as
well as in other precision top quark measurements [47–49].

The muon MVA ID was not previously used in any CMS analysis, but it offers an alternative
discriminator that could be used for high-efficiency WPs. In addition, it features a weaker dependence
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on the number of PU vertices compared with the standard cut-based approaches, which may be useful
in the context of changing data-taking conditions or high PU scenarios expected in Run 3. These
points are of particular interest for those precision analyses that are not statistically limited, such as
the top quark or the electroweak precision measurements, allowing for a nearly background-free
signal region. In addition to reducing the amount of background, this may significantly reduce also
its associated systematic uncertainties.

6.1 Muon MVA ID performance

The efficiency for each of the WPs is measured in both data and DY simulation using the tag-and-
probe method. The background contamination and the signal purity are measured in a tt simulated
sample that was not used for training. The background contamination is defined as the number of
background muons passing the identification criteria divided by the total number of background
muons that also fulfill the cut-based loose identification criteria, and the purity is calculated as the
number of signal muons divided by the total number of muons, for all these muons passing the
identification criteria. A slight improvement of the purity for muons with ?T between 10 and 20 GeV
is observed when using the MVA discriminators, whereas purity values for higher ?T are similar to
that of the cut-based ID.

The measured efficiencies as functions of ?T for the medium and tight WPs are shown in figure 7
in two [ regions. The efficiency of the medium MVA ID is higher than 99.5%, and about 0.5%
higher than the one achieved by the cut-based ID for a similar background contamination of around
50%. For the tight MVA ID WP, it achieves a 10% smaller background contamination than the
medium MVA ID, and the efficiency is about 99% for muons with ?T > 30 GeV and 1–2% smaller
for muons with ?T between 10 and 30 GeV. Efficiencies in the ?T region between 120 and 200 GeV
are evaluated using DY simulation and they are compatible with the ones in the 80 to 120 GeV
region, but they show an increase in the uncertainty of approximately a factor 2. Figure 8 shows the
efficiency as a function of the number of vertices for both WPs. It remains around 99.5 (98.0)%
for the medium (tight) muon MVA ID WP even for events with up to 60 PU vertices. For the
medium WP of the cut-based ID, the efficiency decreases as a function of the number of PU vertices,
whereas it is stable for the medium WP of the muon MVA ID. The efficiency in DY simulation is
systematically 0.5–1.0% higher than the efficiency in data as a result of small imperfections in the
modelling. The discrepancy is observed both in the cut-based ID, as reported in ref. [2], and in the
muon MVA ID.

6.2 Prompt-muon MVA performance

The efficiency of the selected WP (prompt-muon MVA > 0.85) is measured both in data and DY
simulation as a function of the muon ?T in two [ regions using the tag-and-probe method, as in the
previous section.

The measured efficiencies are shown in figure 9. Efficiencies are above 80% for muons with
?T > 20 GeV. The efficiency is modelled well by simulations, with discrepancies smaller than 3%
for muons with ?T > 20 GeV. Efficiencies in the ?T region between 120 and 200 GeV are evaluated
using tt simulation and are compatible with the values in the 80 to 120 GeV region.

The rate of nonprompt muons is measured in a sample enriched in multĳet events. This sample
is obtained selecting data collected with a set of prescaled single muon triggers that do not require
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Figure 7. Muon identification efficiency for the medium (upper) and tight (lower) WPs as a function of
?T for muons with |[ | < 0.9 (left) and |[ | > 0.9 (right). Blue dots show the muon MVA ID performance both
for the 2018 data set and DY simulation, whereas red triangles show the efficiency of the medium cut-based
ID used during Run 2. The data to MC ratio is also shown. The efficiencies of the muon MVA ID are similar
in both [ regions.

isolation. The same trigger selection is applied to the simulated events. Events are required to have
a muon passing the minimal muon selection described in section 5. Additionally, to suppress the
contribution from light-flavour meson decays, muons are required to fulfill the medium cut-based
requirements. Moreover, events are required to have a jet with ?T > 30 GeV and |[ | < 2.4 recoiling
against a muon with a �' between the jet and the muon of less than 0.7. Figure 10 shows a set of
the most important variables for events passing this selection. The multĳet background enriched
region defined above is dominated by nonprompt muons mostly coming from heavy-flavour hadron
decays. In general, the input variables of the prompt-muon MVA, as well as the MVA score, are
modelled quite well by simulation. An exception to this is the segment compatibility variable, which
shows a clear disagreement at lower values. This is due to the fact that simulated multĳet events
are filtered, so they contain a muon produced at the PV, and they do not include a significant part
of the PU contribution because only events with a muon in the hard scattering are selected. These
muons are typically not relevant for the analyses, since they are easily rejected by the preselection
requirements. The ?T distribution is also not well modelled in these background samples, because
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Figure 8. Muon identification efficiency for the medium (upper) and tight (lower) WPs as a function of PU
for muons with |[ | < 0.9 (left) and |[ | > 0.9 (right). Blue dots show the muon MVA ID performance both for
the 2018 data set and DY simulation, whereas red triangles show the efficiency of the medium cut-based ID
used during Run 2. The data to MC ratio is also shown.
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Figure 10. Distribution of data in the multĳet control region as a function of the muon ?T (upper left), [
(upper central), segment compatibility (upper right), the D���J�� b tagging score of the jet associated to the
muon (lower left), the significance of the impact parameter (lower central) and the prompt-muon MVA score
(lower right). The vertical bars on the dots represent the statistical uncertainty of each data point and the blue
band, the uncertainty associated to the limited number of simulated events.

the employed multĳet samples have a limited accuracy. However, the amount of mismodelling is
small in the signal and background samples used in the training.

The sample defined by the selection described above is enriched in nonprompt muons. However,
background contributions may arise from electroweak-induced processes such as W + jets or tt
events. To subtract this component, the observable <

fix
T is defined as:

<
fix
T =

q
2?fix

T ?
miss
T (1 � cos�q), (6.1)

where �q is the azhimutal angle between the muon and Æ?miss
T . The definition of <fix

T is similar to that
of the transverse mass of the muon and ?

miss
T ; the only difference is that the muon momentum is set

to ?
fix
T = 35 GeV, approximately the mode of the muon ?T distribution in W + jets events. Similarly

to the transverse mass, the <fix
T variable has a kinematic endpoint near the W boson mass. However,

since the muon ?T is not included in this calculation, it is less correlated with this quantity, avoiding
potential biases in the measurement.

Then, the number of events with a nonprompt muon is computed by means of a fit to the <
fix
T

observable. In the fit, the prompt and nonprompt contributions are parameterized using templates
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Figure 11. Measurement of the nonprompt-muon rate of a prompt-muon MVA (blue dots) and mini-isolation
(red triangles) selection as a function of ?T for muons with |[ | < 1.2 (left) and |[ | > 1.2 (right) for the 2018
data set and simulated DY events.

that are derived from samples of simulated events of each muon source. The prompt contribution
is obtained from W + jets, DY+jets, and tt simulated events, whereas the nonprompt contribution
includes multĳet events with muons in the final state. The fit also incorporates nuisance parameters
to account for statistical uncertainties in the templates, as well as systematic deformations of their
shapes. The fit is performed separately for cases in which the muon passes or fails a prompt-muon
MVA score larger than 0.85. We label the result of each of the two fits as #pass and #fail, respectively,
and the nonprompt rate, 5 , is computed as

5 =
#pass

#pass + #fail
. (6.2)

Additionally, to compare the performance of the prompt-muon MVA with a more standard criterion
designed to reject tt events, the nonprompt-muon rate with a selection based on mini-isolation is also
computed. Since the prompt-muon MVA and the mini-isolation have a different efficiency dependence
as a function of the muon ?T, a requirement on mini-isolation, which is dependent on ?T, is included
that gives the same efficiency as the prompt-muon MVA and thus provides a fair comparison.

The nonprompt-muon rates for the two selections are shown in figure 11, displaying approximately
a factor 2 (3) smaller nonprompt rate of the prompt-muon MVA with respect to the mini-isolation
selection for muons with |[ | < 1.2 (> 1.2). Additionally, the observed nonprompt rate agrees with
the predictions provided by the simulations, which also reproduces the difference in nonprompt rate
between the two strategies. This result validates the prompt-muon MVA in collision data and also
shows its generalization power in a phase space different from the one used for its training.

7 Summary

A correct identification of the leptons is crucial in many precision measurements and searches
to suppress the otherwise overwhelming background and as an indicator of interesting physical
processes. Two multivariate analyses were developed for highly efficient muon identification and
isolation. The first one, the muon MVA ID, is trained to distinguish muons produced promptly in
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heavy gauge boson decays as well as muons from t lepton and heavy-flavour hadron decays, from
background muons produced in light-hadron decays (pions or kaons) or other spurious signatures
in the detector that could be misreconstructed as muons. The discriminator is presented as an
alternative to the standard cut-based identification criteria and could be used for high-efficiency
working points. The second one, the prompt-muon MVA, selects isolated muons from W, Z,
Higgs bosons, and t lepton decays to reduce the contamination from nonisolated muons arising in
heavy-flavour hadron decays. Their performances are measured in proton-proton collisions recorded
by the CMS experiment during 2018 and compared to simulation. The performance of the muon
MVA ID improves significantly that of the cut-based ID and the prompt-muon MVA achieves a
factor 2–3 times smaller nonprompt-muon rates than the mini-isolation selection.
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